
42nd International Symposium on
Theoretical Aspects of Computer
Science

STACS 2025, March 4–7, 2025, Jena, Germany

Edited by

Olaf Beyersdorff
Michał Pilipczuk
Elaine Pimentel
Nguyễn Kim Thắng

LIPIcs – Vo l . 327 – STACS 2025 www.dagstuh l .de/ l ip i c s

Editors

Olaf Beyersdorff
Friedrich Schiller University Jena, Germany
olaf.beyersdorff@uni-jena.de

Michał Pilipczuk
University of Warsaw, Poland
michal.pilipczuk@mimuw.edu.pl

Elaine Pimentel
University College London, UK
e.pimentel@ucl.ac.uk

Nguyễn Kim Thắng
Grenoble INP, Université Grenoble-Alpes, France
kim-thang.nguyen@univ-grenoble-alpes.fr

ACM Classification 2012
Mathematics of computing → Combinatorics; Mathematics of computing → Graph theory; Theory of
computation → Formal languages and automata theory; Theory of computation → Logic; Theory of
computation → Design and analysis of algorithms; Theory of computation → Computational complexity
and cryptography; Theory of computation → Models of computation

ISBN 978-3-95977-365-2

Published online and open access by
Schloss Dagstuhl – Leibniz-Zentrum für Informatik GmbH, Dagstuhl Publishing, Saarbrücken/Wadern,
Germany. Online available at https://www.dagstuhl.de/dagpub/978-3-95977-365-2.

Publication date
March, 2025

Bibliographic information published by the Deutsche Nationalbibliothek
The Deutsche Nationalbibliothek lists this publication in the Deutsche Nationalbibliografie; detailed
bibliographic data are available in the Internet at https://portal.dnb.de.

License
This work is licensed under a Creative Commons Attribution 4.0 International license (CC-BY 4.0):
https://creativecommons.org/licenses/by/4.0/legalcode.
In brief, this license authorizes each and everybody to share (to copy, distribute and transmit) the work
under the following conditions, without impairing or restricting the authors’ moral rights:

Attribution: The work must be attributed to its authors.

The copyright is retained by the corresponding authors.

Digital Object Identifier: 10.4230/LIPIcs.STACS.2025.0
ISBN 978-3-95977-365-2 ISSN 1868-8969 https://www.dagstuhl.de/lipics

https://orcid.org/0000-0002-2870-1648
mailto:olaf.beyersdorff@uni-jena.de
https://orcid.org/0000-0001-7891-1988
mailto:michal.pilipczuk@mimuw.edu.pl
https://orcid.org/0000-0002-7113-0801
mailto:e.pimentel@ucl.ac.uk
https://orcid.org/0000-0002-6085-9453
mailto:kim-thang.nguyen@univ-grenoble-alpes.fr
https://www.dagstuhl.de/dagpub/978-3-95977-365-2
https://www.dagstuhl.de/dagpub/978-3-95977-365-2
https://portal.dnb.de
https://creativecommons.org/licenses/by/4.0/legalcode
https://doi.org/10.4230/LIPIcs.STACS.2025.0
https://www.dagstuhl.de/dagpub/978-3-95977-365-2
https://www.dagstuhl.de/dagpub/1868-8969
https://www.dagstuhl.de/lipics

0:iii

LIPIcs – Leibniz International Proceedings in Informatics

LIPIcs is a series of high-quality conference proceedings across all fields in informatics. LIPIcs volumes
are published according to the principle of Open Access, i.e., they are available online and free of charge.

Editorial Board

Luca Aceto (Reykjavik University, IS and Gran Sasso Science Institute, IT)
Christel Baier (TU Dresden, DE)
Roberto Di Cosmo (Inria and Université Paris Cité, FR)
Faith Ellen (University of Toronto, CA)
Javier Esparza (TU München, DE)
Daniel Král’ (Masaryk University, Brno, CZ)
Meena Mahajan (Chair, Institute of Mathematical Sciences, Chennai, IN)
Anca Muscholl (University of Bordeaux, FR)
Chih-Hao Luke Ong (Nanyang Technological University, SG)
Phillip Rogaway (University of California, Davis, US)
Eva Rotenberg (Technical University of Denmark, Lyngby, DK)
Raimund Seidel (Universität des Saarlandes, Saarbrücken, DE and Schloss Dagstuhl – Leibniz-Zentrum
für Informatik, Wadern, DE)
Pierre Senellart (ENS, Université PSL, Paris, FR)

ISSN 1868-8969

https://www.dagstuhl.de/lipics

STACS 2025

https://www.dagstuhl.de/dagpub/1868-8969
https://www.dagstuhl.de/lipics

Contents

Preface
Olaf Beyersdorff, Michał Pilipczuk, Elaine Pimentel, and Nguyễn Kim Thắng 0:xi–0:xii

Conference Organization
. 0:xiii–0:xvii

List of Authors
. 0:xix–0:xxv

Invited Talks

Proof Complexity and Its Relations to SAT Solving
Albert Atserias . 1:1–1:1

A Strongly Polynomial Algorithm for Linear Programs with at Most Two
Non-Zero Entries per Row or Column

Daniel Dadush, Zhuan Khye Koh, Bento Natura, Neil Olver, and László A. Végh . 2:1–2:1

Algebras for Automata: Reasoning with Regularity
Anupam Das . 3:1–3:1

Some Recent Advancements in Monotone Circuit Complexity
Susanna F. de Rezende . 4:1–4:2

Regular Papers

Parameterized Saga of First-Fit and Last-Fit Coloring
Akanksha Agrawal, Daniel Lokshtanov, Fahad Panolan, Saket Saurabh, and
Shaily Verma . 5:1–5:21

Twin-Width One
Jungho Ahn, Hugo Jacob, Noleen Köhler, Christophe Paul, Amadeus Reinald, and
Sebastian Wiederrecht . 6:1–6:19

Faster Edge Coloring by Partition Sieving
Shyan Akmal and Tomohiro Koana . 7:1–7:18

Tropical Proof Systems: Between R(CP) and Resolution
Yaroslav Alekseev, Dima Grigoriev, and Edward A. Hirsch . 8:1–8:20

Improved Approximation Algorithms for (1,2)-TSP and Max-TSP Using Path
Covers in the Semi-Streaming Model

Sharareh Alipour, Ermiya Farokhnejad, and Tobias Mömke . 9:1–9:17

Monotone Weak Distributive Laws over the Lifted Powerset Monad in Categories
of Algebras

Quentin Aristote . 10:1–10:20

Generalized Inner Product Estimation with Limited Quantum Communication
Srinivasan Arunachalam and Louis Schatzki . 11:1–11:17

42nd International Symposium on Theoretical Aspects of Computer Science (STACS 2025).
Editors: Olaf Beyersdorff, Michał Pilipczuk, Elaine Pimentel, and Nguyễn Kim Thắng

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

0:vi Contents

Results on H-Freeness Testing in Graphs of Bounded r-Admissibility
Christine Awofeso, Patrick Greaves, Oded Lachish, and Felix Reidl 12:1–12:16

Hyperbolic Random Graphs: Clique Number and Degeneracy with Implications
for Colouring

Samuel Baguley, Yannic Maus, Janosch Ruff, and George Skretas 13:1–13:20

Multivariate Exploration of Metric Dilation
Aritra Banik, Fedor V. Fomin, Petr A. Golovach, Tanmay Inamdar,
Satyabrata Jana, and Saket Saurabh . 14:1–14:17

Structure-Guided Automated Reasoning
Max Bannach and Markus Hecher . 15:1–15:18

Listing Spanning Trees of Outerplanar Graphs by Pivot-Exchanges
Nastaran Behrooznia and Torsten Mütze . 16:1–16:18

Tight Approximation and Kernelization Bounds for Vertex-Disjoint Shortest Paths
Matthias Bentert, Fedor V. Fomin, and Petr A. Golovach . 17:1–17:17

Online Disjoint Set Covers: Randomization Is Not Necessary
Marcin Bienkowski, Jarosław Byrka, and Łukasz Jeż . 18:1–18:16

The Complexity of Learning LTL, CTL and ATL Formulas
Benjamin Bordais, Daniel Neider, and Rajarshi Roy . 19:1–19:20

On Cascades of Reset Automata
Roberto Borelli, Luca Geatti, Marco Montali, and Angelo Montanari 20:1–20:22

Computability of Extender Sets in Multidimensional Subshifts
Antonin Callard, Léo Paviet Salomon, and Pascal Vanier . 21:1–21:19

CMSO-Transducing Tree-Like Graph Decompositions
Rutger Campbell, Bruno Guillon, Mamadou Moustapha Kanté, Eun Jung Kim,
and Noleen Köhler . 22:1–22:18

How to Play the Accordion: Uniformity and the (Non-)Conservativity of the
Linear Approximation of the λ-Calculus

Rémy Cerda and Lionel Vaux Auclair . 23:1–23:21

A Deterministic Approach to Shortest Path Restoration in Edge Faulty Graphs
Keerti Choudhary and Rishabh Dhiman . 24:1–24:10

Local Density and Its Distributed Approximation
Aleksander Bjørn Christiansen, Ivor van der Hoog, and Eva Rotenberg 25:1–25:20

Toward Better Depth Lower Bounds: Strong Composition of XOR and a Random
Function

Nikolai Chukhin, Alexander S. Kulikov, and Ivan Mihajlin . 26:1–26:15

Local Equivalence of Stabilizer States: A Graphical Characterisation
Nathan Claudet and Simon Perdrix . 27:1–27:18

Can You Link Up With Treewidth?
Radu Curticapean, Simon Döring, Daniel Neuen, and Jiaheng Wang 28:1–28:24

Contents 0:vii

Noisy (Binary) Searching: Simple, Fast and Correct
Dariusz Dereniowski, Aleksander Łukasiewicz, and Przemysław Uznański 29:1–29:18

Being Efficient in Time, Space, and Workload: a Self-Stabilizing Unison and Its
Consequences

Stéphane Devismes, David Ilcinkas, Colette Johnen, and Frédéric Mazoit 30:1–30:18

Efficient Approximation Schemes for Scheduling on a Stochastic Number of
Machines

Leah Epstein and Asaf Levin . 31:1–31:18

A Faster Algorithm for Constrained Correlation Clustering
Nick Fischer, Evangelos Kipouridis, Jonas Klausen, and Mikkel Thorup 32:1–32:18

Metric Dimension and Geodetic Set Parameterized by Vertex Cover
Florent Foucaud, Esther Galby, Liana Khazaliya, Shaohua Li, Fionn Mc Inerney,
Roohani Sharma, and Prafullkumar Tale . 33:1–33:20

Agreement Tasks in Fault-Prone Synchronous Networks of Arbitrary Structure
Pierre Fraigniaud, Minh Hang Nguyen, and Ami Paz . 34:1–34:21

Dimension-Free Parameterized Approximation Schemes for Hybrid Clustering
Ameet Gadekar and Tanmay Inamdar . 35:1–35:20

MaxMin Separation Problems: FPT Algorithms for st-Separator and Odd Cycle
Transversal

Ajinkya Gaikwad, Hitendra Kumar, Soumen Maity, Saket Saurabh, and
Roohani Sharma . 36:1–36:21

On the Existential Theory of the Reals Enriched with Integer Powers of a
Computable Number

Jorge Gallego-Hernández and Alessio Mansutti . 37:1–37:18

Two-Dimensional Longest Common Extension Queries in Compact Space
Arnab Ganguly, Daniel Gibney, Rahul Shah, and Sharma V. Thankachan 38:1–38:17

A Quasi-Polynomial Time Algorithm for Multi-Arrival on Tree-Like Multigraphs
Ebrahim Ghorbani, Jonah Leander Hoff, and Matthias Mnich . 39:1–39:19

Identity-Preserving Lax Extensions and Where to Find Them
Sergey Goncharov, Dirk Hofmann, Pedro Nora, Lutz Schröder, and Paul Wild 40:1–40:20

Residue Domination in Bounded-Treewidth Graphs
Jakob Greilhuber, Philipp Schepper, and Philip Wellnitz . 41:1–41:20

Local Enumeration: The Not-All-Equal Case
Mohit Gurumukhani, Ramamohan Paturi, Michael Saks, and Navid Talebanfard . 42:1–42:19

Approximating Densest Subgraph in Geometric Intersection Graphs
Sariel Har-Peled and Saladi Rahul . 43:1–43:17

Independence and Domination on Bounded-Treewidth Graphs: Integer, Rational,
and Irrational Distances

Tim A. Hartmann and Dániel Marx . 44:1–44:19

Forbidden Patterns in Mixed Linear Layouts
Deborah Haun, Laura Merker, and Sergey Pupyrev . 45:1–45:21

STACS 2025

0:viii Contents

Sampling Unlabeled Chordal Graphs in Expected Polynomial Time
Úrsula Hébert-Johnson and Daniel Lokshtanov . 46:1–46:20

Minimizing the Number of Tardy Jobs with Uniform Processing Times on
Parallel Machines

Klaus Heeger and Hendrik Molter . 47:1–47:17

Subshifts Defined by Nondeterministic and Alternating Plane-Walking Automata
Benjamin Hellouin de Menibus and Pacôme Perrotin . 48:1–48:15

Cycle Counting Under Local Differential Privacy for Degeneracy-Bounded Graphs
Quentin Hillebrand, Vorapong Suppakitpaisarn, and Tetsuo Shibuya 49:1–49:22

Designing Exploration Contracts
Martin Hoefer, Conrad Schecker, and Kevin Schewior . 50:1–50:19

Protecting the Connectivity of a Graph Under Non-Uniform Edge Failures
Felix Hommelsheim, Zhenwei Liu, Nicole Megow, and Guochuan Zhang 51:1–51:21

Polynomial Kernel and Incompressibility for Prison-Free Edge Deletion and
Completion

Séhane Bel Houari-Durand, Eduard Eiben, and Magnus Wahlström 52:1–52:17

On Read-k Projections of the Determinant
Pavel Hrubeš and Pushkar S. Joglekar . 53:1–53:7

Multidimensional Quantum Walks, Recursion, and Quantum Divide & Conquer
Stacey Jeffery and Galina Pass . 54:1–54:16

Modal Separation of Fixpoint Formulae
Jean Christoph Jung and Jędrzej Kołodziejski . 55:1–55:20

Transforming Stacks into Queues: Mixed and Separated Layouts of Graphs
Julia Katheder, Michael Kaufmann, Sergey Pupyrev, and Torsten Ueckerdt 56:1–56:18

Approximate Minimum Tree Cover in All Symmetric Monotone Norms
Simultaneously

Matthias Kaul, Kelin Luo, Matthias Mnich, and Heiko Röglin . 57:1–57:18

Violating Constant Degree Hypothesis Requires Breaking Symmetry
Piotr Kawałek and Armin Weiß . 58:1–58:21

Online Matching with Delays and Size-Based Costs
Yasushi Kawase and Tomohiro Nakayoshi . 59:1–59:18

Modular Counting CSP: Reductions and Algorithms
Amirhossein Kazeminia and Andrei A. Bulatov . 60:1–60:18

Efficiently Computing the Minimum Rank of a Matrix in a Monoid of Zero-One
Matrices

Stefan Kiefer and Andrew Ryzhikov . 61:1–61:22

Faster Algorithms on Linear Delta-Matroids
Tomohiro Koana and Magnus Wahlström . 62:1–62:19

Approximation of Spanning Tree Congestion Using Hereditary Bisection
Petr Kolman . 63:1–63:6

Contents 0:ix

Cluster Editing on Cographs and Related Classes
Manuel Lafond, Alitzel López Sánchez, and Weidong Luo . 64:1–64:21

On Average Baby PIH and Its Applications
Yuwei Liu, Yijia Chen, Shuangle Li, Bingkai Lin, and Xin Zheng 65:1–65:19

The Hardness of Decision Tree Complexity
Bruno Loff and Alexey Milovanov . 66:1–66:13

Commutative N-Rational Series of Polynomial Growth
Aliaume Lopez . 67:1–67:16

Slightly Non-Linear Higher-Order Tree Transducers
Lê Thành Dũng (Tito) Nguyễn and Gabriele Vanoni . 68:1–68:20

A Dichotomy Theorem for Ordinal Ranks in MSO
Damian Niwiński, Paweł Parys, and Michał Skrzypczak . 69:1–69:18

Colorful Vertex Recoloring of Bipartite Graphs
Boaz Patt-Shamir, Adi Rosén, and Seeun William Umboh . 70:1–70:19

Unfairly Splitting Separable Necklaces
Patrick Schnider, Linus Stalder, and Simon Weber . 71:1–71:19

Card-Based Protocols Imply PSM Protocols
Kazumasa Shinagawa and Koji Nuida . 72:1–72:18

Dominating Set, Independent Set, Discrete k-Center, Dispersion, and Related
Problems for Planar Points in Convex Position

Anastasiia Tkachenko and Haitao Wang . 73:1–73:20

Nearly-Optimal Algorithm for Non-Clairvoyant Service with Delay
Noam Touitou . 74:1–74:21

Canonical Labeling of Sparse Random Graphs
Oleg Verbitsky and Maksim Zhukovskii . 75:1–75:20

Dynamic Unit-Disk Range Reporting
Haitao Wang and Yiming Zhao . 76:1–76:19

STACS 2025

Preface

The International Symposium on Theoretical Aspects of Computer Science (STACS) confer-
ence series is an internationally leading forum for original research on theoretical aspects of
computer science.

STACS 2025 consists of two tracks, A and B. Track A is dedicated to algorithms and data
structures, complexity and games. Track B covers automata, logic, semantics and theory of
programming.

STACS is held alternately in France and in Germany. This year’s conference, taking place
in Jena (Germany) from March 4 to March 7, is the 42nd in the series. Previous meetings
took place in Paris (1984), Saarbrücken (1985), Orsay (1986), Passau (1987), Bordeaux
(1988), Paderborn (1989), Rouen (1990), Hamburg (1991), Cachan (1992), Würzburg (1993),
Caen (1994), München (1995), Grenoble (1996), Lübeck (1997), Paris (1998), Trier (1999),
Lille (2000), Dresden (2001), Antibes (2002), Berlin (2003), Montpellier (2004), Stuttgart
(2005), Marseille (2006), Aachen (2007), Bordeaux (2008), Freiburg (2009), Nancy (2010),
Dortmund (2011), Paris (2012), Kiel (2013), Lyon (2014), München (2015), Orléans (2016),
Hannover (2017), Caen (2018), Berlin (2019), Montpellier (2020), Saarbrücken (2021, taking
place virtually), Marseille (2022, taking place virtually), Hamburg (2023) and Clermont-
Ferrand (2024).

The STACS 2025 call for papers led to 259 submissions (202 for Track A and 57 for
Track B). Each paper was assigned to three program committee members who, at their
discretion, asked external reviewers for reports. STACS 2025 employed a lightweight double-
blind reviewing process and incorporated an author rebuttal period in the reviewing process.

The committee selected 72 papers for presentation at the conference (55 for Track A and
17 for Track B), implying an acceptance rate of approximately 28%. We are thankful to all
individuals, institutions, and organizations who contributed to making STACS 2025 a success.
We thank all authors for submitting their work to STACS 2025. Our deepest thanks go to
all Program Committee members and external expert reviewers for carefully reading the
submissions, providing constructive comments, and for participating in extensive discussions
that helped in selecting the strongest papers for the technical program of the conference.
The very high quality of the submissions made the selection an extremely difficult task. We
also thank the Steering Committee members of STACS for providing overall guidance.

We would like to express our gratitude to the three invited speakers: Daniel Dadush
(CWI Amsterdam), Anupam Das (University of Birmingham), and Susanna F. de Rezende
(Lund University) and to Albert Atserias (UPC Barcelona) as the tutorial speaker.

STACS 2025 was preceded on 3 and 4 March 2025 by a workshop on algorithms, complexity
and logic (Theorietag), a workshop under the auspices of the GI interest groups on Algorithms,
Complexity and Logic. Invited talks at the workshop were given by Heribert Vollmer (Hanover)
and Sebastian Wild (Marburg). We thank Christian Komusiewicz (University of Jena) for
co-organising the pre-conference workshop. As in 2024, STACS 2025 was accompanied by an
extended stay support program, allowing participants to combine their conference visit with
a research trip to a nearby university.

Full versions of selected outstanding papers from STACS 2025 are invited for submission
to the journal TheoretiCS. Further selected papers from Track A are invited to the ACM
Transactions on Computation Theory and selected papers from Track B to Logical Methods
in Computer Science.
42nd International Symposium on Theoretical Aspects of Computer Science (STACS 2025).
Editors: Olaf Beyersdorff, Michał Pilipczuk, Elaine Pimentel, and Nguyễn Kim Thắng

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

0:xii Preface

We thank the LIPIcs team for assisting us in the publication process and the final
production of the proceedings. These proceedings contain extended abstracts of the accepted
contributions and abstracts of the tutorial and invited talks. The authors retain their rights
and make their work available under a Creative Commons license. The proceedings are
published electronically by Schloss Dagstuhl – Leibniz-Center for Informatics within their
LIPIcs series.

Finally, we would like to thank Friedrich Schiller University of Jena, the Carl Zeiss
Foundation, the Interactive Inference project, Inverso, the University Clermont Auvergne and
LIMOS for their support. Our special thanks go to Silvia Blaser, Benjamin Böhm, Marlene
Gründel, Tim Hoffmann, Kaspar Kasche, Agnes Schleitzer and Luc Spachmann – the local
organising team at the University of Jena – for all their help with the organisation, including
the webpages, the registration and the social events.

March 2025

Olaf Beyersdorff
Michał Pilipczuk
Elaine Pimentel

Nguyễn Kim Thắng

Conference Organisation

Program Committee – Track A

Antonios Antoniadis University of Twente
Christian Coester University of Oxford
Johanne Cohen CNRS, Université Paris-Saclay
Arnaud de Mesmay CNRS, Université Gustave Eiffel
Holger Dell Goethe University Frankfurt and IT University of Copenhagen
Omar Fawzi Inria, ENS Lyon
Paweł Gawrychowski University of Wrocław
Carla Groenland TU Delft
Zhiyi Huang University of Hong Kong
Bart Jansen TU Eindhoven
Tuukka Korhonen University of Copenhagen
Jakub Łącki Google Research, New York
Hung Le University of Massachusets at Amherst
Nguyễn Kim Thắng Université Grenoble-Alpes, co-chair
Michał Pilipczuk University of Warsaw, co-chair
Lars Rohwedder Maastricht University
Rahul Santhanam University of Oxford
Shay Solomon Tel-Aviv University
Tatiana Starikovskaya ENS Paris
Jukka Suomela Aalto University
Jakub Tarnawski Microsoft Research
Torsten Ueckerdt Karlsruhe Institute of Technology
Jan van den Brand Georgia Tech
Karol Węgrzycki Saarland University and MPI
Andreas Wiese Technical University of Munich

Program Committee – Track B
Christoph Berkholz TU Ilmenau
Olaf Beyersdorff Friedrich Schiller University Jena, co-chair
Benedikt Bollig CNRS, ENS Paris-Saclay
Flavien Breuvart LIPN, Université Sorbonne Paris Nord
Michaël Cadilhac DePaul University, Chicago, IL
Nofar Carmeli Inria, LIRMM, Montpellier
Moses Ganardi MPI-SWS Kaiserslautern
Christoph Haase University of Oxford
Sandra Kiefer University of Oxford
Alexander Kurz Chapman
Dietrich Kuske TU Ilmenau
Karoliina Lehtinen CNRS, Aix-Marseille University, LIS
Stefan Mengel CNRS, CRIL Lens
Cláudia Nalon University of Brasilia
Elaine Pimentel University College London, co-chair
Jurriaan Rot Radboud University, Nijmegen

42nd International Symposium on Theoretical Aspects of Computer Science (STACS 2025).
Editors: Olaf Beyersdorff, Michał Pilipczuk, Elaine Pimentel, and Nguyễn Kim Thắng

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

0:xiv Conference Organisation

Steering Committee

Dietmar Berwanger LMF, CNRS, Université Paris-Saclay
Marthe Bonamy LaBRI, CNRS, Université de Bordeaux
Cyril Nicaud LIGM, Université Paris-Est
Sylvain Schmitz IRIF, Université de Paris
Luc Segoufin DI ENS, INRIA, ENS Ulm
Ioan Todinca LIFO, Université d’Orléans, co-chair
Petra Berenbrink Hamburg University
Olaf Beyersdorff Friedrich Schiller University of Jena
Florin Manea University of Göttingen
Arne Meier University of Hannover
Heiko Röglin University of Bonn
Thomas Schwentick University of Dortmund, co-chair

Local Organising Committee (Friedrich Schiller University Jena)

Olaf Beyersdorff
Silvia Blaser
Benjamin Böhm
Marlene Gründel, chair
Tim Hoffmann
Kaspar Kasche
Agnes Schleitzer
Luc Spachmann

Conference Organisation 0:xv

Subreviewers

Abheek Ghosh
Adam Karczmarz
Adam Polak
Aditya Prakash
Ahmad Biniaz
Akanksha Agrawal
Aleksander Łukasiewicz
Aleksandrs Belovs
Alessandro Ronca
Alex Crane
Alexander Lindermayr
Alexander Rabinovich
Alexander Skopalik
Alexandra Lassota
Alexandra Wesolek
Alexandros Hollender
Alexis de Colnet
Ali Vakilian
Alireza Bagheri
Alkida Balliu
Aloïs Dufour
Alon Efrat
Ama Koranteng
Amin Shiraz Gilani
Anastasiia Alokhina
Anay Mehrotra
André Nichterlein
André Nusser
Andreas Björklund
Andreas Emil Feldmann
Andreas Göbel
Andreas Maggiori
Andreas Maletti
Andrei Krokhin
Andrew Ryzhikov
Andris Ambainis
Anish Mukherjee
Anna Gilbert
Antonio Casares
Argyrios Deligkas
Arindam Khan
Aritra Banik
Arka Ghosh
Arne Meier
Artem Tsikiridis
Artur Riazanov
Arturo Merino
Aryan Agarwala
Ashkan Norouzi Fard
Athanasios Konstantinidis
Augusto Modanese
Balagopal Komarath

Barbara Keller
Baris Can Esmer
Barnaby Martin
Bartło Miej Bosek
Bartlomiej Dudek
Bartlomiej Dudek
Ben Cameron
Ben Lee Volk
Benedikt Kolbe
Benjamin Monmege
Benjamin Rossman
Bertrand Simon
Blaise Genest
Bo Li
Bruno Lopes
C. S. Bhargav
Ce Jin
Cédric Bentz
Chenglin Fan
Chetan Gupta
Chien-Chung Huang
Chris Köcher
Christian Ikenmeyer
Christian Scheideler
Christof Löding
Christoph Dürr
Christoph Lenzen
Christophe Tollu
Chung-Shou Liao
Clemens Thielen
Clovis Eberhart
Colin Geniet
Corentin Barloy
Corto Mascle
Csaba Toth
Da Wei Zheng
Damien Busatto-Gaston
Dana Ron
Daniel Cordeiro
Daniel Neuen
Daniel Turetsky
Davi Silva
David Auger
David Harris
David Lidell
David Mix Barrington
David R. Wood
Dedy Septono Catur Putranto
Dominik Scheder
Dorit Hochbaum
Dušan Knop
Édouard Bonnet

Eduard Eiben
Elena Kirshanova
Elvira Mayordomo
Emile Anand
Emmanouil Vasileios Vlatakis
Gkaragkounis
Eniko Kevi
Enze Sun
Erik Jan van Leeuwen
Erik Paul
Esther Galby
Euiwoong Lee
Evangelia Gergatsouli
Evangelos Kipouridis
Faith Ellen
Fateme Abbasi
Fatiha Bendali
Felix Reidl
Feng Shi
Florent Foucaud
Florin Manea
Francesco Dagnino
Franziska Eberle
Frédéric Magniez
Gabriel Bathie
Gabriel Istrate
Gaétan Berthe
George Christodoulou
George Kenison
George Manoussakis
George Mertzios
George Osipov
Giannos Stamoulis
Giorgio Lucarelli
Giulia Bernardini
Graham Leigh
Greg Bodwin
Guillaume Ducoffe
Guillaume Malod
Guillermo Perez
Haitao Wang
Hang Zhou
Hans Bodlaender
Harry Vinall-Smeeth
Hermann Haeusler
Hermann Wilhelm
Hoai-An Nguyen
Hsi-Ming Ho
Hsin-Hao Su
Hugo Akitaya
Ian Pratt-Hartmann
Ignaz Rutter

STACS 2025

0:xvi Conference Organisation

Ioan Todinca
Ioannis Psarros
Isabella Ziccardi
Jacob Focke
Jacob Imola
Jaegun Lee
James Brotherston
Jan Boeckmann
Jan Bok
Janik Huth
Jannik Olbrich
Jannis Blauth
Jaroslaw Byrka
Jędrzej Hodor
Jesper Nederlof
Jianqiang Li
Jinge Bao
Jingyang Zhao
Joachim Gudmundsson
Jochen Koenemann
Joe Sawada
Joel Rybicki
Johannes Lengler
Jonas Ellert
Jonas Sénizergues
Joseph Landsberg
Joshua Brakensiek
Julien Baste
Kaave Hosseini
Karine Altisen
Karol Pokorski
Karthik C. S.
Kazuyuki Amano
Kevin Schewior
Khaled Elbassioni
Kiril Bangachev
Kirill Simonov
Konstantinos Tsakalidis
Krzysztof Fleszar
Kunihiro Wasa
Kyungjin Cho
Lars Jaffke
Lasse Wulf
Laurent Bienvenu
Laurent Feuilloley
Laurent Gourves
Lazar Milenkovic
Lê Thành Dũng Nguyen
Leo Wennmann
León Bohn
Leonid Barenboim
Leqi Zhu
Leroy Chew
Liam Roditty
Lina Vandré

Lior Gishboliner
Loes Kruger
Loïc Dubois
Loukas Georgiadis
Luc Pellissier
Luca Pascal Staus
Lucas De Meyer
Lucia Draque Penso
Lukas Plätz
Lukasz Kowalik
Lvzhou Li
Maël Dumas
Magnus Berg
Manfred Kufleitner
Manoj Gupta
Manolis Vasilakis
Marc Schroder
Marcel Roeloffzen
Marcella Anselmo
Marcin Bienkowski
Marcin Pilipczuk
Marck van der Vegt
Marco Bressan
Marek Sokołowski
Marin Bougeret
Mark Bun
Markus Anders
Markus Hecher
Markus Lohrey
Martin Böhm
Martin Koutecký
Martin Lange
Martin S. Krejca
Masayuki Miyamoto
Massimo Equi
Massimo Lauria
Mateusz Skomra
Mateusz Wasylkiewicz
Mathieu Mari
Matias Korman
Matt Kovacs-Deak
Matthew Gray
Matthew Kwan
Matthias Bentert
Matthias Kaul
Matthias Mnich
Max Deppert
Max Dupré La Tour
Maximilian Merz
Maximilian Weininger
Meike Neuwohner
Michael Bekos
Michael Blondin
Michael Kompatscher
Michael Lampis

Michael Poss
Michaela Borzechowski
Michal Opler
Mickael Randour
Mikaël Rabie
Mikko Koivisto
Miriam Münch
Mirza Redzic
Mohammad Roghani
Morgan Rogers
Moritz Buchem
Moritz Lichter
Moritz Muehlenthaler
Naonori Kakimura
Narek Bojikian
Nathan Klein
Neha Rino
Nicolas Bonichon
Nicolas Bousquet
Nicolas Heurtel
Niels Kornerup
Niels van der Weide
Nikhil Balaji
Nikhil Bansal
Nikhil Mande
Niko Hastrich
Nima Anari
Ninad Rajgopal
Nir Piterman
Noam Touitou
Nobutaka Shimizu
Norbert Zeh
Nutan Limaye
Olivier Idir
Omrit Filtser
Pål Grønås Drange
Pamela Fleischmann
Pan Peng
Panagiotis Charalampopoulos
Panos Giannopoulos
Pasin Manurangsi
Paul Duetting
Paulin Jacobé De Naurois
Paweł Rzążewski
Pei Wu
Peter Kling
Peter Manohar
Petr Golovach
Peyman Afshani
Philipp Hieronymi
Philipp Schepper
Pierre Bergé
Pierre Coucheney
Pierre Ohlmann
Prafullkumar Tale

Conference Organisation 0:xvii

Prahlad Narasimhan Kasthurir-
angan
Prajakta Nimbhorkar
Pramod Ganapathi
Pranjal Dutta
Prantar Ghosh
Prashanth Amireddy
Qi Ye
Qipeng Liu
Quentin Bramas
R Govind
R.B. Sandeep
Radosław Piórkowski
Radu Curticapean
Rahul Vaze
Rainer Gemulla
Rajendra Kumar
Rajesh Chitnis
Ramanujan M. Sridharan
Raul Lopes
Reiko Heckel
Reilly Browne
Rémy Belmonte
Renzo Gomez
Reuben Rowe
Reut Levi
Rhea Jain
Riccardo Michielan
Richard Mayr
Rini Wisnu Wardhani
Rob van Stee
Robert Mercas
Robin Vacus
Rodrigo Raya
Rohit Gurjar
Ronnie Pavlov
Roohani Sharma
Ruben F.A. Verhaegh
Ruben Hoeksma
Sablik Mathieu
Saket Saurabh
Saladi Rahul
Samah Ghazawi
Samarth Tiwari
Sami Davies
Sampson Wong
Sander Gribling
Sándor Fekete

Sándor Kisfaludi-Bak
Sarah Maria Morell
Sariel Har-Peled
Sathiya Venkatesan Ramesh
Sathwik Karnik
Sebastian Berndt
Sebastian Haslebacher
Sebastian Meyer
Sebastian Pfau
Sebastian Schubert
Sebastian Siebertz
Sebastian Zur
Seeun William Umboh
Sergey Kitaev
Sergey Pupyrev
Sergio Cabello
Sergio Rajsbaum
Shaofeng H.-C. Jiang
Shaull Almagor
Shibashis Guha
Shinwoo An
Shreyas Srinivas
Simon D. Fink
Simon Döring
Simon Weber
Sorrachai Yingchareonthaworn-
chai
Stanislav Živný
Stefan Kiefer
Stefan Weltge
Susanna F. de Rezende
Susanne Albers
Suthee Ruangwises
Sven Jäger
Sylvain Schmitz
Taehoon Ahn
Taha El Ghazi El Houssaini
Talya Eden
Tamio-Vesa Nakajima
Tanmay Inamdar
Thekla Hamm
Themistoklis Melissourgos
Thi Quynh Trang Vo
Thomas Colcombet
Thomas Erlebach
Thomas Lavastida
Thomas Seiller
Thorben Tröbst

Tianyi Zhang
Tim Oosterwijk
Tim Randolph
Timothy Gomez
Tobias Winkler
Toghrul Karimov
Tom van der Zanden
Tomohiro Koana
Toshiki Saitoh
Tristan Kraft
Ullrich Hustadt
Vaishali Surianarayanan
Vida Dujmović
Viet Cuong Than
Vignesh Viswanathan
Viktoriia Korchemna
Vincent Chau
Vincent Cohen-Addad
Vishwas Bhargava
Vladislav Ryzhikov
Warut Suksompong
Wei Zhan
Weitian Tong
Wenjie Fang
Will Perkins
William Kretschmer
Wojciech Janczewski
Wojciech Nadara
Wolfgang Mulzer
Xiao Peng
Xiaojun Dong
Ya-Chun Liang
Yanlin Chen
Yann Strozecki
Yasamin Nazari
Yassine Hamoudi
Yinzhan Xu
Yogesh Dahiya
Yongjie Yang
Yota Otachi
Youssouf Oualhadj
Yu Chen
Yun Kuen Cheung
Yunchao Liu
Yurong Chen
Yusuke Kobayashi
Zixuan Zhu

STACS 2025

List of Authors

Akanksha Agrawal (5)
Indian Institute of Technology Madras, India

Jungho Ahn (6)
Korea Institute for Advanced Study (KIAS),
Seoul, South Korea

Shyan Akmal (7)
INSAIT, Sofia University "St. Kliment
Ohridski", Bulgaria

Yaroslav Alekseev (8)
Technion - Israel Institute of Technology, Haifa,
Israel

Sharareh Alipour (9)
Department of Computer Science, Tehran
Institute for Advanced Studies (TeIAS), Khatam
University, Tehran, Iran

Quentin Aristote (10)
Université Paris Cité, CNRS, Inria, IRIF,
F-75013, Paris, France

Srinivasan Arunachalam (11)
IBM Quantum, Almaden, CA, USA

Albert Atserias (1)
Universitat Politècnica de Catalunya, Barcelona,
Spain; Centre de Recerca Matemàtica,
Bellaterra, Spain

Christine Awofeso (12)
Birkbeck, University of London, UK

Samuel Baguley (13)
Hasso Plattner Institute, University of Potsdam,
Germany

Aritra Banik (14)
National Institute of Science, Education and
Research, An OCC of Homi Bhabha National
Institute, Bhubaneswar, India

Max Bannach (15)
European Space Agency, Advanced Concepts
Team, Noordwijk, The Netherlands

Nastaran Behrooznia (16)
Department of Computer Science, University of
Warwick, Coventry, UK

Matthias Bentert (17)
University of Bergen, Norway

Marcin Bienkowski (18)
University of Wrocław, Poland

Benjamin Bordais (19)
TU Dortmund University, Center for
Trustworthy Data Science and Security,
University Alliance Ruhr, Dortmund, Germany

Roberto Borelli (20)
University of Udine, Italy

Andrei A. Bulatov (60)
Simon Fraser University, Barnaby, Canada

Jarosław Byrka (18)
University of Wrocław, Poland

Antonin Callard (21)
Normandie Univ, UNICAEN, ENSICAEN,
CNRS, GREYC, 14000, Caen, France

Rutger Campbell (22)
Discrete Mathematics Group, Institute for Basic
Science, Daejeon, South Korea

Rémy Cerda (23)
Aix-Marseille Université, CNRS, I2M, France;
Université Paris Cité, CNRS, IRIF, F-75013,
Paris, France

Yijia Chen (65)
Shanghai Jiao Tong University, China

Keerti Choudhary (24)
Department of Computer Science and
Engineering, IIT Delhi, India

Aleksander Bjørn Christiansen (25)
Technical University of Denmark, Lyngby,
Denmark

Nikolai Chukhin (26)
Neapolis University Pafos, Cyprus; JetBrains
Research, Paphos, Cyprus

Nathan Claudet (27)
Inria Mocqua, LORIA, CNRS, Université de
Lorraine, F-54000 Nancy, France

Radu Curticapean (28)
University of Regensburg, Germany; IT
University of Copenhagen, Denmark

Daniel Dadush (2)
Centrum Wiskunde & Informatica, Amsterdam,
The Netherlands

Anupam Das (3)
University of Birmingham, UK

42nd International Symposium on Theoretical Aspects of Computer Science (STACS 2025).
Editors: Olaf Beyersdorff, Michał Pilipczuk, Elaine Pimentel, and Nguyễn Kim Thắng

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

https://orcid.org/0000-0002-0656-7572
https://doi.org/10.4230/LIPIcs.STACS.2025.5
https://orcid.org/0000-0003-0511-1976
https://doi.org/10.4230/LIPIcs.STACS.2025.6
https://orcid.org/0000-0002-7266-2041
https://doi.org/10.4230/LIPIcs.STACS.2025.7
https://orcid.org/0000-0003-3196-6919
https://doi.org/10.4230/LIPIcs.STACS.2025.8
https://orcid.org/0000-0002-3626-8960
https://doi.org/10.4230/LIPIcs.STACS.2025.9
https://orcid.org/0009-0001-4061-7553
https://doi.org/10.4230/LIPIcs.STACS.2025.10
https://orcid.org/0000-0001-6014-6624
https://doi.org/10.4230/LIPIcs.STACS.2025.11
https://orcid.org/0000-0002-3732-1989
https://doi.org/10.4230/LIPIcs.STACS.2025.1
https://orcid.org/0009-0000-3550-1727
https://doi.org/10.4230/LIPIcs.STACS.2025.12
https://orcid.org/0000-0003-1090-0267
https://doi.org/10.4230/LIPIcs.STACS.2025.13
https://orcid.org/0000-0002-7544-6125
https://doi.org/10.4230/LIPIcs.STACS.2025.14
https://orcid.org/0000-0002-6475-5512
https://doi.org/10.4230/LIPIcs.STACS.2025.15
https://doi.org/10.4230/LIPIcs.STACS.2025.16
https://doi.org/10.4230/LIPIcs.STACS.2025.17
https://orcid.org/0000-0002-2453-7772
https://doi.org/10.4230/LIPIcs.STACS.2025.18
https://orcid.org/0009-0000-4143-6298
https://doi.org/10.4230/LIPIcs.STACS.2025.19
https://orcid.org/0000-0003-2586-8183
https://doi.org/10.4230/LIPIcs.STACS.2025.20
https://doi.org/10.4230/LIPIcs.STACS.2025.60
https://orcid.org/0000-0002-3387-0913
https://doi.org/10.4230/LIPIcs.STACS.2025.18
https://orcid.org/0000-0002-4673-4881
https://doi.org/10.4230/LIPIcs.STACS.2025.21
https://doi.org/10.4230/LIPIcs.STACS.2025.22
https://orcid.org/0000-0003-0731-6211
https://doi.org/10.4230/LIPIcs.STACS.2025.23
https://orcid.org/0000-0001-7033-9593
https://doi.org/10.4230/LIPIcs.STACS.2025.65
https://orcid.org/0000-0002-8289-5930
https://doi.org/10.4230/LIPIcs.STACS.2025.24
https://orcid.org/0000-0002-9486-9115
https://doi.org/10.4230/LIPIcs.STACS.2025.25
https://doi.org/10.4230/LIPIcs.STACS.2025.26
https://orcid.org/0009-0000-0862-1264
https://doi.org/10.4230/LIPIcs.STACS.2025.27
https://orcid.org/0000-0001-7201-9905
https://doi.org/10.4230/LIPIcs.STACS.2025.28
https://orcid.org/0000-0001-5577-5012
https://doi.org/10.4230/LIPIcs.STACS.2025.2
https://orcid.org/0000-0002-0142-3676
https://doi.org/10.4230/LIPIcs.STACS.2025.3
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

0:xx Authors

Susanna F. de Rezende (4)
Lund University, Sweden

Dariusz Dereniowski (29)
Faculty of Electronics, Telecommunications and
Informatics, Gdańsk University of Technology,
Poland

Stéphane Devismes (30)
Laboratoire MIS, Université de Picardie, 33 rue
Saint Leu - 80039 Amiens cedex 1, France

Rishabh Dhiman (24)
Department of Computer Science and
Engineering, IIT Delhi, India

Simon Döring (28)
Max Planck Institute for Informatics,
Saarbrücken, Germany; Saarland University
(SIC), Saarbrücken, Germany

Eduard Eiben (52)
Department of Computer Science, Royal
Holloway University of London, UK

Leah Epstein (31)
Department of Mathematics, University of Haifa,
Israel

Ermiya Farokhnejad (9)
Department of Computer Science, University of
Warwick, Coventry, UK

Nick Fischer (32)
INSAIT, Sofia University "St. Kliment
Ohridski", Bulgaria

Fedor V. Fomin (14, 17)
University of Bergen, Norway

Florent Foucaud (33)
Université Clermont Auvergne, CNRS, Mines
Saint-Étienne, Clermont Auvergne INP, LIMOS,
63000 Clermont-Ferrand, France

Pierre Fraigniaud (34)
Institut de Recherche en Informatique
Fondamentale (IRIF), CNRS, Université Paris
Cité, France

Ameet Gadekar (35)
CISPA Helmholtz Center for Information
Security, Saarbrücken, Germany

Ajinkya Gaikwad (36)
Indian Institute of Science Education and
Research, Pune, India

Esther Galby (33)
Department of Computer Science and
Engineering, Chalmers University of Technology
and University of Gothenburg, Sweden

Jorge Gallego-Hernández (37)
IMDEA Software Institute, Madrid, Spain;
Universidad Politécnica de Madrid, Spain

Arnab Ganguly (38)
University of Wisconsin, Whitewater, WI, USA

Luca Geatti (20)
University of Udine, Italy

Ebrahim Ghorbani (39)
Hamburg University of Technology, Institute for
Algorithms and Complexity, Hamburg, Germany

Daniel Gibney (38)
University of Texas at Dallas, TX, USA

Petr A. Golovach (14, 17)
University of Bergen, Norway

Sergey Goncharov (40)
University of Birmingham, UK

Patrick Greaves (12)
Birkbeck, University of London, UK

Jakob Greilhuber (41)
TU Wien, Austria; CISPA Helmholtz Center for
Information Security, Saarbrücken, Germany

Dima Grigoriev (8)
CNRS, Mathématique, Université de Lille,
Villeneuve d’Ascq, 59655, France

Bruno Guillon (22)
Université Clermont Auvergne, Clermont
Auvergne INP, LIMOS, CNRS,
Clermont-Ferrand, France

Mohit Gurumukhani (42)
Cornell University, Ithaca, NY, USA

Sariel Har-Peled (43)
Department of Computer Science, University of
Illinois at Urbana-Champaign, IL, USA

Tim A. Hartmann (44)
CISPA Helmholtz Center for Information
Security, Saarbrücken, Germany

Deborah Haun (45)
Karlsruhe Institute of Technology, Germany

https://orcid.org/0000-0001-8923-1240
https://doi.org/10.4230/LIPIcs.STACS.2025.4
https://orcid.org/0000-0003-4000-4818
https://doi.org/10.4230/LIPIcs.STACS.2025.29
https://orcid.org/0000-0002-8032-9732
https://doi.org/10.4230/LIPIcs.STACS.2025.30
https://doi.org/10.4230/LIPIcs.STACS.2025.24
https://orcid.org/0009-0002-6667-5257
https://doi.org/10.4230/LIPIcs.STACS.2025.28
https://orcid.org/0000-0003-2628-3435
https://doi.org/10.4230/LIPIcs.STACS.2025.52
https://orcid.org/0000-0002-6761-8521
https://doi.org/10.4230/LIPIcs.STACS.2025.31
https://orcid.org/0009-0008-6529-8625
https://doi.org/10.4230/LIPIcs.STACS.2025.9
https://orcid.org/0009-0001-0909-3296
https://doi.org/10.4230/LIPIcs.STACS.2025.32
https://orcid.org/0000-0003-1955-4612
https://doi.org/10.4230/LIPIcs.STACS.2025.14
https://doi.org/10.4230/LIPIcs.STACS.2025.17
https://orcid.org/0000-0001-8198-693X
https://doi.org/10.4230/LIPIcs.STACS.2025.33
https://orcid.org/0000-0003-4534-4803
https://doi.org/10.4230/LIPIcs.STACS.2025.34
https://orcid.org/0009-0004-8040-9881
https://doi.org/10.4230/LIPIcs.STACS.2025.35
https://orcid.org/0000-0002-7514-0708
https://doi.org/10.4230/LIPIcs.STACS.2025.36
https://orcid.org/0009-0004-5398-2770
https://doi.org/10.4230/LIPIcs.STACS.2025.33
https://orcid.org/0009-0002-2240-1107
https://doi.org/10.4230/LIPIcs.STACS.2025.37
https://orcid.org/0000-0003-3331-0913
https://doi.org/10.4230/LIPIcs.STACS.2025.38
https://orcid.org/0000-0002-7125-787X
https://doi.org/10.4230/LIPIcs.STACS.2025.20
https://orcid.org/0000-0001-7195-8601
https://doi.org/10.4230/LIPIcs.STACS.2025.39
https://orcid.org/0000-0003-1493-5432
https://doi.org/10.4230/LIPIcs.STACS.2025.38
https://orcid.org/0000-0002-2619-2990
https://doi.org/10.4230/LIPIcs.STACS.2025.14
https://doi.org/10.4230/LIPIcs.STACS.2025.17
https://orcid.org/0000-0001-6924-8766
https://doi.org/10.4230/LIPIcs.STACS.2025.40
https://orcid.org/0009-0007-0752-0526
https://doi.org/10.4230/LIPIcs.STACS.2025.12
https://orcid.org/0009-0001-8796-6400
https://doi.org/10.4230/LIPIcs.STACS.2025.41
https://doi.org/10.4230/LIPIcs.STACS.2025.8
https://doi.org/10.4230/LIPIcs.STACS.2025.22
https://orcid.org/0009-0007-8808-2846
https://doi.org/10.4230/LIPIcs.STACS.2025.42
https://orcid.org/0000-0003-2638-9635
https://doi.org/10.4230/LIPIcs.STACS.2025.43
https://orcid.org/0000-0002-1028-6351
https://doi.org/10.4230/LIPIcs.STACS.2025.44
https://orcid.org/0009-0004-2365-0804
https://doi.org/10.4230/LIPIcs.STACS.2025.45

Authors 0:xxi

Markus Hecher (15)
Univ. Artois, CNRS UMR 8188, Centre de
Recherche en Informatique de Lens (CRIL),
6230, France; Computer Science and Artificial
Intelligence Lab, Massachusetts Institute of
Technology, Cambridge, MA, USA

Klaus Heeger (47)
Department of Industrial Engineering and
Management, Ben-Gurion University of the
Negev, Beer-Sheva, Israel

Benjamin Hellouin de Menibus (48)
Université Paris-Saclay, CNRS, Laboratoire
Interdisciplinaire des Sciences du Numérique,
91400, Orsay, France

Quentin Hillebrand (49)
The University of Tokyo, Japan

Edward A. Hirsch (8)
Department of Computer Science, Ariel
University, Israel

Martin Hoefer (50)
Department of Computer Science, RWTH
Aachen University, Germany

Dirk Hofmann (40)
CIDMA, University of Aveiro, Portugal

Felix Hommelsheim (51)
University of Bremen, Germany

Séhane Bel Houari-Durand (52)
ENS Lyon, France

Pavel Hrubeš (53)
Institute of Mathematics of ASCR, Czech
Republic

Úrsula Hébert-Johnson (46)
University of California, Santa Barbara, CA,
USA

David Ilcinkas (30)
Univ. Bordeaux, CNRS, Bordeaux INP, LaBRI,
UMR 5800, F-33400 Talence, France

Tanmay Inamdar (14, 35)
Indian Institute of Technology Jodhpur, India

Hugo Jacob (6)
LIRMM, Université de Montpellier, CNRS,
Montpellier, France

Satyabrata Jana (14)
University of Warwick, UK

Stacey Jeffery (54)
QuSoft, CWI, Amsterdam, The Netherlands;
University of Amsterdam, The Netherlands

Łukasz Jeż (18)
University of Wrocław, Poland

Pushkar S. Joglekar (53)
Vishwakarma Institute of Technology, Pune,
India

Colette Johnen (30)
Univ. Bordeaux, CNRS, Bordeaux INP, LaBRI,
UMR 5800, F-33400 Talence, France

Jean Christoph Jung (55)
TU Dortmund University, Germany

Mamadou Moustapha Kanté (22)
Université Clermont Auvergne, Clermont
Auvergne INP, LIMOS, CNRS,
Clermont-Ferrand, France

Julia Katheder (56)
Wilhelm-Schickard-Institut für Informatik,
Universität Tübingen, Germany

Michael Kaufmann (56)
Wilhelm-Schickard-Institut für Informatik,
Universität Tübingen, Germany

Matthias Kaul (57)
Hamburg University of Technology, Institute for
Algorithms and Complexity, Hamburg,
Germany; University of Bonn, Germany

Yasushi Kawase (59)
The University of Tokyo, Japan

Piotr Kawałek (58)
TU Wien, Austria; Jagiellonian University in
Kraków, Poland

Amirhossein Kazeminia (60)
Simon Fraser University, Burnaby, Canada

Liana Khazaliya (33)
Technische Universität Wien, Austria

Stefan Kiefer (61)
Department of Computer Science, University of
Oxford, UK

Eun Jung Kim (22)
KAIST, Daejeon, South Korea; CNRS, France

Evangelos Kipouridis (32)
Max Planck Institute for Informatics, Saarland
Informatics Campus, Saarbrücken, Germany

Jonas Klausen (32)
BARC, University of Copenhagen, Denmark

STACS 2025

https://orcid.org/0000-0003-0131-6771
https://doi.org/10.4230/LIPIcs.STACS.2025.15
https://orcid.org/0000-0001-8779-0890
https://doi.org/10.4230/LIPIcs.STACS.2025.47
https://orcid.org/0000-0001-5194-929X
https://doi.org/10.4230/LIPIcs.STACS.2025.48
https://orcid.org/0000-0002-7747-4998
https://doi.org/10.4230/LIPIcs.STACS.2025.49
https://orcid.org/0009-0003-2779-5536
https://doi.org/10.4230/LIPIcs.STACS.2025.8
https://orcid.org/0000-0003-0131-5605
https://doi.org/10.4230/LIPIcs.STACS.2025.50
https://orcid.org/0000-0002-1082-6135
https://doi.org/10.4230/LIPIcs.STACS.2025.40
https://orcid.org/0000-0003-4444-9793
https://doi.org/10.4230/LIPIcs.STACS.2025.51
https://orcid.org/0009-0003-6661-5171
https://doi.org/10.4230/LIPIcs.STACS.2025.52
https://orcid.org/0000-0003-4526-4934
https://doi.org/10.4230/LIPIcs.STACS.2025.53
https://orcid.org/0000-0001-8615-1253
https://doi.org/10.4230/LIPIcs.STACS.2025.46
https://orcid.org/0000-0002-0094-4330
https://doi.org/10.4230/LIPIcs.STACS.2025.30
https://orcid.org/0000-0002-0184-5932
https://doi.org/10.4230/LIPIcs.STACS.2025.14
https://doi.org/10.4230/LIPIcs.STACS.2025.35
https://orcid.org/0000-0003-1350-3240
https://doi.org/10.4230/LIPIcs.STACS.2025.6
https://orcid.org/0000-0002-7046-0091
https://doi.org/10.4230/LIPIcs.STACS.2025.14
https://orcid.org/0000-0003-0046-5089
https://doi.org/10.4230/LIPIcs.STACS.2025.54
https://orcid.org/0000-0002-7375-0641
https://doi.org/10.4230/LIPIcs.STACS.2025.18
https://orcid.org/0000-0002-6744-0604
https://doi.org/10.4230/LIPIcs.STACS.2025.53
https://orcid.org/0000-0001-7170-4521
https://doi.org/10.4230/LIPIcs.STACS.2025.30
https://orcid.org/0000-0002-4159-2255
https://doi.org/10.4230/LIPIcs.STACS.2025.55
https://orcid.org/0000-0003-1838-7744
https://doi.org/10.4230/LIPIcs.STACS.2025.22
https://orcid.org/0000-0002-7545-0730
https://doi.org/10.4230/LIPIcs.STACS.2025.56
https://orcid.org/0000-0001-9186-3538
https://doi.org/10.4230/LIPIcs.STACS.2025.56
https://orcid.org/0000-0003-0124-0789
https://doi.org/10.4230/LIPIcs.STACS.2025.57
https://orcid.org/0000-0001-5626-779X
https://doi.org/10.4230/LIPIcs.STACS.2025.59
https://orcid.org/0000-0003-3592-1697
https://doi.org/10.4230/LIPIcs.STACS.2025.58
https://doi.org/10.4230/LIPIcs.STACS.2025.60
https://orcid.org/0009-0002-3012-7240
https://doi.org/10.4230/LIPIcs.STACS.2025.33
https://orcid.org/0000-0003-4173-6877
https://doi.org/10.4230/LIPIcs.STACS.2025.61
https://orcid.org/0000-0002-6824-0516
https://doi.org/10.4230/LIPIcs.STACS.2025.22
https://orcid.org/0000-0002-5830-5830
https://doi.org/10.4230/LIPIcs.STACS.2025.32
https://orcid.org/0000-0002-7403-417X
https://doi.org/10.4230/LIPIcs.STACS.2025.32

0:xxii Authors

Tomohiro Koana (7, 62)
Utrecht University, The Netherlands; Research
Institute for Mathematical Sciences, Kyoto
University, Japan

Zhuan Khye Koh (2)
Centrum Wiskunde & Informatica, Amsterdam,
The Netherlands

Petr Kolman (63)
Department of Applied Mathematics, Faculty of
Mathematics and Physics, Charles University,
Prague, Czech Republic

Jędrzej Kołodziejski (55)
TU Dortmund University, Germany

Alexander S. Kulikov (26)
JetBrains Research, Paphos, Cyprus

Hitendra Kumar (36)
Indian Institute of Science Education and
Research, Pune, India

Noleen Köhler (6, 22)
University of Leeds, UK

Oded Lachish (12)
Birkbeck, University of London, UK

Manuel Lafond (64)
Department of Computer Science, Université de
Sherbrooke, Canada

Jonah Leander Hoff (39)
Hamburg University of Technology, Institute for
Algorithms and Complexity, Hamburg, Germany

Asaf Levin (31)
Faculty of Data and Decisions Science, The
Technion, Haifa, Israel

Shaohua Li (33)
School of Computer Science and Engineering,
Central South University, Changsha, China

Shuangle Li (65)
Nanjing University, China

Bingkai Lin (65)
Nanjing University, China

Yuwei Liu (65)
Shanghai Jiao Tong University, China

Zhenwei Liu (51)
Zhejiang University, Hangzhou, China;
University of Bremen, Germany

Bruno Loff (66)
LASIGE, Faculdade de Ciências, Universidade
de Lisboa, Portugal

Daniel Lokshtanov (5, 46)
University of California, Santa Barbara,CA,
USA

Aliaume Lopez (67)
University of Warsaw, Poland

Kelin Luo (57)
University of Bonn, Germany; University at
Buffalo, NY, USA

Weidong Luo (64)
Department of Computer Science, Université de
Sherbrooke, Canada

Alitzel López Sánchez (64)
Department of Computer Science, Université de
Sherbrooke, Canada

Soumen Maity (36)
Indian Institute of Science Education and
Research, Pune, India

Alessio Mansutti (37)
IMDEA Software Institute, Madrid, Spain

Dániel Marx (44)
CISPA Helmholtz Center for Information
Security, Saarbrücken, Germany

Yannic Maus (13)
TU Graz, Austria

Frédéric Mazoit (30)
Univ. Bordeaux, CNRS, Bordeaux INP, LaBRI,
UMR 5800, F-33400 Talence, France

Fionn Mc Inerney (33)
Telefónica Scientific Research, Barcelona, Spain

Nicole Megow (51)
University of Bremen, Germany

Laura Merker (45)
Karlsruhe Institute of Technology, Germany

Ivan Mihajlin (26)
JetBrains Research, Paphos, Cyprus

Alexey Milovanov (66)
LASIGE, Faculdade de Ciências, Universidade
de Lisboa, Portugal

Matthias Mnich (39, 57)
Hamburg University of Technology, Institute for
Algorithms and Complexity, Hamburg, Germany

https://orcid.org/0000-0002-8684-0611
https://doi.org/10.4230/LIPIcs.STACS.2025.7
https://doi.org/10.4230/LIPIcs.STACS.2025.62
https://doi.org/10.4230/LIPIcs.STACS.2025.2
https://orcid.org/0000-0003-2235-0506
https://doi.org/10.4230/LIPIcs.STACS.2025.63
https://orcid.org/0000-0001-5008-9224
https://doi.org/10.4230/LIPIcs.STACS.2025.55
https://orcid.org/0000-0002-5656-0336
https://doi.org/10.4230/LIPIcs.STACS.2025.26
https://doi.org/10.4230/LIPIcs.STACS.2025.36
https://orcid.org/0000-0002-1023-6530
https://doi.org/10.4230/LIPIcs.STACS.2025.6
https://doi.org/10.4230/LIPIcs.STACS.2025.22
https://orcid.org/0000-0001-5406-8121
https://doi.org/10.4230/LIPIcs.STACS.2025.12
https://orcid.org/0000-0002-5305-7372
https://doi.org/10.4230/LIPIcs.STACS.2025.64
https://doi.org/10.4230/LIPIcs.STACS.2025.39
https://orcid.org/0000-0001-7935-6218
https://doi.org/10.4230/LIPIcs.STACS.2025.31
https://orcid.org/0000-0001-8079-6405
https://doi.org/10.4230/LIPIcs.STACS.2025.33
https://orcid.org/0009-0009-6865-9286
https://doi.org/10.4230/LIPIcs.STACS.2025.65
https://orcid.org/0000-0002-3444-6380
https://doi.org/10.4230/LIPIcs.STACS.2025.65
https://orcid.org/0009-0000-8035-6629
https://doi.org/10.4230/LIPIcs.STACS.2025.65
https://orcid.org/0009-0002-4169-1349
https://doi.org/10.4230/LIPIcs.STACS.2025.51
https://orcid.org/0000-0001-7562-457X
https://doi.org/10.4230/LIPIcs.STACS.2025.66
https://orcid.org/0000-0002-3166-9212
https://doi.org/10.4230/LIPIcs.STACS.2025.5
https://doi.org/10.4230/LIPIcs.STACS.2025.46
https://orcid.org/0000-0002-4205-327X
https://doi.org/10.4230/LIPIcs.STACS.2025.67
https://orcid.org/0000-0003-2006-0601
https://doi.org/10.4230/LIPIcs.STACS.2025.57
https://orcid.org/0009-0003-5300-606X
https://doi.org/10.4230/LIPIcs.STACS.2025.64
https://orcid.org/0000-0002-3545-039X
https://doi.org/10.4230/LIPIcs.STACS.2025.64
https://doi.org/10.4230/LIPIcs.STACS.2025.36
https://orcid.org/0000-0002-1104-7299
https://doi.org/10.4230/LIPIcs.STACS.2025.37
https://orcid.org/0000-0002-5686-8314
https://doi.org/10.4230/LIPIcs.STACS.2025.44
https://orcid.org/0000-0003-4062-6991
https://doi.org/10.4230/LIPIcs.STACS.2025.13
https://orcid.org/0009-0000-7660-9275
https://doi.org/10.4230/LIPIcs.STACS.2025.30
https://orcid.org/0000-0002-5634-9506
https://doi.org/10.4230/LIPIcs.STACS.2025.33
https://orcid.org/0000-0002-3531-7644
https://doi.org/10.4230/LIPIcs.STACS.2025.51
https://orcid.org/0000-0003-1961-4531
https://doi.org/10.4230/LIPIcs.STACS.2025.45
https://doi.org/10.4230/LIPIcs.STACS.2025.26
https://orcid.org/0000-0002-2356-2079
https://doi.org/10.4230/LIPIcs.STACS.2025.66
https://orcid.org/0000-0002-4721-5354
https://doi.org/10.4230/LIPIcs.STACS.2025.39
https://doi.org/10.4230/LIPIcs.STACS.2025.57

Authors 0:xxiii

Hendrik Molter (47)
Department of Computer Science, Ben-Gurion
University of the Negev, Beer-Sheva, Israel

Marco Montali (20)
Free University of Bozen-Bolzano, Italy

Angelo Montanari (20)
University of Udine, Italy

Tobias Mömke (9)
Department of Computer Science, University of
Augsburg, Germany

Torsten Mütze (16)
Institut für Mathematik, Universität Kassel,
Germany; Department of Theoretical Computer
Science and Mathematical Logic, Charles
University, Prague, Czech Republic

Tomohiro Nakayoshi (59)
The University of Tokyo, Japan

Bento Natura (2)
Columbia University, New York, NY, USA

Daniel Neider (19)
TU Dortmund University, Center for
Trustworthy Data Science and Security,
University Alliance Ruhr, Dortmund, Germany

Daniel Neuen (28)
University of Regensburg, Germany; Max Planck
Institute for Informatics, Saarbrücken, Germany

Minh Hang Nguyen (34)
Institut de Recherche en Informatique
Fondamentale (IRIF), CNRS, Université Paris
Cité, France

Lê Thành Dũng (Tito) Nguyễn (68)
CNRS & Aix-Marseille University, France

Damian Niwiński (69)
Institute of Informatics, University of Warsaw,
Poland

Pedro Nora (40)
Radboud Universiteit, Nijmegen, The
Netherlands

Koji Nuida (72)
Institute of Mathematics for Industry (IMI),
Kyushu University, Fukuoka, Japan; National
Institute of Advanced Industrial Science and
Technology (AIST), Tokyo, Japan

Neil Olver (2)
London School of Economics and Political, UK

Fahad Panolan (5)
School of Computer Science, University of Leeds,
UK

Paweł Parys (69)
Institute of Informatics, University of Warsaw,
Poland

Galina Pass (54)
QuSoft, Amsterdam, The Netherlands;
University of Amsterdam, The Netherlands

Boaz Patt-Shamir (70)
School of Electrical Engineering, Tel Aviv
University, Israel

Ramamohan Paturi (42)
Department of Computer Science and
Engineering, University of California San Diego,
La Jolla, CA, USA

Christophe Paul (6)
LIRMM, Université de Montpellier, CNRS,
Montpellier, France

Léo Paviet Salomon (21)
Université de Lorraine, CNRS, Inria, LORIA,
54000, Nancy, France

Ami Paz (34)
Laboratoire Interdisciplinaire des Sciences du
Numérique (LISN), CNRS, Université
Paris-Saclay, France

Simon Perdrix (27)
Inria Mocqua, LORIA, CNRS, Université de
Lorraine, F-54000 Nancy, France

Pacôme Perrotin (48)
Université Paris-Saclay, CNRS, Laboratoire
Interdisciplinaire des Sciences du Numérique,
91400, Orsay, France

Sergey Pupyrev (45, 56)
Menlo Park, CA, USA

Saladi Rahul (43)
Indian Institute of Science (IISc), Bangalore,
India

Felix Reidl (12)
Birkbeck, University of London, UK

Amadeus Reinald (6)
LIRMM, Université de Montpellier, CNRS,
Montpellier, France

Adi Rosén (70)
CNRS and Université Paris Cité, France

STACS 2025

https://orcid.org/0000-0002-4590-798X
https://doi.org/10.4230/LIPIcs.STACS.2025.47
https://orcid.org/0000-0002-8021-3430
https://doi.org/10.4230/LIPIcs.STACS.2025.20
https://orcid.org/0000-0002-4322-769X
https://doi.org/10.4230/LIPIcs.STACS.2025.20
https://orcid.org/0000-0002-2509-6972
https://doi.org/10.4230/LIPIcs.STACS.2025.9
https://orcid.org/0000-0002-6383-7436
https://doi.org/10.4230/LIPIcs.STACS.2025.16
https://orcid.org/0009-0008-7176-8048
https://doi.org/10.4230/LIPIcs.STACS.2025.59
https://doi.org/10.4230/LIPIcs.STACS.2025.2
https://orcid.org/0000-0001-9276-6342
https://doi.org/10.4230/LIPIcs.STACS.2025.19
https://orcid.org/0000-0002-4940-0318
https://doi.org/10.4230/LIPIcs.STACS.2025.28
https://orcid.org/0009-0008-2391-029X
https://doi.org/10.4230/LIPIcs.STACS.2025.34
https://orcid.org/0000-0002-6900-5577
https://doi.org/10.4230/LIPIcs.STACS.2025.68
https://orcid.org/0000-0002-1342-9805
https://doi.org/10.4230/LIPIcs.STACS.2025.69
https://orcid.org/0000-0001-8581-0675
https://doi.org/10.4230/LIPIcs.STACS.2025.40
https://orcid.org/0000-0001-8259-9958
https://doi.org/10.4230/LIPIcs.STACS.2025.72
https://doi.org/10.4230/LIPIcs.STACS.2025.2
https://orcid.org/0000-0001-6213-8687
https://doi.org/10.4230/LIPIcs.STACS.2025.5
https://orcid.org/0000-0001-7247-1408
https://doi.org/10.4230/LIPIcs.STACS.2025.69
https://doi.org/10.4230/LIPIcs.STACS.2025.54
https://orcid.org/0000-0001-8398-8218
https://doi.org/10.4230/LIPIcs.STACS.2025.70
https://doi.org/10.4230/LIPIcs.STACS.2025.42
https://orcid.org/0000-0001-6519-975X
https://doi.org/10.4230/LIPIcs.STACS.2025.6
https://orcid.org/0009-0005-4498-3832
https://doi.org/10.4230/LIPIcs.STACS.2025.21
https://orcid.org/0000-0002-6629-8335
https://doi.org/10.4230/LIPIcs.STACS.2025.34
https://orcid.org/0000-0002-1808-2409
https://doi.org/10.4230/LIPIcs.STACS.2025.27
https://orcid.org/0000-0003-1197-2676
https://doi.org/10.4230/LIPIcs.STACS.2025.48
https://orcid.org/0000-0003-4089-673X
https://doi.org/10.4230/LIPIcs.STACS.2025.45
https://doi.org/10.4230/LIPIcs.STACS.2025.56
https://orcid.org/0000-0001-5984-0934
https://doi.org/10.4230/LIPIcs.STACS.2025.43
https://orcid.org/0000-0002-2354-3003
https://doi.org/10.4230/LIPIcs.STACS.2025.12
https://orcid.org/0000-0002-8108-4036
https://doi.org/10.4230/LIPIcs.STACS.2025.6
https://doi.org/10.4230/LIPIcs.STACS.2025.70

0:xxiv Authors

Eva Rotenberg (25)
Technical University of Denmark, Lyngby,
Denmark

Rajarshi Roy (19)
Department of Computer Science, University of
Oxford, UK

Janosch Ruff (13)
Hasso Plattner Institute, University of Potsdam,
Germany

Andrew Ryzhikov (61)
Department of Computer Science, University of
Oxford, UK

Heiko Röglin (57)
Universität Bonn, Germany

Michael Saks (42)
Department of Mathematics, Rutgers University,
Piscataway, NJ, USA

Saket Saurabh (5, 14, 36)
The Institute of Mathematical Sciences, HBNI,
Chennai, India; Department of Informatics,
University of Bergen, Norway

Louis Schatzki (11)
Electrical and Computer Engineering, University
of Illinois Urbana-Champaign, IL, USA

Conrad Schecker (50)
Institute for Computer Science, Goethe
University Frankfurt, Germany

Philipp Schepper (41)
CISPA Helmholtz Center for Information
Security, Saarbrücken, Germany

Kevin Schewior (50)
Department of Mathematics and Computer
Science, University of Cologne, Germany;
University of Southern Denmark, Odense,
Denmark

Patrick Schnider (71)
Department of Computer Science, ETH Zürich,
Switzerland

Lutz Schröder (40)
Friedrich-Alexander-Universität
Erlangen-Nürnberg, Germany

Rahul Shah (38)
Louisiana State University, Baton Rouge, LA,
USA

Roohani Sharma (33, 36)
University of Bergen, Norway

Tetsuo Shibuya (49)
The University of Tokyo, Japan

Kazumasa Shinagawa (72)
Ibaraki University, Ibaraki, Japan; National
Institute of Advanced Industrial Science and
Technology (AIST), Tokyo, Japan

George Skretas (13)
Hasso Plattner Institute, University of Potsdam,
Germany

Michał Skrzypczak (69)
Institute of Informatics, University of Warsaw,
Poland

Linus Stalder (71)
Department of Computer Science, ETH Zürich,
Switzerland

Vorapong Suppakitpaisarn (49)
The University of Tokyo, Japan

Prafullkumar Tale (33)
Indian Institute of Science Education and
Research Pune, India

Navid Talebanfard (42)
University of Sheffield, UK

Sharma V. Thankachan (38)
North Carolina State University, Raleigh, NC,
USA

Mikkel Thorup (32)
BARC, University of Copenhagen, Denmark

Anastasiia Tkachenko (73)
Kahlert School of Computing, University of
Utah, Salt Lake City, UT, USA

Noam Touitou (74)
Unaffiliated, Tel Aviv, Israel

Torsten Ueckerdt (56)
Institute of Theoretical Informatics, Karlsruhe
Institute of Technology, Germany

Seeun William Umboh (70)
School of Computing and Information Systems,
The University of Melbourne, Australia; ARC
Training Centre in Optimisation Technologies,
Integrated Methodologies, and Applications
(OPTIMA), Melbourne, Australia

Przemysław Uznański (29)
Institute of Computer Science, University of
Wrocław, Poland

Ivor van der Hoog (25)
Technical University of Denmark, Lyngby,
Denmark

https://orcid.org/0000-0001-5853-7909
https://doi.org/10.4230/LIPIcs.STACS.2025.25
https://orcid.org/0000-0002-0202-1169
https://doi.org/10.4230/LIPIcs.STACS.2025.19
https://orcid.org/0009-0004-3564-4831
https://doi.org/10.4230/LIPIcs.STACS.2025.13
https://orcid.org/0000-0002-2031-2488
https://doi.org/10.4230/LIPIcs.STACS.2025.61
https://orcid.org/0009-0006-8438-3986
https://doi.org/10.4230/LIPIcs.STACS.2025.57
https://doi.org/10.4230/LIPIcs.STACS.2025.42
https://orcid.org/0000-0001-7847-6402
https://doi.org/10.4230/LIPIcs.STACS.2025.5
https://doi.org/10.4230/LIPIcs.STACS.2025.14
https://doi.org/10.4230/LIPIcs.STACS.2025.36
https://orcid.org/0000-0002-1712-9148
https://doi.org/10.4230/LIPIcs.STACS.2025.11
https://orcid.org/0000-0002-8103-1911
https://doi.org/10.4230/LIPIcs.STACS.2025.50
https://orcid.org/0000-0002-5810-7949
https://doi.org/10.4230/LIPIcs.STACS.2025.41
https://orcid.org/0000-0003-2236-0210
https://doi.org/10.4230/LIPIcs.STACS.2025.50
https://orcid.org/0000-0002-2172-9285
https://doi.org/10.4230/LIPIcs.STACS.2025.71
https://orcid.org/0000-0002-3146-5906
https://doi.org/10.4230/LIPIcs.STACS.2025.40
https://orcid.org/0000-0002-2190-5840
https://doi.org/10.4230/LIPIcs.STACS.2025.38
https://orcid.org/0000-0003-2212-1359
https://doi.org/10.4230/LIPIcs.STACS.2025.33
https://doi.org/10.4230/LIPIcs.STACS.2025.36
https://orcid.org/0000-0003-1514-5766
https://doi.org/10.4230/LIPIcs.STACS.2025.49
https://orcid.org/0000-0002-5219-1975
https://doi.org/10.4230/LIPIcs.STACS.2025.72
https://orcid.org/0000-0003-2514-8004
https://doi.org/10.4230/LIPIcs.STACS.2025.13
https://orcid.org/0000-0002-9647-4993
https://doi.org/10.4230/LIPIcs.STACS.2025.69
https://doi.org/10.4230/LIPIcs.STACS.2025.71
https://orcid.org/0000-0002-7020-395X
https://doi.org/10.4230/LIPIcs.STACS.2025.49
https://orcid.org/0000-0001-9753-0523
https://doi.org/10.4230/LIPIcs.STACS.2025.33
https://orcid.org/0000-0002-3524-9282
https://doi.org/10.4230/LIPIcs.STACS.2025.42
https://orcid.org/0000-0002-6852-1035
https://doi.org/10.4230/LIPIcs.STACS.2025.38
https://orcid.org/0000-0001-5237-1709
https://doi.org/10.4230/LIPIcs.STACS.2025.32
https://orcid.org/0009-0005-4716-1287
https://doi.org/10.4230/LIPIcs.STACS.2025.73
https://orcid.org/0000-0002-5720-4114
https://doi.org/10.4230/LIPIcs.STACS.2025.74
https://orcid.org/0000-0002-0645-9715
https://doi.org/10.4230/LIPIcs.STACS.2025.56
https://orcid.org/0000-0001-6984-4007
https://doi.org/10.4230/LIPIcs.STACS.2025.70
https://orcid.org/0000-0002-8652-0490
https://doi.org/10.4230/LIPIcs.STACS.2025.29
https://orcid.org/0009-0006-2624-0231
https://doi.org/10.4230/LIPIcs.STACS.2025.25

Authors 0:xxv

Pascal Vanier (21)
Normandie Univ, UNICAEN, ENSICAEN,
CNRS, GREYC, 14000, Caen, France

Gabriele Vanoni (68)
IRIF, Université Paris Cité, France

Lionel Vaux Auclair (23)
Aix-Marseille Université, CNRS, I2M, France

Oleg Verbitsky (75)
Institut für Informatik, Humboldt-Universität zu
Berlin, Germany

Shaily Verma (5)
Algorithm Engineering Group, Hasso Plattner
Institute, Potsdam, Germany

László A. Végh (2)
University of Bonn, Germany

Magnus Wahlström (52, 62)
Department of Computer Science, Royal
Holloway University of London, UK

Haitao Wang (73, 76)
Kahlert School of Computing, University of
Utah, Salt Lake City, UT, USA

Jiaheng Wang (28)
University of Regensburg, Germany

Simon Weber (71)
Department of Computer Science, ETH Zürich,
Switzerland

Armin Weiß (58)
University of Stuttgart, Germany

Philip Wellnitz (41)
National Institute of Informatics, Tokyo, Japan;
The Graduate University for Advanced Studies,
SOKENDAI, Tokyo, Japan

Sebastian Wiederrecht (6)
School of Computing, KAIST, Daejeon, South
Korea

Paul Wild (40)
Friedrich-Alexander-Universität
Erlangen-Nürnberg, Germany

Guochuan Zhang (51)
Zhejiang University, Hangzhou, China

Yiming Zhao (76)
Department of Computer Sciences, Metropolitan
State University of Denver, CO, USA

Xin Zheng (65)
Nanjing University, China

Maksim Zhukovskii (75)
School of Computer Science, University of
Sheffield, UK

Aleksander Łukasiewicz (29)
Institute of Computer Science, University of
Wrocław, Poland; Computer Science Institute of
Charles University, Prague, Czech Republic

STACS 2025

https://orcid.org/0000-0001-9207-9112
https://doi.org/10.4230/LIPIcs.STACS.2025.21
https://orcid.org/0000-0001-8762-8674
https://doi.org/10.4230/LIPIcs.STACS.2025.68
https://orcid.org/0000-0001-9466-418X
https://doi.org/10.4230/LIPIcs.STACS.2025.23
https://orcid.org/0000-0002-9524-1901
https://doi.org/10.4230/LIPIcs.STACS.2025.75
https://orcid.org/0009-0000-6789-1643
https://doi.org/10.4230/LIPIcs.STACS.2025.5
https://doi.org/10.4230/LIPIcs.STACS.2025.2
https://orcid.org/0000-0002-0933-4504
https://doi.org/10.4230/LIPIcs.STACS.2025.52
https://doi.org/10.4230/LIPIcs.STACS.2025.62
https://orcid.org/0000-0001-8134-7409
https://doi.org/10.4230/LIPIcs.STACS.2025.73
https://doi.org/10.4230/LIPIcs.STACS.2025.76
https://orcid.org/0000-0002-5191-545X
https://doi.org/10.4230/LIPIcs.STACS.2025.28
https://orcid.org/0000-0003-1901-3621
https://doi.org/10.4230/LIPIcs.STACS.2025.71
https://orcid.org/0000-0002-7645-5867
https://doi.org/10.4230/LIPIcs.STACS.2025.58
https://orcid.org/0000-0002-6482-8478
https://doi.org/10.4230/LIPIcs.STACS.2025.41
https://orcid.org/0000-0003-0462-7815
https://doi.org/10.4230/LIPIcs.STACS.2025.6
https://orcid.org/0000-0001-9796-9675
https://doi.org/10.4230/LIPIcs.STACS.2025.40
https://orcid.org/0000-0003-1947-7872
https://doi.org/10.4230/LIPIcs.STACS.2025.51
https://orcid.org/0000-0001-5080-5251
https://doi.org/10.4230/LIPIcs.STACS.2025.76
https://orcid.org/0009-0000-0227-2833
https://doi.org/10.4230/LIPIcs.STACS.2025.65
https://orcid.org/0000-0001-8763-9533
https://doi.org/10.4230/LIPIcs.STACS.2025.75
https://orcid.org/0000-0003-1808-8330
https://doi.org/10.4230/LIPIcs.STACS.2025.29

Proof Complexity and Its Relations to SAT Solving
Albert Atserias Ñ

Universitat Politècnica de Catalunya, Barcelona, Spain
Centre de Recerca Matemàtica, Bellaterra, Spain

Abstract
Propositional proof complexity is the study of algorithms that recognize the set of tautologies in
propositional logic. Initially conceived as an approach to address the “P versus NP” problem in
computational complexity, the field has gradually expanded its focus to include new objectives.
Among these is the goal of providing a theoretical foundation for comparing the effectiveness of
heuristics for algorithms that exhaustively explore the solution spaces of combinatorial problems.
Dually, and complementarily, the methods of proof complexity can also be used to assess how to
certify that a given exploration path of such an algorithm ultimately leads to a dead end. A notable
challenge faced by this methodology lies in the fact that, despite the theoretically proved modelling
power of propositional logic, as established by the theory of NP-completeness, propositional logic is
not always the best specification language for all application domains. Addressing this challenge
involves studying the expressive power of various languages and their associated proof systems
through the lens of computational complexity.

The first part of this talk will be a survey of how the emergence of these new objectives
for propositional proof complexity came to be, and what the theory’s methods offer in pursuing
them. The second part will review the current state of the art on the computational complexity of
automating the proof search problem for various proof systems for propositional logic and other
languages. While it is now known and well understood that fully automating propositional Resolution
as a proof system for propositional logic is NP-hard, it remains an open question whether it is
possible to distinguish satisfiable formulas from unsatisfiable ones with short Resolution proofs of
unsatisfiability in polynomial time. As of the time of writing, there is no consensus among experts
on whether this problem should be considered computationally intractable.

2012 ACM Subject Classification Theory of computation → Proof complexity; Theory of computa-
tion → Automated reasoning

Keywords and phrases Propositional logic, proof systems, Resolution, cutting planes, integer linear
programming, automatability, NP-hardness, satisfiability, heuristics, search

Digital Object Identifier 10.4230/LIPIcs.STACS.2025.1

Category Invited Talk

© Albert Atserias;
licensed under Creative Commons License CC-BY 4.0

42nd International Symposium on Theoretical Aspects of Computer Science (STACS 2025).
Editors: Olaf Beyersdorff, Michał Pilipczuk, Elaine Pimentel, and Nguyễn Kim Thắng;
Article No. 1; pp. 1:1–1:1

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://www.cs.upc.edu/~atserias
https://orcid.org/0000-0002-3732-1989
https://doi.org/10.4230/LIPIcs.STACS.2025.1
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

A Strongly Polynomial Algorithm for Linear
Programs with at Most Two Non-Zero Entries per
Row or Column
Daniel Dadush #

Centrum Wiskunde & Informatica, Amsterdam, The Netherlands

Zhuan Khye Koh #

Centrum Wiskunde & Informatica, Amsterdam, The Netherlands

Bento Natura #

Columbia University, New York, NY, USA

Neil Olver #

London School of Economics and Political, UK

László A. Végh #

University of Bonn, Germany

Abstract
We give a strongly polynomial algorithm for minimum cost generalized flow, and hence for optimizing
any linear program with at most two non-zero entries per row, or at most two non-zero entries
per column. Primal and dual feasibility were shown by Végh (MOR ’17) and Megiddo (SICOMP
’83) respectively. Our result can be viewed as progress towards understanding whether all linear
programs can be solved in strongly polynomial time, also referred to as Smale’s 9th problem.

Our approach is based on the recent primal-dual interior point method (IPM) due to Allamigeon,
Dadush, Loho, Natura and Végh (FOCS ’22). The number of iterations needed by the IPM is
bounded, up to a polynomial factor in the number of inequalities, by the straight line complexity of
the central path. Roughly speaking, this is the minimum number of pieces of any piecewise linear
curve that multiplicatively approximates the central path.

As our main contribution, we show that the straight line complexity of any minimum cost
generalized flow instance is polynomial in the number of arcs and vertices. By applying a reduction
of Hochbaum (ORL ’04), the same bound applies to any linear program with at most two non-zeros
per column or per row.

To be able to run the IPM, one requires a suitable initial point. For this purpose, we develop a
novel multistage approach, where each stage can be solved in strongly polynomial time given the
result of the previous stage. Beyond this, substantial work is needed to ensure that the bit complexity
of each iterate remains bounded during the execution of the algorithm. For this purpose, we show
that one can maintain a representation of the iterates as a low complexity convex combination of
vertices and extreme rays. Our approach is black-box and can be applied to any log-barrier path
following method.

2012 ACM Subject Classification Theory of computation → Linear programming

Keywords and phrases Linear Programming, Strongly Polynomial Algorithms, Interior Point Meth-
ods

Digital Object Identifier 10.4230/LIPIcs.STACS.2025.2

Category Invited Talk

© Daniel Dadush, Zhuan Khye Koh, Bento Natura, Neil Olver, and László A. Végh;
licensed under Creative Commons License CC-BY 4.0

42nd International Symposium on Theoretical Aspects of Computer Science (STACS 2025).
Editors: Olaf Beyersdorff, Michał Pilipczuk, Elaine Pimentel, and Nguyễn Kim Thắng;
Article No. 2; pp. 2:1–2:1

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:dadush@cwi.nl
https://orcid.org/0000-0001-5577-5012
mailto:Zhuan.Koh@cwi.nl
mailto:bn2392@columbia.edu
mailto:N.Olver@lse.ac.uk
mailto:lvegh@uni-bonn.de
https://doi.org/10.4230/LIPIcs.STACS.2025.2
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

Algebras for Automata: Reasoning with Regularity
Anupam Das # Ñ

University of Birmingham, UK

Abstract
In the second half of the 20th century various theories of regular expressions were proposed,
eventually leading to the notion of a Kleene Algebra (KA). Kozen and Krob independently proved
the completeness of KA for the model of regular languages, a now celebrated result that has
been refined and generalised over the years. In recent years proof theoretic approaches to regular
languages have been studied, providing alternative routes to metalogical results like completeness
and decidability.

In this talk I will present a new approach from a different starting point: finite state automata.
A notation for non-deterministic finite automata is readily obtained via expressions with least fixed
points, leading to a theory of right-linear algebras (RLA). RLA is strictly more general than KA, e.g.
admitting ω-regular languages as a model too, and enjoys a simpler proof theory than KA. This
allows us to recover (more general) metalogical results in a robust way, combining techniques from
automata, games, and cyclic proofs. Finally I will discuss extensions of RLA by greatest fixed points,
comprising a notation for parity automata, to reason about ω-regular languages too.

This talk is based on joint works with Abhishek De [2, 1].

2012 ACM Subject Classification Theory of computation → Regular languages; Theory of compu-
tation → Proof theory

Keywords and phrases Regular languages, Linear grammars, Proof theory, Cyclic proofs, Automata
theory, Fixed points, Games

Digital Object Identifier 10.4230/LIPIcs.STACS.2025.3

Category Invited Talk

Funding Anupam Das: The author is supported by a UKRI Future Leader’s Fellowship, Structure
vs Invariants in Proofs, project reference MR/Y011716/1.

References
1 Anupam Das and Abhishek De. A proof theory of (ω-)context-free languages, via non-

wellfounded proofs. In Christoph Benzmüller, Marijn J. H. Heule, and Renate A. Schmidt,
editors, Automated Reasoning - 12th International Joint Conference, IJCAR 2024, Nancy,
France, July 3-6, 2024, Proceedings, Part II, volume 14740 of Lecture Notes in Computer
Science, pages 237–256. Springer, 2024. doi:10.1007/978-3-031-63501-4_13.

2 Anupam Das and Abhishek De. A proof theory of right-linear (ω-)grammars via cyclic proofs.
In Pawel Sobocinski, Ugo Dal Lago, and Javier Esparza, editors, Proceedings of the 39th
Annual ACM/IEEE Symposium on Logic in Computer Science, LICS 2024, Tallinn, Estonia,
July 8-11, 2024, pages 30:1–30:14. ACM, 2024. doi:10.1145/3661814.3662138.

© Anupam Das;
licensed under Creative Commons License CC-BY 4.0

42nd International Symposium on Theoretical Aspects of Computer Science (STACS 2025).
Editors: Olaf Beyersdorff, Michał Pilipczuk, Elaine Pimentel, and Nguyễn Kim Thắng;
Article No. 3; pp. 3:1–3:1

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:a.das@bham.ac.uk
http://anupamdas.com
https://orcid.org/0000-0002-0142-3676
https://doi.org/10.4230/LIPIcs.STACS.2025.3
https://doi.org/10.1007/978-3-031-63501-4_13
https://doi.org/10.1145/3661814.3662138
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

Some Recent Advancements in Monotone Circuit
Complexity
Susanna F. de Rezende # Ñ

Lund University, Sweden

Abstract
In 1985, Razborov [16] proved the first superpolynomial size lower bound for monotone Boolean
circuits for the perfect matching the clique functions, and, independently, Andreev [2] obtained
exponential size lower bounds. These breakthroughs were soon followed by further advancements in
monotone complexity, including better lower bounds for clique [1, 19], superlogarithmic depth lower
bounds for connectivity by Karchmer and Wigderson [12], and the separations mon-NC ̸= mon-P
and that mon-NCi ̸= mon-NCi+1 by Raz and McKenzie [15]. Karchmer and Wigderson [12] proved
their result by establishing a relation between communication complexity and (monotone) circuit
depth, and Raz and McKenzie [15] introduced a new technique, now called lifting theorems, for
obtaining communication lower bounds from query complexity lower bounds,

In this talk, we will survey recent advancements in monotone complexity driven by query-to-
communication lifting theorems. A decade ago, Göös, Pitassi, and Watson [10] brought to light
the generality of the result of Raz and McKenzie [15] and reignited this line of work. A notable
extension is the lifting theorem [8] for a model of DAG-like communication [17, 18] that corresponds
to circuit size. These powerful theorems, in their different flavours, have been instrumental in
addressing many open questions in monotone circuit complexity, including: optimal 2Ω(n) lower
bounds on the size of monotone Boolean formulas computing an explicit function in NP [14]; a
complete picture of the relation between the mon-AC and mon-NC hierarchies [6]; a near optimal
separation between monotone circuit and monotone formula size [5]; exponential separation between
NC2 and mon-P [8, 11]; and better lower bounds for clique [7, 13], improving on [3]. Very recently,
lifting theorems were also used to prove supercritical trade-offs for monotone circuits showing that
there are functions computable by small circuits for which any small circuit must have superlinear
or even superpolynomial depth [4, 9]. We will explore these results and their implications, and
conclude by discussing some open problems.

2012 ACM Subject Classification Theory of computation → Circuit complexity; Theory of compu-
tation → Communication complexity; Theory of computation → Proof complexity

Keywords and phrases monotone circuit complexity, query complexity, lifting theorems

Digital Object Identifier 10.4230/LIPIcs.STACS.2025.4

Category Invited Talk

Funding ELLIIT, Knut and Alice Wallenberg grants KAW 2021.0307 and 2023.0116, and the Swedish
Research Council grant 2021-05104.

References
1 Noga Alon and Ravi B. Boppana. The monotone circuit complexity of Boolean functions.

Combinatorica, 7(1):1–22, March 1987. doi:10.1007/bf02579196.
2 Alexander E. Andreev. On a method for obtaining lower bounds for the complexity of

individual monotone functions. Soviet Mathematics Doklady, 31(3):530–534, 1985. English
translation of a paper in Doklady Akademii Nauk SSSR.

3 Bruno Pasqualotto Cavalar, Mrinal Kumar, and Benjamin Rossman. Monotone circuit lower
bounds from robust sunflowers. In Proceedings of the 14th Latin American Symposium on
Theoretical Informatics (LATIN ’20), volume 12118 of Lecture Notes in Computer Science,
pages 311–322. Springer, January 2021. doi:10.1007/978-3-030-61792-9_25.

© Susanna F. de Rezende;
licensed under Creative Commons License CC-BY 4.0

42nd International Symposium on Theoretical Aspects of Computer Science (STACS 2025).
Editors: Olaf Beyersdorff, Michał Pilipczuk, Elaine Pimentel, and Nguyễn Kim Thắng;
Article No. 4; pp. 4:1–4:2

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:susanna.rezende@cs.lth.se
https://derezende.github.io/
https://orcid.org/0000-0001-8923-1240
https://doi.org/10.4230/LIPIcs.STACS.2025.4
https://doi.org/10.1007/bf02579196
https://doi.org/10.1007/978-3-030-61792-9_25
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

4:2 Some Recent Advancements in Monotone Circuit Complexity

4 Susanna F. de Rezende, Noah Fleming, Duri Andrea Janett, Jakob Nordström, and Shuo
Pang. Truly supercritical trade-offs for resolution, cutting planes, monotone circuits, and
weisfeiler-leman. Technical Report 2411.14267, arXiv.org, November 2024. doi:10.48550/
arXiv.2411.14267.

5 Susanna F. de Rezende, Or Meir, Jakob Nordstrom, Toniann Pitassi, Robert Robere, and
Marc Vinyals. Lifting with simple gadgets and applications to circuit and proof complexity.
In Proceedings of the 61st IEEE Annual Symposium on Foundations of Computer Science
(FOCS ’20), November 2020. doi:10.1109/focs46700.2020.00011.

6 Susanna F. de Rezende, Jakob Nordström, and Marc Vinyals. How limited interaction hinders
real communication (and what it means for proof and circuit complexity). In Proceedings of
the 57th IEEE Annual Symposium on Foundations of Computer Science (FOCS ’16), October
2016. doi:10.1109/focs.2016.40.

7 Susanna F. de Rezende and Marc Vinyals. Lifting with colourful sunflowers. Manuscript, 2025.
8 Ankit Garg, Mika Göös, Pritish Kamath, and Dmitry Sokolov. Monotone circuit lower bounds

from resolution. Theory of Computing, 16(13):1–30, 2020. Preliminary version in STOC ’18.
doi:10.4086/toc.2020.v016a013.

9 Mika Göös, Gilbert Maystre, Kilian Risse, and Dmitry Sokolov. Supercritical tradeoffs for
monotone circuits. Technical Report 2411.14268, arXiv.org, November 2024. doi:10.48550/
arXiv.2411.14268.

10 Mika Göös, Toniann Pitassi, and Thomas Watson. Deterministic communication vs. partition
number. SIAM Journal on Computing, 47(6):2435–2450, January 2018. Preliminary version in
FOCS ’15. doi:10.1137/16m1059369.

11 Mika Göös, Pritish Kamath, Robert Robere, and Dmitry Sokolov. Adventures in monotone
complexity and TFNP. In Proceedings of the 10th Innovations in Theoretical Computer
Science Conference (ITCS ’19), volume 124 of Leibniz International Proceedings in Informatics
(LIPIcs), pages 38:1–38:19, January 2019. doi:10.4230/LIPIcs.ITCS.2019.38.

12 Mauricio Karchmer and Avi Wigderson. Monotone circuits for connectivity require super-
logarithmic depth. SIAM Journal on Discrete Mathematics, 3(2):255–265, 1990. Preliminary
version in STOC ’88. doi:10.1137/0403021.

13 Shachar Lovett, Raghu Meka, Ian Mertz, Toniann Pitassi, and Jiapeng Zhang. Lifting with
Sunflowers. In Proceedings of the 13th Innovations in Theoretical Computer Science Conference
(ITCS ’22), volume 215 of Leibniz International Proceedings in Informatics (LIPIcs), pages
104:1–104:24, January 2022. doi:10.4230/LIPICS.ITCS.2022.104.

14 Toniann Pitassi and Robert Robere. Strongly exponential lower bounds for monotone computa-
tion. In Proceedings of the 49th Annual ACM Symposium on Theory of Computing (STOC ’17),
pages 1246–1255, June 2017. doi:10.1145/3055399.3055478.

15 Ran Raz and Pierre McKenzie. Separation of the monotone NC hierarchy. Combinatorica,
19(3):403–435, March 1999. Preliminary version in FOCS ’97. doi:10.1007/s004930050062.

16 Alexander A. Razborov. Lower bounds for the monotone complexity of some Boolean functions.
Soviet Mathematics Doklady, 31(2):354–357, 1985. English translation of a paper in Doklady
Akademii Nauk SSSR.

17 Alexander A. Razborov. Unprovability of lower bounds on circuit size in certain fragments of
bounded arithmetic. Izvestiya: Mathematics, pages 205–227, February 1995. doi:10.1070/
im1995v059n01abeh000009.

18 Dmitry Sokolov. Dag-like communication and its applications. In Proceedings of the 12th
International Computer Science Symposium in Russia (CSR ’17), volume 10304 of Lecture Notes
in Computer Science, pages 294–307. Springer, June 2017. doi:10.1007/978-3-319-58747-9_
26.

19 Ingo Wegener. The complexity of Boolean functions. Wiley-Teubner, 1987. URL: http:
//ls2-www.cs.uni-dortmund.de/monographs/bluebook/.

https://doi.org/10.48550/arXiv.2411.14267
https://doi.org/10.48550/arXiv.2411.14267
https://doi.org/10.1109/focs46700.2020.00011
https://doi.org/10.1109/focs.2016.40
https://doi.org/10.4086/toc.2020.v016a013
https://doi.org/10.48550/arXiv.2411.14268
https://doi.org/10.48550/arXiv.2411.14268
https://doi.org/10.1137/16m1059369
https://doi.org/10.4230/LIPIcs.ITCS.2019.38
https://doi.org/10.1137/0403021
https://doi.org/10.4230/LIPICS.ITCS.2022.104
https://doi.org/10.1145/3055399.3055478
https://doi.org/10.1007/s004930050062
https://doi.org/10.1070/im1995v059n01abeh000009
https://doi.org/10.1070/im1995v059n01abeh000009
https://doi.org/10.1007/978-3-319-58747-9_26
https://doi.org/10.1007/978-3-319-58747-9_26
http://ls2-www.cs.uni-dortmund.de/monographs/bluebook/
http://ls2-www.cs.uni-dortmund.de/monographs/bluebook/

Parameterized Saga of First-Fit and Last-Fit
Coloring
Akanksha Agrawal #

Indian Institute of Technology Madras, India

Daniel Lokshtanov #

University of California, Santa Barbara,CA, USA

Fahad Panolan #

School of Computer Science, University of Leeds, UK

Saket Saurabh #

The Institute of Mathematical Sciences, HBNI, Chennai, India
Department of Informatics, University of Bergen, Norway

Shaily Verma #

Algorithm Engineering Group, Hasso Plattner Institute, Potsdam, Germany

Abstract
The classic greedy coloring algorithm considers the vertices of an input graph G in a given order
and assigns the first available color to each vertex v in G. In the Grundy Coloring problem, the
task is to find an ordering of the vertices that will force the greedy algorithm to use as many colors
as possible. In the Partial Grundy Coloring, the task is also to color the graph using as many
colors as possible. This time, however, we may select both the ordering in which the vertices are
considered and which color to assign the vertex. The only constraint is that the color assigned to a
vertex v is a color previously used for another vertex if such a color is available.

Whether Grundy Coloring and Partial Grundy Coloring admit fixed-parameter tractable
(FPT) algorithms, algorithms with running time f(k)nO(1), where k is the number of colors, was
posed as an open problem by Zaker and by Effantin et al., respectively.

Recently, Aboulker et al. (STACS 2020 and Algorithmica 2022) resolved the question for
Grundy Coloring in the negative by showing that the problem is W[1]-hard. For Partial
Grundy Coloring, they obtain an FPT algorithm on graphs that do not contain Ki,j as a
subgraph (a.k.a. Ki,j-free graphs). Aboulker et al. re-iterate the question of whether there exists an
FPT algorithm for Partial Grundy Coloring on general graphs and also asks whether Grundy
Coloring admits an FPT algorithm on Ki,j-free graphs. We give FPT algorithms for Partial
Grundy Coloring on general graphs and for Grundy Coloring on Ki,j-free graphs, resolving
both the questions in the affirmative. We believe that our new structural theorems for partial
Grundy coloring and “representative-family” like sets for Ki,j-free graphs that we use in obtaining
our results may have wider algorithmic applications.

2012 ACM Subject Classification Theory of computation → Fixed parameter tractability

Keywords and phrases Grundy Coloring, Partial Grundy Coloring, FPT Algorithm, Ki,j-free graphs

Digital Object Identifier 10.4230/LIPIcs.STACS.2025.5

Related Version Full Version: https://arxiv.org/pdf/2410.20629

Funding Akanksha Agrawal: Supported by the New Faculty Seed Grant, IIT Madras
(No. NFSC008972).
Saket Saurabh: Supported by the European Research Council (ERC) under the European Union’s
Horizon 2020 research and innovation programme (grant agreement No. 819416).

© Akanksha Agrawal, Daniel Lokshtanov, Fahad Panolan, Saket Saurabh, and
Shaily Verma;
licensed under Creative Commons License CC-BY 4.0

42nd International Symposium on Theoretical Aspects of Computer Science (STACS 2025).
Editors: Olaf Beyersdorff, Michał Pilipczuk, Elaine Pimentel, and Nguyễn Kim Thắng;
Article No. 5; pp. 5:1–5:21

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:akanksha@cse.iitm.ac.in
https://orcid.org/0000-0002-0656-7572
mailto:daniello@ucsb.edu
https://orcid.org/0000-0002-3166-9212
mailto:f.panolan@leeds.ac.uk
https://orcid.org/0000-0001-6213-8687
mailto:saket@imsc.res.in
https://orcid.org/0000-0001-7847-6402
mailto:Shaily.Verma@hpi.de
https://orcid.org/0009-0000-6789-1643
https://doi.org/10.4230/LIPIcs.STACS.2025.5
https://arxiv.org/pdf/2410.20629
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

5:2 Parameterized Saga of First-Fit and Last-Fit Coloring

1 Introduction

A proper coloring of a graph G is an assignment of colors to its vertices such that none of
the edges have endpoints of the same color. In k-Coloring, we are given a graph G, and
the objective is to test whether G admits a proper coloring using at most k colors. The k-
Coloring problem is one of the classical NP-hard problems, and it is NP-complete for every
fixed k ≥ 3. The problem is notoriously hard even to approximate. Indeed, approximating
k-Coloring within O(n1−ϵ), for any ϵ > 0, is hard [18]. Also, under a variant of Unique
Games Conjecture, there is no constant factor approximation for 3-Coloring [14].

The k-Coloring problem has varied applications ranging from scheduling, register
allocations, pattern matching, and beyond [8,9,29]. Owing to this, several heuristics-based
algorithms have been developed for the problem. One of the most natural greedy strategies
considers the vertices of an input graph G in an arbitrary order and assigns to each vertex
the first available color in the palette (the color palette for us is N). In literature, this is
called the first-fit rule. Notice that there is nothing special about using the “first” available
color; one may instead opt for any of the previously used colors, if available, before using a
new color; let us call this greedy rule the any-available rule. It leads to yet another greedy
strategy to properly color a graph, and one can easily prove that this greedy strategy is
equivalent to the “last-(available) fit” rule.

For any greedy strategy, one may wonder: How bad can the strategy perform for the
given instance? The above leads us to the well-studied fundamental combinatorial problems,
Grundy Coloring and Partial Grundy Coloring, that arise from the aforementioned
greedy strategies for proper coloring. In the Grundy Coloring problem, we are given a
graph G on n vertices and an integer k, and the goal is to check if there is an ordering of
the vertices on which the first-fit greedy algorithm for proper coloring uses at least k colors.
Similarly, we can define the Partial Grundy Coloring problem, where the objective is
to check if, for the given graph G on n vertices and integer k, there is an ordering of the
vertices on which the any-available greedy algorithm uses at least k colors. In this paper, we
consider these two problems in the realm of parameterized complexity.

The Grundy Coloring problem has a rich history dating back to 1939 [21]. Goyal
and Vishwanathan [20] proved that Grundy Coloring is NP-hard. Since then, there has
been a flurry of results on the computational and combinatorial aspects of the problem
both on general graphs and on restricted graph classes, see, for instance [3, 6, 7, 10, 16, 23, 24,
26, 27, 33, 35–39] (this list is only illustrative, not comprehensive). The problem Partial
Grundy Coloring was introduced by Erdös et al. [16] and was first shown to be NP-
hard by Shi et al. [34]. The problem has gained quite some attention thereafter; see, for
instance [1, 4, 5, 12,15,25,32,36].

These problems have also been extensively studied from the parameterized complexity
perspective. Unlike k-Coloring, both these problems admit XP algorithms [15, 38], i.e., an
algorithm running in time bounded by |V (G)|f(k). The above naturally raises the question
of whether they are fixed-parameter tractable (FPT), i.e., admit an algorithm running in
time f(k) · |V (G)|O(1). In fact, these problems have also been explicitly stated as open
problems [1, 7, 23,33].

Havet and Sampaio [23] studied Grundy Coloring with an alternate parameter and
showed that the problem of testing whether there is a Grundy coloring with at least |V (G)|−q

colors is FPT parameterized by q. Bonnet et al. [7] initiated a systematic study of designing
parameterized and exact exponential time algorithms for Grundy Coloring and obtained
FPT algorithms for the problem for several structured graph classes. They gave an exact

A. Agrawal, D. Lokshtanov, F. Panolan, S. Saurabh, and S. Verma 5:3

algorithm for Grundy Coloring running in time 2.443n · nO(1) and also showed that the
problem is FPT on chordal graphs, claw-free graphs and graphs excluding a fixed minor. In
the same paper, they stated the tractability status of Grundy Coloring on general graphs
parameterized by the treewidth or the number of colors as central open questions. Belmonte
et al. [6] resolved the first question by proving that Grundy Coloring is W[1]-hard
parameterized by treewidth, but surprisingly, it becomes FPT parameterized by pathwidth.
Later, Aboulker et al. [1] proved that Grundy Coloring does not admit an FPT algorithm
(parameterized by the number of colors) and obtained an FPT algorithm for Partial
Grundy Coloring on Kt,t-free graphs (which includes graphs of bounded degeneracy,
graphs excluding some fixed graph as minor/topological minors, graphs of bounded expansion
and nowhere dense graphs). A graph is Ki,j-free if it does not have a subgraph isomorphic
to the complete bipartite graph with i and j vertices, respectively, on the two sides. They
concluded their work with the following natural open questions:

Question 1: Does Partial Grundy Coloring admit an FPT algorithm?
Question 2: Does Grundy Coloring admit an FPT algorithm on Ki,j-free graphs?

In this paper, we resolve the questions 1 and 2 in the affirmative by a new structural
result and a new notion of representative families for Ki,j-free graphs, respectively. In the
next section, we give an intuitive overview of both results, highlighting our difficulties and
our approaches to overcome them.

1.1 Our Results, Methods and Overview
Our first result is the following.

▶ Theorem 1. Partial Grundy Coloring is solvable in time 2O(k5) · nO(1).

Our algorithm starts with the known “witness reformulation” of Partial Grundy
Coloring. It is known that (G, k) is a yes-instance of Partial Grundy Coloring if and
only if there is a vertex subset W of size at most k2 such that, (G[W], k) is a yes-instance
of the problem. In the above, the set W is known as a small witness set. Our algorithm
is about finding such a set W of size at most k2. Observe that this witness reformulation
immediately implies that Partial Grundy Coloring admits an algorithm with running
time nO(k2) time. To build our intuition, we first give a simple algorithm for the problem on
graphs of bounded degeneracy (or even, nowhere dense graphs). This algorithm has two main
steps: (a) classical color-coding of Alon-Yuster-Zwick [2], and (b) independence covering
lemma of Lokshtanov et al. [28].

Let (G, k) be a yes instance of Partial Grundy Coloring, where G is a d-degenerate
graph on n vertices, and W be a small witness set of size at most k2. As (G[W], k) must be a
yes-instance of the problem, there exists an ordering of the vertices such that when we apply
any-available greedy rule, it uses at least k colors. Let ĉ be this proper coloring of G[W].
The tuple (Wi := {v ∈ W | ĉ(v) = i})i∈[k] is called a k-partial Grundy witness for G. Now
we apply the color-coding step of the algorithm. That is, we color the vertices of G using k

colors independently and uniformly at random, and let Z1, · · · , Zk be the color classes of
this coloring. The probability that for each i ∈ [k], Wi ⊆ Zi, is k−k2 . Notice that since G is
a d-degenerate graph, we have that Gi = G[Zi], for each i ∈ [k], is d-degenerate. Now we
exploit this fact and apply the independence covering lemma of Lokshtanov et al. [28]. That
is given as input (Gi, k2), in time 2O(dk2)nO(1) it produces a family Fi of independent sets of
Gi, of size 2O(dk2) · log n. Furthermore, given any independent set I of Gi of size at most k2,

STACS 2025

5:4 Parameterized Saga of First-Fit and Last-Fit Coloring

there exists an independent set F ∈ Fi, such that I ⊆ F (F covers I). In particular, we know
that there is a set Fi ∈ Fi that covers Wi. So, the algorithm just enumerates each tuple
(F1, . . . , Fk) of F1 × · · · × Fk and checks whether (F1, · · · , Fk) is a k-partial Grundy coloring
of G[F1 ∪ · · · ∪ Fk]. If (G, k) is a yes instance, our algorithm is successful with probability
k−k2 . Moreover, we can convert the described randomized algorithm to a deterministic one
by using the standard derandomization technique of “universal sets” [17, 31]. Some remarks
are in order; it can be shown that each of |Wi| ≤ k, and hence we can call the independence
covering lemma on (Gi, k), resulting in an improved running time of 2O(dk2 log k) · nO(1).
Aboulker et al. [1] proved that Partial Grundy Coloring on Kt,t-free graphs is FPT,
which includes t-degenerate graphs. Aboulker et al. did not explicitly mention the running
time, but their running time is at least 2kt

n. Our new algorithm improves over this. For
general instances, we do not have a bound on the degeneracy of the input graph. However,
we can achieve this by using our new structural result.

▶ Theorem 2 (Structural result). There is a polynomial-time algorithm that given a graph G

and a positive integer k, does one of the following:
(i) Correctly concludes that (G, k) is a yes-instance of Partial Grundy Coloring, or
(ii) Outputs at most 2k3 induced bicliques A1, · · · , Aℓ in G such that the following holds.

For any v ∈ V (G), the degree of v in G − F is at most k3, where F is the union of the
edges in the above bicliques.

The structural result (Theorem 2) is one of our main technical contributions. Next, we
show how to design an algorithm for Partial Grundy Coloring using Theorem 2. We
follow the same steps as for the one described for the degenerate case. That is, we have
color classes Zis and they contain the respective Wis (the part of the small witness set W).
Now, to design a family of independent sets in Gi = G[Zi], we do as follows. Let (Lj , Rj)
be a bipartition of Aj , for each j ∈ [ℓ]. Observe that any independent set I (in particular
of Gi) intersects Lj or Rj , but not both, for any j ∈ [ℓ]. Thus, we first guess whether Wi

intersects Lj , Rj or none. Let this be given by a function fi : [ℓ] → {L, R, N}, that is, if
fi(j) = L, then Wi ∩ Lj = ∅, if fi(j) = R, then Wi ∩ Rj = ∅, else Wi ∩ (Lj ∪ Rj) = ∅. Taking
advantage of this property, for each guess of which of Lj or Rj is not contained in Wi, we
delete the corresponding set (which is one of Lj or Rj , for each j ∈ [ℓ]) from Gi. We call the
resulting graph Gfi

i . This implies that for any fi, in Gfi

i we delete all edges of F (where F is
the union of edges in the bicliques). Hence, the maximum degree of Gfi

i is at most k3, and
therefore it has degeneracy at most k3. Now using the independence covering step of the
algorithm for degenerate graphs, we can finish the algorithm. The proof of Theorem 2 is
obtained by carefully analyzing the reason for the failure of a greedy algorithm.

Our next result is an affirmative answer to Question 2.

▶ Theorem 3. For any fixed i, j ∈ N, there is an FPT algorithm that given a graph G and a
positive integer k, decides if there is Grundy coloring of G using at least k colors.

For our algorithm, we use a reinterpretation of the problem which is based on the
existence of a small witness. Gyárfás et al. [22], and Zaker [38] independently showed that
a given instance (G, k) of Grundy Coloring is a yes-instance if and only if there is a
vertex subset W of size at most 2k−1, such that (G[W], k) is also a yes-instance of the
problem. The existence of this small induced subgraph directly yield an XP algorithm for the
problem [38]. Using characterizations of [22,38] and basic Grundy coloring properties, we can
reduce Grundy Coloring to finding a homomorphic image, satisfying some independence
constraints, of some specific labeled trees (see Fig. 1, where different parts of it will be

A. Agrawal, D. Lokshtanov, F. Panolan, S. Saurabh, and S. Verma 5:5

v1

v8

v6

v7

v5

v2

v3

v4

C1 C2 C3 C4

A : B :

C :

r4

r4,1r4,2r4,3

r4,2,1r4,3,1r4,3,2

v1

v3

v4v3v2

v2v6

v1

v2 v3

v8

v5

v6

v4

v7

Figure 1 Illustration of a labelled homomorphism ω : V (T4) → V (G), where the graph is
shown in part (i), T4 with V (T4) = {r4, r4,3, r4,2, r4,1, r4,3,2, r4,3,1, r4,2,1} is shown in part (ii),
and a relation to Grundy coloring is illustrated in part (iii). Here, ω(r4) = v1, ω(r4,3) = v6,
ω(r4,2) = v2, ω(r4,1) = v3, ω(r4,3,2) = v2, ω(r4,3,1) = v3, and ω(r4,2,1) = v4.

discussed, shortly). Let the pair (T, ℓ) denote a rooted tree T together with a labeling
function ℓ : V (T) → [k]. Given (T, ℓ) and a graph G, a function ω : V (T) → V (G) is a
labeled homomorphism if: i) for each {u, v} ∈ E(T), we have {ω(u), ω(v)} ∈ E(G), and ii)
for u, v ∈ V (T), if ℓ(u) ̸= ℓ(v), then ω(u) ̸= ω(v). In particular, we will reduce the problem
to the following.

Constrained Label Tree Homomorhism (CLTH) Parameter: |V (T)|
Input: A host graph G and (T, ℓ : V (T) → [k]), where T is a tree.
Question: Does there exists a labeled homomorphism ω : V (T) → V (G) such that for
any z ∈ [k], Wi = {ω(t) | t ∈ V (T) and ℓ(t) = i} is an independent set in G?

Now our goal is to identify ω (and thus the witness set W). The first step of our algorithm
will be to use the color-coding technique of Alon-Yuster-Zwick [2] to ensure that the labeling
requirement of the graph homomorphism ω is satisfied. To this end, we randomly color the
vertices of G using k colors, where we would like the random coloring to ensure that for
each z ∈ [k], all the vertices in Wz are assigned the color z. Let X1, X2, · · · , Xk be the color
classes in a coloring that achieves the above property. Our objective will be to find ω such
that vertices of T that are labeled z ∈ [k] are assigned to vertices in Xz.

Our next challenge is to find a homomorphism that additionally satisfies the independence
condition. That is, vertices of the same label in T are assigned to an independent set in G.
Note that the number of potential ωs that satisfy our requirements can be very huge; however,
we will be able to carefully exploit Ki,j-freeness to design a dynamic programming-based
algorithm to identify one such ω (and thus the set W). Our approach here is inspired
by dynamic programming in the design of FPT algorithms based on computations of
“representative sets” [19,30]. However, this inspiration ends here, as to apply known methods
we need to have an underlying family of sets that form a matroid. Unfortunately, we do not
have any matroid structure to apply the known technique. Here, we exploit the fact that we
have a specific labeled tree (T, ℓ) and a Ki,j-free graph. Next we define the specific trees
that we will be interested in (see Fig. 1, (ii)).

▶ Definition 4. For each k ∈ N \ {0}, we (recursively) define a pair (Tk, ℓk : V (Tk) → [k]),
called a k-Grundy tree, where Tk is a tree and ℓk is a labelling of V (Tk), as follows :
1. T1 = ({r1}, ∅) is a tree with exactly one vertex r1 (which is also its root), and ℓ1(r1) = 1.
2. Consider any k ≥ 2, we (recursively) obtain Tk as follows. For each z ∈ [k − 1], let (Tz, ℓz)

be the z-Grundy tree with root rz. We assume that for distinct z, z′ ∈ [k − 1], Tz and

STACS 2025

5:6 Parameterized Saga of First-Fit and Last-Fit Coloring

Tz′ have no vertex in common, which we can ensure by renaming the vertices.1 We set
V (Tk) =

(
∪z∈[k−1] V (Tz)

)
∪ {rk} and A(Tk) =

(
∪z∈[k−1] A(Tz)

)
∪ {(rk, rz) | z ∈ [k − 1]}.

We set ℓk(rk) = k, and for each z ∈ [k − 1] and t ∈ V (Tz), we set ℓk(t) = ℓz(t).
For v ∈ V (Tk), ℓk(v) is the label of v in (Tk, ℓk), and the elements in [k] are labels of Tk.

Observe that the label of a vertex t ∈ V (T) is the depth of the subtree rooted at t (the
depth of a leaf is 1). In particular, the leaves are assigned the label 1, and when they are
deleted, we get vertices with the label 2 as leaves, and so on. This allows us to do a bottom-up
dynamic programming over Tk. Roughly speaking, for each z ∈ [k], we solve the special
labelled tree homomorphism from ωz : V (Tz) → X1 ∪ X2 . . . ∪ Xz, where the root of Tz is
mapped to a fixed vertex v ∈ Xz as follows: instead of having all potential choices for ωz (or
Wz = {ωz(t) | t ∈ V (Tz)}), we find enough representatives, that will allow us to replace Wz

by something that we have stored. It is a priori not clear that such representative sets of
small size exist and furthermore, even if they exist, how to find them. The existence and
computation of small representative sets in this setting is our main technical contribution for
Grundy Coloring.

We heavily exploit the Ki,j-freeness in our “representative set” computation. Very roughly
stating, while we have computed required representatives for Wz, and wish to build such
a representatives for Wz+1, by exploiting Ki,j-freeness, we either find a small hitting set
or a large sub-family of pair-wise disjoint sets. In the former case, we can split the family
and focus on the subfamily containing a particular vertex from the hitting set and obtain a
“representative” for it (and then take the union over such families). In the latter case, we
show that we are very close to satisfying the required property, except for the sets containing
vertices from an appropriately constructed small set S of vertices. The construction of this
small set S is crucially based on the Ki,j-freeness of the input graph. Once we have the set
S, we can focus on sets containing a vertex from it and compute “representatives” for them.

Again, using standard hash functions, we can obtain a deterministic FPT algorithm for
the problem by derandomizing the color coding based step [2, 31].

2 Preliminaries

Generic Notations. We denote the set of natural numbers by N. For n ∈ N, [n] denotes
the set {1, 2, · · · , n}. For a function f : X → Y and y ∈ Y , f−1(y) := {x ∈ X | f(x) = y}.

For standard graph notations not explicitly stated here, we refer to the textbook of Di-
estel [13]. For a graph G, we denote its vertex and edge set by V (G) and E(G), respectively.
Also, if the context is clear, we will use n and m to denote the numbers |V (G)| and |E(G)|,
respectively. The neighborhood of a vertex v in a graph G is the set of vertices that are
adjacent to v in G, and we denote it by NG(v). The degree of a vertex v is the size of its
neighborhood in G, and we denote it by dG(v). For a set of vertices S ⊆ V (G), we define
NG(S) = (∪v∈SN(v)) \ S. When the graph is clear from the context, we drop the subscript
G from the above notations. For X ⊆ V (G), the induced subgraph of G on X, denoted by
G[X], is the graph with vertex set X and edge set {{u, v} | u, v ∈ X & {u, v} ∈ E(G)}. Also,
G[V (G) \ X] is denoted by G − X. For v ∈ V (G), we use G − v to denote G − {v} for ease
of notation. For an edge subset F ⊆ E(G), G − F is the graph with vertex set V (G) and
edge set E(G) \ F . A bipartite graph G = (A ⊎ B, E) is called a biclique if every vertex in A

1 For the sake of notational simplicity we will not explicitly write the renaming of vertices used to ensure
pairwise vertex disjointness of the trees. This convention will be followed in the relevant section.

A. Agrawal, D. Lokshtanov, F. Panolan, S. Saurabh, and S. Verma 5:7

is adjacent to every vertex in B. We assume that A and B are both non-empty sets. For
d ∈ N, a graph is d-degenerate if each of its subgraphs has a vertex of degree at most d. For
terminologies related to parameterized complexity, see the textbook of Cygan et al. [11].

3 FPT Algorithm for Partial Grundy Coloring

Consider a graph G and an integer k ∈ N \ {0}. For a (not necessarily proper) coloring
χ : V (G) → [k], for simplicity, we sometimes write χ as the ordered tuple (χ−1(1), χ−1(2), · · · ,

χ−1(k)). Recall that a proper coloring of a graph is a coloring of its vertices so that for
none of its edges, the two endpoints of it are of the same color. Also, a k-partial Grundy
coloring of G is a proper coloring c : V (G) → [k], such that for each i ∈ [k], there is a vertex
v ∈ V (G) with: (i) c(v) = i and (ii) for every j ∈ [i − 1], there is u ∈ NG(v) with c(u) = j.

We will begin with some definitions and results that will be useful in obtaining our main
structural result (Theorem 2) and our FPT-algorithm (Theorem 1).

Observe that given a k-partial Grundy coloring of an induced subgraph Ĝ of a graph G,
we can extend this coloring to a partial Grundy coloring of the whole graph G using at least
k colors by greedily coloring the uncolored vertices of G − V (Ĝ). The following observation
will be particularly useful when we work with a small “witness”.

▶ Observation 5. Given a graph G, an induced subgraph Ĝ of G, and a partial Grundy
coloring of Ĝ using k colors, we can find a partial Grundy coloring of G using at least k

colors in linear time.

Proof. Let ĉ : V (Ĝ) → [k] be a partial Grundy coloring of Ĝ with exactly k colors. We
construct a partial Grundy coloring c : V (G) → N of G using at least k colors as follows. For
each vertex v ∈ V (Ĝ), set c(v) := ĉ(v). Let v1, v2, · · · , vn′ be an arbitrarily fixed order of
vertices in V (G) \ V (Ĝ). Let G0 = Ĝ, and for each p ∈ [n′], Gp = G[V (Ĝ ∪ {v1, v2, · · · , vp})].
We iteratively create a partial Grundy coloring cp of Gp using at least k colors (in increasing
values of p) as follows. Note that c0 = ĉ is already a partial Grundy coloring of G0 that uses
at least k colors. Consider p ∈ [n′]\{0}, and assume that we have already computed a partial
Grundy coloring cp−1 : V (Gp−1) → N of Gp−1 that uses k′ ≥ k colors. For each z ∈ [k′],
let Vz = c−1

p−1(z). For each v ∈ V (Gp−1), we set cp(v) := cp−1(v). If the vertex vp has a
neighbor in each of the sets V1, V2, · · · , Vk′ , i.e., if for each z ∈ [k′], NG(vp) ∩ Vz ≠ ∅, then set
cp(vp) := k′ + 1. Otherwise, let z∗ ∈ [k′] be the smallest number such that NG(vp) ∩ Vz∗ = ∅,
and set cp(vp) := z∗. Notice that by construction, cp is a partial Grundy coloring of Gp using
at least k colors. From the above discussions, cn′ is a partial Grundy coloring of G = Gn′

using at least k colors. ◀

▶ Definition 6. Consider a graph G and an integer k ∈ N \ {0}. A sequence of pairwise
disjoint independent sets (Q1, Q2, . . . , Qk) of G is a k-partial Grundy witness if the following
holds. For any i ∈ [k], there is v ∈ Qi such that for all j ∈ [i − 1], Qj ∩ NG(v) ̸= ∅. The
vertex v is called a dominator in Qi.

▶ Observation 7. Given a graph G and an integer k, let (Q1, Q2, . . . , Qk) be a k-partial
Grundy witness. Suppose Y1, Y2, . . . , Yk are pairwise disjoint independent sets in G such that
Qi ⊆ Yi, for all i ∈ [k]. Then (Y1, Y2, . . . , Yk) is also a k-partial Grundy witness of G.

A k-partial Grundy witness (X1, X2, . . . , Xk) is small if for each i ∈ [k], |Xi| ≤ k−i+1. Next,
we prove the existence of a small k-partial Grundy witness. This result is the same as the
one obtained by Effantin et al. [15]; however, it is stated slightly differently for convenience.

STACS 2025

5:8 Parameterized Saga of First-Fit and Last-Fit Coloring

▶ Observation 8 (♠).2 Let G be a graph and k be an integer, where G has a k-partial
Grundy witness (Q1, . . . , Qk). Then, there exists a k-partial Grundy witness (X1, X2, . . . , Xk)
such that for each i ∈ [k], Xi ⊆ Qi and |Xi| ≤ k − i + 1.

The remainder of this section is organized as follows. In Section 3.1 we prove our key
structural result (Theorem 2), and then obtain our algorithm in Section 3.2. (Readers who
may want to read the algorithm directly, may skip Section 3.1.)

3.1 Degree Reduction: Proof of Theorem 2
The objective of this section is to prove Theorem 2. The proof of this theorem is based on
the following lemma for bipartite graphs.

▶ Lemma 9. There is a polynomial-time algorithm that, given a bipartite graph G = (A⊎B, E)
and a positive integer k, does one of the following.

(i) Correctly concludes that the partial Grundy coloring of G is at least k.
(ii) Outputs at most 4k − 4 bicliques A1, · · · , Aℓ in G such that for any v ∈ V (G), degree

of v in G − F is at most k2, where F is the union of the edges in the above bicliques.

We first give a proof of Theorem 2 based on the above lemma.

Proof of Theorem 2. Consider a graph G and a positive integer k. First, we run the first-
fit greedy algorithm for proper coloring of the graph G for an arbitrarily fixed ordering
(v1, v2, · · · , vn) of V (G). For each j, let Cj be the vertices colored j and k′ be the largest
integer such that Ck′ ≠ ∅. Note that (C1, · · · , Ck′) is a proper coloring of G. Also, for any
j ∈ [k′] and any vertex v in Cj , v has a neighbor in Cj′ for all j′ ∈ [j − 1]. If k′ ≥ k, then
(C1, · · · , Ck′) is a partial Grundy coloring of G using at least k colors, and thus we can
correctly report it.

Next, we assume that k′ < k. Note that all the edges in G are between the color
classes C1, · · · , Ck′ . Now for every distinct i, j ∈ [k′], where i < j, we apply Lemma 9 on
(Hi,j = (Ci ⊎ Cj , E(Ci, Cj)), k), where E(Ci, Cj) is the set of edges in G between the color
classes Ci and Cj . Our algorithm will declare that G has a partial Grundy coloring using
at least k colors if we get the output given in statement (i) in any of the

(
k′

2
)

applications
of Lemma 9. Otherwise, for every distinct i, j ∈ [k′], where i < j, let Ai,j,1, · · · , Ai,j,ℓi,j

be the bicliques, we get as output by the algorithm in Lemma 9 on (Hi,j , k). Note that
ℓi,j ≤ 4k − 4. Now our algorithm will output the bicliques {Ai,j,r : 1 ≤ i < j ≤ k′, r ∈ [ℓi,j]}.
As k′ < k for all 1 ≤ i < j ≤ k′, the number of bicliques we output is at most (4k − 4)

(
k′

2
)
,

that is, at most 2k3. Since any vertex in a color class Cr has neighbors in other color classes,
for r ∈ [k′] and we applied Lemma 9 for every pair of color classes, the degree of v in G − F

is at most k3 for any v ∈ V (G), where F is the union of the edges in the above bicliques.
This completes the proof of the theorem. ◀

We now focus on the proof of Lemma 9. Toward this, we give a polynomial time procedure
that, given a bipartite graph G = (L ⊎ R, E) and a positive integer k, either concludes that
the input graph has partial Grundy coloring using at least k colors or it outputs at most
2k − 2 bicliques A1, . . . , Aℓ in G such that for any v ∈ L, dG−F (v) ≤ k2, where F is the
union of the edges in the above bicliques. That is, removal of the edges of these bicliques
bounds the degree of each vertex in L by k2. We get the proof of Lemma 9 by applying this
algorithm once for L and then for R.

2 The proofs of the result marked with ♠ can be found in the full version of the paper on arXiv.

https://arxiv.org/abs/2410.20629

A. Agrawal, D. Lokshtanov, F. Panolan, S. Saurabh, and S. Verma 5:9

Overview of our algorithm. Let σ = v1, v2, . . . , vn be an ordering of the vertices in L in
non-increasing order of their degree in G. The algorithm constructs specific color classes
Q1, Q2, . . . , Qr in this order so that (C1 = Qr, C2 = Qr−1, . . . , Cr = Q1) is an r-partial
Grundy witness, where |Qj | ≤ j. Furthermore, we will construct sets Bi, i ∈ [r], which will
be used to construct the bicliques. Notice that if we obtain r ≥ k, then we will be able to
conclude that G has a partial Grundy coloring using at least k colors. Let Q1 = {v1} and in
our construction v1 will be the dominator in Q1 (and our construction needs to ensure this
property; see Definition 6). Consider the construction of Q2. Let i be the smallest index in
{2, 3, . . . , n} for which there is a vertex w ∈ NG(v1) such that vi is not adjacent to w. Then,
we set Q2 = {vi, w}, and designate vi as the dominator in color class Cr−1 = Q2. Notice
that all the vertices in B1 = {v2, . . . , vi−1} are adjacent to all the vertices in NG(v1), and
hence they together form a biclique (with bipartition B1 and NG(v1)). This property will be
extended in building each Qjs and the required bicliques.

For the construction of Qj , we consider unprocessed vertices (i.e., the vertices that do not
belong to the previously constructed sets, i.e., to Q1 ∪ B1 ∪ . . . ∪ Qj−1 ∪ Bj−1) as follows. We
would now like to choose an unprocessed vertex vi′ , so that we can make vi′ the dominator
of Qj , and additionally, for each j′ ∈ [j − 1], we can include a neighbor of the dominator
from Qj′ to the set Qj . Note for us to do the above, we need to ensure that the vertices that
we add to Qj is an independent set in G, and all the vertices that we want to include in
the set Qj are outside Q1 ∪ . . . ∪ Qj−1. That is, among the unprocessed vertices, we choose
the first vertex vi′ with the following property: for each j′ ∈ [j − 1], we have a neighbor
wj′ of the previously constructed dominator in Qj′ such that wj′ /∈ Q1 ∪ . . . ∪ Qj−1 and
(vi′ , wj′) /∈ E(G); we set Qj = {vi′ , w1, . . . , wj−1}. We would like to mention that all the
dominators we construct are from the bipartition L and hence {w1, . . . , wj−1} ⊆ R. This
will imply that Qj is an independent set.

Moreover, by the choice of vi′ as the smallest vertex with the desired property, it follows
that for any vertex vr that appears before vi′ in the order σ and vr /∈ P = Q1 ∪ . . . ∪ Qj−1,
the vertex vr is adjacent to all the vertices in N(xj′) \ P , where xj′ is the dominator in Qj′ ,
for some j′ ∈ [j −1]. Then we add vr to Bj′ . Note that in the above process, we still maintain
the biclique property, by explicitly ensuing that Bj′ and N(xj′) \ (Q1 ∪ . . . ∪ Qj−1 ∪ Qj)
forms a biclique.

Description of the algorithm. We give a pseudocode of our algorithm in Algorithm 1.
First, the algorithm intializes the sets Bi and Qi to be the empty set, for all i ∈ [k] (see
Algorithm 1). Let σ = v1, v2, . . . , vn be an ordering of the vertex set L in the non-increasing
order of their degrees. Now, we want to construct the color classes Q1, Q2, . . . , Qk, iteratively,
such that (C1, C2, . . . , Ck) = (Qk, Qk−1, . . . , Q1) is a k-partial Grundy witness. At line 3,
we intialize with Q1 := {v1}, x1 := v1, and fix the index q = 2. Here, Q1 will be the color
class Ck with dominator vertex x1. Now consider an iteration of the while loop. The
algorithm checks if the set L \

(⋃
j∈[q−1](Qj ∪ Bj)

)
is non-empty and executes the while

loop. At this point we have constructed sets Q1, . . . , Qq−1 such that (Qq−1, Qq−2, . . . , Q1)
is a (q − 1)-partial Grundy witness such that each xi is a dominator vertex in Qi. Let vr

be the first unprocessed vertex in L and P = ∪j∈[q−1]Qj by Lines 5 and 6. Now, we check
if we can construct the current color class Qq with vertex vr as a dominator vertex, and
for that, we need to add a neighbor wj (which is not added to any Qi′ before) for each
already discovered dominator xj such that wj is non-adjacent to vr. Now, if there exists
some j ∈ [q − 1] such that each neighbor of xj is a neighbor of vr , then we will not be able to
construct Qq with vertex vr in it. In that case, we choose such a value j and add vr to Bj(See

STACS 2025

5:10 Parameterized Saga of First-Fit and Last-Fit Coloring

Algorithm 1 Algorithm for one-sided bipartite structural result.

1 Initialize Bi := ∅ and Qi := ∅, for each i ∈ [k].
2 Let σ = v1, · · · , vn be an order of the vertices in L in the non-increasing order of

their degrees.
3 Let x1 := v1, Q1 := {x1} and q := 2.
4 while L ⊈

⋃
j∈[q−1](Qj ∪ Bj) do

5 Let vr be the first vertex in σ from L \
(⋃

j∈[q−1](Qj ∪ Bj)
)
.

6 Let P =
⋃

j∈[q−1] Qj .
7 if there exists j ∈ [q − 1] such that N(xj) ⊆ P ∪ N(vr) then
8 choose an arbitrary j with this property and set Bj := Bj ∪ {vr}.
9 else

10 For each j ∈ [q − 1], N(xj) \ (P ∪ N(vr)) ̸= ∅. Then, for each j ∈ [q − 1]
arbitrarily pick a vertex wj from N(xj) \ (P ∪ N(vr)).

11 //(Notice that in the above, wj may be equal to wj′ for distinct j, j′ ∈ [q − 1]).
12 Set xq := vr.
13 Set Qq := {xq} ∪ {w1, · · · , wq−1}.
14 Set q := q + 1.
15 end
16 end
17 if q ≥ k + 1 then
18 Declare that partial Grundy coloring of G is at least k.
19 else
20 For all j ∈ [q − 1], let Aj be the bipartite graph induced on Bj union N(xj) \ P

and Sj be the graph induced on N [xj], where P =
⋃

j∈[q−1] Qj .
21 Output A1, · · · , Aq−1 and S1, · · · , Sq−1

22 end

Line 8). Here, notice that vr is adjacent to all the vertices N(xj) \ P . We will maintain this
property for all the vertices added to Bj , i.e., Bj union N(xj) \

⋃
i Qi forms a biclique. Now

consider the case that the condition in the if statement in Line 7 is false. Then, we choose
a vertex wj ∈ N(xj) \ (P ∪ N(vr)) for each j ∈ [q − 1], by line 11 and set the vertex vr as
the dominator for Qq, that is, Qq := {xq} ∪ {w1, · · · , wq−1}, at Line 13. Notice that Qq

is an independent set because there is no edge between x1 and a vertex in {w1, . . . , wq−1},
and {w1, . . . , wq−1} is a subset of R, the right part of the bipartition of G. We repeat the
iteration until one of the while loop conditions at line 4 fails. Next, if q ≥ k + 1, we conclude
that G has a partial Grundy coloring using k colors by line 18, because (Qq−1, . . . , Q1) is a
(q − 1)-partial Grundy witness, where q − 1 ≥ k. Otherwise, by line 20, let Aj be the graph
induced on Bj ∪ (N(xj) \ P) and Sj be the graph induced on N [xj], for each j ∈ [q − 1].
Recall that Aj is a biclique. It is easy to see that Sj is a biclique, because G is a bipartite
graph. At line 21, the algorithm outputs the set of graphs A1, · · · , Aq−1 and S1, · · · , Sq−1.

The number of iterations of the while loop is at most n and each step in the algorithm
takes polynomial time, the total running time of the algorithm is polynomial in the input
size. Next, we prove the correctness of the algorithm.

▶ Lemma 10. Algorithm 1 is correct.

Proof. Let q⋆ be the value of q at the end of the algorithm. To prove the correctness of the
algorithm, first, we prove the following claim.

A. Agrawal, D. Lokshtanov, F. Panolan, S. Saurabh, and S. Verma 5:11

V \ Ai

v

N(xi) \ P

Ai Bi

Figure 2 Here the vertex v ∈ Bi in the biclique Ai (right side). The number of neighbors of v

outside Ai (blue edges) cannot be more than |P | as dG(v) ≤ dG(xi) = |NG(xi)| and v has |N(x) \ P |
neighbours in the biclique Ai.

▷ Claim 11. The following statements are true.
(i) For each i ∈ [q⋆ − 1], Qi is an independent set and Qi ̸= ∅.
(ii) For each i ∈ [q⋆ − 1] and j ∈ [i − 1], N(xj) ∩ Qi ̸= ∅.
(iii) For each i ∈ [q⋆ −1] and v ∈ Bi, v is adjacent to all the vertices in N(xi)\(

⋃
j∈[q⋆−1] Qj)

and dG(v) ≤ dG(xi).

Proof. We prove the statements by induction on i. The base case is when i = 1. Clearly,
Q1 = {x1} and hence statement (i) is true. Statement (ii) is vacuously true. Next, we prove
statement (iii). Notice that in any iteration of the while loop, in Step 8, we may add a
vertex vr to B1. If this happens, then we know that N(x1) ⊆ P ∪ N(vr), where P is a subset
of

⋃
j∈[q⋆−1] Qj . That is, all the vertices in N(x1) \ P are adjacent to vr. This implies that

vr is adjacent to all the vertices in N(x1) \ (
⋃

j∈[q⋆−1] Qj). Since x1 is the vertex with the
maximum degree, we have that dG(vr) ≤ d(x1).

Next, for the induction step, we assume that the induction hypothesis is true for i − 1,
and we will prove that the hypothesis is true for i. Consider the iteration h⋆ of the while
loop when q = i and Steps 11-14 is executed. Let vr be the vertex mentioned in Step 5 during
that iteration. The vertices w1, · · · , wq−1 belongs to R (the right side of the bipartition of
G) and hence {w1, · · · , wq−1} is an independent set. Also, notice that each wj does not
belong to N(vr) (See Step 11). Hence, Qq := {vr} ∪ {w1, · · · , wq−1} is an independent
set and Qq ̸= ∅. Thus, we proved statement (i). Again, notice that wj ∈ N(xj) for all
j ∈ [q − 1] (See Step 11). Thus, statement (ii) follows. Next, we prove statement (iii), which
is similar to the proof of it in the base case. Notice that in any iteration of the while loop
(after the iteration h⋆), in Step 8, we may add a vertex vr′ to Bi. If this happens, then
we know that N(xi) ⊆ P ∪ N(vr′), where P is a subset of

⋃
j∈[q−1] Qj . That is, all the

vertices in N(xi) \ P are adjacent to vr′ . This implies that vr′ is adjacent to all the vertices
in N(xi) \ (

⋃
j∈[q−1] Qj). Since xi ∈ Qi, considered in iteration h⋆, dG(vr′) ≤ dG(xi) (See

Step 5). This completes the proof of the claim. ◁

Now suppose q⋆ ≥ k + 1. Then, by Statements (i) and (ii) in Claim 11, we get that
(Qk, · · · , Q1) is a partial Grundy coloring of the graph induced on

⋃
j∈[q⋆−1] Qj . Thus, if the

algorithm executes Step 18, then it is correct because of Observation 5.
Now suppose q⋆ ≤ k. Then the algorithm executes Step 21 and outputs the sets

A1, . . . , Aq⋆−1 and S1, . . . , Sq⋆−1. Statement (iii) in Claim 11 implies that each Aj is a
biclique in G, where j ∈ [q⋆ − 1]. Also, note that Sj is a biclique in G as it is induced
on the set N [xj], for each j ∈ [q⋆ − 1]. Let F be the union of the edges in the bicliques

STACS 2025

5:12 Parameterized Saga of First-Fit and Last-Fit Coloring

A1, . . . , Aq⋆−1 and S1, . . . , Sq⋆−1. Next, we prove that for any v ∈ L, dG−F (v) ≤ k2. Let
X = {x1, . . . , xq⋆−1}. It is easy to see that |Qj | ≤ k and L ∩ Qj = {xj} ⊆ X, for all
j ∈ [q⋆ − 1] (See Steps 11-13). Hence, |

⋃
j∈[q⋆] Qj | ≤ k2. Let v be an arbitrary vertex in L.

Note that if v ∈ X, the degree of v in G − F is zero (by the definition of Sj). Next, suppose
that v ∈ L \ X. Since L ⊆

⋃
j∈[q⋆−1](Qj ∪ Bj) (this is the condition for while loop to exit)

and L ∩ Qj ⊆ X for all j ∈ [q⋆ − 1], v belongs to Bi for some i ∈ [q⋆ − 1]. By statement (iii)
in Claim 11, v is adjacent to all the vertices in N(xi) \ (

⋃
j∈[q⋆−1] Qj) and dG(v) ≤ dG(xi).

Recall that the biclique Ai is the graph with bipartition Bi and N(xi) \ (
⋃

j∈[q⋆−1] Qj).
Moreover v ∈ Bi and dG(v) ≤ dG(xi) = |NG(xi)|. This implies that the number of neighbors
of v that does not belong to Ai is at most |

⋃
j∈[q⋆−1] Qj |, which is upper bounded by k2.

Therefore, the degree of v in G − F is at most k2. See Figure 2 for an illustration. This
concludes the proof. ◀

3.2 FPT Algorithm for Partial Grundy Coloring
In this section, we design an FPT algorithm A for Partial Grundy Coloring when the
input has a structure dictated the second item of Lemma 9. Then, we explain how to get an
FPT algorithm for Partial Grundy Coloring on general graphs using A and Theorem 2.
Moreover, our algorithm A will provide a faster algorithm for Partial Grundy Coloring
on d-degenerate graphs, improving the result in [1]. Toward the first task, we define the
following problem.

Structural Partial Grundy Coloring (SPGC)
Input: Positive integers k, d, ℓ ∈ N, a graph G, and ℓ bicliques A1, . . . , Aℓ in G such
that G − F is d-degenerate, where F is the union of the edges in the above bicliques.
Question: Decide if there is a partial Grundy coloring for G using at least k colors.

First, we design a randomized polynomial time algorithm A1 for SPGC with a success
probability at least (k(d+1))−2k2−k ·2−ℓk. We increase the probability of success to a constant
by running A1 multiple times. Finally, we explain the derandomization of our algorithm.
Then we prove Theorem 1 using this algorithm and our structural result (Theorem 2). To
design the algorithm A1, we use the following result of Lokshtanov et al. [28].

▶ Proposition 12 (Lemma 1.1. [28]). There is a linear-time randomized algorithm that,
given a d-degenerate graph H and an integer k, outputs an independent set Y such that
for any independent set X in H with |X| ≤ k, the probability that X ⊆ Y is at least((

k(d+1)
k

)
· k(d + 1)

)−1
.

The algorithm A1 has the following steps.
1. Color all vertices in V (G) uniformly and independently at random with colors from the

set [k]. Let the obtained coloring be ϕ : V (G) → [k], and Zi = ϕ−1(i), for each i ∈ [k].
2. For each i ∈ [ℓ], let Ai = (Li ⊎Ri, Ei). For each j ∈ [k] and i ∈ [ℓ], uniformly at randomly

assign Pj,i := Li or Pi := Ri. That is, with probability 1
2 , Pj,i := Li and with probability

1
2 , Pj,i := Ri. Let Dj =

⋃
i∈[ℓ] Pj,i.

3. Now for each j ∈ [k], we apply the algorithm in Proposition 12 for (G[Zj − Dj], k) to
obtain an independent set Yj .

4. If (Y1, . . . , Yk) is a k-partial Grundy witness of G, then output Yes, else, output No.

A. Agrawal, D. Lokshtanov, F. Panolan, S. Saurabh, and S. Verma 5:13

Since the algorithm in Proposition 12 runs in linear time, the algorithm A1 can be
implemented to run in linear time because Z1, . . . , Zk is a partition of V (G). Clearly, if the
algorithm A1 outputs Yes, then G has a k-Partial Grundy witness and hence G has a partial
Grundy coloring using at least k colors. We can prove that if G has a k-Partial Grundy
witness the algorithm A1 outputs Yes with probability (k(d + 1))−2k2−k · 2−ℓk.

Also, by running A1, 3 · (k(d + 1))2k2+k2ℓk times and outputting Yes if at least one of
the runs outputs a Yes, and outputs No, otherwise, we can boost the success probability to
2/3, and thus obtain the following result.

▶ Theorem 13. There is a randomized algorithm for SPGC running in time O((k(d +
1))2k2+k · 2ℓk · (m + n)). In particular, if (G, k) is a no-instance then with probability 1 the
algorithm outputs No; and if (G, k) is a yes-instance then with probability 2/3 the algorithm
outputs Yes.

Theorem 2 and 13 imply the following theorem.

▶ Theorem 14. There is a randomized algorithm for Partial Grundy Coloring running
in time 2O(k4)nO(1). In particular, if (G, k) is a no-instance then with probability 1 the
algorithm outputs No; and if (G, k) is a yes-instance then with probability 2/3 the algorithm
outputs Yes.

Proof Sketch. First we run the algorithm mentioned in Theorem 2. If it concludes that G

has a partial Grundy coloring with at least k colors, then we output Yes. Otherwise, we
get at most 2k3 induced bicliques A1 · · · , Aℓ in G such that the following holds. For any
v ∈ V (G), the degree of v in G − F is at most k3, where F is the union of the edges in the
above bicliques. That is the degeneracy of G − F is at most k3. Then, we apply Theorem 13,
and ouputs accordingly. ◀

The derandomization of our algorithm can be found in the full version.

4 FPT Algorithm for Grundy Coloring on Ki,j-free Graphs

This section aims to prove Theorem 3. Consider fixed i, j ∈ N \ {0}, where i ≥ j. Recall
that a graph is Ki,j-free if it does not contain a subgraph isomorphic to Ki,j . We call the
special case of Grundy Coloring where the input graph is Ki,j-free, Ki,j-Free Grundy
Coloring. Let (G, k) be an instance of Ki,j-Free Grundy Coloring. We begin by
intuitively explaining the flow of our algorithm.

Consider a Grundy coloring c : V (G) → [k′] of G, where k′ ≥ k, and for each z ∈ [k],
c−1(z) ̸= ∅. Furthermore, for z ∈ [k′], let Cz = c−1(z). Let us focus on the first k color
classes, and for z ∈ [k], arbitrarily fix a vertex vz ∈ Cz. (Note that vz has a neighbor in Cz′ ,
for each z′ ∈ [z − 1].) We next intuitively describe construction, for each z ∈ [k], a set Wz

initialized to {vz} as follows. Basically, for each vz, add an arbitrarily chosen neighbor of it
in color class Cz′ , for every z′ < z. We do the above process exhaustively; whenever we add
a vertex to a set Wz, we add an arbitrarily chosen neighbor of it from each color class Cz′ to
Wz′ , where z′ < z. Then, let W = ∪z∈[k]Wz; we will call such a set W a k-Grundy set for G

and we will show that such a set of size at most 2k−1 exists (for yes instances). For z ∈ [k],
let W≤z = ∪z′∈[z]Wz′ and W>z = ∪z′∈[k]\[z]Wz′ . Note that c|W is a k-Grundy coloring of
G[W]. Also, we will show that G has a Grundy coloring using at least k colors if and only
if some subgraph of G has a Grundy coloring using exactly k colors. We remark that the
above result and the existence of W are the same as the results of Gyárfás et al. [22] and
Zaker [38], although, for the sake of convenience, we state it here slightly differently. If we

STACS 2025

5:14 Parameterized Saga of First-Fit and Last-Fit Coloring

v1

v2

v3

v4

v1

G

v1

v3

v4

v6

v5

v1

v5

v2

v2

4

3

2

1

1

1

Figure 3 An illustration of a graph G that admits a 4-Grundy coloring (on the left) and a
4-Grundy-witness ω (on the right).

can identify all the vertices in W (or some other k-Grundy set), then we will be done. The
first step of our algorithm will be to use the technique of color coding to randomly color the
vertices of G using k colors so that, for each z ∈ [k], v ∈ Wz is colored z; such a coloring will
be a nice coloring and it will be denoted by χ.

The next step of our algorithm is inspired by the design of FPT algorithms based on
computations of “representative sets” [19,30]. To this end, we will interpret W in a “tree-like”
fashion. With this interpretation, in a bottom-up fashion, for each z ∈ [k] and v ∈ Xz,
we will compute a family F ′

z,v, so that, if v ∈ Wz, then there will be W ′ ∈ F ′
z,v so that

W ′ ∪ W>z is also a k-Grundy set for G. We will now formalize the above steps.

Grundy Tree & Grundy Witness. We recall the Definition 4 from Section 1, and obtain
some properties regarding it.

▶ Observation 15 (♠). For k ∈ N \ {0}, for the k-Grundy tree (Tk, ℓk), |V (Tk)| = 2k−1.

▶ Observation 16 (♠). Consider k ∈ N \ {0} and the k-Grundy tree (Tk, ℓk). We have
|ℓ−1(k)| = 1 and for each z ∈ [k − 1], |ℓ−1

k (z)| = 2k−z−1.

Next, we define the notion of k-Grundy witness in a graph G.

▶ Definition 17. Consider k ∈ N\{0} and a graph G. A k-Grundy witness for G is a function
ω : V (Tk) → V (G), where (Tk, ℓk) is the k-Grundy tree, such that: 1) for each z ∈ [k],
{ω(t) | t ∈ V (Tk) and ℓk(t) = z} is an independent set in G, 2) for each t, t′ ∈ V (Tk), if
ℓk(t) ̸= ℓk(t′) then ω(t) ̸= ω(t′), and 3) for each (t, t′) ∈ A(Tk), we have {ω(t), ω(t′)} ∈ E(G).

Recall that for k ∈ N\{0}, for the k-Grundy tree (Tk, ℓk), Tk is the tree obtained by adding
a root vertex rk attached to the roots of (pairwise vertex disjoint) trees Tk−1, Tk−2, · · · , T1,
where for each z ∈ [k − 1], (Tz, ℓz) is the z-Grundy tree. We have the following observation.

▶ Observation 18 (♠). Consider k ∈ N \ {0}, a graph G and a k-Grundy witness ω :
V (Tk) → V (G) for G. For each z ∈ [k], ω|V (Tz) is a z-Grundy witness for G.

The next observation is a partial Grundy counterpart of Observation 5.

▶ Observation 19 (♠). Consider a graph G, any induced subgraph Ĝ of it, and an integer
k ∈ N. If Ĝ has a Grundy coloring that uses exactly k colors, then G has a Grundy coloring
that uses at least k colors.

A. Agrawal, D. Lokshtanov, F. Panolan, S. Saurabh, and S. Verma 5:15

In the following two lemmas, we show that the existence of a k-Grundy witness for a
graph is equivalent to the graph admitting a Grundy coloring with at least k colors.

▶ Lemma 20. For any k ∈ N \ {0} and a graph G, if G has a k-Grundy witness, then G has
a Grundy coloring with at least k colors.

Proof. Consider a graph G and any k ∈ N\{0}. For a k-Grundy witness ω : V (Tk) → V (G) of
G, let V̂ω = {ω(t) | t ∈ V (Tk)}, and for each z ∈ [k], let V̂ω,z = {ω(t) | t ∈ V (Tk) and ℓk(t) =
z}. Note that from item 2 of Definition 17, V̂ω,1, V̂ω,2, · · · , V̂ω,k is a partition of V̂ω, where
none of the parts are empty. Let cω : V̂ω → [k] be the function such that for each z ∈ [k] and
v ∈ V̂ω,z, we have cω(v) = q.

For each k ∈ N \ {0} and a k-Grundy witness ω : V (Tk) → V (G) of G, we will prove by
induction (on k) that cω is Grundy coloring of G[V̂ω] using k colors. The above statement,
together with Observation 19, will give us the desired result.

The base case is k = 1, where T1 has exactly one vertex, r1. For any 1-Grundy witness,
ω of G, note that cω(ω(r1)) = 1 is a Grundy coloring for G[{ω(r1)}] using 1 color. Now
for the induction hypothesis suppose that for some k̂ ∈ N \ {0, 1}, for each 0 < k < k̂, the
statement is true. Now we will prove the statement for k = k̂, and to this end, we consider
a k-Grundy witness ω : V (Tk) → [k], where rk is the root of Tk. Recall that Tk is the tree
obtained by adding a root vertex rk attached to the roots of (pairwise vertex disjoint) trees
Tk−1, Tk−2, · · · , T1, where for each z ∈ [k − 1], (Tz, ℓz) is the z-Grundy tree, and Tz is rooted
at rz. Let V ′ = V̂ω \ V̂ω,k, and consider a vertex v ∈ V̂ω,z∗ , where z∗ ∈ [k − 1]. We will argue
that for each z′ ∈ [z∗ − 1], NG(v) ∩ V̂ω,z′ ̸= ∅. Note that there must exists z ∈ [k − 1] and
t ∈ V (Tz) such that ω(t) = v and ℓz(v) = z∗, and we arbitrarily choose one such z and t.
Let Vz = {ω(t) | t ∈ V (Tz)}. From Observation 18, ωz = ω|V (Tz) is a z-Grundy witness for
G. Thus, from our induction hypothesis, cωz

= cω|Vz
is a Grundy coloring for G[Vz]. From

the above we can conclude that for each q′ ∈ [z∗ − 1], NG(v) ∩ V̂ω,z′ ̸= ∅. Now consider the
vertex ω(rk) = v∗

k and any z ∈ [k − 1]. Note that ℓk(rz) = z and from item 3 of Definition 17,
we can obtain that {v∗

k, ω(rz)} ∈ E(G). From the above discussions, we can obtain that cω

is Grundy coloring of G[V̂ω] using at least z colors. This concludes the proof. ◀

▶ Lemma 21. For any k ∈ N \ {0} and a graph G, if G has a Grundy coloring with at least
k colors, then G has a k-Grundy witness.

Proof. Consider a Grundy coloring c : V (G) → [k′] of G with k′ ≥ k colors, and for
each q ∈ [k′], let Cq = c−1(q). We construct a Grundy witness ω : V (Tk) → V (G) by
processing labels of Tk starting at k and iteratively proceeding to smaller labels as follows
while maintaining the below invariants.
Pre-condition: When we begin processing a label q ∈ [k − 1], for each t ∈ V (Tk) with
ℓk(t) ≥ q, we have fixed the vertex ω(t).
Post-condition: After processing label q ∈ [k], we have fixed, for each t ∈ V (Tk) with
ℓk(t) ≥ q, and t′ ∈ NTk

[t], the vertex ω(t′); and these are the only vertices in Tk for which
the vertex in G assigned by ω is determined.

Note that the pre-condition is vacuously satisfied for q = k. Recall that Tk is the tree
obtained by adding a root vertex rk attached to the roots rk−1, rk−2, · · · , r1 of (pairwise
vertex disjoint) trees Tk−1, Tk−2, · · · , T1, respectively, where for each q ∈ [k − 1], (Tq, ℓq) is a
q-Grundy tree. Pick any vertex vk ∈ Ck, and set ω(rk) := vk and for each q ∈ [k − 1], set
ω(rq) := wk

q , where wk
q is an arbitrarily chosen neighbor of vk from Cq (which exists as c is a

Grundy coloring). After the above step, the post-condition is satisfied for q = k.
Now we (iteratively, in decreasing order) consider q ∈ [k − 1] \ {1}. From the pre-

condition for q, we have fixed, for each t ∈ V (Tk) with ℓk(t) ≥ q, the vertex ω(t). Consider
t ∈ V (Tk) with ℓk(t) = q and let vt = ω(t). Let T̂q be the subtree of Tk rooted at t, and let

STACS 2025

5:16 Parameterized Saga of First-Fit and Last-Fit Coloring

ℓ̂q = ℓk|
V (T̂q). Notice that (T̂q, ℓ̂q) is a q-Grundy tree, where T̂q is the tree obtained from by

adding edge between t and the roots r̂q−1, r̂q−2, · · · , r̂1 of T̂q−1, T̂q−2, · · · , T̂1, respectively,
where (T̂q′ , ℓk|

V (T̂q′)) is a q′-Grundy tree, for each q′ ∈ [q − 1]. For each q′ ∈ [q], let ŵq
q′ be

an arbitrarily chosen vertex from NG(v) ∩ Cq′ , and we set ω(r̂q′) = ŵq
q′ . Notice that after the

above step, the post-condition is satisfied for q, and the pre-condition is satisfied for q − 1.
After we are done processing each q ∈ [k] \ {1}, the post-condition for q = 2 (and the

pre-condition of q = 1 implies that for each t ∈ V (Tk), we have determined the vertex ω(t)).
Moreover, the construction of ω implies that all the three conditions in Definition 17 are
satisfied. This concludes the proof. ◀

We next summarize the result we obtain from the above two lemmas.

▶ Lemma 22. Consider any k ∈ N \ {0} and a graph G. The graph G has a k-Grundy
witness if and only if G has a Grundy coloring with at least k colors.

Color Coding of G. We will next use the above lemma to simplify our job in the following
sense. Let ω : V (Tk) → V (G) be a (fixed) k-Grundy witness of G (if it exists), where (Tk, k)
is a k-Grundy tree. Let V̂ω = {ω(t) | t ∈ V (Tk)}, and for each q ∈ [k], let V̂ω,q = {ω(t) | t ∈
V (Tk) and ℓk(t) = q}. Roughly speaking, our new objective will be to find the vertices in
V̂ω and say that G[V̂ω] admits a Grundy coloring with at least k colors, using which we can
conclude that G admits a Grundy coloring with at least k colors. We will use the technique
of color coding introduced by Alon et al. [2], to color the vertices in V̂ω “nicely” as follows.
Color each vertex in G uniformly at random using a color from [k], and let χ : V (G) → [k]
be this coloring. A nice coloring is the one where, for each q ∈ [k], the coloring assigns the
color q to all the vertices in V̂ω,q.

We will work with the assumption that χ is a nice coloring of G, and for each q ∈ [k],
let Xq = χ−1(q). Our objective will be to look for a k-Grundy witness ω̂ : V (Tk) → V (G),
where (Tk, k) is a k-Grundy tree, such that for each q ∈ [k] and t ∈ V (Tk) with ℓk(t) = q,
we have ω̂(t) ∈ Xq. To this end, we will store a “Grundy representative family” for each
vertex in a bottom-up fashion, starting from q = 1. The definition of such a representative is
inspired by the q-representative families [19, 30], although here we need a “vectorial” form of
representation. To this end, we introduce the following notations and definitions.

Grundy Representative Sets. Recall we have the coloring χ of G with color classes Xz =
χ−1(z), for z ∈ [k]. A vertex subset A ⊆ V (G) is χ-independent if for each z ∈ [k], A ∩ Xz is
an independent set in G. For p ∈ N, a family of vertex subsets F is a p-family if each set in
F has size at most p and each A ∈ F if χ-independent. We will only be working with vectors
all of whose entries are from N without explicitly stating it. For a vector −→q = (q1, q2, · · · , qk),
sum(−→q) denotes the number

∑
z∈[q] qz. For a vector −→q = (q1, q2, · · · , qk) and B ⊆ V (G), we

say that the size of B is −→q , written as |B| = −→q , if for each z ∈ [k], |B ∩ Xz| = qz. For vertex
subsets A and B, A fits B if A ∪ B is χ-independent. For two vectors −→q1 = (q1

1 , q1
2 , · · · , q1

k)
and −→q2 = (q2

1 , q2
2 , · · · , q2

k), and ⋄ ∈ {≤, ≥, >, <, =}, we write −→q1 ⋄ −→q2 if for each z ∈ [k], we
have q1

z ⋄ q2
z . We next define the notion of −→q -Grundy representation.

▶ Definition 23. Consider p ∈ N, a vector −→q = (q1, q2, · · · , qk), and a p-family F of vertex
subsets of G. For a sub-family F ′ ⊆ F , we say that F ′ −→q -Grundy represents F , written as
F ′ ⊆−→q

grep F , if the following holds. For any set B of size −→q , if there is A ∈ F that fits B,
then there is A′ ∈ F ′ that fits B. In the above, F ′ is a −→q -Grundy representative for F .

Next, we obtain some properties regarding −→q -Grundy representatives.

A. Agrawal, D. Lokshtanov, F. Panolan, S. Saurabh, and S. Verma 5:17

▶ Observation 24 (♠). Consider p ∈ N, a vector −→q = (q1, q2, · · · , qk), and any two p-families
F1 and F2. If F ′

1 ⊆−→q
grep F1 and F ′

2 ⊆−→q
grep F2, then F ′

1 ∪ F ′
2 ⊆−→q

grep F1 ∪ F2.

Consider p ∈ N and v ∈ V (G). For a family F over V (G), F +v denotes the family
{A ∪ {v} | A ∈ F and A ∪ {v} is χ-independent}. Similarly, F −v denotes the family
{A \ {v} | A ∈ F}. A p-family F is a (p, v)-family if for each A ∈ F , we have v ∈ A.

▶ Observation 25 (♠). Consider p ∈ N, a vector −→q = (q1, q2, · · · , qk), a vertex v ∈ V (G)
and a (p, v)-family F . Let

−→
h be the vector obtained from −→q by increasing its χ(v)th coordinate

by 1. If F ′ ⊆
−→
h
grep F −v and F ′′ ⊆−→q

grep F −v, then (F ′ +v) ∪ (F ′′ +v) ⊆−→q
grep F .

For a p1-family F1 and a p2-family F2, we define a (p1 + p2)-family, F1 ⋆ F2 = {A1 ∪ A2 |
A1 ∈ F1, A2 ∈ F2, and A1 ∪ A2 is χ-independent}. The following lemma will be helpful in
obtaining a −→q -representative for F1 ⋆ F2.

▶ Lemma 26. Consider a p1-family F1, a p2-family F2, and a vector −→q = (q1, q2, · · · , qk),
where sum(−→q) + p1 + p2 ≤ 2k−1. Let F ′

1 ⊆ F1 be a p1-family such that for every vector
−→q1 ≥ −→q with sum(−→q1) ≤ sum(−→q) + p2, F ′

1 ⊆−→q1
grep F1. Similarly, consider a p2-family

F ′
2 ⊆ F2 such that for every vector −→q2 ≥ −→q with sum(−→q2) ≤ sum(−→q) + p1, F ′

2 ⊆−→q2
grep F2.

Then, F ′
1 ⋆ F ′

2 ⊆−→q
grep F1 ⋆ F2.

Proof. Consider any B ⊆ V (G) of size −→q for which there is A ∈ F1 ⋆ F2, such that A fits
B. As A ∈ F1 ⋆ F2, there must exist sets A1 ∈ F1, A2 ∈ F2, such that A1 ∪ A2 = A.

Let
−→
δ1 = (δ1

z = |(A2 ∩ Xz) \ B|)z∈[k]. Note that |B ∪ A2| = −→q +
−→
δ1 , A1 fits B ∪ A2 and

sum(−→q) + sum(
−→
δ1) ≤ sum(−→q) + p2. By the premise of the lemma, there exist A′

1 ∈ F ′
1 such

that A′
1 fits B ∪A2, as F ′

1 ⊆−→q +
−→
δ1

grep F1. The above implies that A2 fits B ∪A′
1, where A′

1 ∈ F ′
1.

Let
−→
δ2 = (δ2

z = |(A′
1 ∩ Xz) \ B|)z∈[k], and note that |B ∪ A′

1| = −→q +
−→
δ2 , A2 fits B ∪ A′

1

and sum(−→q) + sum(
−→
δ2) ≤ sum(−→q) + p1. Again, as F ′

2 ⊆−→q +
−→
δ2

grep F2, there exists A′
2 ∈ F ′

2
such that A′

2 fits B ∪ A′
1. The above discussions imply that, A′

1 ∈ F ′
1, A′

2 ∈ F ′
2, and thus

A′
1 ∪ A′

2 ∈ F ′
1 ⋆ F ′

2, where A′
1 ∪ A′

2 fits B. This concludes the proof. ◀

Recall that G is a Ki,j-free graph, where i ≥ j. Consider any computable function f(k).
Let ηf(k) := i · f(k) · k; where we skip the subscript f(k) when the context is clear. Also, for
p ∈ N, let αp := 3 · k · (pη)i+1; again we skip the subscript p, when the context is clear. We
next state the main lemma, which lies at the crux of our algorithm.

▶ Lemma 27 (♠). Consider any computable function f : N → N\{0}. There is an algorithm
that takes as input k ∈ N \ {0}, p ∈ N, a vector −→q = (q1, q2, · · · , qk), and a p-family F of
vertex subsets of a Ki,j-free graph G on n vertices with a coloring χ : V (G) → [k], where
p + sum(−→q) ≤ f(k). In time bounded by O(α2p+sum(−→q) · p · | F |) we can find F ′ ⊆ F with at
most α2p+sum(−→q) sets such that F ′ ⊆−→q

grep F .

In the remainder of this section, we prove Theorem 3, assuming the correctness of
Lemma 27.

Some Useful Notations. For z ∈ N \ {0} and z′ ∈ [z], let γz,z′ be the number of vertices
with label z′ in the z-Grundy tree (Tz, ℓz), i.e., γz,z′ = |ℓ−1

z (z′)|.
Let −→q ∗ = −→γk := (γk,1, γk,2, · · · , γk,k). We will define a vector −→qz

∗ = (q∗
z,1, q∗

z,2, · · · , q∗
z,k),

for every z ∈ [k]. Intuitively speaking, the z′th entry of −→qz
∗ will denote the number of vertices

with label z′ appearing in Tk after removing exactly one subtree rooted at a vertex with label

STACS 2025

5:18 Parameterized Saga of First-Fit and Last-Fit Coloring

z. Formally, for each z′ ∈ {z + 1, z + 2, · · · , k}, we have q∗
z,z′ = γk,z′ , and for each z′ ∈ [z],

q∗
z,z′ = γk,z′ − γz,z′ . For z ∈ [k], we let −→0z be the vector of dimension k where the zth entry

is 1, and all the other entries are 0.
For a tree T̂ rooted at r and t ∈ V (T̂), we let T̂ t be the subtree of T̂ rooted at t, i.e.,

V (T̂ t) = {t′ ∈ V (T̂) | t′ = t, or t′ is a descendant of t in T̂} and T̂ t = T̂ [V (T̂ t)].
For a set W ⊆ V (G), we say that W is a k-Grundy set if there is a k-Grundy witness

ω : V (Tk) → W for G. Moreover, W is minimal if no proper subset W ′ ⊂ W is a k-Grundy
set for G. For a k-Grundy set W and a k-Grundy witness ω : V (Tk) → W for G, for
t ∈ V (Tk), we let Wsub,t = {ω(t′) | t′ ∈ V (T t

k)} and Wexc,t = {ω(t′) | t′ ∈ V (Tk) \ V (T t
k)}.

Recall that we have a graph G and a coloring χ : V (G) → [k], where for z ∈ [k], we
have Xz = χ−1(z). For z ∈ [k] and v ∈ V (G), we define Fz,v := {W ⊆ ∪z′∈[z]Xz′ | v ∈
W, W is χ-independent and z ≤ |W | ≤ 2z−1}.

Description of the Algorithm. The objective of our algorithm will be to compute, for each
z ∈ [k] and v ∈ Xz, a family F ′

z,v ⊆ Fz,v; starting from z = 1 (and then iteratively, for other
values of z in increasing order), satisfying the following constraints:
Size Constraint. | F ′

z,v | ≤ α2k+1.
Correctness Constraint. For any z ∈ [k] and v ∈ Xz, the following holds:

1. Each A ∈ F ′
z,v is a z-Grundy set in G.

2. Consider any minimal k-Grundy set W , such that v ∈ W (if it exists). Furthermore,
let ω : V (Tk) → W be a k-Grundy witness for G. For any t ∈ V (Tk) with ω(t) = v,
where −→qt = |Wexc,t|, there is W ′ ∈ F ′

z,v ⊆ Fz,v such that Wexc,t ∪ W ′ is a k-Grundy
set in G, i.e., F ′

z,v ⊆−→qt
grep Fz,v.

Base Case. We are in our base case when z = 1; note that [20] = {1}. For each v ∈ X1, set
F ′

1,v := F1,v = {{v}}. Note that F ′
1,v satisfies both the size and the correctness constraints.

Recursive Formula. Consider z ∈ [k] \ {1} and v ∈ Xz. We suppose that for each
z′ ∈ [z − 1] and v′ ∈ Xz′ , we have computed F ′

z′,v′ that satisfies both the size and the
correctness constraints.

For each z′ ∈ [z − 1], we create a family Fz,v,z′ , initialized to ∅ as follows. For each
u ∈ Xz′ ∩ NG(v) and W ∈ F ′

z′,u, if W ∪ {v} is χ-independent and |W ∪ {v}| ≤ 2z−1, then
add W ∪ {v} to Fz,v,z′ . Note that | Fz,v,z′ | ≤ n · α2k+1

p , where p = 2z′−1. Using Lemma 27,
for each vector −→q ≤ −→qz

∗, we compute F ′
z,v,z′,−→q ⊆−→q

grep Fz,v,z′ , where | F ′
z,v,z′,−→q | ≤ α2k , and

set F ′
z,v,z′ = ∪−→q ≤−→qz

F ′
z,v,z′,−→q . Note that F ′

z,v,z′ ≤ 2(k−1)k ·α2k ≤ α2k+1 and we can compute
it in time bounded by O(α2k+1 · 2k−1 · | Fz,v,z′ |).

Next we will iteratively “combine and reduce” the families F ′
z,v,z′ , for z′ ∈ [z], to obtain

a family F̂z,v ⊆ Fz,v as follows. We set F̂z,v,1 := F ′
z,v,1. Iteratively, (in increasing order),

for each z′ ∈ [z − 1] \ {1}, we do the following:
1. Set F̃z,v,z′ := F̂z,v,z′−1 ⋆ F ′

z,v,z′ .
2. Compute F̂z,v,z′,−→q ⊆−→q

grep F̃z,v,z′ , for each −→q ≤ −→qz′ = −→γk −
(∑

ẑ∈[z′](
−→γk − −→q

ẑ
∗)

)
− −→0z , and

set F̂z,v,z′ = ∪−→q ≤−→qz′ F̂z,v,z′,−→q . Note that |F̂z,v,z′ | ≤ α2k+1 and it can be computed in
time bounded by O(α2k+1 · 2k−1 · |F̃z,v,z′ |).

We add each A ∈ F̂z,v,z−1 to F ′
z,v, which is a z-Grundy set in G (note that since the size

of each set is bounded by 2k−1, we can easily do it in the allowed amount of time). In the
following lemma, we show that F ′

z,v satisfies the correctness constraints.

▶ Lemma 28. F ′
z,v satisfies the correctness constraint.

A. Agrawal, D. Lokshtanov, F. Panolan, S. Saurabh, and S. Verma 5:19

Proof. Consider any v ∈ Xz and a minimal k-Grundy set W , such that v ∈ W (if it
exists) and let ω : V (Tk) → W be a k-Grundy witness for G. Next consider any t ∈ V (Tk)
with ω(t) = v. We will argue that, there is W ′ ∈ F ′

z,v such that Wexc,t ∪ W ′ is a k-
Grundy set in G. For each z′ ∈ [z − 1], let tz′ be the child of t in Tk with ℓk(tz′) = z′

and vz′ = ω(tz′). Note that for each z′ ∈ [z − 1], vz′ ∈ Xz′ . For each z′ ∈ [z − 1], let
Âz′ = {ω(t′) | t′ ∈ V (T tz′

k)}, and note that |Âz′ | ≤ 2z′−1. Now we iteratively take the
union of the above sets as follows. For each z′ ∈ [z − 1], let Az′ = ∪

ẑ∈[z′]Âẑ
. Now for each

z′ ∈ [z − 1], we construct a subset, Bz′ of W that contains ω(t′), for each t′ ∈ V (Tk) that
does not belong to the subtrees rooted at any of the vertices t1, t2, · · · , tz′ . Formally, for
z′ ∈ [z − 1], let Bz′ = {ω(t′) | t′ ∈ V (Tk) \

(⋃
z′′∈[z′] V (T tz′′

k)
)
}. Furthermore, let −→sz′ be the

size of Bz′ . Notice that for each z′ ∈ [z − 1], all of the following holds:
1. −→sz′ ≤ −→qz′ ,
2. |Az′ | ≤

∑
ẑ∈[z′] 2ẑ−1,

3. |Âz′ | ≤ 2z′−1 and Âz′ ∈ Fz′,vz′ ,
4. Az′ ∪ Bz′ = W , and thus, Az′ fits Bz′ .
We will now iteratively define sets A′

1, A′
2, · · · , A′

z−1 and functions ω1, ω2 · · · , ωz−1, and
we will ensure that, for each z′ ∈ [z − 1], we have: i) ωz′ : V (Tk) → A′

z′ ∪ Bz′ is a k-
Grundy witness for G, ii) for each z′ ∈ [z − 1] and t′ ∈ V (Tk) \

(⋃
z′′∈[z′] V (T tz′′

k)
)
, we have

ωz′(t′) = ω(t′), iii) A′
z′ ∈ F̂z,v,z′ , and iv) for each z′′ ∈ [z′], there is a minimal z′′-Grundy

set A′
z′,z′′ ⊆ A′

z′ , where the unique vertex in A′
z′,z′′ ∩ Xz′′ is a neighbor of v.

Recall that z ≥ 2 and F̂z,v,1 = F ′
z,v,1 ⊆ Fz,v,1. Also, we have Â1 = A1 = {u′}, for some

u′ ∈ NG(v) ∩ X1, and A1 ∪ B1 = W is a k-Grundy set. Thus, there must exist A′
1 ∈ F ′

z,v,1
such that A′

1 ∪ B1 is χ-independent. Moreover by the construction of F ′
z,v,1, A′

1 = {u},
for some u ∈ NG(v) ∩ X1. Let ω1 : V (Tk) → A′

1 ∪ B1 be the function such that for each
t′ ∈ V (Tk) \ {t1}, we have ω1(t′) = ω(t′) and ω1(t1) = u. As A′

1 ∪ B1 is χ-independent and
{u, v} ∈ E(G), we can obtain that ω1 is a k-Grundy witness for G. Note that if z = 2, then
by the above arguments, we have constructed the desired sets and functions, which is just
the set A′

1 and the function ω1.
We now consider the case when z′ ≥ 2. Also, we assume that for some ẑ ∈ [z − 2],

for each z′ ∈ [ẑ], we have constructed A′
z′ and ωz′ satisfying the desired condition. Now

we prove the statement for z′ = ẑ + 1. Note that A′
z′−1 ∪ Bz′−1 is a k-Grundy set and

ωz′−1 : V (Tk) → A′
z′−1 ∪ Bz′−1 is a k-Grundy witness for G, where A′

z′−1 ∈ F̂z,v,z′ . Note
that Âz′ ⊆ Bz′−1. Let B′

z′ = {ωz′−1(t′) | t′ ∈ V (Tk) \ V (T tz′
k)}. Note that |B′

z′ | ≤ −→qz′ and
Âz′ fits B′

z′ , and recall that Âz′ ∈ Fz′,vz′ . As F ′
z′,vz′ ⊆−→q

grep Fz′,vz′ , for every −→q ≤ −→qz′ , there
must exists Ãz′ ∈ F ′

z′,vz′ , such that Ãz′ fits B′
z′ . By the construction of F ′

z′,vz′ , we have
vz′ ∈ Ãz′ and Ãz′ ∪ B′

z′ is χ-independent, and also v ∈ B′
z′ . From the above discussions

we can conclude that Ãz′ ∪ {v} ∈ Fz,v,z′ . Moreover, as A′
z′−1 ∈ F̂z,v,z′−1, A′

z′−1 ⊆ B′
z′ and

Ãz′ ∪B′
z′ is χ-independent, we can obtain that A′

z′−1 ∪Ãz′ ∪{v} ∈ F̂z,v,z′−1 ⋆F ′
z,v,z′ = F̃z,v,z′ .

As F̂z,v,z′ ⊆−→q
grep F̃z,v,z′ , for every −→q ≤ −→qz′ ∗ and |Bz′ | ≤ −→qz′ ∗, there must exists A′

z′ ∈ F̂z,v,z′

such that A′
z′ ∪ Bz′ is χ-independent.

As A′
z′ ∈ F̂z,v,z′ , there must exist Ĉ ∈ F̂z,v,z′−1 and C ′ ∪ {v} ∈ F ′

z,v,z′ , such that
A′

z′ = Ĉ ∪ C ′ ∪ {v}. By the correctness for z′ − 1, C ′ contains for each z′′ ∈ [z′ − 1], a
minimal z′′-Grundy set A′

z′−1,z′′ ⊆ A′
z′−1, where the unique vertex in A′

z′−1,z′′ ∩ Xz′′ is a
neighbor of v. Also by the construction of F ′

z,v,z′ , C ′ contains a minimal z′-Grundy set C ′′

in G, where the unique vertex in C ′′ ∩ Xz′ is a neighbor of v. From the above discussions,
we can conclude that A′

z′ ∪ Bz′ is a k-Grundy set in G. ◀

STACS 2025

5:20 Parameterized Saga of First-Fit and Last-Fit Coloring

Using the above algorithm, we can compute for each z ∈ [k] and v ∈ Xz, a family
F ′

z,v ⊆ Fz,v that satisfies the correctness and the size constraints, in time bounded by
αO(2k+1) · nO(1). Note that G has a Grundy coloring using at least k colors if and only if for
some v ∈ Xk, F ′

z,v ̸= ∅. This implies a proof of Theorem 3.

References

1 Pierre Aboulker, Édouard Bonnet, Eun Jung Kim, and Florian Sikora. Grundy color-
ing and friends, half-graphs, bicliques. Algorithmica, pages 1–28, 2022. doi:10.1007/
S00453-022-01001-2.

2 Noga Alon, Raphael Yuster, and Uri Zwick. Color-coding. J. ACM, 42(4):844–856, 1995.
doi:10.1145/210332.210337.

3 Júlio César Silva Araújo and Cláudia Linhares Sales. Grundy number on p4-classes. Electron.
Notes Discret. Math., 35:21–27, 2009. doi:10.1016/J.ENDM.2009.11.005.

4 R. Balakrishnan and T Kavaskar. Interpolation theorem for partial grundy coloring. Discrete
Mathematics, 313(8):949–950, 2013. doi:10.1016/J.DISC.2013.01.018.

5 Rangaswami Balakrishnan and T. Kavaskar. Color chain of a graph. Graphs Comb., 27(4):487–
493, 2011. doi:10.1007/S00373-010-0989-7.

6 Rémy Belmonte, Eun Jung Kim, Michael Lampis, Valia Mitsou, and Yota Otachi. Grundy
distinguishes treewidth from pathwidth. In 28th Annual European Symposium on Algorithms
(ESA 2020). Schloss Dagstuhl – Leibniz-Zentrum für Informatik, 2020.

7 Édouard Bonnet, Florent Foucaud, Eun Jung Kim, and Florian Sikora. Complexity of grundy
coloring and its variants. Discret. Appl. Math., 243:99–114, 2018. doi:10.1016/J.DAM.2017.
12.022.

8 Gregory J. Chaitin, Marc A. Auslander, Ashok K. Chandra, John Cocke, Martin E. Hopkins,
and Peter W. Markstein. Register allocation via coloring. Comput. Lang., 6(1):47–57, 1981.
doi:10.1016/0096-0551(81)90048-5.

9 CWK Chen and David YY Yun. Unifying graph-matching problem with a practical solution. In
Proceedings of International Conference on Systems, Signals, Control, Computers, volume 55,
1998.

10 C. A. Christen and S. M. Selkow. Some perfect coloring properties of graphs. Journal of
Combinatorial Theory, Series B, 27(1):49–59, 1979. doi:10.1016/0095-8956(79)90067-4.

11 Marek Cygan, Fedor V Fomin, Łukasz Kowalik, Daniel Lokshtanov, Dániel Marx, Marcin
Pilipczuk, Michał Pilipczuk, and Saket Saurabh. Parameterized algorithms, volume 5. Springer,
2015. doi:10.1007/978-3-319-21275-3.

12 Lyes Dekar, Brice Effantin, and Hamamache Kheddouci. An incremental distributed al-
gorithm for a partial grundy coloring of graphs. In Ivan Stojmenovic, Ruppa K. Thulasiram,
Laurence Tianruo Yang, Weijia Jia, Minyi Guo, and Rodrigo Fernandes de Mello, editors,
Parallel and Distributed Processing and Applications, 5th International Symposium, ISPA
2007, Niagara Falls, Canada, August 29-31, 2007, Proceedings, volume 4742 of Lecture Notes
in Computer Science, pages 170–181. Springer, 2007. doi:10.1007/978-3-540-74742-0_18.

13 Reinhard Diestel. Graph theory, volume 173. Springer-Verlag Heidelberg, 2017.
14 Irit Dinur, Elchanan Mossel, and Oded Regev. Conditional hardness for approximate coloring.

SIAM J. Comput., 39(3):843–873, 2009. doi:10.1137/07068062X.
15 B. Effantin, N. Gastineau, and O. Togni. A characterization of b-chromatic and partial

grundy numbers by induced subgraphs. Discrete Mathematics, 339(8):2157–2167, 2016. doi:
10.1016/J.DISC.2016.03.011.

16 P. Erdös, S. T. Hedetniemi, R. C. Laskar, and G. C. E. Prins. On the equality of the partial
grundy and upper ochromatic numbers of graphs. Discrete Mathematics, 272(1):53–64, 2003.
doi:10.1016/S0012-365X(03)00184-5.

17 P Fahad. Dynamic Programming using Representative Families. PhD thesis, Homi Bhabha
National Institute, 2015.

https://doi.org/10.1007/S00453-022-01001-2
https://doi.org/10.1007/S00453-022-01001-2
https://doi.org/10.1145/210332.210337
https://doi.org/10.1016/J.ENDM.2009.11.005
https://doi.org/10.1016/J.DISC.2013.01.018
https://doi.org/10.1007/S00373-010-0989-7
https://doi.org/10.1016/J.DAM.2017.12.022
https://doi.org/10.1016/J.DAM.2017.12.022
https://doi.org/10.1016/0096-0551(81)90048-5
https://doi.org/10.1016/0095-8956(79)90067-4
https://doi.org/10.1007/978-3-319-21275-3
https://doi.org/10.1007/978-3-540-74742-0_18
https://doi.org/10.1137/07068062X
https://doi.org/10.1016/J.DISC.2016.03.011
https://doi.org/10.1016/J.DISC.2016.03.011
https://doi.org/10.1016/S0012-365X(03)00184-5

A. Agrawal, D. Lokshtanov, F. Panolan, S. Saurabh, and S. Verma 5:21

18 Uriel Feige and Joe Kilian. Zero knowledge and the chromatic number. J. Comput. Syst. Sci.,
57(2):187–199, 1998. doi:10.1006/JCSS.1998.1587.

19 Fedor V. Fomin, Daniel Lokshtanov, Fahad Panolan, and Saket Saurabh. Efficient computation
of representative families with applications in parameterized and exact algorithms. J. ACM,
63(4):29:1–29:60, 2016. doi:10.1145/2886094.

20 N. Goyal and S. Vishwanathan. Np-completeness of undirected grundy numbering and related
problems. Unpublished manuscript, 1997.

21 P. M. Grundy. Mathematics and games. Eureka, 2:6–9, 1939.
22 András Gyárfás, Zoltán Király, and Jenö Lehel. On-line 3-chromatic graphs i. triangle-free

graphs. SIAM J. Discret. Math., 12(3):385–411, 1999. doi:10.1137/S089548019631030X.
23 F. Havet and L. Sampaio. On the grundy and b-chromatic numbers of a graph. Algorithmica,

65(4):885–899, 2013. doi:10.1007/S00453-011-9604-4.
24 S. M. Hedetniemi, S. T. Hedetniemi, and T. Beyer. A linear algorithm for the grundy (coloring)

number of a tree. Congressus Numerantium, 36:351–363, 1982.
25 Allen Ibiapina and Ana Silva. b-continuity and partial grundy coloring of graphs with large

girth. Discrete Mathematics, 343(8):111920, 2020. doi:10.1016/J.DISC.2020.111920.
26 Hal A. Kierstead and Karin Rebecca Saoub. First-fit coloring of bounded tolerance graphs.

Discret. Appl. Math., 159(7):605–611, 2011. doi:10.1016/J.DAM.2010.05.002.
27 Guy Kortsarz. A lower bound for approximating the grundy number. Discrete Mathematics &

Theoretical Computer Science, 9, 2007.
28 Daniel Lokshtanov, Fahad Panolan, Saket Saurabh, Roohani Sharma, and Meirav Zehavi.

Covering small independent sets and separators with applications to parameterized algorithms.
ACM Transactions on Algorithms (TALG), 16(3):1–31, 2020. doi:10.1145/3379698.

29 Dániel Marx. Graph colouring problems and their applications in scheduling. Periodica
Polytechnica Electrical Engineering (Archives), 48(1-2):11–16, 2004.

30 Dániel Marx. A parameterized view on matroid optimization problems. Theor. Comput. Sci.,
410(44):4471–4479, 2009. doi:10.1016/J.TCS.2009.07.027.

31 Moni Naor, Leonard J Schulman, and Aravind Srinivasan. Splitters and near-optimal deran-
domization. In Proceedings of IEEE 36th Annual Foundations of Computer Science, pages
182–191. IEEE, 1995. doi:10.1109/SFCS.1995.492475.

32 B. S. Panda and Shaily Verma. On partial grundy coloring of bipartite graphs and chordal
graphs. Discret. Appl. Math., 271:171–183, 2019. doi:10.1016/J.DAM.2019.08.005.

33 L. Sampaio. Algorithmic aspects of graph colourings heuristics. PhD thesis, University Nice
Sophia Antipolis, 2012.

34 Z. Shi, W. Goddard, S. T. Hedetniemi, K. Kennedy, R. Laskar, and A. McRae. An algorithm
for partial grundy number on trees. Discrete Mathematics, 304(1-3):108–116, 2005. doi:
10.1016/J.DISC.2005.09.008.

35 Zixing Tang, Baoyindureng Wu, Lin Hu, and Manouchehr Zaker. More bounds for the grundy
number of graphs. J. Comb. Optim., 33(2):580–589, 2017. doi:10.1007/S10878-015-9981-8.

36 Shaily Verma and B. S. Panda. Grundy coloring in some subclasses of bipartite graphs and
their complements. Information Processing Letters, 163:105999, 2020. doi:10.1016/J.IPL.
2020.105999.

37 M. Zaker. Grundy chromatic number of the complement of bipartite graphs. Australasian
Journal of Combinatorics, 31:325–330, 2005. URL: http://ajc.maths.uq.edu.au/pdf/31/
ajc_v31_p325.pdf.

38 M. Zaker. Results on the grundy chromatic number of graphs. Discrete mathematics,
306(23):3166–3173, 2006. doi:10.1016/J.DISC.2005.06.044.

39 Manouchehr Zaker. Inequalities for the grundy chromatic number of graphs. Discret. Appl.
Math., 155(18):2567–2572, 2007. doi:10.1016/J.DAM.2007.07.002.

STACS 2025

https://doi.org/10.1006/JCSS.1998.1587
https://doi.org/10.1145/2886094
https://doi.org/10.1137/S089548019631030X
https://doi.org/10.1007/S00453-011-9604-4
https://doi.org/10.1016/J.DISC.2020.111920
https://doi.org/10.1016/J.DAM.2010.05.002
https://doi.org/10.1145/3379698
https://doi.org/10.1016/J.TCS.2009.07.027
https://doi.org/10.1109/SFCS.1995.492475
https://doi.org/10.1016/J.DAM.2019.08.005
https://doi.org/10.1016/J.DISC.2005.09.008
https://doi.org/10.1016/J.DISC.2005.09.008
https://doi.org/10.1007/S10878-015-9981-8
https://doi.org/10.1016/J.IPL.2020.105999
https://doi.org/10.1016/J.IPL.2020.105999
http://ajc.maths.uq.edu.au/pdf/31/ajc_v31_p325.pdf
http://ajc.maths.uq.edu.au/pdf/31/ajc_v31_p325.pdf
https://doi.org/10.1016/J.DISC.2005.06.044
https://doi.org/10.1016/J.DAM.2007.07.002

Twin-Width One
Jungho Ahn # Ñ

Korea Institute for Advanced Study (KIAS), Seoul, South Korea

Hugo Jacob #

LIRMM, Université de Montpellier, CNRS, Montpellier, France

Noleen Köhler #

University of Leeds, UK

Christophe Paul #

LIRMM, Université de Montpellier, CNRS, Montpellier, France

Amadeus Reinald #

LIRMM, Université de Montpellier, CNRS, Montpellier, France

Sebastian Wiederrecht #

School of Computing, KAIST, Daejeon, South Korea

Abstract
We investigate the structure of graphs of twin-width at most 1, and obtain the following results:

Graphs of twin-width at most 1 are permutation graphs. In particular they have an intersection
model and a linear structure.
There is always a 1-contraction sequence closely following a given permutation diagram.
Based on a recursive decomposition theorem, we obtain a simple algorithm running in linear
time that produces a 1-contraction sequence of a graph, or guarantees that it has twin-width
more than 1.
We characterise distance-hereditary graphs based on their twin-width and deduce a linear time
algorithm to compute optimal sequences on this class of graphs.

2012 ACM Subject Classification Mathematics of computing → Combinatorial algorithms; Math-
ematics of computing → Graph algorithms

Keywords and phrases Twin-width, Hereditary graph classes, Intersection model

Digital Object Identifier 10.4230/LIPIcs.STACS.2025.6

Related Version Full Version: arxiv:2501.00991

Funding Jungho Ahn: Supported by the KIAS Individual Grant (CG095301) at Korea Institute for
Advanced Study.
Hugo Jacob: Supported by the ANR project GODASse ANR-24-CE48-4377.
Christophe Paul: Supported by the ANR project GODASse ANR-24-CE48-4377 and the ANR-DFG
project UTMA ANR-20-CE92-0027.
Amadeus Reinald: Supported by the ANR project DIGRAPHS ANR-19-CE48-0013.

Acknowledgements The authors wish to thank the organisers of the 1st Workshop on Twin-width,
which was partially financed by the grant ANR ESIGMA (ANR-17-CE23-0010) of the French
National Research Agency. The second author wishes to thank Paul Bastide and Carla Groenland
for interesting initial discussions on the topic of this paper.

1 Introduction

Twin-width is a graph invariant introduced by Bonnet, Kim, Thomassé, and Watrigant [11] as
a generalisation of a parameter on permutations introduced by Guillemot and Marx [21]. The
main result of the seminal paper [11] is an FPT algorithm for FO model-checking on graphs
of bounded twin-width, when given a contraction sequence certifying their width. Graphs of

© Jungho Ahn, Hugo Jacob, Noleen Köhler, Christophe Paul, Amadeus Reinald, and
Sebastian Wiederrecht;
licensed under Creative Commons License CC-BY 4.0

42nd International Symposium on Theoretical Aspects of Computer Science (STACS 2025).
Editors: Olaf Beyersdorff, Michał Pilipczuk, Elaine Pimentel, and Nguyễn Kim Thắng;
Article No. 6; pp. 6:1–6:19

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:junghoahn@kias.re.kr
https://www.junghoahn.com/
https://orcid.org/0000-0003-0511-1976
mailto:hugo.jacob@lirmm.fr
https://orcid.org/0000-0003-1350-3240
mailto:n.koehler@leeds.ac.uk
https://orcid.org/0000-0002-1023-6530
mailto:paul@lirmm.fr
https://orcid.org/0000-0001-6519-975X
mailto:amadeus.reinald@lirmm.fr
https://orcid.org/0000-0002-8108-4036
mailto:wiederrecht@kaist.ac.kr
https://orcid.org/0000-0003-0462-7815
https://doi.org/10.4230/LIPIcs.STACS.2025.6
https://arxiv.org/pdf/2501.00991
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

6:2 Twin-Width One

bounded twin-width capture a wide variety of classes such as bounded rank-width and proper
minor-closed classes, unifying many results on tractable FO model-checking. Furthermore, it
gives an exact dichotomy between tractability and intractability of FO model-checking for
hereditary classes of ordered structures [8] and of tournaments [19].

While these results are sufficient to consider twin-width an important graph parameter,
we are still lacking an FPT algorithm for computing “good” contraction sequences, i.e.
contraction sequences of width bounded by a function of the twin-width. Such an algorithm
is required for FO model-checking to be FPT on bounded twin-width classes. Regarding exact
algorithms for twin-width, it is known that computing twin-width is hard even for constant
values: distinguishing graphs of twin-width 4 from graphs of twin-width 5 is NP-hard [5].
Still, a polynomial-time algorithm for recognizing graphs of twin-width 1 was given in [10],
where the worst-case time complexity is not explicitly given but corresponds to a polynomial
of degree 4 or 5 depending on implementation. Meanwhile, the hardness of recognizing
twin-width 2 and 3 graphs remains open. Nevertheless, it is known that sparse graphs of
twin-width 2 have bounded treewidth [7]. As for approximation, there is an algorithm to
compute contraction sequences of approximate width for ordered structures [8]. It is still
wide open whether there is an XP, let alone FPT, approximation algorithm in the general
case. Regarding parameterized algorithms, some results are known with parameters that are
still quite far from twin-width [3, 4]. Interestingly, the more general parameter flip-width
introduced by Torunczyk [25] has an XP approximation algorithm but the status of FO
model-checking for this parameter is unknown.

In this paper, we are interested in the structure of graphs of twin-width 1, and in the
complexity of their recognition. Let us briefly recall the definition of k-contraction sequences,
which are witnesses for twin-width at most k. Given a graph G, a contraction sequence of G

starts with G, and consists in a sequence of identifications of pairs of vertices (contractions)
recording “neighbourhood errors” as red edges, ending with a graph on a single vertex.
Specifically, at each step, we create red edges from the contracted vertex to vertices that were
not homogeneous to the pair. That is, vertices which were not both adjacent or non-adjacent
to the pair. In particular, red edges remain red. Then, a k-contraction sequence is one where
at each step the vertices have most k incident red edges.

Towards understanding graphs of twin-width one, it will be useful to look at the structure
and behaviour of classes of graphs which are related. There is a rich literature on hereditary
classes of graphs related to perfect graphs. It follows from the following observation and the
strong perfect graph theorem [13] that twin-width 1 graphs are perfect graphs. It is then
natural to wonder how they compare to other subclasses of perfect graphs.

▶ Observation 1 (See [1, Lemma 2.3]). Every cycle of length at least 5 has twin-width 2.
This also implies that complements of cycles of length at least 5 have twin-width 2.

A natural way of understanding classes of twin-width at most k is to interpret them as a
generalization of cographs. Indeed, cographs are exactly the graphs which admit a sequence
of twin identifications ending in a single vertex, that is, graphs of twin-width 0. Then, graphs
of twin-width k correspond to relaxing the twin condition to allow for at most k “twin errors”.

We now compare twin-width 1 graphs with other generalisations of cographs. Cographs are
the graphs of clique-width at most 2. In this direction, cographs are generalised by the class
of distance-hereditary graphs which are themselves closely related to graphs of clique-width at
most 3 [14]. Distance-hereditary (DH) graphs are not closed by complementation, and have a
tree-like structure. They also have a characterisation by a sequential elimination of twins and
pendant vertices. Cographs are permutation graphs, which is exactly the complementation-
closed class of graphs whose edges can be transitively oriented [17]. Permutation graphs are

J. Ahn, H. Jacob, N. Köhler, C. Paul, A. Reinald, and S. Wiederrecht 6:3

asteroidal triple-free (AT-free), as such, they are dominated by a path [15]. A caterpillar
is an AT-free tree , the following result suggests a relation between AT-free graphs and
twin-width 1.

▶ Lemma 2 (Ahn, Hendrey, Kim, and Oum [2, Lemma 6.6]). For a tree T , tww(T) ≤ 1 if and
only if T is a caterpillar.

Cographs, distance-hereditary graphs, and permutation graphs can all be recognised in
linear time. It is only natural to expect that the closely related class of twin-width 1 graphs
can also be recognised efficiently.

Previous results on graphs of twin-width at most 1

The recognition algorithm for twin-width one given in [10] makes use of the relation between
modules and twin-width, by observing that the twin-width of a graph can be determined
by considering independently the subgraphs induced by modules (see Lemma 5). It is
straightforward to deduce that the twin-width of a graph is the maximal twin-width over all
prime nodes of its modular decomposition (defined in Section 2). Since this decomposition
may be computed in linear time [24], one then only needs to recognise prime graphs of twin-
width one. In their paper [10], the recognition is done by branching on valid sequences that
have at most one red edge at any intermediate step of the sequence, after the observation that
such sequences always exist. Furthermore, when the trigraph has a red edge, the only possible
contractions in such a sequence involve at least one vertex of the red edge. Essentially,
the complexity of their algorithm stems from the need to branch over all possible first
contractions, to greedily simulate a contraction sequence for each possible first contraction,
and the lack of an efficient way to detect eventual twins to be contracted at each step. In
particular, a more explicit understanding of the structure of graphs of twin-width at most 1
seems to be required to avoid the enumeration of all pairs of possible first contractions.

Our results

We investigate the structure of graphs of twin-width at most 1, and uncover that it defines a
relatively well-behaved hereditary class of graphs, which fits surprisingly well in the landscape
of classical hereditary classes. Graphs of twin-width at most 1 were already known to have
some form of linear structure, due to a bound on their linear rankwidth if they are prime
(see Lemma 7 and [9]). We show that they are in fact contained in the class of permutation
graphs, thus they admit an intersection model called “permutation diagram”, making it
easier to reason on their structure. Furthermore, we show that there is a close relationship
between permutation diagrams and 1-contraction sequences. We use these structural results
to obtain a recursive decomposition theorem for prime graphs of twin-width at most 1. We
then use it to devise a simple linear time algorithm to compute a 1-contraction sequence, or
conclude that the graph has twin-width more than 1. The algorithm starts by computing a
permutation diagram and a modular decomposition which can be done in time O(n + m),
where n is the number of vertices and m is the number of edges, and then it checks that the
diagram respects the decomposition theorem in time O(n).

Regarding the challenge of avoiding the enumeration of possible first contractions, we
can significantly reduce the number of candidates by using the permutation diagram and
related properties of contraction sequences. We consider a slightly different scheme to avoid
this challenge. Instead of guessing the first contraction, we guess the vertex that will be
contracted last. It turns out that, in well-behaved contraction sequences, such a vertex

STACS 2025

6:4 Twin-Width One

holds a special position in permutation diagrams, reducing the number of candidates to 4.
However, we do not exclude the possibility that the scheme of the previous algorithm can be
implemented in linear time with some further arguments.

Interestingly, our structural analysis via the permutation diagrams allows us to avoid
a characterisation by forbidden induced subgraphs. Moreover, we prove most structural
tools inductively and in a unified way instead of proving the observations required for our
algorithm separately.

In the full version, we also present some intermediate results on distance-hereditary
graphs and split decompositions that turned out to be unnecessary for the recognition
algorithm thanks to the use of permutation diagrams. We show that twin-width 1 trigraphs
with a pendant red edge are distance-hereditary. We also show that distance-hereditary
graphs have twin-width at most 2. Combining these results, we can compute an optimal
contraction sequence for distance-hereditary graphs in linear time. We also obtain a simple
inductive proof that all distance-hereditary AT-free graphs are permutation graphs, and
a characterisation of the twin-width of a distance-hereditary graph by the structure of its
split decomposition. This is a generalisation of the characterisation of twin-width 1 trees [2]
mentioned above.

Distance-hereditary graphs are also related to the following infinite family of permutation
graphs of twin-width 2: linking two obstructions to distance-hereditary graphs (domino,
house, or gem) by a path of arbitrary length. In particular, this class of examples shows that
a linear time algorithm for the recognition of twin-width 1 graphs cannot be deduced from
the linear algorithm to find patterns in a permutation of Guillemot and Marx [21].

We also observe that bipartite graphs of twin-width 1 constitute a well-behaved subclass.
Indeed, in their 1-contraction sequences, all trigraphs are bipartite. This is because there are
no induced odd cycles of length more than 3, and triangles have at most one red edge from
which we can deduce an original edge and complete it in a triangle of the starting graph
(this is a particular case of Observation 14).

Perspectives

One may hope that understanding the structure of graphs of twin-width 1 well enough can
guide a subsequent study of graphs of twin-width 2. We expect that this hereditary class
can be characterised by a tree-like decomposition with a very constrained local structure.
Our results also point toward the fact that split decompositions could be a convenient tool
for the analysis of the structure of twin-width 2 graphs.

In another direction, one may wonder if it is possible to compute other values of the
twin-width efficiently for permutation graphs. An FPT approximation algorithm is already
known in this setting [11], although one may try to find tighter approximation bounds.

Organisation

We organise this paper as follows. In Section 2, we present some terminology and useful
known results on twin-width, and on permutation graphs. In Section 3, we show that every
graph of twin-width at most 1 is a permutation graph. In Section 4, we present a linear-time
algorithm that recognises graphs of twin-width at most 1.

J. Ahn, H. Jacob, N. Köhler, C. Paul, A. Reinald, and S. Wiederrecht 6:5

2 Preliminaries

In this paper, all graphs are finite and simple. For an integer i, we denote by [i] the set of
positive integers at most i. Note that if i ≤ 0, then [i] is an empty set. A subset I ⊆ [i] is an
interval of [i] if there are integers i1, i2 ∈ [i] such that I = {j : i1 ≤ j ≤ i2}.

Let G be a graph. We denote the complement graph by G. For a vertex v of G, we
denote by NG(v) the set of neighbours of v, and let NG[v] := NG(v) ∪ {v}. Then, NG(v) =
V (G) \ N [v]. For a set X ⊆ V (G), let NG[X] :=

⋃
v∈X NG[v] and let NG(X) := NG[X] \ X.

Distinct vertices v and w of G are twins in G if NG(v) \ {w} = NG(w) \ {v}. For a set
X ⊆ V (G), we denote by G[X] the subgraph of G induced by X. A dominating set of G

is a set D ⊆ V (G) such that NG[D] = V (G). A dominating path of G is a path whose
vertex set is a dominating set of G. Three vertices form an asteroidal triple if each pair of
vertices is connected by a path that does not dominate the third vertex. A graph is asteroidal
triple-free (AT-free) if it contains no asteroidal triple. An independent set of a graph G is a
set I ⊆ V (G) such that G has no edge between two vertices in I.

A module of a graph G is a set M ⊆ V (G) such that for every vertex v ∈ V (G) \ M , v

is either adjacent to every vertex in M , or nonadjacent to every vertex in M . If M is not
a module, we call splitter of M a vertex v ∈ V (G) \ M , that has both a neighbour and a
non-neighbour in M . Note that M is a module exactly if it has no splitter. A module is
trivial if it either has size at most 1, or is equal to V (G). A graph is prime with respect
to modules, or simply prime, if all of its modules are trivial. A modular partition of a
graph G is a partition of V (G) where each part is a module of G. For a modular partition
M = (M1, . . . , Mℓ) of a graph G, we denote by G/M, the subgraph of G induced by a set
containing exactly one vertex from each Mi. A module M is strong if it does not overlap with
any other module, i.e. for every module M ′, we have M ⊆ M ′, or M ′ ⊆ M , or M ∩ M ′ = ∅.

The modular decomposition of a graph G is a tree T corresponding to the recursive
modular partition by the maximal strong modules. The leaves of the tree are vertices of G,
and each internal node n has an associated quotient graph Q(n) which encodes the adjacency
relation between vertices of G introduced in subtrees below n. In particular, quotient graphs
are induced subgraphs of G, and the modular decomposition of an induced subgraph of G can
easily be deduced from the modular decomposition of G. There are three types of internal
nodes: series, parallel, and prime, corresponding to cliques, independent sets and prime
graphs (with respect to modules). Prime graphs are graphs whose modules are all trivial i.e.
singletons and the complete vertex set. Series and parallel nodes are called degenerate, and
two degenerate nodes of the same type may not be adjacent in T . The reason they are called
degenerate is because any subset of vertices of a clique or an independent set is a module.
Cographs are exactly the graphs whose modular decompositions have no prime nodes, their
modular decomposition is usually called a cotree.

2.1 Permutation graphs
A graph G on n vertices is a permutation graph if there are two linear orderings σ : V (G) → [n]
and τ : V (G) → [n] such that two vertices u and v are adjacent in G if and only if {u, v}
is an inversion of σ−1 ◦ τ . We remark that σ−1 ◦ τ and its inverse permutation τ−1 ◦ σ

have the same set of inversions. A permutation diagram of G with respect to σ and τ is a
drawing of n line segments between two parallel lines ℓ1 and ℓ2 such that each of ℓ1 and ℓ2
has n distinct points, and for each v ∈ V (G), there is a line segment between σ(v)-th point
of ℓ1 and τ(v)-th point of ℓ2. Note that two vertices are adjacent in G if and only if their
corresponding line segments intersect each other in the permutation diagram.

STACS 2025

6:6 Twin-Width One

We denote by G[σ, τ] the graph on V where uv is an edge if and only if {u, v} is an
inversion of σ−1 ◦ τ . As pointed earlier, we have G[σ, τ] = G[τ, σ]. If G = G[σ, τ], we call
(σ, τ) a realiser of G (as a permutation graph).

For σ an ordering of V , we define intervals of V as follows: for {i, i + 1, . . . , j − 1, j} an
interval of [n], we have an interval of V for σ {σ−1(i) = u, . . . , σ−1(j) = v} that we denote
by [u, v]σ. We extend the notation to open intervals similarly.

We say that I ⊆ V is an interval of realiser (σ, τ) if it is an interval for σ or for τ . We
also say that u, v ∈ V (Gi) are consecutive for (σ, τ) if {u, v} is an interval of (σ, τ). Similarly,
two intervals are consecutive if their union is an interval. We say that I is a common interval
of realiser (σ, τ) if it is an interval for σ and for τ . A vertex v of G is extremal for realiser
(σ, τ) (or equivalently the corresponding permutation diagram) if it is the first or last vertex
of σ or τ .

It is known that for a prime permutation graph, its permutation diagram (or equivalently
its realiser) is unique up to symmetry [18,20]. More generally, the modular decomposition
encodes all possible realisers. Furthermore, we have the following known observation which
will be very convenient for our analysis.

▶ Observation 3. If M is a common interval of a realiser of G, then M is a module of G.
Conversely, if M is a strong module of G, then it is a common interval of all realisers.

It will also be useful to note that extremal vertices of a prime permutation graph do not
depend on the realiser. See [6, 12,16,22] for further details on this.

Moreover, for a permutation diagram of G with respect to linear orderings σ and τ

of V (G), if we reverse one of σ and τ , then we obtain a permutation diagram of G. In other
words, G has a permutation diagram with respect to σ and n + 1 − τ , or to n + 1 − σ and τ .

Thus, a graph G is a permutation graph if and only if G is a permutation graph.

2.2 Trigraphs and twin-width
A trigraph is a triple H = (V (H), B(H), R(H)) where B(H) and R(H) are disjoint sets of
unordered pairs of V (H). We denote by E(H) the union of B(H) and R(H). The edges
of H are the elements in E(H). The black edges of H are the elements of B(H), and the
red edges of H are the elements of R(H). We identify a graph G = (V, E) with a trigraph
(V, E, ∅).

The underlying graph of a trigraph H is the graph (V (H), E(H)). We identify H with
its underlying graph when we use standard graph-theoretic terms and notations. A black
neighbour of v is a vertex u with uv ∈ B(H) and a red neighbour of v is a vertex w with
vw ∈ R(H). The red degree of v is the number of red neighbours of v. For an integer d,
a d-trigraph is a trigraph with maximum red degree at most d. For a set X ⊆ V (H), we
denote by H − X the trigraph obtained from H by removing all vertices in X. If X = {v},
then we write H − v for H − X.

For a trigraph H and distinct vertices v and w of H , we denote by H/{u, v} the trigraph H ′

obtained from H−{u, v} by adding a new vertex x such that for every vertex y ∈ V (H)\{u, v},
the following hold:

if y is a common black neighbour of u and v, then xy ∈ B(H ′),
if y is adjacent to none of u and v, then xy /∈ E(H ′), and
otherwise, xy ∈ R(H ′).

We say that H ′ is obtained by contracting u and v.

J. Ahn, H. Jacob, N. Köhler, C. Paul, A. Reinald, and S. Wiederrecht 6:7

A contraction sequence of G is a sequence of trigraphs Gn, . . . , G1 where Gn = G, G1
as a single vertex, and Gi−1 is obtained from Gi by contracting a pair of vertices. For an
integer d, a contraction sequence Gn, . . . , G1 is a d-sequence if for every i ∈ [t], the maximum
red-degree of Gi is at most d. The twin-width of G, denoted by tww(G), is the minimum
integer d such that there is a d-sequence of G.

The vertices of the trigraphs in the contraction sequence can be interpreted as a partition
of V (G), this leads to a very natural characterisation of red edges in a trigraph as pairs of
part such that the relation between vertices in the two parts is not homogeneous (i.e. there
is an edge and a non-edge).

We have the following observations from [11].

▶ Observation 4 (Bonnet, Kim, Thomassé, and Watrigant [11]). For a graph G, the twin-width
of G is equal to that of G, and every induced subgraph of G has twin-width at most tww(G).

▶ Lemma 5 (Bonnet, Kim, Reinald, Thomassé, and Watrigant [10, Lemma 9]). Let G be a
graph and let M = (M1, . . . , Mℓ) be a modular partition. Then

tww(G) = max
{

tww(G/M), max
i∈[ℓ]

tww(G[Mi])
}

.

We sketch the proof as this will be of importance throughout the paper.

Proof. A contraction in a module M does not create red edges incident to V (G − M).
Therefore, we can always first contract the induced subgraphs G[Mi] in any order, and then
contract G/M once all subgraphs G[Mi] have been contracted to single vertices. ◀

▶ Corollary 6. The twin-width of a graph G is equal to the maximum twin-width of the
quotient graphs of nodes of its modular decomposition.

Proof. We may always contract leaf nodes of the modular decomposition via their optimal
contraction sequence until the whole graph is reduced to a single vertex. This corresponds
exactly to a recursive application of the above lemma with maximal strong modules. ◀

The above statements show that computing the twin-width of a graph reduces to the
case of a prime graph. Thus, throughout this paper, we focus on prime graphs of twin-width
at most 1. The following lemma on the structure of twin-width 1 graphs will be useful.

▶ Lemma 7 (Bonnet, Kim, Reinald, Thomassé, and Watrigant [10, Lemma 31]). Let G be a
prime graph of twin-width 1 and let Gn(= G), . . . , G1 be a 1-sequence of G. Then for every
i ∈ [n − 1] \ {1}, the trigraph Gi has exactly one red edge.

3 Permutation diagrams

In this section, we show that every graph of twin-width at most 1 is a permutation graph.

▶ Theorem 8. Every graph of twin-width at most 1 is a permutation graph.

It would be sufficient to prove that graphs of twin-width at most 1 are comparability
graphs. Indeed, since twin-width is stable by complementation, this implies that graphs of
twin-width at most 1 are also co-comparability graphs. We could then conclude because
permutation graphs are exactly the graphs that are both comparability and co-comparability
graphs [17]. To do this, one could make use of the following characterisation of comparability
graphs via forbidden induced subgraphs given by Gallai [18] (see also [23]).

STACS 2025

6:8 Twin-Width One

▶ Theorem 9. A graph G is a comparability graph if and only if G does not contain any
graph of Figure 3 as induced subgraph, and G does not contain any graph of Figure 4 as
induced subgraph.

We instead present a constructive proof because it gives combinatorial insights on the
relationship between contraction sequences and permutation diagrams that will be useful to
find an efficient recognition algorithm. The trick is to decompose the graph by considering
the contraction sequence backwards and to realise that vertices that are contracted together
at some point in the contraction sequence should be consecutive or almost consecutive in a
realiser.

The following recursive decomposition of twin-width 1 graphs is meant as a simple
introduction to the technique. This decomposition will later be strengthened in Lemma 11
and Corollary 15. We abusively extend the terminology of universal vertex and isolated
vertex to modules M such that replacing M by a single vertex makes it universal or isolated.

▶ Lemma 10. The class G of graphs of twin-width at most 1 satisfies the following recursive
characterisation:

G =

G | ∃M ⊂ V (G),

G − M ∈ G, G[M] ∈ G, M is a module of G,

M is universal or M is isolated or
G − M admits a 1-contraction sequence ending
with the (possibly red) edge {N(M), N(M)}

 .

Proof. Consider a graph G such that there exists a module M ⊂ V (G) such that G − M ∈ G
and G[M] ∈ G. If M is universal or isolated, G − M is a module of G and, by Lemma 5, G

is also a graph of G. If G − M admits a partial 1-contraction sequence π ending with edge
{N(M), N(M)}, then π is also a partial 1-contraction sequence of G, and can be extended to
be 1-contraction sequence of G. Indeed, no red edge incident to M appears when applying π

to G since pairs of contracted vertices are always either in N(M) or N(M), we can then
apply the 1-contraction sequence of M , and finally contract arbitrarily the resulting 3-vertex
trigraph.

Conversely, consider a graph of G. It admits a 1-contraction sequence with a 3-vertex
trigraph G3. G3 has at most one red edge ab (pick a, b arbitrarily in V (G3) if there is no red
edge). We consider v ∈ V (G3) − {a, b}. The set M of vertices of G that were contracted to
form v is a module since there are no incident red edges in G3. G−M ∈ G and G[M] ∈ G since
they are induced subgraphs of G. Let A and B be the sets of vertices that were contracted
to form a and b, respectively. Since v has no red neighbour, it must be that A ⊆ N(M) or
A ⊆ N(M), similarly, B ⊆ N(M) or B ⊆ N(M). We conclude that M is universal, isolated
or G − M admits a contraction sequence ending with the edge {N(M), N(M)}. ◀

Given a permutation graph G = (V, E) and U ⊆ V , we denote by σ[U] and τ [U] the
restrictions of σ and τ (re-numbered by [|U |]). They form a realiser of G[U] as a permutation
graph. We also use the notation σ · τ to denote the concatenation of two orderings on disjoint
domains (all elements of σ are before elements of τ , relative orders in σ and τ are preserved).

The following lemma implies Theorem 8.

▶ Lemma 11. Let G be a graph of twin-width at most 1, and Gn, . . . G2, G1 be a fixed
1-contraction sequence of G.

Then G is a permutation graph admitting a realiser (σ, τ) satisfying the following.
For every x ∈ V (Gi), {v ∈ V (G)|v ∈ x} is an interval of (σ, τ).

J. Ahn, H. Jacob, N. Köhler, C. Paul, A. Reinald, and S. Wiederrecht 6:9

For every x, y ∈ V (Gi), if xy ∈ R(Gi), then {v ∈ V (G)|v ∈ (x ∪ y)} is an interval on
one of the orderings π ∈ {σ, τ}, and both {v ∈ V (G)|v ∈ x} and {v ∈ V (G)|v ∈ y} are
intervals on the other ordering.

Proof. We proceed by induction on the number of vertices of the graph by leveraging the
recursive characterization given in Lemma 10.

The statement is trivial for graphs on at most 3 vertices. We now consider a graph
G ∈ G on more than 3 vertices and its contraction sequence Gn, . . . , G3, G2, G1. Let M

be the set of vertices of G that were contracted into a vertex of G3 not incident to a red
edge in G3, M is a module of G. Restricting the sequence Gn, . . . , G1 to G − M and G[M],
respectively, yields a 1-contraction sequence for each of them. By induction hypothesis
applied with these sequences, we obtain realisers σ1, τ1 and σ2, τ2 of G − M and G[M],
respectively. The following cases are illustrated in Figure 1. If M is universal (resp. isolated),
σ1 · σ2, τ2 · τ1 (resp. σ1 · σ2, τ1 · τ2) is a realiser of G. Otherwise, the contraction sequence
Gn − M, . . . , G3 − M is such that V (G3 − M) = {N(M), N(M)}. In particular, we know
from the induction hypothesis that B = N(M) and A = N(M) are intervals of either σ1
or τ1, as they correspond to the sets of vertices contracted into the last two vertices on
the sequence. Without loss of generality, we assume they are intervals of σ1. We can now
produce the realiser σ1[B] · σ2 · σ1[A], τ2 · τ1. In all cases, the realiser satisfies the desired
properties: it suffices to observe that by construction we do not contract vertices from G − M

with vertices from G[M] until the last two contractions, so we must check only the last two
contractions which are on trigraphs of order at most 3 hence the properties are satisfied. ◀

3-vertex trigraph Permutation diagram

A

B

A

B

A

B

M

M

M

A BM

M A B

M A B

Figure 1 The different cases of the induction constructing the realiser.

We now move on to show related properties that will be useful in further understanding
permutation diagrams and their relation to contraction sequences.

In the particular case of a prime graph, we deduce the following two corollaries of
Lemma 11.

▶ Corollary 12. In a prime graph G of twin-width 1, the first contraction must involve two
vertices that are consecutive for one ordering, and with exactly one vertex between them for
the other ordering.

STACS 2025

6:10 Twin-Width One

Proof. In Gn−1, let x′, z be the vertices incident to the red edge (there is a red edge because
the graph is prime, see Lemma 7) with x′ resulting of the contraction of vertices x and y

of G. X ′ = {x, y} is an interval for one ordering σ of the realiser. z must be a splitter
of X ′ because it is incident to the red edge, this implies that z is between x and y in the
ordering τ . ◀

Unfortunately, there can be linearly many such pairs. On the other hand, there are only 4
extremal vertices in a prime permutation graph. Hence, the following corollary is useful for
obtaining a linear time recognition algorithm.

▶ Corollary 13. In a prime graph of twin-width 1, for any 1-contraction sequence, the last
vertex to become incident to the red edge is an extremal vertex of the realiser.

Proof. Due to the graph being prime, the last vertex of G to become incident to the red
edge is also a vertex of G3 and is adjacent to exactly one other vertex of G3. The other two
vertices of G3 are connected because prime graphs are connected, hence G3 is isomorphic
to P3 whose vertices are all extremal. In particular, the last vertex incident to the red edge
is extremal. ◀

▶ Observation 14. If Gn, . . . , G1 are the trigraphs of a 1-contraction sequence of G, their
underlying graphs form a chain for the induced subgraph relation, i.e. Gi−1 is an induced
subgraph of Gi for i ∈ [2, n].

Proof. We describe how to construct the induced subgraph of G by picking a representative
in G for each vertex in Gi.

Consider a vertex v of Gi, either it has only black incident edges and we may pick any
vertex of G that was contracted into v, or it has exactly one incident red edge vw, in which
case we can pick the endpoints of some edge of G that is between the vertices contracted
into v and the vertices contracted into w.

This construction picks only one vertex of G per vertex of Gi because the red degree is
at most one meaning we do not pick more than once. ◀

This property only holds for 1-contraction sequences (e.g. contracting non-adjacent
vertices of a matching creates a path on 3 vertices which is not an induced subgraph). It
allows to view the contraction sequence as a sequence of vertex deletions. In particular,
underlying graphs of the trigraphs of a 1-contraction sequence are also permutation graphs
and one of their permutation diagrams is the induced permutation diagram obtained by
seeing Gi as an induced subgraph of G. Observe that this diagram preserves the relative
order of vertices that are not deleted. This will be important for our inductive reasoning
since we can keep the same diagram while decomposing the graph. We denote by σ[Gi] the
ordering induced by Gi seen as an induced subgraph of G.

▶ Corollary 15. Let G be a graph and Gn, . . . , G1 a 1-contraction sequence of G. The realiser
constructed from Gn, . . . , G1 using Lemma 11 has the property that, for every i > 1, the
vertices being contracted from Gi to Gi−1 are consecutive for (σ[Gi], τ [Gi]), and endpoints
of red edges are consecutive for (σ[Gi], τ [Gi]).

Conversely, for any realiser (σ′, τ ′), there exists a 1-contraction sequence Gn, . . . , G1 such
that for every i > 1 the contracted vertices of Gi are consecutive in (σ′[Gi], τ ′[Gi]) and for
any xy ∈ R(Gi), x and y are consecutive in (σ′[Gi], τ ′[Gi]).

Proof. Suppose we contract a, b ∈ V (Gi) into vertex c ∈ V (Gi−1). Let C be the set of
vertices of G contracted into c, and A, B those contracted into a, b. By Lemma 11, A, B and
C are all intervals of (σ, τ). Since C = A ∪ B, we may assume without loss of generality they

J. Ahn, H. Jacob, N. Köhler, C. Paul, A. Reinald, and S. Wiederrecht 6:11

are all intervals of σ. Hence, a and b are consecutive for σ[Gi]. Similarly, the set of vertices
of G contracted into a fixed red edge is an interval of (σ, τ). Since the sets of vertices of G

incident to the red edge are also intervals, this means the endpoints of the red edge in Gi are
consecutive.

Now, consider any realiser (σ′, τ ′) for graph G, and let us show the second part of the
lemma by induction on the modular decomposition of G. The result holds trivially for leaves
of the decomposition. Let us then consider an internal node q of the decomposition of G and
consider the subgraphs H1, ..., Hk of G induced by the children of q. Now, since each Hi is a
strong module of G, they each form a common interval of (σ′, τ ′) by Observation 3. They
also have twin-width 1, so our induction hypothesis along with Lemma 5 yields that we can
contract each child fully by respecting the consecutivity properties on (σ′[Hi], τ ′[Hi]), and
thus on (σ′, τ ′). Then, if q is a degenerate node, we can always find a pair of consecutive
twins and contract them. Otherwise, q is prime, and as such it admits a unique realiser (up
to symmetry), which is given by Lemma 11, for which the contraction sequence satisfies the
desired properties by the first part of the lemma. ◀

4 Linear-time recognition algorithm

A realiser (σ, τ), if it exists, can be found in linear time [24]. From the Corollaries 6, 12 and
15, we deduce that the algorithm of [10] can be implemented in time O(n2 + m). Indeed,
for every prime node of the modular decomposition, it suffices to compute σ and τ for its
quotient graph. At this point, we have restricted the set of possible first contractions to
the set all pairs of consecutive vertices, and we may then simulate contraction sequences
efficiently using the fact that new vertices to be contracted can be found in constant time,
since they are consecutive. In order to obtain a linear time algorithm, we will instead guess
the end of the sequence, and try to extend the sequence from its end, see Figure 2.

▶ Lemma 16. Let G be a prime permutation graph of twin-width 1, which admits a 1-
contraction sequence where an extremal vertex s is last to become incident to a red edge. Let
also G1 = G[N(s)] and G2 = G[N(s)].

Then, there is a module M of Gi for some i that has a unique splitter s′ ∈ V (G3−i), such
that G[M ∪ {s′}] admits a 1-contraction sequence where s′ is the last vertex to be incident to
the red edge, where:

(i) either M is a pair of consecutive twins in Gi and there are no prime nodes in the
modular decompositions of G1 and G2,

(ii) or M corresponds to the subtree rooted at a prime node p in the modular decomposition,
and p is the unique prime node in the modular decompositions of G1 and G2.

Moreover, let k = |V (G) − (M ∪ {s′})|, there is an ordering π : [k] → V (G) − (M ∪ {s′})
such that for all i ∈ [k], M ∪ {s′} ∪ π([i]) forms an interval of σ and two intervals of τ for a
realiser (σ, τ) where σ is the linear ordering for which s is extremal.

Proof. Let (σ, τ) be a realiser of G and s be an extremal vertex for σ which is the last vertex
incident to the red edge in some 1-contraction sequence of G. Such a vertex exists due to
Corollary 13. Let G1 = G[N(s)] and G2 = G[N(s)] and observe that since G is prime, G1

and G2 are not empty. As s is extremal for σ, adjacent to V (G1) and non-adjacent to V (G2),
V (G1) and V (G2) must be disjoint intervals of τ .

▷ Claim 17. In any contraction sequence as considered, we only contract pairs of vertices of
G1 or pairs of vertices of G2 until we reach the 3-vertex trigraph.

STACS 2025

6:12 Twin-Width One

Proof. Due to the assumption on s being the last vertex incident to a red edge, we cannot
contract a vertex of G1 with a vertex of G2, unless G1 and G2 both have been contracted to
a single vertex, because they are split by s. ◁

▷ Claim 18. For any non-trivial module M of Gi there is a splitter s′ ∈ V (G3−i). Further-
more, for any splitter s′ ∈ V (G3−i) of M there are a, b in M such that σ(a) < σ(s′) < σ(b).

Proof. Indeed, M cannot be a module of G, as G is a prime graph, so it must have a splitter
s′ in G−V (Gi). Also note that s is not a splitter of M by definition of Gi. Furthermore, since
s′ is a splitter it must be adjacent to some a ∈ M and non-adjacent to some b ∈ M . Since
V (G1) and V (G2) are intervals of τ , we get that σ(a) < σ(s′) < σ(b) or σ(a) < σ(s′) < σ(b)
by definition of the permutation diagram. ◁

The following observation will allow to simplify the analysis.

▶ Observation 19. If X induces a prime subgraph of H, and t ∈ V (H) \ X is a splitter
of X, then we can both extract a pair of vertices of X that are adjacent and split by t, and a
pair of vertices of X that are non-adjacent and split by t.

Proof. Consider the cut C = (X ∩ N(t), X − N(t)) in H [X], since H [X] is prime both H [X]
and H[X] are connected, yielding both an edge and an non-edge across C. ◀

▷ Claim 20. There cannot be disjoint non-trivial strong modules in Gi.

Proof. We proceed by contradiction and consider M, M ′ two maximal disjoint non-trivial
strong modules of Gi, without loss of generality i = 1. We first show that, in G, M

and M ′ must have distinct splitters from V (G2), and then conclude that this contradicts the
assumption that G has a 1-contraction sequence respecting Claim 17.

Using the fact that V (G1) and V (G2) are intervals of τ and the common interval
characterisation of strong modules of G1 given by Observation 3, we deduce that a splitter t,
which necessarily belongs to V (G2), cannot split both M and M ′. Indeed, we have σ(M) <

σ(M ′) or σ(M ′) < σ(M), so if t is a splitter of M there exist a, b ∈ M such that σ(a) <

σ(t) < σ(b) as seen in the previous claim. In particular, t is not a splitter of M ′.
Now because M and M ′ are non-trivial modules of G1, they each have a splitter in G2.

Let t and t′ be such splitters. By maximality, M and M ′ correspond to subtrees rooted at
siblings of the same node n in the modular decomposition of G1. Let us first consider the
case when n is a prime node. In this case, Lemma 7 guarantees a red edge for Q(n), and the
two splitters t, t′ forbid the existence of a contraction sequence with consecutivity properties
as guaranteed by Lemma 11 and Corollary 15.

We may now assume that n is a degenerate node, and exhibit an induced subgraph H

of G that does not admit a 1-contraction sequence respecting our assumptions. This will
contradict the existence of such a sequence for the whole G, as its restriction to H would also
be valid (as in Observation 4). The graph H consists of splitters t, t′, as well as two pairs
of twins a, b ∈ M and a′, b′ ∈ M ′ distinguished by t, t′ respectively. Then, vertices a, b, a′, b′

induce a cograph whose corresponding cotree is a complete binary tree of depth 2. In other
words, (a, b) and (a′, b′) are present if and only if {a, b} is adjacent to {a′, b′}.

We first reduce M and M ′ so as to induce exactly the quotient graph of their corresponding
node in the modular decomposition (recall that this is well defined because they are strong)
by picking one vertex in each subtree below this node. We may ensure that t and t′ still split
this subset of vertices (e.g. by picking extremal vertices of the interval of σ corresponding
to M and M ′, recalling Observation 3).

J. Ahn, H. Jacob, N. Köhler, C. Paul, A. Reinald, and S. Wiederrecht 6:13

Now we observe that if M (resp. M ′) has a degenerate root node, it is of the opposite
type of the node n, and any pair of vertices of M (resp. M ′) that is split by t (resp. t′)
can be taken for our subgraph H. Otherwise, M (resp. M ′) has a prime root node, and we
apply Observation 19 to obtain a pair of vertices that is split and has the required adjacency
relation.

Let us now show that H does not admit a 1-contraction sequence satisfying our assump-
tions. Indeed, t and t′ may only be contracted together, because they are the only vertices in
V (G2) of our subgraph (Claim 17), but they are split by at least two vertices in V (G1). Now,
any order of contractions on a, b, a′, b′ will create two red edges. More precisely, contracting
a vertex from each nontrivial module creates two red edges, unless one module was already
reduced to a single vertex, in which case it has a red edge to its splitter from V (G2). This
will inevitably contradict Lemma 7. ◁

▷ Claim 21. If Gi has a prime node p in its modular decomposition, the first red edge
must appear in the module M corresponding to the subtree rooted at p. In this case, M

has exactly one splitter s′ from G3−i and s′ should not be incident to a red edge until M is
contracted to a single vertex.

Proof. Let p be a prime node of the modular decomposition of Gi and M the module
corresponding to the subtree rooted at p. Without loss of generality assume i = 1. We first
make the observation that, since there cannot be two disjoint nontrivial strong modules in G1

by Claim 20, and since prime graphs have at least 4 vertices, there are vertices introduced
by node p.

We first consider the case when a red edge incident to a vertex of G2 is created before we
fully contract M . This red edge has to remain incident to a vertex of G2 due to Claim 17.
Contracting a vertex introduced in prime node p will create another red edge with both
endpoints in G1, which is thus different and contradicts Lemma 7.

We now deal with the case where no red edge incident to a vertex of G2 appears before
we fully contract M . Assume the first red edge does not have both endpoints in M . Observe
that the first contraction cannot be between vertices that are both not in M but have a
different adjacency to it because M is a module on at least 4 vertices, and this would create
a red edge to all of them. Observe also that if the first contraction had involved a vertex
of M , there would also be a red edge with both endpoints in M . Indeed, on the one hand, if
both contracted vertices were in M , red edges with both endpoints in Gi would have both
endpoints in M because it is a module. On the other hand, M is also a strong module with a
prime node at its root, so all of its vertices have a mixed adjacency to the rest of M , contrary
to vertices outside M . We conclude that the first contraction is between two vertices outside
of M , so the corresponding red edge has both endpoints outside of M . This has the following
implications: both contracted vertices have an homogeneous adjacency to M , but they also
have a unique splitter in G1, this implies we cannot contract the red edge before contracting
the subgraph corresponding to p. Indeed, the two vertices incident to the red edge must have
opposite adjacency relations with respect to M . Since contracting M will force the creation
of a second red edge, this contradicts Lemma 7.

M is a non-trivial strong module of G1 so it has at least one splitter in G2. From Lemma 7
and Claim 17, it follows that a red edge incident to this splitter cannot appear before M is
contracted to a single vertex. Finally, only one red edge may appear when M is contracted
to a single vertex meaning the splitter must be unique. ◁

In particular, this shows that only one of G1 and G2 can have a prime node in their
modular decomposition. We can moreover deduce that if there is a prime node in Gi, it must
be unique. Indeed, a red edge has to appear in some M corresponding to the subtree of the

STACS 2025

6:14 Twin-Width One

prime node that is deepest in the modular decomposition of Gi. At any step of the sequence,
M contains a red edge, until it is a single vertex with a red edge towards its splitter. Then,
vertices introduced in any higher prime node cannot be contracted on such red edges without
producing an additional red edge, which contradicts Lemma 7.

We are now ready to define M . Consider the first red edge appearing between X1 ⊆ V (G1)
and X2 ⊆ V (G2) in a 1-contraction sequence as considered, and assume without loss of
generality that it stems from a contraction in G1. Then, X2 can only consist in a single
vertex s′ due to Claim 17, Lemma 7, and the fact that this is the first red edge with an
endpoint in both G1 and G2. Then, X1 is included in a module of G1 which admits as unique
splitter s′. In the case when there is no prime node, X1 induces a cograph, so we may then
take M to be any pair of consecutive twins a, b ∈ X1, which are also consecutive twins in G1

by Corollary 15, distinguished by s′ (because G is prime and s′ is the only splitter of X1).
Otherwise, we can take M and s′ as guaranteed by Claim 21 on G1 and G2. The

restriction of our contraction sequence to G[M ∪ s′] yields a 1-contraction sequence in which
s′ becomes incident to a red edge last, as desired.

Having defined M , we are ready to show the following.

▷ Claim 22. There exists a 1-contraction sequence of G that starts by contracting only
vertices of M until it is reduced to a single vertex. In particular, this creates a red edge
towards s′ at the last contraction.

Proof. We can extend the contraction sequence that contracts M first into a sequence
contracting the smallest interval I of σ[V (G1)] containing X1 because X1 is not split by any
splitter from G2 other than s′, and it does not have disjoint non trivial strong modules. After
contraction of M to a single vertex, the remaining vertices of I induce a cograph that is not
split by any vertex of G2 other than s′. We can then proceed with the rest of the contraction
of G simply by contracting remaining vertices according to our initial contraction sequence.

◁

At this point, in both cases, we know M forms a common interval for (σ[V (G1)], τ [V (G1)]),
and that there is some 1-sequence for G that first contracts M and in which s is the last vertex
to be incident to a red edge. We deduce that M ∪ {s′} satisfies the setting of Corollary 15,
and any further contractions must be consecutive to M due to Corollary 15, ensuring the
existence of π. ◀

The crucial observation now is that π can easily be computed greedily using the realiser.

▶ Lemma 23. Given a permutation diagram of a prime permutation graph G and an extremal
vertex s of G, we can produce in time linear in the number of vertices of G a 1-contraction
sequence such that s is the last vertex of G to be incident to the red edge, or conclude that no
such sequence exists.

Proof. This is essentially an implementation of the result of Lemma 16, we reuse similar
notations and provide an illustration in Figure 2. The algorithm works as follows.

We initialise indices at the endpoints of the intervals A and B of τ that are split by s,
and at the endpoints of the interval C = V (G) − {s} of σ. We add s to the global list Π and
mark it as a splitter.

While there is one endpoint v of C that is also an endpoint of A or an endpoint of B, we
add v to the global list Π and update indices describing A, B, and C in accordance to the
removal of v. We call such a vertex v doubly extremal.

J. Ahn, H. Jacob, N. Köhler, C. Paul, A. Reinald, and S. Wiederrecht 6:15

s1s2s3

s1

s2

s3

Figure 2 An example of a twin-width 1 graph and its permutation diagram. Shown here is the
decomposition of Lemma 23 starting from extremal vertex s1. The segments of splitters s1, s2, s3

are represented in dashed blue, green and orange respectively. Then, intervals of the corresponding
colour are the intervals A, B, C produced during the iteration in which the splitter is considered.
A and B induce subgraphs Gi from Lemma 16. Then, segments of the same colour as a splitter
correspond to doubly extremal vertices eliminated in the corresponding step.

If the intervals have become empty, return Π, otherwise, if either A or B contains a single
vertex, we set s′ to be this vertex and M to be the other interval, and apply the algorithm
recursively to G[M ∪ {s′}] with s′ as the last vertex incident to a red edge. Finally, if both
A and B contain more than one vertex, we reject.

We can use marked vertices to deduce a contraction sequence: we iterate through Π,
starting from the last vertices added. When reaching a marked vertex, we contract the red
edge. Otherwise, we contract the current vertex to the vertex of the red edge with the same
adjacency to the next marked vertex.

If the algorithm does not reject, let us show by induction on the recursive calls that the
list Π, along with its marked vertices, describes a valid order of contractions for G. First, we
clarify the starting red edge that we consider in the part of the contraction sequence built
at this step of the recursion. In the case when we emptied A and B (so M and s′ are not
defined), take the last vertex in A and the last vertex in B as a starting red edge. We move
to the case where M and s′ are defined. Here, by induction hypothesis, the algorithm finds
a 1-contraction sequence with s′ as the last vertex incident to a red edge for G[M ∪ {s′}].
This contraction sequence for G[M ∪ {s′}] gives a partial 1-contraction sequence for G (see
Observation 4) yielding a red edge between M and s′, with all other vertices of G not
contracted yet.

We now check that each vertex added to Π at this step can be contracted in the order
described by Π. This is the case because the vertex does not split the vertices of A contracted
before it, nor the vertices of B contracted before it. By contracting it to the vertex of the
red edge with the same adjacency to s, we create no additional red edge. In particular, s is
still not incident to a red edge. Once we contracted all vertices of A and B, the red edge can
be safely contracted. Indeed, s is the unique splitter of A ∪ B.

STACS 2025

6:16 Twin-Width One

If the algorithm rejects, it contradicts the existence of π guaranteed by Lemma 16. Indeed,
if for all i, the M ∪ {s′} ∪ π([i]) are intervals as claimed, it must be that for each i, π(i) is
extremal on σ[M ∪ {s′} ∪ π([i])] and on τ [(M ∪ {s′} ∪ π([i])) ∩ V (Gj)] for some j ∈ {1, 2}.
In particular, all vertices that are not in M ∪ {s′} will become doubly extremal if π exists.
Note that this is independent of the order in which they are contracted. Indeed, a vertex
remains (doubly) extremal while we delete other vertices.

We conclude that G has twin-width more than 1. ◀

▶ Theorem 24. We can decide in linear time if a given graph G has twin-width at most 1.

Proof. We first compute a modular decomposition of G and realisers for the quotient graphs
of prime nodes [24]1, or conclude that G is not a permutation graph and therefore not a
graph of twin-width 1. It is well-known that the total size of the quotient graphs of prime
nodes is linear in the size of the original graph.

We then check all prime nodes with corresponding quotient graph H as follows:
Guess an extremal vertex s (out of at most 4) that can be the last vertex incident to

the red edge in a 1-contraction sequence of H, and then apply the recursive algorithm of
Lemma 23.

If all prime nodes have twin-width 1, we obtained a contraction sequence for all of them
and they can be combined to form a contraction sequence of G using Corollary 6.

All of the above procedures can be implemented to run in linear time. ◀

References
1 Jungho Ahn, Debsoumya Chakraborti, Kevin Hendrey, and Sang-il Oum. Twin-width of

subdivisions of multigraphs, 2024. doi:10.48550/arXiv.2306.05334.
2 Jungho Ahn, Kevin Hendrey, Donggyu Kim, and Sang-il Oum. Bounds for the twin-width of

graphs. SIAM J. Discret. Math., 36(3):2352–2366, 2022. doi:10.1137/21m1452834.
3 Jakub Balabán, Robert Ganian, and Mathis Rocton. Computing twin-width parameterized

by the feedback edge number. In Olaf Beyersdorff, Mamadou Moustapha Kanté, Orna
Kupferman, and Daniel Lokshtanov, editors, 41st International Symposium on Theoretical
Aspects of Computer Science, STACS 2024, March 12-14, 2024, Clermont-Ferrand, France,
volume 289 of LIPIcs, pages 7:1–7:19. Schloss Dagstuhl – Leibniz-Zentrum für Informatik,
2024. doi:10.4230/LIPICS.STACS.2024.7.

4 Jakub Balabán, Robert Ganian, and Mathis Rocton. Twin-width meets feedback edges and
vertex integrity. CoRR, abs/2407.15514, 2024. doi:10.48550/arXiv.2407.15514.

5 Pierre Bergé, Édouard Bonnet, and Hugues Déprés. Deciding twin-width at most 4 is np-
complete. In Mikolaj Bojanczyk, Emanuela Merelli, and David P. Woodruff, editors, 49th
International Colloquium on Automata, Languages, and Programming, ICALP 2022, July
4-8, 2022, Paris, France, volume 229 of LIPIcs, pages 18:1–18:20. Schloss Dagstuhl – Leibniz-
Zentrum für Informatik, 2022. doi:10.4230/LIPICS.ICALP.2022.18.

6 Anne Bergeron, Cédric Chauve, Fabien de Montgolfier, and Mathieu Raffinot. Computing
common intervals of K permutations, with applications to modular decomposition of graphs.
SIAM J. Discret. Math., 22(3):1022–1039, 2008. doi:10.1137/060651331.

7 Benjamin Bergougnoux, Jakub Gajarský, Grzegorz Guspiel, Petr Hlinený, Filip Pokrývka,
and Marek Sokolowski. Sparse graphs of twin-width 2 have bounded tree-width. In Satoru
Iwata and Naonori Kakimura, editors, 34th International Symposium on Algorithms and
Computation, ISAAC 2023, December 3-6, 2023, Kyoto, Japan, volume 283 of LIPIcs, pages
11:1–11:13. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, 2023. doi:10.4230/LIPICS.
ISAAC.2023.11.

1 In fact, it would be more reasonable to compute a permutation diagram and deduce a modular
decomposition via common intervals for a practical implementation.

https://doi.org/10.48550/arXiv.2306.05334
https://doi.org/10.1137/21m1452834
https://doi.org/10.4230/LIPICS.STACS.2024.7
https://doi.org/10.48550/arXiv.2407.15514
https://doi.org/10.4230/LIPICS.ICALP.2022.18
https://doi.org/10.1137/060651331
https://doi.org/10.4230/LIPICS.ISAAC.2023.11
https://doi.org/10.4230/LIPICS.ISAAC.2023.11

J. Ahn, H. Jacob, N. Köhler, C. Paul, A. Reinald, and S. Wiederrecht 6:17

8 Édouard Bonnet, Ugo Giocanti, Patrice Ossona de Mendez, Pierre Simon, Stéphan Thomassé,
and Szymon Torunczyk. Twin-width IV: ordered graphs and matrices. J. ACM, 71(3):21, 2024.
doi:10.1145/3651151.

9 Édouard Bonnet, Eun Jung Kim, Amadeus Reinald, and Stéphan Thomassé. Twin-width
VI: the lens of contraction sequences. In Joseph (Seffi) Naor and Niv Buchbinder, editors,
Proceedings of the 2022 ACM-SIAM Symposium on Discrete Algorithms, SODA 2022, Virtual
Conference / Alexandria, VA, USA, January 9 - 12, 2022, pages 1036–1056. SIAM, 2022.
doi:10.1137/1.9781611977073.45.

10 Édouard Bonnet, Eun Jung Kim, Amadeus Reinald, Stéphan Thomassé, and Rémi Watrigant.
Twin-width and polynomial kernels. Algorithmica, 84(11):3300–3337, 2022. doi:10.1007/
s00453-022-00965-5.

11 Édouard Bonnet, Eun Jung Kim, Stéphan Thomassé, and Rémi Watrigant. Twin-width I:
Tractable FO model checking. J. ACM, 69(1):Art. 3, 46, 2022. doi:10.1145/3486655.

12 Christian Capelle, Michel Habib, and Fabien de Montgolfier. Graph decompositions and-
factorizing permutations. Discret. Math. Theor. Comput. Sci., 5(1):55–70, 2002. doi:
10.46298/DMTCS.298.

13 Maria Chudnovsky, Neil Robertson, Paul Seymour, and Robin Thomas. The strong perfect
graph theorem. Annals of Mathematics, 164(1):51–229, July 2006. doi:10.4007/annals.2006.
164.51.

14 Derek G. Corneil, Michel Habib, Jean-Marc Lanlignel, Bruce A. Reed, and Udi Rotics.
Polynomial-time recognition of clique-width ≤3 graphs. Discret. Appl. Math., 160(6):834–865,
2012. doi:10.1016/J.DAM.2011.03.020.

15 Derek G Corneil, Stephan Olariu, and Lorna Stewart. Asteroidal triple-free graphs. SIAM
Journal on Discrete Mathematics, 10(3):399–430, 1997. doi:10.1137/S0895480193250125.

16 Fabien de Montgolfier. Décomposition modulaire des graphes. Théorie, extension et algorithmes.
(Graph Modular Decomposition. Theory, extension and algorithms). PhD thesis, Montpellier 2
University, France, 2003. URL: https://tel.archives-ouvertes.fr/tel-03711558.

17 Ben Dushnik and E. W. Miller. Partially ordered sets. American Journal of Mathematics,
63(3):600–610, July 1941.

18 Tibor Gallai. Transitiv orientierbare graphen. Acta Mathematica Academiae Scientiarum
Hungaricae, 18:25–66, 1967. German.

19 Colin Geniet and Stéphan Thomassé. First order logic and twin-width in tournaments. In
Inge Li Gørtz, Martin Farach-Colton, Simon J. Puglisi, and Grzegorz Herman, editors, 31st
Annual European Symposium on Algorithms, ESA 2023, September 4-6, 2023, Amsterdam,
The Netherlands, volume 274 of LIPIcs, pages 53:1–53:14. Schloss Dagstuhl – Leibniz-Zentrum
für Informatik, 2023. doi:10.4230/LIPICS.ESA.2023.53.

20 M.C. Golumbic. Algorithmic graph theory and perfect graphs. Academic Press, 1980.
21 Sylvain Guillemot and Dániel Marx. Finding small patterns in permutations in linear time. In

Chandra Chekuri, editor, Proceedings of the Twenty-Fifth Annual ACM-SIAM Symposium on
Discrete Algorithms, SODA 2014, Portland, Oregon, USA, January 5-7, 2014, pages 82–101.
SIAM, 2014. doi:10.1137/1.9781611973402.7.

22 Michel Habib and Christophe Paul. A survey of the algorithmic aspects of modular decompos-
ition. Comput. Sci. Rev., 4(1):41–59, 2010. doi:10.1016/J.COSREV.2010.01.001.

23 Ekkehard Köhler. Graphs Without Asteroidal Triples. PhD thesis, Technischen Universität
Berlin, 1999.

24 Ross M. McConnell and Jeremy P. Spinrad. Modular decomposition and transitive orientation.
Discret. Math., 201(1-3):189–241, 1999. doi:10.1016/S0012-365X(98)00319-7.

25 Szymon Torunczyk. Flip-width: Cops and robber on dense graphs. In 64th IEEE Annual Sym-
posium on Foundations of Computer Science, FOCS 2023, Santa Cruz, CA, USA, November
6-9, 2023, pages 663–700. IEEE, 2023. doi:10.1109/FOCS57990.2023.00045.

STACS 2025

https://doi.org/10.1145/3651151
https://doi.org/10.1137/1.9781611977073.45
https://doi.org/10.1007/s00453-022-00965-5
https://doi.org/10.1007/s00453-022-00965-5
https://doi.org/10.1145/3486655
https://doi.org/10.46298/DMTCS.298
https://doi.org/10.46298/DMTCS.298
https://doi.org/10.4007/annals.2006.164.51
https://doi.org/10.4007/annals.2006.164.51
https://doi.org/10.1016/J.DAM.2011.03.020
https://doi.org/10.1137/S0895480193250125
https://tel.archives-ouvertes.fr/tel-03711558
https://doi.org/10.4230/LIPICS.ESA.2023.53
https://doi.org/10.1137/1.9781611973402.7
https://doi.org/10.1016/J.COSREV.2010.01.001
https://doi.org/10.1016/S0012-365X(98)00319-7
https://doi.org/10.1109/FOCS57990.2023.00045

6:18 Twin-Width One

A Appendix

1 . . . n 1 . . . n

1
2 3 . . .

n

n ≥ 2

n ≥ 1 n ≥ 1

A1 A2,n A3

A4 A5 A6

A7 A8 A9

A10,n A11,n

A12

A13 A14

Figure 3 Minimal graphs containing an asteroid triple.

J. Ahn, H. Jacob, N. Köhler, C. Paul, A. Reinald, and S. Wiederrecht 6:19

1

2

3

45

. . .

2n+ 1 2n+ 1

1

2

3

45

. . .

C2n+1;n ≥ 2 Jn;n ≥ 2

1

2

3

4

. . .

2n 2n+ 1 1

2

3

4

. . .

J ′
n;n ≥ 3 J ′′

n ;n ≥ 2

Figure 4 Complements of minimal graphs containing a (2k + 1)-asteroid for k > 1.

STACS 2025

Faster Edge Coloring by Partition Sieving
Shyan Akmal # Ñ

INSAIT, Sofia University “St. Kliment Ohridski”, Bulgaria

Tomohiro Koana #

Utrecht University, The Netherlands
Research Institute for Mathematical Sciences, Kyoto University, Japan

Abstract
In the Edge Coloring problem, we are given an undirected graph G with n vertices and m edges,
and are tasked with finding the smallest positive integer k so that the edges of G can be assigned
k colors in such a way that no two edges incident to the same vertex are assigned the same color.
Edge Coloring is a classic NP-hard problem, and so significant research has gone into designing
fast exponential-time algorithms for solving Edge Coloring and its variants exactly. Prior work
showed that Edge Coloring can be solved in 2m poly(n) time and polynomial space, and in graphs
with average degree d in 2(1−εd)m poly(n) time and exponential space, where εd = (1/d)Θ(d3).

We present an algorithm that solves Edge Coloring in 2m−3n/5 poly(n) time and polynomial
space. Our result is the first algorithm for this problem which simultaneously runs in faster than
2m poly(m) time and uses only polynomial space. In graphs of average degree d, our algorithm runs
in 2(1−6/(5d))m poly(n) time, which has far better dependence in d than previous results. We also
consider a generalization of Edge Coloring called List Edge Coloring, where each edge e in
the input graph comes with a list Le ⊆ {1, . . . , k} of colors, and we must determine whether we can
assign each edge a color from its list so that no two edges incident to the same vertex receive the
same color. We show that this problem can be solved in 2(1−6/(5k))m poly(n) time and polynomial
space. The previous best algorithm for List Edge Coloring took 2m poly(n) time and space.

Our algorithms are algebraic, and work by constructing a special polynomial P based off the
input graph that contains a multilinear monomial (i.e., a monomial where every variable has degree at
most one) if and only if the answer to the List Edge Coloring problem on the input graph is YES.
We then solve the problem by detecting multilinear monomials in P . Previous work also employed
such monomial detection techniques to solve Edge Coloring. We obtain faster algorithms both
by carefully constructing our polynomial P , and by improving the runtimes for certain structured
monomial detection problems using a technique we call partition sieving.

2012 ACM Subject Classification Theory of computation → Graph algorithms analysis; Theory of
computation → Parameterized complexity and exact algorithms

Keywords and phrases Coloring, Edge coloring, Chromatic index, Matroid, Pfaffian, Algebraic
algorithm

Digital Object Identifier 10.4230/LIPIcs.STACS.2025.7

Related Version Full Version: https://arxiv.org/abs/2501.05570

Funding Shyan Akmal: Partially funded by the Ministry of Education and Science of Bulgaria
(support for INSAIT, part of the Bulgarian National Roadmap for Research Infrastructure).
Tomohiro Koana: Supported by the European Research Council (ERC) under the European Union’s
Horizon 2020 research and innovation programme (project CRACKNP under grant agreement No.
853234). Also supported by JSPS KAKENHI Grant Numbers JP20H05967.

Acknowledgements We thank the anonymous reviewers for helpful feedback on this work.

1 Introduction

Coloring graphs is a rich area of research in graph theory and computer science. Given a
graph G, a proper vertex coloring of G is an assignment of colors to its nodes such that no two
adjacent vertices receive the same color. In the Vertex Coloring problem, we are given
an undirected graph G on n vertices, and are tasked with computing the smallest positive

© Shyan Akmal and Tomohiro Koana;
licensed under Creative Commons License CC-BY 4.0

42nd International Symposium on Theoretical Aspects of Computer Science (STACS 2025).
Editors: Olaf Beyersdorff, Michał Pilipczuk, Elaine Pimentel, and Nguyễn Kim Thắng;
Article No. 7; pp. 7:1–7:18

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:shyan.akmal@insait.ai
https://www.shyan.akmal.com
https://orcid.org/0000-0002-7266-2041
mailto:tomohiro.koana@gmail.com
https://orcid.org/0000-0002-8684-0611
https://doi.org/10.4230/LIPIcs.STACS.2025.7
https://arxiv.org/abs/2501.05570
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

7:2 Faster Edge Coloring by Partition Sieving

integer k such that G admits a proper vertex coloring using k colors. Vertex Coloring is
a classic combinatorial problem, NP-hard to solve even approximately [27]. An influential
line of research has worked on designing faster and faster exponential-time algorithms for this
problem [24, 17, 13, 8], culminating in an algorithm solving Vertex Coloring in O∗(2n)
time and space [11], where throughout we write O∗(f(n)) as shorthand for f(n) poly(n).

In this paper, we study exact algorithms for the closely related Edge Coloring problem.
Given a graph G, a proper edge coloring of G is an assignment of colors to its edges such
that no two edges incident to a common vertex receive the same color. The smallest positive
integer k such that G admits a proper edge coloring using k colors is the chromatic index
of G, denoted by χ′(G). In the Edge Coloring problem, we are given an undirected graph
G on n vertices and m edges, and are tasked with computing χ′(G).

Let ∆ denote the maximum degree of the input graph G. For each vertex v in G, a proper
edge coloring of G must assign distinct colors to the edges incident to v. Thus χ′(G) ≥ ∆. A
classic result in graph theory known as Vizing’s theorem proves that in fact χ′(G) ≤ ∆ + 1,
so that the simple ∆ lower bound is close to the truth. Moreover, a proper edge coloring of
G using (∆ + 1) colors can be found in near-linear time [2]. Consequently, solving Edge
Coloring amounts to distinguishing between the cases χ′(G) = ∆ and χ′(G) = ∆ + 1.
Despite this powerful structural result, the Edge Coloring problem is NP-hard just like
Vertex Coloring, even for graphs where all vertices have degree exactly ∆ = 3 [21].

In recent years, researchers have made major strides in our knowledge of algorithms for
approximate variants of Edge Coloring in the distributed [19, 5, 3] and dynamic settings
[15, 14, 6]. In comparison, much less is known about the exponential-time complexity for
solving the Edge Coloring problem exactly.

A simple way to solve Edge Coloring is by reduction to Vertex Coloring. Given
the input graph G, we can construct in polynomial time the line graph L(G) whose nodes
are edges of G, and whose nodes are adjacent if the corresponding edges in G are incident to
a common vertex. By construction, the solution to Vertex Coloring on L(G) gives the
solution to Edge Coloring on G. If G has m edges and maximum degree ∆, then L(G)
has m vertices and maximum degree (2∆ − 1). Using the aforementioned O∗(2n) time and
space algorithm for Vertex Coloring, this immediately implies a O∗(2m) time and space
algorithm for Edge Coloring. In graphs with maximum degree ∆, Vertex Coloring
can be solved in O∗(2(1−ε)n) time and space, where ε = (1/2)Θ(∆) [9]. By applying the
above reduction, Edge Coloring can similarly be solved in O∗(2(1−ε)m) time and space,
for ε = (1/2)Θ(∆).

Line graphs are much more structured objects than generic undirected graphs (for example,
there are small patterns that line graphs cannot contain as induced subgraphs [4, Theorem
3]), so one might hope to solve Edge Coloring faster without relying on a black-box
reduction to Vertex Coloring. Nonetheless, there is only one result from previous work
which solves Edge Coloring on general undirected graphs without using this reduction.
Specifically, [10, Section 5.6] shows that Edge Coloring can be solved in O∗(2m) time
and polynomial space. In comparison, it remains open whether Vertex Coloring can be
solved in O∗(2n) time using only polynomial space.
In summary, algorithms from previous work can solve Edge Coloring in

O∗(2m) time using polynomial space, or in
faster than O∗(2m) time in bounded degree graphs, using exponential space.

Given this state of affairs, it is natural to ask:

Can Edge Coloring be solved in faster than O∗(2m) time, using only polynomial space?

We answer this question affirmatively by proving the following result.

S. Akmal and T. Koana 7:3

▶ Theorem 1.1. There is a randomized algorithm which solves Edge Coloring with high
probability and one-sided error in O∗(2m−3n/5) time and polynomial space.

If the input graph has average degree d, then m = dn/2, so Theorem 1.1 equivalently
states that Edge Coloring can be solved in O∗(2(1−ε)m) time for ε = 6

5d . In comparison,
the current fastest algorithm for Vertex Coloring on graphs with average degree d takes
O∗(2(1−δ)n) time, where δ = (1/d)Θ(d3) [18, Lemma 4.4 and Theorem 5.4]. Prior to our
work, the fastest algorithm for Edge Coloring in the special case of regular graphs (i.e.,
graphs where all vertices have the same degree) took O∗(2m−n/2) time [10, Theorem 6]. The
regularity assumption simplifies the Edge Coloring problem significantly, as in this case
the problem reduces to finding a collection of (∆ − 1) mutually disjoint perfect matchings,
which together consist of only (m − n/2) edges. Theorem 1.1 improves upon this runtime
with an algorithm that succeeds on all undirected graphs, not just regular graphs.

In the case of regular graphs, we obtain improvements beyond Theorem 1.1 when the
graphs have high degree. We say a graph is d-regular if all its nodes have degree d. Given a
positive integer k, let

Hk =
k∑

j=1

1
j

(1)

denote the kth Harmonic number. We prove the following result.

▶ Theorem 1.2. For each integer d ≥ 6, there is a randomized algorithm that solves Edge
Coloring with high probability and one-sided error on d-regular graphs in O∗(2m−αdn) time
and polynomial space, for αd = 1 − Hd+1/(d + 1).

For example for d = 6, Theorem 1.2 shows that we can solve Edge Coloring in 6-regular
graphs in O∗(2m−0.62n) time, slightly faster than the runtime presented in Theorem 1.1. The
savings in the exponent are better for larger d, approaching a runtime of O∗(2m−n) as the
degree d grows since we have αd = 1 − Θ((log d)/d).

We also consider a generalization of Edge Coloring called List Edge Coloring. In
this problem, we are given an undirected graph G with m edges as before, together with a
positive integer k and a list of possible colors Le ⊆ {1, . . . , k} for each edge e. We are tasked
with determining whether G admits a proper edge coloring, which assigns each edge e a color
from the list Le. If we set k = ∆ to be the maximum degree of G and set Le = {1, . . . , k} for
each edge e, we recover the standard Edge Coloring problem. Using more sophisticated
arguments, we generalize Theorem 1.1 to the List Edge Coloring problem.

▶ Theorem 1.3. There is a randomized algorithm that solves List Edge Coloring with
high probability and one-sided error in O∗(2m−3n/5) time and polynomial space.

Prior to our work, no algorithm was known for List Edge Coloring which simultane-
ously ran in faster than O∗(2m) time and used polynomial space.

1.1 Our Techniques
Our algorithms for Edge Coloring and List Edge Coloring are algebraic, and involve
reducing these problems to certain monomial detection tasks, by now a common paradigm
in graph algorithms. To achieve the O∗(2m−3n/5) runtime and polynomial space bounds
for these problems, we combine and improve techniques in polynomial sieving, matroid
constructions, and enumeration using matrices.

STACS 2025

7:4 Faster Edge Coloring by Partition Sieving

The main technical ingredient in our work builds off the determinantal sieving technique
introduced in [16]. Given a homogeneous multivariate polynomial P (X) of degree k and a
linear matroid M on X of rank k, this technique allows one to test in O∗(2k) time whether
P (X) contains a multilinear monomial (i.e., a monomial where each variable has degree at
most one) that forms a basis in M. We recall the formal definition of matroids in Section 2.
For the purpose of this overview, a matroid M is a family of subsets of variables of P

satisfying certain properties, and a basis in M is a set in this family whose size equals the
rank k. In our applications, we construct P to enumerate certain structures in the input
graph. Finding a multilinear monomial in P corresponds to identifying a particularly nice
structure in the graph (e.g., a solution to the Edge Coloring problem). Determinantal
sieving is useful because one can pick M in such a way that identifying a monomial in P that
forms a basis in M recovers extra information about the relevant structures in the graph.

We build off determinantal sieving and introduce the partition sieving method. This
technique involves a partition matroid D, which is a simple type of matroid defined using an
underlying partition of the variable set of P . Given a partition matroid D whose partition
has p parts, and a polynomial P compatible with D (“compatible” is a technical condition
defined in Section 3 – intuitively, it requires that monomials in P have degrees respecting
the partition defining D), we can test whether P contains a multilinear monomial forming
a basis in D in O∗(2k−p) time and polynomial space. This offers an exponential speed-up
over determinantal sieving. To apply partition sieving, we need to carefully design both the
polynomial P and the partition matroid D to be compatible in our technical framework.

We design the polynomial P using the notion of the Pfaffian of a matrix. If A is a
symbolic skew-symmetric adjacency matrix of G, then its Pfaffian Pf A is a polynomial that
enumerates the perfect matchings in G. The Edge Coloring problem may be rephrased as
asking whether the edge set of G can be partitioned into a collection of k matchings. One can
design a polynomial that enumerates k matchings by computing a product of k Pfaffians of
adjacency matrices. However, this simple construction does not meet the technical conditions
we need to employ partition sieving. Instead we utilize the Ishikawa-Wakayama formula [22],
a convolution identity for Pfaffians and determinants, to design a polynomial that enumerates
matchings which satisfy certain degree constraints. Specifically, the formula lets us construct
a polynomial P whose monomials correspond to k-tuples of matchings in G, where each
vertex in G appears as an endpoint in exactly degG(v) of the matchings in the tuple.

We design the partition matroid D in terms of a dominating set of the input graph. A
subset of vertices D is a dominating set in G if every vertex in V \ D is adjacent to a node
in D. Given a dominating set D in G, we show that it is always possible to construct a
partition matroid D with p = |V \ D| parts, compatible with our enumerating polynomial
P (in our proofs, D is actually only compatible with a polynomial obtained from P by the
inclusion-exclusion principle, but we ignore that distinction in this overview). We achieve
compatability using the degree condition imposed on P , mentioned at the end of the previous
paragraph. Partition sieving then lets us detect a multilinear monomial in P , and thus solve
Edge Coloring, in O∗(2m−|V \D|) time.

▶ Lemma 1.4. There is a randomized algorithm that, given a graph G on n vertices and m

edges and a dominating set D of G, solves Edge Coloring on G with high probability and
one-sided error in O∗(2m−n+|D|) time and polynomial space.

In other words, by finding smaller dominating sets in G, we can solve Edge Coloring
faster. In polynomial time, it is easy to construct a dominating set of size at most n/2 in
any connected graph G with n vertices. Consequently, the partition sieving framework lets
us solve Edge Coloring in O∗(2m−n/2) time. We obtain faster algorithms using the fact

S. Akmal and T. Koana 7:5

that if a graph with n ≥ 8 nodes has minimum degree two, then it contains a dominating
set of size at most 2n/5 [29]. We make this result effective, showing how to find such a
dominating set in O∗(2m−3n/5) time and polynomial space. When solving Edge Coloring,
it turns out one can assume without loss of generality that the graph has minimum degree
two, and so this framework yields a O∗(2m−3n/5) time algorithm for the problem. The
situation is far more complex for List Edge Coloring, where unit-degree vertices cannot
be removed freely. For this problem, we construct a more complicated polynomial P , by
enforcing additional matroid conditions in the Ishikawa-Wakayama formula. Intuitively, we
identify a subgraph Gnew of minimum degree two in G, and use P to determine whether
Gnew admits a list edge coloring which can be extended to all of G.

Organization

In Section 2 we review notation, basic assumptions, and useful facts about polynomials,
matrices, and matroids. In Section 3 we introduce our partition sieving method for monomial
detection. In Section 4 we present a generic algorithmic template for solving coloring problems
using polynomials. In Section 5 we apply this framework to design our algorithms for Edge
Coloring and prove Theorems 1.1 and 1.2. We conclude in Section 6 with a summary of
our work and some open problems. Our List Edge Coloring algorithm and the proof of
Theorem 1.3 is deferred to the full version of this paper.

2 Preliminaries

General Notation

Given a positive integer a, we let [a] = {1, . . . , a} denote the set of the first a consecutive
positive integers. Given a set S and positive integer k, we let

(
S
k

)
denote the family of subsets

of S of size k. Given a positive integer k, we let Hk denote the kth Harmonic number, defined
in Equation (1).

Graph Notation and Assumptions

Throughout, we consider graphs which are undirected. We let n and m denote the number
of vertices and edges in the input graphs for the problems we study. We assume that the
input graphs are connected, so that m ≥ n − 1. This is without loss of generality, since when
solving Edge Coloring and List Edge Coloring on disconnected graphs, it suffices to
solve the problems separately on each connected component. Given a graph G and vertex v,
we let degG(v) denote the number of neighbors of v (i.e., the degree of v in G). For the List
Edge Coloring problem where each edge is assigned a list of colors from a subset of [k],
we assume that degG(v) ≤ k for all vertices v in G, since if some vertex v has degree greater
than k, its incident edges must all be assigned distinct colors in a proper edge coloring, and
the answer to the List Edge Coloring problem is trivially no.

We let Π(G) denote the set of perfect matchings of G – partitions of the vertex set of G

into parts of size two, such that each part consists of two adjacent vertices.

Dominating Sets

A dominating set D in a graph G is a subset of vertices of G such that every vertex in G is
either in D or adjacent to a node in D. We collect some useful results relating to finding
small dominating sets in graphs.

STACS 2025

7:6 Faster Edge Coloring by Partition Sieving

▶ Lemma 2.1 (Simple Dominating Set). There is a polynomial time algorithm which takes in
a connected graph on n nodes and outputs a dominating set for the graph of size at most n/2.

Lemma 2.1 is due to Ore [32], and we include a proof in the full version of this paper.

▶ Lemma 2.2 (Dominating Sets in Dense Graphs [12, 29]). If G has n ≥ 8 nodes, and every
vertex in G has degree at least two, then G has a dominating set of size at most 2n/5.

▶ Lemma 2.3 (Dominating Sets in Regular Graphs [1, 33]). Any d-regular graph on n vertices
has a dominating set of size at most (Hd+1/(d + 1)) n.

▶ Lemma 2.4 (Dominating Set Algorithm). Let G′ be a graph obtained by starting with G,
and repeatedly deleting vertices of degree one until no vertices of degree one remain. Suppose
at most n/5 unit-degree vertices were deleted from G to produce G′. Then a minimum-size
dominating set of G′ can be found in O∗(2m−3n/5) time and polynomial space.

Lemma 2.4 is proved in the full version of this paper.

Finite Field Arithmetic

Throughout, we work with polynomials and matrices over a field F = F2ℓ of characteristic
two, where ℓ = poly(n) is sufficiently large. Arithmetic operations over F take poly(n) time.
All elements a ∈ F satisfy a2ℓ = a. Consequently, given any element a ∈ F, we can compute
its unique square root as a2ℓ−1 by repeated squaring in poly(n) time.

Polynomials

Let P (X) be a polynomial over a set of variables X = {x1, · · · , xn}. A monomial m is a
product m = xm1

1 · · · xmn
n for some nonnegative integers m1, · · · , mn. A monomial m is

multilinear if mi ≤ 1 for each i ∈ [n]. We say m appears in the polynomial P if the coefficient
of m in P is nonzero. We define the support of m to be the set of indices

supp(m) = {i ∈ [n] | mi > 0}

of variables which appear with positive degree in m.
Similarly, we define the odd support of m to be the set

osupp(m) = {i ∈ [n] | mi ≡ 1 mod 2}

of indices of variables which appear with odd degree in m. By definition, osupp(m) ⊆ supp(m)
for all monomials m.

The degree of a monomial m = xm1
1 · · · xmn

n is defined to be deg(m) = m1 + · · · + mn.

Given S ⊆ [n], we define the degree of m restricted to the variables indexed by S to be∑
i∈S

mi.

The total degree (or just degree) of P is defined to be

deg P = max
m

deg(m)

where the maximum is taken over all monomials m with nonzero coefficient in P . We say
that a polynomial P is homogeneous if deg(m) = deg P for all monomials m in P .

We recall the Lagrange Interpolation formula, which allows one to recover coefficients of
a low degree univariate polynomial from a small number of evaluations of that polynomial.

S. Akmal and T. Koana 7:7

▶ Proposition 2.5 (Lagrange Interpolation). Let P (z) be a univariate polynomial of degree
less than n. Suppose that P (zi) = pi for distinct z1, · · · , zn ∈ F. Then

P (z) =
∑
i∈[n]

pi

∏
j∈[n]\{i}

z − zj

zi − zj
.

So given n evaluations of P at distinct points, we can compute all the coefficients of P (z) in
polynomial time.

We also record the following observation, proven for example in [30, Theorem 7.2], which
shows that to test whether a low degree polynomial P is nonzero, it suffices to check whether
a random evaluation of P over a sufficiently large field is nonzero.

▶ Proposition 2.6 (Schwartz-Zippel Lemma). Let P be a nonzero polynomial over a finite
field F of degree at most d. If each variable of P is assigned an independent, uniform random
value from F, then the corresponding evaluation of P is nonzero with probability 1 − d/|F|.

Matrices

Given a matrix A and sets of rows I and columns J , we let A[I, J] denote the submatrix
of A restricted to rows in I and columns in J . We let A[I, ·] denote the submatrix of A

restricted to rows in I but using all columns, and A[·, J] denote the submatrix of A restricted
to columns in J but using all rows. If the rows and column sets of A are identical, we write
A[S] as shorthand for A[S, S]. We let O denote the all-zeros matrix, whose dimensions will
always be clear from context. We let A⊤ denote the transpose of A. A matrix A is symmetric
if A = A⊤, and skew-symmetric if it is symmetric and has zeros along its main diagonal (we
employ this definition because we work over characteristic two).

If A is a square matrix, we let det A denote the determinant of A.
Given a set V , a perfect matching on V is a partition of V into sets of two elements each.

We let Π(V) denote the set of perfect matchings on V . Given a skew-symmetric matrix A

with rows and columns indexed by a set V , we define the Pfaffian of A to be

Pf A =
∑

M∈Π(V)

∏
{u,v}∈M

A[u, v]. (2)

The standard definition for Pfaffians involves a sign term (see e.g., [31, Section 7.3.2]), which
we ignore here because we work over a field of characteristic two. It is well known that
for all skew-symmetric A, we have det A = (Pf A)2 (see e.g., [31, Proposition 7.3.3] for
a proof). Consequently, the Pfaffian of matrix A over the field F2ℓ can be computed in
poly(n, ℓ) ≤ poly(n) time by using the equation Pf A =

√
det A = (det A)2ℓ−1 .

We record the following useful facts for computation with Pfaffians and determinants.

▶ Proposition 2.7 (Direct Sums). For any skew-symmetric matrices A1 and A2, we have

Pf
(

A1 O

O A2

)
= (Pf A1) (Pf A2)

over a field of characteristic two.

Proposition 2.7 is proved in the full version of this paper.

▶ Proposition 2.8 (Ishikawa-Wakayama Formula). For a skew-symmetric n × n-matrix A and
a k × n-matrix B with k ≤ n, we have

Pf BAB⊤ =
∑

S∈([n]
k)

det B[·, S] Pf A[S].

STACS 2025

7:8 Faster Edge Coloring by Partition Sieving

Proposition 2.8 is due to [22] (see [23, Section 4.3] for a recent alternate proof).

Matroids

A matroid is a pair M = (X, I), consisting of a ground set X and a collection I of subsets
of X called independent sets, satisfying the following axioms:
1. ∅ ∈ I.
2. If B ∈ I and A ⊂ B, then A ∈ I.
3. For any A, B ∈ I with |A| < |B|, there exists an element b ∈ B \ A such that A ∪ {b} ∈ I.

A maximal independent set in a matroid M is called a basis. It is well known that all
bases of M have the same size r, which is referred to as the rank of M. We say S ⊆ V spans
M if S is a superset of a basis of M. If there exists a matrix A with column set X such
that for every S ⊆ X, the set S is independent in M if and only if A[·, S] has full rank, then
we say that M is a linear matroid represented by A. Provided we work over a large enough
field of size poly(|X|), it is known that if M is linear, then it can be represented by a matrix
whose number of rows equals the rank of M (see e.g., [26] or [28, Section 3.7]).

Given matroids M1, . . . , Mk over disjoint ground sets X1, . . . , Xk respectively, we define
the direct sum

M =
k⊕

i=1
Mi

of these matroids to be the ground set X = X1 ⊔ · · · ⊔ Xk together with the family I of
subsets S of X with the property that S ∩ Xi is independent in Mi for all i ∈ [k]. It is well
known that M is a matroid as well, whose rank is equal to the sum of the ranks of the Mi.

The following result lets us represent direct sums of linear matroids [28, Section 3.4].

▶ Proposition 2.9 (Matroid Sum). Given linear matroids M1, . . . , Mk represented by matrices
A1, . . . , Ak respectively, their direct sum is represented by the block-diagonal matrix

A =

A1 O . . . O

O A2 . . . O
...

...
. . .

...
O O . . . Ak

 .

In our Edge Coloring algorithm, we make use of two simple types of matroids: uniform
and partition matroids. Given a ground set X and a nonnegative integer r, the uniform
matroid over X of rank r has as its independent sets all subsets of X of size at most r.

▶ Proposition 2.10 (Uniform Matroid Representation [28, Section 3.5]). Given a set X, a
nonnegative integer r, and a field F with |F| > |X|, we can construct an r × |X| matrix
representing the uniform matroid over X of rank r in poly(|X|) time.

Given a set X partitioned X = X1 ⊔ · · · ⊔ Xk into parts Xi, and a list of nonnegative
integer capacities c1, . . . , ck, the partition matroid M over the ground set X for this partition
and list of capacities has as its independent sets all subsets S ⊆ X satisfying |S ∩ Xi| ≤ ci for
all i ∈ [k]. Equivalently, M is the direct sum of uniform matroids of rank ci over Xi for all
i ∈ [k]. By definition, M has rank r = (c1 + · · · + ck). By Propositions 2.9 and 2.10 we see
that we can efficiently construct representations of partition matroids [28, Proposition 3.5].

▶ Proposition 2.11 (Partition Matroid Representation). Given a partition matroid M over X

of rank r, and a field F with |F| > |X|, we can construct an r × |X| matrix representing M
in poly(|X|) time.

S. Akmal and T. Koana 7:9

3 Polynomial Sieving

In this section, we develop faster algorithms for a certain monomial detection problem. This
is our main technical result, which allows us to obtain faster algorithms for Edge Coloring
and List Edge Coloring. We recall the following well-known sieving technique:

▶ Proposition 3.1 (Inclusion-Exclusion). Let P (X) be a polynomial over a field of characteristic
two, with variable set X = {x1, · · · , xn}. Fix T ⊆ X. Let Q(X) be the polynomial consisting
of all monomials (with corresponding coefficients) in P that are divisible by

∏
x∈T x. Then

Q =
∑
S⊆T

PS

where PS is the polynomial obtained from P by setting xi = 0 for all i ∈ S.

See [35, Lemma 2] for a proof of Proposition 3.1.
Combining Propositions 2.5 and 3.1, we obtain the following result.

▶ Lemma 3.2 (Coefficient Extraction). Let P (X) be a polynomial over a field of characteristic
two, with variable set X = {x1, · · · , xn}. For T ⊆ X, let Q(X \ T) be the coefficient of∏

x∈T x in P (X), viewed as a polynomial over the variable set X \ T . Then we can evaluate
Q(X \ T) at a point as a linear combination of 2|T | poly(n) evaluations of P (X).

Proof. Fix a subset T ⊆ X. Let F be the polynomial with variable set X ∪ {z} obtained by
substituting each variable x ∈ T with xz in P . Let G(X) be the coefficient of z|T | in F . By
definition of F , G is the polynomial obtained by taking the monomials in P whose degree
restricted to T equals |T |. By Proposition 2.5, we can compute G(X) at any point as a linear
combination of poly(n) evaluations of P .

By definition, Q(X \ T) is the polynomial obtained by taking monomials of G(X) that
are divisible by

∏
x∈T x, and then setting all variables in T equal to 1. So by Proposition 3.1

we can evaluate Q(X \ T) as the sum of 2|T | evaluations of G. Then by the conclusion of
the previous paragraph, we get that we can evaluate Q(X \ T) at any point as a linear
combination of 2|T | poly(n) evaluations of P as claimed. ◀

The inclusion-exclusion principle allows us to sieve for the multilinear term in a polynomial
that is the product of all its variables. This was extended to the parameterized setting, where
the goal is to sieve for multilinear terms of degree k in O∗(2k) time [7, 10, 36], and then
further extended to multilinear monomial detection in the matroid setting [16].

▶ Lemma 3.3 (Basis Sieving [16, Theorem 1.1]). Let P (X) be a homogeneous polynomial
of degree k over a field F of characteristic 2, and let M = (X, I) be a matroid on X of
rank k, with a representation over F given. Then there is a randomized algorithm running in
O∗(2k) time and polynomial space, which determines with high probability if P (X) contains
a multilinear monomial m such that supp(m) is a basis of M.

Moreover, [16] introduced a variant of sieving that takes the odd support into account.
This tool is key to our exponential speed-up for the Edge Coloring problem.

▶ Lemma 3.4 (Odd Sieving [16, Theorem 1.2]). Let P (X) be a polynomial of degree d over a
field F of characteristic 2, and let M = (X, I) be a matroid on X of rank k, represented by
a k × n matrix over F. Then using O∗(d2k) evaluations of P (X) and polynomial space, we
can determine if P (X) contains a monomial m such that osupp(m) spans M.

STACS 2025

7:10 Faster Edge Coloring by Partition Sieving

Let P (X) be a homogeneous polynomial of degree d in variables X = {x1, . . . , xn}.
Consider a partition X = X1 ⊔ · · · ⊔ Xp into parts Xi. Let c1, . . . , cp ≥ 0 be integers with

c1 + · · · + cp = d.

Let M be the partition matroid defined by the partition of X into the parts Xi and the
capacities ci for i ∈ [p]. We say P (X) is compatible with M if for every i ∈ [p] and every
monomial m in P , the degree of m restricted to Xi equals ci ≥ 1.

The following result gives an improvement over Lemma 3.3 for polynomials that are
compatible with partition matroids.

▶ Theorem 3.5 (Partition Sieving). Let P (X) be a polynomial of degree d over a field F of
characteristic 2 with |F| > d, and let M = (X, I) be a partition matroid on X of rank d with
p partition classes. If P is compatible with M, then there is a randomized algorithm which
runs in O∗(2d−p) time and polynomial space that determines with high probability if P (X)
contains a monomial m such that supp(m) is a basis of M.

Proof. Let X = X1 ⊔ · · · ⊔ Xp be the partition and c1, . . . , cp be the capacities defining the
partition matroid M. By assumption, ci ≥ 1 for all i ∈ [p]. Let M′ be the partition matroid
over X defined by the same partition as M, but with capacities (ci − 1) for i ∈ [p]. From
this construction, M′ has rank (d − p).

Our algorithm to determine whether P (X) contains a monomial whose support spans M
works as follows. By Proposition 2.11, a linear representation of M over F can be computed
in polynomial time. We run the odd sieving algorithm of Lemma 3.4 with P and M′ to
determine in O∗(2d−p) time whether P contains a monomial whose odd support spans M′.
We return YES if such a monomial exists, and return NO otherwise. We now prove that this
algorithm is correct.

First, suppose that P (X) has a monomial m whose support supp(m) is a basis of M.
By the compatibility condition, m is multilinear, which implies that supp(m) = osupp(m).
Since osupp(m) is a basis of M, and thus spans M, it follows that osupp(m) spans M′.

Conversely, suppose P (X) has a monomial m such that osupp(m) spans M′. We claim
that supp(m) spans M. Indeed, since osupp(m) spans M′, the set osupp(m) contains at
least (ci − 1) variables of Xi for each i ∈ [p]. Hence its superset supp(m) contains at least
(ci − 1) variables of each part Xi as well.

▷ Claim 3.6. The set supp(m) contains exactly ci variables of each part Xi.

Proof. Suppose to the contrary that supp(m) does not contain cj variables of Xj for some
index j ∈ [p]. Then m contains exactly (cj − 1) variables of Xj . Since P is compatible with
M, the monomial m has degree exactly cj when restricted to Xj . The only way this is
possible is if cj ≥ 2, and m has exactly (cj − 2) variables in Xj of degree one and a single
variable in Xj with degree two. The variable of degree two does not show up in the odd
support of m, which implies that osupp(m) has at most (cj − 2) elements, which contradicts
the assumption that osupp(m) spans M′. ◁

By Claim 3.6, the set supp(m) has exactly ci variables from Xi for each i ∈ [p]. Since P

is compatible with M, this implies that m has degree one in every variable in X. Hence
supp(m) = osupp(m) spans M, as claimed.

This shows that the algorithm is correct, and proves the desired result. ◀

S. Akmal and T. Koana 7:11

4 Coloring Algorithm Template

Recall that in the List Edge Coloring problem we are given a graph G = (V, E), an integer
k ≥ 1, and lists Le ⊆ [k] of colors for every edge e ∈ E, and are tasked with determining if
G contains an assignment of colors c(e) ∈ Le to each edge such that no two edges incident
to the same vertex are assigned the same color. We call such an assignment a proper edge
coloring of G with respect to the lists Le, or just a proper list edge coloring if the Le are
clear from context.

For each i ∈ [k], let Gi = (V, Ei) be the subgraph of G, where we define Ei ⊆ E to be
the set of all edges e in the graph which have i ∈ Le available as a color. Let F denote the
collection of k-tuples (M1, . . . , Mk) of matchings such that
1. for all i ∈ [k], Mi is a matching in Gi, and
2. for all vertices v ∈ V , v appears as the endpoint of exactly degG(v) of the Mi matchings.

Observe that G admits a proper list edge coloring if and only if F contains a tuple of
edge-disjoint matchings. Indeed, suppose G admits a proper list edge coloring. For each
i ∈ [k], the set of edges assigned color i must be a matching Mi ⊆ Ei in G. Moreover,
every edge is assigned a color, so each vertex v appears as an endpoint in degG(v) of these
matchings, hence the matchings form an edge-disjoint tuple in F . Conversely, given an
edge-disjoint tuple (M1, . . . , Mk) ∈ F , assigning the edges in Mi color i gives a color to every
edge in G by condition 2 above, and thus yields a proper list edge coloring by condition 1.

The basic idea of our algorithmic template is to construct a polynomial P which enumerates
a certain subfamily C ⊆ F . We then argue that P contains a multilinear monomial satisfying
certain matroid constraints if and only if C contains a tuple of edge-disjoint matchings. Using
similar reasoning to the previous paragraph, this then lets us solve List Edge Coloring
by running monomial detection algorithms on P .

4.1 Enumerating Matchings
In this section, we design a polynomial P whose monomials enumerate tuples of matchings
satisfying special conditions. To construct P , we first define certain polynomial matrices.

For each edge e ∈ E we introduce a variable xe, and for each pair (e, i) ∈ E × [k] we
introduce a variable yei. Let X be the set of xe variables and Y be the set of yei variables.

For each i ∈ [k], define Ai to be the matrix with rows and columns indexed by V with

Ai[u, w] = Ai[w, u] =
{

xeyei if e = {u, w} ∈ Ei,

0 otherwise.

For each i ∈ [k], define Vi = {vi | v ∈ V } to be a copy of V . Let

W =
k⊔

i=1
Vi

be the union of these copies. Let A be the symmetric matrix with rows and columns indexed
by W , defined by taking

A =

A1 O . . . O

O A2 . . . O
...

...
. . .

...
O O . . . Ak

 (3)

and identifying Vi as the row and column set indexing Ai.

STACS 2025

7:12 Faster Edge Coloring by Partition Sieving

Note that A is (kn) × (kn), and over a field of characteristic two is skew-symmetric.
For each vertex v ∈ V , let Sv = {vi | i ∈ [k]} be the set of k copies of v.
For each vertex v, let Mv be a linear matroid of rank degG(v) over Sv. These matroids

will be specified later on, in our algorithms for Edge Coloring and List Edge Coloring.
Let W be the direct sum

W =
⊕
v∈V

Mv (4)

of these matroids.
By Proposition 2.7 the matroid W is linear and has rank equal to the sum of the degrees

of vertices in G, which is 2m. Let B be a 2m × |W | matrix representing W.
Let C be the collection of k-tuples of matchings (M1, . . . , Mk) in G such that

1. all edges in Mi have lists containing the color i,
2. every vertex v is incident to exactly degG(v) edges across the matchings Mi, and
3. for each vertex v, the set of copies vi taken over all i such that v appears as an endpoint

of an edge in Mi forms an independent set in Mv.
We define the polynomial

P (X, Y) = Pf BAB⊤. (5)

The next result shows that P enumerates tuples of matchings from C.

▶ Lemma 4.1 (Enumerating Matchings). We have

Pf BAB⊤ =
∑

(M1,...,Mk)∈C

cM1,...,Mk

∏
i∈[k]

∏
e∈Mi

yei

(∏
e∈M1∪···∪Mk

xe

)
,

where each cM1,...,Mk
̸= 0 is a constant depending only on M1, . . . , Mk.

Proof. Let U ⊆ W be a subset of W of size 2m. By Proposition 2.8, we have

Pf BAB⊤ =
∑

U∈(W
2m)

det B[·, U] Pf A[U]. (6)

By Equation (3) and Proposition 2.7, for every subset U ⊆ W of size 2m we have

Pf A[U] =
∏

i∈[k]

Pf Ai[U ∩ Vi].

Substituting the above equation into Equation (6) yields

Pf BAB⊤ =
∑

U∈(W
2m)

det B[·, U]
∏

i∈[k]

Pf Ai[U ∩ Vi].

Recall that given a graph H, we let Π(H) denote the set of perfect matchings of H. By
expanding out the definition of Pf Ai[U ∩ Vi] in the above equation, we see that

Pf BAB⊤ =
∑

U∈(W
2m)

det B[·, U]
∏

i∈[k]

∑
Mi∈Π(G[Ui])

∏
e∈Mi

Ai[e],

S. Akmal and T. Koana 7:13

where Ui ⊆ V is defined as a copy of U ∩ Vi, i.e., Ui = {v | vi ∈ U ∩ Vi}. By interchanging
the order of the product and the summation, we see that the above is equivalent to summing
over all collections (M1, . . . , Mk), where Mi is a matching in G[Ui] for each i ∈ [k]:

Pf BAB⊤ =
∑

U∈(W
2m)

det B[·, U]
∑

(M1,...,Mk)

∏
i∈[k]

∏
e∈Mi

Ai[e].

Let M⃗ = (M1, . . . , Mk) be a tuple such that the summand corresponding to M⃗ in the
above equation appears with nonzeo coefficient in Pf BAB⊤. Since Ai[e] is nonzero if and
only if i ∈ Le, the tuple M⃗ meets condition 1 in the definition of C. By the definition of B,
we have det B[·, U] ̸= 0 if and only if U ∩ Sv is independent in Mv for every vertex v ∈ V .
Thus M⃗ meets condition 3 the definition of C. Since Mv has rank degG(v) for each vertex
v, U has size 2m, and the sum of degrees of vertices in G is 2m, we see that the only way
for U ∩ Sv to be independent in Mv for all v is if in fact |U ∩ Sv| = degG(v) always. So M⃗

satisfies condition 2 from the definition of C.
Thus, the nonzero terms in the above sum correspond precisely to tuples M⃗ ∈ C, which

proves the desired result. ◀

4.2 Partition Sieving With Dominating Sets
In this section, we describe a generic way of going from a dominating set in G to a certain
partition matroid D. After defining this D, we will apply Theorem 3.5 to P and D to achieve
a fast algorithm for detecting a multilinear monomial in P .

Recall that a dominating set of a graph G is a subset of vertices D such that every vertex
in G is either in D or adjacent to a vertex in D.

Fix a dominating set D ⊆ V of the input graph G. Let V ′ = V \ D. Let E′ be the set of
edges in G with one endpoint in D and one endpoint in V ′, and X ′ = {xe | e ∈ E′} be the
corresponding set of variables. For each v ∈ V ′, let

∂(v) = {e ∈ E′ | e ∋ v}

be the set of edges incident to v which connect v to a vertex in D. By definition, we have a
partition

E′ =
⊔

v∈V ′

∂(v).

Let D be the partition matroid over E′ with respect to the above partition, and with
capacities cv = degE′(v) for each v ∈ V ′, where E′ is viewed as a subgraph of G. Since D is
a dominating set, every vertex v ∈ V ′ is adjacent to some node in D, and thus the capacities
cv ≥ 1 are all positive.

We now use this partition matroid to sieve over the polynomial P , defined in Equation (5).

▶ Lemma 4.2 (Accelerated Multilinear Monomial Detection). There is a randomized algorithm
that determines with high probability whether P (X, Y) has a monomial divisible by

∏
e∈E xe,

running in O∗(2m−|V ′|) time and polynomial space.

Proof. Let Q(X ′, Y) be the coefficient of∏
e∈E\E′

xe

in P (X, Y). By definition, P (X, Y) contains a monomial divisible by
∏

e∈E xe if and only if
Q(X ′, Y) contains a monomial divisible by

∏
e∈E′ xe.

STACS 2025

7:14 Faster Edge Coloring by Partition Sieving

Let R(Y) be the coefficient of
∏

e∈E′ xe in Q, viewed as a polynomial with variable set Y .
Note that the total degree of R(Y) is poly(n). Take a uniform random assignment over F to
the variables in Y . By Proposition 2.6, if R is nonzero, then it remains nonzero with high
probability after this evaluation, provided we take |F| = poly(n) to be sufficiently large. For
the rest of this proof, we work with polynomials P, Q, R after this random evaluation, so
that P is a polynomial in X, Q is a polynomial in X ′, and R is a field element.

By the discussion in the first paragraph of this proof, it suffices to check whether Q(X ′)
contains the monomial

∏
e∈E′ xe in O∗(2m−|V ′|) time and polynomial space.

We observe the following helpful property of Q.

▷ Claim 4.3. The polynomial Q(X ′) is compatible with the matroid D.

Proof. Take an arbitrary monomial m in Q. By definition, there is a corresponding monomial

m′ = m ·
∏

e∈E\E′

xe

in P . By Lemma 4.1, for every v ∈ V , m′ has degree exactly degG(v) when restricted to
the variables xe corresponding to edges e containing v. Consequently, for all v ∈ V ′, m has
degree exactly

degG(v) − |{e ̸∈ E′ | e ∋ v}| = degE′(v)

when restricted to variables xe with e ∈ ∂(v). Since this holds for arbitrary monomials m in
Q, the polynomial Q is compatible with the partition matroid D as claimed. ◁

By Lemma 4.1, P , viewed as a polynomial in X, is homogeneous of degree |E| = m.
Hence Q, viewed as a polynomial in X ′, is homogeneous of degree d = |E′|. By Claim 4.3, Q

is compatible with D. Since D is a partition matroid with positive capacities and p = |V ′|
parts in its underlying partition, by Theorem 3.5 we can determine whether Q contains a
monomial m in the X ′ variables such that supp(m) is a basis of D using

O∗(d2d−p) ≤ O∗(2|E′|−|V ′|) (7)

evaluations of Q. Since E′ is the unique basis of D, this means we can test whether Q(X ′)
contains the monomial

∏
e∈E′ xe using O∗(2|E′|−|V ′|) evaluations of Q(X ′).

By Lemma 3.2, Q(X ′) can be evaluated at any point by computing a linear combination
of O∗(2m−|E′|) evaluations of P (X). Combining this observation with Equation (7), we get
that we can determine whether Q(X ′) contains the monomial

∏
e∈E′ xe by computing a

linear combination of

O∗(2m−|E′| · 2|E′|−|V ′|) ≤ O∗(2m−|V ′|)

evaluations of P (X, Y). Each evaluation of P (X, Y) = Pf BAB⊤ takes polynomial time, so
the desired result follows. ◀

5 Edge Coloring Algorithm

In this section, we present our algorithm for Edge Coloring and prove Theorems 1.1
and 1.2. Recall that in this problem, we are given an input graph G with n vertices, m edges,
and maximum degree ∆. To solve the problem, it suffices to determine whether G admits a
proper edge coloring using at most ∆ colors (i.e., whether χ′(G) ≤ ∆).

S. Akmal and T. Koana 7:15

5.1 Removing Low Degree Vertices
▶ Lemma 5.1 (Unit-Degree Deletion). Let G be a graph with a vertex v of degree one. Let
G′ be the graph obtained by deleting v from G. Then χ′(G′) ≤ ∆ if and only if χ′(G) ≤ ∆.

Proof. If G admits a proper edge coloring with ∆ colors, then this coloring is also a proper
edge coloring for G′ with ∆ colors.

Conversely, suppose G′ admits a proper edge coloring with ∆ colors. Since degG(v) = 1,
there is a unique vertex w in G that v is adjacent to. Then

degG′(w) ≤ degG(w) − 1 ≤ ∆ − 1

because G has maximum degree ∆. So vertex w has edges using at most (∆ − 1) distinct
colors incident to it. Taking the coloring of G′ and assigning edge {v, w} a color not used by
the edges incident to w in G′ recovers a proper edge coloring of G with at most ∆ colors. ◀

5.2 Instantiating the Template
Recall the definitions from Section 4. We view the Edge Coloring problem as a special
case of List Edge Coloring, where k = ∆ and every edge e is assigned the list Le = [∆].
For each vertex v, we set Mv to be the uniform matroid over Sv of rank degG(v). Then by
Equation (4), W is the partition matroid over W defined by the partition

W =
⊔

v∈V

Sv

and the capacities cv = degG(v) for parts Sv. By Proposition 2.11, we can construct the
matrix B representing W in polynomial time. In this case, condition 3 is identical to condition
2 in the definition of the collection C.

▶ Lemma 5.2 (Characterization by Polynomials). We have χ′(G) ≤ ∆ if and only if the
polynomial P (X, Y) has a monomial divisible by

∏
e∈E xe.

Proof. Suppose P (X, Y) = Pf BAB⊤ contains a monomial divisible by
∏

e∈E xe. Since P

is homogeneous of degree m in the X variables, by Lemma 4.1 this means there exists a
∆-tuple of edge-disjoint matchings (M1, . . . , M∆) ∈ C, such that every edge of G appears in
some matching Mi. Consequently, assigning the edges in Mi color i yields a proper edge
coloring of G using at most ∆ colors.

Conversely, suppose G has a proper edge coloring with ∆ colors. Without loss of generality,
let the set of colors used be [∆]. For each i ∈ [∆], let Mi be the set of edges assigned color i.
Since this is a proper edge coloring, each Mi is a matching in G. Since every edge is assigned
a unique color, each vertex v has exactly degG(v) edges across the matchings Mi. Hence
(M1, . . . , M∆) ∈ C. Then by Lemma 4.1, P contains a monomial divisible by

∏
e∈E xe. ◀

We can now prove Lemma 1.4 as a simple application of Lemma 5.2.

▶ Lemma 1.4. There is a randomized algorithm that, given a graph G on n vertices and m

edges and a dominating set D of G, solves Edge Coloring on G with high probability and
one-sided error in O∗(2m−n+|D|) time and polynomial space.

Proof. Let G have vertex set V and edge set E, and let V ′ = V \ D. By Lemma 5.2, we
have χ′(G) ≤ ∆ if and only if P (X, Y) has a monomial divisible by

∏
e∈E xe. By Lemma 4.2,

we can determine whether such a monomial exists in

O∗(2m−|V ′|) ≤ O∗(2m−n+|D|)

time and polynomial space, as desired. ◀

STACS 2025

7:16 Faster Edge Coloring by Partition Sieving

Having established Lemma 1.4, we are ready to present out Edge Coloring algorithms.

▶ Theorem 1.1. There is a randomized algorithm which solves Edge Coloring with high
probability and one-sided error in O∗(2m−3n/5) time and polynomial space.

Proof. To solve Edge Coloring, it suffices to determine whether χ′(G) ≤ ∆.
If G has a vertex of degree one, delete it. Keep performing such deletions, until we are

left with a graph containing no vertices of degree one. By repeated application of Lemma 5.1,
the resulting graph admits a proper edge coloring using ∆ colors if and only if χ′(G) ≤ ∆. If
the resulting graph has constant size, we can determine this trivially. Each such deletion
decreases the number of edges and vertices in the graph by one, and thus also decreases the
value of (m − 3n/5). Consequently, to show the desired result, we may assume without loss
of generality that G has minimum degree two, and at least eight vertices.

Since G has minimum degree two and n ≥ 8 nodes, by Lemma 2.2 the graph has a
dominating set of size at most 2n/5. By Lemma 2.4, we can then find a dominating set D in
G with |D| ≤ 2n/5 in O∗(2m−3n/5) time and polynomial space. Hence by Lemma 1.4 we
can solve Edge Coloring on G in O∗(2m−3n/5) time and polynomial space, as desired. ◀

▶ Theorem 1.2. For each integer d ≥ 6, there is a randomized algorithm that solves Edge
Coloring with high probability and one-sided error on d-regular graphs in O∗(2m−αdn) time
and polynomial space, for αd = 1 − Hd+1/(d + 1).

Proof. Let G be the input graph. By exhaustive search over all subsets of vertices, we can
find a minimum-size dominating set D of G in O∗(2n) time and polynomial space. Being
d-regular, G has m = dn/2 ≥ 3n edges, so we find D in O∗(2m−n) ≤ O∗(2m−αdn) time.

Since G is d-regular, by Lemma 2.3 we must have |D| ≤ n(Hd+1/(d + 1)). Then by
Lemma 1.4 we can solve Edge Coloring on G in

O∗(2m−n+|D|) ≤ O∗(2m−αdn)

time as claimed. ◀

6 Conclusion

In this paper, we presented the first algorithms for Edge Coloring and List Edge
Coloring which run in faster than O∗(2m) time while using only polynomial space. Our
algorithm is based off a partition sieving procedure that works over polynomials of degree
d and partition matroids with p parts. We showed how to implement this sieving routine
in O∗(2d−p) time when the polynomial is in some sense compatible with the matroid, an
improvement over the O∗(2d) runtime that arose in previous techniques.

Overall, we solve Edge Coloring in faster than O∗(2m) time by
Step 1 designing a polynomial P enumerating matchings meeting certain degree constraints,
Step 2 finding a dominating set D of size at most 2n/5 in the input graph, and
Step 3 applying partition sieving with a partition matroid on p = |D| parts.

Implementing step 2 above was possible for Edge Coloring because we could assume
that the input graph had minimum degree two without loss of generality, and such graphs on
n ≥ 8 nodes always have dominating sets of size at most 2n/5. For List Edge Coloring we
cannot make this assumption, but nonetheless implement a variant of step 2 by identifying
a subgraph with minimum degree two and using extension matroids to handle unit-degree
vertices for free. For all sufficiently large n, it is also known that graphs on n nodes with
minimum degree three have dominating sets of size at most 3n/8 [34]. If degree-two vertices
could somehow be “freely removed” from the input graph just like unit-degree vertices can,

S. Akmal and T. Koana 7:17

one could use this bound on the dominating set to solve coloring problems faster. More
general connections between the minimum degree of a graph and the minimum size of its
dominating set have also been studied [20].

Understanding the precise time complexity of Edge Coloring and its variants remains
an interesting open research direction. Is Edge Coloring solvable in O∗(1.9999m) time, or
at least in O∗(2m−n) time? Establishing any nontrivial lower bounds for Edge Coloring
would also be very interesting. The reductions from [21] imply that solving Edge Coloring
in graphs with maximum degree ∆ = 3 requires 2Ω(n) time, assuming the Exponential Time
Hypothesis (ETH), a standard hypothesis from fine-grained complexity. Does ETH similarly
imply a 2Ω(m) or even a 2Ω(n log n) time lower bound for Edge Coloring in dense graphs
(this question was previously raised in [25, Open problem 4.25])?

References
1 Vladimir I Arnautov. Estimation of the exterior stability number of a graph by means of the

minimal degree of the vertices. Prikl. Mat. i Programmirovanie, 11(3-8):126, 1974.
2 Sepehr Assadi, Soheil Behnezhad, Sayan Bhattacharya, Martín Costa, Shay Solomon, and

Tianyi Zhang. Vizing’s theorem in near-linear time, 2024. arXiv:2410.05240.
3 Alkida Balliu, Sebastian Brandt, Fabian Kuhn, and Dennis Olivetti. Distributed edge coloring

in time polylogarithmic in ∆. In Proceedings of the 2022 ACM Symposium on Principles
of Distributed Computing, PODC ’22, pages 15–25. ACM, July 2022. doi:10.1145/3519270.
3538440.

4 Lowell W Beineke. Derived graphs and digraphs. Beiträge zur graphentheorie, pages 17–33,
1968.

5 Anton Bernshteyn. A fast distributed algorithm for (∆ + 1)-edge-coloring. Journal of
Combinatorial Theory, Series B, 152:319–352, January 2022. doi:10.1016/j.jctb.2021.10.
004.

6 Sayan Bhattacharya, Martín Costa, Nadav Panski, and Shay Solomon. Arboricity-Dependent
Algorithms for Edge Coloring. In Proceedings of the 19th Scandinavian Symposium and
Workshops on Algorithm Theory (SWAT 2024), volume 294 of Leibniz International Proceedings
in Informatics (LIPIcs), pages 12:1–12:15, Dagstuhl, Germany, 2024. Schloss Dagstuhl –
Leibniz-Zentrum für Informatik. doi:10.4230/LIPIcs.SWAT.2024.12.

7 Andreas Björklund. Determinant sums for undirected Hamiltonicity. SIAM Journal on
Computing, 43(1):280–299, 2014. doi:10.1137/110839229.

8 Andreas Björklund and Thore Husfeldt. Exact algorithms for exact satisfiability and num-
ber of perfect matchings. Algorithmica, 52(2):226–249, December 2007. doi:10.1007/
s00453-007-9149-8.

9 Andreas Björklund, Thore Husfeldt, Petteri Kaski, and Mikko Koivisto. Trimmed moebius
inversion and graphs of bounded degree. Theory of Computing Systems, 47(3):637–654, January
2009. doi:10.1007/s00224-009-9185-7.

10 Andreas Björklund, Thore Husfeldt, Petteri Kaski, and Mikko Koivisto. Narrow sieves for
parameterized paths and packings. Journal of Computer and System Sciences, 87:119–139,
2017. doi:10.1016/j.jcss.2017.03.003.

11 Andreas Björklund, Thore Husfeldt, and Mikko Koivisto. Set partitioning via inclusion-
exclusion. SIAM Journal on Computing, 39(2):546–563, 2009. doi:10.1137/070683933.

12 M Blank. An estimate of the external stability number of a graph without suspended vertices.
Prikl. Mat. i Programmirovanie, 10:3–11, 1973.

13 Jesper Makholm Byskov. Enumerating maximal independent sets with applications to graph
colouring. Operations Research Letters, 32(6):547–556, November 2004. doi:10.1016/j.orl.
2004.03.002.

14 Aleksander B. G. Christiansen, Eva Rotenberg, and Juliette Vlieghe. Sparsity-Parameterised
Dynamic Edge Colouring. In Proceedings of the 19th Scandinavian Symposium and Workshops
on Algorithm Theory (SWAT 2024), volume 294 of Leibniz International Proceedings in
Informatics (LIPIcs), pages 20:1–20:18, Dagstuhl, Germany, 2024. Schloss Dagstuhl – Leibniz-
Zentrum für Informatik. doi:10.4230/LIPIcs.SWAT.2024.20.

STACS 2025

https://arxiv.org/abs/2410.05240
https://doi.org/10.1145/3519270.3538440
https://doi.org/10.1145/3519270.3538440
https://doi.org/10.1016/j.jctb.2021.10.004
https://doi.org/10.1016/j.jctb.2021.10.004
https://doi.org/10.4230/LIPIcs.SWAT.2024.12
https://doi.org/10.1137/110839229
https://doi.org/10.1007/s00453-007-9149-8
https://doi.org/10.1007/s00453-007-9149-8
https://doi.org/10.1007/s00224-009-9185-7
https://doi.org/10.1016/j.jcss.2017.03.003
https://doi.org/10.1137/070683933
https://doi.org/10.1016/j.orl.2004.03.002
https://doi.org/10.1016/j.orl.2004.03.002
https://doi.org/10.4230/LIPIcs.SWAT.2024.20

7:18 Faster Edge Coloring by Partition Sieving

15 Ran Duan, Haoqing He, and Tianyi Zhang. Dynamic Edge Coloring with Improved Approx-
imation, pages 1937–1945. Society for Industrial and Applied Mathematics, January 2019.
doi:10.1137/1.9781611975482.117.

16 Eduard Eiben, Tomohiro Koana, and Magnus Wahlström. Determinantal sieving. In David P.
Woodruff, editor, Proceedings of the 2024 ACM-SIAM Symposium on Discrete Algorithms
(SODA 2024), pages 377–423. SIAM, 2024. doi:10.1137/1.9781611977912.16.

17 David Eppstein. Small Maximal Independent Sets and Faster Exact Graph Coloring, pages
462–470. Springer Berlin Heidelberg, 2001. doi:10.1007/3-540-44634-6_42.

18 Alexander Golovnev, Alexander S. Kulikov, and Ivan Mihajlin. Families with infants: Speeding
up algorithms for NP-hard problems using FFT. ACM Trans. Algorithms, 12(3):35:1–35:17,
2016. doi:10.1145/2847419.

19 David G. Harris. Distributed local approximation algorithms for maximum matching in graphs
and hypergraphs. In Proceedings of the 60th Annual Symposium on Foundations of Computer
Science (FOCS 2019), pages 700–724, 2019. doi:10.1109/FOCS.2019.00048.

20 Michael A. Henning. Bounds on domination parameters in graphs: a brief survey. Discuss.
Math. Graph Theory, 42(3):665–708, 2022. doi:10.7151/DMGT.2454.

21 Ian Holyer. The NP-completeness of edge-coloring. SIAM Journal on Computing, 10(4):718–
720, 1981. doi:10.1137/0210055.

22 Masao Ishikawa and Masato Wakayama. Minor summation formula of pfaffians. Linear and
Multilinear algebra, 39(3):285–305, 1995.

23 Tomohiro Koana and Magnus Wahlström. Faster algorithms on linear delta-matroids. arXiv
preprint arXiv:2402.11596, 2024. doi:10.48550/arXiv.2402.11596.

24 Eugene L. Lawler. A note on the complexity of the chromatic number problem. Inf. Process.
Lett., 5(3):66–67, 1976. doi:10.1016/0020-0190(76)90065-X.

25 Moshe Lewenstein, Seth Pettie, and Virginia Vassilevska Williams. Structure and hardness in P
(dagstuhl seminar 16451). Dagstuhl Reports, 6(11):1–34, 2016. doi:10.4230/DAGREP.6.11.1.

26 Daniel Lokshtanov, Pranabendu Misra, Fahad Panolan, and Saket Saurabh. Deterministic
truncation of linear matroids. ACM Transactions on Algorithms, 14(2):14:1–14:20, 2018.
doi:10.1145/3170444.

27 Carsten Lund and Mihalis Yannakakis. On the hardness of approximating minimization
problems. Journal of the ACM, 41(5):960–981, September 1994. doi:10.1145/185675.306789.

28 Dániel Marx. A parameterized view on matroid optimization problems. Theoretical Computer
Science, 410(44):4471–4479, 2009. doi:10.1016/j.tcs.2009.07.027.

29 William McCuaig and Bruce Shepherd. Domination in graphs with minimum degree two.
Journal of Graph Theory, 13(6):749–762, 1989. doi:10.1002/JGT.3190130610.

30 Rajeev Motwani and Prabhakar Raghavan. Randomized Algorithms. Cambridge University
Press, August 1995. doi:10.1017/cbo9780511814075.

31 Kazuo Murota. Matrices and matroids for systems analysis, volume 20. Springer Science &
Business Media, 1999.

32 Oystein Ore. Theory of graphs. In Colloquium Publications. American Mathematical Society,
1962.

33 Charles Payan. Sur le nombre d’absorption d’un graphe simple, 1975.
34 Bruce A. Reed. Paths, stars and the number three. Comb. Probab. Comput., 5:277–295, 1996.

doi:10.1017/S0963548300002042.
35 Magnus Wahlström. Abusing the Tutte matrix: An algebraic instance compression for the

K-set-cycle problem. In Proceedings of the 30th International Symposium on Theoretical
Aspects of Computer Science (STACS 2013), volume 20 of LIPIcs, pages 341–352. Schloss
Dagstuhl – Leibniz-Zentrum für Informatik, 2013. doi:10.4230/LIPICS.STACS.2013.341.

36 Ryan Williams. Finding paths of length k in O∗(2k) time. Information Processing Letter,
109(6):315–318, 2009. doi:10.1016/J.IPL.2008.11.004.

https://doi.org/10.1137/1.9781611975482.117
https://doi.org/10.1137/1.9781611977912.16
https://doi.org/10.1007/3-540-44634-6_42
https://doi.org/10.1145/2847419
https://doi.org/10.1109/FOCS.2019.00048
https://doi.org/10.7151/DMGT.2454
https://doi.org/10.1137/0210055
https://doi.org/10.48550/arXiv.2402.11596
https://doi.org/10.1016/0020-0190(76)90065-X
https://doi.org/10.4230/DAGREP.6.11.1
https://doi.org/10.1145/3170444
https://doi.org/10.1145/185675.306789
https://doi.org/10.1016/j.tcs.2009.07.027
https://doi.org/10.1002/JGT.3190130610
https://doi.org/10.1017/cbo9780511814075
https://doi.org/10.1017/S0963548300002042
https://doi.org/10.4230/LIPICS.STACS.2013.341
https://doi.org/10.1016/J.IPL.2008.11.004

Tropical Proof Systems: Between R(CP) and
Resolution
Yaroslav Alekseev #

Technion – Israel Institute of Technology, Haifa, Israel

Dima Grigoriev #

CNRS, Mathématique, Université de Lille, Villeneuve d’Ascq, 59655, France

Edward A. Hirsch #

Department of Computer Science, Ariel University, Israel

Abstract
Propositional proof complexity deals with the lengths of polynomial-time verifiable proofs for Boolean
tautologies. An abundance of proof systems is known, including algebraic and semialgebraic systems,
which work with polynomial equations and inequalities, respectively. The most basic algebraic
proof system is based on Hilbert’s Nullstellensatz [7]. Tropical (“min-plus”) arithmetic has many
applications in various areas of mathematics. The operations are the real addition (as the tropical
multiplication) and the minimum (as the tropical addition). Recently, [8, 17, 21] demonstrated a
version of Nullstellensatz in the tropical setting.

In this paper we introduce (semi)algebraic proof systems that use min-plus arithmetic. For
the dual-variable encoding of Boolean variables (two tropical variables x and x per one Boolean
variable x) and {0, 1}-encoding of the truth values, we prove that a static (Nullstellensatz-based)
tropical proof system polynomially simulates daglike resolution and also has short proofs for the
propositional pigeon-hole principle. Its dynamic version strengthened by an additional derivation
rule (a tropical analogue of resolution by linear inequality) is equivalent to the system Res(LP) (aka
R(LP)), which derives nonnegative linear combinations of linear inequalities; this latter system is
known to polynomially simulate Krajíček’s Res(CP) (aka R(CP)) with unary coefficients. Therefore,
tropical proof systems give a finer hierarchy of proof systems below Res(LP) for which we still do
not have exponential lower bounds. While the “driving force” in Res(LP) is resolution by linear
inequalities, dynamic tropical systems are driven solely by the transitivity of the order, and static
tropical proof systems are based on reasoning about differences between the input linear functions.
For the truth values encoded by {0, ∞}, dynamic tropical proofs are equivalent to Res(∞), which is
a small-depth Frege system called also DNF resolution.

Finally, we provide a lower bound on the size of derivations of a much simplified tropical
version of the Binary Value Principle in a static tropical proof system. Also, we establish the
non-deducibility of the tropical resolution rule in this system and discuss axioms for Boolean logic
that do not use dual variables. In this extended abstract, full proofs are omitted.

2012 ACM Subject Classification Theory of computation → Proof complexity

Keywords and phrases Cutting Planes, Nullstellensatz refutations, Res(CP), semi-algebraic proofs,
tropical proof systems, tropical semiring

Digital Object Identifier 10.4230/LIPIcs.STACS.2025.8

Related Version Full Version: https://eccc.weizmann.ac.il/report/2024/072/ [3]

Funding Edward A. Hirsch: This research was conducted with the support of the State of Israel,
the Ministry of Immigrant Absorption, and the Center for the Absorption of Scientists.

Acknowledgements The authors are very grateful to Dmitry Itsykson and Dmitry Sokolov for fruitful
discussions, and to Marc Vinyals for his inspiring Proof Complexity Zoo project and for pointing to
the recent work of Gläser and Pfetsch.

© Yaroslav Alekseev, Dima Grigoriev, and Edward A. Hirsch;
licensed under Creative Commons License CC-BY 4.0

42nd International Symposium on Theoretical Aspects of Computer Science (STACS 2025).
Editors: Olaf Beyersdorff, Michał Pilipczuk, Elaine Pimentel, and Nguyễn Kim Thắng;
Article No. 8; pp. 8:1–8:20

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:tolstreg@gmail.com
https://orcid.org/0000-0003-3196-6919
mailto:dmitry.grigoryev@univ-lille.fr
mailto:edwardh@ariel.ac.il
https://orcid.org/0009-0003-2779-5536
https://doi.org/10.4230/LIPIcs.STACS.2025.8
https://eccc.weizmann.ac.il/report/2024/072/
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

8:2 Tropical Proof Systems: Between R(CP) and Resolution

1 Introduction and Organization of this Extended Abstract

This paper introduces tropical proof systems, that is, proof systems that use min-plus
arithmetic. To the best of our knowledge, these are the first tropical proof systems described
in the literature though one of them is equivalent to a known proof system Res(LP) [19], which
is a weakened version of Res(CP) (R(CP)) [23], these systems are working with disjunctions
of inequalities. Thus our proof systems not only introduce a new paradigm, but also give a
scale of proof systems between Res(CP) and resolution (this scale is visualised in Fig. 1).

In this extended abstract, we briefly recall the standard setup for propositional proof
complexity and survey previous results concerning relevant proof systems (Sect. 2), recall
tropical arithmetic (Sect. 3) and introduce tropical proof systems (Sect. 4), survey our results
(Sect. 6), and discuss further directions (Sect. 7). Preliminary versions of full proofs can be
found in the preprint [3].

2 General setup

2.1 Propositional proof complexity
A proof system for language L is1 a deterministic polynomial-time algorithm V such that
for every x ∈ L, there is a proof π ∈ {0, 1}∗ such that V (x, π) = 1, and for every x /∈ L and
every candidate proof π, it holds that V (x, π) = 0. In this paper, we are interested in proofs
for the language UNSAT of unsatisfiable Boolean formulas in conjunctive normal form
(CNF) and, more broadly, in proofs for the language of unsolvable systems of linear equations
(and even their disjunctions) with rational coefficients. Frequently (but not always) a proof
of the unsatisfiability of a formula derives semantically implied statements from previously
derived (or input) statements (in the case of a formula in CNF, the input statements are
Boolean clauses). The existence of a proof system that has a polynomial-size proof for every
x ∈ L is equivalent to NP = co-NP, this equivalence of the classes is unlikely and proving
or disproving it is far beyond the reach of the current methods.

Propositional proof complexity is a rapidly developing area where we typically prove four
kinds of results:

A superpolynomial lower bound on the size of the shortest proof for a certain (infinite)
set of inputs x1, x2 . . . ∈ L in some specific proof system.
A polynomial simulation between two proof systems, that is, for every x ∈ L, one proof
system has a proof of x that has the same or a smaller length (up to a polynomial factor)
than the shortest proof of x in the other proof system.
A polynomial upper bound on the proof size for a certain (infinite) set of inputs x1, x2 . . . ∈
L in a specific proof system.
A superpolynomial separation between proof systems, which is typically obtained by
providing a set of inputs for which we can prove a polynomial size upper bound in one
proof system and a superpolynomial size lower bound in another proof system.

When we have both a polynomial simulation and a superpolynomial separation between two
specific systems, we say that one system is strictly stronger than the other one. Thus proof
systems (for the same language) form a lattice2 with respect to the partial non-strict order
composed of the simulations; if one system is strictly stronger than the other one, then the

1 This definition deviates from Cook and Reckhow’s definition [11], but for our purpose they are equivalent.
2 Note that we do not require the simulations to be computable in polynomial time (p-simulations) though

in most cases the simulations are indeed efficient.

Y. Alekseev, D. Grigoriev, and E. A. Hirsch 8:3

order is strict for these two systems. Cook’s (or Cook–Reckhow’s) program in the propositional
proof complexity is the intention for proving superpolynomial lower bounds for stronger and
stronger proof systems, thus developing new methods for proving superpolynomial lower
bounds, which are the crux of computational complexity.

2.2 Previous proof complexity results relevant to this paper
The area essentially started with superpolynomial (and then exponential) lower bounds for
various versions of the resolution proof system [31, 18, 32], where proofs proceed by deriving
the resolvent C ∨ D of two already derived (or input) clauses C ∨ x and D ∨ x until we derive
the empty clause. We refer the reader to Krajíček’s book [25] for a detailed overview of the
area.

The previously known proof systems that are the most relevant to us are proof systems
that work with linear inequalities.

The Cutting Plane (CP) proof system [12] uses the rounding rule and nonnegative linear
combinations of inequalities∑

i caixi − d ⩾ 0∑
i aixi − ⌈d/c⌉ ⩾ 0 (c, ai, d ∈ Z), f1 ⩾ 0 f2 ⩾ 0

α1f1 + α2f2 ⩾ 0 (α1, α2 > 0)

as its derivation steps (here f1 and f2 are the affine forms). The derivation starts from linear
inequalities expressing Boolean clauses and from the axioms xi ⩾ 0, 1 − xi ⩾ 0 for every
variable xi. It finishes with deriving the contradictory inequality −1 ⩾ 0. An exponential
lower bound for CP was proved in [29].

Krajíček [23] generalized CP to a new system R(CP), also called Res(CP), by allowing
to reason about disjunctions of affine inequalities (the disjunctions are interpreted as sets,
trivially false constant inequalities are dropped out, and a disjunction can be weakened by
adding new inequalities to it). The two rules above are generalized to∑

i caixi − d ⩾ 0 ∨ Γ∑
i aixi − ⌈d/c⌉ ⩾ 0 ∨ Γ (c, ai, d ∈ Z), (f1 ⩾ 0) ∨ Γ (f2 ⩾ 0) ∨ Γ

(α1f1 + α2f2 ⩾ 0) ∨ Γ (α1, α2 > 0). (+RES)

Also the notion of the negation of an inequality is introduced through the rule
∅

f − 1 ⩾ 0 ∨ −f ⩾ 0 .

The same idea has been used to define other proof systems (for example, Res(k) [24],
Res(Lin) [30], Res(⊕) [20]). In particular, Hirsch and Kojevnikov stripped Res(CP) of the
negation and the rounding rule and defined the system Res(LP) that uses the splitting rule

∅
(x − 1 ⩾ 0) ∨ (−x ⩾ 0) (x is a variable).

No superpolynomial size lower bounds for Res(CP) or Res(LP) are known. Derivations
can be daglike (as usual) or treelike (where we have to re-derive a statement again every
time we use it). Beame et al. defined the Stabbing Planes proof system [6] that is equivalent
to treelike Res(CP). While usually the coefficients of linear inequalities are written in
binary, one can consider weaker proof systems when they are written in unary. In the unary
coefficients setting, Fleming et al. have shown a quasipolynomial simulation of Stabbing
Planes in CP (with binary coefficients) thus obtaining an exponential lower bound for it [14].
Very recently, Gläser and Pfetsch have shown an exponential bound for Stabbing Planes
for the case of binary coefficients by providing a quasipolynomial monotone interpolation
[15]. The daglike versions of Res(CP) and Res(LP) with unary coefficients are polynomially
equivalent [19] and no superpolynomial lower bounds are known for them to the date.

STACS 2025

8:4 Tropical Proof Systems: Between R(CP) and Resolution

3 Tropical arithmetic

Tropical (or min-plus) arithmetic involves operations min, + in place of +, × in classical
arithmetic; we refer the interested reader to [27] for the introduction and survey of tropical
arithmetic and in particular its history and the origin of the name “tropical”. Tropical
arithmetic has several sources including algebraic geometry (valuations), mathematical
physics, and optimization, and, respectively, numerous applications (some of them can be
found in [27], also neural networks are a more recent application).

We consider a tropical semifield based on Q ∪ {+∞}. Many of the results of this paper
can be also formulated and proved using a similar semifield based on Q.

Tropical operations. We consider the min-plus (or tropical) semifield defined by the set
Q∞ = Q ∪ {+∞} endowed with two operations: the tropical addition ⊕ and the tropical
multiplication ⊙ defined in the following way:

a ⊕ b = min{a, b}, a ⊙ b = a + b,

where min and + are the usual (traditional) arithmetic operations extended to work with the
neutral element ∞: namely, a ⊕ ∞ = a and a ⊙ ∞ = ∞. A tropical power n of a is defined
as

a⊙0 = 0, a⊙n = a ⊙ . . . ⊙ a︸ ︷︷ ︸
n copies

,

where n is a positive integer. Sometimes we use a bigger ⊕ to facilitate reading.

Tropical polynomials.

▶ Definition 1. A tropical monomial is a tropical product of tropical powers of variables. For
a vector of variables x⃗ = (x1, . . . , xn) and a vector of integers I = (i1, . . . , in) we introduce
the notation

x⃗I = x⊙i1
1 ⊙ · · · ⊙ x⊙in

n .

Then degtr(xI) = i1 + . . . + in is called the (total) (tropical) degree of this monomial.

Note that we never use the word “monomial” for a submonomial, that is, a subset of monomial
(in other words, the monomial x ⊙ y does not occur in x ⊙ y⊙2 ⊕ x ⊙ y ⊙ z).

In this paper, a (tropical, or min-plus) term t = c ⊙ m is a tropical product of a tropical
monomial m and a constant c ∈ Q∞. One can treat a tropical term classically as a linear
function a + i1x1 + . . . + inxn. By analogy with the traditional arithmetic (and its zero),
a constant term is the only situation where the coefficient c = ∞ is meaningful (since
∞ ⊙ m = ∞). We assume that if a term is non-constant, it has a finite coefficient. This is
important when we say “monomial m occurs” somewhere: we mean that a term based on m

occurs. The degree of a term is the degree of its monomial.
Note that when we work with constants, we use traditional operations and treat the

constant as a whole, for example, x ⊙ (10 − 2 + 1) is the same as x ⊙ 9.

▶ Definition 2. Let x1, . . . , xn be variables, and let I be a finite set of their power vectors
(I ⊆ Nn

0). A tropical polynomial is an element of (Q∞, ⊕, ⊙)[x1, . . . , xn], that is, the tropical
sum of a set of tropical terms tI(x⃗) = cI ⊙ x⃗I with distinct power vectors I ∈ I:

f(x⃗) =
⊕
I∈I

tI(x⃗).

If I = ∅, we identify this polynomial with the constant polynomial ∞.

Y. Alekseev, D. Grigoriev, and E. A. Hirsch 8:5

In other words, tropical polynomials are members of the (Q∞, ⊕, ⊙)-linear space spanned by
the monomials (for example, 1 ⊕ x⊙2 ⊙ y ⊕ 2 ⊙ x and ∞ are tropical polynomials). One can
treat f as a concave piecewise linear function.

Tropical addition and multiplication are correctly defined on tropical polynomials as
∞ ⊙ m = ∞ and a ⊙ m ⊕ b ⊙ m = min{a, b} ⊙ m for any monomial m, and thus we never
need more than one term per monomial.

Complexity of tropical polynomials. We usually write the coefficients and the exponents
in binary, so the bit-size of x2n is polynomial (which is important when we estimate the size
of a proof that uses tropical polynomials). The degree of a tropical polynomial f , denoted
by degtr(f), is the maximal degree of its terms. Let µ(f) be the number of terms in f (it
is strictly positive).

Min-plus polynomials and inequalities. A min-plus polynomial is a pair of tropical poly-
nomials (f(x⃗), g(x⃗)). The degree of a min-plus polynomial is the maximum of the degrees
of f and g. A point a⃗ ∈ Rn is a root of this polynomial if the following equality holds:
f (⃗a) = g(⃗a). We can apply tropical operations component-wise to min-plus polynomials, thus
min-plus polynomials can be summed using the tropical addition ⊕ and can be tropically
multiplied by a tropical monomial using tropical multiplication ⊙, and these operations
preserve the common roots of the involved polynomials. Thus, the closure of a set of min-plus
polynomials under these operations is a (tropical) ideal. One of the central issues in tropical
algebra is a criterion for the existence of common roots for systems of min-plus polynomials
{(f1, g1), . . . , (fk, gk)}. In classical algebra such a criterion is provided by Hilbert’s Nullstel-
lensatz (over an algebraically closed field). In tropical algebra a criterion of solvability has
been formulated as a Min-Plus Nullstellensatz [8, 17, 21, 26], further extended in [1].

In this paper we will deal with a more convenient (albeit equivalent) framework of the
problem of the existence of common roots for systems of min-plus polynomial inequalities
{f1 ⩽ g1, . . . , fk ⩽ gk}. A min-plus polynomial inequality is a pair of tropical polynomials
f, g that we write as f ⩽ g or (f, g). A point a⃗ ∈ Rn is a root of min-plus inequality f ⩽ g

if f (⃗a) ⩽ g(⃗a). Note that a⃗ is a root of f ⩽ g iff it is a root of (f ⊕ g, f). In what follows, we
abuse the notation by writing f = g instead of the two inequalities f ⩽ g and g ⩽ f .

Note that while one can consider solving min-plus equations and inequalities over Q or
over Q∞, tropical polynomials will always have coefficients in Q∞, in particular, ∞ is a
tropical polynomial equivalent to “the empty tropical polynomial”.

An order on tropical polynomials. For tropical polynomials L and R, let L ⪰ R denote
the component-wise ⩾ of the coefficients of the respective monomials in L and R.

Let L ≻ R denote the component-wise > of the coefficients of the respective monomials
in L and R, where R may also contain extra monomials not present in L.

Note that if L ≻ R, then it is impossible for R ⩽ L to have finite roots.
We define ⪯ and ≺ similarly. The following lemma is easy to see.

▶ Lemma 3 (≻ inside ⊕, ⊙). Let Γ, ∆, Γ′, ∆′ be tropical polynomials.
1. If Γ ≻ ∆ and Γ′ ≻ ∆′, then Γ ⊕ Γ′ ≻ ∆ ⊕ ∆′.
2. For a tropical term t ̸= ∞, if Γ ≻ ∆, then Γ ⊙ t ≻ ∆ ⊙ t.

STACS 2025

8:6 Tropical Proof Systems: Between R(CP) and Resolution

4 Tropical proof systems

Similarly to the already classical “algebraic” proof systems Nullstellensatz and Polynomial
Calculus [7, 10] based on Hilbert’s Nullstellensatz, we introduce proof systems that rely
on the Min-Plus Nullstellensatz. The most general static proof system MP-NS (Min-Plus
Nullstellensatz, Definition 7) for the language of unsolvable linear inequalities requires a
proof that is a contradictory algebraic combination of the input inequalities and trivial
axioms 0 ⩽ 0, f ⩽ ∞. That is, for a system of min-plus inequalities fi ⩽ gi, the proof is a
contradictory inequality

⊕K
j=1 pj ⩽

⊕K
j=1 qj for some K ⩾ 1, where for each 1 ⩽ j ⩽ K we

have (pj , qj) = (tj ⊙ fij
, tj ⊙ gij

) for some term tj and some 1 ⩽ ij ⩽ k. The contradiction
must follow immediately from the coefficients of the inequality; namely, for every monomial
present in the left-hand side, its coefficient must be strictly greater than the coefficient of
the same monomial in the right-hand side (also, for technical reasons the right-hand side
must have a finite constant term).

For example, the system of inequalities {x ⩽ y, y ⩽ z, z + 1 ⩽ x, 2x ⩽ 0}, which is
written tropically as {x ⩽ y, y ⩽ z, z ⊙ 1 ⩽ x, x⊙2 ⩽ 0}, can be refuted by tropically
multiplying its inequalities by x ⊙ 1

3 , x ⊙ 2
3 , x, and 1

3 , respectively. This results in

x⊙2 ⊙ 1
3 ⊕ y ⊙ x ⊙ 2

3 ⊕ z ⊙ x ⊙ 1 ⩽ y ⊙ x ⊙ 1
3 ⊕ z ⊙ x ⊙ 2

3 ⊕ x⊙2 ⊙ 0 ⊕ 1
3 .

One can see that the requirement on the coefficients is satisfied.
Similarly to algebraic proof systems, we introduce a dynamic version of MP-NS: Min-Plus

Polynomial Calculus (MP-PC), see Definition 11. It derives the contradiction of the same sort
step by step by tropically adding inequalities, tropically multiplying them by terms, and
substituting inequalities into other inequalities.

We also consider the additional tropical resolution rule

t ⊕ f ⩽ 0 t′ ⊕ f ⩽ 0
(t ⊙ t′) ⊕ f ⩽ 0 , where t, t′ are terms, (⊙RES)

which is a counterpart of (+RES) in Res(LP) and Res(CP). When we add this rule to our
systems, we mention this explicitly. While this rule is not needed for the completeness of our
tropical proof systems, on the one hand, and is looking very natural, on the other hand, its
elimination from the system may be expensive, as shown in Theorem 27.

The proof systems MP-NS and MP-PC can be transformed into proof systems for UNSAT
using several possibilities to encode the truth values, Boolean variables and Boolean clauses.
In the “default” setting, we encode the truth values by {0, 1}, introduce the dual variable x

for every variable x, and transform a clause into the corresponding linear inequality (which,
in tropical terms, is 1 ⩽ m for a multilinear monomial m). These proof systems are called
MP-NSR and MP-PCR; the diagram of connections between them and known systems is given
in Figure 1. One can also considered different encodings (without dual variables or with
values in {0, ∞}), the detailed treatment of these is delayed to the full version of the paper.

4.1 The basic static proof system, MP-NS

▶ Definition 4. Consider a system of min-plus polynomials F = {(f1, g1), . . . , (fk, gk)}. An
algebraic combination of F is a min-plus polynomial (f, g) that can be represented as

(f, g) =

 K⊕
j=1

pj ,
K⊕

j=1
qj

 , (1)

Y. Alekseev, D. Grigoriev, and E. A. Hirsch 8:7

for some K ⩾ 1, where for each 1 ⩽ j ⩽ K we have (pj , qj) = (tj ⊙fij , tj ⊙gij) for some term
tj and some 1 ⩽ ij ⩽ k. We will abuse the language by calling an “algebraic combination”
both the min-plus polynomial (f, g) and the composition (1), that is, tj’s.

We call a system of min-plus polynomials symmetric if it always includes (fi, gi) together
with (gi, fi). The possibility of refuting min-plus systems of equations (and inequalities)
using min-plus proofs is based on the following theorem.

▶ Theorem 5 (Min-Plus Nullstellensatz, [17, Theorem 3.8] over Q∞ without the degree claim).
Consider a symmetric system of min-plus polynomial equations F as in Def. 4 in n variables.

The system F has no roots over the tropical semifield Q∞ iff we can construct an algebraic
min-plus combination

(f, g) =

 K⊕
j=1

pj ,
K⊕

j=1
qj

of F such that for each monomial m occurring in f , and also for the constant monomial
even if it is infinite, its coefficient in f is greater than the coefficient of this monomial in g

(in particular, m must be present in g).

It can be easily observed that one direction of the theorem is trivial: indeed, if there is
an algebraic combination (f, g) satisfying the conditions of the theorem (recall also that in
terms of integer operations, the “coefficient” is the additive constant in a standard arithmetic
linear combination of variables), so the system F is unsatisfiable. The finite constant term
in g saves us from the parasite all-∞ solution.

It is easy to see that in the case of systems of inequalities (which correspond to not
necessarily symmetric systems of min-plus polynomials), a similar result holds as a corollary.

▶ Theorem 6. Consider a system of min-plus polynomial inequalities S in n variables over
Q∞. Let F = S ∪ {(0, 0)} ∪ {(gi, ∞) | (fi, gi) ∈ S}.

The system S has no roots over the tropical semifield Q iff we can construct an algebraic
min-plus combination

(f, g) =

 K⊕
j=1

pj ,

K⊕
j=1

qj

of F (in terms of Def. 4) such that for each monomial m ̸= ∞ occurring in f , its coefficient
is greater than the coefficient of this monomial in g (in particular, m must be present in g).

Over the semifield Q∞ we need an additional property: the constant term in g is finite.

▶ Definition 7 (Min-Plus Nullstellensatz, MP-NS). We will call a min-plus algebraic combination
(that is, (tj)K

j=1 in terms Def. 4) satisfying the conditions of Theorem 6 (over Q∞, unless
otherwise stated) a Min-Plus Nullstellensatz (MP-NS) refutation of S.

▶ Note 8 (The 0 ⩽ c “axiom”). In Theorem 6 we have added the axioms 0 ⩽ 0 and g ⩽ ∞
to MP-NS. Note that, for any constant c ⩾ 0, the inequality 0 ⩽ c can be easily derived as a
tropical sum of 0 ⩽ ∞ and 0 ⩽ 0 tropically multiplied by c. In what follows we will use it
without further notice both for MP-NS and for our dynamic proof system described later.

In fact, the “last line” of the proof (that is, (f, g) in terms of the theorem, after combining
similar terms) can be thought of as a refutation itself: the composition of this algebraic
combination can be easily reconstructed, and its complexity parameters are bounded by a

STACS 2025

8:8 Tropical Proof Systems: Between R(CP) and Resolution

polynomial in the complexity of (f, g). (In what follows, when we speak about the size of a
rational number, we mean the size of its nominator plus the size of its denominator; for ∞
this is zero.)

▶ Proposition 9 (MP-NS derivation reconstruction). Given a system of min-plus inequalities
(fi, gi) and given their algebraic combination as two polynomials (f, g), we can find the terms
tj ’s of this algebraic combination in polynomial time, their number is bounded by a polynomial
in the number of monomials in the system and (f, g), their coefficient size is bounded by
a polynomial in the size of coefficients in the system and (f, g). and their degree does not
exceed the degree of monomials in f and g.

▶ Remark 10. Now we say a few words about the complexity of constructing an MP-NS
refutation given a system of min-plus equations, or more generally, inequalities (including
strict ones). First, one can estimate a bound on the degree of a refutation (algebraic
combination) with the help of [17, Theorem 3.8] in the case of min-plus equations, which
was extended to the case of min-plus inequalities in Theorem 3.1 [1]. For a given bound on
the degree, an algebraic combination can be treated as a system of min-plus strict linear
inequalities (whose unknowns are the rational coefficients of an algebraic combination).
Solvability of a system of min-plus linear inequalities (including strict ones) is reduced in [5]
(within polynomial complexity) to solvability of a system of min-plus linear equations (with
integer coefficients and thereby, integer unknowns).

One can apply to a system of min-plus linear equations one of the algorithms to solve it
(see e.g., [9, 2, 16]). The complexity of each of these algorithms is polynomial in the number
of unknowns and equations and in the absolute values of integer coefficients of the system.
Observe that this complexity bound is not polynomial in the size of the input because the
complexity depends on the absolute values of the coefficients rather than on their bit-sizes.
It is a longstanding open problem whether a system of min-plus linear equations is solvable
within polynomial complexity. However, this problem belongs to the class NP ∩ co-NP (see
e.g., [2, 16]).

4.2 The basic dynamic proof system, MP-PC

We also consider a dynamic version of MP-NS called the Min-Plus Polynomial Calculus
(MP-PC). It has some informal resemblance to Krajíček’s original quantifier-free propositional
LK(CP) proof system [23]: it uses both sides of a “sequent” while Res(CP) used only one
because of the presence of an efficient negation, which we are missing. However, the “sequents”
of our system contain tropical terms (affine functions) and not inequalities.

We will sometimes use equations to abbreviate pairs of two opposite inequalities.

▶ Definition 11 (Min-Plus Polynomial Calculus, MP-PC). Consider a system of min-plus
polynomial inequalities S = {f1 ⩽ g1, . . . , fm ⩽ gm} in n variables. A Min-Plus PC (MP-PC)
refutation of F is a list of min-plus inequalities

p1 ⩽ q1, . . . , pK ⩽ qK

such that
1. In the last inequality, for each monomial m = x⊙j1

1 ⊙ · · · ⊙ x⊙jn
n in pK there is a

matching monomial in qK , and the coefficient in the monomial in pK is greater than the
corresponding coefficient in qK . Moreover, the constant term in qK must be present and
must be finite.

Y. Alekseev, D. Grigoriev, and E. A. Hirsch 8:9

▶ Note 12 (0/1 variables in Q∞). Later on, in our systems dealing with {0, 1} variables,
all monomials become bounded from the above and thus the requirement on the constant
term can be satisfied automatically.

2. Each inequality pi ⩽ qi is obtained from the previously derived inequalities using the
following rules.
Axioms:

∅
fj ⩽ gj

, where 1 ⩽ j ⩽ m,

∅
0 ⩽ 0 ,

∅
p ⩽ ∞

, for any tropical polynomial p. (WEAK)

Minimum. We can take a minimum of two previously derived inequalities:

p ⩽ q p′ ⩽ q′

p ⊕ p′ ⩽ q ⊕ q′ .

Tropical multiplication:

p ⩽ q

p ⊙ t ⩽ q ⊙ t
,

where t is a term.
Transitivity of the order:

p ⩽ h h ⩽ r

p ⩽ r
.

▶ Note 13 (Substitutions). It is easy to see that by combining transitivity with other rules
we can substitute inequalities into each other on the left or on the right, for example,

p ⊕ h ⩽ q r ⩽ h

p ⊕ r ⩽ q

p ⩽ q ⊕ h h ⩽ r

p ⩽ q ⊕ r
.

and do it even inside monomials by multiplying the substitution by an appropriate term. In
what follows, we refer to these derivations as substitutions.
▶ Note 14 (Tropical product). Note that we can take the tropical product (⊙) of two
inequalities by first multiplying one of them by the left-hand-side of the other one and then
applying the transitivity rule. We will discuss the complexity issues of constructing tropical
products of inequalities later.
▶ Note 15 (Natural weakening). Note also that we can weaken inequalities by dropping a
summand from the right-hand side or adding a summand to the left-hand side. This is
simulated using the (WEAK) axiom with the minimum rule and substitution on the right.
▶ Note 16 (Systems based on equations instead of inequalities). Similarly to Theorem 5, it is
possible to talk about symmetric systems and thus min-plus equations, even in the context
of dynamic proof systems. For example, one could define a refutation system for symmetric
systems with the same rules except for the axiom (WEAK), and with an additional rule to
swap an equation (f = g −→ g = f). This apparently weaker proof system turns out to be
polynomially equivalent to MP-PC for symmetric systems (see full version of this paper). As
inequalities provide a more natural framework and allow to refute more unsolvable systems,
we stick to using inequalities.

STACS 2025

8:10 Tropical Proof Systems: Between R(CP) and Resolution

4.3 The tropical resolution rule
As usual, when we consider stronger systems that include additional rules, we denote them
by “system+rule”, for example, MP-PC+(⊙RES).

In what follows f denotes any tropical monomial.
The following rule can be viewed as the generalization of the resolution-like rule (+RES)

in Res(CP)-like systems (though we limit it very much) or as tropical multiplication of two
inequalities, each one being in the tropical sum.

t ⊕ f ⩽ 0 t′ ⊕ f ⩽ 0
(t ⊙ t′) ⊕ f ⩽ 0 , where t, t′ are terms. (⊙RES)

While this rule is looking very natural, we do not know how to eliminate its use at a
polynomial cost. Moreover, we will show later that its direct simulation in the static proof
systems is impossible.

4.4 Encoding of Boolean logic: MP-NSR and MP-PCR systems
In this extended abstract we concentrate on the following encoding. We use 0 for false
and 1 for true and introduce a “dual variable” for the negation of each variable. Note that
we use ¬Φ as the Boolean negation of a Boolean formula Φ (without distinguishing Φ from
¬¬Φ) while keeping the notation x for dual variables. Recall that we denote literals (which
are variables or the negations of variables) by ℓ, ℓ1, ℓ2, . . . without further notice.

We thus obtain from (the systems for refuting conjunctions of min-plus inequalities)
MP-NS and MP-PC the propositional proof systems MP-NSR and MP-PCR, respectively. In order
to do that we translate a formula in CNF into a conjunction of tropical inequalities. Namely,
we translate each clause into an inequality and also add additional inequalities (axioms) to
ensure that variables are Boolean.

Boolean axioms. We include the axioms
∅

x ⊙ x = 1 (01/⊙) ∅
x ⊕ x = 0 (01/⊕)

to ensure that x and x are dual and in {0, 1}.
▶ Note 17. For any binary variable x we can derive from (01/⊕) in MP-PC that 0 ⩽ x and
x ⩽ 1. The first inequality can be derived from 0 ⩽ x ⊕ x by simplification. The latter
inequality can be derived in the following way: from 0 ⩽ x we can derive x ⩽ x ⊙ x, from
which we can derive x ⩽ 1 using x ⊙ x ⩽ 1.

Translations of Boolean clauses. We can encode a Boolean clause ℓ1 ∨ ℓ2 ∨ . . . ∨ ℓk using
the equation

ℓ1 ⊕ ℓ2 ⊕ · · · ⊕ ℓk ⩽ 0. (D)

Note that clauses are encoded in Res(Lin) [30] in exactly the same way (the absence of
the dual variables does not matter as re-encoding is done by a simple linear substitution).

However, there is another possibility to encode a clause, which is used in CP and similar
proof systems:

1 ⩽ ℓ1 ⊙ ℓ2 ⊙ · · · ⊙ ℓk. (I)

It is not difficult to see that in the case of MP-PCR these encodings are equivalent. A formal
proof of this statement can be found in the full version of the paper.

Y. Alekseev, D. Grigoriev, and E. A. Hirsch 8:11

5 Preliminary lemmas and the equivalence of encodings

Before we come to the main results, we state several technical lemmas about derivations in
tropical systems.

▶ Lemma 18 (tropical product, treelike, no axioms). For 1 ⩽ i ⩽ k, let Ai, Bi be tropical
terms. Then there is a treelike MP-PC derivation of all the inequalities

j⊙
i=1

Ai ⩽
j⊙

i=1
Bi, for j ⩽ k,

from the inequalities Ai ⩽ Bi (each used once).
The derivation contains O(k) (not necessarily different) terms and the bit-size of every

coefficient (respectively, the tropical exponent) in the derivation is upper bounded by O(k · b),
where b is the maximum bit-size of a coefficient (respectively, a tropical exponent) in any of
the Ai, Bi. In particular, the coefficients (resp., tropical exponents) in the derivation are
sums of the original coefficients (resp., tropical exponents).

Proof. Start with A1 ⩽ B1. Tropically multiply it by A2 and tropically multiply A2 ⩽ B2
by B1 to conclude A1 ⊙ A2 ⩽ B1 ⊙ B2 by transitivity.

Continue in the same way for j = 3, . . . , k, multiplying Aj ⩽ Bj by
⊙j−1

i=1 Ai, multiplying
the previously derived

⊙j−1
i=1 Ai ⩽

⊙j−1
i=1 Bi by Bj , and applying the transitivity rule. ◀

▶ Lemma 19 (powers of axioms, treelike). For a variable x and an integer b > 0, there are
treelike MP-PCR derivations from the axioms of the following inequalities:

x⊙b ⊙ x⊙b ⩽ b, (2)
b ⩽ x⊙b ⊙ x⊙b, (3)

x⊙b ⊕ x⊙i ⩽ 0 (as well as of the symmetrical inequality), for 1 ⩽ i ⩽ b. (4)

The tropical degree of these derivations is O(b). The derivations of (2), (3) contain O(b) (not
necessarily distinct) terms, all the coefficients in them and constants are ⩽ b. The derivation
of (4) contains O(b3) (not necessarily distinct) terms, all the coefficients in it are zeroes.

Proof. The inequalities (2) and (3) follow from Lemma 18.
To show (4) for i = 1, proceed by induction on b (starting with b = 1). Tropically multiply

the axiom x ⊕ x ⩽ 0 by x⊙(b−1) and substitute x ⩽ x ⊙ x⊙(b−1) (which is 0 ⩽ x⊙(b−1),
provided by Lemma 18, multiplied by x) into its left-hand side getting

x⊙b ⊕ x ⩽ x⊙(b−1).

Tropically add x to both sides and substitute the induction hypothesis for b − 1 on the right
obtaining the desired inequality.

The inequality x⊙b ⊕ x ⩽ 0 provided by the previous argument is the starting point for
deriving (4), now by the induction on i (where i = 1 is the base). Take it and tropically
multiply it by x⊙(i−1) obtaining

x⊙b ⊙ x⊙(i−1) ⊕ x⊙i ⩽ x⊙(i−1).

Tropically add x⊙b to both sides, substitute the induction hypothesis on the right. Substitute
x⊙b ⩽ x⊙b ⊙ x⊙(i−1) (which is 0 ⩽ x⊙(i−1), provided by Lemma 18, multiplied by x⊙b) on
the left. ◀

STACS 2025

8:12 Tropical Proof Systems: Between R(CP) and Resolution

Res(CP)

Res(LP)

treelike Res(CP)

treelike Res(LP)

CP

MP-PCR+(⊙RES)

MP-PCR

treelike MP-PCR+(⊙RES)

treelike MP-PCR MP-NSR

Resolution

Simulation: Th. 21
Separation: Th. 22

Th. 23

Th. 20

Figure 1 Map of tropical systems with {0, 1} dual encoding. An arrow Π → Ψ means polynomial
simulation of Π by Ψ. Proof systems known to be not polynomially bounded are shown in green.

6 Our results and methods

6.1 Static systems: Already stronger than Resolution

Static tropical proofs with dual variables over {0, 1} turn out to be surprisingly powerful. We
start with a natural statement that static tropical proofs are equivalent to treelike proofs:

▶ Theorem 20. MP-NS polynomially simulates treelike MP-PC.

Proof Sketch. Simulating a treelike tropical proof is done by combining the steps of the
proof in a single algebraic combination with decreasing coefficients. Namely, when we go
down (towards the root) the proof tree, which becomes now the formula tree of the algebraic
combination, we tropically multiply subformulas by small positive coefficients. A similar idea
is demonstrated in more detail in the proof of the next Theorem 21. ◀

Note that when we convert a treelike proof into a formula, the tropical multiplication of a
tropical polynomial p applies to the whole subtree deriving p, thus this strategy does not
work for simulating daglike tropical proofs (if p is multiplied by different terms ti, we need
to repeat it as many times).

However, we show that MP-NSR polynomially simulates daglike resolution. While the
simulation of the treelike tropical proof is technical but intuitively straightforward, the
simulation of the Resolution proof system is trickier due to its daglike nature.

▶ Theorem 21. MP-NSR polynomially simulates Resolution.

Proof. We simulate a resolution proof by putting it into the static proof step by step. For a
disjunction A = ℓ1 ∨ . . . ∨ ℓk, define its translation [A] = 0 ⊙ ℓ1 ⊙ . . . ⊙ ℓk with the meaning
that it is true iff [A] > 0. In particular, every initial clause A is translated into 1 ⩽ [A], as
we expect in MP-NSR.

Translate a Resolution proof into an MP-NSR proof as follows. Let s be the number of
steps in the Resolution proof. We can assume that steps can be of two kinds: a resolution
step

A ∨ x A ∨ ¬x

A
, (5)

Y. Alekseev, D. Grigoriev, and E. A. Hirsch 8:13

and a weakening step

A

A ∨ ℓ
, (6)

where A is a clause, x is a variable, and ℓ is a literal.
We now compose our algebraic combination.
For every initial clause A, we take its translation 1 ⩽ [A]:

1 ⩽ 0 ⊙ [A]. (7)

At step i = 1, 2, . . . , s, we do the following. Let ci = i/(s + 1).
For a resolution step, multiply the axiom x ⊕ x ⩽ 0 by ci ⊙ [A] obtaining

ci ⊙ x ⊙ [A] ⊕ ci ⊙ x ⊙ [A] ⩽ ci ⊙ [A]. (8)

Observe that [A ∨ v] = [A] ⊙ v for every variable v, so the terms in (8) are exactly the
translation of (5) multiplied by ci.
For a weakening step, we would like to multiply 0 ⩽ [ℓ] by ci ⊙ [A] obtaining

ci ⊙ [A] ⩽ ci ⊙ [A] ⊙ [ℓ]. (9)

Observe that the terms in (9) are exactly the translation of (6) multiplied by ci.
Strictly speaking, 0 ⩽ [ℓ] is not an axiom, while 0 ⩽ [¬ℓ] ⊕ [ℓ] is. Formally, we must
multiply the latter (rather than the former) by ci ⊙ [A]. However, this leaves only extra
terms in the right-hand side compared to (9), which cannot harm our MP-NSR refutation.

Note that the last step’s right-hand side is cs ⊙ [∅], that is, 1 − 1/(s + 1).
Our algebraic combination is a tropical sum of all inequalities (7) (for all the initial

clauses A), (8), and (9) (for all steps of the Resolution proof).
The constant terms of the combination are 1 in the left-hand side, from the initial clauses,

and 1 − 1/(s + 1) in the right-hand side, from the last clause; 1 > 1 − 1/(s + 1).
Every other monomial in the left-hand side has its counterpart in the right-hand side,

from the previous steps of the proof. The coefficient is smaller in the simulation of the
previous steps and in the initial clauses (thus, on the right-hand side).

It is clear that the total number of terms appearing in the proof is bounded by a polynomial
in s, the degree of every monomial is bounded by the width of the resolution proof, and the
nominators and denominators of the rational coefficients are also bounded by a polynomial
in s. ◀

We also show that MP-NSR has polynomial-size proofs for the propositional pigeonhole
principle, thus it is strictly stronger than Resolution. We consider the following translation
of the pigeonhole principle:

1 ⩽
n⊙

j=1
xij for 1 ⩽ i ⩽ m,

1 ⩽ xi′j ⊙ xij for 1 ⩽ i ⩽ m, 1 ⩽ j ⩽ n.

▶ Theorem 22. For any n > m, PHPm
n has polynomial-size MP-NSR refutations.

Proof. For the refutation of the propositional pigeonhole principle, we construct a
treelike MP-PCR proof and then convert it into a static proof. We use the overall strategy
for a treelike CP proof [22, Proposition 19.5]. The main step of this proof is the inductive

STACS 2025

8:14 Tropical Proof Systems: Between R(CP) and Resolution

derivation of long inequalities
∑

i xij ⩽ 1 stating that every hole contains at most one pigeon,
from short inequalities xij + xi′j ⩽ 1. In CP this is done using the rounding rule, however, in
MP-NSR we do not have it. Instead, we consider the cases for the newly added pigeon using
tropical tools. More precisely, we will prove the following lemma

▶ Lemma (short to long inequalities). Let v1 . . . vk, v1, . . . , vk be variables. Given the Boolean
axioms and the set of inequalities vi ⊙ vi′ ⩽ 1 for 1 ⩽ i < i′ ⩽ k, one can construct a
treelike MP-PCR derivation of

⊙k
i=1 vi ⩽ 1, which contains O(k4) terms, has tropical

degree O(k), and its coefficients are zeroes and ones.

Proof of Lemma. Denote Vj =
⊙j

i=1 vi. We proceed by the induction on the number of
variables constructing a treelike MP-PCR derivation of Vj ⩽ 1.

The base (j = 2) is trivial. The induction step comes in three stages.

Stage 1. Take the induction hypothesis for j − 1 and tropically multiply it by vj getting

Vj ⩽ 1 ⊙ vj . (10)

Stage 2. For i = 1, . . . , j − 1, construct also the following derivation: tropically multiply
the initial inequality vi ⊙ vj ⩽ 1 by vj and substitute its left-hand side by the axiom
1 ⩽ vj ⊙ vj multiplied by vi. Multiply the result by (−1) obtaining vi ⩽ vj . Apply
Lemma 18 to multiply these inequalities for i = 1, . . . , j − 1:

j−1⊙
i=1

vi ⩽ v
⊙(j−1)
j .

Further multiply it by vj and substitute vj ⊙vj ⩽ 1 multiplied by v
⊙(j−2)
j into it obtaining

Vj ⩽ 1 ⊙ v
⊙(j−2)
j . (11)

Stage 3. Take the tropical sum of (10) and (11) and substitute its right-hand side with
vj ⊕ vj−2

j ⩽ 0 (due to Lemma 19) multiplied by 1 eventually obtaining Vj ⩽ 1. ◀

Given the lemma, we apply it to x1j , . . . , xmj for each j = 1, . . . , n separately. Multiply
the results to get

n⊙
j=1

m⊙
i=1

xij ⩽ n.

On the other hand, by multiplying the initial inequalities, we get

m ⩽
m⊙

i=1

n⊙
j=1

xij

After substitution of the first equation into the right-hand side of the second equation, we
arrive at the contradiction m ⩽ n. ◀

This shows that MP-NSR is strictly stronger than resolution; however, its relation to CP
remains open. This makes MP-NSR a nice frontier proof system, for which (as a proof system
for unsatisfiable formulas in CNF) we do not know any superpolynomial lower bounds.

Y. Alekseev, D. Grigoriev, and E. A. Hirsch 8:15

6.2 Dynamic systems: Going up to Res(LP)

We do not know whether MP-PCR simulates Res(LP). The additional (⊙RES) rule strengthening
MP-PCR is needed for that. We prove the following equivalence.

▶ Theorem 23. MP-PCR+(⊙RES) with {0, 1} encoding is polynomially equivalent to Res(LP).

Proof Sketch. We simulate a Res(LP) proof step by step. A line of a Res(LP) refutation of
the form f1 ⩾ 0 ∨ f2 ⩾ 0 ∨ . . . ∨ fk ⩾ 0 is translated into the min-plus inequality

[−f1] ⊕ [−f2] ⊕ · · · ⊕ [−fk] ⩽ 0,

where for a linear inequality f ⩾ 0, its translation [−f] is given by the natural tropical term
semantically equivalent to −f . To simulate the “main” rule (+RES) deriving a nonnegative
linear combination, we split its coefficients into bits, simulate linear combinations for this
easy case, and then sum everything together using (⊙RES).

In the other direction, a min-plus inequality f1 ⊕ f2 ⊕ · · · ⊕ ft ⩽ g1 ⊕ g2 ⊕ · · · ⊕ gk is
translated into the disjunctions of inequalities, one for each 1 ⩽ j ⩽ k:

t∨
i=1

{fi} ⩽ {gj} ,

where {·} again defines the natural semantically equivalent translation of tropical terms into
linear inequalities. One can prove that a dynamic tropical proof can always be finished by
a constant inequality 1 ⩽ 0 (this is done in the same vein as simulating treelike proofs by
static proofs, but now dynamically). Therefore, we do not need to deal with a complicated
last line of the tropical proof in our simulation by Res(LP). ◀

Systems over {0, ∞}. One can consider systems that encode false and true by {0, ∞}
instead of {0, 1}. The axioms (01/⊙) and (01⊕) are then replaced by

∅
x ⊙ x = ∞

(0∞/⊙), ∅
x ⊕ x = 0 (0∞/⊕)

to ensure that x and x are dual and in {0, ∞}. With this encoding, MP-PCR becomes
equivalent to a different proof system (additional rules are not needed in this setting):

▶ Theorem 24. MP-PCR that uses {0, ∞} encoding with dual variables is polynomially
equivalent to Res(∞), the unbounded version of the Res(k) proof system [24].

The proof is similar to the {0, 1} case; the main difference is that for {0, ∞} tropical operations
are essentially conjunction and disjunction, so it remains to process accurately statements
like f = c for a term f and a constant c ∈ Q∪ {∞}, and prove the corresponding translations
of MP-PCR rules in Res(∞). The other direction goes almost literally by translating clauses
composed of DNFs into the corresponding min-plus inequalities over {0, ∞}.

6.3 Lower bounds
We prove the lower bound k on the size of refutations of a much simplified tropical version
x⊙k = c (where c ∈ Q \N0) of the (generalized) Binary Value Principle [4, 28] in MP-NSR.

STACS 2025

8:16 Tropical Proof Systems: Between R(CP) and Resolution

▶ Theorem 25. The size of MP-NSR refutations of a tropical binomial x⊙k = c for c ∈ Q is
greater than k.

In particular, for x⊙2n = −1 this is an exponential lower bound when the coefficients and
the degrees of tropical proofs are represented in binary.

The proof adheres to the following ideology. The MP-NS refutations are based on comparing
coefficients in left- and right-hand sides in algebraic combinations. Having this in mind,
when talking about size in MP-NSR, we construct a directed graph on monomials occurring
in a tropical algebraic combination. We do it in a way such that some specific function on
the vertices of the graph related to the coefficients is strictly monotone along any arrow. To
establish the lower bound on the size of refutations of x⊙k = c in MP-NSR we prove that any
cycle in this graph should contain at least k arrows.

Proof. Consider a refutation

(f, g) :=
⊕
i,j

x⊙i ⊙ x̄⊙j ⊙
(
ai,j ⊙ (x ⊕ x̄, 0) ⊕ bi,j ⊙ (0, x ⊕ x̄)

⊕ di,j ⊙ (x ⊙ x̄, 1) ⊕ ei,j ⊙ (1, x ⊙ x̄)⊕ui,j ⊙ (x⊙k, c)⊕vi,j ⊙ (c, x⊙k)
)
,

where ai,j , bi,j , di,j , ei,j , ui,j , vi,j ∈ Q∞ and f ≻ g.
We construct a directed graph H (See Fig. 2) whose vertices are tropical monomials m

appearing in g. We distinguish 7 cases regarding from which summand in the right-hand
side of the refutation a monomial m emerges in g:

m = x⊙i ⊙ x̄⊙j , c(m) = ai,j ; (12)
m = x⊙(i+1) ⊙ x̄⊙j , c(m) = bi,j ; (13)
m = x⊙i ⊙ x̄⊙(j+1), c(m) = bi,j ; (14)
m = x⊙i ⊙ x̄⊙j , c(m) = di,j + 1; (15)
m = x⊙(i+1) ⊙ x̄⊙(j+1), c(m) = ei,j ; (16)
m = x⊙i ⊙ x̄⊙j , c(m) = ui,j + c; (17)
m = x⊙(i+k) ⊙ x̄⊙j , c(m) = vi,j (18)

for suitable i, j. If several cases apply to the same monomial, we choose one of them in an
arbitrary way.

Draw an arrow in H from m to

x ⊙ m = x⊙(i+1) ⊙ x̄⊙j in case (12); (19)
x⊙i ⊙ x̄⊙j in case (13); (20)
x⊙i ⊙ x̄⊙j in case (14); (21)
x⊙(i+1) ⊙ x̄⊙(j+1) in case (15); (22)
x⊙i ⊙ x̄⊙j in case (16); (23)
x⊙(i+k) ⊙ x̄⊙j in case (17); (24)
x⊙i ⊙ x̄⊙j in case (18). (25)

Y. Alekseev, D. Grigoriev, and E. A. Hirsch 8:17

x⊙(i+k) ⊙ x⊙j x⊙i ⊙ x⊙j x⊙i ⊙ x⊙(j+1)

x⊙(i+1) ⊙ x⊙j

x⊙(i+1) ⊙ x⊙(j+1)

c

−c

0

1

0

0

−1

Figure 2 Possible arrows in a fragment of the graph H in Theorem 25 (not all arrows are present
in a specific proof!). Coefficients decrease more than by the value shown on the arrows (according to
(26)–(32)).

Since f ≻ g, these arrows indeed correspond to strict inequalities on the coefficients:

c(x⊙(i+1) ⊙ x̄⊙j) < c′(x⊙(i+1) ⊙ x̄⊙j) ⩽ c(x⊙i ⊙ x̄⊙j) in cases (12), (19); (26)
c(x⊙i ⊙ x̄⊙j) < c′(x⊙i ⊙ x̄⊙j) ⩽ c(x⊙(i+1) ⊙ x̄⊙j) in cases (13), (20); (27)
c(x⊙i ⊙ x̄⊙j) < c′(x⊙i ⊙ x̄⊙j) ⩽ c(x⊙i ⊙ x̄⊙(j+1)) in cases (14), (21); (28)
c(x⊙(i+1) ⊙ x̄⊙(j+1)) < c′(x⊙(i+1) ⊙ x̄⊙(j+1)) ⩽ c(x⊙i ⊙ x̄⊙j) − 1

in cases (15), (22);
(29)

c(x⊙i ⊙ x̄⊙j) < c′(x⊙i ⊙ x̄⊙j) ⩽ c(x⊙(i+1) ⊙ x̄⊙(j+1)) + 1 in cases (16), (23); (30)
c(x⊙(i+k) ⊙ x̄⊙j) < c′(x⊙(i+k) ⊙ x̄⊙j) ⩽ c(x⊙i ⊙ x̄⊙j) − c in cases (17), (24); (31)
c(x⊙i ⊙ x̄⊙j) < c′(x⊙i ⊙ x̄⊙j) ⩽ c(x⊙(i+k) ⊙ x̄⊙j) + c in cases (18), (25). (32)

There exists a cycle Z in the graph H. To justify the required lower bound k when the
numbers of arrows of types (24), (25) differ, note that the degree of x changes at most by
one in all other types of arrows.

When they are equal, we observe that the number of arrows of type (23) in Z is greater
than the number of arrows of type (22), because the coefficient at a tropical monomial
increases (respectively, decreases) by 1 along an arrow of type (23) due to (16) (respectively,
of type (22) due to (15)), while the coefficient does not change along arrows of types (19),
(20), (21) due to (12), (13), (14), respectively. This leads to a contradiction since the tropical
degree with respect to x̄ of a tropical monomial decreases (respectively, increases) by 1 along
an arrow of type (23) (respectively, (22)), while this tropical degree does not increase along
arrows of other types. ◀

6.4 Non-deducibility results
We also show two non-deducibility results. First we notice that one could encode Boolean
logic without dual variables by replacing the axioms (01/·) and (01/⊕) by semantically
equivalent

∅
x⊙2 ⊕ 1 = x

. (01/E)

STACS 2025

8:18 Tropical Proof Systems: Between R(CP) and Resolution

We show that the inequality 0 ⩽ x is not derivable from (01/E) (thus showing the difference
between two Boolean encodings). Formally, we prove the following theorem.

▶ Theorem 26. Γ ⊕ c ⩽ x ⊕ ∆ is not derivable in MP-NS from (01/E) for any c ∈ Q∞ and
any Γ ≻ ∆.

After that we establish that the tropical resolution rule cannot be simulated directly
in MP-PCR by providing an easy example of premises of these rules that cannot yield the
conclusion through an algebraic combination with Boolean axioms (even with auxiliary
polynomials remaining in the algebraic combination). More precisely, the next theorem states
that there is no inference of the inequality x⊙2 ⩽ 0 from the axioms in MP-NSR. Note that
this demonstrates that one cannot infer the tropical resolution rule (⊙RES): namely, from
t ⊕ f ⩽ 0, t′ ⊕ f ⩽ 0 to infer t ⊙ t′ ⊕ f ⩽ 0, setting t := t′ := x, f := x⊙2.

▶ Theorem 27. For any Γ ≻ ∆, there is no MP-NSR inference of Γ ⊕ x⊙2 ⩽ 0 ⊕ ∆ from the
axioms of these systems.

This proof uses techniques similar to those of the size lower bounds. To prove non-
deducibility in MP-NSR, we again construct a directed graph on monomials occurring in a
tropical algebraic combination, such that some specific function on the vertices of the graph
related to the coefficients is strictly monotone along any arrow. Then we show the existence
of a cycle in the graph, which leads to a contradiction.

7 Conclusion and Further Research

In this paper we introduced a new view of previously known proof systems by using tropical
arithmetic. This view allowed us to isolate weaker fragments of Res(CP) (see Figure 1) so
that we could hope for proving superpolynomial lower bounds on the proof size for them.
The weakest of these fragments, static tropical proof systems, allow for different (and more
elementary) methods of proving lower bounds. We provided several steps in this direction
(though not for formulas in CNF). We view proving lower bounds for tropical proof systems
as a promising direction.

The “knowledge border” for Boolean formulas in CNF lies between treelike Res(CP),
where exponential lower bounds have been recently proved using quasipolynomial monotone
interpolation [15], treelike Res(Lin) with semantic weakening, where exponential lower
bounds are known for PHP [28], regular Res(⊕), where exponential lower bounds for the
binary pigeon-hole principle have been proved recently [13], on the one hand, and, on the
other hand, Res(LP∗) as well as Res(Lin) and Res(⊕), where the question is so far open. In
the non-CNF case, exponential lower bounds are known also for the Binary Value Principle
in daglike Res(Lin) [28].

Tropical proof systems refine these borders. The static system MP-NSR lies between daglike
Resolution and (through, for example, MP-PCR and Res(LP)) Res(CP). In the non-CNF
case, we have shown an exponential lower bound on the refutations of a greatly simplified
version of the Binary Value Principle in MP-NSR.

Several promising directions are (all questions concern {0, 1}-variables encodings):
1. We were able to show the polynomial simulation of Res(LP) only after we added the rule

(⊙RES) to MP-PCR.
a. It gives an additional hope to prove lower bounds for MP-PCR as it may be weaker

than Res(LP).
b. Or maybe the two systems are polynomially equivalent even without this rule? (We

only proved that it cannot be simulated directly in a rule-by-rule fashion.)

Y. Alekseev, D. Grigoriev, and E. A. Hirsch 8:19

2. Fleming et al. [14] prove that CP quasipolynomially simulates treelike Res(CP∗). While
Res(CP∗) and Res(LP∗) are polynomially equivalent, this is not necessarily true for their
treelike versions. In fact, treelike Res(LP) has very limited ability to work with
integer arithmetic at all, because it is unable to make rounding with big coefficients
efficiently. Can we quasipolynomially simulate treelike Res(LP) in CP? Perhaps, we
can quasipolynomially simulate MP-NSR in CP?

3. Relations between MP-NSR and CP are unclear, both for unary and binary coefficients,
and even for treelike CP.

4. Relations between treelike MP-PCR+(⊙RES) and treelike Res(LP) are also unclear.
Even polynomial simulation of MP-NSR in treelike Res(LP) does not seem to be trivial.

References
1 Marianne Akian, Antoine Béreau, and Stéphane Gaubert. The tropical Nullstellensatz and

Positivstellensatz for sparse polynomial systems. In Proc. ACM Intern. Symp. Symb. Algebr.
Comput., pages 43–52, 2023. doi:10.1145/3597066.3597089.

2 Marianne Akian, Stéphane Gaubert, and Alexander Guterman. The correspondence between
tropical convexity and mean payoff games. In 19 Intern. Symp. Math. Theory of Networks
and Systems, Budapest, pages 1295–1302, 2012.

3 Yaroslav Alekseev, Dima Grigoriev, and Edward A. Hirsch. Tropical proof systems. Elec-
tron. Colloquium Comput. Complex., TR24-072, 2024. URL: https://eccc.weizmann.ac.il/
report/2024/072.

4 Yaroslav Alekseev, Dima Grigoriev, Edward A. Hirsch, and Iddo Tzameret. Semialgebraic
proofs, IPS lower bounds, and the τ -conjecture: Can a natural number be negative? SIAM
Journal on Computing, 53(3):648–700, 2024. doi:10.1137/20M1374523.

5 Xavier Allamigeon, Uli Fahrenberg, Stéphane Gaubert, Ricardo D. Katz, and Axel Legay.
Tropical Fourier-Motzkin elimination, with an application to real-time verification. Int. J.
Algebra Comput., 24(5):569–607, 2014. doi:10.1142/S0218196714500258.

6 Paul Beame, Noah Fleming, Russell Impagliazzo, Antonina Kolokolova, Denis Pankratov,
Toniann Pitassi, and Robert Robere. Stabbing Planes. In Anna R. Karlin, editor, 9th
Innovations in Theoretical Computer Science Conference (ITCS 2018), volume 94 of Leibniz
International Proceedings in Informatics (LIPIcs), pages 10:1–10:20, Dagstuhl, Germany, 2018.
Schloss Dagstuhl – Leibniz-Zentrum für Informatik. doi:10.4230/LIPIcs.ITCS.2018.10.

7 Paul Beame, Russell Impagliazzo, Jan Krajíček, Toniann Pitassi, and Pavel Pudlák. Lower
bounds on Hilbert’s Nullstellensatz and propositional proofs. Proc. London Math. Soc.,
73(3):1–26, 1996. doi:10.1112/plms/s3-73.1.1.

8 Aaron Bertram and Robert Easton. The tropical Nullstellensatz for congruences. Adv. Math,
308:36–82, 2017.

9 Peter Butkovic. Max-linear systems: theory and algorithms. Springer, 2010.
10 Matthew Clegg, Jeffery Edmonds, and Russell Impagliazzo. Using the Groebner basis algorithm

to find proofs of unsatisfiability. In Proceedings of the 28th Annual ACM Symposium on the
Theory of Computing, pages 174–183, New York, 1996. doi:10.1145/237814.237860.

11 Stephen A. Cook and Robert A. Reckhow. The relative efficiency of propositional proof
systems. J. Symb. Log., 44(1):36–50, 1979. doi:10.2307/2273702.

12 W. Cook, C.R. Coullard, and Gy. Turán. On the complexity of cutting-plane proofs. Discrete
Applied Mathematics, 18(1):25–38, 1987. doi:10.1016/0166-218X(87)90039-4.

13 Klim Efremenko, Michal Garlik, and Dmitry Itsykson. Lower bounds for regular resolution
over parities. ECCC TR23-187, 2023.

14 Noah Fleming, Mika Göös, Russell Impagliazzo, Toniann Pitassi, Robert Robere, Li-Yang Tan,
and Avi Wigderson. On the power and limitations of branch and cut. In Valentine Kabanets,
editor, 36th Computational Complexity Conference, CCC 2021, July 20-23, 2021, Toronto,
Ontario, Canada (Virtual Conference), volume 200 of LIPIcs, pages 6:1–6:30. Schloss Dagstuhl
– Leibniz-Zentrum für Informatik, 2021. doi:10.4230/LIPICS.CCC.2021.6.

STACS 2025

https://doi.org/10.1145/3597066.3597089
https://eccc.weizmann.ac.il/report/2024/072
https://eccc.weizmann.ac.il/report/2024/072
https://doi.org/10.1137/20M1374523
https://doi.org/10.1142/S0218196714500258
https://doi.org/10.4230/LIPIcs.ITCS.2018.10
https://doi.org/10.1112/plms/s3-73.1.1
https://doi.org/10.1145/237814.237860
https://doi.org/10.2307/2273702
https://doi.org/10.1016/0166-218X(87)90039-4
https://doi.org/10.4230/LIPICS.CCC.2021.6

8:20 Tropical Proof Systems: Between R(CP) and Resolution

15 Max Gläser and Marc E. Pfetsch. Sub-exponential lower bounds for branch-and-bound with
general disjunctions via interpolation. Technical Report 2308.04320, arXiv, 2023.

16 Dima Grigoriev. Complexity of solving tropical linear systems. Comput. Complexity, 22:71–88,
2013. doi:10.1007/S00037-012-0053-5.

17 Dima Grigoriev and Vladimir V. Podolskii. Tropical effective primary and dual Null-
stellensätze. Discrete and Computational Geometry, 59(3):507–552, 2018. doi:10.1007/
s00454-018-9966-3.

18 Armin Haken. The intractability of resolution. Theoret. Comput. Sci., 39(2-3):297–308, 1985.
doi:10.1016/0304-3975(85)90144-6.

19 Edward A. Hirsch and Arist Kojevnikov. Several notes on the power of Gomory-Chvátal cuts.
Ann. Pure Appl. Log., 141(3):429–436, 2006. doi:10.1016/j.apal.2005.12.006.

20 Dmitry Itsykson and Dmitry Sokolov. Resolution over linear equations modulo two. Ann.
Pure Appl. Log., 171(1), 2020. doi:10.1016/J.APAL.2019.102722.

21 Daniel Joo and Kalina Mincheva. Prime congruences of additively idempotent semirings and
a Nullstellensatz for tropical polynomials. Selecta Math., 24:2207–2233, 2018.

22 Stasys Jukna. Boolean Function Complexity. Springer, 2012.
23 Jan Krajícek. Discretely ordered modules as a first-order extension of the cutting planes proof

system. J. Symb. Log., 63(4):1582–1596, 1998. doi:10.2307/2586668.
24 Jan Krajícek. On the weak pigeonhole principle. Fundamenta Mathematicae, 170(1–3):123–140,

2001.
25 Jan Krajíček. Proof Complexity. Encyclopedia of Mathematics and its Applications. Cambridge

University Press, 2019.
26 Diane Maclagan and Felipe Rincon. Tropical ideals. Compos. Math., 154:640–670, 2018.
27 Diane Maclagan and Bernd Sturmfels. Introduction to Tropical Geometry. Springer, 2015.
28 Fedor Part and Iddo Tzameret. Resolution with counting: Dag-like lower bounds and different

moduli. Comput. Complex., 30(1):2, 2021. doi:10.1007/S00037-020-00202-X.
29 Pavel Pudlák. Lower bounds for resolution and cutting plane proofs and monotone compu-

tations. The Journal of Symbolic Logic, 62(3):981–998, 1997. URL: http://www.jstor.org/
stable/2275583, doi:10.2307/2275583.

30 Ran Raz and Iddo Tzameret. Resolution over linear equations and multilinear proofs. Ann.
Pure Appl. Logic, 155(3):194–224, 2008. doi:10.1016/j.apal.2008.04.001.

31 Grigori Tseitin. On the complexity of derivations in propositional calculus. In Studies in
constructive mathematics and mathematical logic. Part II, pages 115–125. Consultants Bureau,
New-York-London, 1968.

32 Alasdair Urquhart. Hard examples for resolution. J. ACM, 34(1):209–219, 1987. doi:
10.1145/7531.8928.

https://doi.org/10.1007/S00037-012-0053-5
https://doi.org/10.1007/s00454-018-9966-3
https://doi.org/10.1007/s00454-018-9966-3
https://doi.org/10.1016/0304-3975(85)90144-6
https://doi.org/10.1016/j.apal.2005.12.006
https://doi.org/10.1016/J.APAL.2019.102722
https://doi.org/10.2307/2586668
https://doi.org/10.1007/S00037-020-00202-X
http://www.jstor.org/stable/2275583
http://www.jstor.org/stable/2275583
https://doi.org/10.2307/2275583
https://doi.org/10.1016/j.apal.2008.04.001
https://doi.org/10.1145/7531.8928
https://doi.org/10.1145/7531.8928

Improved Approximation Algorithms for (1,2)-TSP
and Max-TSP Using Path Covers in the
Semi-Streaming Model
Sharareh Alipour #

Department of Computer Science, Tehran Institute for Advanced Studies (TeIAS),
Khatam University, Tehran, Iran

Ermiya Farokhnejad # Ñ

Department of Computer Science, University of Warwick, Coventry, UK

Tobias Mömke #

Department of Computer Science, University of Augsburg, Germany

Abstract
We investigate semi-streaming algorithms for the Traveling Salesman Problem (TSP). Specifically,
we focus on a variant known as the (1, 2)-TSP, where the distances between any two vertices are
either one or two. Our primary emphasis is on the closely related Maximum Path Cover Problem,
which aims to find a collection of vertex-disjoint paths that covers the maximum number of edges
in a graph. We propose an algorithm that, for any ϵ > 0, achieves a (2

3 − ϵ)-approximation of the
maximum path cover size for an n-vertex graph, using poly(1

ϵ
) passes. This result improves upon

the previous 1
2 -approximation by Behnezhad et al. [3] in the semi-streaming model. Building on this

result, we design a semi-streaming algorithm that constructs a tour for an instance of (1, 2)-TSP with
an approximation factor of (4

3 + ϵ), improving upon the previous 3
2 -approximation factor algorithm

by Behnezhad et al. [3]1.
Furthermore, we extend our approach to develop an approximation algorithm for the Maximum

TSP (Max-TSP), where the goal is to find a Hamiltonian cycle with the maximum possible weight
in a given weighted graph G. Our algorithm provides a (7

12 − ϵ)-approximation for Max-TSP in
poly(1

ϵ
) passes, improving on the previously known (1

2 − ϵ)-approximation obtained via maximum
weight matching in the semi-streaming model.

2012 ACM Subject Classification Theory of computation → Graph algorithms analysis; Theory of
computation → Streaming, sublinear and near linear time algorithms; Theory of computation →
Approximation algorithms analysis

Keywords and phrases (1, 2)-TSP, Max-TSP, Maximum Path Cover, Semi-Streaming Algorithms,
Approximation Algorithms, Graph Algorithms

Digital Object Identifier 10.4230/LIPIcs.STACS.2025.9

Related Version Full Version: https://arxiv.org/abs/2501.04813 [2]

Funding Tobias Mömke: Partially supported by DFG Grant 439522729 (Heisenberg-Grant).

1 Introduction

The Traveling Salesman Problem (TSP) is a fundamental problem in combinatorial optimiza-
tion. Given a graph G = (V, E) with distances assigned to the edges, the objective is to find
a Hamiltonian cycle with the lowest possible cost. The general form of TSP is known to be
inapproximable unless P = NP [22]. Consequently, research often focuses on specific types of

1 Although Behnezhad et al. do not explicitly state that their algorithm works in the semi-streaming
model, it is easy to verify.

© Sharareh Alipour, Ermiya Farokhnejad, and Tobias Mömke;
licensed under Creative Commons License CC-BY 4.0

42nd International Symposium on Theoretical Aspects of Computer Science (STACS 2025).
Editors: Olaf Beyersdorff, Michał Pilipczuk, Elaine Pimentel, and Nguyễn Kim Thắng;
Article No. 9; pp. 9:1–9:17

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:sharareh.alipour@gmail.com
https://orcid.org/0000-0002-3626-8960
mailto:ermiya.farokhnejad@warwick.ac.uk
https://www.ermiyafr.com/
https://orcid.org/0009-0008-6529-8625
mailto:moemke@informatik.uni-augsburg.de
https://orcid.org/0000-0002-2509-6972
https://doi.org/10.4230/LIPIcs.STACS.2025.9
https://arxiv.org/abs/2501.04813
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

9:2 Semi-Streaming Algorithms for (1,2)-TSP, Max-TSP

distance functions, particularly the metric TSP, where distances satisfy the triangle inequality.
Two notable metric versions of TSP are the graphic TSP, where distances correspond to
the shortest path lengths in an unweighted graph, and (1, 2)-TSP, a variant of TSP with
distances restricted to either one or two [1, 4, 5, 6, 12, 14, 15, 17, 18, 19, 23, 24, 25].

Most research is conducted within the classic centralized model of computation. However,
with the surge of large data sets in various real-world applications (as reviewed in [7]), there
is a growing demand for algorithms capable of handling massive inputs. For very large graphs,
classical algorithms are not only too slow but also suffer from excessive space complexity.
When a graph’s size exceeds the memory capacity of a single machine, algorithms that rely
on random access to the data become impractical, necessitating alternative computational
models. One such model that has gained significant attention recently is the graph stream
model, introduced by Feigenbaum et al. [8, 9]. In this model, edges of the graph are not
stored in memory but arrive sequentially in a stream, requiring processing in that order.
The challenge is to design algorithms that use minimal space and ideally make only a
small constant number of passes over the stream. A widely studied variant of this is the
semi-streaming model. In the semi-streaming model, as outlined by Feigenbaum et al. [9],
we consider a graph G with n vertices. The algorithm processes the graph’s edges as they
arrive in the stream and aims to compute results with minimal passes while using limited
memory, constrained to Õ(n) := O(n · polylog(n)).

It is straightforward to design a deterministic one-pass streaming algorithm to compute
the cost of a Minimum Spanning Tree (MST) exactly, even in graph streams, which in
turn immediately provides an Õ(n) space algorithm to estimate TSP cost within a factor
of 2. Thus, in the semi-streaming regime, the key challenge is to estimate TSP cost within
a factor that is strictly better than 2. Recently, Chen, Khanna, and Tan [5] proposed a
deterministic two-pass 1.96-approximation factor algorithm for metric TSP cost estimation
in the semi-streaming model. For the case of (1, 2)-TSP, using the approach of Behnezhad
et al. [3], it is possible to provide a 1.5-approximation factor algorithm in the semi-streaming
model. In [3], authors presented a sub-linear version of their algorithm; however, it is
straightforward to implement their algorithm in the semi-streaming model.

In section 11 of [3], the authors showed a reduction from (1,2)-TSP to maximum matching
and stated that achieving better approximation than 1.5 for (1,2)-TSP in the sub-linear
model, solves an important open problem in sub-linear maximum matching. Considering
the same reduction in semi-streaming model shows achieving non-trivial approximations for
(1,2)-TSP in semi-streaming model is challenging. Since the maximum matching problem is
studied in the semi-streaming model extensively, the following question naturally arises.

Question. What is the trade off between the approximation ratio and the number of
passes for (1,2)-TSP in the semi-streaming model?

Maximum Path Cover. In an unweighted graph G, a subset of edges is called a path cover
if it forms a union of vertex-disjoint paths. A maximum path cover (MPC2) in an unweighted
graph is a path cover with the maximum number of edges (not paths) among all possible
path covers in the graph. The problem of finding an MPC is known to be NP-complete. It is

2 Throughout this paper we use this acronym for ’Maximum Path Cover’. Please note that we do not
refer to the common abbreviation for ’Massively Parallel Computation’.

S. Alipour, E. Farokhnejad, and T. Mömke 9:3

straightforward to see that a maximum matching provides a 1/2-approximation for MPC.
Therefore, computing a maximal matching, which is a 1/2-approximation for maximum
matching, yields a 1/4-approximate solution for MPC.

Behnezhad et al. [3] developed a 1/2-approximate MPC algorithm, which provides a
1.5-approximate solution for (1, 2)-TSP. Their algorithm can be implemented in one pass
within the semi-streaming model using Õ(n) space to return the cost, and in two passes if
the approximate solution itself is required. Our primary contribution is an improvement in
the approximation factor of their algorithm.

Result 1 (Formally as Theorem 8). For a given unweighted graph G, there is a
semi-streaming algorithm that returns a (2

3−ϵ)-approximation of MPC in poly(1
ϵ) passes.

(1, 2)-TSP. The classical problem (1, 2)-TSP is well-studied and known to be NP-hard [15],
and even APX-hard [20]. One can easily observe that in an instance of (1, 2)-TSP, the optimal
tour is almost the same as finding the MPC of the induced subgraph on edges with weight 1
and then joining their endpoints with edges with weight 2, except for a possible difference
of 1 (in the case that there exists a Hamiltonian cycle all of whose edges have weight 1). A
simple computation shows that if one can find a set of vertex-disjoint paths that is at least α

times the optimal size (α ≤ 1), then one can also find a tour whose cost is no more than
(2 − α) times the optimal cost for (1, 2)-TSP. Thus, Result 1 implies the following result.

Result 2 (Formally as Theorem 10). For an instance of (1, 2)-TSP, there is a semi-
streaming algorithm that returns a (4

3 + ϵ)-approximation of (1, 2)-TSP in poly(1
ϵ)

passes.

In the second part of the paper, we examine Max-TSP in the semi-streaming model.

Max-TSP. For a given complete weighted graph G, the goal of Max-TSP is to find a
Hamiltonian cycle such that the sum of the weights of the edges in this cycle is maximized.

It is evident that a maximum weighted matching provides a 1
2 -approximation for the

cost of Max-TSP. Consequently, the result of Huang and Saranurak [13], which computes
a (1 − ϵ)-approximate maximum weight matching in the semi-streaming model, yields a
(1

2 − ϵ)-approximation for Max-TSP. In this paper, we improve this bound to 7
12 − ϵ. Our

result is as follows.

Result 3 (Formally as Theorem 16). For a given weighted graph G, there is a semi-
streaming algorithm that returns a (7

12 − ϵ)-approximation of Max-TSP in poly(1
ϵ)

passes.

To the best of our knowledge, this is the first non-trivial approximation algorithm for
Max-TSP in the semi-streaming model.

Further related work
Our approach for computing MPC, (1, 2)-TSP and Max-TSP mainly uses the subroutines
for computing maximum matching in unweighted graphs and maximum weight matching in
weighted graphs.

STACS 2025

9:4 Semi-Streaming Algorithms for (1,2)-TSP, Max-TSP

In the semi-streaming model, Fischer, Mitrovic and Uitto [10] gave a (1−ϵ)-approximation
for the maximum matching problem in poly(1/ϵ) passes. This result was an improvement
over the (1/ϵ)O(1/ϵ) passes algorithm by McGregor [16].

For the maximum weight matching in the semi-streaming model, Paz and Schwartzman
gave a simple deterministic single-pass (1/2 − ϵ)-approximation algorithm [21]. Gamlath,
Kale, Mitrovic, and Svensson gave a (1 − ϵ)-approximation streaming algorithm that uses
Oϵ(1) passes and Oϵ(n · poly(log n)) memory. This was the first (1 − ϵ)-approximation
streaming algorithm for weighted matching that uses a constant number of passes (only
depending on ϵ) [11]. Also, Huang and Su in [13], gave a deterministic (1 − ϵ)-approximation
for maximum weighted matching using poly(1/ϵ) passes in the semi-streaming model. When
ϵ is smaller than a constant O(1) but at least 1/ logo(1) n, their algorithm is more efficient
than [11].

1.1 Notation
Let G be a simple graph. We denote the set of vertices and edges of G by V (G) and E(G)
respectively. We also denote the maximum matching size in G by µ(G) and the size of the
MPC in G by ρ(G).

For a subset of edges T ⊆ E(G), we denote G/T as the contraction of G on T , which is
the graph derived by repeatedly removing edges of T (it is well-known that the order does
not matter) from the graph and merging its endpoints to be a single node in the new graph.
Note that after contraction the graph might have parallel edges, but this does not interfere
with our algorithm. In the weighted case, if w(e) is the weight of edge e, then we define w(T)
to be the sum of weights of the elements of T i.e.

∑
e∈T w(e). Let P = (u1, u2, . . . , uk) be a

path of length k − 1 (ui ∈ V for 1 ≤ i ≤ k). We call u1 and uk end points of P and ui for
2 ≤ i ≤ k − 1 middle points of P .

2 Technical Overview and Our Contribution

We propose a simple algorithm that constructs a path cover with an approximation factor of
almost 2

3 for MPC. This new algorithm merely depends on basic operations and computing
matching and approximate matching.

Our algorithm for MPC is as follows. Assume that MMϵ is a (1 − ϵ)-approximation
algorithm for computing maximum matching in an unweighted graph G. We use MMϵ as
a subroutine in our algorithm, which has two phases. In the first phase, we run MMϵ to
compute a (1 − ϵ)-approximate maximum matching, denoted by M1. In the next phase,
we contract all edges in M1 to obtain a new graph G′ = G/M1. Then, we compute a
(1 − ϵ)-approximate maximum matching, denoted by M2, for G′ using MMϵ. Finally, we
return the edges of M1 and M2 as a path cover for G (see Algorithm 1).

We will show that the output of our algorithm is a collection of vertex-disjoint paths,
i.e., a valid path cover (see Lemma 1).

The algorithm is simple, but proving that its approximation factor is 2
3 − ϵ is challenging.

As a warm-up, it is straightforward to see that by computing a maximum matching in the
first phase, we achieve a 1

2 -approximate MPC. However, the challenge lies in the second
phase, which helps to improve the approximation factor.

Now we explain the idea of our proof to find the approximation factor of Algorithm 1.
For the matching M1 in graph G, we provide a lower bound for µ(G/M1). We show that
if we consider a maximum path cover P ∗ and contract P ∗ on M1, the contracted graph
becomes a particular graph in which we can find a lower bound on the size of its maximum

S. Alipour, E. Farokhnejad, and T. Mömke 9:5

matching. Let M2 be a maximum matching of G/M1, then this results in a lower bound for
|M2|. Finally, we exploit this lower bound for |M2| together with a lower bound for |M1|, to
come up with the approximation factor of Algorithm 1.

We explain how to implement this algorithm in the semi-streaming model, achieving an
improved approximation factor for (1, 2)-TSP within this model.

For the Max-TSP, we use a similar algorithm, except we compute maximum weight
matching instead of maximum matching (see Algorithm 3). By computing the approximation
factor of this algorithm, we provide a non-trivial approximation algorithm for Max-TSP
in the semi-streaming model. Despite the extensive study of the weighted version of the
maximum matching problem, Max-TSP has not been studied extensively in the literature
within the semi-streaming model. One reason could be that it is not possible to extend the
approaches for the unweighted version to the weighted version. Fortunately, we can extend
our algorithm to the weighted version and improve the approximation factor of Max-TSP in
the semi-streaming model. However, our method for analyzing the approximation factor of
Algorithm 1 does not apply to the weighted version, so we present a different proof approach
for computing the approximation factor of Algorithm 3.

3 Improved Approximation Factor Semi-Streaming Algorithm for MPC

In Algorithm 1, we presented our novel algorithm for MPC. This section provides an analysis of
its approximation factor, followed by a detailed explanation of its streaming implementation.

Algorithm 1 Approximating maximum path cover on a graph G.

1: Run MMϵ on G to find a matching M1.
2: Contract G on M1 to get a new graph G′ = G/M1.
3: Run MMϵ on G′ to find another matching M2.
4: return M1 ∪ M2.

We start by proving the correctness of this algorithm.

▶ Lemma 1. If M1 and M2 are the matchings obtained in Algorithm 1, then M1 ∪ M2 forms
a path cover for G.

Proof. We claim that M1 ∪ M2 is a vertex-disjoint union of paths of length 1, 2 or 3. As a
result, it is a path cover. Suppose M1 = {u1v1, u2v2, . . . , ukvk}. Let us denote the vertices of
G/M1 by {(uv)1, (uv)2, . . . , (uv)k, w1, w2, . . . , wl} where (uv)i represents the vertices ui and
vi, merged in the contracted graph G/M1 and wj ’s for 1 ≤ j ≤ l are the rest of the vertices.
Let xy ∈ M2 be an arbitrary edge. By symmetry between x and y, there are three cases as
follows:
1. x, y ∈ {w1, w2, . . . , wl}.

In this case, x and y are intact vertices after contraction, which means there are no edges
in M1 adjacent to x and y. Since xy ∈ M2 and M2 is a matching, there are no other
edges in M1 ∪ M2 adjacent to x and y in G. As a result, xy would be a path of length 1
in M1 ∪ M2.

2. x ∈ {(uv)1, (uv)2, . . . , (uv)k} and y ∈ {w1, w2, . . . , wl}.
In this case, x = (uv)i for some 1 ≤ i ≤ k. As a result, xy would be uiy or viy in G. By
symmetry, assume that xy = uiy in G. Since M1 is a matching, no other edges in M1 are
adjacent to ui and vi. No edge in M1 is adjacent to y. Since M2 is a matching, the only
edge in M2 adjacent to at least one of ui, vi and y in G is xy = uiy. Finally, we can see
that (vi, ui, y) is a path of length 2 in M1 ∪ M2.

STACS 2025

9:6 Semi-Streaming Algorithms for (1,2)-TSP, Max-TSP

3. x, y ∈ {(uv)1, (uv)2, . . . , (uv)k}.
In this case, let x = (uv)i and y = (uv)j and by symmetry, assume that xy is the edge
connecting ui to uj in G. Since M1 is a matching, the only edges in M1 adjacent to at
least one of ui, uj , vi, vj are uivi and ujvj . Since M2 is a matching, the only edge in M2
adjacent to at least one of ui, uj , vi, vj is (uv)i(uv)j . As a result, (vi, ui, uj , vj) would be
a path of length 3 in M1 ∪ M2.

So, M1 ∪ M2 is a union of vertex-disjoint paths of length 1, 2 or 3. ◀

3.1 Analysis of the Approximation Factor of Algorithm 1
We start with a simple and basic lemmas that is crucial in our proof.

▶ Lemma 2. Let G be an arbitrary graph. We have:

ρ(G) ≥ µ(G) ≥ 1
2ρ(G).

Proof. Since every matching is a path cover, we have ρ(G) ≥ µ(G). Also, given an MPC,
we can select every other edge in this MPC to obtain a matching that contains at least half
of its edges, which implies µ(G) ≥ 1

2 ρ(G). ◀

▶ Corollary 3. If M is a (1 − ϵ)-approximation of maximum matching in graph G, then

|M | ≥ 1
2(1 − ϵ)ρ(G).

We now present a lemma regarding the size of the maximum matching in a specific type
of graph. This lemma may be of independent interest. In this paper we utilize this lemma
on G/M1 to derive a lower bound for |M2|.

▶ Lemma 4. Assume G is a graph without loops such that each vertex v of G has degree 1,2,
or 4. If V4(G) denotes the set of vertices of degree 4 in G, then we have

µ(G) ≥ |E(G)| − |V4(G)|
3 .

Proof. The proof of this lemma is a bit long and technical. Here, we provide the proof sketch
of the lemma due to page limit constraints and we refer the reader to the full version of the
paper to see the complete proof.3 The main tools for the proof are induction and a charging
scheme. The induction is on the number of edges between nodes of degree 2 or 4 in graph G

denoted by |E2,4(G)|.
In a high level, we provide some special local topological properties of the graph. If G

does not satisfy at least one of the properties, then we do some delicate local changes on G

to get G′ such that |E2,4(G′)| ≤ |E2,4(G)|. Next, we improve a matching in G′ to a matching
for G with the desired size.

In the case that G satisfies all of the properties, we provide a charging scheme that
takes some tokens for each edge in an arbitrary maximum matching and spread these tokens
between incident edges, which proves the desired inequality. ◀

Using above lemma, we have the main lemma of this section as follows.

3 A full version of this extended abstract can be found at [2].

S. Alipour, E. Farokhnejad, and T. Mömke 9:7

▶ Lemma 5. If M is an arbitrary matching in a graph G, then

µ(G/M) ≥ ρ(G) − |M |
3 .

Proof. Assume P ∗ is a maximum path cover in G such that P ∗ ∩ M is maximal. We claim
that every e ∈ M \ P ∗ connects two middle points of P ∗. The proof of this claim follows
from a case by case argument. For the sake of contradiction, assume e = uv ∈ M \ P ∗ does
not connect two middle points of P ∗. We have three cases for u and v as follows.

None of u and v belong to P ∗ (case 1).
Exactly one of them (say u) belongs to P ∗. Then, u is an end point (case 2), or u is a
middle point (case 3).
Both u and v belong to P ∗. Then, we have two sub cases.

u and v are on different paths. Then either they are both end points (case 4), or one
is a middle point (say u) and the other one is an end point (case 5). Note that we have
considered that both of u and v are not middle points at the same time.

u and v belong to the same path. Then, either they are both end points (case 6), or
one is a middle point (say u) and the other one is an end point (case 7). Note that we
have assumed both of them are not middle points at the same time.

Now, we explain each case in detail.
1. Neither u nor v belongs to P̃ .

This case is impossible because P ∗ + e is a path cover with a size larger than |P ∗|, which
is in contradiction with P ∗ being MPC (see Figure 1a).

2. u is an end point of a path in P ∗ and v is not contained in P ∗.
Again, this case is impossible since P ∗ + e is a path cover with a size larger than |P ∗|,
which is in contradiction with P ∗ being MPC (see Figure 1b).

3. u is a middle point of a path in P ∗ and v is not contained in P ∗.
Let (p1, p2, . . . , pk) be the path in P ∗ containing u = pi. Replace P ∗ by P ∗ − pi−1pi + e

which is an MPC of G (see Figure 1c). Since e ∈ M , we have pi−1pi /∈ M . Therefore,
|P̃ ∩ M | increments. This is in contradiction with |P ∗ ∩ M | being maximal.

4. u and v are end points of different paths in P ∗.
In this case, let (p1, p2, . . . , pk) and (q1, q2, . . . , ql) be the paths in P ∗ containing u = p1
and v = q1, respectively. P ∗ + e would be a path cover of size greater than |P ∗| which is
in contradiction with P ∗ being MPC (see Figure 1d).

5. u and v are the middle and end points of different paths in P ∗, respectively.
In this case, let (p1, p2, . . . , pk) and (q1, q2, . . . , ql) be the paths in P ∗ containing u = pi

and v = q1 respectively. Replace P ∗ by P ∗ − pi−1pi + e which is an MPC of G (see
Figure 1e). Since e ∈ M , we have pi−1pi /∈ M . Therefore, |P ∗ ∩ M | increments. This is
in contradiction with |P ∗ ∩ M | being maximal.

6. u and v are end points of the same path in P ∗.
In this case, let (p1, p2, . . . , pk) be the path in P ∗ containing u = p1 and v = pk. Replace
P ∗ by P ∗ − p1p2 + e which is an MPC of G (see Figure 1f). Since e ∈ M we have
p1p2 /∈ M . Therefore, |P ∗ ∩ M | increments. This is in contradiction with |P ∗ ∩ M | being
maximal.

7. u and v are the middle and end points of the same path in P ∗, respectively.
In this case, let (p1, p2, . . . , pk) be the path in P ∗ containing u = pi and v = p1 (since
e /∈ P ∗, we have 2 < i). Replace P ∗ by P ∗ − pi−1pi + e which is an MPC of G (see
Figure 1g). Since e ∈ M , we have pi−1pi /∈ M . Therefore, |P ∗ ∩ M | increments. This is
in contradiction with |P ∗ ∩ M | being maximal.

STACS 2025

9:8 Semi-Streaming Algorithms for (1,2)-TSP, Max-TSP

u v u v

(a) Case 1.

u
v

u
v

(b) Case 2.

u
v

u

v

(c) Case 3.

v

u

v

u

(d) Case 4.

u

v

u

v

(e) Case 5.

u v
u

v

(f) Case 6.

u
v

u
v

(g) Case 7.

Figure 1 Different possible cases for u and v.

Each case leads to a contradiction, implying that every e ∈ M \ P ∗ connects two middle
points of P ∗.

Now, contraction of each e ∈ M \ P ∗ makes a vertex of degree 4 in P ∗/M . Contraction of
each e ∈ M ∩ P ∗ makes a vertex of degree 2 and decrements the number of edges in P ∗. As
a result, P ∗/M is a graph whose vertices’ degrees are 1,2 or 4, |E(P ∗/M)| = |P ∗| − |P ∗ ∩ M |
and |V4(P ∗/M)| = |M \ P ∗|. Finally, using Lemma 4 for P ∗/M we have

µ(P ∗/M) ≥ |E(P ∗/M)| − |V4(P ∗/M)|
3 = |P ∗| − |P ∗ ∩ M | − |M \ P ∗|

3 = |P ∗| − |M |
3 .

Since P ∗/M is a subgraph of G/M we have

µ(G/M) ≥ µ(P ∗/M) ≥ |P ∗| − |M |
3 = ρ(G) − |M |

3 . ◀

Using the above results, we compute the approximation factor of Algorithm 1.

▶ Theorem 6. The approximation factor of Algorithm 1 is 2
3 (1 − ϵ), i.e.,

ρ(G) ≥ |M1 ∪ M2| ≥ 2
3(1 − ϵ)ρ(G). (1)

Proof. By Corollary 3 and, Lemma 5, we have

|M1 ∪ M2| = |M1| + |M2|
≥ |M1| + (1 − ϵ)µ(G/M1)

≥ |M1| + 1 − ϵ

3 (ρ(G) − |M1|)

≥ 1 − ϵ

3 ρ(G) + 2
3 |M1|

≥ 1 − ϵ

3 ρ(G) + 1 − ϵ

3 ρ(G) = 2
3(1 − ϵ)ρ(G).

Since M1 ∪ M2 is a path cover, we have ρ(G) ≥ |M1 ∪ M2|. Hence, the approximation
factor of Algorithm 1 is at least 2

3 (1 − ϵ). ◀

S. Alipour, E. Farokhnejad, and T. Mömke 9:9

Now, we show that our analysis of the approximation factor of Algorithm 1 is tight.
Consider the graph in Figure 2a and denote it by G̃. If we run Algorithm 1 on G̃, then the
edges of M1 could be the red edges shown in Figure 2b. After contracting G̃ on M1, we have
G̃/M1 shown in Figure 2c. Finally, the second matching M2 found by Algorithm 1 in G̃/M1
contains at most one edge which implies |M1 ∪ M2| ≤ 4. On the other hand, maximum path
cover P ∗ in G̃ contains 6 edges shown in Figure 2d.

(a) Graph G̃. (b) Matching M1 (red edges) found by Algorithm 1.

(c) G̃/M1. (d) P ∗ (blue edges) in G̃.

Figure 2 An example of a graph G̃ for which Algorithm 1 produces a path cover whose size is 2
3

times the size of the MPC.

As a result, |M1 ∪ M2|
|P ∗|

≤ 2
3 , so this example and Theorem 6 imply that the approximation

factor of Algorithm 1 is 2
3 − ϵ.

3.2 Implementation of Algorithm 1 in the Semi-Streaming Model
Now we explain how to implement Algorithm 1 in the semi-streaming model. We start with
the following theorem by Fischer, Mitrovic and Uitto [10].
▶ Theorem 7 (Theorem 1.1 in [10]). Given a graph on n vertices, there is a deterministic
(1 − ϵ)-approximation algorithm for maximum matching that runs in poly(1

ϵ) passes in the
semi-streaming model. Furthermore, the algorithm requires n · poly(1

ϵ) words of memory.
To implement Algorithm 1 in the semi-streaming model, we proceed as follows: In the

first phase, by applying Theorem 7, we compute a (1 − ϵ)-approximate matching for the
graph G, denoted as M1. At the end of this phase, we have the edges of this matching. In the
second phase, we again apply Theorem 7 to compute a matching for G/M1 in the streaming
model.

During the second phase, when we apply the algorithm of Theorem 7, while processing
each edge (vi, vj) in the stream, we follow these rules: If (vi, vj) ∈ M1, we ignore this edge. If
(vi, vj) /∈ M1, but one of vi or vj is an endpoint of an edge in M1 (e.g., vi, vk ∈ M1), then since
(vi, vj) is contracted, we consider vi and vj as a single vertex, vij . In this case, vk is considered
adjacent to the new vertex vij . Consequently, we can compute a (1 − ϵ)-approximation
matching for G/M1 in the next poly(1/ϵ) passes.

Thus, combining the results of Algorithm 1, Theorem 6, and Theorem 7, we have the
main result of this section:
▶ Theorem 8. Given an unweighted graph G on n vertices, there is a deterministic algorithm
that returns a (2

3 − ϵ)-approximate MPC in the semi-streaming model in poly(1
ϵ) passes.

STACS 2025

9:10 Semi-Streaming Algorithms for (1,2)-TSP, Max-TSP

4 (1, 2)-TSP

In this section, we present our algorithm for the (1, 2)-TSP, detailed in Algorithm 2, and
analyze its approximation factor. We also provide an explanation of how to implement this
algorithm in the semi-streaming model.

Algorithm 2 Our algorithm for (1, 2)-TSP.

1: Let G1 be the subgraph of G consisting of edges with weight 1.
2: Run Algorithm 1 on G1 to get a path cover P̃ .
3: Arbitrarily extend P̃ to a Hamiltonian cycle C̃ by adding edges between end points of P̃

or/and existing vertices not in P̃ .
4: return C̃.

▶ Theorem 9. The approximation factor of Algorithm 2 for (1, 2)-TSP is 4
3 + ϵ + 1

n .

Proof. Let T ∗ be the optimal solution of (1,2)-TSP, ρ∗ be the size of an MPC in G1, and n

be the number of vertices of G. Since every Hamiltonian cycle contains n edges with weights
1 or 2, we have n ≤ T ∗ ≤ 2n. We also have T ∗ = 2n − ρ∗ − 1 or T ∗ = 2n − ρ∗, where
T ∗ = 2n − ρ∗ − 1 occurs only when G contains a Hamiltonian cycle consisting solely of edges
with weight 1.

Let ρ̃ be the size of the path cover obtained by Algorithm 1 in G1. The Hamiltonian
cycle obtained by Algorithm 2 has a cost of at most 2(n − ρ̃) + ρ̃ = 2n − ρ̃. Let α ≤ 1
be the approximation factor of Algorithm 1, then we have αρ∗ ≤ ρ̃ ≤ ρ∗. As a result,
T ∗ ≤ 2n − ρ∗ ≤ 2n − ρ̃. We also have:

2n − ρ̃ ≤ 2n − αρ∗ = (2 − 2α)n + α(2n − ρ∗ − 1) + α

≤ (2 − 2α)T ∗ + αT ∗ + α = (2 − α)T ∗ + α

≤ (2 − α)T ∗ + 1

≤ (2 − α)T ∗ + T ∗

n
=

(
2 − α + 1

n

)
T ∗. (2)

By Theorem 6, we have α ≥ 2
3 − ϵ. Using Equation (2), we conclude that:

2n − ρ̃ ≤
(

2 − α + 1
n

)
T ∗

≤
(

2 −
(

2
3 − ϵ

)
+ 1

n

)
T ∗ =

(
4
3 + ϵ + 1

n

)
T ∗.

Hence, T ∗ ≤ 2n − ρ̃ ≤
(4

3 + ϵ + 1
n

)
T ∗. So, the approximation factor of our algorithm for

(1,2)-TSP is 4
3 + ϵ + 1

n . ◀

4.1 Implementation of Algorithm 2 in the Semi-Streaming Model
For a given instance of (1, 2)-TSP in the streaming model, we compute an approximate MPC
for the induced subgraph on the edges of weight 1 as explained in Theorem 8, then we add
extra edges to connect these paths and vertices not in these paths arbitrarily to construct a
Hamiltonian cycle, which gives us a (4/3 + ϵ + 1/n)-approximate tour for (1, 2)-TSP. So, we
have the main result of this section as follows.

▶ Theorem 10. Given an instance of (1, 2)-TSP on n vertices, there is a deterministic
algorithm that returns a (4

3 + ϵ + 1
n)-approximate (1, 2)-TSP in the semi-streaming model in

O(poly(1
ϵ)) passes.

S. Alipour, E. Farokhnejad, and T. Mömke 9:11

5 Max-TSP

In this section, we introduce our algorithm for Max-TSP, which closely resembles our
approach for MPC. The key difference is that, instead of using MMϵ, we employ a subroutine
to compute an approximate maximum weight matching in a weighted graph.

Let MWMϵ be a subroutine for computing a (1 − ϵ)-approximate maximum weighted
matching in a weighted graph G. First, we compute a matching M1 for G using MWMϵ.
Then, we contract the edges of M1 to obtain another graph G′ = G/M1 and compute
another matching, M2, for G′ using MWMϵ again. We derive the union of the two weighted
matchings, M1 ∪ M2. Similar to Lemma 1, it is evident that M1 ∪ M2 forms a union of
vertex-disjoint paths in G. Finally, since the graph is complete, there can be only one vertex
that is not in M1 ∪ M2. In this case we connect this vertex to one of the paths in M1 ∪ M2.
Now, we add edges arbitrarily between the endpoints of the paths in M1 ∪ M2 to obtain a
Hamiltonian cycle C for G.

Algorithm 3 Our algorithm for Max-TSP on a complete weighted graph G.

1: Run MWMϵ on G to find a matching M1.
2: Contract G on M1 to get a new graph G′ = G/M1.
3: Run MWMϵ on G′ to find another matching M2.
4: Arbitrarily extend M1 ∪ M2 to a Hamiltonian cycle C by adding edges between end

points of M1 ∪ M2 or/and existing vertices not in M1 ∪ M2.
5: return C.

Note that after contracting G on M1 to obtain G′ = G/M1, this new graph might have
parallel edges between to vertices. Since we aim to find a maximum matching in G′, we can
simply consider the edge with the largest weight for parallel edges and ignore the rest.

5.1 Analysis of the Approximation Factor of Algorithm 3
To analyze the approximation factor of Algorithm 3, we begin with a series of lemmas.

▶ Lemma 11. Suppose C is a cycle of length k in a weighted graph G. Then, there exists a
matching M ⊆ C such that w(M) ≥ k−1

2k w(C).

Proof. Assume that e ∈ C is the edge with the minimum weight. Hence, w(e) ≤ w(C)/k.
Since C − e is a path, there is a matching M ⊆ C − e (which is also a subset of C) whose
weight is at least w(C − e)/2. Finally,

w(M) ≥ 1
2w(C − e) = 1

2(w(C) − w(e)) ≥ 1
2

(
w(C) − w(C)

k

)
= k − 1

2k
w(C). ◀

▶ Lemma 12. Suppose T is a path or a cycle in a weighted graph G. Then there exists a
matching M ⊆ T such that w(M) ≥ 1

3 w(T).

Proof. We have two cases
T is a path. Enumerate the edges of T from one end point to the other. The odd
numbered edges form a matching called Modd. The same applies for even numbered edges,
which form a matching called Meven. Since T = Modd ∪ Meven, at least one of these two
matchings has weight no less than w(T)/2.
T is a cycle. If it is a cycle of length 2 (i.e. T consists of two parallel edges), then
obviously we can pick the edge e with bigger weight that satisfies w(e) ≥ 1

2 w(T) ≥ 1
3 w(T).

If the length of T is at least 3, then using Lemma 11, we conclude that there is a matching
M ⊆ T such that w(M) ≥ k−1

2k w(T) ≥ 1
3 w(T). ◀

STACS 2025

9:12 Semi-Streaming Algorithms for (1,2)-TSP, Max-TSP

Now, we provide a lemma similar to Lemma 5 which works for the weighted version.

▶ Lemma 13. Suppose M is a matching in a weighted graph G and C∗ is a maximum weight
Hamiltonian cycle of G. Then,

µ(G/M) ≥ w(C∗) − w(M)
6 − 1

3n
w(C∗).

Proof. We contract C∗ on M in two steps. First, we contract C∗ on the edges in C∗ ∩ M .
Next, we contract the resulting graph on M ′ = M \C∗. After the first step, C ′ = C∗/(C∗∩M)
is a cycle with weight w(C∗) − w(C∗ ∩ M) (see Figure 3).

Figure 3 C∗ remains a path cover after contraction on C∗ ∩ M (red edges).

Here M ′ is a matching that connects some vertices of C ′ together (see Figure 4a, Figure 4b
and Figure 4c).
Assume that the length of C ′ is k. Using Lemma 11, there is a matching M∗ ⊆ C ′ whose
weight is at least k−1

2k w(C ′) (see Figure 4d). Since the matching M1 contains at most half of
the edges of C∗, we conclude that k ≥ n/2. As a result,

w(M∗) ≥ k − 1
2k

w(C ′) ≥ n − 2
2n

(w(C∗) − w(C∗ ∩ M))

≥ w(C∗) − w(C∗ ∩ M)
2 − 1

n
w(C∗). (3)

Since M ′ ∩ C ′ = ∅, we conclude that M ′ ∩ M∗ = ∅. Because M∗ and M ′ are matchings, it
follows that M∗ ∪ M ′ is a union of disjoint paths and cycles (see Figure 4e). As a result, after
doing the second step of contraction, M∗/M ′ would also be a disjoint union of paths and
cycles (whose number of edges is equal to |M∗| since M∗ ∩ M ′ = ∅) in C ′/M ′. For instance,
if M∗ ∪ M ′ contains a cycle of length 4, then M∗/M ′ would contain a cycle of length 2 which
contains parallel edges.
Now, consider each connected component of M∗/M ′. This component is either a path or a
cycle. Hence, by Lemma 12, We obtain a matching with a weight of at least one-third of the
weight of the component.

Finally, since these components are vertex-disjoint, the union of obtained matching would
be a matching whose weight is at least w(M∗)/3. Note that this matching is also a matching
in G/M . Hence, using Equation (3), we have

µ(G/M) ≥ w(M∗)
3 ≥ w(C∗) − w(C∗ ∩ M)

6 − 1
3n

w(C∗)

≥ w(C∗) − w(M)
6 − 1

3n
w(C∗). ◀

So, we have the following theorem which is a lower bound for the approximation factor of
Algorithm 3.

S. Alipour, E. Farokhnejad, and T. Mömke 9:13

(a) An example of C∗ and
M (red edges) illustrating
the proof of Lemma 13.

(b) Distinguishing C∗ ∩ M
(blue edges) and M ′ =
M \ C∗ (red edges).

(c) C′ is the contraction of
C∗ on C∗ ∩M and M ′ (red
edges) connects some of its
vertices together.

(d) the weight of M∗ (blue
edges) is at least k−1

2k w(C′).
(e) M∗ ∪ M ′ is a disjoint union of paths and cycles
(M∗ and M ′ correspond to blue and red edges respectively).

Figure 4 An example of C∗ and M illustrating the steps in the proof of Lemma 13.

▶ Theorem 14. The approximation factor of Algorithm 3 is at least
(7

12 − 3
4n

)
(1 − ϵ).

Proof. Let C∗ be a maximum weight Hamiltonian cycle in G. By Lemma 11, there exists at
least one matching M ⊆ C∗ whose weight is at least

n − 1
2n

w(C∗).

Since M1 is a (1 − ϵ)-approximation of the maximum weighted matching in G we have

w(M1) ≥ (1 − ϵ)(n − 1)
2n

w(C∗).

By using Lemma 13 for M2 on G/M1, we have

w(M1 ∪ M2) = w(M1) + w(M2)
≥ w(M1) + (1 − ϵ)µ(G/M1)

≥ w(M1) + 1 − ϵ

6 (w(C∗) − w(M1)) − 1 − ϵ

3n
w(C∗)

≥ (1 − ϵ)
(

1
6 − 1

3n

)
w(C∗) + 5

6w(M1)

≥ (1 − ϵ)
(

1
6 − 1

3n

)
w(C∗) + 5(1 − ϵ)(n − 1)

12n
w(C∗)

=
(

7
12 − 3

4n

)
(1 − ϵ)w(C∗).

Since the weight of the edges of G are nonnegative, we have

w(C) ≥ w(M1 ∪ M2) ≥
(

7
12 − 3

4n

)
(1 − ϵ)w(C∗).

Finally, C is a Hamiltonian cycle which means w(C∗) ≥ w(C). Hence, the approximation
factor of Algorithm 1 is at least

(7
12 − 3

4n

)
(1 − ϵ). ◀

STACS 2025

9:14 Semi-Streaming Algorithms for (1,2)-TSP, Max-TSP

5.2 Implementation of Algorithm 3 in the semi-streaming model
The implementation of Algorithm 3 in the semi-streaming model follows a similar approach as
described in the previous section. Therefore, we omit a detailed explanation here. However,
note that in this part, we should use a subroutine for computing a (1 − ϵ)-approximate
maximum weight matching in the semi-streaming model. First, we recall the following
theorem from [13]. We use the algorithm of this theorem as MWMϵ in our semi-streaming
implementation of Algorithm 3.

▶ Theorem 15 (Theorem 1.3 in [13]). There exists a deterministic algorithm that returns a
(1 − ϵ)-approximate maximum weight matching using poly(1

ϵ) passes in the semi-streaming
model. The algorithm requires O(n · log W · poly(1

ϵ)) words of memory where W is the
maximum edge weight in the graph.

Thus, Algorithm 3, Theorem 14, and Theorem 15 present the following theorem for
Max-TSP in the semi-streaming model.

▶ Theorem 16. Given an instance of Max-TSP on n vertices, there is an algorithm that
returns a (7

12 − 3
4n)(1 − ϵ)-approximate Max-TSP the semi-streaming model in O(poly(1

ϵ))
passes. The algorithm requires O(n · log W · poly(1

ϵ)) words of memory where W is the
maximum edge weight in the graph.

6 Future Work

As a future work we propose the following algorithm that can help to improve the approxim-
ation factor for MPC in the semi-streaming model. The algorithm improves Algorithm 1
by iteratively finding new matchings and contracting the graph over these matchings. It is
crucial to ensure that this process preserves the path cover property. Hence, during the kth
iteration of our loop, we must remove all the edges in G that are incident to a middle point
of any path (connected component) within ∪k

i=1Mi. This is because
(
∪k

i=1Mi

)
∪ Mk+1 must

remain a path cover, which means Mk+1 cannot include any edge incident to a middle point
of a path in ∪k

i=1Mi. See Algorithm 4.

Algorithm 4 Extension of Algorithm 1.

1: Run MMϵ (or MWMϵ for weighted version) on G to find a matching M1.
2: Let i = 1.
3: while Mi ̸= ∅:
4: Let G(i) = G.
5: Remove all e ∈ E(G(i)) \ (∪i

k=0Mk) from E(G(i)) that are incident to at least one
middle point of a path (connected component) in ∪i

k=0Mk.
6: Contract G(i) on ∪i

k=0Mk.
7: Run MMϵ (or MWMϵ for weighted version) on G(i) to find a matching Mi+1.
8: i = i + 1
9: return ∪i

k=1Mk.

We leave the computation of the approximation factor of Algorithm 4 as a challenging
open problem. Currently, we know that the approximation factor is at most 3/4. Consider
the graph in Figure 5a: the algorithm may select the red edges as M1. After contraction, it
might select the red edge in Figure 5b as M2. In the next iteration, the graph becomes empty,
as we must remove any edge incident to a middle point of M1 ∪ M2. Thus, the algorithm
terminates with a path of length 3. However, the MPC has 4 edges (see Figure 5c).

S. Alipour, E. Farokhnejad, and T. Mömke 9:15

(a) M1 (red edges). (b) M2 (red edges). (c) MPC (blue edges).

Figure 5 An example of a graph where Algorithm 4 terminates after two iterations. The algorithm
produces a 3

4 -approximation of the Maximum Path Cover (MPC).

The main bottleneck to find the approximation ratio of Algorithm 4 is that after the
second iteration, there might be a lot of edges that we have to remove from the contracted
graph in order to make sure that the union of matchings remains a path cover. More precisely,
while running line 5 of Algorithm 4, a bunch of edges that are contained in every maximum
path cover might be removed. We are not aware of any argument how to bound the number
of these edges. This prevents us to provide an argument like Lemma 5 and Lemma 13.
Finding the exact approximation ratio of Algorithm 4 seems to require clever new ideas,
already for three matchings.

References

1 Anna Adamaszek, Matthias Mnich, and Katarzyna Paluch. New approximation algorithms for
(1, 2)-tsp. In Ioannis Chatzigiannakis, Christos Kaklamanis, Dániel Marx, and Donald Sannella,
editors, 45th International Colloquium on Automata, Languages, and Programming, ICALP
2018, July 9-13, 2018, Prague, Czech Republic, volume 107 of LIPIcs, pages 9:1–9:14. Schloss
Dagstuhl – Leibniz-Zentrum für Informatik, 2018. doi:10.4230/LIPIcs.ICALP.2018.9.

2 Sharareh Alipour, Ermiya Farokhnejad, and Tobias Mömke. Improved approximation al-
gorithms for (1,2)-tsp and max-tsp using path covers in the semi-streaming model, 2025.
arXiv:2501.04813.

3 Soheil Behnezhad, Mohammad Roghani, Aviad Rubinstein, and Amin Saberi. Sublinear
algorithms for TSP via path covers. CoRR, abs/2301.05350, 2023. doi:10.48550/arXiv.2301.
05350.

4 Yu Chen, Sampath Kannan, and Sanjeev Khanna. Sublinear algorithms and lower bounds for
metric TSP cost estimation. In Artur Czumaj, Anuj Dawar, and Emanuela Merelli, editors,
47th International Colloquium on Automata, Languages, and Programming, ICALP 2020,
July 8-11, 2020, Saarbrücken, Germany (Virtual Conference), volume 168 of LIPIcs, pages
30:1–30:19. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, 2020. doi:10.4230/LIPIcs.
ICALP.2020.30.

5 Yu Chen, Sanjeev Khanna, and Zihan Tan. Sublinear algorithms and lower bounds for
estimating MST and TSP cost in general metrics. In Kousha Etessami, Uriel Feige, and Gabriele
Puppis, editors, 50th International Colloquium on Automata, Languages, and Programming,
ICALP 2023, July 10-14, 2023, Paderborn, Germany, volume 261 of LIPIcs, pages 37:1–37:16.
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, 2023. doi:10.4230/LIPIcs.ICALP.2023.
37.

6 Artur Czumaj and Christian Sohler. Estimating the weight of metric minimum spanning trees
in sublinear-time. In László Babai, editor, Proceedings of the 36th Annual ACM Symposium
on Theory of Computing, Chicago, IL, USA, June 13-16, 2004, pages 175–183. ACM, 2004.
doi:10.1145/1007352.1007386.

STACS 2025

https://doi.org/10.4230/LIPIcs.ICALP.2018.9
https://arxiv.org/abs/2501.04813
https://doi.org/10.48550/arXiv.2301.05350
https://doi.org/10.48550/arXiv.2301.05350
https://doi.org/10.4230/LIPIcs.ICALP.2020.30
https://doi.org/10.4230/LIPIcs.ICALP.2020.30
https://doi.org/10.4230/LIPIcs.ICALP.2023.37
https://doi.org/10.4230/LIPIcs.ICALP.2023.37
https://doi.org/10.1145/1007352.1007386

9:16 Semi-Streaming Algorithms for (1,2)-TSP, Max-TSP

7 Doratha E. Drake and Stefan Hougardy. Improved linear time approximation algorithms for
weighted matchings. In Sanjeev Arora, Klaus Jansen, José D. P. Rolim, and Amit Sahai,
editors, Approximation, Randomization, and Combinatorial Optimization: Algorithms and
Techniques, 6th International Workshop on Approximation Algorithms for Combinatorial
Optimization Problems, APPROX 2003 and 7th International Workshop on Randomization
and Approximation Techniques in Computer Science, RANDOM 2003, Princeton, NJ, USA,
August 24-26, 2003, Proceedings, volume 2764 of Lecture Notes in Computer Science, pages
14–23. Springer, 2003. doi:10.1007/978-3-540-45198-3_2.

8 Joan Feigenbaum, Sampath Kannan, Andrew McGregor, Siddharth Suri, and Jian Zhang.
Graph distances in the streaming model: the value of space. In Proceedings of the Sixteenth
Annual ACM-SIAM Symposium on Discrete Algorithms, SODA 2005, Vancouver, British
Columbia, Canada, January 23-25, 2005, pages 745–754. SIAM, 2005. URL: http://dl.acm.
org/citation.cfm?id=1070432.1070537.

9 Joan Feigenbaum, Sampath Kannan, Andrew McGregor, Siddharth Suri, and Jian Zhang.
On graph problems in a semi-streaming model. Theor. Comput. Sci., 348(2-3):207–216, 2005.
doi:10.1016/J.TCS.2005.09.013.

10 Manuela Fischer, Slobodan Mitrovic, and Jara Uitto. Deterministic (1+ϵ)-approximate
maximum matching with poly(1/ϵ) passes in the semi-streaming model and beyond. In Stefano
Leonardi and Anupam Gupta, editors, STOC ’22: 54th Annual ACM SIGACT Symposium
on Theory of Computing, Rome, Italy, June 20 - 24, 2022, pages 248–260. ACM, 2022.
doi:10.1145/3519935.3520039.

11 Buddhima Gamlath, Sagar Kale, Slobodan Mitrovic, and Ola Svensson. Weighted matchings
via unweighted augmentations. In Peter Robinson and Faith Ellen, editors, Proceedings of the
2019 ACM Symposium on Principles of Distributed Computing, PODC 2019, Toronto, ON,
Canada, July 29 - August 2, 2019, pages 491–500. ACM, 2019. doi:10.1145/3293611.3331603.

12 Shayan Oveis Gharan, Amin Saberi, and Mohit Singh. A randomized rounding approach to
the traveling salesman problem. In Rafail Ostrovsky, editor, IEEE 52nd Annual Symposium
on Foundations of Computer Science, FOCS 2011, Palm Springs, CA, USA, October 22-25,
2011, pages 550–559. IEEE Computer Society, 2011. doi:10.1109/FOCS.2011.80.

13 Shang-En Huang and Hsin-Hao Su. (1-1013)-approximate maximum weighted matching in
poly(1/1013, log n) time in the distributed and parallel settings. In Rotem Oshman, Alexandre
Nolin, Magnús M. Halldórsson, and Alkida Balliu, editors, Proceedings of the 2023 ACM
Symposium on Principles of Distributed Computing, PODC 2023, Orlando, FL, USA, June
19-23, 2023, pages 44–54. ACM, 2023. doi:10.1145/3583668.3594570.

14 Anna R. Karlin, Nathan Klein, and Shayan Oveis Gharan. A (slightly) improved approximation
algorithm for metric TSP. In Samir Khuller and Virginia Vassilevska Williams, editors, STOC
’21: 53rd Annual ACM SIGACT Symposium on Theory of Computing, Virtual Event, Italy,
June 21-25, 2021, pages 32–45. ACM, 2021. doi:10.1145/3406325.3451009.

15 Richard M. Karp. Reducibility among combinatorial problems. In Raymond E. Miller and
James W. Thatcher, editors, Proceedings of a symposium on the Complexity of Computer
Computations, held March 20-22, 1972, at the IBM Thomas J. Watson Research Center,
Yorktown Heights, New York, USA, The IBM Research Symposia Series, pages 85–103. Plenum
Press, New York, 1972. doi:10.1007/978-1-4684-2001-2_9.

16 Andrew McGregor. Finding graph matchings in data streams. In Chandra Chekuri, Klaus
Jansen, José D. P. Rolim, and Luca Trevisan, editors, Approximation, Randomization and
Combinatorial Optimization, Algorithms and Techniques, 8th International Workshop on
Approximation Algorithms for Combinatorial Optimization Problems, APPROX 2005 and 9th
InternationalWorkshop on Randomization and Computation, RANDOM 2005, Berkeley, CA,
USA, August 22-24, 2005, Proceedings, volume 3624 of Lecture Notes in Computer Science,
pages 170–181. Springer, 2005. doi:10.1007/11538462_15.

https://doi.org/10.1007/978-3-540-45198-3_2
http://dl.acm.org/citation.cfm?id=1070432.1070537
http://dl.acm.org/citation.cfm?id=1070432.1070537
https://doi.org/10.1016/J.TCS.2005.09.013
https://doi.org/10.1145/3519935.3520039
https://doi.org/10.1145/3293611.3331603
https://doi.org/10.1109/FOCS.2011.80
https://doi.org/10.1145/3583668.3594570
https://doi.org/10.1145/3406325.3451009
https://doi.org/10.1007/978-1-4684-2001-2_9
https://doi.org/10.1007/11538462_15

S. Alipour, E. Farokhnejad, and T. Mömke 9:17

17 Matthias Mnich and Tobias Mömke. Improved integrality gap upper bounds for traveling
salesperson problems with distances one and two. Eur. J. Oper. Res., 266(2):436–457, 2018.
doi:10.1016/j.ejor.2017.09.036.

18 Tobias Mömke and Ola Svensson. Approximating graphic TSP by matchings. CoRR,
abs/1104.3090, 2011. arXiv:1104.3090.

19 Marcin Mucha. 13/9-approximation for graphic TSP. In Christoph Dürr and Thomas Wilke,
editors, 29th International Symposium on Theoretical Aspects of Computer Science, STACS
2012, February 29th - March 3rd, 2012, Paris, France, volume 14 of LIPIcs, pages 30–41. Schloss
Dagstuhl – Leibniz-Zentrum für Informatik, 2012. doi:10.4230/LIPIcs.STACS.2012.30.

20 Christos H. Papadimitriou and Mihalis Yannakakis. Optimization, approximation, and
complexity classes. J. Comput. Syst. Sci., 43(3):425–440, 1991. doi:10.1016/0022-0000(91)
90023-X.

21 Ami Paz and Gregory Schwartzman. A (2+ ε)-approximation for maximum weight matching
in the semi-streaming model. ACM Transactions on Algorithms (TALG), 15(2):1–15, 2018.
doi:10.1145/3274668.

22 Sartaj Sahni and Teofilo F. Gonzalez. P-complete approximation problems. J. ACM, 23(3):555–
565, 1976. doi:10.1145/321958.321975.

23 András Sebö and Jens Vygen. Shorter tours by nicer ears: 7/5-approximation for the graph-tsp,
3/2 for the path version, and 4/3 for two-edge-connected subgraphs. Comb., 34(5):597–629,
2014. doi:10.1007/s00493-014-2960-3.

24 Xianghui Zhong. On the approximation ratio of the k-opt and lin-kernighan algorithm
for metric and graph TSP. In Fabrizio Grandoni, Grzegorz Herman, and Peter Sanders,
editors, 28th Annual European Symposium on Algorithms, ESA 2020, September 7-9, 2020,
Pisa, Italy (Virtual Conference), volume 173 of LIPIcs, pages 83:1–83:13. Schloss Dagstuhl –
Leibniz-Zentrum für Informatik, 2020. doi:10.4230/LIPIcs.ESA.2020.83.

25 Xianghui Zhong. On the approximation ratio of the 3-opt algorithm for the (1, 2)-tsp. CoRR,
abs/2103.00504, 2021. arXiv:2103.00504.

STACS 2025

https://doi.org/10.1016/j.ejor.2017.09.036
https://arxiv.org/abs/1104.3090
https://doi.org/10.4230/LIPIcs.STACS.2012.30
https://doi.org/10.1016/0022-0000(91)90023-X
https://doi.org/10.1016/0022-0000(91)90023-X
https://doi.org/10.1145/3274668
https://doi.org/10.1145/321958.321975
https://doi.org/10.1007/s00493-014-2960-3
https://doi.org/10.4230/LIPIcs.ESA.2020.83
https://arxiv.org/abs/2103.00504

Monotone Weak Distributive Laws over the Lifted
Powerset Monad in Categories of Algebras
Quentin Aristote #

Université Paris Cité, CNRS, Inria, IRIF, F-75013, Paris, France

Abstract
In both the category of sets and the category of compact Hausdorff spaces, there is a monotone weak
distributive law that combines two layers of non-determinism. Noticing the similarity between these
two laws, we study whether the latter can be obtained automatically as a weak lifting of the former.
This holds partially, but does not generalize to other categories of algebras. We then characterize
when exactly monotone weak distributive laws over powerset monads in categories of algebras exist,
on the one hand exhibiting a law combining probabilities and non-determinism in compact Hausdorff
spaces and showing on the other hand that such laws do not exist in a lot of other cases.

2012 ACM Subject Classification Theory of computation → Categorical semantics

Keywords and phrases weak distributive law, weak extension, weak lifting, iterated distributive law,
Yang-Baxter equation, powerset monad, Vietoris monad, Radon monad, Eilenberg-Moore category,
regular category, relational extension

Digital Object Identifier 10.4230/LIPIcs.STACS.2025.10

Acknowledgements For sometimes small but always fruitful discussions on topics related to this
work, the author thanks Gabriella Böhm, Victor Iwaniack, Jean Goubault-Larrecq, Alexandre Goy,
Daniela Petrişan and Sam van Gool.

1 Introduction

In the study of the semantics of programming languages, and since the seminal work of
Moggi [26], effectful computations are usually modeled with monads: an effectful function of
type X Y is interpreted as a function of type X → TY , where the monadic structure on
T allows for having identities and compositions of such effectful functions. When considering
several effects at the same time, a natural question arises: given monads corresponding to
two effects, is it possible to construct a monad that corresponds to the combination of these
two effects? In particular, combining probabilities and non-determinism has been a very
popular subject of study in the topological and (dually) domain-theoretic settings: see for
instance the introduction of [21] for an extensive bibliography on the topic.

The most straightforward way to combine two monads S and T would be to compose
their underlying functors, but unfortunately in general the resulting endofunctor ST may
not carry the structure of a monad. For this to hold, a sufficient condition is the existence
of a distributive law of T over S, i.e. a natural transformation TS ⇒ ST satisfying four
axioms involving the units and multiplications of the two monads [2]. Such a distributive
law makes ST into a monad, and its data is equivalent to the data of a lifting of S to the
Eilenberg-Moore category EM(T) of T-algebras or to the data of an extension of T to the
Kleisli category Kl(S) of free S-algebras.

Unfortunately, distributive laws turn out to be not so common: proving that some specific
pairs of monads do not admit any distributive law between them has been the focus of several
works [22, 29, 12], culminating in [31] where general techniques for proving the absence of
distributive laws between monads on Set, so-called “no-go theorems”, are exhibited. Among
the culprits are the powerset monad P and the probability distributions monad D: there is
no distributive law PP⇒ PP nor DP⇒ PD.

© Quentin Aristote;
licensed under Creative Commons License CC-BY 4.0

42nd International Symposium on Theoretical Aspects of Computer Science (STACS 2025).
Editors: Olaf Beyersdorff, Michał Pilipczuk, Elaine Pimentel, and Nguyễn Kim Thắng;
Article No. 10; pp. 10:1–10:20

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:quentin.aristote@irif.fr
https://orcid.org/0009-0001-4061-7553
https://doi.org/10.4230/LIPIcs.STACS.2025.10
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

10:2 Monotone Weak Distributive Laws in Categories of Algebras

A next step in combining monads is thus to weaken the requirements asked for by
distributive laws. In [3] a 2-categorical theory of such weakened distributive laws, where the
axioms relating to the units of the monads are relaxed, is developed. This theory encompasses
two orthogonal kinds of weakened laws, both called weak distributive laws: those of [28],
extensively studied in [5, 6, 4], and those more recently put light on in [14] and given further
instances of in [18, 19, 7]. This work focuses on the latter kind of laws: in the following a
weak distributive law of T over S will thus be a natural transformation of type TS ⇒ ST
(again), where only three of the four axioms of distributive laws are required. Such a weak
distributive law need not make ST into a monad, but does so of a retract of it when the
category is well-behaved. Weak laws TS ⇒ ST are equivalent to weak extensions of T to
Kl(S) – extensions of the semi-monad underlying T, i.e. of its endofunctor and multiplication
but not of its unit – or, when the category is well-behaved, weak liftings of S to EM(T) –
liftings of S up to a retraction.

Weak extensions are a precious tool for building weak distributive laws, because monotone
extensions to Rel – the category of sets and relations, which also happens to be the category
of free algebras of the powerset monad P on Set – admit a nice characterization: this makes
it possible to find weak distributive laws without having to guess their formulæ anymore,
and the monotonicity of the extension is a strong indicator that the resulting law will be
semantically interesting. In the context of weak distributive laws, this strategy was first
used by Garner [14], who exhibited a law PP⇒ PP, but also a law βP⇒ Pβ combining the
ultrafilter monad β and the powerset monad and whose corresponding weak lifting turned out
to be the Vietoris monad V of closed subsets on the category KHaus of compact Hausdorff
spaces (the algebras of β [24]). The same strategy was then used for instance in [18], where
a law DP⇒ PD, combining probabilities and non-determinisim, is described.

In fact, most non-trivial weak distributive laws in the literature (trivial ones are described
in [16, §2.2]) are laws of type TP ⇒ PT built using this strategy. On the other hand,
in [19] the goal was to find weak distributive laws in other categories than Set, and it was
reached as a law VV⇒ VV, combining two layers of non-determinism in a continuous setting,
was described. This last law was also built by constructing a monotone weak extension,
and its formula is thus very close to that of the law PP ⇒ PP. In topological settings,
non-determinism can also be combined with probabilities: weak distributive laws for this
purpose are constructed by hand in a very recent pre-print [15].

The goal of the present work is to take over this program of finding non-Set-based weak
distributive laws: we focus here on categories of algebras, which fit in the general framework
for monotone weak laws presented in [19]. In particular, we notice in Theorem 12 that the
law VV⇒ VV is not only very similar to the law PP⇒ PP, but is also actually some sort
of weak lifting of it. We thus study whether there is a general framework for not only weakly
lifting monads (as weak distributive laws do), but also weakly lifting weak distributive laws
themselves: this framework should yield or simplify the construction of the law VV⇒ VV,
and hopefully generalize it to other categories of algebras, in particular EM(P) and EM(D)
which have weakly lifted powerset monads thanks to the laws PP⇒ PP and DP⇒ PD.

This question is largely related to the problem of composing weak distributive laws, which
was investigated in [17] from the point of view of the Yang-Baxter equations – the usual tool
for composing and lifting plain distributive laws [10]. We end up getting a general “no-go
theorem” for monotone weak laws over weakly lifted powerset monads: in that sense this
work is also close in spirit to [31], where general no-go theorems for (strict) distributive laws
are given. While not restricted to monotone distributive laws, these theorems are unlikely
to generalize to our setting because they are based on the correspondence between monads
and algebraic theories, which is mostly restricted to Set and does not have any obvious
generalization to semi-monads – to which weak distributive laws are deeply related.

Q. Aristote 10:3

This article is organized as follows. In Section 2, we recall definitions and notations for
and give examples of monads and weak distributive laws, and also recall the framework of [19]
for monotone weak distributive laws in regular categories. This culminates in Theorem 12,
where we notice that the law VV ⇒ VV is some sort of weak lifting of the law PP ⇒ PP.
The next two sections focus on lifting weak distributive laws: in Section 3 we study the
approach of the Yang-Baxter equation, showing it indeed allows for weakly lifting weak
laws but does not apply to the examples we consider; while in Section 4 we focus on the
monotonicity of the laws, giving a simple characterization for the existence of monotone weak
laws in categories of algebras and applying it to several examples. We conclude in Section 5.

Our main contributions are the following:
we show that, while the law VV ⇒ VV is a kind of weak lifting of the law PP ⇒ PP
(Theorem 18), this lifting does not come from a Yang-Baxter equation (Theorem 16), the
usual approch to lifting laws: it is an instance of a general no-go theorem for Yang-Baxter
equations involving the law PP⇒ PP (Theorem 15);
we characterize the Kleisli category of the weak lifting S of a monad S to the algebras of a
monad T as the category of T-algebras and Kl(S)-morphisms between them (Theorem 22);
we give a characterization of the Kleisli categories of weakly lifted powerset monads
as subcategories of relations (Theorem 29), in which a certain class of decomposable
morphisms play a central role: it follows that monads must preserve these decomposable
morphisms to have monotone weak distributive laws over weakly lifted powerset monads,
and this is in fact a sufficient condition for monads that are themselves weak liftings
(Theorem 37);
concrete instances of this result are then easily derived: we recover independently the law
combining probabilities and non-determinism in compact Hausdorff spaces and recently
exhibited in [15] (Theorem 38), but we observe otherwise that monotone weak distributive
laws over weakly lifted powerset monads in categories of algebras seem very rare (Table 1).

2 Preliminaries

In this section we first recall the theory of weak distributive laws from [14] and the tools
that come along, especially the ones developed in [19]. The reader is assumed to be familiar
with the basics of category theory, an introduction to which appearing for instance in [8].

2.1 Monads and (Weak) Distributive Laws
▶ Definition 1 (monad). A monad on a category C is the data

(
T, ηT, µT)

, often abbreviated
T, of an endofunctor T: C → C and natural transformations ηT: Id ⇒ T and µT: TT ⇒ T
satisfying the axioms µT ◦ TηT = id = µT ◦ ηTT and µT ◦ TµT = µT ◦ µTT.

▶ Example 2 (monads). In this work we will be particularly concerned with the following
monads on Set. Thereafter X and Y are sets, x is an element of X and f :X → Y is a
function.
The powerset monad P. PX = {subsets of X}; for e ⊆ X, (Pf)(e) = f [e] =
{f(x′) | x′ ∈ e}; ηP

X(x) = {x}; for E ⊆ PX, µP
X(E) =

⋃
E.

The probability distributions monad D. DX is the set of finitely-supported probability
distributions on X, i.e. functions φ:X → [0, 1] such that φ−1(0, 1] is finite and∑

x∈X φ(x) = 1; Df is the pushforward along f given by (Df)(φ)(y) =
∑

x∈f−1(y) φ(x)
for φ ∈ DX and y ∈ Y ; ηD

X(x) is the Dirac δx for x ∈ X, i.e. the probability distribution
such that δx(x) = 1; and µD computes the mean of a distribution of distributions, so that
for Φ ∈ DDX, µD(Φ)(x) =

∑
φ∈DX Φ(φ) · φ(x).

STACS 2025

10:4 Monotone Weak Distributive Laws in Categories of Algebras

The ultrafilter monad β. βX is the set of maximal filters on X, where filters are sets E ∈
PPX that are non-empty, up-closed (for inclusion), stable under finite intersections and do
not contain the empty set; for an ultrafilter E ∈ βX, (βf)(E) = {e′ ⊇ f [e] | e ∈ E}; ηβX(x)
is the principal filter {e ∈ PX | x ∈ e}; and, for E ∈ ββX, µβX(E) =

⋃
{
⋂

e | e ∈ E}.
We will also be concerned with a topological analogue of the powerset monad, defined on the
category KHaus of compact Hausdorff spaces and continuous functions. Thereafter X and Y
are compact Hausdorff spaces, x is an element of X, and f :X → Y is a continuous function.
The Vietoris monad V. VX is the space of closed subsets of X equipped with the to-

pology for which a subbase is given by the sets □u = {c ∈ VX | c ⊂ u} and ♢u =
{c ∈ VX | c ∩ u ̸= ∅} where u ranges among all open sets of X; (Vf)(c) = f [c] =
{f(x) | x ∈ c} for c ∈ VX; ηV

X(x) = {x}; and µV
X(C) =

⋃
C for C ∈ VVX.

We also write P∗ and V∗ for the non-empty powerset and Vietoris monads, respectively
obtained by removing the empty set from PX and VX.

Weak distributive laws are a certain type of natural transformations involving monads.

▶ Definition 3 ((weak) distributive law [14, Definition 9]). A monad T weakly distributes over
a monad S when there is a weak distributive law of T over S, i.e. a natural transformation
ρ: TS ⇒ ST such that the Diagrams (η+), (µ−), and (µ+) below commute. A (strict)
distributive law is a weak distributive law that moreover has the diagram (η−) below commute.

S

TS ST

ηTS SηT

ρ

(η−)

TTS TST STT

TS ST

Tρ

µTS

ρT

SµT

ρ

(µ−)

T

TS ST

TηS ηST

ρ

(η+)

TSS STS SST

TS ST

ρS

TµS

Sρ

µST

ρ

(µ+)

If ρ: TS ⇒ ST is a distributive law, ST, ηST = ηSηT and µST = µSµT ◦ SρT form a
monad [2]. If it is only a weak distributive law this is not the case anymore, because
µST ◦ ηSTST is not the identity anymore, only an idempotent (its composite with itself is
itself). But suppose now it is a split idempotent, i.e. that there is a functor S • T and natural
transformations p: ST⇒ S • T and i: S • T⇒ ST such that p ◦ i = id and i ◦ p = µST ◦ ηSTST.
Then S • T can be made into a monad [14] with unit ηS•T = p ◦ ηSηT and multiplication
µS•T = p ◦ µSµT ◦ SρT ◦ ii: the monad S • T is called the weak composite of S and T.

▶ Example 4 (weak distributive laws). In this work we will be particularly concerned with
the following weak distributive laws:

in Set, the weak distributive law λP/P: PP ⇒ PP given by Equation (1) below has for
weak composite the monad P • P of sets of subsets closed under non-empty unions [14];
in KHaus, there is a weak distributive law λV/V: VV ⇒ VV given by Equation (2)
below [19];
in Set, the weak distributive law λD/P: DP ⇒ PD given by Equation (3) below has
for weak composite the monad P • D of convex sets of finitely supported probability
distributions [18].

Q. Aristote 10:5

λ
P/P
X (E) =

{
e′ ∈ PX

∣∣∣ e′ ⊆
⋃
E and ∀e ∈ E, e ∩ e′ ̸= ∅

}
(1)

λ
V/V
X (C) =

{
c′ ∈ VX

∣∣∣ c′ ⊆
⋃
C and ∀c ∈ C, c ∩ c′ ̸= ∅

}
(2)

λ
D/P
X (Φ) =

{(
µD

X ◦Df
)

(Φ)
∣∣ f : PX → DX and ∀e ∈ PX,Φ(e) ̸= 0⇒ f(e) ∈ De

}
(3)

At this point two questions may come to the curious reader: how do we actually find
these weak distributive laws – the formulas in Theorem 4 are not trivial – and how exactly is
the monad structure on S • T constructed. These two questions will respectively be answered
in the next two sections, which give two other equivalent presentations of weak distributive
laws.

2.2 Regular Categories and Monotone (Weak) Extensions
Given a monad S, one may form its Kleisli category Kl(S), which is intuitively the category
of S-effectful arrows of C: its objects are those of C, its arrows X Y are those arrows
X → SY in C, the identity arrow X X is given by ηS

X :X → SX, and the composite of

two arrows f :X Y and g:Y Z is given by the composition X f−→ SY Sg−→ SSZ µS
Z−−→ SZ

in C. Kl(S) comes with an adjunction FS: C ⇆ Kl(S) :US, such that USFS = S: the left
adjoint FS sends objects on themselves and an arrow f :X → Y to the pure effectful arrow
X

f−→ Y
ηS

Y−−→ SY , and the right adjoint US sends an object X on SX and an effectful arrow
f :X → SY to the arrow SX Sf−→ SSY µS

−→ Y . The unit of the adjunction is ηS and its counit
is the natural transformation εS: FSUS ⇒ Id (in Kl(S)) with components the effectful arrows
idSX : SX → SX.

An endofunctor T: C→ C extends to Kl(S) if there is an endofunctor T: Kl(S)→ Kl(S)
such that TFS = FST. If T and T′ have extensions T and T′, a natural transformation
α: T⇒ T′ extends to Kl(S) if α, given by αFS = FSα, is a natural transformation T ⇒ T′.

▶ Definition 5 (extensions of monads). Let S be a monad on C. A monad
(
T, ηT, µT)

on C
weakly extends to Kl(S) when T and µT extend to Kl(S). It extends to Kl(S) when ηT also
extends to Kl(S).

Giving an extension of a monad T to Kl(S) is equivalent to giving a distributive law ρ: TS⇒
ST, just like giving a weak extension thereof is equivalent to giving a weak distributive law
of the same type [14]: in both cases, the law ρ induces the extension which sends f :X → SY
to TX Tf−−→ TSY ρ−→ STY , and is computed from the extension as ρ = USTεSFS ◦ ηSTS. In
particular Theorem 4 also yields examples of weak extensions.

Monotone extensions

If Kl(S) carries more structure than just that of a category then it is natural to ask that
extensions of functors preserve this additional structure: intuitively, the more structure
preserved, the more semantically canonical the resulting law should be. For instance, recall
that Kl(P) is the category Rel of sets and relations and that relations between two sets are
ordered by inclusion. Laws arising from monotone extensions to Rel are thus of particular
interest.

▶ Definition 6 (monotone (weak) distributive laws and extensions). A (weak) distributive
law TS ⇒ ST and its (weak) extension T to Kl(S) are called monotone when the sets of
morphisms of Kl(S) admit a canonical order that is preserved by T.

STACS 2025

10:6 Monotone Weak Distributive Laws in Categories of Algebras

It turns out that such monotone extensions to relations can be defined and characterized in
any regular category, as described in [19] and recalled now.

Let C be a finitely complete category. The kernel pair of an arrow f :X → Y is the
pullback p1, p2:X×Y X ⇒ X of the cospan X f−→ Y

f←− X. Assume C has all the coequalizers
of these kernel pairs: these coequalizers are called regular epimorphisms. C is then called
regular if these conditions are satisfied and if the regular epimorphisms are stable under
pullbacks1. Regular categories enjoy the fact that every arrow f :X → Y may be factored
as a regular epimorphism (denoted with ↠) followed by a monomorphism (denoted with
↪→), and this factorization is unique up to unique isomorphism – one should think of it as
factoring an arrow through its image. Set is a canonical example of a regular category.

Regular categories are useful because they are categories where we can speak of relations: if
C is a regular category, a C-relation between two objects X and Y is a subobject r:R ↪→ X×Y .
Relations are preordered: r:R ↪→ X × Y is smaller than s:S ↪→ X × Y , written r ≤ s, when
there is a monomorphism m:R ↪→ S such that s ◦m = r. One may form the category Rel(C)
with objects those of C and arrows X ↭ Y the equivalence classes of relations between
X and Y . The identity on X is the diagonal ⟨idX , idX⟩:X ↪→ X ×X, and composition of
relations r = ⟨rX , rY ⟩:R ↪→ X × Y and s = ⟨sY , sZ⟩:S ↪→ Y × Z, written s · r:X ↭ Z, is
constructed as in Figure 1a: by considering the pullback R×Y S → R×S of R rY−−→ Y

sY←−− S,
and taking the monomorphism in the factorization of R×Y S → R× S rX ×sZ−−−−→ X × Z.

R×Y S

R S

X Y Z

⌟

rX
rY sY

sZ

(a) Composition in Rel(C).

X

Y1 ×Z Y2

Y1 Z Y2

⌟

(b) A near pullback.

Figure 1 Diagrams involved in the definition of Rel(C).

The graph functor GraphC: C→ Rel(C) sends objects to themselves and an arrow f :X →
Y to the relation ⟨idX , f⟩:X ↪→ X × Y . There is also a contravariant transpose functor
−†: Rel(C)→ Rel(C) that sends objects on themselves and a relation ⟨rX , rY ⟩:R ↪→ X × Y
to ⟨rY , rX⟩:R ↪→ Y ×X. All in all, a relation ⟨f, g⟩:R ↪→ X × Y can also be written as the
composite GraphCg · (GraphCf)†: we will often omit Graph and write directly g · f†.

If Kl(S) is a wide2 subcategory of Rel(C) (with GraphC being the left adjoint in the Kleisli
adjunction), an extension to Kl(S) can be constructed by first finding a monotone extension
to Rel(C) and then restricting this extension to Kl(S). This is a very useful technique
because such monotone extensions to Rel(C), called relational extensions, have a very nice
characterization in terms or near pullbacks: a square is a near pullback when its limiting
morphism into the corresponding pullback is a regular epimorphism – as in Figure 1b. A
functor between regular categories is said to be nearly cartesian when it sends pullbacks

1 a class of arrows is stable under pullbacks when for every pullback square a ◦ b = c ◦ d, if a is in the
class then so is d

2 a wide subcategory is a subcategory that contains all objects of the bigger category

Q. Aristote 10:7

on near pullbacks and preserves3 regular epimorphisms, or equivalently when it preserves
near pullbacks, while a natural transformation α: F⇒ G between nearly cartesian functors is
nearly cartesian as well when its naturality squares α ◦ Ff = Gf ◦ α are near pullbacks.

▶ Theorem 7 ([19, Theorem 6]). Let F: C→ D be a functor between regular categories. F has
a relational extension, i.e. an order-preserving functor Rel(F) : Rel(C)→ Rel(D) such that
Rel(F) GraphC = GraphDF, if and only if F is nearly cartesian. In that case there is only one
possible such Rel(F), given by Rel(F)

(
g · f†)

= (Fg) · (Ff)†.
Let F,G: C ⇒ D be two such functors and α: F⇒ G be a natural transformation between

them. Then Rel(α), given by Rel(α) GraphD = GraphDα, is a natural transformation
Rel(F)⇒ Rel(G), called the relational extension of α, if and only if α is nearly cartesian.

Just like we omit to write Graph, we will often omit to write the functor Rel, and instead
write F(g · f†) for Rel(F) (g · f†) = Fg · (Ff)† and α for Rel(α).

▶ Example 8 (monotone extensions). Set is a regular category whose regular epimorphisms
are the surjections and such that Rel(Set) = Rel ∼= Kl(P). The endofunctors and the
multiplications of the monads P and D are nearly cartesian, hence P and D have monotone
weak extensions to Kl(P): this is how the weak distributive laws PP⇒ PP and DP⇒ PD
of Theorem 4 were constructed [14, 18]. KHaus is also a regular category: its regular
epimorphisms are the surjective continuous functions and Rel(KHaus) is the category of
compact Hausdorff spaces and closed relations, i.e. closed subsets of X × Y , while Kl(V)
is the category of compact Hausdorff spaces and continuous relations, i.e. closed relations
r:X ↭ Y such that r−1[u] is open in X for every open u of Y . The endofunctor and
multiplication of V are nearly cartesian hence they have a relational extension, which restricts
to continuous relations: this yields a monotone weak extension of V to Kl(V), and this is
how the weak distributive law VV⇒ VV of Theorem 4 was constructed [19].

2.3 Weak Liftings
Let T be a monad over a category C. Its category of algebras EM(T) is the category
whose objects are pairs (A, a) of a C-object A and a C-arrow a: TA→ A, and whose arrows
(A, a)→ (B, b) are those C-arrows A→ B such that f ◦ a = b ◦ Tf – the identity morphism
is the one with the identity as its underlying C-arrow, and composition of morphisms is
done by composing the underlying C-arrows. Just like for Kl(T), there is an adjunction
FT: C ⇆ EM(T) :UT such that UTFT = T: the left adjoint FT sends an algebra (A, a) to
its carrier object A and a morphism (A, a) → (B, b) to the underlying arrow A → B,
while UT sends an object X to the free T-algebra on X, given by the pair

(
TX,µT

X

)
, and

an arrow f :X → Y to the morphism
(
TX,µT

X

)
→

(
TY, µT

Y

)
with underlying C-arrow

Tf : TX → TY . There is finally a natural transformation εT: FTUT → Id (in EM(T)) given
by UTεT

(A,a) = a: TA→ A.

▶ Definition 9 (weak liftings [3, Definitions 4.1 and 4.2]). A weak lifting of an endofunctor
S: C → C to EM(T) is the data of an endofunctor S: EM(T) → EM(T) along with natural
transformations πT

S : SUT ⇒ UTS and ιTS : UTS ⇒ SUT – also written πS and ιS when not
ambiguous – such that πT

S ◦ ιTS = id. The composite ιTS ◦ πT
S is then written κT

S .

3 throughout this work we will say that a functor preserves a class of diagrams whenever it sends any
diagram in that class to a diagram in that class

STACS 2025

10:8 Monotone Weak Distributive Laws in Categories of Algebras

Let α: S⇒ R be a natural transformation between two C-endofunctors with weak liftings(
S, πS, ιS

)
and

(
R, πR, ιR

)
. If a natural transformation α: S ⇒ R has Diagram (π), Dia-

gram (ι) or both Diagrams (π) and (ι) below commute, it is respectively a weak π-, weak ι-
or a weak lifting thereof.

SUT UTS

RUT UTR

πT
S

UTααUT

πT
R

(π)

UTS SUT

UTR RUT

ιT
S

UTα αUT

ιT
R

(ι)

As discussed in [3], weak π- and weak ι-liftings are necessarily unique and given by UTα =
πT

R ◦ α ◦ ιTS if they exist. Their existence is moreover fully characterized:

▶ Theorem 10 ([3, Proposition 4.3 and Theorem 4.4]). Suppose idempotents split in C. Then
idempotents also split in EM(T), and having a weak lifting of S: C→ C to EM(T) is equivalent
to having a law ρ: TS⇒ ST that has Diagram (µ+) commute.

Fix now liftings S and R of S and R given by laws ρ: TS⇒ ST and σ: TR⇒ RT. Then,
α: S⇒ R respectively has a weak π-, weak ι- or weak lifting if and only if it makes Diagram (7),
Diagram (8) or both Diagrams (7) and (8) below commute. The latter case holds equivalently
if and only if σ ◦ Tα = αT ◦ ρ.

TS ST

TTS TST TRT RTT RT

TS TR

ρ

TηTS αT
Tρ TαT σT RµT

ηTTS

Tα

σ

(7)

(8)

This correspondence is moreover compositional: the composition of the weak (resp. weak
π-, weak ι-) liftings of two functors is a weak (resp. weak π-, weak ι-) lifting of their
composite.

In [14], Garner instantiates Theorem 10 to give another presentation of weak distributive
laws: if idempotents split in C, a weak distributive law TS⇒ ST is equivalently given by a
weak lifting of

(
S, ηS, µS)

to EM(T), i.e. by weak liftings of S, ηS and µS, respectively coming
from Diagrams (µ−), (η+), and (µ+). That these two natural transformations weakly lift
respectively means that Diagrams (π ◦ η) and (ι ◦ η) and Diagrams (π ◦ µ) and (ι ◦ µ) below
commute. When Diagram (η−) also commutes, ρ is a (strict) distributive law and this weak
lifting is a (strict) lifting: πS and ιS are both the identity.

UT

SUT UTS

ηSUT UTηS

πT
S

(π ◦ η)

SSUT SUTS UTSS

SUT UTS

SπT
S

µSUT

πT
S S

UTµS

πT
S

(π ◦ µ)

UT

UTS SUT

UTηS ηSUT

ιT
S

(ι ◦ η)

UTSS SUTS SSUT

UTS SUT

ιT
S S

UTµS

SιT
S

µSUT

ιT
S

(ι ◦ µ)

The weak composite monad S•T corresponding to a weak distributive law TS⇒ ST can be
retrieved from the weak lifting of S to EM(T) by setting S•T = UTSFT, ηS•T = UTηSFT ◦ηT

and µS•T = UTµSFT ◦UTSεTSFT. κT
S FT is moreover the idempotent µST ◦ ηSTST: ST⇒ ST,

and its splitting is thus given by πT
S FT: ST⇒ S • T and ιTS FT: S • T⇒ ST.

Q. Aristote 10:9

▶ Example 11 (weak liftings). All idempotents split in Set (they factor through their image).
The algebras of P are the complete join-semilattices (we write EM(P) ∼= JSL): the weak
lifting corresponding to the law PP⇒ PP is the monad of subsets closed under non-empty
joins [19]. The algebras of D are the barycentric algebras, also called convex spaces (we
write EM(D) ∼= Conv): the weak lifting corresponding to the law DP⇒ PD is the monad of
convex-closed subsets [18]. Finally, there is also a weak distributive law βP⇒ Pβ. Assuming
the axiom of choice, the algebras of β are the compact Hausdorff spaces [24] (we write
EM(β) ∼= KHaus): the corresponding weak lifting is the Vietoris monad V. In that case πP
computes the topological closure of a subset, while ιP embeds the set of closed sets into the
set of all subsets.

3 Weakly Lifting Weak Distributive Laws

With Theorem 11 and the fact that V is a weak lifting of P to KHaus in mind, we may now
notice that not only are the two laws PP⇒ PP (1) and VV⇒ VV (2) very similar, but the
second one seems to be some kind of weak lifting to KHaus ∼= EM(β) of the first one:

▶ Lemma 12. UβλV/V = πPV ◦ PπP ◦ λP/PUβ ◦ PιP ◦ ιPV.

Proof. Recall from [14] that, if X is a compact Hausdorff space that we see as a β-algebra,
the X-component of πP is the function PX → VX that takes a subset of a compact Hausdorff
space and outputs its closure, while the X-component of ιP is the function VX → PX that
embeds closed subsets in the set of all subsets. Hence for C a closed set of closed sets,(

PπP ◦ λP/PUβ ◦ PιP ◦ ιPV
)

X
(C) =

{
e

∣∣∣ e ⊆⋃
C and ∀c ∈ C, c ∩ e ̸= ∅

}
=

{
c ∈ VX

∣∣∣ c ⊆⋃
C and ∀c′ ∈ C, c ∩ c′ ̸= ∅

}
=

(
ιPV ◦UβλV/V

)
X

(C)

(where e denotes the closure of e). Indeed if e ⊆
⋃
C then e ⊆

⋃
C because

⋃
C = µV(C) is

closed, and if e ∩ c ̸= ∅ then e ∩ c ̸= ∅.
Because πP ◦ ιP = id, UβλV/V = πPV ◦ PπP ◦ λP/PUβ ◦ PιP ◦ ιPV. ◀

Is this just a coincidence, or is this an instance of Theorem 10? And in the latter case, can
the weak distributivity of λV/V be automatically derived from that of λP/P, and does this
law PP ⇒ PP also weakly lift to laws on other categories of algebras where the powerset
monad weakly lifts, say EM(P) and EM(D)?

In this section we thus consider three monads
(
T, ηT, µT)

,
(
S, ηS, µS)

and
(
R, ηR, µR)

on
a category C, and three weak distributive laws ρ: TS ⇒ ST, σ: TR ⇒ RT and τ : SR ⇒ RS
(a mnemonic for which is which is that ρ does not involve R, σ does not involve S and τ

does not involve T). We assume that idempotents split in C, so that the corresponding weak
composite and weak liftings all exist.

3.1 The Yang-Baxter Equation for Weak Distributive Laws
The standard way to lift (strict) distributive laws is to use the so-called Yang-Baxter equation.
The Yang-Baxter equation for the three laws ρ, σ and τ holds when diagram (YB) below
commutes.

TRS RTS

TSR RST

STR SRT

σS
RρTτ

ρR
Sσ

τT

(YB)

STACS 2025

10:10 Monotone Weak Distributive Laws in Categories of Algebras

If these laws are strict distributive laws, then it is well-known since [10] that the Yang-Baxter
equation is enough to show that Rρ ◦ σS: TRS ⇒ RST is a distributive law of T over RS,
and that the distributive law τ : SR⇒ RS lifts to a distributive law τ : SR ⇒ RS in EM(T).
The composition of weak distributive laws using the Yang-Baxter equation was investigated
in [17]. A notable result is the following:

▶ Proposition 13 ([17, Theorem 4.3]). If the weak distributive laws ρ: TS⇒ ST, σ: TR⇒ RT
and τ : SR ⇒ RS have Diagram (YB) commute, then πS

RFST ◦ Rρ ◦ σS ◦ TιSRFS is a weak
distributive law T(R • S)⇒ (R • S)T.

The Yang-Baxter equation thus allows for weakly lifting R•S to EM(T). More importantly
for our purpose, we show it also allows for weakly lifting the weak distributive law SR⇒ RS:

▶ Theorem 14. Weak distributive laws ρ: TS ⇒ ST, σ: TR ⇒ RT and τ : SR ⇒ RS satisfy
the Yang-Baxter equation if and only if τ : SR⇒ RS weakly lifts to EM(T), i.e. if there is a
natural transformation τ : SR ⇒ RS such that Diagrams (14) and (15) commute.

If this holds, τ is a weak distributive law, and the weak composite R • S and the weak
lifting R • S (recall that R • S weakly lifts to EM(T) by Theorem 13) can be chosen to be equal
(as monads).

SRUT SUTR UTSR

RSUT RUTS UTRS

τUT UTτ

SπR πSR

RπS πRS

(14)
UTSR SUTR SRUT

UTRS RUTS RSUT

UTτ τUT

ιSR SιR

ιRS RιS

(15)

When Theorem 14 holds it immediately follows that Uτ = πRS ◦RπS ◦ τUT ◦ SιR ◦ ιSR, which
is exactly the result we got in Theorem 12 for τ = λV/V: VV ⇒ VV and τ = λP/P: PP ⇒
PP. It would thus be a reasonable conjecture that λβ/P: βP ⇒ Pβ, λβ/P: βP ⇒ Pβ and
λP/P: PP⇒ PP satisfy the Yang-Baxter equation, from which we would immediately retrieve
the weak distributivity of λV/V: VV⇒ VV but also learn that the weak composite V • V is a
weak lifting of P • P. Unfortunately, the Yang-Baxter equation does not hold in that case. A
rather simple way to see this is to notice that λV/V does not make Diagram (15) commute,
i.e. it is not a ι-lifting of λP/P. More generally, we show the following no-go theorem for
weak ι-liftings:

▶ Proposition 15. Let λT/P: TP⇒ PT be a weak distributive law with corresponding weak
lifting P, and write PPA =

(
PιP ◦ ιPP

) [
UTPP(A, a)

]
when (A, a) is a T-algebra. If there

is an (A, a) such that {A} ∈ PPA and P∗A /∈ PPA, then λP/P: PP⇒ PP does not have a
weak ι-lifting to EM(T).

▶ Corollary 16. There is no weak ι-lifting (let alone weak liftings) of λP/P to KHaus, JSL
or Conv.

Proof sketch.
1. Given a compact Hausdorff space given as a β-algebra (A, a), PPA is the set of all closed

sets (in the Vietoris topology) of closed sets of (A, a). {A} is such a closed set of closed
sets (all singletons and the whole set are always closed in a compact Hausdorff space)
but P∗A is not in general because it contains all non-empty sets, in particular non-closed
sets if there are any (which is the case for the unit interval, for instance). ◀

Q. Aristote 10:11

▶ Remark 17. It is not hard to show that the Yang-Baxter equation holding for ρ: TS⇒ ST,
σ: TR⇒ RT and τ : SR⇒ RS is also equivalent to ρ: TS⇒ ST having an extension ρ: TS ⇒ ST
to Kl(R). In the case of λβ/P: βP⇒ Pβ, β is in fact a lax monad on Rel whose algebras are
the topological spaces [1]. Unfortunately, we have just shown that the Yang-Baxter equation
does not hold for λβ/P: βP⇒ Pβ, λP/P: PP⇒ PP and λP/P: PP⇒ PP, and so do not get a
way to weakly lift P to topological spaces for free.

Theorem 14 does have some concrete instances: in [17], Goy gives a substantial number
of examples of triples of weak distributive laws for which the Yang-Baxter equation holds,
although these examples all involve at least one strictly distributive law out of the three.

3.2 The π-Yang-Baxter Equation
We still do not have an explanation for why λV/V looks so much like λP/P. But λV/V being a
weak lifting of λP/P is not a necessary condition for retrieving Theorem 12: in fact, λV/V

being only a weak ι- or π-lifting of λP/P would be enough. We saw in Theorem 16 that the
weak ι-lifting hypothesis was a dead-end: how about λV/V being a weak π-lifting of λP/P?
This turns out to be true, although the proof is of course more involved than that of the
weaker Theorem 12.

▶ Lemma 18. λV/V: VV⇒ VV is a weak π-lifting of λP/P: PP⇒ PP.

Theorem 14 adapts to weak π-liftings, hence we immediately retrieve as a consequence of
Theorem 18 that λV/V: VV⇒ VV is a weak distributive law.

▶ Proposition 19. Weak distributive laws ρ: TS⇒ ST, σ: TR⇒ RT and τ : SR⇒ RS satisfy
the π-Yang-Baxter equation, given by Diagram (π-YB), if and only if τ : SR ⇒ RS weakly
π-lifts to EM(T), i.e. if there is a natural transformation τ : SR ⇒ RS such that Diagram (14)
commutes.

If this holds, τ is a weak distributive law.

TSR TRS RTS RST

STR RSTT

SRT RST TRST RTST

Tτ

ρR

σS Rρ

Sσ

RSµT

τT ηTRST σST

RρT

(π-YB)

We also retrieve that λV/V is a monotone weak distributive law:

▶ Proposition 20. Consider a monotone weak distributive law λS/P: SP⇒ PS in Set that has
a weak π-lifting to EM(T). If the components of κP: PUT ⇒ PUT are monotone functions
(they preserve inclusion of subsets) then λS/P : SP ⇒ PS is also a monotone weak distributive
law.

Of course the point of Theorems 19 and 20 is that they make it easier to exhibit weak
distributive laws in categories of algebras. Still, working with Diagram (π-YB) may be quite
tedious, as it involves up to four composed layers of functors. In fact in Theorem 18 we
did not use this π-Yang-Baxter equation at all, instead we directly proved that λV/V was a
weak π-lifting because we were already able to take for granted that its components were
morphisms of β-algebras, i.e. continuous functions. Another problem with Theorem 19 is

STACS 2025

10:12 Monotone Weak Distributive Laws in Categories of Algebras

that even if we manage to disprove its prerequisites for some examples, we only get that
there is no weak π-lifting of the weak distributive law, but we do not learn anything about
other possible meaningful weak distributive laws in the category of algebras.

For all of these reasons we do not try to apply Theorem 19 to weakly π-lift λP/P: PP⇒ PP
to EM(P) and EM(D), and immediately turn towards another approach in Section 4 instead:
we try to weakly lift the conditions for the existence of monotone weak distributive laws
(described in Section 2.2). This is a reasonable strategy because monotone laws are easier to
reason about (all non-trivial weak distributive laws described in the literature are monotone)
and are closer to being fully characterized, meaning we should hopefully be able to prove
no-go theorems for monotone weak distributive laws. In fact we will prove that there is no
such law PP ⇒ PP in EM(P) or EM(D), so that by Theorem 20 λP/P cannot weakly π-lift
to EM(P) nor to EM(D).

4 Weakly Lifting Monotone Weak Distributive Laws

Let T be a monad on a regular category C. It is folklore that, under mild conditions, EM(T)
is regular as well. For instance on Set, all finitary monads, and even all monads if the axiom
of choice is assumed to be true, have regular categories of algebras [9, Theorems 3.5.4 and
4.3.5]. Here we will assume that T is a nearly cartesian functor, but the following result also
holds for monads that preserve reflexive coequalizers.

▶ Theorem 21 (categories of algebras are regular). Let
(
T, ηT, µT)

be a monad on a regular
category C such that T is nearly cartesian. Then EM(T) is regular and UT creates finite
limits and near pullbacks (a square is a near pullback in EM(T) if and only if its image by
UT is so in C).

Consider weak distributive laws ρ: TS ⇒ ST, σ: TR ⇒ RT and τ : SR ⇒ RS on C. Note
that because C is a regular category, idempotents split in C by way of the factorization into
regular epimorphisms followed by monomorphisms: in particular, all the weak composites
and weak liftings corresponding to these weak distributive laws exist. When τ : SR⇒ RS is a
monotone weak distributive law thanks to the framework of [19], it is now natural to ask
when there is also a monotone weak distributive law SR ⇒ RS in EM(T) arising in the same
way: it is for instance the case for T = β and S = R = P.

To apply the framework for monotone weak distributive laws of [19] to monads S and R,
we need to characterize Kl

(
R

)
as a subcategory of relations – we do this in Section 4.1 – and

then prove that S and µS are nearly cartesian and investigate when the extension of S to
Rel(EM(T)) restricts to Kl

(
R

)
– we do this in Section 4.2. We finally apply our results in

Section 4.3.
Because we strive to be as general as possible, in the following the assumptions that we

use vary from result to result. In the propositions and theorems we thus recall every time all
the assumptions that are necessary.

4.1 Kleisli Categories of Weakly Lifted Monads
Let us forget about regular categories and internal relations for an instant and first describe
the Kleisli categories of a weakly lifted monad R in terms of the Kleisli category of R itself.

▶ Proposition 22. Let σ: TR ⇒ RT be a weak distributive law in a category C where
idempotents split, so that R has a weak lifting R to EM(T) and T a weak extension T to
Kl(R). Then Kl

(
R

)
-arrows (A, a) (B, b) are in one-to-one correspondence with Kl(R)-

arrows f :A B such that f ◦ FRa = FRb ◦ Tf .

Q. Aristote 10:13

Assume now that the framework of [19] applies: Kl(R) is a wide subcategory of Rel(C)
(and the left adjoint coincides with the graph functor GraphC: C→ Rel(C)), T and µT are
nearly cartesian and the weak extension of

(
T, ηT, µT)

to Kl(R) is the restriction of the
relational extension of T and µT to Rel(C).

By Theorems 7 and 21, UT has a relational extension Rel
(

UT
)

: Rel(EM(T))→ Rel(C),
and by Theorem 22 Kl

(
R

)
-morphisms (A, a) (B, b) correspond to C-relations ψ:A↭ B

that are in Kl(R) and such that ψ · a = b · Tψ. Kl
(
R

)
is thus itself a wide subcategory of

Rel(EM(T)):

▶ Lemma 23. When the endofunctor T is nearly cartesian, a C-relation ψ:A↭ B is the
image of an EM(T)-relation (A, a) ↭ (B, b) by the faithful functor Rel

(
UT

)
: Rel(EM(T))→

Rel(C) if and only if ψ · a ≥ b · Tψ.

We now describe in more concrete terms which EM(T)-relations are arrows in Kl
(
P

)
.

Decomposable T-algebra morphisms play a central role in this description:

▶ Definition 24 (decomposable morphisms of algebra). Let T be a monad on a category C
such that EM(T) is regular. A T-algebra morphism f :X → Y is called decomposable when
the square f ◦ εT

X = εT
Y ◦ FTUTf is a near pullback.

Given a jointly monic span ⟨ψX , ψY ⟩ in EM(T), the corresponding relation ψ = ψY · ψ†
X

is called decomposable when ψX is so.

Before looking at examples, let us give two lemmas that will make working with decom-
posability of morphisms and relations easier.

▶ Lemma 25. If UT creates near pullbacks, a T-morphism f : (A, a)→ (B, b) is decomposable
if and only if UTf ◦ a = b ◦ TUTf is a near pullback in C. In particular if T is a monad on
Set, this holds if and only if for every x ∈ A and u ∈ TB such that f(x) = b(u), there is
some t ∈ TA such that (Tf)(t) = u and a(t) = x.

▶ Lemma 26. Suppose UT creates and T preserves regular epimorphisms. If g = h ◦ e is
decomposable and e is a regular epimorphism, then h is decomposable as well. In particular,
if f :R→ X is decomposable then for any g:R→ Y , g · f† is a decomposable relation.

Decomposable morphisms have been studied in [11, Definition 3.1.1] in the setting
of monoidal topology. There, these morphisms are called open as they generalize open
maps between compact Hausdorff spaces, as the next example shows. We prefer the term
“decomposable” here as we focus on other examples that feel more algebraic than topological:

▶ Example 27 (decomposable morphisms and relations in categories of algebras over Set). In
EM(β) ∼= KHaus, a continuous map is decomposable if and only if it is open (it preserves open
sets), and decomposable relations are the continuous ones, i.e. those relations ψ:X ↭ Y

such that ψ−1[u] is open in X for every open subset u of Y .
In EM(P) ∼= JSL, ψ:X ↭ Y is decomposable if and only if for every family (xi)i∈I

of elements of X and every y ∈ Y such that
(∨

i∈I xi, y
)
∈ ψ, there is a family (yi)i∈I of

elements of Y such that (xi, yi) ∈ ψ for all i ∈ I and
∨

i∈I yi = y.
In EM(D) ∼= Conv, ψ:X ↭ Y is decomposable if and only if for every x ∈ X, every

disintegration of x as a barycenter x =
∑n

i=1 λixi and every y ∈ Y such that (x, y) ∈ ψ, y
disintegrates as a barycenter y =

∑n
i=1 λiyi such that (xi, yi) ∈ ψ for all i ∈ I.

A more general example of decomposable morphism is the following:

STACS 2025

10:14 Monotone Weak Distributive Laws in Categories of Algebras

▶ Lemma 28. When UT creates near pullbacks, µT is nearly cartesian if and only if every
free algebra morphism FTf :

(
TX,µT

X

)
→

(
TY, µT

Y

)
with f :X → Y is decomposable.

We are now able to state the main result of this section. We first state it in full generality
(Theorem 29), but in practice we will be especially concerned with the case R = P on C = Set
(Theorem 30).

▶ Theorem 29. Let
(
T, ηT, µT)

be a monad on a regular category C. When the endofunctor
T is nearly cartesian, an EM(T)-relation ψ: (A, a) ↭ (B, b) is decomposable if and only if
UTψ ·a = b ·TUTψ. If µT is also nearly cartesian and Rel(T) restricts to Kl(R) ↪→ Rel(C) for
some monad R on C, then the Kleisli category Kl

(
R

)
of the corresponding weakly lifted monad

R on EM(T) has for arrows (A, a) (B, b) the decomposable relations ψ: (A, a) ↭ (B, b)
in EM(T) such that UTψ is in Kl(R).

▶ Corollary 30. If T has a monotone weak distributive law over P in Set, the Kleisli category
of the lifted powerset monad P on EM(T) is the category of T-algebras and decomposable
relations between them.

▶ Remark 31 (subobject classifiers in categories of algebras). Recall that an elementary
topos is a regular category such that the Graph functor has a right adjoint [13, §1.911];
the corresponding monad is called the powerset monad. If C is an elementary topos with
powerset monad P, and if T is a monad on C such that the endofunctor T and the natural
transformation µT are nearly cartesian, then by Theorem 29 EM(T) is an elementary topos
as soon as every T-algebra morphism is decomposable. We retrieve for instance that the
categories of group actions (algebras for monads G × − where G is a group) are toposes,
because the corresponding morphisms of algebras are easily shown to all be decomposable.

This is not a necessary condition for a category of algebras to be an elementary topos: it
is well known that categories of monoid actions (algebras for monads M ×− where M is a
monoid) are toposes, but there are equivariant morphisms that are not decomposable.

If EM(T) is an elementary topos as in Theorem 31, P1 classifies subobjects in the sense
that subobjects X ↪→ Y are in one-to-one correspondence with morphisms Y → P1, where 1
is the terminal object [13, §1.912].

This can be generalized when Theorem 29 holds as follows: R1 classifies decomposition-
closed subobjects, in the sense that decomposable monomorphisms X ↪→ Y are in one-to-one
correspondence with morphisms Y → R1 (the correspondence comes from the adjunction
Kl

(
R

)
(Y, 1) ∼= EM(T)

(
Y,R1

)
). For instance, the Vietoris monad on KHaus ∼= EM(β)

classifies clopen subsets of compact Hausdorff spaces, the non-empty-join-closed powerset
monad on JSL ∼= EM(P) classifies downwards-closed subsets of join-semilattices, and the
convex-closed powerset monad on Conv ∼= EM(D) classifies walls, i.e. subsets E such that if
x ∈ E and

∑n
i=1 xi = x, xi ∈ E as well for all 1 ≤ i ≤ n (walls appear for instance in the

structure theorem for convex algebras, which state that every convex algebra is a subalgebra
of the Płonka sum of its walls [27, Theorem 4.5]).

4.2 Monotone Extensions to Kleisli Categories of Weakly Lifted Monads
In Section 4.1 we assumed T had a monotone weak distributive law over R coming from a
relational extension of T and µT, and described the Kleisli category of the corresponding
weakly lifted monad R. Suppose now there is another monad S that weakly lifts to EM(T)
and that also has a monotone weak distributive law over R coming from a relational extension
of S and µS. When do we also get a monotone weak distributive law of S over R coming
from a relational extension of S and µS?

Q. Aristote 10:15

For the relational extension to exist, we need S and µS to be nearly cartesian. This
always holds:

▶ Lemma 32. Let C be a regular category where idempotents split, and suppose T is nearly
cartesian. If F: C→ C is nearly cartesian and weakly lifts to EM(T), then its weak lifting is
nearly cartesian. If α: F⇒ G between two such functors is nearly cartesian and weakly lifts
to EM(T), then its weak lifting is nearly cartesian as well.

S thus has a relational extension Rel
(
S

)
. By adapting Theorem 7, we can not only

characterize when relational extensions restrict to Kl
(
R

)
, but when any endofunctor or natural

transformation has a monotone extension to Kl
(
R

)
. We can even state this characterization

more generally, without necessarily speaking of decomposable morphisms: we do this now.

▶ Definition 33. Let Γ be a wide subcategory of a regular category C such that, in C,
Γ-arrows are stable under pullbacks (in C);
if f ◦ e is a Γ-arrow and e is a regular epimorphism (in C), f is a Γ-arrow.

Then we define C · Γ† to be the wide subcategory of Rel(C) whose arrows are the C-relations
ψ:X ↭ Y given by jointly monic spans ⟨ψX , ψY ⟩ such that ψX is a Γ-arrow, and we write
GraphΓ: C→ C · Γ† for the restriction of GraphC: C→ Rel(C) to C · Γ†.

We also define a Γ† · C-square to be a square a ◦ b = c ◦ d such that a or c is a Γ-arrow.

▶ Definition 34. Let C and D be two regular categories with respective wide subcategories Γ
and ∆ as in Theorem 33. Let F be a functor C→ D. A (Γ,∆)-relational extension of F is a
functor FΓ,∆: C · Γ† → D ·∆† such that FΓ,∆GraphΓ = Graph∆FΓ,∆. If α: F⇒ G is a natural
transformation between functors C→ D with (Γ,∆)-relational extensions FΓ,∆ and GΓ,∆, a
(Γ,∆)-relational extension is a (necessarily unique) natural transformation αΓ,∆: FΓ,∆ ⇒ GΓ,∆
such that αΓ,∆GraphΓ = Graph∆αΓ,∆.

▶ Theorem 35. Let C, D, Γ, ∆ and F: C → D be as in Theorem 34. F has a monotone
(Γ,∆)-relational extension if and only if the following two conditions hold:

F restricts to a functor Γ→ ∆;
F sends near pullback Γ† · C-squares on near pullback (necessarily ∆† ·D-) squares (this is
always true when F is nearly cartesian).

Such a monotone (Γ,∆)-relational extension, if it exists, is necessarily unique and given by
FΓ,∆(g · f)† = Fg · (Ff)†.

Let α: F ⇒ G be a natural transformation between two functors C → D having such
monotone (Γ,∆)-relational extensions. α has a (necessarily unique) (Γ,∆)-relational extension
if and only if its has near pullbacks for its naturality squares along Γ-morphisms (this is
always true when α is nearly cartesian).

A first corollary, while not especially ground-breaking, is the following:

▶ Corollary 36. In Set, a monad
(
T, ηT, µT)

whose endofunctor and multiplication are nearly
cartesian also has a (necessarily unique) monotone weak distributive law over the monad
P∗ of non-empty subsets, and has one over the monad Pf of finite subsets if and only if T
preserves functions with finite pre-images of elements.

We could more generally characterize the existence of monotone weak distributive laws
over these powerset monads for any monad on Set. Still, Theorem 36 is already enough to
prove that P has monotone weak distributive laws over Pf and P∗, that D has a monotone
weak distributive law over P∗ but not over Pf , and that β has a monotone weak distributive
law over P∗. A more impactful corollary – we will apply it repeatedly in Section 4.3 – is the
following:

STACS 2025

10:16 Monotone Weak Distributive Laws in Categories of Algebras

▶ Corollary 37. Let T be a monad on Set equipped with a monotone weak distributive law
TP ⇒ PT, and let S be a monad on EM(T). If there is a monotone weak distributive law
SP ⇒ PS, S preserves decomposable T-algebra morphisms. Moreover if S is itself the weak
lifting of a monad on Set that has a monotone weak distributive law over P, than the previous
condition is not only necessary, but also sufficient.

4.3 Monotone Weak Distributive Laws in Categories of Algebras
A first use of Theorem 37 is retrieving the monotone weak distributive law VV ⇒ VV:
once V and µV are shown to be nearly cartesian, we only need to prove that decomposable
morphisms are the open maps (Theorem 27) instead of proving that Kl(V)-arrows are the
continuous relations, and that V preserves open maps, which is technically much simpler
than proving that V preserves continuous relations, as originally done in [19, Proposition 20].
We are also able to answer quite easily Goy’s [16, Conjecture 7.31] on the weak distributivity
of the Radon monad – the monad of Radon probability measures on a compact Hausdorff
space – over the Vietoris monad:

▶ Theorem 38. The Radon monad R does not have a monotone weak distributive law over
the Vietoris monad V, but it has (a unique) one over the non-empty Vietoris monad V∗.

Let us stress the importance of this new weak distributive law: the question of how to
combine probability and non-determinism has been the topic of numerous works (again, see
the introduction of [21]), and this law provides an answer in KHaus that is derived from a
generic construction and thus comes with generic tools, e.g. generalized determinization and
up-to techniques [18, 16]. In a very recent pre-print [15], Goubault-Larrecq also constructs
this law RV∗ ⇒ V∗R as an instance of weak distributive laws between monads of continuous
valuations and non-deterministic choice in more general categories of topological spaces: our
result is more restricted, but we derive the law from generic categorical principles instead of
building it by hand, exhibit its canonicity (it comes from a relational extension), and show
why the non-empty version of the Vietoris monad is needed.

A second use of Theorem 37 is in proving the absence of monotone weak distributive laws.
In Section 3 we were able to prove that the law PP ⇒ PP does not weakly lift to EM(P)
nor EM(D), but we were not able to say anything about the existence of other monotone
weak distributive laws PP ⇒ PP. Now, thanks to the framework developed above and in
particular Theorem 37, we are able to prove that such laws cannot exist. We start with
EM(P):

▶ Example 39. In EM(P) ∼= JSL, let P be the monad of subsets closed under non-empty
joins: the join of a family (Ei)i∈I of non-empty-joins-closed subsets of X is the non-empty-
joins-closed subset

{∨
i∈I xi

∣∣ xi ∈ Ei

}
. Let f : 4→ 2 (where 2 = {0, 1} and 4 = {0, 1, 2, 3})

be the function given by f(0) = f(2) = 0 and f(1) = f(3) = 1. Then FPf is decomposable
(by Theorem 28), but PFPf is not. Indeed, let A ∈ PFP4 and B,B1, B2 ∈ PFP2 be as
depicted in Figure 2a (page 17):

(
PFPf

)
(A) = B = B1∨B2 but there are no A1, A2 ∈ PFP4

such that A = A1 ∨A2 and
(

PFPf
)

(A1) = B1 as well as
(

PFPf
)

(A2) = B2.

Proof. Suppose indeed there are such A1 and A2. Then A1, A2 ⊆ A and thus {0, 1, 2, 3} ∈
A1 ∪A2 ({0, 1, 2, 3} is join-irreducible in A). This would imply {0, 1} ∈ B1 ∪B2, which does
not hold. ◀

Q. Aristote 10:17

P does not preserve decomposable P-algebra morphisms, and thus there is no monotone
weak distributive law PP ⇒ PP. In fact because the counter-example decomposable
morphism is surjective and has finite pre-images, this also proves that there are no monotone
weak distributive laws PP∗ ⇒ P∗P or PPf ⇒ Pf P in EM(P).

Because there is a morphism of monads D⇒ P (that sends a probability distribution to
its support), there is a functor EM(P)→ EM(D) which allows us to transfer Theorem 39 to
EM(D): there are no monotone weak distributive laws PP⇒ PP or PP∗ ⇒ P∗P in EM(D).
But this argument is not entirely satisfying, as the resulting example is that of a morphism
of convex algebras with a very unnatural structure, namely that of complete join-semilattices:
one could imagine restricting to a full subcategory of EM(D) that does not contain these
semilattices, and perhaps P would preserve decomposable morphisms there. As shown by
the following example, due to Harald Woracek and Ana Sokolova (private communication),
this cannot be the case as soon as free convex algebras come in the picture.

▶ Example 40 ([30]). In EM(D) ∼= Conv, let P be the monad of convex subsets: a convex
combination of some convex subsets of X is the convex set of the corresponding convex
combinations of their points (in X). Let f : {A,B,C} → {B,C} be the function given
by f(A) = f(B) = B and f(C) = C. Then FDf is decomposable (by Theorem 28)
but PFDf is not. Indeed, depicting FD{A,B,C} as the triangle depicted in Figure 2b
(page 17), FD{B,C} is the line segment [BC] and FDf is the vertical projection. Now
1
2{B} + 1

2 [FC] = [DE] =
(

PFDf
)

([GD]), but [GD] itself cannot be disintegrated as the
mean of two convex subsets of ABC, one above B and the other above [FC].

Proof. If such a disintegration existed, then the convex subset above B would contain both
B (because D ∈ [DG]) and A (because G ∈ [DG]), hence would be [AB]. The subset above
[FC] would contain at least one point, and hence the mean of these two subsets would have
to contain a non-trivial vertical line segment, which is not the case of [DG]. ◀

Using similar arguments, we are able to prove the existence or absence of monotone weak
distributive laws over lifted powerset monads in several categories of algebras: these results
are gathered in Table 1. All the negative results in this table come from the non-preservation
of decomposable morphisms, and thus the absence of monotone extensions of the endofunctors
themselves. The topmost row indicates in which category we work. A monad in the second
topmost row has a monotone weak distributive law over a monad in the left column if the
corresponding cell is filled with ✓, otherwise it is filled with ✗ . In Set, P and P∗ are the

(a) In JSL.

∅

{0} {1}

{0, 1}

{0, 1, 2, 3}

∅

{0} {1}

{0, 1}

FPf
B1 B2

A B

(b) In Conv.

•

• •• • •

•

A

B C

G

D E F

FDf

Figure 2 Counterexamples to preservation of decomposability.

STACS 2025

10:18 Monotone Weak Distributive Laws in Categories of Algebras

Table 1 Existence or absence of monotone weak distributed laws over weakly lifted powerset
monads in categories of algebras.

Set KHaus JSL Conv Mon CMon

L M D P β MS V R P P M D P MS M D P

P ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗

P∗ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗

usual powerset monads P and P∗. L is the monad of lists, M that of multisets and MS that
of modules for a semiring S satisfying the conditions of [7, Theorem 3.1]. Mon ∼= EM(L) is
the category of monoids and CMon ∼= EM(M) that of commutative monoids. Linear theories
distribute over commutative monads [25], hence L and M distribute over M, P, D and MS

when S is commutative, and so these four monads have liftings (in particular weak liftings)
to Mon and CMon.

5 Conclusion

Noticing the similarity between the laws VV⇒ VV and PP⇒ PP, we developed the theory
for weakly lifting weak distributive laws and showed that it only applied partially in this
case. We then focused on the monotonicity of the laws, and gave full characterizations of
monotone weak distributive laws over weakly lifted powerset monads in categories of algebras
by characterizing the Kleisli categories of the latters, a key notion appearing then being that
of decomposable morphisms. We finally applied this result to exhibit a new law RV∗ ⇒ V∗R
for combining probability and non-determinism in KHaus, but also to show that in general
these monotone weak distributive laws seem to be quite rare.

We leave for further work the development of a full 2-categorical theory for iterating
weak distributive laws (in the vein of [10, 4]), which would complete Section 3 but would
likely be scarce in new examples. With monotone laws over powerset-like monads fully
characterized, another natural question is now whether this can be done in other settings,
e.g. in Pos-regular categories [23] or over other monads: the multiset monad for instance is
a good candidate as its Kleisli category can also be described through spans. Finally, the
author believes it would be interesting to tranpose the results of Section 4 in the setting of
monoidal topology [20], where categories of algebras for nearly cartesian monads generalize
the category of compact Hausdorff spaces in a formal sense: perhaps for instance the weakly
lifted powerset monads we study are a generalization of the Vietoris monads of topological
spaces.

References
1 Michael Barr. Relational algebras. In S. MacLane, H. Applegate, M. Barr, B. Day, E. Dubuc,

Phreilambud, A. Pultr, R. Street, M. Tierney, and S. Swierczkowski, editors, Reports of
the Midwest Category Seminar IV, pages 39–55, Berlin, Heidelberg, 1970. Springer Berlin
Heidelberg.

2 Jon Beck. Distributive laws. In H. Appelgate, M. Barr, J. Beck, F. W. Lawvere, F. E. J. Linton,
E. Manes, M. Tierney, F. Ulmer, and B. Eckmann, editors, Seminar on Triples and Categorical
Homology Theory, Lecture Notes in Mathematics, pages 119–140, Berlin, Heidelberg, 1969.
Springer. doi:10.1007/BFb0083084.

https://doi.org/10.1007/BFb0083084

Q. Aristote 10:19

3 Gabriella Böhm. The weak theory of monads. Advances in Mathematics, 225(1):1–32,
September 2010. doi:10.1016/j.aim.2010.02.015.

4 Gabriella Böhm. On the iteration of weak wreath products. Theory and Applications of
Categories, 26(2):30–59, 2012. URL: http://www.tac.mta.ca/tac/volumes/26/2/26-02abs.
html.

5 Gabriella Böhm, Stephen Lack, and Ross Street. On the 2-Categories of Weak Distributive
Laws. Communications in Algebra, 39(12):4567–4583, December 2011. doi:10.1080/00927872.
2011.616436.

6 Gabriella Böhm, Stephen Lack, and Ross Street. Idempotent splittings, colimit completion, and
weak aspects of the theory of monads. Journal of Pure and Applied Algebra, 216(2):385–403,
February 2012. doi:10.1016/j.jpaa.2011.07.003.

7 Filippo Bonchi and Alessio Santamaria. Convexity via Weak Distributive Laws. Logical Methods
in Computer Science, Volume 18, Issue 4, November 2022. doi:10.46298/lmcs-18(4:8)2022.

8 Francis Borceux. Handbook of Categorical Algebra: Volume 1: Basic Category Theory, volume 1
of Encyclopedia of Mathematics and Its Applications. Cambridge University Press, Cambridge,
1994. doi:10.1017/CBO9780511525858.

9 Francis Borceux. Handbook of Categorical Algebra: Volume 2: Categories and Structures,
volume 2 of Encyclopedia of Mathematics and Its Applications. Cambridge University Press,
Cambridge, 1994. doi:10.1017/CBO9780511525865.

10 Eugenia Cheng. Iterated distributive laws. Mathematical Proceedings of the Cambridge
Philosophical Society, 150(3):459–487, May 2011. doi:10.1017/S0305004110000599.

11 Maria Manuel Clementino, Eva Colebunders, and Walter Tholen. Lax algebras as spaces.
In Dirk Hofmann, Gavin J. Seal, and Walter Tholen, editors, Monoidal Topology: A
Categorical Approach to Order, Metric, and Topology, Encyclopedia of Mathematics and
Its Applications, pages 375–466. Cambridge University Press, Cambridge, 2014. doi:
10.1017/CBO9781107517288.007.

12 Fredrik Dahlqvist and Renato Neves. Compositional semantics for new paradigms: Probabil-
istic, hybrid and beyond, April 2018. doi:10.48550/arXiv.1804.04145.

13 Peter John Freyd and Andre Scedrov. Categories, Allegories. North Holland, January 1990.
14 Richard Garner. The Vietoris Monad and Weak Distributive Laws. Applied Categorical

Structures, 28(2):339–354, April 2020. doi:10.1007/s10485-019-09582-w.
15 Jean Goubault-Larrecq. Weak Distributive Laws between Monads of Continuous Valuations

and of Non-Deterministic Choice, August 2024. doi:10.48550/arXiv.2408.15977.
16 Alexandre Goy. On the Compositionality of Monads via Weak Distributive Laws. PhD thesis,

Université Paris-Saclay, October 2021. URL: https://theses.hal.science/tel-03426949.
17 Alexandre Goy. Weakening and Iterating Laws using String Diagrams. Electronic Notes in

Theoretical Informatics and Computer Science, Volume 1 - Proceedings of MFPS XXXVIII,
February 2023. doi:10.46298/entics.10482.

18 Alexandre Goy and Daniela Petrişan. Combining probabilistic and non-deterministic choice
via weak distributive laws. In Proceedings of the 35th Annual ACM/IEEE Symposium on Logic
in Computer Science, LICS ’20, pages 454–464, New York, NY, USA, July 2020. Association
for Computing Machinery. doi:10.1145/3373718.3394795.

19 Alexandre Goy, Daniela Petrişan, and Marc Aiguier. Powerset-Like Monads Weakly
Distribute over Themselves in Toposes and Compact Hausdorff Spaces. In DROPS-
IDN/v2/Document/10.4230/LIPIcs.ICALP.2021.132. Schloss-Dagstuhl - Leibniz Zentrum für
Informatik, 2021. doi:10.4230/LIPIcs.ICALP.2021.132.

20 Dirk Hofmann, Gavin J. Seal, and Walter Tholen, editors. Monoidal Topology: A Categorical
Approach to Order, Metric, and Topology. Encyclopedia of Mathematics and Its Applications.
Cambridge University Press, Cambridge, 2014. doi:10.1017/CBO9781107517288.

21 Klaus Keimel and Gordon D. Plotkin. Mixed powerdomains for probability and nondeterminism.
Logical Methods in Computer Science, Volume 13, Issue 1, January 2017. doi:10.23638/
LMCS-13(1:2)2017.

STACS 2025

https://doi.org/10.1016/j.aim.2010.02.015
http://www.tac.mta.ca/tac/volumes/26/2/26-02abs.html
http://www.tac.mta.ca/tac/volumes/26/2/26-02abs.html
https://doi.org/10.1080/00927872.2011.616436
https://doi.org/10.1080/00927872.2011.616436
https://doi.org/10.1016/j.jpaa.2011.07.003
https://doi.org/10.46298/lmcs-18(4:8)2022
https://doi.org/10.1017/CBO9780511525858
https://doi.org/10.1017/CBO9780511525865
https://doi.org/10.1017/S0305004110000599
https://doi.org/10.1017/CBO9781107517288.007
https://doi.org/10.1017/CBO9781107517288.007
https://doi.org/10.48550/arXiv.1804.04145
https://doi.org/10.1007/s10485-019-09582-w
https://doi.org/10.48550/arXiv.2408.15977
https://theses.hal.science/tel-03426949
https://doi.org/10.46298/entics.10482
https://doi.org/10.1145/3373718.3394795
https://doi.org/10.4230/LIPIcs.ICALP.2021.132
https://doi.org/10.1017/CBO9781107517288
https://doi.org/10.23638/LMCS-13(1:2)2017
https://doi.org/10.23638/LMCS-13(1:2)2017

10:20 Monotone Weak Distributive Laws in Categories of Algebras

22 Bartek Klin and Julian Salamanca. Iterated Covariant Powerset is not a Monad. Electronic
Notes in Theoretical Computer Science, 341:261–276, December 2018. doi:10.1016/j.entcs.
2018.11.013.

23 Alexander Kurz and Jiří Velebil. Quasivarieties and varieties of ordered algebras: Regularity
and exactness. Mathematical Structures in Computer Science, 27(7):1153–1194, October 2017.
doi:10.1017/S096012951500050X.

24 Ernest Manes. A triple theoretic construction of compact algebras. In H. Appelgate, M. Barr,
J. Beck, F. W. Lawvere, F. E. J. Linton, E. Manes, M. Tierney, F. Ulmer, and B. Eckmann,
editors, Seminar on Triples and Categorical Homology Theory, pages 91–118, Berlin, Heidelberg,
1969. Springer Berlin Heidelberg.

25 Ernie Manes and Philip Mulry. Monad compositions. I: General constructions and recursive
distributive laws. Theory and Applications of Categories, 18:172–208, 2007. URL: https:
//eudml.org/doc/128434.

26 E. Moggi. Computational lambda-calculus and monads. In [1989] Proceedings. Fourth Annual
Symposium on Logic in Computer Science, pages 14–23, June 1989. doi:10.1109/LICS.1989.
39155.

27 Anna B. Romanowska and Jonathan D. H. Smith. On the Structure of Barycentric Algebras.
Houston Journal of Mathematics, 16(3):431–448, 1990. URL: https://www.math.uh.edu/
~hjm/restricted/archive/v016n3/0431ROMANOWSKA.pdf.

28 Ross Street. Weak distributive laws. Theory and Applications of Categories, 22(12):313–320,
2009. URL: http://www.tac.mta.ca/tac/volumes/22/12/22-12abs.html.

29 Daniele Varacca and Glynn Winskel. Distributing probability over non-determinism. Math-
ematical Structures in Computer Science, 16(1):87–113, February 2006. doi:10.1017/
S0960129505005074.

30 Harald Woracek and Ana Sokolova. Re: Decomposing convex subsets of simplices along free
morphisms, June 2024.

31 Maaike Zwart and Dan Marsden. No-Go Theorems for Distributive Laws. In 2019 34th
Annual ACM/IEEE Symposium on Logic in Computer Science (LICS), pages 1–13, June 2019.
doi:10.1109/LICS.2019.8785707.

https://doi.org/10.1016/j.entcs.2018.11.013
https://doi.org/10.1016/j.entcs.2018.11.013
https://doi.org/10.1017/S096012951500050X
https://eudml.org/doc/128434
https://eudml.org/doc/128434
https://doi.org/10.1109/LICS.1989.39155
https://doi.org/10.1109/LICS.1989.39155
https://www.math.uh.edu/~hjm/restricted/archive/v016n3/0431ROMANOWSKA.pdf
https://www.math.uh.edu/~hjm/restricted/archive/v016n3/0431ROMANOWSKA.pdf
http://www.tac.mta.ca/tac/volumes/22/12/22-12abs.html
https://doi.org/10.1017/S0960129505005074
https://doi.org/10.1017/S0960129505005074
https://doi.org/10.1109/LICS.2019.8785707

Generalized Inner Product Estimation with Limited
Quantum Communication
Srinivasan Arunachalam
IBM Quantum, Almaden, CA, USA

Louis Schatzki #

Electrical and Computer Engineering, University of Illinois Urbana-Champaign, IL, USA

Abstract
In this work, we consider the fundamental task of distributed inner product estimation when allowed
limited communication. Suppose Alice and Bob are given k copies of an unknown n-qubit quantum
state |ψ⟩ , |ϕ⟩ respectively, are allowed to send q qubits to one another, and the task is to estimate
|⟨ψ|ϕ⟩|2 up to constant additive error. We show that k = Θ(

√
2n−q) copies are essentially necessary

and sufficient for this task (extending the work of Anshu, Landau and Liu (STOC’22) who considered
the case when q = 0). Additionally, we also consider the task when the goal of the players is to
estimate |⟨ψ|M |ϕ⟩|2, for arbitrary Hermitian M . For this task we show that certain norms on M

determine the sample complexity of estimating |⟨ψ|M |ϕ⟩|2 when using only classical communication.

2012 ACM Subject Classification Theory of computation → Quantum information theory

Keywords and phrases Quantum property testing, Quantum Distributed Algorithms

Digital Object Identifier 10.4230/LIPIcs.STACS.2025.11

Related Version Full Version: https://arxiv.org/pdf/2410.12684 [4]

Funding We acknowledge support from IBM through the Illinois-IBM Discovery Accelerator Institute.

1 Introduction

The construction of quantum networks is a major goal in quantum information science [22,
27, 24, 15]. These networks are envisioned to consist of disjoint quantum processing nodes
with quantum communication interlinks, likely implemented through photonics. While the
nodes may consist of the same type of qubit, this is not a requirement, and work has gone into
designing heterogeneous networks where the nodes have different physical compositions [19].
With this in mind it is of interest to develop distributed protocols in a platform-independent
framework.

In this paper we consider a natural distributed variant of the inner product estimation
problem: suppose there are two spatially separated parties Alice and Bob who are each
given copies of an unknown d-dimensional quantum state |ψ⟩ and |ϕ⟩ respectively and their
goal is to compute |⟨ψ|M |ϕ⟩|2 for some Hermitian operator M . We will be interested in the
difficulty of this task depending on how much entanglement Alice and Bob share. The core
motivation for our setup is that distributing entanglement between nodes in a network is not
a free resource and adds time and difficulty to a protocol. Thus, it is useful to minimize the
amount of entanglement required. Similar concerns arise in various papers on distributed
quantum computing [28, 18, 1].

We call this the generalized distributed inner product estimation problem (GIPE). The
setting of M = I in GIPE (which we refer to as distributed inner product estimation DIPE) is
one of the important steps in cross-platform verification proposed in [16] where the goal is
to test if two quantum computers (say built on different platforms) are preparing the same
quantum state; a fundamental problem for near-term devices. A natural constraint in these
papers is how the quantum computers communicate with one another and in these works they

© Srinivasan Arunachalam and Louis Schatzki;
licensed under Creative Commons License CC-BY 4.0

42nd International Symposium on Theoretical Aspects of Computer Science (STACS 2025).
Editors: Olaf Beyersdorff, Michał Pilipczuk, Elaine Pimentel, and Nguyễn Kim Thắng;
Article No. 11; pp. 11:1–11:17

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

https://orcid.org/0000-0001-6014-6624
mailto:louisms2@illinois.edu
https://orcid.org/0000-0002-1712-9148
https://doi.org/10.4230/LIPIcs.STACS.2025.11
https://arxiv.org/pdf/2410.12684
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

11:2 Generalized Inner Product Estimation with Limited Quantum Communication

consider either only classical communication or limited quantum communication (the latter
being the focus of our work). Apart from verification, on a theoretical level, understanding
the complexity of a question, as fundamental as inner product estimation, in a distributed
manner is a natural question.

The seminal work of Buhrman, Cleve, Watrous and Wolf [9] on quantum fingerprinting
introduced the so-called swap test. This subroutine takes as input one copy of unknown
quantum states |ψ⟩ and |ϕ⟩ and outputs a bit whose bias equals |⟨ψ|ϕ⟩|2; allowing us
to estimate the inner product between two unknown quantum states without knowing
anything about the states themselves. This subroutine has found applications in several areas
in quantum computing from complexity theory, learning theory, entanglement theory, to
optimization. Although so widely used, there still remain some open fundamental questions
about estimating inner products, which is the topic of this work.

There are two techniques to solve GIPE under different settings: (i) If allowed quantum
communication, then Alice can send a few copies of the d-dimensional quantum state over to
Bob, then Bob could perform a variant of the swap test to estimate |⟨ψ|M |ϕ⟩|2; (ii) if allowed
only classical communication, i.e., Alice and Bob only send classical messages, then a recent
work of Anshu et al. [3] showed that Θ(

√
d) copies of |ψ⟩ , |ϕ⟩ are necessary and sufficient in

order to estimate |⟨ψ|ϕ⟩|2. This setting is often referred to as local operations and classical
communication (LOCC) and has received a lot of attention in quantum information theory
[13, 7, 17]. Although (ii) is surprising in that, the sample complexity is quadratically better
than full-state tomography, the exponential (since we typically work with d = 2n, where n is
the number of qubits) nature of the complexity seems rather large in practice. Their work
raises two natural questions, which will be the focus here:

1. With the advent of near-term quantum devices, sending the full-quantum state (as in the
protocol (i) above) might be hard, but it is plausible that one could send a few qubits
of quantum message. If this were possible, then what is the complexity of DIPE when
allowed q-qubit messages?

2. The work of Anshu et al. [3] showed how to solve GIPE when M = I, but other natural
properties of quantum states are captured by letting M be an arbitrary operator, for
example, predicting few-body properties, such as two-point correlation functions, en-
tanglement entropy of small subsystems, expectation values of observables, projector
onto a subspace or perhaps a Pauli string, then M may be different than I. In this case,
understanding the complexity of GIPE for arbitrary M is relevant.

These questions were explicitly raised by Anshu et al. [3] (and as open question 21 in [2])
and in this work we answer both.

1.1 Results

Our first result considers the setup where Alice and Bob may communicate a few qubits
in an interactive protocol but not necessarily enough to teleport copies of their states. For
simplicity assume that Alice and Bob each have n-qubit states and can transmit in total q
qubits of communication. As we mentioned above, the sample complexity when q = 0 was
shown to be

√
2n by [3] and when q = n, the sample complexity is O(1). Is there some saving

in sample complexity when allowed q qubits of communication? Our first result shows a
smooth interpolation between both these settings.

S. Arunachalam and L. Schatzki 11:3

▶ Theorem 1 (Informal). Suppose Alice and Bob are given k copies of n-qubit states |ψ⟩
and |ϕ⟩ respectively can communication Θ(q) qubits along with performing LOCC. Then it is
necessary and sufficient for them to obtain

k = Θ
(

2(n−q)/2
)
,

copies of their states to estimate |⟨ϕ|ψ⟩|2 up to constant accuracy with high probability.1

The upper bound k = O
(
2(n−q)/2) shows that quantum communication may help. However,

to reach sub-exponential scaling, a large amount of quantum communication is necessary i.e.,
unless q = n− polylog(n), our lower bound is still exponential in n. Informally, entanglement
helps, but not too much.

Our next result concerns the sample complexity, under LOCC, of GIPE, i.e., for arbitrary
Hermitian operators M . A natural possibility when estimating |⟨ψ|M |ϕ⟩|2 is that, perhaps
Alice and Bob only need to confirm that their states have a large overlap in one of several
smaller subspaces “within M”. Then, it is conceivable that this task would be much easier
than full inner product estimation (i.e., when M = I). We show that this is indeed the case!
Let Mε be M restricted to subspaces with eigenvalue of magnitude at least ε/2. We prove
the following near-optimal results for general GIPE.

▶ Theorem 2 (Informal). For every M with ∥M∥ ≤ 1 and ε > 0, to estimate |⟨ϕ|M |ψ⟩|2 to
error ε, it is sufficient to obtain

k = O(max{1/ε2, ∥Mε∥2/ε})

copies of |ψ⟩ , |ϕ⟩ and

k = Ω(max{1/ε2, ∥Mε∥2/
√
ε})

copies are necessary.

Interestingly, this implies that M having both positive and negative eigenvalues may
not render estimation harder than definite operators. Take Pauli strings as an example, an
important set of operators in quantum information. These have eigenspaces of eigenvalues ±1
each of dimension 2n−1. Then, in evaluating |⟨ϕ|M |ψ⟩|2 there may be cancellations between
components of the states lying in eigenspaces of different signs. However, our results show
that estimating such an M is no harder than estimating I, which is positive definite and
basis independent. While our upper and lower bounds do not exactly match, this is partially
due to choice of presentation. The lower bound we prove is actually Ω(∥Mε∥1/ε

√
dε), where

dε is the dimension of the support of Mε. Converting 1 to 2 norm yields the lower bound
as presented above. However, in some cases this more precise bound is tight. Take, for
example, M a projector onto a subspace or a Pauli string. Then, we obtain the lower bound
Ω(∥Mε∥2/ε), exactly matching the upper bound.

Proof sketch. In [3], they prove their lower bound using a very interesting connection
to quantum cloning: in particular, they show that if one could solve a decision-version of
DIPE, then one could have cloned the states “well-enough”. One of the main challenges
in proving our lower bound was that the cloning-based lower bounds do not work when

1 We will state the constants in this theorem more clearly when proving this theorem.

STACS 2025

11:4 Generalized Inner Product Estimation with Limited Quantum Communication

allowed even few qubits of communication in the cloning channel (which is the setting in
which we would like lower bounds). Instead, here we showed that one could use the notion
of robustness of entanglement, a concept from entanglement theory and split a protocol with
a quantum channel into a sum of LOCC protocols. Proving this is a small technical lemma
which we combine with the lower bound of [3] to obtain our overall lower bound of

√
2n−q.

In order to prove our upper bound, we use ideas from the celebrated Johnson-Lindenstrauss
lemma. Our main idea is to perform projections onto random subspaces, i.e., Alice and
Bob pick random subspaces and project their states onto these subspaces, maintaining the
inner product between their states with high probability. Further, this protocol is completely
agnostic to the states they started with. Now holding smaller-dimensional projections of
their states, they can use classical communication to detect when their subspace-projections
have collisions, use their shared quantum channel and perform SWAP tests to estimate the
inner product within the subspace. With some analysis, we are able to show that the overall
sample complexity for this scales as

√
2n−q as well, matching our lower bound.

For estimating bilinear forms, our protocol is fairly similar to the one in [3] except that we
need to deal with some technicalities due to the Hermitian operator M . The key observation
we first make is that |⟨ϕ|M |ψ⟩|2 and |⟨ϕ|Mε|ψ⟩|2 can only differ by at most ε/2. So it suffices
for Alice and Bob to restrict themselves to the support of Mε. Then, they can simultaneously
measure the magnitude of the components of their states in this subspace as well as the
weighted inner product of said components. The calculations here are similar to the one
in [3] wherein one needs to compute the mean variance of the estimator, but a little bit more
technical in order to bound all the terms in terms of ∥Mε∥2. The lower bound follows from
realizing that Mε when restricted to its support, is not too far off from identity and then we
can invoke the lower bounds for inner product estimation can be applied. We remark that
the lower bound here is much more subtle than the one in [3] since one needs to project onto
the eigenspaces of M carefully in order to get the optimal dependence on ∥Mε∥2.

1.2 Related works and open questions
Like we mentioned earlier, our work answers two open questions raised by Anshu et al. [3].
There have been a few more papers since their work: Hinsche et al. [21] look at specific
instantiations of DIPE (when the protocol used by Alice and Bob are Pauli sampling and the
quantum states are structured) and prove some positive and negative results to this end. Chen
et al. [10] extend the work of [3] by proving better bounds for non-trace-preserving quantum
channels, Chen et al. [11] also looked at quantum property testing in the LOCC model.

Distinguishability under LOCC has a rich history in the quantum information literature.
Bennett, et al. demonstrated that there exist product bases which are easily distinguished,
but are indistinguishable under LOCC [7]. Enough entanglement renders this task easy
as the two parties can simply teleport states. Subsequent works showed that much less
entanglement may suffice for this task [14, 29]. Unlike our framework, these papers concerned
themselves with measurements of a single copy and further identifying states from some
known ensemble, rather than learning some property.

A natural open question. A tantalizing open question left open by [3] and also this work is
the analogue of DIPE in the mixed case setting. Here the goal is as follows: Alice has copies
of ρ, Bob has copies of σ and they engage in LOCC. They need to distinguish if ρ = σ or
∥ρ− σ∥tr ≥ ε, promised one of them is the case. Using the bounds obtained in [3], we have
an upper bound of O(d2/ε4 + d1.5/ε2). As for lower bounds, [5] showed that if Alice also had
copies of σ (instead of Bob having them), then one can solve this property testing task using

S. Arunachalam and L. Schatzki 11:5

O(d/ε2) copies (this procedure requires a highly-entangling operation between copies of ρ
and σ). Furthermore, if we restricted the measurements to be single-copy measurements and
if we fix σ = I/d, then Ω(d3/2) copies are necessary [12]. Despite several attempts in making
progress on this question, we have not been able to obtain a lower bound better than Ω(d)
and believe that the sample complexity of mixed state DIPE should be O(d). We leave this
as an open question.

2 Preliminaries

2.1 Quantum States and Measurements

Pure quantum states are unit vectors in Cd. A qubit is a state in C2 and n-qubits is a state
in
(
C2)⊗n ∼= C2n . Mixed states, also known as density matrices, ρ, are positive semi-definite

operators on Cd with unit trace. Pure states correspond to rank 1 mixed states and we will
routinely use the notation ψ to refer to the density matrix corresponding to a pure state
|ψ⟩. Measurements of quantum systems are described by positive operator valued measures
(POVMs), ensembles of positive semi-definite operators {Mi}i such that

∑
iMi = I. The

probability of observing an outcome i is given by Tr[Miρ]. By ∥M∥ we denote the operator
norm of an operator.

In quantum computation states are manipulated via unitary evolution. That is, |ψ⟩ is
mapped to U |ψ⟩ for some unitary U . An important unitary we will make repeated usage of
is the SWAP gate on a bipartite state. This has the action SWAP |ψ⟩ ⊗ |ϕ⟩ = |ϕ⟩ ⊗ |ψ⟩.

Operators on two Hilbert spaces HA and HB lie in the tensor product space B(HA⊗ HB).
A positive semi-definite operator M acting on these tensor product space is said to be separable
if it admits a decomposition M =

∑
iAi⊗Bi, where each Ai and Bi are positive semi-definite.

We will be interested in separable POVMs, where each aspect Mi is separable. These are
measurements that cannot create entanglement between distributed parties. However, such
measurements may still go beyond those achievable with classical communication. With
this in mind, one can define local operations and classical communication (LOCC) [13].
This can roughly be defined as all protocols where Alice performs some measurement in
her lab, communicates the result to Bob, who then performs a measurement in his lab
and communicates the result to Alice and so on. However, the set of LOCC measurements
is mathematically unwieldy and it is generally easier to prove results regarding separable
measurements. An e-bit is a standard resource of entanglement in quantum information.
This is a shared two qubit resource state |Φ+⟩ = 1√

2 (|00⟩ + |11⟩). With n e-bits and classical
communication, two distributed parties can teleport an n qubit state [23].

2.2 Subroutines

We will make repeated reference to the SWAP test, which can be used to estimate the overlap
between two states |ψ⟩ and |ϕ⟩ [6, 9].

▶ Definition 3 (SWAP test). Given two mixed states ρ and σ and an ancilla qubit initialized
in the state |0⟩E, the SWAP test performs the unitary (HE ⊗ IAB)(|0⟩⟨0| ⊗ IAB + |1⟩⟨1| ⊗
SWAPAB)(HE ⊗ IAB) and measures the ancilla in the computation basis. The measurement
probabilities are given by

p(0) = 1 + Tr[ρσ]
2 , p(1) = 1 − Tr[ρσ]

2 .

STACS 2025

11:6 Generalized Inner Product Estimation with Limited Quantum Communication

Via standard amplification arguments, O(1/ε2) trials are sufficient to estimate Tr[ψϕ] to error
ε. Using block-encodings, this can be extended to estimating |⟨ϕ|M |ψ⟩|2 for an arbitrary
hermitian M such that ∥M∥ ≤ 1. Again, standard amplification arguments show that
O(1/ε2) trials suffices to estimate |⟨ϕ|M |ψ⟩|2. We will also use the standard POVM on the
symmetric subspace. The symmetric group Sk has a natural action on the state space of(
Cd
)⊗k given by

π
k⊗
i=1

|ψi⟩ =
k⊗
i=1

|ψπ−1(i)⟩ ∀π ∈ Sk . (1)

▶ Definition 4 (Symmetric Subspace). The k-copy symmetric subspace of a vector space
V ∼= Cd, is given by

∨kCd =
{

|ψ⟩ ∈
(
Cd
)⊗k | π |ψ⟩ = |ψ⟩ ∀π ∈ Sk

}
.

The symmetric subspace has a natural spanning set given by
{

|ϕ⟩⊗k | |ϕ⟩ ∈ Cd
}

[20].
Due to ∨kCd being an irreducible representation of the unitary group (under the action
U⊗k), we can define a uniform POVM on the symmetric subspace, which is known as the
standard POVM.

▶ Definition 5 (Standard POVM on ∨kCd). The standard POVM on ∨kCd is the continuous
POVM with elements{(

d+ k − 1
k

)
|φ⟩⟨φ|⊗kdφ

∣∣ |φ⟩ ∈ Cd
}
. (2)

We require one last fact about the symmetric subspace:

▶ Fact 6 (Haar moments). If |ψ⟩ is drawn from the Haar measure on Cd, then

Eψ[ψ] = I
d
, Eψ[ψ⊗2] = 1

d(d+ 1)(I + SWAP) . (3)

3 Estimating Inner Product

In this section we consider the following task: Alice and Bob each have copies of unknown
d-dimensional states |ϕ⟩ and |ψ⟩. They may use any amount of classical communication and
some restricted quantum communication. Their goal is to estimate |⟨ϕ|ψ⟩|2 using as few
samples of |ψ⟩ and |ϕ⟩ as possible. Here we will assume the desired measurement precision is
some constant.

▶ Theorem 7. Suppose Alice and Bob share a q-qubit entangled state, can perform measure-
ments on k copies of their respective d-dimensional states |ψ⟩ and |ϕ⟩ respectively and engage
in unbounded classical communication. If they are able to estimate |⟨ψ|ϕ⟩|2 to accuracy ε
with high probability, then Ω(max{1/ε2,

√
d/q/ε}) are necessary.

▶ Theorem 8. Suppose Alice and Bob share a 10q-qubit entangled state, can perform
measurements on k copies of their respective d-dimensional states |ψ⟩ and |ϕ⟩ respectively
and engage in unbounded classical communication. It suffices to obtain k = O(

√
d/q/ε2)

copies, in order to estimate |⟨ψ|ϕ⟩|2 to accuracy ε with high probability.

S. Arunachalam and L. Schatzki 11:7

We remark that there is a constant-factor difference in the amount of entanglement bounds
in the upper and lower bound. This largely seems to stem from the sample complexity still
being greater than 1 even when q = n: say that Alice is able to transmit her state exactly
and Bob does the swap test. Even then, in order to compute the inner product |⟨ψ|ϕ⟩|2 to
error 0.1, they need to repeat the swap test constantly many times. Our lower bound for
this setting would imply a constant lower bound as well (matching the upper bound, but
not “exactly” since it would be a constant-factor off). Regardless, our lower bound can be
understood as saying that entanglement does not help for inner product estimation unless
the shared entanglement dimension scales with d.

3.1 Lower bound in main theorem
To obtain a lower bound we consider the decision problem constructed in [3] (which is called
the DIPE, distributed inner product estimation problem). Alice and Bob are promised to
be in one of the following two scenarios. Their version restricts Alice and Bob to LOCC
protocols. However, here we allow them to share some resource state σ as well.

▶ Definition 9 (Distributed Inner Product Estimation, Decision Version). Alice and Bob each
have access to k copies of the states |ϕ⟩ and |ψ⟩ in Cd respectively and are asked to decide,
using LOCC and perhaps a resource state σ, which of the following two scenarios they are in:

YES: |ϕ⟩ = |ψ⟩ and they are Haar random
NO: |ϕ⟩ , |ψ⟩ are Haar random.

Say that Alice and Bob are able to transmit a r dimensional quantum message. Because
of quantum teleportation, this communication channel is equivalent, under LOCC, to sharing
a r-dimensional maximally entangled state. Going forward, we let σ = 1

r

∑r
i,j=1 |ii⟩⟨jj| be

the state Alice and Bob share.
We also introduce a measure of entanglement called the robustness of entanglement.

▶ Definition 10 (Robustness of entanglement [26]). Any quantum state σ ∈ B(HA ⊗ HB)
can be decomposed as σ = (1 + s)σ+ − sσ−, where σ+ and σ− are both separable states and
s ∈ R≥0. The minimum value of s over all such decompositions is called the robustness of
entanglement. We denote this minimum value by E(σ).

In particular, we will use the following lemma.

▶ Lemma 11 ([26]). If σ is a pure bipartite state, then the robustness of entanglement is
E(σ) = (

∑
i λi)2 − 1 , where {λi}i are the Schmidt coefficients.

Thus, the robustness of entanglement of σ is E(σ) = r − 1 (since all of its Schmidt
coefficients are 1/

√
r). In [3] they show the following result:

▶ Theorem 12 ([3]). Let M be a separable measurement, then∣∣Eϕ,ψ [M · Tr[ϕ⊗k ⊗ (ϕ⊗k − ψ⊗k)]
]∣∣ ≤ ek

2/d − 1 . (4)

With this we now prove our main theorem lower bound.

Proof of lower bound of Thm 7. Say that there exists a separable protocol A that uses k
copies of the states |ϕ⟩ and |ψ⟩ and the resource state σ and returns an estimate of |⟨ψ|ϕ⟩|2 to
accuracy ε with probability at least 3/4. Because of anti-concentration of the Haar measure,
Alice and Bob will be able to use this protocol to solve problem 9 with high probability. Let
B([ϕ], ε) be the ball of radius ε ≤ π/2 around [ϕ] in CP(d) with respect to the Fubini-Study

STACS 2025

11:8 Generalized Inner Product Estimation with Limited Quantum Communication

metric, which we will denote as d([ϕ, ψ]) = arccos |⟨ψ|ϕ⟩|. Then, it is known that, under
the uniform distribution, the volume of B([ϕ], ε) for ε ≤ π/2 is given by sin2d−2 ε [8]. If
|⟨ψ|ϕ⟩|2 > ε, then d([ψ, ϕ]) ≤ arccos

√
ε (and arccos

√
ε ≤ π/2 for ε ∈ [0, 1]). Thus, for

constant ε it follows that |⟨ϕ|ψ⟩|2 ≤ ε with exponentially (in d) high probability in case two
of 9. Thus, if Alice and Bob use the protocol A, they will solve problem 9 with probability
at least 2/3 as well. This implies that there is some separable POVM {M, I −M} such that

1/3 ≤
∣∣Eϕ,ψTr

[
M(ϕ⊗k ⊗ (ϕ⊗k − ψ⊗k) ⊗ σ)

]∣∣ . (5)

We now show that the RHS of the inequality above can be upper bounded by (1 +
2E(σ))(ek2/d − 1). To see this, split σ into σ = (1 + E(σ))σ+ − E(σ)σ−, where σ+ and σ−

are both separable states. Then, it follows that

Tr[M(ϕ⊗k ⊗ (ϕ⊗k − ψ⊗k) ⊗ σ)] = (1 + E(σ))Tr[M(ϕ⊗k ⊗ (ϕ⊗k − ψ⊗k) ⊗ σ+]
+ E(σ)Tr[M(ϕ⊗k ⊗ (ψ⊗k − ϕ⊗k) ⊗ σ−] . (6)

Note that the sign of σ− has been absorbed into the trace in the second term above.
Now, because σ± are separable, each term above could be replaced by a separable meas-
urement on ϕ⊗k ⊗ (ϕ⊗k − ψ⊗k) without any reference state. To see this, decompose σ+

into σ+ =
∑
i piρ

A
i ⊗ ρBi . Using spectral decompositions ρAi =

∑
k λi,k|ui,k⟩⟨ui,k| and

ρBi =
∑
k νi,k|vi,k⟩⟨vi,k|, we arrive at

Tr[M(ϕ⊗k ⊗ (ϕ⊗k − ψ⊗k) ⊗ σ+)] (7)

=
∑
i

pi
∑
j,k

λi,kνi,jTr[M(ϕ⊗k ⊗ ψ⊗k ⊗ |ui,j⟩⟨ui,j | ⊗ |vi,k⟩⟨i, k|). (8)

As a separable measurement, we have M =
∑
tAt ⊗Bt. Now define a new measurement

M ′ :=
∑
t

∑
i

pi

∑
j

λi,jA
i,j,j
t

⊗

(∑
k

νi,kB
i,k,k
t

)
, (9)

where At =
∑
j,j′ A

i,j,j′

t ⊗ |ui,j⟩⟨ui,j′ | and Bt =
∑
k,k′ B

i,k,k
t ⊗ |vi,k⟩⟨vi,k′ |. As a sum of

positive operators, this is positive. As a convex combination of operators majorized by I,
this is also majorized by I. It then follows that M ′ is a separable POVM. From Thm 12 it
then follows that

|Eϕ,ψ
[
Tr[M(ϕ⊗k ⊗ (ϕ⊗k − ψ⊗k) ⊗ σ+)]

]
| = |Eϕ,ψ

[
Tr[M ′(ϕ⊗k ⊗ (ϕ⊗k − ψ⊗k)]

]
|

≤ ek
2/d − 1 . (10)

The same proof shows that

|Eϕ,ψ
[
Tr[M(ϕ⊗k ⊗ (ψ⊗k − ϕ⊗k) ⊗ σ−)]

]
| ≤ ek

2/d − 1 . (11)

Thus, we have that∣∣Eϕ,ψ [Tr[M(ϕ⊗k ⊗ (ϕ⊗k − ψ⊗k) ⊗ σ)]
]∣∣ ≤ (1 + 2E(σ))(ek

2/d − 1) . (12)

Putting the above along with our lower bound in Eq.(5) shows

1/3 ≤
∣∣Eϕ,ψTr

[
M(ϕ⊗k ⊗ (ϕ⊗k − ψ⊗k) ⊗ σ)

]∣∣ . ≤ (1 + 2E(σ))(ek
2/d − 1) . (13)

S. Arunachalam and L. Schatzki 11:9

Rearranging, this implies that

k = Ω
(√ d

logE(σ)

)
. (14)

So, if Alice and Bob share q Bell pairs, then E(σ) = 2q−1 and we get the desired lower bound.
Using techniques similar to [3, Section 5.3], wherein they showed how to use standard

concentration techniques to reduce the decision version of DIPE (for which we have a Ω(
√
d/q)

lower bound) to prove a lower bound for estimating the inner product between |ϕ⟩ and |ψ⟩
with a factor of 1/ε. In particular, they prove that if there exists a protocol that solves the
ε-version of inner product estimation then it can be used to solve DIPE with high probability.
Then, the lower bound on DIPE follows from their reduction. ◀

3.2 Upper bound in main theorem
We now give a protocol which achieves the promised sample complexity of Thm 8. At a
high level, the protocol works by randomly projecting |ϕ⟩ and |ψ⟩ into small-dimensional
subspaces. Since such a projection maintains the inner product between two states with high
probability, Alice can simply send Bob these smaller dimensional states and Bob can perform
a swap test. The reader may notice that this assumes that Alice can transmit an arbitrary
state in a q-dimensional subspace of a d-dimensional space. This, however, does not lead to
any issues since Alice knows the subspace the state lies in. Then, any maximally entangled
state on a q-dimensional subspace can be converted to a maximally entangled state on the
desired subspace via a unitary transformation. From there, Alice and Bob simply perform a
teleportation protocol.

▶ Theorem 13. Let q = Ω(log d). Using k = O(
√
d/q) copies of |ψ⟩ and |ϕ⟩, there is a

protocol that uses Θ(1) r-dimensional quantum messages, single copy measurements, and
returns |⟨ψ|ϕ⟩|2 up to constant error with high probability

Proof. Let ψ = |ψ⟩⟨ψ| and ϕ = |ϕ⟩⟨ϕ|. Fix some unitary U . For convenience of notation
we will assume that r divides d (working with qubits, if Alice and Bob may communicate
log(r) qubits then this holds). Divide the d-dimensional Hilbert space into d/r subspaces
each of dimension r. Let this decomposition be given by a collection of orthogonal projectors
{Pi}d/ri=1. Alice and Bob perform the protocol in Figure 1.

Our theorem will follow by repeating the protocol above constantly many times, each
time by sending a r-dimensional quantum message. To see the correctness, we will require
the following fact.

▶ Fact 14 ([25, Fact 2]). Let 1 ≤ q ≤ d. Let v ∈ Cd be a unit vector and Pi be an
arbitrary projector onto a r-dimensional subspace. Let U be drawn from the unitary Haar
measure. Then,

Pr
U

[
∥PiUv∥2 ̸∈ (1 ± ∆)

√
r

d

]
≤ 4 exp

{
−∆2r

16

}
, (15)

By linearity this extends to arbitrary vectors in Cd, as the following corollary demonstrates.

▶ Corollary 15. Let 1 ≤ r ≤ d. Let u ∈ Cd be any vector and Pi an arbitrary projector onto
a r−dimensional subspace. Let U be drawn from the unitary Haar measure. Then,

Pr
U

[
∥PiUu∥2 ̸∈ (1 ± ∆)

√
r

d
∥u∥2

]
≤ 4 exp

{
−∆2r

16

}
, (16)

STACS 2025

11:10 Generalized Inner Product Estimation with Limited Quantum Communication

Input: Alice gets |ψ⟩⊗k, Bob gets |ϕ⟩⊗k

Output: ε-approximation of |⟨ψ|ϕ⟩|2

1. Using shared randomness, Alice and Bob sample a unitary U from Haar measure.
2. Alice and Bob apply the POVM {UPiU †}⌈d/r⌉

i=1 on each of the k copies and record
which copies were projected onto which subspaces.

3. Using a two-way classical communication they determine which copies lie now in
the same subspaces. Alice sends Bob a constant number of such projected states
which can be paired with a post-projection state of Bob’s. Say the number of such
pairs is m.

4. Bob performs a SWAP test between the post-projected pairs of states lying in the
same subspaces. We say a SWAP test succeeds if Bob measures |0⟩ on the ancilla
register. Let the number of successes be s.

5. Bob declares the inner product between |ψ⟩ and |ϕ⟩ to be 2s/m− 1.

Figure 1 Protocol to estimate inner product using shared entanglement.

Proof. This follows readily from Fact 14 via linearity. Apply Fact 14 to u
∥u∥2

while multiplying
both ∥PiUu/∥u∥2∥2 and (1 ± ∆)

√
r
d by ∥u∥2. ◀

For a fixed unitary U , let |ψ′
i⟩ = PiU |ψ⟩

|PiU |ψ⟩| and |ϕ′
i⟩ = PiU |ϕ⟩

|PiU |ϕ⟩| be the normalized projections
of |ψ⟩ and |ϕ⟩ into the subspace given by Pi. We will now show that, with high probability
over the choice of U , |⟨ψi|ϕi⟩|2 ≈ |⟨ψ|ϕ⟩|2.

▶ Lemma 16. Let ∆ > 0. Then,

Pr
U

[∣∣ |⟨ϕ′
i|ψ′

i⟩|2 − |⟨ϕ|ψ⟩|2
∣∣ ≤ 16∆ for every i ∈ [d/r]

]
≥ 1 −O

(
d/r · exp(−∆2r/16)

)
.

(17)

Proof. Using Fact 14, with probability at least 1 − 16 exp{− ∆2r
16 }, the following four condi-

tions hold

∥PiU |ψ⟩ ∥2, ∥PiU |ϕ⟩ ∥2 ∈ (1 ± ∆)
√
r

d
, (18)

∥PiU(|ψ⟩ − |ϕ⟩)∥2 ∈ (1 ± ∆)
√
r

d
∥ |ψ⟩ − |ϕ⟩ ∥2 , (19)

∥PiU(|ψ⟩ − i |ϕ⟩)∥2 ∈ (1 ± ∆)
√
r

d
∥ |ψ⟩ − i |ϕ⟩ ∥2 . (20)

We now follow steps similar to those of [25, Theorem 1] to obtain

|⟨ϕi|ψi⟩ − ⟨ψ|ϕ⟩| ≤ 8∆ . (21)

Let x, y ∈ C be such that |x− y| ≤ ∆. Then,

||x|2 − |y|2| = |(|x| − |y|)(|x| + |y|)| ≤ ∆(|x| + |y|) . (22)

In our case, this implies that

|⟨ϕi|ψi⟩|2 ∈ |⟨ψ|ϕ⟩|2 ± 16∆ . (23)

Taking a union bound over all d/r subspaces completes the proof. ◀

S. Arunachalam and L. Schatzki 11:11

Now, after receiving m pairs of post-projected states, Bob then performs m many SWAP
tests. A SWAP test on the pair |ψ′

i⟩ and |ϕ′
i⟩ succeeds with probability 1

2 + 1
2 |⟨ϕ′

i|ψ′
i⟩|2 ∈

1
2 + 1

2 |⟨ϕ|ψ⟩| ± 8∆. The expected value of the sample average s/m then satisfies∣∣∣∣E [sm]− 1
2 − 1

2 |⟨ψ|ϕ⟩|2
∣∣∣∣ ≤ 8∆, (24)

which implies 2E
[
s
m

]
− 1 ∈ |⟨ϕ|ψ⟩|2 ± 16∆, and by a Hoeffding bound, we get

2
∣∣∣ s
m

− E
[s
m

]∣∣∣ ≤ δ , (25)

with probability at least 1 − 2 exp(−2mδ2). In this case, the total error of the estimator is at
most 16∆ + δ. For constant error, m = O(1) suffices.

It remains to determine k needs to be to obtain m = O(1) projected pairs with high
probability. To this end, let Ea,b be an indicator variable for if Alice’s ath projection falls
into the same subspace as Bob’s bth projection. The expected number of collisions is given by∑

a,b

E[Ea,b] = k2
∑
i

Tr[PiUψU †]Tr[PiUϕU †] ≥ k2(1 − ∆)4 r

d
, (26)

where the inequality follows from ∥PiU |ψ⟩ ∥, ∥PiU |ϕ⟩ ∥ ≥ (1−∆)
√

r
d . By a Hoeffding bound,

it suffices to take k = Ω(
√
d/r) to obtain a collision with high probability. As we only require

a constant number of pairs, this can simply be repeated a constant number of times to
obtain a constant number of collisions with high probability. Thus, the protocol succeeds for
k = Ω(

√
d/r). It remains to pick ∆ and δ such that the claims go through: we require that

d
r exp(−∆2r/16) = O(1), which can be achieved by letting ∆ = O(1) and r = Ω(log d). ◀

4 Generalized Distributed Inner Product Estimation

Now we turn to bilinear forms f : Cd ⊗ Cd → C. Any such form can be expressed as
f(u, v) = u†Mv for a matrix M . Here we will assume that M is Hermitian, which implies
that f(u, v) = f(v, u). Without loss of generality we will assume M to be normalized such
that ∥M∥ = 1. Due to the unphysical nature of global phases, f(|ψ⟩ , |ϕ⟩) is less meaningful
than |f(|ψ⟩ , |ϕ⟩)|2 and we concern ourselves entirely with this value instead. Of course, the
special case of M = I corresponds to inner product estimation. Fixing such an M , let Pε be a
projector which annihilates all eigenspaces of M of eigenvalue less than ε/2. We define dε to
be the dimension of the support of Pε. Now define Mε = PεMPε. The intuition behind this
is that we can drop eigenspaces with small weights in estimating |⟨ϕ|M |ψ⟩|2. The following
lemma formalizes this.

▶ Lemma 17. Let M be a Hermitian operator and Mε = PεMPε, then∣∣|⟨ϕ|M |ψ⟩|2 − |⟨ϕ|Mε|ψ⟩|2
∣∣ ≤ ε/2 . (27)

Proof.

|Tr[MψMϕ] − Tr[MεψMεϕ]| = |Tr[ψ(MϕM −MεϕMε)]| (28)
= |vec(ψ)†(M ⊗M −Mε ⊗Mε)T vec(ϕ)| (29)
≤ ∥M ⊗M −Mε ⊗Mε∥ ≤ ε/2 , (30)

where the second line uses the linear map vec : B(H) → H⊗H defined by vec(|i⟩ ⟨j|) = |i⟩⊗|j⟩
and the identity vec(AXB) = (A⊗B)T vec(X). ◀

STACS 2025

11:12 Generalized Inner Product Estimation with Limited Quantum Communication

Input: An operator M . Alice gets |ψ⟩⊗k, Bob gets copies of |ϕ⟩⊗k.
Output: An ε-approximation of ⟨ψ|M |ϕ⟩|2.
1. Alice and Bob each perform the two-outcome measurement {Pε, I − Pε} on each

of the k copies of their respective states and obtain sa and sb copies of the states
projected into one of the two subspace. If sa = 0 or sb = 0 then Alice and Bob
simply output 0.

2. Alice and Bob independently perform the standard POVM in the symmetric
subspace on the support of Mε, obtaining the classical outcomes |u⟩ and |v⟩.

3. Alice communicates |u⟩ and sa to Bob who outputs

w := (dε + sa)(dε + sb)
k2 |⟨u|Mε|v⟩|2 − Tr[M2]

k2 . (31)

Figure 2 Protocol to estimate |⟨ϕ|Mε|ψ⟩|2 using only LOCC.

Using this lemma, if Alice and Bob can estimate |⟨ϕ|Mε|ψ⟩|2 up to precision ε/2, that directly
implies an ε-approximation to the quantity |⟨ϕ|M |ψ⟩|2. For the remainder of this section,
we will be primarily focused on upper and lower bounds for estimating |⟨ϕ|Mε|ψ⟩|2.

With this notation, in this section our main result will be the following theorem, proving
close-to-optimal upper and lower bounds for estimating bilinear forms on |ψ⟩ , |ϕ⟩.

▶ Theorem 18. For every M with ∥M∥ ≤ 1, with only LOCC, it is sufficient to obtain

k = O(max{1/ε2, ∥Mε∥2/ε})

copies of |ψ⟩ , |ϕ⟩ to estimate |⟨ϕ|M |ψ⟩|2 to error ε with high prob. and it necessary to obtain

k = Ω(max{1/ε2, ∥Mε∥2/
√
ε})

copies to produce an ε-approximation to |⟨ϕ|M |ψ⟩|2.

4.1 Upper Bound
In Figure 2 we outline a protocol that estimates |⟨ϕ|Mε|ψ⟩|2. Recall that the standard POVM
on the symmetric subspace, def 5, has continuous aspects

{(
d+k−1
k

)
φ⊗k | |φ⟩ ∈ Cd

}
. This

can be extended to ∨kW for arbitrary subspaces W ⊆ Cd:{(
dimW + k − 1

k

)
φ⊗k | |φ⟩ ∈ W

}
. (32)

The second step of the protocol of Figure 2 has Alice and Bob implementing this POVM
for ImPε ⊆ Cd. Since they may not have k copies after the projection step, this is a POVM
on ∨saImPε and ∨sbImPε, respectively. First note that if Pε |ψ⟩ = 0 or Pε |ϕ⟩ = 0 then
they always output 0, which must be a good estimate in this case. Thus, we assume that
|ψε⟩ = Pε |ψ⟩ /∥Pε |ψ⟩ ∥ and |ϕε⟩ = Pε |ϕ⟩ /∥Pε |ϕ⟩ ∥ both exist. The technical lemmas that
we prove are the mean and variance of our estimators, whose proofs we defer to the full
version [4].

▶ Lemma 19. The expected value of the estimator w given in Figure 2 is

E[w] = |⟨ϕ|Mε|ψ⟩|2 + Tr[M2
ε ϕε]
k

Tr[Pεψ] + Tr[M2
εψε]
k

Tr[Pεϕ] . (33)

S. Arunachalam and L. Schatzki 11:13

▶ Lemma 20. The variance of the estimator of Figure 2 is upper bounded by

Var(w) = O
(

1
k

+ ∥Mε∥2
2

k2 + ∥Mε∥4

k4

)
. (34)

Our estimator is biased, but the bias is at most 2/k. Taking

k = Ω
(

max
{

1
ε2 ,

∥Mε∥2
2

ε

})
,

ensures that both the variance and bias are small enough that Alice and Bob’s estimate is
within ε/2 of |⟨ϕ|Mε|ψ⟩|2 and thus within ε of |⟨ϕ|M |ψ⟩|2 (with high probability).

4.2 Lower Bound
We now prove the claimed lower bounds in Theorem 18. The first, Ω(1/ε2) follows from
lemma 13 in [3]. We restate their argument here slightly adapted to our setup.

▶ Lemma 21. Say there is an algorithm acting on ρ⊗k ⊗ σ⊗k that outputs an estimate of
Tr[MρMσ] to accuracy ε with high probability. Then, k = Ω(1/ε2).

Proof. Let |0⟩ be such that M |0⟩ = ±1, which exists for since ∥M∥ = 1 and the unit sphere
is compact. Let |1⟩ be an eigenvector of M orthogonal to |0⟩. Consider the states

|ψ0⟩ =
√

1
2 − ε |0⟩ +

√
1
2 + ε |1⟩ , |ψ1⟩ =

√
1
2 + ε |0⟩ +

√
1
2 − ε |1⟩ . (35)

Now, say that Alice is given k copies of |ψ0⟩ or |ψ1⟩ and Bob is given k copies of |0⟩. We
have that

|⟨ψ0|M |0⟩|2 = 1
2 − ε, |⟨ψ1|M |0⟩|2 = 1

2 + ε . (36)

Thus, if Alice and Bob can estimate |⟨ψ|M |ϕ⟩|2 to accuracy ε, they can distinguish between
these two states. However, the fidelity between these states is given by

F (ψ⊗k
0 , ψ⊗k

1) = (1 − 4ε2)k ≥ 1 − 4kε2 , (37)

which implies that k = Ω(1/ε2). ◀

Before proving the second lower bound, we give some intuition. Say that M ≥ 0.If |ψ⟩
and |ϕ⟩ are drawn independently from the Haar measure, then

E[Tr[MψMϕ]] = Tr[M2]/d2. (38)

If they are identical, that is ψ = ϕ always, then instead the expected value is

E[Tr[MψMψ]] = 1
d(d− 1)

(
Tr[M2] + Tr[M]2

)
. (39)

The difference between these two is roughly Tr[M]2/d2. Thus, if Alice and Bob are able to
estimate |⟨ψ|M |ϕ⟩|2 to this order, then they can solve DIPE (that we defined as Problem 9).
However, Tr[M]2/d2 may be quite small. Restricted to the support of Mε, we instead have that
ε2/4 ≤ Tr[Mε]2/d2

ε ≤ 1. We will show that if Alice and Bob can estimate |⟨ϕ|Mε|ψ⟩|2, then
they can solve the following decision problem, which is known to require k = Ω(

√
dim H/ε)

samples [3] (when ε ≤ 0.01).

STACS 2025

11:14 Generalized Inner Product Estimation with Limited Quantum Communication

▶ Definition 22 (Inner product estimation, ε decision version). Let ε > 0. Alice and Bob are
given k copies each of pure states |ψ⟩ , |ϕ⟩ ∈ H, for some finite dimensional Hilbert space H.
They are asked to decide, using LOCC, which of the following two scenarios they are in:

YES instance:

|ψ⟩ =
√

1 − εeiθ |0⟩ +
√
ε |χ⟩ , |ϕ⟩ =

√
1 − εeiθ

′
|0⟩ +

√
ε |χ⟩ , (40)

where |χ⟩ is drawn from the Haar measure on the orthogonal complement of |0⟩ and θ

and θ′ are independently and uniformly drawn from [0, 2π).
NO instance:

|ψ⟩ =
√

1 − εeiθ |0⟩ +
√
ε |χ⟩ , |ϕ⟩ =

√
1 − εeiθ

′
|0⟩ +

√
ε |φ⟩ , (41)

where |χ⟩ and |φ⟩ are drawn independently from the Haar measure on the orthogonal
complement of |0⟩ and θ and θ′ are independently and uniformly drawn from [0, 2π).

We will require the two following technical lemmas in proving the lower bound. Here
Lipschitz constants are taken to be with respect to the Euclidean norm ∥ · ∥2.

▶ Fact 23 (Levy’s Lemma). If f : Sd → R is λ-Lipschitz, then

Pr
u

[|f(u) − E[f(u)]| ≥ t] ≤ 2e− dt2
2λ2 , (42)

where u is drawn from the Haar measure on Sd.

▶ Lemma 24. Let c < 1 be a sufficiently small constant. Say there is a protocol acting
on ρ⊗k ⊗ σ⊗k via LOCC that outputs an estimate of Tr[MρMσ] to accuracy cε with high
probability. Then, k = Ω(∥Mε∥1/ε

√
dε).

Proof. Let M |0⟩ = |0⟩ be stabilized by M . Such a vector exists by considering either M
or −M , and we choose the appropriate sign without loss of generality. Let W = {|ψ⟩ ∈
Cd | ⟨0|ψ⟩ = 0} ∩ ImPε and M̃ε = Mε|W . Without loss of generality we assume that M̃ε is a
(semi)definite matrix. Indeed, let M̃ε = M̃ε

+ − M̃ε
− then ∥M̃ε∥2

2 = ∥M̃ε
+∥2

2 + ∥M̃ε
−∥2

2. Of
course, this means that ∥M̃ε

+∥2 ≥ ∥M̃ε∥2/
√

2 or ∥M̃ε
−∥2 ≥ ∥M̃ε∥2/

√
2. Thus, we restrict

ourselves further and consider the subspace, again labeled by W , in the support of the
operator with a larger norm.

We will now show that estimating |⟨ϕ|M |ψ⟩|2 suffices to solve problem 22 with high
probability where H = C |0⟩⊕W . Let d̃ := dimW . Set the precision parameter in problem 22
to be δ := εd̃/200Tr[M̃ε] and define ϑ := θ − θ′. Since Tr[M̃ε] ≥ εd̃/2, δ ≤ 0.01 as required.
Let f be Alice and Bob’s estimate of |⟨ϕ|M |ψ⟩|2, and say that it is within c · ε of the true
value with probability at least 0.99. Then, if f lies in the range [(1−δ)2 −3c ·ε, (1−δ)2 +c ·ε],
they REJECT. Otherwise, they ACCEPT. We split the proof into the two cases.

YES instance: in this case

|⟨ϕ|M |ψ⟩|2 = (1 − δ)2 + δ2Tr[Mχ]2 + 2δ(1 − δ) cosϑTr[Mχ] . (43)

Thus,

Pr[f ∈ [(1 − δ)2 − δ

8 , (1 − δ)2 + x]] (44)

≤ Pr[δ2Tr[Mχ]2 + 2δ(1 − δ) cosϑTr[Mχ] ∈ [−δ

8 − cε,
δ

8 + cε]] + 0.01 . (45)

S. Arunachalam and L. Schatzki 11:15

Tr[Mχ] is 2-Lipschitz:

|⟨ψ|M |ψ⟩ − ⟨ϕ|M |ϕ⟩| = |(⟨ψ| − ⟨ϕ|)M |ψ⟩ − ⟨ϕ|M(|ϕ⟩ − |ψ⟩)| (46)
≤ |(⟨ψ| − ⟨ϕ|)M |ψ⟩| + |⟨ϕ|M(|ϕ⟩ − |ψ⟩)| (47)
≤ 2∥ |ψ⟩ − |ϕ⟩ ∥ , (48)

where the final inequality follows from ∥M∥ = 1 and Cauchy-Schwarz. Then, using fact 23,
it holds that

Pr
[
|Tr[Mχ] − Eχ[Tr[Mχ]]| ≤ 7√

d̃

]
> 0.99 . (49)

We now have that 7√
d̃

≤ Tr[M̃ε]
4d̃ , since 28/

√
d̃ ≤ ε. But notice that if ε = o(1/

√
d), then

the lower bound k = Ω(1/ε2) = Ω(d) dominates since ∥Mε∥2/
√
ε ≤

√
d̃/

√
ε = o(1/ε2). The

above bounds imply that we can take Tr[Mχ]2 ≤ 25Tr[M̃ε]2/16d̃2. We are then interested in
the probability

Pr
[

2δ(1 − δ)3 ˜Tr[Mε]
4d̃

cosϑ ∈
[
−δ

8 − cε− δ2 25Tr[M̃ε]2

16d̃2
,
δ

8 + cε− δ2 Tr[M̃ε]2

d̃2

]]
. (50)

Now, by construction δ ≤ 0.01 and thus 2(1 − δ) ≥ 99/50. It follows that

2δ(1 − δ)3 ˜Tr[Mε]
4d̃

≥ 297
40000ε . (51)

Then, the above probability is upper bounded by

Pr
[
cosϑ ∈

[
−1

2 − 25ε
4752 ,

1
2 + ε

297

]]
≤ Pr [cosϑ ∈ [−0.51, 0.51]] ≤ 0.34 . (52)

In total, they accept in the YES case with probability at least 0.66.
NO instance: in this case

|⟨φ|M |χ⟩|2 = (1 − δ)2 + δ2Tr[MφMχ] + 2δ(1 − δ)Re
(
eiϑ⟨φ|M |χ⟩

)
. (53)

By symmetry, E[Re
(
eiϑ⟨φ|M |χ⟩

)
] = 0. Now, fixing |φ⟩, |⟨φ|M |χ⟩| is 1-Lipschitz in |χ⟩.

This implies that |⟨φ|M |χ⟩| ≤ 8/
√
d̃ with probability at least 0.999. This then implies that

Tr[MφMχ] ≤ 84/d̃. Then, we have that

∣∣|⟨φ|M |χ⟩|2 − (1 − δ)2∣∣ ≤ δ√
d̃

(
84√
d̃

+ 16
)
. (54)

Further, δ/
√
d̃ ≤ 1/100

√
d̃. We assume that 84/

√
d̃ < 1 (as otherwise the lower bound is

constant anyways) and obtain∣∣|⟨φ|M |χ⟩|2 − (1 − δ)2∣∣ ≤ 17
100

√
d̃
. (55)

We require that this is less then cε/3. This requires that ε = Ω(1/
√
d̃), but, as previously

stated, we assume this as otherwise the other lower bound dominates. The total probability
for this instance to be rejected is then at least 0.9.

Thus, Alice and Bob are able to solve problem 22 with high probability. Then, it must
be that k = Ω(

√
d̃/δ) = Ω(Tr[M̃ε]/ε

√
d̃). ◀

STACS 2025

11:16 Generalized Inner Product Estimation with Limited Quantum Communication

▶ Corollary 25. Let c < 1 be a sufficiently small constant. Say there is a protocol acting
on ρ⊗k ⊗ σ⊗k via LOCC that outputs an estimate of Tr[MρMσ] to accuracy cε with high
probability. Then, k = Ω(∥Mε∥2/

√
ε).

Proof. Lemma 24 yields a lower bound of k = Ω(Tr[M̃ε]/ε
√
d̃). Using Tr[M̃ε] ≥ ∥M̃ε∥2

2 and
∥M̃ε∥2 ≥

√
εd̃/2, we arrive at our claimed lower bound of k = Ω(∥Mε∥2/

√
ε). ◀

References
1 Pablo Andres-Martinez, Tim Forrer, Daniel Mills, Jun-Yi Wu, Luciana Henaut, Kentaro

Yamamoto, Mio Murao, and Ross Duncan. Distributing circuits over heterogeneous, modular
quantum computing network architectures. Quantum Science and Technology, 9(4):045021,
2024.

2 Anurag Anshu and Srinivasan Arunachalam. A survey on the complexity of learning quantum
states. Nature Reviews Physics, 6(1):59–69, 2024.

3 Anurag Anshu, Zeph Landau, and Yunchao Liu. Distributed quantum inner product estimation.
In Proceedings of the 54th Annual ACM SIGACT Symposium on Theory of Computing, pages
44–51, 2022. doi:10.1145/3519935.3519974.

4 Srinivasan Arunachalam and Louis Schatzki. Distributed inner product estimation with limited
quantum communication. arXiv preprint, 2024. doi:10.48550/arXiv.2410.12684.

5 Costin Bădescu, Ryan O’Donnell, and John Wright. Quantum state certification. In Proceedings
of the 51st Annual ACM SIGACT Symposium on Theory of Computing, pages 503–514, 2019.
doi:10.1145/3313276.3316344.

6 Adriano Barenco, Andre Berthiaume, David Deutsch, Artur Ekert, Richard Jozsa, and Chiara
Macchiavello. Stabilization of quantum computations by symmetrization. SIAM Journal on
Computing, 26(5):1541–1557, 1997. doi:10.1137/S0097539796302452.

7 Charles H Bennett, David P DiVincenzo, Christopher A Fuchs, Tal Mor, Eric Rains, Peter W
Shor, John A Smolin, and William K Wootters. Quantum nonlocality without entanglement.
Physical Review A, 59(2):1070, 1999.

8 Michael Brannan. Alice and bob meet banach: The interface of asymptotic geometric analysis
and quantum information theory, 2021.

9 Harry Buhrman, Richard Cleve, John Watrous, and Ronald De Wolf. Quantum fingerprinting.
Physical review letters, 87(16):167902, 2001.

10 Kean Chen, Qisheng Wang, Peixun Long, and Mingsheng Ying. Unitarity estimation for
quantum channels. IEEE Transactions on Information Theory, 69(8):5116–5134, 2023. doi:
10.1109/TIT.2023.3263645.

11 Kean Chen, Qisheng Wang, and Zhicheng Zhang. Local test for unitarily invariant properties
of bipartite quantum states. arXiv preprint, 2024. doi:10.48550/arXiv.2404.04599.

12 Sitan Chen, Jerry Li, Brice Huang, and Allen Liu. Tight bounds for quantum state certification
with incoherent measurements. In 2022 IEEE 63rd Annual Symposium on Foundations of
Computer Science (FOCS), pages 1205–1213. IEEE, 2022. doi:10.1109/FOCS54457.2022.
00118.

13 Eric Chitambar, Debbie Leung, Laura Mančinska, Maris Ozols, and Andreas Winter.
Everything you always wanted to know about locc (but were afraid to ask). Communications
in Mathematical Physics, 328:303–326, 2014.

14 Scott M Cohen. Understanding entanglement as resource: Locally distinguishing unextendible
product bases. Physical Review A – Atomic, Molecular, and Optical Physics, 77(1):012304,
2008.

15 Jacob P Covey, Harald Weinfurter, and Hannes Bernien. Quantum networks with neutral
atom processing nodes. npj Quantum Information, 9(1):90, 2023.

https://doi.org/10.1145/3519935.3519974
https://doi.org/10.48550/arXiv.2410.12684
https://doi.org/10.1145/3313276.3316344
https://doi.org/10.1137/S0097539796302452
https://doi.org/10.1109/TIT.2023.3263645
https://doi.org/10.1109/TIT.2023.3263645
https://doi.org/10.48550/arXiv.2404.04599
https://doi.org/10.1109/FOCS54457.2022.00118
https://doi.org/10.1109/FOCS54457.2022.00118

S. Arunachalam and L. Schatzki 11:17

16 Andreas Elben, Benoît Vermersch, Rick van Bijnen, Christian Kokail, Tiff Brydges, Christine
Maier, Manoj K Joshi, Rainer Blatt, Christian F Roos, and Peter Zoller. Cross-platform
verification of intermediate scale quantum devices. Physical review letters, 124(1):010504,
2020.

17 Heng Fan. Distinguishability and indistinguishability by local operations and classical commu-
nication. Physical Review Letters, 92(17):177905, 2004.

18 Ranjani G Sundaram, Himanshu Gupta, and CR Ramakrishnan. Efficient distribution of
quantum circuits. In 35th International Symposium on Distributed Computing (DISC 2021).
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, 2021.

19 Giovanni Guccione, Tom Darras, Hanna Le Jeannic, Varun B Verma, Sae Woo Nam, Ad-
rien Cavaillès, and Julien Laurat. Connecting heterogeneous quantum networks by hybrid
entanglement swapping. Science advances, 6(22):eaba4508, 2020.

20 Aram W Harrow. The church of the symmetric subspace. arXiv preprint, 2013. arXiv:
1308.6595.

21 Marcel Hinsche, Marios Ioannou, Sofiene Jerbi, Lorenzo Leone, Jens Eisert, and Jose Carrasco.
Efficient distributed inner product estimation via pauli sampling. arXiv preprint, 2024.
arXiv:2405.06544.

22 Christopher Monroe, Robert Raussendorf, Alex Ruthven, Kenneth R Brown, Peter Maunz,
L-M Duan, and Jungsang Kim. Large-scale modular quantum-computer architecture with
atomic memory and photonic interconnects. Physical Review A, 89(2):022317, 2014.

23 Michael A Nielsen and Isaac L Chuang. Quantum computation and quantum information.
Cambridge university press, 2010.

24 A Pirker, J Wallnöfer, and W Dür. Modular architectures for quantum networks. New Journal
of Physics, 20(5):053054, 2018.

25 Pranab Sen. A quantum johnson-lindenstrauss lemma via unitary t-designs. arXiv preprint,
2018. arXiv:1807.08779.

26 Guifré Vidal and Rolf Tarrach. Robustness of entanglement. Physical Review A, 59(1):141,
1999.

27 Stephanie Wehner, David Elkouss, and Ronald Hanson. Quantum internet: A vision for the
road ahead. Science, 362(6412):eaam9288, 2018.

28 Jun-Yi Wu, Kosuke Matsui, Tim Forrer, Akihito Soeda, Pablo Andrés-Martínez, Daniel
Mills, Luciana Henaut, and Mio Murao. Entanglement-efficient bipartite-distributed quantum
computing. Quantum, 7:1196, 2023. doi:10.22331/Q-2023-12-05-1196.

29 Zhi-Chao Zhang, Fei Gao, Tian-Qing Cao, Su-Juan Qin, and Qiao-Yan Wen. Entanglement as
a resource to distinguish orthogonal product states. Scientific reports, 6(1):30493, 2016.

STACS 2025

https://arxiv.org/abs/1308.6595
https://arxiv.org/abs/1308.6595
https://arxiv.org/abs/2405.06544
https://arxiv.org/abs/1807.08779
https://doi.org/10.22331/Q-2023-12-05-1196

Results on H-Freeness Testing in Graphs of
Bounded r-Admissibility
Christine Awofeso #

Birkbeck, University of London, UK

Patrick Greaves #

Birkbeck, University of London, UK

Oded Lachish #

Birkbeck, University of London, UK

Felix Reidl #

Birkbeck, University of London, UK

Abstract
We study the property of H-freeness in graphs with known bounded average degree, i.e. the property
of a graph not containing some graph H as a subgraph. H-freeness is one of the fundamental graph
properties that has been studied in the property testing framework.

Levi [10] showed that triangle-freeness is testable in graphs of bounded arboricity, which is a
superset of e.g. planar graphs or graphs of bounded degree. Complementing this result is a recent
preprint [7] by Eden et al. which shows that, for every r ≥ 4, Cr-freeness is not testable in graphs of
bounded arboricity.

We proceed in this line of research by using the r-admissibility measure that originates from the
field of structural sparse graph theory. Graphs of bounded 1-admissibility are identical to graphs of
bounded arboricity, while graphs of bounded degree, planar graphs, graphs of bounded genus, and
even graphs excluding a fixed graph as a (topological) minor have bounded r-admissibility for any
value of r [12].

In this work we show that H-freeness is testable in graphs with bounded 2-admissibility for all
graphs H of diameter 2. Furthermore, we show the testability of C4-freeness in bounded 2-admissible
graphs directly (with better query complexity) and extend this result to C5-freeness. Using our
techniques it is also possible to show that C6-freeness and C7-freeness are testable in graphs with
bounded 3-admissibility. The formal proofs will appear in the journal version of this paper.

These positive results are supplemented with a lower bound showing that, for every r ≥ 4,
Cr-freeness is not testable for graphs of bounded (⌊r/2⌋ − 1)-admissibility. This lower bound will
appear in the journal version of this paper. This implies that, for every r > 0, there exists a graph H

of diameter r + 1, such that H-freeness is not testable on graphs with bounded r-admissibility. These
results lead us to the conjecture that, for every r > 4, and t ≤ 2r + 1, Ct-freeness is testable in
graphs of bounded r-admissibility, and for every r > 2, H-freeness for graphs H of diameter r is
testable in graphs with bounded r-admissibility.

2012 ACM Subject Classification Theory of computation → Design and analysis of algorithms

Keywords and phrases Property Testing, Sparse Graphs, Degeneracy, Admissibility

Digital Object Identifier 10.4230/LIPIcs.STACS.2025.12

1 Introduction

A graph property is a class of graphs closed under isomorphisms. A property-tester for
a property P is a probabilistic algorithm that receives as input the size of a graph G, a
distance parameter ϵ > 0 (among potentially other parameters), and oracle access to the
graph G. The algorithm accepts with probability at least 2/3 any input from P and rejects
with probability at least 2/3 an input that it is ϵ-far from the property P . The term “ϵ-far”
is a notion of distance that depends on the exact problem setting and discuss it further

© Christine Awofeso, Patrick Greaves, Oded Lachish, and Felix Reidl;
licensed under Creative Commons License CC-BY 4.0

42nd International Symposium on Theoretical Aspects of Computer Science (STACS 2025).
Editors: Olaf Beyersdorff, Michał Pilipczuk, Elaine Pimentel, and Nguyễn Kim Thắng;
Article No. 12; pp. 12:1–12:16

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:cawofe01@student.bbk.ac.uk
https://orcid.org/0009-0000-3550-1727
mailto:p.greaves@bbk.ac.uk
https://orcid.org/0009-0007-0752-0526
mailto:o.lachish@bbk.ac.uk
https://orcid.org/0000-0001-5406-8121
mailto:f.reidl@bbk.ac.uk
https://orcid.org/0000-0002-2354-3003
https://doi.org/10.4230/LIPIcs.STACS.2025.12
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

12:2 Results on H-Freeness Testing in Graphs of Bounded r-Admissibility

below. The complexity measure of a property-tester is a function that bounds above the total
number of queries to the oracle the algorithm uses, as a function of the input parameters ϵ,
size of the graph and any other input parameters provided. A property is testable if it has a
property-tester whose query complexity is independent of the size of the input graph.

We study here the property of H-freeness, where H is a fixed known graph, i.e. the
property of graphs that do not have a subgraph isomorphic to H, which is one of the
fundamental graph properties that has been studied in the property testing framework.
H-freeness was studied in the dense, sparse and general graph models. In the dense model
it was shown implicitly in [1] that H-freeness is testable, for a more explicit result see [2].
Goldreich and Ron [8], showed that H-freeness is testable in the bounded degree graph model.
In an effort to move towards larger sparse1 graph classes, Czumaj et al. [4] showed that
H-freeness is testable in sparse graphs when H is a tree. This result is most likely tight for
sparse graphs as Alon et al. [3] showed that triangle-freeness is not testable in sparse graphs.

While this settles the question for the most general notion of sparse graphs, the question
is still open for a plethora of sparse graph subclasses which are more structured. Possibly
the most famous among them is the class of planar graphs. Czumaj et al. [5] showed that
H-freeness is testable for this class. Proceeding in this line of research, and moving to a much
larger class of sparse graphs, Levi [10] showed that triangle-freeness is testable in graphs of
bounded arboricity, which is a superset of the family of planar graphs. In Eden et al. [7] it
is shown that, for every r ≥ 4, Cr-freeness is not testable in graphs of bounded arboricity.
Specifically, it is shown that, in graphs of bounded arboricity, the query complexity of
C4-freeness and C5-freeness is Θ̃(n1/4), the query complexity of C6-freeness is Õ(n1/2), and
for every k ≥ 6, the query complexity of C6-freeness is O(n1−1/⌊k/2⌋) and Ω(n1/3). These
results also leave open the question of which sparse classes – somewhere between bounded
arboricity and planar graphs – and which values of r is Cr-freeness testable.

In order to identify a suitable notion of sparseness, we draw inspiration from the field
of structural sparse graph theory and propose the r-admissibility measure of graphs as a
parameter that governs the testability of H-freeness. 2-admissibility was originally defined
in [9], where it was simply referred to as admissibility. The more general notion of r-
admissibility2 for natural values of r was first defined in [6]. Strictly speaking, r-admissibility
is a family of measures where r governs how “deep” into the graph we look. We remark that,
graph classes with bounded 1-admissibility are equivalent to graphs with bounded arboricity
(both measures lie within a constant factor of each other). Many well-known sparse classes,
like planar graphs, graphs of bounded genus, graphs excluding a fixed (topological) minor
and graphs of bounded degree have bounded r-admissibility [12, 14, 6] meaning that the
r-admissibility of any member of such a class can be bounded by a function which only
depends on r and the class itself.

We show that C4-freeness is testable in graphs with bounded 2-admissibility, and that
H-freeness, for every H of diameter 2, is also testable in graphs with bounded 2-admissibility
and in particular C5-freeness is testable in graphs with bounded 2-admissibility. Using
our techniques it is possible to show that C6 and C7 are testable in graphs with bounded
3-admissibility. This result will appear in the journal version of this paper that will also
contain a lower bound which shows that, for every r ≥ 4, Cr-freeness is not testable in

1 Here sparse should be understood as having a linear number of edges or equivalently bounded average
degree

2 If you are interested in a more formal definition in this stage, we suggest that you proceed to Section 3,
and read up to Proposition 3 before you proceed here.

C. Awofeso, P. Greaves, O. Lachish, and F. Reidl 12:3

graphs of bounded (⌊r/2⌋ − 1)-admissibility. This implies that for every r > 0, there exists
a graph H of diameter r + 1 such that H-freeness is not testable on graphs with bounded
r-admissibility. The above leads us to conjecture that, for every r ∈ N and t ≤ 2r + 1,
Ct-freeness is testable in graphs with bounded r-admissibility and furthermore for every
r > 2, H-freeness, for H of diameter r, is testable in graphs with bounded r-admissibility.

Techniques

All the lower bounds use Yao’s Minimax Principle [13] and the construction of suitable input
instances. The graph constructions used for the lower bounds, unsurprisingly, are very similar
to the ones used in [7] to prove a lower bound on testing C4-freeness in bounded arboricity
graphs. We chose to provide our lower bounds here and not refer to [7], to demonstrate
how they apply to testing Cr-freeness of graphs of bounded ⌊r/2⌋ − 1-admissibility, for
natural values of r. This is not covered in [7]. In addition, the graphs provided in the proof
also demonstrate that, for every natural value of r and large enough n, there are bounded
r-admissibility graphs with n vertices some of which have degree Ω(

√
n). It should be noted

that these graphs are also “far” from being planar.
All upper bounds are based on the same algorithm and can be seen as a variation of the

“standard” BFS (breadth first search) based testers for the bounded degree graph model.
Many examples of “standard” BFS testers can be found in [8]. In such testers, initially a
small subset of the vertices of the graph is selected uniformly at random (u.a.r.) and then a
fixed depth BFS is performed (using oracle queries) from every vertex in the selected set.
The tester presented here (Algorithm 1) differs from the “standard” testers at the BFS stage
as follows: While the “standard” testers queries proceeds with the BFS by querying all
neighbours of a vertex v, Algorithm 1 randomly selects size at most min{α, degG(v)} subset
of [degG(v)], where α is a parameter provided to the algorithm and degG v is the degree of
the vertex v in the input graph G, and queries the identity of the ith neighbour of the vertex,
for every i in the selected set. We note Algorithm 1 behaves like the “standard” BFS based
tester if the input graph has maximum degree α.

H-subgraphAlgorithm 1 has a one-sided error, i.e. it only rejects if it detects an H-subgraph (a
subgraph that is isomorphic to H), therefore, to prove its correctness, it is sufficient to show
that, given oracle access to a bounded admissibility graph that is ϵ-far from being H-free,
Algorithm 1 rejects with high probability.

To prove the required rejection probability we show the following. Given an input graph
G with bounded admissibility, we can remove edges from the graph in a process we refer to
as trimming to obtain a new auxiliary graph G̃. We relate this graph G̃ to G in two ways:
first we show that if G is far from H-freeness, then so is G̃. Then we show that if there
exists an H-subgraph in G̃, then this subgraph includes a vertex with low degree, such that
if Algorithm 1 starts its search from this vertex in G (not in G̃), then with high probability
it will discover an H-subgraph (though not necessarily the one we just referred to). The
“high probability” is proved to be sufficiently large by using the properties of the graph G̃.
Note that the construction of G̃ is only a tool for this proof, it is not actually constructed by
the testing algorithm.

Finally, we show that when G̃ is far from being H-free, then there are many such low
degree vertices in G. This implies that with sufficiently high probability Algorithm 1 initially
selects such a vertex.

STACS 2025

12:4 Results on H-Freeness Testing in Graphs of Bounded r-Admissibility

2 Preliminaries

N ,R,[k] We use N for the set of integer numbers, R for the set of real numbers, R+ for the set of
positive real numbers. For an integer k, we use [k] as a shorthand for the set {1, 2, . . . , k}.
In this paper, all graphs are simple. For a graph G we use V (G) and E(G) to refer to its
vertex- and edge-set, respectively. For a vertex u ∈ V (G) we use the notation NG(u) to
denote the set of all of u’s neighbours in G. We omit the subscript, when clear for context.
The diameter of a graph is the maximum of the distance between u and v over all pairs of
vertices u and v in V (G).

Heavy We use the notation Heavyα(G), where α ∈ N to denote the set of vertices in V (G) that
have degree larger than α. We write Heavyα when G is clear from context. In some places
we will use the notation without initially stating the value of α, in those cases α is calculated
further down when its concrete value is required.

xP y For sequences of vertices x1, x2, . . . , xℓ, in particular paths, we use notations like x1Pxℓ,
x1 or x1P or Pxℓ to indicate subpaths P that are part of the larger path. For example, the
notation uPv for a path u, a, b, c, v would mean that P is the subpath a, b, c, whereas uP in
the same context would mean that P is the subpaths a, b, c, v. All the paths in this paper
are simple. Though paths here are undirected, we often treat them as directed by specifying
a start and end vertex.

Property testing

We work only with properties of (p, r)-admissible graphs, which we formally define in the
next section. At this stage it is enough to know that both p and r take integer values that
are strictly positive and that a (p, r)-admissible graph of n vertices can have at most pn

edges.
graph property,

far, close
A graph property (or simply property in this paper) is a class of graphs closed under

isomorphism and we say that a graph has the property if it is contained in this class. The
distance of a graph G from a property of (p, r)-admissible graphs is the minimum number
of edges that must be removed/added to G in order to arrive at a (p, r)-admissible graph
with the property. We say a graph is ϵ-far from a property of (p, r)-admissible graph, if
the graph’s distance to the property is at least ϵpn (an ϵ portion of the maximum number
of edges possible in (p, r)-admissible graphs) and otherwise we say that it is ϵ-close to the
property.

Property tester A property tester is a randomised algorithm that receives oracle access to a graph as part
of its input. An oracle can answer the following queries for vertices u, v ∈ V (G):

the degree deg(v) of a vertex v (degree query),
the ith neighbour of v in G (neighbour query),
whether {u, v} is an edge in G (adjacency query).

By combining these queries it can in particular reveal the whole neighbourhood of a vertex v

using 1 + deg(v) queries. The oracle returns the special symbol “⊥” when asked out of range
neighbour queries, e.g. when asked to return the 10th neighbour of a vertex with less than
10 neighbours.

Formally, a property tester for a property P of (p, r)-admissible graphs, is a randomized
algorithm A that receives as input parameters n ∈ N , p, r ∈ [n], ϵ > 0 and oracle access to
a (p, r)-admissible graph G with n vertices. If the graph G is ϵ-far from P , then A rejects
with probability at least 2/3. If the graph G is in P , then A accepts with probability 1
(if the tester is one-sided) or with probability at least 2/3 (if the tester is two-sided). The

C. Awofeso, P. Greaves, O. Lachish, and F. Reidl 12:5

complexity measure of a property tester is a function depending on n, p, r, and ϵ which
bounds the maximum number of queries the tester makes on an input graph with those
parameters.

H-free,
H-subgraph

In this paper, we study the property of (p, r)-admissible graphs that are H-free. That is,
graphs that are (p, r)-admissible and do not have any H-subgraph (a subgraph isomorphic
to H). In some cases, H may be a specific graph, for example, H may be a Ci (cycle of
length i), for some i ≥ 3 and we then refer to the problem as Ci-freeness.

Knowledge graphIn further sections, we use the term knowledge graph to refer to the graph that includes
all the vertices, edges and anti-edges (learned from negative answers to neighbour queries)
that the algorithm discovered via queries.

3 Graph degeneracy and admissibility, related notations and necessary
lemmas

G, ordered graph,
π(G)

An ordered graph is a pair G = (G, ≤) where G is a graph and ≤ is a total order relation on
V (G). We write ≤G to denote the ordering of G and extend this notation to derive relations
<G, >G, ≥G. For simplicity we will call G an ordering of G and we write π(G) for the set of
all possible orderings of G.

before and after
neighbourhood,
N

−
G (u), N

+
G (u),

∆+
G (u), ∆−(G)

We use the same notations for graphs and ordered graphs, additionally we write N−
G (u) :=

{v ∈ N(u) | v <G u} for the before neighbourhood and N+
G (u) := {v ∈ N(u) | v >G u} for

the after neighbourhood of a vertex u ∈ G. We omit the graphs in the subscripts if clear
from the context. We further use deg−

G (u) := |N−
G (u)| and deg+

G (u) := |N+
G (u)|, as well as

∆−(G) := maxu∈G deg−
G (u) and ∆+(G) := maxu∈G deg+

G (u). We omit subscripts if clear from
the context.

▶ Definition 1 (Degeneracy). DegeneracyA graph G is γ-degenerate if there exists an ordering G (a
degeneracy ordering) such that ∆−(G) ≤ γ.

In particular, for every vertex v in a γ-degenerate graph G and every degeneracy ordering G
of the graph it holds that deg−

G (v) ≤ γ. Consequently, the number of edges in a γ-degenerate
graph is bounded by γn. A degeneracy ordering of a graph can be computed in time O(n+m)
and O(γn) for γ-degenerate graphs [11].

Admissibility

Figure 1 On the left, the green highlighted edges form an example of a maximal 2-admissible
path packing of size 2 that is rooted at the blue vertex in position 5. On the right, the yellow
highlighted edges form an example of a maximal 3-admissible path packing of size 3 that is rooted at
the blue vertex in position 5. In both packings the only vertex common to all the paths is their root.
Also in both packing every path’s end vertex is smaller than the root and all the path’s internal
vertices are all larger than the root.

r-admissible pathLet G = (G, ≤) and v ∈ V (G). A path vPx is r-admissible in G if its length ∥vPx∥ ≤ r,
x <G v and min P >G v. That is, the path goes from v to x using only vertices w such that
w >G v and x satisfies v >G x.

STACS 2025

12:6 Results on H-Freeness Testing in Graphs of Bounded r-Admissibility

Target For every integer i > 0 we let Targeti
G(v) be the set of all vertices in u ∈ V (G) such that

u <G v and u is reachable from v via an r-admissible path vPu of length exactly i. We omit
the subscript G when it is clear from context.

(r,G)-admissible
path packing

An r-admissible path packing is a collection of paths {vPixi}i with joint root v and the
additional properties that every path vPixi is r-admissible and the subpaths Pixi are all
pairwise vertex-disjoint (cf. Figure 1). In particular, all endpoints {xi}i are distinct.ppr

G, admr(G),
admr(G)

We
write ppr

G(v) to denote maximum size of any r-admissible path packing rooted at v.

▶ Definition 2 (Admissibility). The r-admissibility of an ordered graph G, denoted admr(G)
and the admissibility of an unordered graph G, denoted admr(G) are3

admr(G) := max
v∈G

ppr
G(v) and admr(G) := min

G∈π(G)
admr(G).

Admissibility
ordering

If G is an ordering of G such that admr(G) = admr(G), then we call G an admissibility
ordering of G. The 1-admissibility of a graph coincides with its degeneracy and therefore
such orderings are easily computable in linear time. For r ≥ 2 an optimal ordering can also
be computed in linear time in n, albeit the machinery required is much more complicated,
see [6].

(p, r)-admissible,
admr-bounded

We say that a graph G is (p, r)-admissible if admr(G) = p. Note that, by definition, if
a graph G is (p, r)-admissible it is also (p, r′)-admissible for all r′ ≤ r. We call a graph
class admr-bounded if all of its members are (p, r)-admissible for some finite value p.

The following is a well-known result in the field of sparse graphs, we replicate it here
using our notation for completeness:

▶ Proposition 3. Let r and p be natural numbers, and G = (G, ≤) such that admr(G) = p,
then for every v ∈ V (G), and h ∈ [r] it holds that |Targeth

G(v)| ≤ p(p−1)h−1 and in particular
|N−

G (v)| ≤ p.

Proof. Let v be an arbitrary vertex in V (G), and h ∈ [r]. Note first that, by construction,
N−

G (v) = Target1
G(v), and hence we only need to prove the bound on |Targeth

G(v)|.
For every u ∈ Targeth

G(v), let vPuu be an r-admissible path of length h; such a path
exists by the definition of Targeth

G(v). Let W be a subgraph of G defined as follows: V (W)
includes exactly the vertex v, all the vertices in Targeth

G(v) and all the vertices in Pu, for
every u ∈ Targeth

G(v); and E(W) includes every edge of G participating in a path vPuu for
some u ∈ Targeth

G(v).
By construction, the set of vertices Targeth

G(v) is independent in W and for every
w ∈ Targeth

G(v), degW (w) = 1. Also by construction, the distance in W of v from any vertex
in Targeth

G(v) is at most h. Hence, we can find a rooted tree T in W with the following
properties: v is the root of T , the set Targeth

G(v) is the set of leaves of T and the depth of T

is at most h.
We next show that the degree of every vertex in the tree is at most p. This implies that

indeed |Targeth
G(v)| ≤ p(p − 1)h−1 and in particular |N−

G (v)| ≤ p.
Let pv be the degree of v in W . Since T is a tree, there are at most pv edge disjoint

paths from v to the leaves of T (the vertices in Targeth
G(v)). These paths have length at

most h, they share only the vertex v, and they correspond to r-admissible paths of G. The
last part holds since u >G v, for every internal vertex u (non-leaf or root vertex) of T and,

3 Note that some authors choose to define the admissibility as 1 + maxv∈G ppr
G(v) as this matches with

some other, related measures.

C. Awofeso, P. Greaves, O. Lachish, and F. Reidl 12:7

for every w ∈ Targeth
G(v) (the leaves of T), it holds that w <G v. Therefore, these paths are

an r-admissible packing of G, and hence their number pv ≤ p, and in particular the degree
of v in T is at most p.

We now show that this applies also to every internal vertex y of T . We notice that it
also holds that w <G y, for every w ∈ Targeth

G(v) ∪ {v}. However, it is not necessarily the
case that u <G y when u is an internal vertex of T . This is resolved by noticing that for any
x ∈ Targeth

G(v) and path yPx in T , if P has a vertex that is smaller than y, then instead of
taking the path yPx, we take its shortest subpath yP ′x′ such that x′ <G y. Now, the same
reasoning we used for v implies that the degree of y in T is at most p. ◀

4 Upper bounds strategy and the testing algorithm

In this section we present Algorithm 1 which is used for all upper bounds presented. Al-
gorithm 1 receives as an input a graph H , a set of parameters including the parameter p and
oracle access to a graph G. We note that for each upper bound shown in this paper, the
parameters provided to Algorithm 1, in addition to p, are dependent on the graph H.

Algorithm 1 The PBFS.

Input: n ∈ N , p ∈ [n], α, τ ∈ R, fixed graph H and oracle access to a graph G

Set S0 = ∅
Repeat ⌈4α/(ϵp)⌉ times

Add to S0 an independently and u.a.r selected vertex from V (G)
for i = 1, 2, . . . , τ do

Set Si = ∅
for v ∈ Si−1 \

⋃i−2
j=0 Sj do

Query the degree of v

Set X = ∅
Repeat ⌈2α⌉ times

Add to X an independently and u.a.r selected integer k from [deg(v)]
if deg(v) ≤ ⌈α⌉ then

Set X = [deg(v)]
for k ∈ X do

query the identity of the k’th neighbour of v and add the answer to Si

if the knowledge graph contains a H-subgraph then
Reject

else
Accept

Algorithm 1 can be seen as a variation of the “standard” BFS (breadth first search) based
testers for properties of bounded degree graphs. In such testers, initially a small subset of
the graph’s vertices is randomly selected and then a fixed depth BFS is performed (using
oracle queries) from every vertex in the selected set.

Algorithm 1 differs from the “standard” testers, at the BFS stage: In the “standard”
tester the search is expanded to all neighbours of a discovered vertex (until the fixed depth
is reached). In contrast, Algorithm 1 only queries a subset of neighbours, specifically for

STACS 2025

12:8 Results on H-Freeness Testing in Graphs of Bounded r-Admissibility

a vertex v it randomly selects a size at most min{deg(v), ⌈α⌉} subset X ⊆ [degG(v)] and
then it queries the identity of every ith neighbour for i ∈ X. We call this type of search
pseudo-BFS and refer to it with the acronym PBFS.PBFS

▶ Lemma 4. On input n ∈ N , p ∈ [n], α, τ ∈ R, ϵ > 0, fixed graph H, the query complexity
of Algorithm 1 is O((α/(ϵp))ατ).

Proof. The proof follows directly from the algorithm. ◀

Upper bound strategy

Algorithm 1 has a one-sided error, i.e. it only rejects if it discovers an H-subgraph. That is,
once Algorithm 1 finished its last query, its knowledge graph has an H-subgraph). Therefore,
to prove its correctness, it is sufficient to show that, with high constant probability, it rejects
a bounded admissibility graph that is ϵ-far from being H-free.

To prove the required rejection probability we proceed as follows: given an input graph
G with bounded admissibility, a new graph G̃ is constructed by initially setting G̃ = G, and
then removing edges from G̃, in a process we refer to as trimming. We call G̃ the auxiliary
graph.

We relate th auxiliary graph G̃ to G in two ways: first we show that if G is far from
H-freeness, then so is G̃. Then we show that if there exists an H-subgraph in G̃, then this
subgraph includes a vertex with low degree, such that assuming Algorithm 1 starts its search
from this vertex in G (not in G̃), then with high probability it will discover an H-subgraph
of G (though not necessarily the one we just referred to). The “high probability” is proved to
be sufficiently large by using the properties of the graph G̃. Finally, we show that when G̃ is
far from being H-free, then there are many such low degree vertices in G. This implies that
with sufficiently high probability Algorithm 1 initially selects such a vertex in the sample
set S0.

The “trimming” process is problem dependent. The simplest case is for C4-freeness
in adm2-bounded graphs and we provide some intuition here before the full formal treatment
in the next section. Suppose that v ∈ Heavyα and u ∈ Target2

G(v). Suppose also that the set
X of their common neighbours, not including those in Heavyα, is small relative to the degree
of v in G. In the trimming process we then remove all edges that are incident to v as well as
some vertex in X. We can then show that (i) we did not remove too many edges and (ii) if u

and v participate in a C4-subgraph (a subgraph isomorphic to a C4) in G̃, then a large enough
portion of the neighbours of v, are also neighbours of u and are not in Heavyα. Therefore,
if v is encountered in the first iteration of the external loop of Algorithm 1 (guaranteed to
happen if S0 has a neighbour of v that is not in Heavyα), then with high probability the
knowledge graph will include two edges vw1 and vw2, where w1 and w2 are not in Heavyα

and are common neighbours of both u and v. Since the PBFS continues with these common
neighbour and they are both not in Heavyα, the edges uw1 and uw2 will also appear in
the knowledge graph. Thus, the knowledge graph contains a C4-subgraph. Similar – but
more involved – ideas work for H-freeness, when H has diameter 2 and for C6-freeness and
C7-freeness.

It is important to note that proving the above properties (i) and (ii) hold relies on
the graph G being admr-bounded (for some problem-dependent value of r), and we make
extensive use of Proposition 3.

C. Awofeso, P. Greaves, O. Lachish, and F. Reidl 12:9

5 Testing C4-freeness in adm2-bounded graphs

In this section we fix some ϵ > 0, an integer p > 0, α = 32p2/ϵ. The input graph G is
(p, 2)-admissible and we let G be an ordering of G with adm2(G) = p.

Trimming. In the trimming procedure we construct G̃ from G. We begin with G̃ = G and
then remove edges from E(G̃) as follows:
1. For every v ∈ Heavyα(G), and u ∈ N−(v), the edge uv is removed from E(G̃).
2. For every v ∈ V (G) and u ∈ Target2

G(v), if |NG̃(u) ∩ NG̃(v)| ≤ degG(v)/(α/2), then for
every w ∈ NG̃(u) ∩ NG̃(v), the edge vw is removed from E(G̃).

3. The previous step is repeated until it does not result in the removal of any edges from
E(G̃).

We first show that this trimming procedure preserves farness:

▶ Lemma 5. If G is ϵ-far from being C4-free, then G̃ is ϵ/2-far from being C4-free.

Proof. Initially E(G̃) = E(G) and then edges are removed from E(G̃) in Steps 1 and 2 of
the trimming. We next show that, in Step 1 of the trimming, at most ϵ|E(G)|/4 edges are
removed from E(G̃), and that the same applies to Step 2 of the trimming. This implies the
lemma.

In Step 1 of the trimming, for every v ∈ Heavyα(G) we remove |N−
G (v)| edges. Thus,

the total number of edges removed in this step is at most
∑

v∈Heavyα(G) |N−
G (u)|. By

Proposition 3, for every u ∈ V (G), it holds that |N−
G (u)| ≤ p. Hence, the preceding sum is

at most
∑

v∈Heavyα(G) p = p · |Heavyα(G)| and

p · |Heavyα(G)| = p · |Heavyα(G)|
|E(G)| |E(G)| ≤ p · |Heavyα(G)|

α|Heavyα(G)|/2 |E(G)| = 2p

α
|E(G)| <

ϵpn

4 ,

where the first inequality follows since |E(G)| ≥ α|Heavyα(G)|/2 (the sum of degrees is twice
the number of edges), and the last equality holds because α = 32p2/ϵ.

In Step 2 of the trimming, for every v ∈ V (G) and u ∈ Target2
G(u) at most degG(v)/(α/2)

edges are removed. Thus, in this step, at most
∑

v∈V (G)
∑

u∈Target2
G(v) degG(v)/(α/2) edges

are removed. By Proposition 3, for every u ∈ V (G), it holds that |Target2
G(u)| < p2. Hence,

the preceding sum is strictly less than
∑

v∈V (G) p2 degG(v)/(α/2) = (ϵ/8)
∑

v∈V (G) degG(v) ≤
ϵpn/4, where the first equality follows because α = 32p2/ϵ. ◀

▶ Lemma 6. Every C4-subgraph C of G̃ that has more than one vertex from Heavyα(G),
has exactly two vertices w1 and w2 from Heavyα(G), all the other two vertices of C are
neighbours of both w1 and w2 and, there exists i ∈ {1, 2}, such that |NG(w1) ∩ NG(w2)| ≥
degG(wi)/(α/2).

Proof. Let C be a C4-subgraph of G̃ such that |V (C) ∩ Heavyα(G)| > 1 and w1 and w2 be
two vertices in V (C) ∩ Heavyα(G). Assume without loss of generality that w1 >G w2, and
otherwise rename the vertices accordingly.

According to Step 1 of the trimming, w1w2 ̸∈ E(G̃) and hence w1 and w2 are not adjacent
in C. By the same reasoning w1 and w2 are the only vertices of Heavyα(G) in V (C). We
conclude that C consists of the two vertices w1 and w2 in Heavyα(G) and two vertices that
are not in Heavyα(G) and are neighbours of both w1 and w2.

Let v ∈ V (C)\Heavyα(G) and Y = NG̃(w1)∩NG̃(w2). By the same reasoning as before we
may conclude that v >G w1. Thus, as w1 >G w2, w2 ∈ Target2

G(w1). Consequently, by Step 1
of the trimming, |Y | > degG(w1)/(α/2), since otherwise Y = ∅ in contradiction to v ∈ Y

STACS 2025

12:10 Results on H-Freeness Testing in Graphs of Bounded r-Admissibility

(because v is adjacent to both w1 and w2). As G̃ is a subgraph of G and Y ∩ Heavyα(G) = ∅
(because of Step 1 of the trimming), we can conclude that also in the graph G it holds that
|(NG(w1) ∩ NG(w2)) \ Heavyα(G)| > degG(w1)/(α/2). ◀

The next two lemmas show that if the set S0 selected by Algorithm 1 contains specific types
of vertices from V (G) \ Heavyα(G), then it rejects with sufficient probability to prove the
main Theorem of this section.

▶ Lemma 7. Suppose that Algorithm 1 is executed with oracle access to G and parameters p,
H = C4, α = 32p2/ϵ, τ = 3 and let S0 be the set selected by the algorithm in the first step.
Assume there exists a vertex v ∈ S0 \ Heavyα(G) such that v is in a C4-subgraph C of G̃

and C satisfies |V (C) ∩ Heavyα(G)| ≤ 1. Then Algorithm 1 rejects with probability 1.

Proof. Let v be as in the statement of the lemma. Since C is a C4-subgraph that includes,
together with v, three vertices from V (C) \ Heavyα(G) in G, it follows that C includes a
path P of length 2 that consists of v and two other vertices from V (C) \ Heavyα(G).

Now, as Algorithm 1 will execute a PBFS of depth 3 (we set τ = 3) it is guaranteed that
the knowledge graph constructed by Algorithm 1 will include all vertices of P and all edges
incident to these vertices. In particular, the knowledge graph eventually has C as a subgraph
with probability 1 and the claim follows. ◀

▶ Lemma 8. Suppose that Algorithm 1 is executed with oracle access to G and parameters,
p, H = C4, α = 32p2/ϵ, τ = 3. Let S0 be the set selected by the algorithm in the first
step. Assume there exists a vertex v ∈ S0 \ Heavyα(G) such that v is in a C4-subgraph C

of G̃ and C satisfies |V (C) ∩ Heavyα(G)| ≥ 2. Then Algorithm 1 rejects with probability at
least 5/6.

Proof. Let v be as in the statement of the lemma. By Lemma 6, C has exactly two vertices
w1 and w2 from Heavyα(G), the other two vertices of C are neighbours of both w1 and w2
and are not in Heavyα(G). Since degG(v) < α, Algorithm 1 queries all of v’s edges, in the
first iteration of the PBFS. Thus after the first iteration of the PBFS the knowledge graph
already contains the edges vw1 and vw2.

We show next that with with probability at least 5/6 Algorithm 1 queries a neighbour
u ≠ v of w1 that is not in Heavyα(G) and is also a neighbour of w2, so after the second
iteration of the PBFS the knowledge graph also contains the edge uw1. We note that this
implies the lemma, because in the third iteration of the PBFS (this is the last iteration,
since τ = 3) Algorithm 1 will discover all the edges incident to u, since degG(u) ≤ α, and in
particular it will discover the edge uw2, which implies that after the end of the PBFS from v

the knowledge graph will contain a C4-subgraph and hence Algorithm 1 will reject.
Let Y = (NG(w1) ∩ NG(w2)) \ Heavyα(G). According to Lemma 6, there exists i ∈

1, 2 such that |Y | ≥ degG(wi)/(α/2). Without loss of generality assume that i = 1 and
otherwise rename w1 and w2 accordingly. Since degG(w1) ≥ α, we can conclude that
|Y | ≥ 2 and hence we can assume that at least 1/2 of the vertices in Y are not v. Thus,
|Y \ {v}| ≥ degG(wi)/(2α/2)). Algorithm 1 selects a vertex from N(w1) independently and
u.a.r. 2α times and hence the probability that none of them are from |Y \ {v}| is at most
(1 − 1/α)2α < e−2 < 1/6. So with probability at least 5/6 Algorithm 1 finds a vertex u in
Y \ {v}) and the claim follows. ◀

▶ Theorem 9. Suppose that Algorithm 1 is executed with oracle access to G and parameters,
p, H = C4, α = 32p2/ϵ, τ = 3, then (i) if G is C4-free, then Algorithm 1 accepts with
probability 1; and (ii) if G is ϵ-far from being C4-free, then Algorithm 1 rejects with probability
at least 2/3. Algorithm 1 uses at most O(p7/ϵ5) queries.

C. Awofeso, P. Greaves, O. Lachish, and F. Reidl 12:11

Proof. The query complexity of the algorithm follows from Lemma 4 and the values of α

and τ .
If G is C4-free, then the knowledge graph constructed by Algorithm 1 will not have a

C4-subgraph and hence Algorithm 1 accepts with probability 1. So assume in the sequel that
G is ϵ-far from C4-freeness.

Let U be the set of all vertices in V (G) \ Heavyα(G) that participate in a C4-subgraph
of G̃. Since the degree of all vertices in V (G) \ Heavyα(G) is less than α, if we remove every
edge that is incident to a vertex from U , then the total number of edges we removed is
bounded above by α|U | and the resulting graph does not have a C4-subgraph. Now, by
Lemma 5, G̃ is ϵ/2-far from C4-freeness it must be the case that α|U | ≥ ϵnp/2. Consequently,
|U | ≥ ϵnp/(2α).

Algorithm 1 selects ⌈4α/(ϵp)⌉ vertices u.a.r. for the set S0. The probability that none of
them are from U is at most (1 − ϵp/(2α))4α/(ϵp) < e−2 < 1/6. So with probability at least
5/6, the set S0 includes a vertex v ∈ V (G) \ Heavyα(G) that participates in a C4-subgraph
of G̃.

Let C be a C4-subgraph of G̃ that includes a vertex v ∈ V (G) \ Heavyα(G). One of
two cases applies to C: Either (a) C includes at most one vertex from Heavyα(G) or (b)
C includes more than one vertex from Heavyα(G). We now show that given v ∈ S0, with
probability at least 5/6, the knowledge graph of Algorithm 1 eventually has a C4-subgraph.
By using the union bound we can conclude that Algorithm 1 rejects with probability at
least 2/3.

According to Lemma 7, if case (a) occurs, then Algorithm 1 rejects with probability 1.
According to Lemma 8, if case (b) occurs, then Algorithm 1 rejects with probability at
least 5/6. We conclude that Algorithm 1 rejects with probability at least (5/6)2 > 2/3, as
claimed. ◀

6 Testing H-freeness in adm2-bounded graphs when H has
diameter 2

In this section we fix ϵ > 0, p ∈ N , α = 3|V (H)|⌈ϵ−122|V (H)|+4p2 log p⌉. As before, G is an
arbitrary (p, 2)-admissible graph and G is an ordering of G with adm2(G) = p. Finally, H is
an arbitrary diameter 2 graph.

The trimming process in this section depends on the structure of H and requires an extra
construct (H). Let us first provide some intuition why this is required.

Suppose that H̃ is an H-subgraph of G̃ and h is the largest vertex in V (H̃) \ Heavyα(G).
We show below that the number of vertices like h in G̃ is large enough to ensure that with
high enough probability one of them will be in the set S0 selected by Algorithm 1.

Ideally, in H̃ , every vertex u ∈ V (H̃), is reachable from h via vertices not from Heavyα(G).
This is an ideal case, because of the following. The depth of the PBFSs used is |V (H)|. Thus,
as the PBFS queries all the neighbours of vertices V (H̃) \ Heavyα(G), all these vertices will
be discovered and also all edges incident to them. This means that the algorithm discovers
all the edges of H̃ except those that are incident on two vertices from V (H̃) ∩ Heavyα(G).
The trimming we use ensures that there are no edges between heavy vertices, so in particular,
this latter case cannot occur and Algorithm 1 will discover H̃.

If we do not find ourselves in the ideal case, H̃ has a separator K̃ that consists only of
vertices from Heavyα(G). By similar reasoning to the ideal case, if h is included in the set
S0 that Algorithm 1 selects, it discovers all the vertices in H̃ that can be reached from h via
vertices in V (H̃) \ Heavyα(G), this includes all the vertices of K̃. Let us denote the subgraph
found so far by H̃1. The algorithm now still needs to find the remaining vertices of H̃ that
are “behind” the separator, let us call denote this subgraph by H̃2.

STACS 2025

12:12 Results on H-Freeness Testing in Graphs of Bounded r-Admissibility

The problem here is that the vertices K̃ of on the boundary between H̃1 and H̃2 have a
high degree, therefore the probability to discover H̃2 may be arbitrarily small. We therefore
design a trimming process that will ensure that there are many “useful” H̃2-subgraphs
H̃ ′

2 isomorphic to H̃2 in G̃ that can serves to complete H̃1 into a graph isomorphic to H.
Specifically, a subgraph H̃ ′

2 is useful if K̃ ⊂ V (H̃ ′
2) and there exists an isomorphism from H̃ ′

2
to H̃2 which maps every vertex of K̃ to itself.

Let Q′ be a maximum family of vertex disjoint useful H̃2-subgraphs with respect to the
fixed graph H̃1. If Q′ is small then we can remove them all simply by removing all edges
between members of Q′ and K̃. If this is not possible, Q′ must be sufficiently large and the
PBFS can discover one of its members with sufficiently high probability.

The above is a simplification, since H̃ might disconnect into more than two components
when removing the separator K̃. In this case we also need to ensure that the members of Q′

are sufficiently disjoint.
Finally, in the preceding discussion we fixed a single H̃ with separator K̃, however H̃ is of

course not known in advance. We therefore enumerate all possible sets K ⊂ H that can take
the role of K̃ (not that, by Proposition 3, we only need to look at sets of size < p2). Since K

consists only of heavy vertices and our trimming removes edges between heavy vertices, we
can further assume K to be independent.

▶ Definition 10 (Kernel and H).Kernel, H A kernel K of the graph H is an independent subset of
V (H) of size less than p2 for which H has two subgraphs H1 and H2 such that
1. both H1 and H2 are induced and connected,
2. V (H1) ∩ V (H2) = K,
3. V (H1) ∪ V (H2) = V (H),
4. every edge of H that is incident to a vertex from V (H1) and V (H2), is incident to an

edge from K (K is a vertex separator in H),
5. the induced subgraph of H1 on the vertices V (H1) \ K is connected.

We define H to be the family of ordered pairs (H2, K) over all kernels K of H.

▶ Definition 11 (Sibling subgraphs). Let L be a a subset of V (G̃), and R1 and R2 be two
subgraphs of G̃, both including the set of vertices L. We say that R1 and R2 are siblings if
V (R1) ∩ V (R2) = L and there exists an isomorphism ϕ from R1 to R2, such that, for every
ℓ ∈ L, ϕ(ℓ) = ℓ.

We say a set of graphs is a set of sibling graphs by L, if every pair of graphs in the set are
siblings by L.

Trimming Trimming. In the trimming procedure we construct G̃ from G. We begin with G = G̃ and
then remove edges from E(G̃) as follows:
1. For every v ∈ Heavyα(G), and u ∈ N−(v), the edge uv is removed from E(G̃).
2. For every v ∈ Heavyα(G), (H2, K) ∈ H and size |K| subset M ⊆ Target2

G(v), if a
maximum set of vertex disjoint H2-subgraphs of G̃ that are siblings by M , and are
isomorphic to H2 so that the vertices of M are mapped to the vertices of K, has size at
most 2|V (H)| degG(v)/α, then, for every vertex w in a subgraph of this set, we remove
every edge incident to w and a vertex in Target2

G(v).
3. The previous steps are repeated until it does not result in the removal of any edges from

E(G̃).

▶ Proposition 12. For every v ∈ Heavyα(G), (H2, K) ∈ H and size |K| subset M ⊆
Target2

G(v), if in some execution of Step 2, for a maximum family of vertex disjoint H2-
subgraphs that are siblings by M , and are isomorphic to H2 so that the vertices of M are

C. Awofeso, P. Greaves, O. Lachish, and F. Reidl 12:13

mapped to the vertices of K, the following holds: for every vertex w in a subgraph of this
set, we remove every edge incident to w and a vertex in Target2

G(v), then after the specific
execution of Step 2, there does not exist any H2-subgraph that is a sibling by M of a subgraph
in the maximum family.

Proof. Recall that H has diameter 2, so if it has a separator K, then all the vertices of H

that are not in the separator must be adjacent to some vertex in the separator. Therefore in
Step 2, when for every w in a subgraph of the set all edges between w and Target2

G(v) are
removed, we have that every such vertex w cannot participate in any subgraph like the one
in the set. Hence, as the family is of maximum size the proposition follows. ◀

▶ Lemma 13. If G is ϵ-far from being H-free, then G̃ is ϵ/2-far from being H-free.

Proof. Note that initially E(G̃) = E(G) and then edges are removed from E(G̃) in Steps (1)
and (2) of the trimming. Given that the value of α here is larger than the value used in
Section 5, and that Step 1 of the trimming here is the same as Step 1 in Section 5, by the
same considerations as in Lemma 5, at most ϵpn/4 edges are removed from E(G̃), at Step 1
of the trimming. So, to complete the proof, we only need to show that in Step 1 of the
trimming also at most ϵpn/4 edges are removed from E(G̃).

According to Step 2 of the trimming, the total number of edges removed from E(G̃), for
every vertex in Heavyα(G), is bounded above by the product of the following values:

|H|, and
(p2)!, which is an upper bound on the number of option to choose (while considering
order) a size |K| subset of Target2

G(v) (where, for every v ∈ V (G), by Proposition 3,
|Target2

G(v)| < p2), and
2|V (H)| degG(v)/α, the threshold for edge removal for number of subgraphs in a maximum
set of sibling subgraphs, and
p2|V (H)|, the number of edges incident to a vertex from Target2

G(v) and vertices in a
subgraph of a maximum set of sibling subgraphs.

The size of H is the number of subsets V (H) with size less than p2. Hence, |H| < 2|V (H)|.
So, the total number of edges removed from E(G̃) is at most∑

v∈Heavyα(G)

2|V (H)| · (p2)! · (2|V (H)| degG(v)/α) ·p2|V (H)| <
ϵ

8
∑

v∈Heavyα(G)

degG(v) ≤ ϵpn

4 ,

where the first equality follows because α = 3|V (H)|⌈ϵ−122|V (H)|+4p2 log p⌉. ◀

▶ Proposition 14. Let H̃ be a H-subgraph of G̃. Heavyα(G) is an independent set in G̃,
the largest vertex in H̃ is not in Heavyα(G) and if H̃ has a separator U ⊆ Heavyα(G), then
U = Heavyα(G) ∩ V (H̃) and U is the only separator in H̃ consisting of only vertices from
Heavyα(G).

Proof. According to Step 1 of the trimming, for every v ∈ Heavyα(G), if vu ∈ E(G̃), then
u >G v. Thus, as one vertex is greater than the other for every pair of vertices in Heavyα(G)
there cannot be an edge in G̃ that is incident to both. Therefore, Heavyα(G) is an independent
set. By the same reasoning, the largest vertex in an H-subgraph of G̃ is not in Heavyα(G),
since it is adjacent to vertices smaller than it (H is connected, because it has diameter 2).

Finally, for the last part the claim, in the proof of Proposition 12, we noticed that for
every separator of H, every vertex of H that is not in the separator must be adjacent to
some vertex in the separator. The same applies to H̃. So, if a separator of H̃ is a subset

STACS 2025

12:14 Results on H-Freeness Testing in Graphs of Bounded r-Admissibility

of Heavyα(G), then every vertex that is adjacent to some vertex in the separator is not in
Heavyα(G) and in particular all the vertices of H̃ that are not in the separator. This also
implies that U is the only separator in H̃ consisting of only vertices from Heavyα(G). ◀

▶ Lemma 15. Let H̃ be an H-subgraph of G̃ and U = V (H̃) ∩ Heavyα(G) and suppose that
U is a separator of H̃, then |U | < p2.

Proof. Let v be the largest vertex in U . Since H is of diameter 2, it has a common neighbour
with every vertex in U . By Step 1, v does not have any neighbours smaller than it and hence
together with the previous we can conclude that U \ {v} ⊆ Target2

G(u). By Proposition 3,
Target2

G(u) ≤ p(p − 1) and the lemma follows. ◀

▶ Theorem 16. If Algorithm 1 is executed with oracle access to G and parameters, p, H,
α = 3|V (H)|⌈ϵ−122|V (H)|+4p2 log p⌉, τ = |H|, then (i) if G is H-free, then Algorithm 1 accepts
with probability 1; and (ii) if G is ϵ-far from being H-free, then Algorithm 1 rejects with
probability at least 2/3. Algorithm 1 uses at most O(2(|V (H)|+1)(2|V (H)|+4p2 log p)) queries.

Proof. The query complexity of the algorithm follows from Lemma 4 and the values of α

and τ .
If G is H-free, then knowledge graph of Algorithm 1, will never have an H-subgraph and

hence, Algorithm 1 accepts with probability 1. So, from here on in this proof, assume that
G, is ϵ-far from H-freeness.

Let U be the set of all vertices in V (G) that are the largest vertices in a H-subgraph
of G̃. By Proposition 14, U ∩ Heavyα(G) = ∅ and therefore, by the same reasoning as in
Theorem 9, it holds that |U | > ϵnp/(2α) and, with probability at least 5/6 that S0 ∩ U ≠ ∅.
So, assume that v is a vertex in S0 that is the largest vertex in a H-subgraph H̃ of G̃.

One of two cases applies to H̃: (a) every vertex u ∈ V (H̃), is reachable from v via the
vertices in V (H̃)\Heavyα(G), and (b) there exists a set M such that M = V (H̃)∩Heavyα(G)
that is a separator of H̃.

If case (a) applies, then as we already described previously in this section, with prob-
ability 1, the knowledge graph of Algorithm 1 will eventually have an H-subgraph. Thus,
Algorithm 1 will reject with probability 1. So, from here on we assume that case (b) applies.

So, assume that H̃ has a separator M consisting only of vertices from Heavyα(G)
(by Proposition 14, this separator includes all the vertices of Heavyα(G) ∩ V (H̃)). Since
v ̸∈ Heavyα(G), the diameter of H is 2 and Heavyα(G) is an independent set, for every
vertex in M , v is either its neighbour or shares a neighbour x with it, where x ̸∈ Heavyα(G).
This ensures that, with probability 1, after two steps of the PBFS all the vertices in M are
discovered. By similar consideration to the previous case, with probability 1, all vertices
reachable from v via vertices not in Heavyα(G) are added to the knowledge graph. For every
one these vertices that is not in Heavyα(G) also all the edges incident on them are also in
the knowledge graph. This implies that all the edges between the vertices of M and the
vertices added to the knowledge graph as described are also in the knowledge graph.

It remains to show that with sufficiently high probability, the edges required to complete
the above to H-subgraph are included in the knowledge graph. Let ℓ be the largest vertex in
M . Let H̃ ′ be an induced subgraph of H̃ that includes all the vertices of M and all other
vertices of H̃ that are separated from v by M . By Step 2, of the trimming we are guaranteed
that there exists a family Q, of size greater than 2|V (H)| degG(v)/α, that consists of vertex
disjoint subgraphs of G̃, where every graph in the family is either H̃ ′ or its sibling by M .

Let be the graph H̃∗ induced by H̃ ′ on V (H̃ ′) \ M If we were guaranteed that H̃∗ is
connected, then we would only need to show that with high probability Algorithm 1 will
discover an edge incident to ℓ and a vertex x of this subgraph (or similar subgraph of one of

C. Awofeso, P. Greaves, O. Lachish, and F. Reidl 12:15

its siblings in M , that does not share any vertices with the part of the H-subgraph already
discovered). This holds because, every vertex in H̃∗ is not in Heavyα(G), and there are
enough steps of the PBFS so that the PBFS reaches all the vertices in H̃∗ and discovers all
the edges adjacent to them (the PBFS has |V (H)| steps, and the vertices on a shortest path
from ℓ to x are not in H̃∗), thus the PBFS will discover all the vertices of H̃∗ and the edges
incident on them.

However, the above guarantee does not hold. So H̃∗ may contain almost |V (H)| connected
components. Regardless, if for every one of these connected components, the knowledge
graph has it as a subgraph or has its isomorphic equivalent in one of the subgraphs in Q,
and if none of the isomorphic equivalent shares a vertex with other vertices of H̃ ′ in the
knowledge graph, the knowledge graph has an H-subgraph.

For each connected component, there are at least 3|V (H)| degG (ℓ)/α ≥ 3|V (H)|α/α =
3|V (H)| vertex disjoint copies (where the inequality follows because ℓ ∈ Heavyα(G)). So, at
least two thirds of the copies of such connected component do not include any other vertices
from H̃.

The probability of not discovering one such component is (1 − 4|V (H)|/(3α))2α ≤
e−|V (H)|/6 < (6|V (H)|)−1. By the union bound, with probability at least 5/6, the knowledge
graph has all the subgraphs required so that in has a H-subgraph. Thus, the proof is
complete. ◀

7 Testing C6 and C7-freeness in adm3-bounded graphs

The proof of the following theorem will appear in the journal version of this paper.

▶ Theorem 17 (⋆). If Algorithm 1 is executed with oracle access to G and parameters, H = C7,
α = ⌈212p4/ϵ⌉, τ = 7, then (i) if G is C7-free, then Algorithm 1 accepts with probability 1;
and (ii) if G is ϵ-far from being C7-free, then Algorithm 1 rejects with probability at least
2/3. Algorithm 1 uses at most O(p27/ϵ8) queries.

8 Lower bounds for testing Cr-freeness for r ≥ 4

The proof of the following theorem will appear in the journal version of this paper.

▶ Theorem 18 (⋆). For every integer r ≥ 4 and sufficiently large integer n, every two-sided
Property-Tester for the Cr-freeness, has query complexity Ω(n1/4), on (2⌊r/2⌋ − 1) input
graphs of size n.

References
1 Noga Alon, Richard A. Duke, Hanno Lefmann, Vojtech Rödl, and Raphael Yuster. The

algorithmic aspects of the regularity lemma. J. Algorithms, 16(1):80–109, 1994. doi:10.1006/
JAGM.1994.1005.

2 Noga Alon, Eldar Fischer, Michael Krivelevich, and Mario Szegedy. Efficient testing of large
graphs. Comb., 20(4):451–476, 2000. doi:10.1007/S004930070001.

3 Noga Alon, Tali Kaufman, Michael Krivelevich, and Dana Ron. Testing triangle-freeness
in general graphs. SIAM Journal on Discrete Mathematics, 22(2):786–819, 2008. doi:
10.1137/07067917X.

4 Artur Czumaj, Oded Goldreich, Dana Ron, C Seshadhri, Asaf Shapira, and Christian Sohler.
Finding cycles and trees in sublinear time. Random Structures & Algorithms, 45(2):139–184,
2014. doi:10.1002/RSA.20462.

STACS 2025

https://doi.org/10.1006/JAGM.1994.1005
https://doi.org/10.1006/JAGM.1994.1005
https://doi.org/10.1007/S004930070001
https://doi.org/10.1137/07067917X
https://doi.org/10.1137/07067917X
https://doi.org/10.1002/RSA.20462

12:16 Results on H-Freeness Testing in Graphs of Bounded r-Admissibility

5 Artur Czumaj and Christian Sohler. A characterization of graph properties testable for general
planar graphs with one-sided error (it’s all about forbidden subgraphs). In 2019 IEEE 60th
Annual Symposium on Foundations of Computer Science (FOCS), pages 1525–1548. IEEE,
2019. doi:10.1109/FOCS.2019.00089.

6 Zdeněk Dvořák. Constant-factor approximation of the domination number in sparse graphs.
European Journal of Combinatorics, 34(5):833–840, July 2013. doi:10.1016/j.ejc.2012.12.
004.

7 Talya Eden, Reut Levi, and Dana Ron. Testing c_k-freeness in bounded-arboricity graphs. In
Karl Bringmann, Martin Grohe, Gabriele Puppis, and Ola Svensson, editors, 51st International
Colloquium on Automata, Languages, and Programming, ICALP 2024, July 8-12, 2024, Tallinn,
Estonia, volume 297 of LIPIcs, pages 60:1–60:20. Schloss Dagstuhl – Leibniz-Zentrum für
Informatik, 2024. doi:10.4230/LIPICS.ICALP.2024.60.

8 Oded Goldreich and Dana Ron. Property testing in bounded degree graphs. In Proceedings
of the twenty-ninth annual ACM symposium on Theory of computing, pages 406–415, 1997.
doi:10.1145/258533.258627.

9 H. A. Kierstead and W. T. Trotter. Planar graph coloring with an uncooperative partner.
Journal of Graph Theory, 18(6):569–584, October 1994. doi:10.1002/jgt.3190180605.

10 Reut Levi. Testing triangle freeness in the general model in graphs with arboricity O(
√

n). In
48th International Colloquium on Automata, Languages, and Programming, ICALP 2021, July
12-16, 2021, Glasgow, Scotland (Virtual Conference), volume 198 of LIPIcs, pages 93:1–93:13.
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, 2021. doi:10.4230/LIPICS.ICALP.2021.
93.

11 David W Matula and Leland L Beck. Smallest-last ordering and clustering and graph coloring
algorithms. Journal of the ACM (JACM), 30(3):417–427, 1983. doi:10.1145/2402.322385.

12 Jaroslav Nešetřil and Patrice Ossona de Mendez. Sparsity: Graphs, Structures, and Al-
gorithms, volume 28 of Algorithms and Combinatorics. Springer, 2012. doi:10.1007/
978-3-642-27875-4.

13 Andrew Chi-Chin Yao. Probabilistic computations: Toward a unified measure of complexity.
In 18th Annual Symposium on Foundations of Computer Science (sfcs 1977), pages 222–227.
IEEE Computer Society, 1977.

14 Xuding Zhu. Colouring graphs with bounded generalized colouring number. Discrete Mathem-
atics, 309(18):5562–5568, 2009. doi:10.1016/J.DISC.2008.03.024.

https://doi.org/10.1109/FOCS.2019.00089
https://doi.org/10.1016/j.ejc.2012.12.004
https://doi.org/10.1016/j.ejc.2012.12.004
https://doi.org/10.4230/LIPICS.ICALP.2024.60
https://doi.org/10.1145/258533.258627
https://doi.org/10.1002/jgt.3190180605
https://doi.org/10.4230/LIPICS.ICALP.2021.93
https://doi.org/10.4230/LIPICS.ICALP.2021.93
https://doi.org/10.1145/2402.322385
https://doi.org/10.1007/978-3-642-27875-4
https://doi.org/10.1007/978-3-642-27875-4
https://doi.org/10.1016/J.DISC.2008.03.024

Hyperbolic Random Graphs: Clique Number and
Degeneracy with Implications for Colouring
Samuel Baguley #

Hasso Plattner Institute, University of Potsdam, Germany

Yannic Maus #

TU Graz, Austria

Janosch Ruff #

Hasso Plattner Institute, University of Potsdam, Germany

George Skretas #

Hasso Plattner Institute, University of Potsdam, Germany

Abstract
Hyperbolic random graphs inherit many properties that are present in real-world networks. The
hyperbolic geometry imposes a scale-free network with a strong clustering coefficient. Other properties
like a giant component, the small world phenomena and others follow. This motivates the design of
simple algorithms for hyperbolic random graphs.

In this paper we consider threshold hyperbolic random graphs (HRGs). Greedy heuristics are
commonly used in practice as they deliver a good approximations to the optimal solution even though
their theoretical analysis would suggest otherwise. A typical example for HRGs are degeneracy-based
greedy algorithms [Bläsius, Fischbeck; Transactions of Algorithms ’24]. In an attempt to bridge this
theory-practice gap we characterise the parameter of degeneracy yielding a simple approximation
algorithm for colouring HRGs. The approximation ratio of our algorithm ranges from (2/

√
3) to 4/3

depending on the power-law exponent of the model. We complement our findings for the degeneracy
with new insights on the clique number of hyperbolic random graphs. We show that degeneracy and
clique number are substantially different and derive an improved upper bound on the clique number.
Additionally, we show that the core of HRGs does not constitute the largest clique.

Lastly we demonstrate that the degeneracy of the closely related standard model of geometric
inhomogeneous random graphs behaves inherently different compared to the one of hyperbolic
random graphs.

2012 ACM Subject Classification Theory of computation → Random network models

Keywords and phrases hyperbolic random graphs, scale-free networks, power-law graphs, cliques,
degeneracy, vertex colouring, chromatic number

Digital Object Identifier 10.4230/LIPIcs.STACS.2025.13

Related Version Full Version: https://arxiv.org/abs/2410.11549 [1]

Funding This research was partially funded by the German Research Foundation (Deutsche
Forschungsgemeinschaft, DFG) – project number 390859508, and by Austrian Science Fund (FWF)
https://doi.org/10.55776/P36280, https://doi.org/10.55776/I6915, and https://doi.org/
10.55776/DOC183.

Acknowledgements The authors would like to thank Thomas Bläsius for enriching discussions
and Maximilian Katzmann for running experiments indicating a gap between core and maximum
inner-neighbourhood during a research visit of JR in Karlsruhe.

1 Introduction

Many real-world networks have a heterogeneous degree distribution, close to a power-law, as
well as a constant clustering coefficient. The hyperbolic random graph model (HRG) introduced
by Krioukov et. al. [29] combines both properties [19], which has led to considerable interest

© Samuel Baguley, Yannic Maus, Janosch Ruff, and George Skretas;
licensed under Creative Commons License CC-BY 4.0

42nd International Symposium on Theoretical Aspects of Computer Science (STACS 2025).
Editors: Olaf Beyersdorff, Michał Pilipczuk, Elaine Pimentel, and Nguyễn Kim Thắng;
Article No. 13; pp. 13:1–13:20

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:Samuel.Baguley@hpi.de
https://orcid.org/0000-0003-1090-0267
mailto:yannic.maus@tugraz.at
https://orcid.org/0000-0003-4062-6991
mailto:Janosch.Ruff@hpi.de
https://orcid.org/0009-0004-3564-4831
mailto:Georgios.Skretas@hpi.de
https://orcid.org/0000-0003-2514-8004
https://doi.org/10.4230/LIPIcs.STACS.2025.13
https://arxiv.org/abs/2410.11549
https://doi.org/10.55776/P36280
https://doi.org/10.55776/I6915
https://doi.org/10.55776/DOC183
https://doi.org/10.55776/DOC183
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

13:2 Hyperbolic Random Graphs: Clique Number and Degeneracy

in recent years. Various aspects of HRGs have been studied, including clique size [8, 9, 16],
treewidth [10], minimum vertex cover size [4, 5], and diameter [17, 24, 33]. A hyperbolic
random graph is a graph embedded in the hyperbolic plane where pairs of vertices have
an edge if they are close according to the hyperbolic distance. It is generated by randomly
throwing n vertices on a disk of radius R (dependent on n). Since hyperbolic space grows
exponentially, most vertices are of small degree and located close to the boundary of the
disk, while few vertices have large degree and lie close to the centre. This distribution of
vertices leads to the power-law degree distribution of HRGs.

In this paper, we study the vertex colouring problem on HRGs, along with the related
concepts of clique number and degeneracy. The k-colouring problem asks to colour the
vertices of a graph with k colours, while assigning different colours to adjacent vertices. The
chromatic number χ(G) is the minimum number of colours needed to colour a graph in such
a way. For k ≥ 3 the problem is one of the original NP-hard problems [13, 21]. On general
graphs, even loosely approximating the chromatic number is particularly hard [36].

The answer to the colouring problem is closely related to the clique number ω(G) and the
degeneracy of a graph. The clique number is the number of vertices of the largest clique of
the graph and it serves as a natural lower bound to the chromatic number. The degeneracy
κ(G) is the minimum integer k′ for which there exists an ordering of the vertex set of G,
V = (v1, v2, · · · , vn), such that for every index i ∈ [n− 1], vi has at most k′ neighbours with
greater index. Any graph G can be easily coloured with κ(G)+1 colours by iterating through
the vertices in reverse order and simply colouring a vertex with a colour not used by any of
its higher ranked neighbours.

We aim to study these structural parameters that are not only fundamental to the model
but also in general for algorithm design in various models of computation [2, 12, 18]. The
most prominent large clique in an HRG is formed by the vertices in the graph’s core [8].
Simply put, the core emerges among polynomially many vertices of distance at most R/2
from the centre of the disk, which due to the triangle inequality form a clique. We denote
the size of this clique by σ(G). At this point one may wonder whether the core forms the
largest clique of the graph, a statement that we disprove in Proposition 16. Nevertheless we
show that the largest clique can at most be small constant factor larger than the core.

▶ Theorem (Simplified version of Theorem 20). There exists a constant δ > 0 such that for
any threshold HRG G, σ(G) + 1 ≤ ω(G) ≤

√
4/3 − δ · σ(G) holds w.e.h.p.1

This upper bound improves on prior work [8], which showed that there exists some constant
c > 1 such that ω(G) ≤ c · σ(G) holds w.e.h.p., but without providing any upper bound on c.

We can now see that the core and clique are not the same. Nonetheless, (i) this theorem
shows that the largest clique size and the core size are closely related, and (ii) the core of
HRGs is a very well understood object, whereas the largest clique is not. Thus the natural
approach to bound the degeneracy is to use the core. We show the following theorem.

▶ Theorem (Simplified version of Theorem 9). There exist constants δ1, δ2 > 0 such that for
any threshold HRG G, (1 + δ1) · σ(G) ≤ κ(G) ≤ (4/3 − δ2) · σ(G) holds w.e.h.p.

The main surprise of this theorem is that the degeneracy is bounded away from the coresize
by a constant factor. As the chromatic number is lower bounded by the core size, the upper
bound on the degeneracy in this theorem implies a simple algorithm colouring with at most

1 An event holds with extremely high probability (w.e.h.p.), if for every c > 1, there exists an n0 such that
for every n ≥ n0 the event holds with probability at least 1 − n−c.

S. Baguley, Y. Maus, J. Ruff, and G. Skretas 13:3

(4/3 − δ2)χ(G) colours. The approximation guarantee of this algorithm ranges from 2/
√

3 to
4/3 depending on further model parameters, see Section 2 and Theorem 11 for details. In
any case, this improves on the previously best approximation ratio of 2 [7, Lemma 7]. The
algorithm iteratively removes vertices of degree at most (4/3 − δ2)σ(G) − 1 and then colours
them in the reverse order. The next thing one would hope is to be able colour the graph with
ω(G) colours using the same process. In [3], the authors conducted experiments where they
were iteratively removing the vertex with the smallest degree of the graph, up to vertices
with residual degree equal to ω(G). In their findings, this process did not remove every
vertex, implying ω(G) < κ(G) for their generated graphs. We substantiate their findings
by providing a rigorous proof demonstrating that the clique number is, in fact, a constant
factor smaller than the degeneracy.

▶ Theorem (Simplified version of Theorem 13). There exists a constant ε > 0 such that for
any threshold HRG G, ω(G) ≤ (1 − ε) · κ(G) holds w.e.h.p.

Our final contribution is to study the degeneracy of geometric inhomogeneous random
graphs (GIRGs) [23], a sibling to HRGs. The GIRGs also combine heterogeneity and high
clustering. For most properties GIRGs and HRGs exhibit the same behaviour. Perhaps the
first paper to find a difference between them is [9], where the authors show that the minimum
number of maximal cliques in the two models differ. We show a significant discrepancy for
the degeneracy of GIRGs compared to that of HRGs, see Figure 1 and Corollary 24.

Outline. See Figure 1 for a table with our results, as well as a plot comparing the bounds of
our theorems for various model parameters. In Section 1.1 we provide a detailed discussion of
our results and techniques. Section 3 contains bounds on the degeneracy of HRGs (Theorem 9).
In Section 4, we show the gap between clique number and degeneracy (Theorem 13), as well
as bounds on the clique number (Theorem 20). Finally, Section 5 contains results about
the degeneracy of GIRGs. Statements where proofs or details are omitted due to space
constraints can be found in the full version [1].

1.1 Discussion of our Results and Techniques
HRGs have a power-law degree distribution [19, 34], that is, the probability that a vertex has
degree k is given by ∼ k−(2α+1) . The model parameter α ∈ (1/2, 1) controls the power-law
exponent and all our results, particularly the size of the aforementioned constant factor gap
depends on the choice of α. For the ease of presentation this overview largely omits this
dependence, but the summary of our results in Figure 1 plots it in detail.

Upper bound on degeneracy (Theorem 9). One consequence of generating a graph in
hyperbolic space is that vertices tend to have fewer neighbours with increasing radius, i.e.,
the expected number of neighbours of a vertex decreases with the distance from the centre
of the hyperbolic disc. This produces the power-law degree distribution that is valuable
in modelling real-world networks. It also leads to a simple approach for upper bounding
degeneracy: instead of removing vertices ordered by (increasing) degree, we remove them by
(decreasing) radius. If k is such that each vertex has at most k neighbours of smaller radius,
then k is an upper bound on the degeneracy.

The notion governing this approach is the inner-neighbourhood of a vertex, see Figure 2.
The inner-neighbourhood of a vertex u with radius r, denoted Γ(u), is the set of vertices of
distance at most R from u, i.e., they are neighbours of u, and with radius at most r, i.e.,
they are closer to the centre of the disc than u. The size |Γ(u)| of the inner-neighbourhood

STACS 2025

13:4 Hyperbolic Random Graphs: Clique Number and Degeneracy

Scale-free networks

HRG GIRG

σ(G) = (1± o(1))e−αC/2n1−α

κ(G) ≤

κ(G) ≥

ω(G) ≤ ((4/3)α/2 + o(1))σ(G)

((4/3)α + o(1))σ(G)

(4−o(1))
π

(
2(1−α)

π
2 −α(π−2)

) 1−α
2α−1

σ(G) (2− o(1))(2(1− α))
1−α
2α−1σ(G)

(2 + o(1))(2(1− α))
1−α
2α−1σ(G)

(1± o(1))λ−αn1−α

ω(G) ≥ σ(G)

κ(G)

σ(G) + 1

GIR
G κ

(G
)

ω(G) lower bound

α

σ
(G

)

HRG
κ(G)

lower b
ound

HRG
κ(G)

upper b
ound

HRG ω(G)

upper bound

Figure 1 Results on the degeneracy κ(G) and the size of the largest clique ω(G) in hyperbolic
random graphs (HRG) and geometric inhomogeneous random graphs (GIRG). The bounds hold
w.e.h.p. and are stated in comparison to the core size σ(G). Each curve represents the multiplicative
factor in front of σ(G) for κ(G) and ω(G) (y-axis) depending on the parameter α ∈ (1/2, 1) (x-axis).
Prior work is listed with white background, whereas our results are listed with blue background.

is called the inner-degree of u. The expected value of |Γ(u)| scales with the area of u’s
inner-ball I(r) = Bu(R) ∩ B0(r). More precisely, E [|Γ(u)|] = (n− 1) ·µ(I(r)). See Figure 2 a
for a visual representation. The vertex of largest inner-degree is denoted u∗; the choice of u∗

and the value of |Γ(u∗)| depend on the random distribution of the vertices.
If vertices are removed from outside to inside, then each vertex at the time of its removal

will have degree less or equal to the inner-degree of u∗. To bound the degeneracy, we derive
a probabilistic upper bound for |Γ(u∗)|. We do this by finding the radius that maximises
µ(I(r)), which upper bounds E [|Γ(u)|] (for every vertex u). Since |Γ(u)| is concentrated
we can apply a Chernoff and a union bound to obtain a high probability upper bound for
|Γ(u∗)|. Despite the simplicity of the inner-neighbourhood, we elaborate on this key concept
as it is not only crucial to our upper bound on degeneracy but also for most of our other
results discussed later on.

Lower bound on degeneracy (Theorem 9). In Lemma 6 we show that the maximum
inner-degree also produces a lower bound on the degeneracy κ(G), in the sense that κ(G) ≥
(1 − o(1))|Γ(u∗)| w.e.h.p. This yields asymptotically tight bounds on κ(G). We prove the
lower bound of κ(G) by considering the subgraph G′ induced by the vertices that have smaller
radius than u∗ (see Figure 2 b). Note that G′ contains vertices that are not neighbours of
u∗. We show that every vertex u in G′ has, w.e.h.p., at least (1 − o(1))|Γ(u∗)| neighbours in
G′; this statement uses the choice of u∗ and is not true if u was an arbitrary vertex. Now, in
any ordering of the vertices of G′, the first vertex has at least (1 − o(1))|Γ(u∗)| neighbours of
greater index, implying (1 − o(1))|Γ(u∗)|≤ κ(G′) ≤ κ(G). While this provides a lower bound
that asymptotically matches our upper bound, a lower order gap remains.

Gap between clique number and degeneracy (Theorem 13). The most immediate lower
bound for degeneracy is the clique number [2], because in every ordering of the vertices
of G, the vertex of the clique with the lowest index has at least ω(G) − 1 neighbours of

S. Baguley, Y. Maus, J. Ruff, and G. Skretas 13:5

Iu
R

r

u

DR

0
Γ(u∗)

r∗

DR

B0(r∗)

(a) (b)

u∗

B0(r)

0

Figure 2 Illustration of the inner-neighbourhood. (a) The pink area is the ball B0(r). The hatched
area Iu = Bu(R) ∩ B0(r) is the inner-ball of u. The vertices V ∩ Iu form the inner-neighbourhood
Γ(u). (b) Sketch of proof of Lemma 6. Vertex u∗ is the vertex with the largest inner-degree. Each
vertex v ∈ U = V ∩B0(r∗) has at least nearly as many neighbours within B0(r∗) as |Γ(u∗)| (w.e.h.p.).

higher index. We prove that the lower bounds on the degeneracy that are derived from the
clique number are strictly worse than the bounds discussed above obtained via analysing the
inner-degree. Our approach to show this is the following: we take an arbitrary clique K and
the vertex u with the largest radius in K. Let G′′ be the subgraph induced by Γ(u). Next,
we partition G′′ intro three sets of vertices, each containing at least a constant fraction of
the vertices of G′′ w.e.h.p. See Figure 3 b for an illustration of this partition. Lastly, we use
purely geometric arguments to show that K cannot contain vertices from all three sets. The
gap then follows as the left out set contains a constant fraction of u’s inner neighbourhood.
This gap between ω(G) and κ(G) makes approaches for computing the clique number via
degeneracy, like that of Walteros and Buchanan [35], unsuitable for HRGs.

Clique number and the core (Theorem 20). The upper bound on the clique number is
proven via a geometric approach. Let u, v, w be any three vertices. If the vertices are far
apart they cannot be contained in a clique. Otherwise their pairwise distance is at most R.
Using the hyperbolic of version Jung’s theorem [20, 14, 15] implies that they are contained
in a ball B of small radius and we show that B also has a small area. Hence the expected
number of vertices in B is small as well. As this expectation is well concentrated whenever the
area is significantly large, this bound holds with extremely high probability when introducing
lower order deviations from the expectation. Via a union bound over all possible

(
n
3
)

triples
of vertices we rule out that any clique contained in such a covering ball is large. The main
claim now follows because any clique has to be contained in one of these coverings balls. The
question of whether ω(G)/σ(G) → 1 as n → ∞ remains open.

2 Preliminaries

Hyperbolic Random Graphs. We follow the formalisation of hyperbolic random graphs
introduced in [34], which is known as the native representation. We denote by H2 =
[0,∞) × [0, 2π) the hyperbolic plane in the polar coordinate system, where a point x ∈ H2

is parametrised by a radius r(x) and an angle φ(x). We equip H2 with a metric dh(x, y)
characterised by

STACS 2025

13:6 Hyperbolic Random Graphs: Clique Number and Degeneracy

cosh(dh(x, y)) = cosh(r(x)) cosh(r(y)) − sinh(r(y)) sinh(r(x)) cos(φ(x) − φ(y)). (1)

This metric is what gives H2 a hyperbolic geometry, of curvature -1, as opposed to the
Euclidean metric. We equip H2 with the topology induced by dh.

The geometric space of most importance in this work is the bounded disk in H2 defined
by DR = [0, R] × [0, 2π), where R = 2 log(n) + C with C ∈ Θ(1). We refer to point (0, 0)
as the centre of this disk. The space DR inherits the topology of H2, and from now on we
shall only consider subsets of this space – thus, for example, a ball around a point x ∈ DR is
defined by the set Bx(ε) = {y ∈ DR : dh(x, y) ≤ ε} ⊆ DR.

We now introduce a probability measure µ on DR, which is parametrised by the model
parameter α ∈ (1/2, 1), and was first defined by Papadopoulos et. al. [34]. For measurable
S ⊆ DR, define

µ(S) =
∫

S

ρ(x) dx, ρ(x) = α sinh(αx)
2π(cosh(αR) − 1) ,

where ρ is the density of µ with respect to the Lebesgue measure on DR. This measure differs
from the uniform probability measure on DR in that it puts more mass at the centre of the
disk; both measures coincide at α = 1. The benefit of µ lies in the properties it induces in
our central object of study, the hyperbolic random graph.

Threshold hyperbolic random graph (HRG). A (threshold) hyperbolic random graph or
HRG is a pair G = (V,E) defined by the following procedure. First, n vertices are sampled
independently at random in DR according to µ. Then any two vertices u, v ∈ V are connected
by an edge if and only if their distance dh(u, v) is at most R. We write G ∼ G(n, α,C) to
denote a graph generated in this way. A vertex u ∈ V is identified by its point coordinates
in H2 and we write V ∩ A to denote the set of vertices that are located in an area A ⊆ DR.

The use of µ to distribute vertices in DR has the effect of giving G a power-law degree
distribution, as was shown in [19, 34]. It is sometimes convenient to characterise connection
of vertices in terms of their angular distance, and to that end we define

θR(r1, r2) = arccos
(

cosh(r1) cosh(r2) − cosh(R)
sinh(r1 sinh(r2)

)
,

which per (1) yields the following observation.

▶ Observation 1. Two vertices u and v are connected if and only if their angular distance is
less than θR(r(u), r(v)).

We also make use of the following expression of the distribution of the radius of a vertex u.

P (r(u) ≤ r) = µ (B0(r)) =
∫ r

0

∫ π

−π

ρ(x) dθ dx = cosh(αr) − 1
cosh(αR) − 1 = (1 − o(1))e−α(R−r) (2)

We briefly note that a variant of HRGs exists in which vertices are not connected
purely according to whether their distance is below a threshold, but rather with probability
p(u, v) = (1 + exp

(1
2T (dh(u, v) −R)

)
)−1 determined by both distance and a “temperature”

parameter T (see e.g. [30, §3.1]).

S. Baguley, Y. Maus, J. Ruff, and G. Skretas 13:7

Degeneracy, clique number, chromatic number and core. For a graph G = (V,E), the
degeneracy κ(G) is the minimum integer k for which there exists an ordering of the vertex set
of G, V = (v1, v2, · · · , vn), such that for every index i ∈ [n− 1], vi has at most k neighbours
with greater index. The clique number ω(G) is the size of the largest clique of G. The
chromatic number χ(G) is the smallest number of colours required so that a conflict-free
vertex colouring is possible for G. The core of a hyperbolic random graph is the set of
vertices with radius at most R/2 and we denote its size by σ(G). Since for any points
u, v ∈ B0(R/2) the distance is at most dh(u, v) ≤ R, the core forms a clique. Finally, since
the core is a clique, any vertex of a clique needs a different colour in a conflict-free colouring,
and χ(G) ≤ κ(G) + 1 (see e.g. [31, Lemma 4]), we have the following chain of inequalities.

▶ Observation 2. Let G ∼ G(n, α,C) be a threshold HRG. Then,

σ(G) ≤ ω(G) ≤ χ(G) ≤ κ(G) + 1.

Concentration bounds. We use the following Chernoff bounds [32, Theorem 4.4].

▶ Theorem 3 (Chernoff bound). For i ∈ [k], let Xi ∈ {0, 1} be independent random variables
and X =

∑
i Xi. Then for ε ∈ (0, 1),

P (X ≥ (1 + ε)E[X]) ≤ e−ε2·E[X]/3 and P (X ≤ (1 − ε)E[X]) ≤ e−ε2·E[X]/2.

3 Degeneracy of Hyperbolic Random Graphs

A tool we make use of several times is the inner-ball of a point x ∈ DR, defined by
Ix = Bx(R) ∩ B0(r(x)). The inner-ball of a vertex is the inner-ball of the point using the
vertex’ coordinates. The inner-neighbourhood of a vertex u is the set of vertices (excluding
u) contained in its inner-ball, that is, the neighbours of u that have a smaller radius than u

(see Figure 2 a), and is denoted Γ(u).
We upper bound the degeneracy κ(G) via the inner-neighbourhood by using the following

informal process. Consider a graph G and order its vertices (v1, v2, · · · , vn) by decreasing
radius, so r(vi) ≥ r(vi+1), and iteratively remove vertices from G one-by-one, from lower to
higher index. Note that the set of neighbours of vi that have greater index than i coincide
with Γ(vi). This implies that the degree of each vertex vi at the time of its removal is |Γ(vi)|.
Let u∗ be the vertex vk that maximises |Γ(vk)|. As the largest degree of a vertex at the time
of its removal is given by |Γ(u∗)|, we get the following upper bound for the degeneracy.

▶ Observation 4. Let G ∼ G(n, α,C) be a threshold HRG and let u∗ be the vertex of G with
the largest inner-degree in G. Then κ(G) ≤ |Γ(u∗)|.

We will now show that the largest inner-degree does not only yield an immediate upper
bound on the degeneracy, but also a lower bound. Informally, this lower bound follows from
the following argument. Order the vertices of the graph in descending order of their radius,
that is, (v1, v2, . . . , vn) such that r(vi) ≥ r(vi+1). For i ∈ [n], let Gi = G\{v1, v2, . . . , vi}. Let
vk be the node with the maximum inner neighbourhood in G. We show (with a probabilistic
guarantee) that the graph Gk has minimum degree (1 − o(1))|Γ(vk)|. Before we make this
formal, we introduce a slightly modified version of [19, Lemma 3.3], that implies the following:
the closer a vertex is to the origin, the more neighbours it has in expectation. This can be
derived via the fact that the angle θR(r, x) is monotonically decreasing in x.

▶ Corollary 5. Let r, s, t ∈ [0, R) with s < t. Then µ(Bs(R) ∩ B0(r)) ≥ µ(Bt(R) ∩ B0(r)).

STACS 2025

13:8 Hyperbolic Random Graphs: Clique Number and Degeneracy

Corollary 5 tells us that any vertex with radius at most r has in expectation at least
as many neighbours up to radius r, as the expected inner-degree of a vertex with radius
exactly r. In order to derive a high-probability bound on |Γ(u∗)| it now suffices to show
concentration around the expectation of all considered neighbourhoods.

Since the size of every clique K is upper bounded by the inner-degree of the vertex in
u ∈ K that has the largest radius, ω(G) is a lower bound for the maximum inner-degree. We
can now lower bound the degeneracy κ(G) based on the largest inner-degree. Note that, in
contrast to the upper bound of Observation 4, the lower bound is not deterministic.

▶ Lemma 6. Let G ∼ G(n, α,C) be a threshold HRG. Then κ(G) ≥ (1 − o(1))|Γ(u∗)| w.e.h.p.

Proof. For any subgraph H ⊆ G, it is clear that κ(G) ≥ minv∈V (H) deg|H(v), where
deg|H(v) =

∑
w∈V \{v} 1{{v, w} ∈ E(H)}. We let H be the (random) subgraph of G created

by restricting G to vertices that land in B0(r), that is, that have radius at most r, and
keeping the same edges. Then for any v ∈ V ,

E[deg|H(v)|r(v)] =
∑

w∈V \{v}

P(w ∈ B0(r) ∩ Br(v)(R) | r(v))1{r(v) ≤ r}

= (n− 1)µ(B0(r) ∩ Br(v)(R))1{r(v) ≤ r}
≥ (n− 1)µ(B0(r) ∩ Br(R))1{r(v) ≤ r}. (Corollary 5)

We write γ := (n − 1)µ(B0(r) ∩ Br(R)). Since deg|H(v) is a sum of Bernoulli random
variables that are all independent under P(· | r(v)), a Chernoff bound (Theorem 3) gives

P
(

min
v∈V (H)

deg|H(v) < (1 − ε)γ
)

= P
(⋃

v∈V

{deg|H(v) < (1 − ε)γ, r(v) ≤ r}
)

≤ nP(deg|H(v) < (1 − ε)γ, r(v) ≤ r) (Union bound)
= nE [P(deg|H(v) < (1 − ε)γ | r(v))1{r(v) ≤ r}] (Tower rule)

≤ nE
[
e−ε2E[deg|H (v)|r(v)]/2 1{r(v) ≤ r}

]
(Chernoff bound)

≤ ne−γε2/2P(r(v) ≤ r) ≤ ne−γε2/2.

Taking r to be the argmax of γ yields γ(r) ≥ E[Γ(u∗)]. By Observation 2 and applying (2)
at R/2 we have that γ(r) ≥ E[Γ(u∗)] ≥ E[σ(G)] ∈ nΩ(1). Thus, choosing ε = 1/log(n), we
obtain for any constant c as long as n is large enough

P(κ(G) < (1 − ε)|Γ(u∗)|) ≤ P(κ(G) < (1 − ε)γ(r)) ≤ ne−γ(r)ε2/2 ≤ ne−nΩ(1)/log(n) ≤ n1−c,

that is, κ(G) ≥ (1 − o(1))|Γ(u∗)| w.e.h.p. ◀

In the rest of this section we derive bounds for the largest inner-degree on HRGs that
hold w.e.h.p. which, by Observation 4 and Lemma 6, translate into results for the degeneracy.
Since a vertex v belongs to the inner-neighbourhood of a vertex u, if and only if it resides
in the inner-ball of u, we can use the measure of an inner-ball Iu to bound the maximum
inner-degree of a graph. Moreover, the measure of the inner-ball is invariant under rotation
around the origin, which is why we write µ (I(r)) instead of µ (Iu) for r = r(u). We sum up
our results for the area of the inner-ball in the following technical lemma.

S. Baguley, Y. Maus, J. Ruff, and G. Skretas 13:9

▶ Lemma 7 (Volume of the inner-ball). Let ∆ ∈ Θ(1) and let u ∈ DR with radius r = R/2+∆.
Then, depending on ∆, there exist constants γ, η, such that

µ(I(r)) ≥
(
1 + Θ

(
e−αR

)) αe−αr

(α− 1/2)

(
2
π
e

1
2 (2α−1)(2r−R) −

(
2
π

− (α− 1/2)
α

))
and

µ(I(r)) ≤
(
1 + Θ

(
e−αR

)) αe−αr

α− 1/2

(
γe

1
2 (2α−1)(2r−R) − η

)
,

where

γ, η =

1, 1
2α for ∆ ≥ 0,

4
3

√
3 ,

1
2α −

(
1 − 4

3
√

3

) (4
3
)(α−1/2) for ∆ ≥ log(

√
4/3),

1√
2 ,

1
2α −

(
1 − 4

3
√

3

) (4
3
)(α−1/2) −

(
4

3
√

3 − 1√
2

)
2(α−1/2) for ∆ ≥ log(

√
2),

2
3 ,

1
2α −

(
1 − 4

3
√

3

) (4
3
)(α−1/2) −

(
4

3
√

3 − 1√
2

)
2(α−1/2) −

(
1√
2 − 2

3

)
2(2α−1) for ∆ ≥ log(2).

▶ Lemma 8. Let r∗ be the radial coordinate of the point in DR that maximises the measure
of the inner-ball. Then r∗ = R/2 + log

(
αη

γ(1−α)

)
/(2α− 1).

Proof. Using the expression of µ(I(r)) in Lemma 7,

d
drµ(I(r)) =

(
1 + Θ

(
e−αR

))(ηα2e−αr

α− 1/2 − γαe−αr

α− 1/2

(
(1 − α)e 1

2 (2α−1)(2r−R)
))

.

Setting this equal to 0 and solving for r yields r∗ = R/2 + log(αη
γ(1−α))/(2α− 1). ◀

We use Lemma 7 to upper and lower bound the degeneracy. The lower bound tells us
that there exists a constant δα > 0 such that κ(G) ≥ (1 + δα)σ(G) w.e.h.p. The constant δα

is increasing with increasing 1/2 < α < 1, see Figure 1.

▶ Theorem 9 (Bounds on the degeneracy). Let G ∼ G(n, α,C) be a threshold HRG. Then
w.e.h.p. its degeneracy κ(G) satisfies

(4 − o(1))
π

(
2 (1 − α)

π
2 − α (π − 2)

) 1−α
2α−1

σ(G) ≤ κ(G) ≤ ((4/3)α + o(1))σ(G).

Proof sketch. The upper bound is obtained by using r∗ as stated in Lemma 8 for the upper
bound of the inner-ball with (n− 1)µ(I(r∗)), and using a Chernoff bound along with a union
bound which gives an upper bound for |Γ(u∗)| w.e.h.p. Observation 4 then yields the upper
bound for the degeneracy. For the lower bound, we first show that there exists a vertex with
a radius r̃ close in value to r∗ w.e.h.p. Then (1 − o(1))(n− 1)µ(I(r̃)) lower bounds |Γ(u∗)|
w.e.h.p. This gives a lower bound for the degeneracy, due to Lemma 6. ◀

Applying Observation 2 and Theorem 9, the following is immediate.

▶ Corollary 10 (Bounds on the chromatic number). Let G ∼ G(n, α,C) be a threshold HRG.
Then w.e.h.p. its chromatic number is σ(G) ≤ χ(G) ≤ ((4/3)α + o(1))σ(G).

Our structural results directly produce algorithmic applications. The small gap between
degeneracy and core translates into an efficient approximation algorithm to colour a HRG.

▶ Theorem 11. Let G ∼ G(n, α,C) be a threshold HRG. Then an approximate vertex
colouring of G can be computed in time O(n) with approximation ratio ((4/3)α + o(1))
w.e.h.p.

STACS 2025

13:10 Hyperbolic Random Graphs: Clique Number and Degeneracy

Proof sketch. Using a smallest-last vertex ordering [31] the number of colours required is
upper-bounded by κ(G). Computing the smallest-last vertex ordering, and then using the
ordering to colour the graph, both takes linear as the giant component is sparse w.e.h.p. by
[25, Corollary 17]. The approximation ratio is achieved by comparing the lower bound of the
chromatic number in Corollary 10 to the upper bound of the degeneracy in Theorem 9. ◀

4 Clique Number of Hyperbolic Random Graphs

Recall that for any graph G, the clique number ω(G), chromatic number χ(G), and degeneracy
κ(G) are related via the inequalities ω(G) ≤ χ(G) ≤ κ(G)+1. For this reason we are interested
in the relationship between clique number and degeneracy for hyperbolic random graphs. In
Section 4.1 we show that the two differ and that for HRGs, the degeneracy is strictly larger
than the clique number by a constant multiplicative constant. In Section 4.2 we give new
insights about where in the hyperbolic disk the largest clique is formed. We then conclude
the section by providing a new upper bound for the clique number in Section 4.3 that states
a leading constant in front of the size of the core, and that is increasing in α.

4.1 The gap between Clique Number and Degeneracy
Because of the centralising effect of hyperbolic geometry, one might hope to show that the
clique contained in the core of the disk is the largest, and that ω(G) = (1 − o(1))κ(G). This
would achieve two things on HRGs: first, it would imply a tight bound for the chromatic
number χ(G), sandwiching it between clique number and degeneracy. Moreover, it would also
imply a linear time (1 + o(1))-approximation algorithm for the two NP-complete problems
clique number and chromatic number using a smallest-last vertex ordering (see [31]).

In this section we disprove these claims. We show that there exists a constant gap between
clique number and degeneracy; this is the content of Theorem 13. Before embarking on
the details of the proof, we first sketch its idea. For any clique K, its size is bounded by
the inner-degree |Γ(u)|, where u is the vertex with largest radius among the vertices of K.
For r(u) ≤ R/2 + o(1) and r(u) ∈ R/2 + ω(1), |Γ(u)| is already smaller by a multiplicative
constant than the lower bound for the degeneracy given in Theorem 9. What remains is
to extend the result to r(u) ∈ R/2 + Θ(1), which requires more intricate arguments and is
addressed in the following lemma.

▶ Lemma 12. Let G ∼ G(n, α,C) be a threshold HRG, let ∆ ∈ Θ(1) and let K be any clique
where u ∈ K is the vertex with largest radius rK = R/2 + ∆. Then w.e.h.p. there exists a
constant ε ∈ (0, 1) such that |K|≤ (1 − ε)|Γ(u)|.

Proof. Let G′ be the inner-neighbourhood of u, i.e., the induced subgraph G′ = G[Γ(u)].
Then K ⊆ V (G′), and thus ω(G′) ≥ |K|. We show that ω(G′) < (1 − ε)|Γ(u)| w.e.h.p.

We accomplish this by proving that there exists a colouring for G′ with (1 − ε)|V (G′)|=
(1 − ε)|Γ(u)| many colours. This implies an upper bound for the chromatic number χ(G′),
which also serves as an upper bound for ω(G′). We do this by partitioning the inner-
neighbourhood Iu into three disjoint sub-regions S0 ∪ S1 ∪ S2 such that no vertex in S1 is
adjacent to any vertex in S2. Thus, S0 separates S1 from S2 and we can colour the set of
vertices V ∩ S1 with the same colours as V ∩ S2. Thus if min{|V ∩ S1|, |V ∩ S2|} ≥ ε|Γ(u)|
w.e.h.p., our desired statement will be proven.

To find such a separator S0, we follow the lines drawn by Bläsius et. al. [10] where
hypercycles for hyperbolic random graphs were introduced (see Figure 3 a). A hypercycle
Hφ (of radius R/2) is defined as follows: let aφ denote the line whose points have angle φ

S. Baguley, Y. Maus, J. Ruff, and G. Skretas 13:11

(a)

w

v

R/2

R/2

R/2

DR

D1

D2

Hϕ

aϕ

(b)

oo

S2

DR

S2

S1

0

φ(x)

S0

rK
u

x

θR (rK , x)

θR(x,x)
2

Figure 3 Illustration of a separator. (a) The line aφ partitions disk DR into two halfdisks D1

(blue) and D2 (pink). The hypercycle Hφ (hatched area) is defined by the line aφ. Points located in
different halfdisks and outside the hatched area have distance at least R. (b) The separator (hatched
area) separates the inner-neighbourhood (grey area) of a vertex u of radius rK into three sub-areas
S0, S1 and S2. Any vertex located in S1 has no edge to a vertex in S2.

and φ + π. Then Hφ := {u ∈ DR : dh(u, aφ) ≤ R/2}, i.e. the set of points with distance
at most R/2 to line aφ. Consider the point u = (rK , φ) and let S0 := Iu ∩ Hφ. To define
S1 and S2 separate DR into the two disjoint halfdisks D1 = {x ∈ DR : φ(x) − φ ≤ π} and
D2 = {x ∈ DR : φ(x) − φ ≥ π} (see Figure 3 a). Then we define S1 := (Iu ∩ D1) \ Hφ and
symmetrically S2 := (Iu ∩ D2) \ Hφ.

We observe that any point w ∈ S1 has distance at least R to any point v ∈ S2. This can
be shown for example by observing that the geodesic between w and v must pass through
some point x ∈ aφ, and so dh(w, v) = dh(w, x) + dh(x, v) ≥ dh(w, aφ) + dh(aφ, v) > R. This
ensures our objective of separating the two regions via S0.

Next, we show that there exists a constant ε > 0 small enough, such that µ(S1) = µ(S2) ≥
εn−α (a sketch of the idea is given in Figure 3 b). Setting ϕ(x) = max(0, θR (rK , x) −
θR(x, x)/2) we derive by symmetry

µ(S1) = µ(S2) =
∫ r

R/2

∫ ϕ(x)

0
ρ(x) dϕ dx =

∫ R/2+∆

R/2
ϕ(x)ρ(x) dx.

Now we choose another constant ∆′ < ∆ that fulfills 2θR(R/2 + ∆, R/2 + ∆′) − θR(R/2 +
∆′, R/2 + ∆′) =: c ∈ Θ(1). This is possible because ∆ ∈ Ω(1). By our choice of ∆′ we then
obtain

µ(S1) ≥
∫ R/2+∆

R/2+∆′
ϕ(x)ρ(x) dx =

∫ R/2+∆

R/2+∆′

(
θR(R/2 + ∆, x) − θR(x, x)

2

)
ρ(x) dx

≥ c

∫ R/2+∆

R/2+∆′
ρ(x) dx = c(cosh(α(R/2 + ∆)) − cosh(α(R/2 + ∆′)))

cosh(αR) − 1 ∈ Ω(n−α),

where the last line follows since θR(·, ·) is monotonically decreasing and since ρ(x) =
α sinh(αx)

cosh(αR)−1 , |∆ − ∆′|> 0 and R = 2 log(n) + C. Therefore µ(S1) ∈ Ω(E [|Γ(u)|] /n) w.e.h.p.,
since

lim inf
n→∞

nµ(S1)
E [|Γ(u)|] = lim inf

n→∞

µ(S1)
n−α

n1−α

E [|Γ(u)|] > 0,

STACS 2025

13:12 Hyperbolic Random Graphs: Clique Number and Degeneracy

where E [|Γ(u)|] ≤ nµ(B0(R/2 + ∆)) ∈ O(n1−α) by Equation (2), because ∆ ∈ O(1). Thus
there exists some ε > 0 for which, for n large enough,

E [|V ∩ S2|] = E [|V ∩ S1|] = nµ(S1) ≥ (1 − 1/log(n))−2εE [|Γ(u)|] ;

since |V ∩ S1|≤ |Γ(u)| a.s. and is strictly smaller with positive probability, then ε < 1.
Using a Chernoff bound for both |V ∩ S1| and |V ∩ S2|, we obtain that neither random

variable is smaller than (1−1/log(n))E [|V ∩ S1|] ≥ (1−1/log(n))−1εE [|Γ(u)|] w.e.h.p. On the
other hand, another application of a Chernoff bound reveals |Γ(u)|≤ (1 + 1/log(n))E [|Γ(u)|]
w.e.h.p., since for r(u) ∈ R/2 + Θ(1) we have E [|Γ(u)|] ∈ Θ(n(1−α)) using Lemma 7. A
union bound then shows that w.e.h.p., min{|V ∩ S1|, |V ∩ S2|} ≥ εE[|Γ(u)|]

1−1/log(n) ≥ ε|Γ(u)|. As
argued above, a naïve colouring that colours the vertices of S1 and S2 with the same set of
colours yields the upper bound. ◀

▶ Theorem 13 (Clique-degeneracy-gap). Let G ∼ G(n, α,C) be a threshold HRG. Then
w.e.h.p. there exists a constant ε ∈ (0, 1) such that κ(G)/ω(G) > 1 + ε.

Proof. Let K be the largest clique of G, and let u be the vertex of K with maximal radius
rK := r(u). We assume the following cases for rK which cover all possibilities:
Case 1 [rK ∈ R/2 + ω(1)]: Observe that K ⊆ V ∩ I (rK). Hence, |K|≤ |V ∩ I (rK) | and

µ (I (rK)) ≤
(
1 + Θ

(
e−αR

)) αe−αrK

α− 1/2

(
γe

1
2 (2α−1)(2rK −R) − η

)
∈ Θ(1)n−αe−(1−α)ω(1),

by Lemma 7 since γ and η are both constants. Taking the expectation and using a Chernoff
bound we have |K|∈ o(n1−α) w.e.h.p. Recall that κ(G) > (1 + δ)e−αC/2n1−α w.e.h.p. by
Theorem 9. It follows κ(G)/|K|∈ ω(1) w.e.h.p.
Case 2 [rK ≤ R/2 + o(1)]: Observe that the size of any clique K ⊆ V ∩ B0(r) is upper
bounded by X = |V ∩ B0(r)|. By Equation (2) we have µ(B0(rK)) ≤ (1 + o(1))n−αe−αC/2.
Hence, we get E[X] ≤ (1 + o(1))n1−αe−αC/2. Since X is a binomial random variable we
can apply a Chernoff bound, which yields |K|≤ X ≤ (1 + o(1))n1−αe−αC/2 w.e.h.p. Taking
ε = δ/(1 + δ) with δ as in Theorem 9, we have

|K|
1 − ε

≤ (1 + o(1))(1 + δ)n1−αe−αC/2 < (1 + o(1))κ(G) w.e.h.p.

Case 3 [rK ∈ R/2 + Θ(1)]: Let ξ ∈ o(1). Using Lemmas 6 and 12, we get w.e.h.p. that

ω(G) = |K|≤ 1 − ε

1 − ξ
|Γ(u)|≤ 1 − ε

1 − ξ
|Γ(u∗)|≤ (1 − ε)κ(G),

for an adequate choice of ξ. ◀

▶ Corollary 14. Let G ∼ G(n, α,C) be a threshold HRG. Then there exists a constant
ε ∈ (0, 1) such that w.e.h.p., ω(G) ≤ (4(1 − ε)/3)ασ(G).

Proof. This follows from Theorems 9 and 13. ◀

4.2 Cliques larger than the Core
In this section, we show that there exist a super-constant number of unique cliques that
contain the core, but are strictly larger than it. The overall argument goes as follows. We
consider a set of vertices with radial coordinates slightly outside the core. We show that any
vertex of this set has a constant probability to be adjacent to all vertices belonging to the
core, and thus induces a clique that is larger than the core itself. To this end, the following
lemma concerned about points close to the core proves useful.

S. Baguley, Y. Maus, J. Ruff, and G. Skretas 13:13

R/2

DR

B0(R/2)

Ai Ak

A1

A2

(a) (b)

ψ
ψ
ψ

ψ

A

0

ξ

φF
u 0

u

DR

R
/2

+
ξ

0
φF

u

B0(R/2 + ξ)

R/2 + ξ

u

Figure 4 Sketch of the proof idea for Proposition 16. (a) Illustration of the set of points A (blue)
of width ξ slightly outside of the core (pink). The intersection with a sector of angle ψ and the
band A forms a box Ai that contains a vertex w.e.h.p. The number of non-intersecting boxes is
k = 2π/ψ ∈ ω(log(n)). (b) A vertex u located on the boundary of the area A. The hatched area Fu

with angle at most ϕ is the corresponding forbidden area of u. Any point in Fu has distance at least
R to u. An adequate choice for the width ξ yields that this area is empty with constant probability.

▶ Lemma 15. Let k ∈ N \ {0} and ξk = log(1 + logk(n)
n1−α) ∈ o(1). Consider two points with

radial coordinates r = R/2 + ξk and x = R/2. Then θR(r, x) ≥ π − 2
√

logk(n)nα−1.

Lemma 15 lower bounds the angle distance such that two points have distance at most R.

▶ Proposition 16. Let G ∼ G(n, α,C) be a threshold HRG. Then w.e.h.p. there exist
ω(log(n)) cliques that are larger than σ(G).

Proof. For the proof we consider the Poissonized version of the HRG model (see e.g. [26, 27]).
The upshot of this model is that it allows us to analyse disjoint areas in the hyperbolic disk
independently. Since the final result holds w.e.h.p. this directly carries over to the uniform
model w.e.h.p. ([22, Lemma 3.9]). We start by defining an area A close to the core. Let
ξ = log

(
1 + log3(n)

n1−α

)
∈ o(1) and consider a band of points A := B0(R/2 + ξ) \ B0(R/2). We

see via R = 2 log(n) + C that

µ(A) =
∫ R/2+ξ

R/2

sinh(αx)
cosh(αR) − 1 = cosh(α(R/2 + ξ)) − cosh(αR/2)

cosh(αR) − 1

= (1 + Θ(e−αR))(e−α(R/2−ξ) − e−αR/2)

= (1 + Θ(e−αR))(n−αe−αC/2(1 + log3(n)nα−1)− n−αe−αC/2)

= (1 + Θ(e−αR))(e−αC/2 log3(n)n−1) ∈ Θ
(
log3 (n) /n

)
. (3)

Let A = V ∩ A. Then E[|A|] ∈ Θ
(
log3(n)

)
. We further partition the band A into k =

⌈log3/2(n)⌉ sectors A1, . . . ,Ak, each of equal size (see Figure 4 a), and Ai = V ∩ Ai. Since
E[|A|] ∈ Θ

(
log3(n)

)
and k = log3/2(n), we have for any i ∈ [k] that E[|Ai|] = E[|A|]

k ∈
ω(log(n)). Since we are in the Poissonized model we get P (|Ai|= 0) = e−E[|Ai|] ∈ n−ω(1).

Subsequently, a union bound yields that there is no sector Ai that is empty w.e.h.p.
In the second step, we show that for any vertex u ∈ A, the probability that there exists a

vertex in its forbidden area Fu := {x ∈ B0(R/2) : dh(u, x) > R} (see Figure 4 b) is strictly
less than 1. Since r(u) ≤ R/2 + ξ, we have that u ∈ A has distance at most R (and thus, an

STACS 2025

13:14 Hyperbolic Random Graphs: Clique Number and Degeneracy

edge) to any vertex in the area B0(R/2 − ξ). Hence, we have Fu ⊂ B0(R/2) \ B0(R/2 − ξ).
Now, for R/2 ≥ x ≥ R/2 − ξ we seek to find the angle size ϕ = 2(π − θR(r(u), x)) in
order to upper bound µ(Fu). Since θR(r, x) is monotonically decreasing in x we have
ϕ ≤ 2(π − θR(R/2 + ξ,R/2)) and we obtain

µ(Fu) =
∫ R/2

R/2−ξ

∫ ϕ

0
ρ(x) dϕ dx ≤ 2(π − θR(R/2 + ξ,R/2))

∫ R/2+ξ

R/2
ρ(x) dx

≤ 2(π − θR(R/2 + ξ,R/2))µ(A),

where we used
∫ R/2

R/2−ξ
ρ(x) dx ≤

∫ R/2+ξ

R/2 ρ(x) dx = µ(A). By our choice of ξ = log(1 +

log3(n)nα−1) ∈ o(1), we can apply Lemma 15 and obtain θR(R/2 + ξ,R/2) ≥ π − 2
√

log3(n)
n1−α .

In Equation (3) we established that µ(A) ∈ Θ
(
log3 (n) /n

)
. Combining the two leads to

µ(Fu) ∈ O
(√

log9(n)nα−3
)

.
Notice that for α ∈ (1/2, 1), the measure of the forbidden area of a vertex u ∈ A is

µ(Fu) ∈ o(1/n). Hence, writing F = V ∩ Fu, we get E[|F |] ∈ o(1), i.e., the expected number
of vertices in Fu is vanishing. Applying Markov’s inequality then gives us P (|F |≥ 1) ∈ o(1).
Thus p := P(|F |< 1) ∈ Ω(1), so the forbidden area is empty with constant probability.

We now establish our third and final desired property. Namely, we construct a subset
U ⊂ A, consisting of vertices whose forbidden areas are empty and disjoint and for which
E [|U |] ∈ ω(log(n)).

Recall that we partitioned A into k = log3/2(n) ∈ ω(log(n)) sectors. Let Xi be the
indicator that there exists a vertex u ∈ Ai whose forbidden area Fu is empty. Then
X =

∑⌊k/2⌋
i=1 X2i is a loose lower bound on the number of sectors with this property. By

linearity of expectation, p constant and k = log3/2(n) we then obtain

E[X] ≥ E
[⌊k/2⌋∑

i=1
X2i

]
≥ p · Θ(1) log3/2(n) ∈ ω(log(n)).

We proceed by showing independence among the random variables Xi and Xj for |j − i|> 1.
To this end, observe that the angle ψ (see Figure 4 b) spanned by any sector Ai is ψ = 2π/k ≥⌊

2π log−3/2(n)
⌋
. In contrast, we recall ϕ ≤ 2(π−θR(R/2+ξ,R/2)) ≤ 4

√
log3(n)nα−1. Since√

log3(n)nα−1 ∈ o(log−3/2(n)) we conclude ϕ ∈ o(ψ). This implies that the forbidden areas
Fu and Fv of any u ∈ Ai, v ∈ Aj are disjoint. Thus Xi and Xj are independent.

To wrap things up, recall that in the first step we established that each sector Ai contains
a vertex w.e.h.p. Moreover, since the Xi are independent, we have by a Chernoff bound
that X ∈ ω(log(n)) w.e.h.p. Though these two events are not independent, we can apply
the union bound to their complements to obtain that w.e.h.p. ω(log(n)) vertices outside of
B0(R/2) are adjacent to all vertices in B0(R/2), which finishes the proof. ◀

4.3 Upper Bound on the Clique Number
Recall that two vertices u, v are adjacent if and only if dh(u, v) ≤ R and that we call the
clique formed in B0(R/2) the core whose size is σ(G) = (1 − o(1))e−αC/2n1−α w.e.h.p. The
core size is a lower bound for the clique number ω(G). We have established that the largest
clique is smaller than the degeneracy w.e.h.p. (Theorem 13), and in this section we further
investigate an upper bound for ω(G). We note that the upper bound we derive in this section
implies Theorem 13 for α large enough (see Figure 1). However, for smaller α, the upper
bound for ω(G) is larger than the lower bound (Theorem 9) for κ(G) in the HRG model,
and thus does not directly imply Theorem 13 for these values for α.

S. Baguley, Y. Maus, J. Ruff, and G. Skretas 13:15

Before going into details, we lay out our proof strategy. We aim to bound the region
where a clique can be located. Since vertices are adjacent if and only if their (hyperbolic)
distance is at most R, this can be done by characterising a shape that covers any hyperbolic
region of diameter R. A classic result by Jung [20] answers the question of how large the
radius of a ball in Euclidean space needs to be at most, so that its interior can contain an
entire set of points of fixed diameter. The hyperbolic version of this result was discovered
by Dekster [14, 15] nearly a century later. He extended Jung’s result to (among other
geometries) hyperbolic space and we apply it as follows: we identify O(n3) many balls where
one of these balls contains the clique of largest size ω(G). This clique (and all the other
identified cliques) needs to be located in a ball Bx(r) with radius r large enough. We use the
hyperbolic variant of Jung’s theorem to upper bound r which, in turn, allows us to upper
bound the area of this ball. This yields an upper bound for the amount of vertices one such
ball Bx(r) could contain w.e.h.p., leading to an upper bound for ω(G). Since we only need
to consider at most O(n3) balls, a union bound is sufficient to derive the same bound for the
worst case. We work with the following version of Jung’s theorem for hyperbolic geometry.

▶ Theorem 17. [14, Theorem 2] Let K ⊂ Hd be compact and suppose that for any y, z ∈ K,
dh(y, z) ≤ D. Then there exists x ∈ Hd such that K ⊆ Bx(r) for r satisfying

D ≥ 2 sinh−1

(√
d+ 1

2d sinh(r)
)
.

In the hyperbolic plane H2, this simplifies to the following.

▶ Corollary 18. Let K ⊂ H2 be compact and suppose that for any y, z ∈ K, dh(y, z) ≤ R.
Then there exists x ∈ H2 such that K ⊆ Bx(r) for r satisfying r ≤ R/2 + log(2/

√
3).

Proof. Using that d = 2, we directly get from Theorem 17 for diameter R that R
2 ≥

sinh−1(
√

3/4 sinh(r)). Rearranging and using for x ∈ R that sinh(x) = 1
2e

x(1 − e−2x) yields

R/2 − r ≥ log(
√

3/4) + log
((

1 − e−2r
)

(1 − e−R)

)
.

Solving for r and using that r ≥ R/2 ≥ log(n) + C/2 in conjunction with recalling that
C ∈ Θ(1), it follows that r ≤ R/2 + log(2/

√
3). ◀

Our next observation follows from the definition of µ, and formalises the intuition that µ
puts more mass at the centre of the disk.

▶ Observation 19. Let 0 < r ≤ R and u, v ∈ DR with r(u) ≥ r(v). Then µ(Bu(r)) ≤
µ(Bv(r)).

Recall that σ(G) denotes the core size |V ∩ B0(R/2)| which is a lower bound for the clique
number ω(G) (see Observation 2), and that σ(G) = (1 − o(1))e−αC/2n1−α w.e.h.p. We state
our upper bound relative to this lower bound.

▶ Theorem 20 (Clique upper bound). Let G ∼ G(n, α,C) be a threshold HRG with α ∈ (1/2, 1).
Then w.e.h.p.

ω(G) ≤
(

(4/3)α/2 + o(1)
)
σ(G).

STACS 2025

13:16 Hyperbolic Random Graphs: Clique Number and Degeneracy

Proof. Consider any triplet of vertices u, v, w ∈ V with pairwise distance at most R, so that
they are pairwise adjacent. Since u, v, w are a.s. in general position, there is a unique ball
Bx(r) such that u, v, w lie on the boundary ∂Bx(r). By Corollary 18, r ≤ R/2 + log(

√
4/3)

since max (dh(u, v), dh(v, w), dh(u,w)) ≤ R. Over all possible triplets u, v, w ∈ V this gives
us a set B of at most

(
n
3
)

closed balls. Any clique must be contained in one of these balls,
and therefore so is the largest clique. Thus upper bounding the number of vertices for each
individual ball B ∈ B yields an upper bound on the size of the largest clique.

We now upper bound the expected number of vertices in one ball B. To this end we fix a
ball B = Bx(r) ∈ B and let YB be the random variable counting the number of vertices in B.
The balls in B are identically (though clearly not independently) distributed. Since vertices
are thrown independently according to µ, we have that YB − 3 ∼ Bin(n− 3, µ(B)), and so

E [YB] = 3 + (n− 3)µ(B) ≤ 3 + (n− 3)µ(B0(r)) (Observation 19)

≤ 3 + (n− 3)µ(B0(R/2 + log(2/
√

3))) (Corollary 18)

≤ ((2/
√

3)α + o(1))e−αC/2n1−α. (Equation (2))

Thus ((4/3)α/2 + o(1))σ(G) ≥ (1 + 1/log(n))E [YB] w.e.h.p. This is relevant to the bound in
the theorem statement because it implies that

P
(
ω(G) > ((4/3)α/2 + o(1))σ(G)

)
≤ P

(
max
B∈B

YB > ((4/3)α/2 + o(1))σ(G)
)

≤ P
(

max
B∈B

YB > (1 + 1/log(n))E[YB]
)

+ n−c

for arbitrary c. Thus to finish the proof we need to show concentration, which via a union
bound over all triplets u, v, w will yield the result. To show concentration we apply a Chernoff
bound Theorem 3. Using ε = (1/log(n)) we obtain

P (YB > (1 + 1/log(n))E[YB]) ≤ e−E[YB]/(3(1/log(n))2) ≤ e−Θ(1)(n1−α)/log2(n) ≤ n−c

for any choice of c, since for α < 1, Θ(1)(n1−α) ∈ nΘ(1) and lim infn→∞
nΘ(1)

log2(n) ∈ ω(log(n)).
Finally, to show that this holds w.e.h.p. for all balls in B, we use that |B|≤

(
n
3
)
< n3, so that

P
(

max
B∈B

YB ≥ (1 + 1/log(n))E[YB]
)

≤
∑
B∈B

P (YB ≥ (1 + 1/log(n))E[YB])

≤ n3P (YB ≥ (1 + 1/log(n))E[YB]) ≤ n−c+3. ◀

A further refinement of the “clique covering” argument of Theorem 20 should be possible.
Any clique has by definition a diameter of at most R, and so the shape in H2 of diameter R
with maximal area would provide an improved upper bound via a similar covering argument.
It is not clear what a tight bound would be, and ω(G) ≤ (1 + o(1))σ(G) may be possible.

5 Geometric Inhomogeneous Random Graphs

Geometric Inhomogeneous Random Graphs or GIRGs were introduced in [11] as an alternative
model to HRGs that capture many of the same properties, in particular the power-law degree
distribution. In their most general form, GIRGs strictly generalise HRGs, but they are more
often studied in a slightly restricted form; comparisons are made in [6, 28]. In this restricted
form, called the standard GIRG model by [16], any HRG G can be coupled with two GIRGs
H1 and H2 such that H1 ⊆ G ⊆ H2, where ⊆ denotes graph inclusion.

S. Baguley, Y. Maus, J. Ruff, and G. Skretas 13:17

Because of this relationship, GIRGs are used as proxies for HRGs in some theoretical and
experimental works. This is partly done because GIRGs are (by design) far more tractable
than HRGs. It is therefore valuable to understand differences between the two models. In
[6] experimental evidence was given to suggest that the “sandwiching” of an HRG by two
standard GIRGs is not tight. In Corollary 24 we provide a theoretical result demonstrating
a difference between the two models.

▶ Definition 21 (Standard GIRG model). Let β ∈ (2, 3), λ ∈ Θ(1), and n ∈ N. A geometric
inhomogeneous random graph G ∼ G(n, β, λ) is a random graph with vertex set V =
{v1, · · · , vn} satisfying the following properties.
1. Every u ∈ V is equipped with a random tuple (wu, xu), where weight wu ∈ [1,∞) has

density f(y) = (β − 1)y−β and coordinate xu is drawn uniformly at random from [0, 1];
2. Any pair of vertices u, v ∈ V are connected if and only if min{|xu − xv|, 1 − |xu − xv|} ≤

t(u, v), where t(u, v) = 1
2
(

λwuwv

n

)
.

One way of thinking of a GIRG is that vertices are being thrown uniformly at random onto
the 1-dimensional torus T1, and connected according to whether their distance is below their
threshold t(u, v). The weights are drawn according to a Pareto distribution. Analogously
to HRGs, for a vertex u of a GIRG we define the inner-degree of u to be |Γ(u)|= |{v ∈
V |u and v are connected and wv ≥ wu}|. The proofs of Observation 4 and Lemma 6 can be
adapted to the GIRG model to characterise the degeneracy via the largest inner-degree.

▶ Corollary 22. Let G ∼ G(n, 2α+ 1, λ) be a standard GIRG. Consider the vertex u∗ with
the largest inner-degree in G. Then w.e.h.p. κ(G) = (1 − o(1))|Γ(u∗)|.

Corollary 22 allows us to state a tight bound for the degeneracy in comparison to the
core of the GIRG, which is defined to contain all vertices of weight ŵ ≥

√
n/λ, and has size

σ(G) = (1 ± o(1))λ−αn1−α w.e.h.p. This is analagous to the core of an HRG, which is the
clique formed by vertices of radius at most R/2, regardless of their angular coordinates.

▶ Theorem 23. Let G ∼ G(n, 2α+ 1, λ) be a threshold GIRG. The degeneracy is w.e.h.p.

κ(G) = (2 ± o(1))(2(1 − α))(1−α)/(2α−1)σ(G).

Proof. We bound the maximal inner-degree |Γ(u∗)|; the statement then follows from Co-
rollary 22. Notice that, independent of the geometric distance, a vertex with weight w is
adjacent to any vertex with weight w′ if w′ ≥ n

wλ since t(w,w′) = λww′

2n ≥ λw n
wλ

2n = 1
2 which

is the maximal distance between two points in the unit torus. Thus, using β = 2α+ 1, the
probability that a vertex v is in the inner-neighbourhood of a vertex u with weight w is

P (v ∈ Γ(u)) = P ({{u, v} ∈ E} ∩ {Wv ≥ w})

= P
(
Wv ≥ n

wλ

)
+ 2
∫ n

wλ

w

t(y, w)2αy−(2α+1)dy (t(w, n/wλ) = 1/2)

=
(
n

wλ

)−2α

+ 2αλw
n

∫ n
wλ

w

y−2αdy (Pareto and threshold)

=
(
n

wλ

)−2α

+ 2αλw
n(2α− 1)

(
w1−2α −

(
n

wλ

)1−2α
) (∫

y−2αdy =
[
y1−2α

1 − 2α

])
=
(
n

wλ

)−2α

+ α

α− 1/2

(
λw2(1−α)

n
−
(
n

wλ

)−2α
)
. (4)

STACS 2025

13:18 Hyperbolic Random Graphs: Clique Number and Degeneracy

Next, we calculate the value w∗, which maximises the expected inner-degree. To this end,
we consider the probability measure of the inner-neighbourhood, take its derivative with
respect to w and set it equal to 0. Differentiating yields

d
dwP (v ∈ Γ(u)) =

2(nw)−(2α+1)(1 − α)α
(
n2αw2λ− nw4αλ2α

)
2α− 1 ,

and solving for the maximum reveals w∗ = (2(1 − α))
1

4α−2
√

n
λ ∈ Θ(

√
n).

We plug in w∗ for the weight of u denoted by u∗ into P (v ∩ Γ(u∗)) and get by (4) that

P (v ∈ Γ(u∗)) = 2(2(1 − α))(1−α)/(2α−1)(nλ)−α.

Recalling that σ(G) = (1 ± o(1))λ−αn1−α w.e.h.p., the upper bound now follows from the
expectation of |Γ(u∗)| and applying a Chernoff bound in conjunction with a union bound.
The lower bound is established by showing that there exists a vertex within the range of
weights w̃ = [w∗(1 + nα−1 log2(n))−1/(2α), w∗] w.e.h.p. and lower bound the inner-degree of
such vertex. Using the Pareto distribution and w∗ ∈ Θ(

√
n), we calculate the probability for

a vertex u to belong to the range of weights w̃. We obtain

P (Wu ∈ w̃) = P
(
w∗(1 + nα−1 log2(n))−1/(2α) ≤ Wu ≤ w∗

)
(Range of w̃)

= P (Wu ≤ w∗) − P
(
Wu ≤ w∗(1 + nα−1 log2(n))−1/(2α)

)
= 1 − (w∗)−2α − (1 − (w∗(1 + nα−1 log2(n))−1/(2α))−2α) (Pareto)

= (w∗(1 + nα−1 log2(n))−1/(2α))−2α − (w∗)−2α

= (w∗)−2αnα−1 log2(n)

= Θ(1) log2(n)
n

. (w∗ ∈ Θ(
√
n))

By this we have E [|V ∩ w̃|] ∈ ω(log(n)). Using a Chernoff bound there exists a vertex
within the desired weight range w̃ w.e.h.p. To conclude the proof we lower bound the
inner-degree of a vertex ũ included in the weight range w̃. Note that w̃ = (1 − o(1))w∗ =
(2 − o(1)(1 − α))

1
4α−2

√
n
λ . We then have via Equation (4)

E [|Γ(ũ)|] = (n− 1)P (v ∩ Γ(ũ)) ≥ (2 − o(1))(2(1 − α))(1−α)/(2α−1)λ−αn1−α.

A final application of a Chernoff bound then ensures the concentration to finish the proof. ◀

Comparing the lower bound of the degeneracy for GIRGs given in Theorem 23 to the upper
bound of a HRG we obtained in Theorem 9 we draw the conclusion that the degeneracy-to-core
ratio between the two models is fundamentally different.

▶ Corollary 24 (GIRG-HRG degeneracy difference). Fix an α ∈ (1/2, 1). Let G ∼ G(n, 2α+1, λ)
be a standard GIRG and H ∼ G(n, α,C) be a threshold HRG. Then w.e.h.p.∣∣∣∣κ(G)

σ(G) − κ(H)
σ(H)

∣∣∣∣ ∈ Θ(1).

6 Conclusion

We have shown that the clique number, degeneracy, and chromatic number of HRGs are
asymptotically (with small differences in the leading O-notation constants) as large as the
core, though the clique number and degeneracy differ significantly. Our upper bound on

S. Baguley, Y. Maus, J. Ruff, and G. Skretas 13:19

the degeneracy provides a constant factor approximation algorithm for the graph colouring
problem. The approximation ratio ranges from 2/

√
3 to 4/3 and depends on the model

parameter α. This raises several open questions and future research directions.
Is the chromatic number bounded away from the degeneracy, the clique number, or both?
Can HRGs be coloured optimally in polynomial time or is it NP-complete?
What are the asymptotics of ω(G)/σ(G)? Is the clique number a constant factor larger
than the core and has similar behaviour as the degeneracy?

There are further directions of research such as determining other differences between HRGs
and GIRGs or designing colouring algorithms for HRGs in various models of computation.

References
1 Samuel Baguley, Yannic Maus, Janosch Ruff, and George Skretas. Hyperbolic random

graphs: Clique number and degeneracy with implications for colouring. CoRR, 2024. doi:
10.48550/arXiv.2410.11549.

2 Leonid Barenboim and Michael Elkin. Distributed Graph Coloring: Fundamentals and Recent
Developments. Morgan & Claypool Publishers, 2013. doi:10.1007/978-3-031-02009-4.

3 Thomas Bläsius and Philipp Fischbeck. On the external validity of average-case analyses of
graph algorithms. ACM Trans. Algorithms, 2024. doi:10.1145/3633778.

4 Thomas Bläsius, Philipp Fischbeck, Tobias Friedrich, and Maximilian Katzmann. Solving
vertex cover in polynomial time on hyperbolic random graphs. Theory Comput. Syst., 2023.
doi:10.1007/S00224-021-10062-9.

5 Thomas Bläsius, Tobias Friedrich, and Maximilian Katzmann. Efficiently approximating
vertex cover on scale-free networks with underlying hyperbolic geometry. Algorithmica, 2023.
doi:10.1007/S00453-023-01143-X.

6 Thomas Bläsius, Tobias Friedrich, Maximilian Katzmann, Ulrich Meyer, Manuel Penschuck,
and Christopher Weyand. Efficiently Generating Geometric Inhomogeneous and Hyperbolic
Random Graphs. In ESA, 2019. doi:10.4230/LIPIcs.ESA.2019.21.

7 Thomas Bläsius, Tobias Friedrich, Maximilian Katzmann, and Daniel Stephan. Strongly
Hyperbolic Unit Disk Graphs. In STACS, 2023. doi:10.4230/LIPIcs.STACS.2023.13.

8 Thomas Bläsius, Tobias Friedrich, and Anton Krohmer. Cliques in hyperbolic random graphs.
Algorithmica, 2017. doi:10.1007/s00453-017-0323-3.

9 Thomas Bläsius, Maximillian Katzmann, and Clara Stegehuis. Maximal cliques in scale-free
random graphs. Network Science, 2024. doi:10.1017/nws.2024.13.

10 Thomas Bläsius, Tobias Friedrich, and Anton Krohmer. Hyperbolic random graphs: Separators
and treewidth. In ESA, 2016. doi:10.4230/LIPIcs.ESA.2016.15.

11 Karl Bringmann, Ralph Keusch, and Johannes Lengler. Geometric inhomogeneous random
graphs. Theoretical Computer Science, 2019. doi:10.1016/j.tcs.2018.08.014.

12 Aleksander Bjørn Grodt Christiansen, Krzysztof Nowicki, and Eva Rotenberg. Improved
dynamic colouring of sparse graphs. In STOC, 2023. doi:10.1145/3564246.3585111.

13 Stephen A. Cook. The complexity of theorem-proving procedures. In STOC, 1971. doi:
10.1145/800157.805047.

14 B. V. Dekster. The Jung theorem for spherical and hyperbolic spaces. Acta Mathematica
Hungarica, 1995. doi:10.1007/bf01874495.

15 B. V. Dekster. The Jung theorem in metric spaces of curvature bounded above. Proceedings
of the American Mathematical Society, 1997. doi:10.1090/s0002-9939-97-03842-2.

16 Tobias Friedrich, Andreas Göbel, Maximilian Katzmann, and Leon Schiller. Cliques in high-
dimensional geometric inhomogeneous random graphs. SIAM Journal on Discrete Mathematics,
2024. doi:10.1137/23m157394x.

17 Tobias Friedrich and Anton Krohmer. On the Diameter of Hyperbolic Random Graphs. SIAM
Journal on Discrete Mathematics, 2018. doi:10.1137/17M1123961.

STACS 2025

https://doi.org/10.48550/arXiv.2410.11549
https://doi.org/10.48550/arXiv.2410.11549
https://doi.org/10.1007/978-3-031-02009-4
https://doi.org/10.1145/3633778
https://doi.org/10.1007/S00224-021-10062-9
https://doi.org/10.1007/S00453-023-01143-X
https://doi.org/10.4230/LIPIcs.ESA.2019.21
https://doi.org/10.4230/LIPIcs.STACS.2023.13
https://doi.org/10.1007/s00453-017-0323-3
https://doi.org/10.1017/nws.2024.13
https://doi.org/10.4230/LIPIcs.ESA.2016.15
https://doi.org/10.1016/j.tcs.2018.08.014
https://doi.org/10.1145/3564246.3585111
https://doi.org/10.1145/800157.805047
https://doi.org/10.1145/800157.805047
https://doi.org/10.1007/bf01874495
https://doi.org/10.1090/s0002-9939-97-03842-2
https://doi.org/10.1137/23m157394x
https://doi.org/10.1137/17M1123961

13:20 Hyperbolic Random Graphs: Clique Number and Degeneracy

18 Mohsen Ghaffari and Christoph Grunau. Dynamic o(arboricity) coloring in polylogarithmic
worst-case time. In STOC, 2024. doi:10.1145/3618260.3649782.

19 Luca Gugelmann, Konstantinos Panagiotou, and Ueli Peter. Random Hyperbolic Graphs:
Degree Sequence and Clustering. In ICALP, 2012. doi:10.1007/978-3-642-31585-5_51.

20 Heinrich Jung. Ueber die kleinste Kugel, die eine räumliche Figur einschliesst. Journal für die
reine und angewandte Mathematik, 1901. URL: http://eudml.org/doc/149122.

21 Richard M. Karp. Reducibility among Combinatorial Problems, pages 85–103. Springer US,
1972. doi:10.1007/978-1-4684-2001-2_9.

22 Maximilian Katzmann. About the analysis of algorithms on networks with underlying hyperbolic
geometry. doctoralthesis, Universität Potsdam, 2023. doi:10.25932/publishup-58296.

23 Ralph Keusch. Geometric Inhomogeneous Random Graphs and Graph Coloring Games. PhD
thesis, ETH Zurich, 2018. doi:10.3929/ethz-b-000269658.

24 Marcos Kiwi and Dieter Mitsche. A bound for the diameter of random hyperbolic graphs. In
ANALCO, 2015.

25 Marcos Kiwi and Dieter Mitsche. Spectral gap of random hyperbolic graphs and related
parameters. The Annals of Applied Probability, 2018. doi:10.1214/17-aap1323.

26 Marcos Kiwi and Dieter Mitsche. On the second largest component of random hyperbolic
graphs. SIAM Journal on Discrete Mathematics, 2019. doi:10.1137/18m121201x.

27 Marcos Kiwi, Markus Schepers, and John Sylvester. Cover and hitting times of hyperbolic
random graphs. Random Structures & Algorithms, 2024. doi:10.1002/rsa.21249.

28 Júlia Komjáthy and Bas Lodewijks. Explosion in weighted hyperbolic random graphs and
geometric inhomogeneous random graphs. Stochastic Processes and their Applications, 2020.
doi:10.1016/j.spa.2019.04.014.

29 Dmitri Krioukov, Fragkiskos Papadopoulos, Maksim Kitsak, Amin Vahdat, and Marián Boguñá.
Hyperbolic geometry of complex networks. Phys. Rev. E, 2010. doi:10.1103/PhysRevE.82.
036106.

30 Anton Krohmer. Structures & algorithms in hyperbolic random graphs. doctoralthesis,
Universität Potsdam, 2016. URL: https://publishup.uni-potsdam.de/frontdoor/index/
index/docId/39597.

31 David W. Matula and Leland L. Beck. Smallest-last ordering and clustering and graph coloring
algorithms. Journal of the ACM, 1983. doi:10.1145/2402.322385.

32 Michael Mitzenmacher and Eli Upfal. Probability and Computing: Randomized Algorithms and
Probabilistic Analysis. Cambridge University Press, 2005. doi:10.1017/CBO9780511813603.

33 Tobias Müller and Merlijn Staps. The Diameter of KPKVB Random Graphs. Advances in
Applied Probability, 2019. doi:10.1017/apr.2019.23.

34 Fragkiskos Papadopoulos, Dmitri Krioukov, Marian Boguna, and Amin Vahdat. Greedy
forwarding in dynamic scale-free networks embedded in hyperbolic metric spaces. In INFOCOM,
2010. doi:10.1109/infcom.2010.5462131.

35 Jose L. Walteros and Austin Buchanan. Why is maximum clique often easy in practice?
Operations Research, 2020. doi:10.1287/opre.2019.1970.

36 David Zuckerman. Linear degree extractors and the inapproximability of max clique and
chromatic number. Theory of Computing, 2007. doi:10.4086/toc.2007.v003a006.

https://doi.org/10.1145/3618260.3649782
https://doi.org/10.1007/978-3-642-31585-5_51
http://eudml.org/doc/149122
https://doi.org/10.1007/978-1-4684-2001-2_9
https://doi.org/10.25932/publishup-58296
https://doi.org/10.3929/ethz-b-000269658
https://doi.org/10.1214/17-aap1323
https://doi.org/10.1137/18m121201x
https://doi.org/10.1002/rsa.21249
https://doi.org/10.1016/j.spa.2019.04.014
https://doi.org/10.1103/PhysRevE.82.036106
https://doi.org/10.1103/PhysRevE.82.036106
https://publishup.uni-potsdam.de/frontdoor/index/index/docId/39597
https://publishup.uni-potsdam.de/frontdoor/index/index/docId/39597
https://doi.org/10.1145/2402.322385
https://doi.org/10.1017/CBO9780511813603
https://doi.org/10.1017/apr.2019.23
https://doi.org/10.1109/infcom.2010.5462131
https://doi.org/10.1287/opre.2019.1970
https://doi.org/10.4086/toc.2007.v003a006

Multivariate Exploration of Metric Dilation
Aritra Banik #

National Institute of Science, Education and Research,
An OCC of Homi Bhabha National Institute, Bhubaneswar, India

Fedor V. Fomin #

University of Bergen, Norway

Petr A. Golovach #

University of Bergen, Norway

Tanmay Inamdar #

Indian Institute of Technology Jodhpur, India

Satyabrata Jana #

University of Warwick, UK

Saket Saurabh #

The Institute of Mathematical Sciences, HBNI, Chennai, India
University of Bergen, Norway

Abstract
Let G be a weighted graph embedded in a metric space (M, dM). The vertices of G correspond to the
points in M , with the weight of each edge uv being the distance dM (u, v) between their respective
points in M . The dilation (or stretch) of G is defined as the minimum factor t such that, for any
pair of vertices u, v, the distance between u and v – represented by the weight of a shortest u, v-path
– is at most t ·dM (u, v). We study Dilation t-Augmentation, where the objective is, given a metric
M , a graph G, and numerical values k and t, to determine whether G can be transformed into a
graph with dilation t by adding at most k edges.

Our primary focus is on the scenario where the metric M is the shortest path metric of an
unweighted graph Γ. Even in this specific case, Dilation t-Augmentation remains computationally
challenging. In particular, the problem is W[2]-hard parameterized by k when Γ is a complete
graph, already for t = 2. Our main contribution lies in providing new insights into the impact of
combinations of various parameters on the computational complexity of the problem. We establish
the following.

The parameterized dichotomy of the problem with respect to dilation t, when the graph G

is sparse: Parameterized by k, the problem is FPT for graphs excluding a biclique Kd,d as a
subgraph for t ≤ 2 and the problem is W[1]-hard for t ≥ 3 even if G is a forest consisting of
disjoint stars.
The problem is FPT parameterized by the combined parameter k + t + ∆, where ∆ is the
maximum degree of the graph G or Γ.

2012 ACM Subject Classification Theory of computation → Design and analysis of algorithms

Keywords and phrases Metric dilation, geometric spanner, fixed-parameter tractability

Digital Object Identifier 10.4230/LIPIcs.STACS.2025.14

Related Version Full Version: https://arxiv.org/abs/2501.04555 [2]

Funding Fedor V. Fomin: Supported by the Research Council of Norway via the project BWCA
(grant no. 314528).
Petr A. Golovach: Supported by the Research Council of Norway via the project BWCA (grant no.
314528).
Tanmay Inamdar : Supported by IITJ Research Initiation Grant (grant number I/RIG/T-
NI/20240072).
Satyabrata Jana: Supported by the Engineering and Physical Sciences Research Council (EPSRC)
via the project MULTIPROCESS (grant no. EP/V044621/1).

© Aritra Banik, Fedor V. Fomin, Petr A. Golovach, Tanmay Inamdar, Satyabrata Jana,
and Saket Saurabh;
licensed under Creative Commons License CC-BY 4.0

42nd International Symposium on Theoretical Aspects of Computer Science (STACS 2025).
Editors: Olaf Beyersdorff, Michał Pilipczuk, Elaine Pimentel, and Nguyễn Kim Thắng;
Article No. 14; pp. 14:1–14:17

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:aritra@niser.ac.in
https://orcid.org/0000-0002-7544-6125
mailto:Fedor.Fomin@uib.no
https://orcid.org/0000-0003-1955-4612
mailto:Petr.Golovach@ii.uib.no
https://orcid.org/0000-0002-2619-2990
mailto:taninamdar@gmail.com
https://orcid.org/0000-0002-0184-5932
mailto:satyamtma@gmail.com
https://orcid.org/0000-0002-7046-0091
mailto:saket@imsc.res.in
https://orcid.org/0000-0001-7847-6402
https://doi.org/10.4230/LIPIcs.STACS.2025.14
https://arxiv.org/abs/2501.04555
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

14:2 Multivariate Exploration of Metric Dilation

Saket Saurabh: The author is supported by the European Research Council (ERC) under the
European Union’s Horizon 2020 research and innovation programme (grant agreement No. 819416);
and he also acknowledges the support of Swarnajayanti Fellowship grant DST/SJF/MSA-01/2017-18.

1 Introduction

Consider a finite metric space M = (V, dM), and let G be a sparse weighted graph with
vertices corresponding to the points in V . The weights assigned to the edges of G represent
the distances in M between their end-points. That is, the graph G = (V, E) is embedded
in a metric space M = (V, dM). The graph G is called a t-spanner if, for every pair of
vertices u, v ∈ V , the distance between them in G is at most t · dM (u, v). The concept of
spanners, introduced by Peleg and Schäffer [19], has evolved into a fundamental tool in
various domains, including algorithms, distributed computing, networking, data structures
and metric geometry, as highlighted in [18]. The minimum number t for which G is a
t-spanner defines the stretch or dilation of G.

In their book [18, p.474, Problem 9], Narasimhan and Smid presented the problem of
enhancing the dilation of a spanner by adding at most k edges: Develop an efficient algorithm
to identify the k > 1 edges that minimize (or approximately minimize) the stretch factor of
the resulting geometric graph. Formally, the problem is defined as follows.

Dilation t-Augmentation

Input: A graph G = (V, E) embedded in a metric space M = (V, dM) and
an integer k.

Question: Does there exist a set of k edges S ⊆ V × V such that the dilation of
G′ = (V, E ∪ S) is at most t?

The case where k = 1, was investigated by Farshi, Giannopoulos, Gudmundsson [8], Luo,
Wulff-Nilsen [17], and Wulff-Nilsen [20]. However, for the more general scenario where k > 1,
the problem becomes significantly more challenging and poorly understood. Giannopoulos
et al. [12] and Gudmundsson and Smid [13] demonstrated that obtaining the best dilation
spanner by adding k edges to an empty graph is already NP-hard. Gudmundsson and Wong
[14] proposed an algorithm that in O(n3 log n) time, identifies k edges whose addition to G

results in a graph with a stretch factor within O(k) of the minimum stretch factor. Related
problems have also been studied in geometric settings, e.g., Aronov et al. [1], who showed that,
given a set S of n points in R2, and an integer 0 ≤ k < n, we can construct a geometric graph
with vertex set S, at most n − 1 + k edges, maximum degree five, and dilation O(n/(k + 1))
in time O(n log n).

We approach the Dilation t-Augmentation problem from the perspective of Multi-
variate (Parameterized) Complexity – another popular paradigm to deal with intractable
problems [4, 6, 10]. The two most natural parameters associated with the problem are
the size of the solution k (the size of the augmented set) and the stretch factor t. We are
looking for an algorithm with running time f(k) · nO(1) or g(k, t) · nO(1). Here, n = |V (G)|.
These algorithms are called fixed-parameter tractable (FPT) algorithms. There is also an
accompanying theory of W-hardness that allows us to show that problems do not admit
FPT algorithms (see [4, 6, 10] for further details). The problem of finding a t-spanner for
a given graph is considered from the perspective of parameterized complexity in [15, 16].
Observe that, Dilation t-Augmentation admits an algorithm with running time nO(k) –
try all possible subsets of size k of V × V as S. Thus, this naturally leads to the following.

A. Banik, F. V. Fomin, P. A. Golovach, T. Inamdar, S. Jana, and S. Saurabh 14:3

GΓ G + S

dΓ(v1, v3) = 1 dG(v1, v3) = 3

dG+S(v1, v3) = 1

dΓ(v5, v7) = 1 dG(v5, v7) = 4

dG+S(v5, v7) = 2

v2

v1

v3

v4

v6

v7

v5

v2

v1

v3

v5 v6

v7

v4

1

1 1

1

2

2

4

v2

v1

v3

v4

v7

v5 v6

4

2
1

1

1

1

2

1

1

Figure 1 An instance of Dilation 2-Augmentation with k = 2. The edges of the solution S are
shown in dashed red. The edge weights in G are derived from the corresponding shortest path in Γ.

Does Dilation t-Augmentation admit an FPT algorithm?

A simple result shows that, in its full generality, the problem is W[2]-hard. In fact,
consider M = (V, dM) derived from an unweighted clique K on n vertices. That is, the
vertices of the metric correspond to the vertices of K, and dM (u, v) is the length of shortest
path between u and v in K, which is 1. Then, for t = 2, Dilation 2-Augmentation
corresponds to adding edges to G so that the diameter of the augmented graph becomes
2 (see Figure 1 for an illustration). This is the well-known Diameter 2-Augmentation
problem which is known to be W[2]-hard [11]. Thus, we do not expect that Dilation
t-Augmentation to admit an algorithm with running time g(k) ·nO(t). This simple hardness
result motivates the following set of questions:

For which metrics M, does Dilation t-Augmentation admit an FPT algorithm?
For which family of input graphs G, does Dilation t-Augmentation admit an FPT al-
gorithm?
For which pairs of family of input graphs and metric, (G, M), does Dilation t-
Augmentation admit an FPT algorithm?

In this article, we specifically concentrate on the fundamental and non-trivial scenario
where the metric M corresponds to the shortest-path metric of an unweighted graph. Our
contribution represents a substantial addition to the limited body of literature that addresses
the challenging problem of Dilation t-Augmentation.

1.1 Our Model, Results, and Methods
Throughout this paper, we deal with the shortest-path metric derived from an unweighted
graph, unless otherwise mentioned.1 For an edge weighted graph H, let dH(u, v) denote the
weighted shortest path distance in the graph H between two vertices u and v. Additionally,
we use hopH(u, v) to denote the length of the shortest path between u and v when we forget
the edge weights. In other words, this denotes the length of the shortest path in H when all
edges receive weight 1. We will use dH and hopH only when H is edge weighted; otherwise,
both dH and hopH represent the same thing. Throughout the article, the metric M will be
derived from an undirected unweighted graph Γ = (V, E). That is, the vertices of the metric
correspond to the vertices of Γ, and dM (u, v) is assigned the shortest path distance in Γ,
between u and v. Observe that dM (u, v) = dΓ(u, v) = hopΓ(u, v). We will use (G, Γ, k) as an

1 Any metric can be derived from an edge weighted graph. Thus, our assumption represents a simplification.

STACS 2025

14:4 Multivariate Exploration of Metric Dilation

instance of Dilation t-Augmentation problem. Since M is derived from Γ, for ease of
notation, we use dΓ(u, v) instead of dM (u, v). Furthermore, recall that G is embedded in the
metric space M derived from Γ. That is, G is an edge-weighted graph, where the weights
assigned to the edges of G represent the distances in Γ between their end-points. That is,
w(u, v) = dΓ(u, v) and dG(u, v) denote the weighted shortest path distance in G.

The starting point of our research is the result of Peleg and Schäffer [19] that Dilation
t-Augmentation is NP-hard for t = 2, where G is an empty graph and the metric M is
derived from an undirected graph Γ. So, a natural question is whether this special subcase is
FPT. Starting with this question, we trace the boundaries of the Dilation t-Augmentation
problem by instantiating different graph families to which Γ can belong or by instantiating
different graph families to which G can belong. Our results consist of the following.

1. Our main algorithmic result is an FPT algorithm for Dilation 2-Augmentation
when G belongs to the family of Kd,d-free graphs. Recall that a graph G is Kd,d-free
if it does not contain a complete bipartite graph with d vertices, each on both sides
of the bipartition, as a subgraph. However, there is no restriction on Γ.
We complement this result by showing that this result cannot be extended for t = 3.
Indeed, we show that when G is a disjoint union of a star and an independent set,
and Γ is an arbitrary graph, then Dilation 3-Augmentation is W[1]-hard. In a
slight converse we also show that Dilation 3-Augmentation is W[2]-hard when
Γ is a star, and G is an arbitrary graph. On the other hand, in a generalization of
the latter setting when Γ is a tree, we show that Dilation 2-Augmentation is
polynomial-time solvable.

2. Observe that for the families of stars we cannot bound the maximum degree of each
graph uniformly. We show that if G (resp. Γ) belongs to the family of graphs with a
maximum degree at most d and Γ (resp. G) is an arbitrary graph, then Dilation
t-Augmentation admits an algorithm FPT with running time f(k, t, d) · nO(1).
We complement this result by showing that this result cannot be extended for the
weighted metric. That is, when G belongs to the family of graphs of maximum degree
3 and the graph Γ is edge-weighted, then the problem becomes intractable. In fact,
the edges of Γ get weights from the two-size set {1, w}. We show that Dilation
(2 + ϵ)-Augmentation is W[1]-hard in this case.

It is important to note that the family of Kd,d-free graphs includes trees, planar graphs,
graphs that exclude a fixed graph H as a minor, graphs of bounded expansion, nowhere
dense graphs, and graphs of bounded degeneracy.2 We refer to Table 1 for a quick reference
of all the results shown in this article. Our algorithmic results are based on the structural
interaction between Γ and G. We start by defining the notion of conflict pairs (a pair (u, v)
in G such that dG(u, v) > t · dΓ(u, v)) and show that to resolve these pairs it suffices to focus
on those pairs that are adjacent in Γ (that is, (u, v) ∈ E(Γ)). We call them adjacent conflicts.
Resolving adjacent conflict pairs is the key to our results, both algorithms and hardness.

Our main result regarding Dilation 2-Augmentation when G is Kd,d-free is given
in Section 3. Our algorithm can be broadly divided into three separate phases. First, in
Section 3.1 we define the notion of a conflict graph and bound the size of the minimum
vertex cover in this graph using the restrictions imposed on the solution for Dilation
t-Augmentation in the special case of t = 2. Then, in Section 3.2, we analyze the interplay

2 For a formal definition of many of these graph classes, we refer to standard texts on graph theory, e.g.,
Diestel [5].

A. Banik, F. V. Fomin, P. A. Golovach, T. Inamdar, S. Jana, and S. Saurabh 14:5

Table 1 Complexity of the Dilation t-Augmentation for different G, metric, parameters and t.

G Metric (Γ) Parameter(s) t Complexity

Kd,d-free General k + d 2 FPT (Section 3)

Star forest General k 3 W[1]-hard (Section 5.1)

General Star k 3 W[1]-hard (Section 5.2)

General Tree k 2 P (♠)

General Bounded degree k + t + ∆ t FPT (Section 4.1)

Bounded degree General k + t + ∆ t FPT (Section 4.2)

Subcubic (1, w)-weighted k 2 + ϵ W[1]-hard (♠)

Edgeless General k 2 NP-hard (♠)

General Clique k 2 W[2]-hard (♠)

between the bounded-size vertex cover, along with the structural properties of G due to
the fact that it is Kd,d-free, and use it to design a recursive algorithm that tries to guess
a certain kind of edges that must belong to any solution in a yes-instance. At the leaves
of this recursive procedure, we can upper bound the total number of vertices involved in
conflicts. Nevertheless, we cannot get rid of all other vertices since they may be crucial for
certain shortest paths. Finally, in Section 3.3 we bound the size of the instance by carefully
eliminating a subset of conflict-free vertices, at which point we can enumerate all possible
solutions. For the other two algorithmic results, we obtain a small set of V that contains
all the end-points of edges of the solution. The hardness results are shown via parameter
preserving reductions from known W-hard problems, using classical gadget constructions.
The details of the results/statements marked with ♠ can be found in the full version of the
paper [2].

Notations. Let [n] be the set of integers {1, . . . , n}. For any graph G, we denote the set
of vertices of G by V (G) and the set of edges by E(G). We denote the set of non-edges
by E(G), that is, E(G) =

(
V (G)

2
)

\ E(G), where
(

V (G)
2

)
is the set of all unordered pairs of

distinct vertices in V (G). For notational convenience, even though our edges/non-edges are
undirected, we use the notation (a, b) instead of {a, b} – note that due to this convention,
(a, b) = (b, a). A graph G = (V, E) is said to be a star, if there exists a vertex c ∈ V (G)
such that E = {(u, c) : u ∈ V (G) \ {c}}. In this case, we say that c is the center of the
star. Vertices of V (G) \ {c} (if any) are said to be the leaves of the star. If every connected
component of a graph G is a star, then we say that G is a star forest.

For a graph G = (V, E) and a subset S of edges in E(G), we use the notation G + S to
mean the graph G′ = (V, E ∪ S). For a graph G, a path is a sequence of distinct vertices
v1 · · · vℓ such that (vi, vi+1) ∈ E(G) for i ∈ [ℓ − 1] and this path is denoted by ⟨v1, · · · , vℓ⟩.
For an undirected unweighted graph H , we use hopH(u, v) to denote the length of the shortest
path between u and v. For a graph H , a vertex v and an integer ℓ, N ℓ

H(v) denotes all vertices
w such that hopH(v, w) ≤ ℓ. Similarly, for a graph H, a vertex subset W and an integer ℓ,
N ℓ

H(W) = ∪w∈W N ℓ
H(w).

STACS 2025

14:6 Multivariate Exploration of Metric Dilation

2 Conflict versus Adjacent Conflicts

Let (G, Γ, k) be an instance of Dilation t-Augmentation problem. Two vertices u and v

in G are in t-conflict if dG(u, v) > t · dΓ(u, v). Furthermore, two vertices are said to be in
adjacent t-conflict with each other, if u and v are in conflict and u and v are adjacent in Γ. We
say that a graph G is (adjacent) t-conflict-free if there is no pair of vertices (u, v) such that
u and v are in (adjacent) t-conflict. Throughout the discussion, the value of t will be clear
from the context, so we use the terms conflict/conflict-free instead of t-conflict/t-conflict-free.
The following lemma shows the relationship between conflict-free and adjacent conflict-free.

▶ Lemma 1 (♠). For any set of edges S, G + S is conflict-free iff G + S is adjacent
conflict-free.

For our problem, we add edges to G to make it conflict-free. Lemma 1 shows that for
this purpose it is sufficient to focus only on adjacent conflicts. Thus, from now on, we only
focus on adjacent conflicts. Unless explicitly mentioned otherwise, by conflict, we mean
adjacent conflict. Nevertheless, we may use adjacent conflict at some places to emphasize
the adjacent-ness of the conflict.

The next result formalizes the fact that the distances in G are lower bounded by the
distances in Γ. The proof follows from definition, and hence omitted.

▶ Observation 2. Let G = (V, E) be a graph embedded in a metric space derived from the
undirected graph Γ. Then for any pair of vertices x and y we have dΓ(x, y) ≤ dG(x, y).

Let (G, Γ, k) be a yes-instance of Dilation t-Augmentation and S be an (unknown)
minimal solution. The set S is also called dilation t-augmentation set. We use VS to denote
the set of end-points of the edges in S. Let Vc denote the set of all vertices in G that are in
conflict with some other vertex. In the next two sections, Vc and VS will be used repeatedly.

3 Dilation 2-Augmentation for Kd,d-free Graphs

Let (G, Γ, k) be an instance of Dilation 2-Augmentation. In this section, we consider the
case where G belongs to the family of Kd,d-free graphs. Recall that a graph G is Kd,d-free
if it does not contain a complete bipartite graph with d vertices each on both sides of the
bipartition. However, there is no restriction on Γ.

3.1 Conflict Graph and Vertex Cover
We first define a conflict graph C on the set of vertices V (G), which captures all adjacent
conflicts. We place an edge between two vertices u and v in C if and only if u and v are
in adjacent conflict with each other. Note that Vc (the set of vertices present in adjacent
conflicts) is exactly the set of vertices with degree at least one in C. The next result shows
that every edge in E(C) intersects some edge of a dilation 2-augmentation set S.

▶ Lemma 3 (♠). Let (G, Γ, k) be a yes-instance of Dilation 2-Augmentation and let S

be a minimal solution to the given instance. In addition, let C be the corresponding conflict
graph. Then, for any edge (u, v) ∈ E(C), |{u, v} ∩ VS | ≥ 1.

Lemma 3 allows us to bound the size of a minimum vertex cover (set of vertices that
intersects all the edges) of C. To do so, we propose the next reduction rule and prove its
correctness (or safety).

A. Banik, F. V. Fomin, P. A. Golovach, T. Inamdar, S. Jana, and S. Saurabh 14:7

▶ Reduction Rule 1. If the size of a maximum matching in C is more than 2k, return no.

▶ Lemma 4 (♠). Reduction Rule 1 is safe.

First, we use a polynomial-time algorithm (e.g., [7]) to find the maximum matching M in
C and apply Reduction Rule 1. Notice that if the reduction rule 1 is not applicable, then
|M | ≤ 2k, which implies that it has a vertex cover of size at most 4k – in particular, we can
take the set of end-points of the edges of in M to be such a vertex cover, call it R.

Let I = V \ R. Note that I induces an independent set in C, but not necessarily in G.
Next, we bound the degree of each vertex in R in C. This will imply that the number of
conflict pairs is bounded.

The set R is at most of size 4k. For our algorithm at this stage, we “guess the edges of S

that have both end-points in R”. This results in an equivalent annotated instance, which is
now formalized. We first define an “annotated” instance of the problem. An example of the
annotated version of the problem is given by the tuple (G′, Γ, k′, R′), where we also provide
a vertex cover R′ of the corresponding conflict graph, which is used mainly for book keeping
purposes. The task is still to find a dilation 2-augmentation set S of size at most k′. Here,
we are not allowed to add an edge to a solution that does not have an end-point outside R.

Let ER be the set of non-edges in G[R]. For every subset ∅ ⊆ Ej ⊆ ER of size at most
k, we create an instance Ij of the annotated problem, as follows: Ij := (Gj , Γ, kj , R) where
Gj = G + Ej and kj = k − |Ej |. The following lemma is immediate.

▶ Lemma 5. (G, Γ, k) is a yes-instance if and only if one of the instances in {(Gj , Γ, kj , R) :
∀ ∅ ⊆ Ej ⊆ ER s.t. kj ≤ k} is a yes-instance.

From now on, we assume that we have an annotated instance of Dilation 2-Augmentation.
That is, (G, Γ, k, R) is an instance of Dilation 2-Augmentation and we are seeking a
dilation 2-augmentation set S such that for any edge (x, y) in S, |{x, y} ∩ R| ≤ 1. That is,
every edge added must contain at least one end-point that does not belong to R.

3.2 Bounding the Size of the Vc in Annotated Instances
We now describe how to solve the annotated version of the problem. As a first step, we
give a recursive algorithm such that at the end we obtain instances such that the size of Vc

gets upper-bounded by a function of k and d alone. To this end, and to make it easier to
understand, we adapt the following technical definition of [3] in the context of our problem.

▶ Definition 6 ([3]). A decreasing FPT-Turing-reduction is an FPT algorithm which,
given an annotated instance (G, Γ, k, R), produces ℓ = g(k, d) annotated instances
(G1, Γ, k1, R1), · · · , (Gℓ, Γ, kℓ, Rℓ), such that: (1) (G, Γ, k, R) is a yes-instance iff one of the
annotated instances in {(Gi, Γ, kj , Ri) : 1 ≤ j ≤ ℓ} is a yes-instance, and (2) kj ≤ k − 1 for
every j ∈ [ℓ].

We now give a sequence of FPT Turing reductions to solve the problem. At a high level,
we will iterate over the vertices in R that have high degrees in C, and at each step we will
add at least one vertex from I to R, and at least one new edge to G. Thus, in each step, the
budget k reduces by at least one. At least one of the resulting instances will correspond to
a “correct” set of choices. Note that initially the size of R is at most 4k; however during
the sequence of Turing FPT reductions, the size of R may increase. Nevertheless, we will
maintain the invariant that |R| remains bounded by 5k.

STACS 2025

14:8 Multivariate Exploration of Metric Dilation

Let us define an auxiliary function f that is useful for defining some parameters in the
upcoming steps. This function is defined as follows.

f(i) =

d if i = d

d · k + k2 + k if i = d − 1
d · kd−i + kd−i+1 +

(
2 ·

∑d−i
j=2 kj

)
+ k if 0 ≤ i ≤ d − 2

It is easy to verify that f satisfies the following property.

▶ Proposition 7. For any 1 ≤ i ≤ d, f(i − 1) = (f(i) + k) · k + k.

Thus, if each vertex of R has at most f(0) many neighbours in I in C, then eventually |Vc|
gets bounded by 5k · f(0). We then move to the final step described below after Corollary 16.

Now we are in the situation where there is a vertex in R with at least f(0) + 1 neighbors
in I in C. Let v be such a vertex in R. Let U = {u1, u2, . . . , uκ} ⊆ I ∩ NC(v) be the set of
neighbours of v in I, where κ > f(0).

▶ Reduction Rule 2. If there is no vertex w ∈ I such that |U ∩ NG(w)| > f(1) then we
return no.

▶ Lemma 8. Reduction Rule 2 is safe.

Proof. Assume that for every vertex w ∈ I, we have |U ∩ NG(w)| ≤ f(1). Then, we will
show that we cannot resolve all conflicts involving v. Suppose (G, Γ, k, R) is a yes-instance
of Dilation 2-Augmentation and S be a minimial solution of size at most k. Since each
(v, ui) is an adjacent conflict, we have dG+S(v, ui) ≤ 2. This implies hopG+S(v, ui) ≤ 2.
Therefore, the edge of S that resolves the conflict (v, ui) must be adjacent to v or ui or both.
Fix an edge (v, w) ∈ S. Since S is a solution to the annotated instance of the vertex w ∈ I,
the number of paths of hop 2 in G + S starting at v, using (v, w) and ending at a vertex
in U is upper-bounded by |U ∩ NG(w)| + |S| ≤ f(1) + k. Therefore, the total number of
conflicts that can be resolved by edges of the form (v, w) is at most (f(1) + k)|Z|. Here,
Z ⊆ S contains edges of the form (v, w). Let us now focus on the conflicts that are resolved
by edges of the form (w, ui), ui ∈ U . This implies that we have paths of the form ⟨v, w, ui⟩
such that (v, w) ∈ E(G) and (w, ui) ∈ S. The number of paths of this kind is upper bounded
by |S| − |Z|. This implies that the total number of conflicts in which v participates, and can
be resolved by S, is bounded by (f(1) + k)|Z| + |S| − |Z| ≤ f(1) · k + k2 + k = f(0). ◀

Now, if Reduction Rule 2 is not applicable, then there must be a vertex w ∈ I such that
w has at least f(1) neighbors in U . We use w to identify a small set of edges that must
intersect every solution S of size at most k.

▶ Lemma 9. There exists a polynomial-time algorithm to find a set Wv = {w1, w2, . . . , wδ}
such that (1) δ < d, and (2) If we have a yes-instance, then any solution S of size at most
k satisfies that S ∩ {(v, wi) : i ∈ [δ]} ̸= ∅.

Proof. By our definition of C, the vertex v is in adjacent conflict with each vertex in U .
First, by Reduction Rule 2 and Lemma 8, we know that for a yes-instance there exists
a vertex w ∈ I such that |U ∩ NG(w)| > d · kd. We let this vertex to be w1. Now either
(v, w1) ∈ S, and then we are done. Else we are in the case when (v, w1) ̸∈ S. Let us define
W1 := {w1}.

Suppose we have inductively found a set Wi−1 = {w1, . . . , wi−1} for some i ≥ 2. Further,
inductively assume that Ui−1 :=

⋂
j∈[i−1] U ∩ NG(wj) is such that |Ui−1| > f(i − 1). See

Figure 3.2 for an illustration. We prove the following crucial claim which lets us obtain the
next vertex in the sequence. Its proof is along the same lines as Lemma 8.

A. Banik, F. V. Fomin, P. A. Golovach, T. Inamdar, S. Jana, and S. Saurabh 14:9

v

u1 uκ w1

f (1)

f (2)

w2 wδ

d

R

I

Figure 2 Illustration of arguments used in Lemma 9.

▷ Claim 10. Suppose (G, Γ, k, R) is a yes-instance of Dilation 2-Augmentation and S

be a solution of size at most k. If S ∩ {(v, wj) : j ∈ [i − 1]} = ∅. Then there exists a vertex
wi ∈ I \ Wi−1 such that wi has more than f(i) neighbours in G, from Ui−1.

Proof. Assume that for every vertex w ∈ I \ Wi−1, we have |Ui−1 ∩ NG(w)| ≤ f(i). Then,
we will show that we cannot resolve all conflicts involving v with the vertices from Ui−1.
Suppose (G, Γ, k, R) is a yes-instance of Dilation 2-Augmentation and S is a solution of
size at most k such that S ∩ {(v, wj) : j ∈ [i − 1]} = ∅. Now we have that for each u ∈ Ui−1,
(v, u) is an adjacent conflict but dG+S(v, u) ≤ 2. This implies hopG+S(v, u) ≤ 2. Therefore,
the edge of S that resolves the conflict (v, u) must be adjacent to v or u or both. Fix an
edge (v, w) ∈ S. Since S is a solution to the annotated instance of the vertex w ∈ I, and
w /∈ Wi−1 (by assumption), the number of paths of hop 2 in G + S starting at v, using
(v, w) and ending at a vertex in Ui−1 is upper-bounded by |Ui−1 ∩ NG(w)| + |S| ≤ f(i) + k.
Therefore, the total number of conflicts (v, u) where u ∈ Ui−1 that can be resolved by edges
of the form (v, w) where w /∈ Wi−1 is at most (f(i) + k) · |Z| ≤ (f(i) + k) · k. Here, Z ⊆ S

contains edges of the form (v, w). Let us now focus on the conflicts that are resolved by
edges of the form (w, u), u ∈ Ui−1. This implies that we have paths of the form ⟨v, w, u⟩
such that (v, w) ∈ E(G) and (w, u) ∈ S. The number of paths of this kind is upper bounded
by |S| − |Z| ≤ k. This implies that the total number of conflicts (v, u) where u ∈ Ui−1, and
can be resolved by S, is bounded by (f(i) + k) · k + k = f(i − 1), by Proposition 7. Recall
that, by induction, |Ui−1| > f(i − 1). This contradicts that S is a solution, and the claim
follows. ◁

Thus, if we find a vertex wi satisfying the requirements as mentioned in Claim 10, we
define Wi = Wi−1 ∪ {wi} and proceed to the next iteration. Otherwise, if we cannot find wi,
then we stop and output the current set Wi−1 as the set Wv as required by the lemma. In this
case, by Claim 10, we know that, if we have a yes-instance, then S∩{(v, wj) : j ∈ [i − 1]} ≠ ∅.

Suppose the iterative procedure goes on for δ iterations, i.e., Wv = Wδ = {w1, w2, . . . , wδ}.
Observe that if δ ≥ d then the vertex set {w1, w2, . . . , wd} and

⋂
j∈[δ](U ∩ NG(wj)) induce a

Kd,d in G which contradicts the fact that G is Kd,d-free. Thus, δ < d, and (1) holds. ◀

We use the algorithm in Lemma 9 to find the set Wv of size δ < d as claimed. We know
that, if we have a yes-instance, then any minimal solution S contains at least one edge
of the form (v, wi), i ∈ [δ]. The following reduction rule essentially tries to guess the set
W ′ ⊆ Wv for which such edges belong to the solution, and add those vertices to the vertex
cover R. Further, due to our invariant, when we add W ′ to R, we also need to guess the
edges between W ′ and the vertices already in R. The following reduction rule is a Turing
reduction from the annotated version of the problem to itself – we prove later that it is a
valid decreasing Turing FPT reduction step.

STACS 2025

14:10 Multivariate Exploration of Metric Dilation

▶ Reduction Rule 3. Let v ∈ R be any vertex such that degC(v) ≥ f(0) + 1. For every
non-empty subset W ′ ⊆ Wv, and for any subset

Ex ⊆
{

(p, q) ∈ E(G) : p ∈ W ′, q ∈ W ′ ∪ (R \ {v})
}

of non-edges in G, we create the following instances. (Gj , Γ, kj , R′) where Gj = G +
({(v, wa)|wa ∈ W ′} ∪ Ex), kj = k − |W ′| − |Ex| and R′ = R ∪ W ′.

▶ Lemma 11. Reduction Rule 3 is a valid decreasing FPT-Turing-reduction.

Proof. First, note that |Wv| ≤ d, which implies that the number of subsets W ′ ⊆ W is at
most 2d. Then, for each fixed subset W ′ of size δ, there are at most 2O(k log d) many subset
Ex. So in total the number of instances we created is bounded by 2O(d+k log d). Now we show
the safeness of the Reduction Rule 3.

▷ Claim 12. (G, Γ, k, R) is a yes-instance if and only if one of the instances in {(Gj , Γ, kj , R′)}
is a yes-instance.

Proof. The backward direction is trivial. In the forward direction, assume that (G, Γ, k, R)
is a yes-instance and S is a minimal solution. Due to the Lemma 9 the solution S must
satisfy the condition that S ∩ {(v, wi) : i ∈ [δ]} ≠ ∅. Let S′ := S ∩ {(v, wi) : i ∈ [δ]}, W ′′ :=
VS′ \ {v}, and S′′ := S ∩ {(w, r) : w ∈ W ′′, r ∈ R ∪ W ′′}. Clearly W ′′ ⊆ Wv and S′′ ⊆{

(p, q) ∈ E(G) : either p, q ∈ W ′ or p ∈ W ′, q ∈ R \ {v}
}

. Now considering S′′ = Ex, Gj =
G + S′ + S′′, kj = k − |S′| − |S′′|, and R′ = R ∪ W ′′, we have that (Gj , Γ, kj , R′) is a
yes-instance. ◁

As W ′ is a non-empty subset of Wv so kj ≤ k − |W ′| ≤ k − 1. So in each created instance,
the value of the parameter decreases by at least one. Hence the lemma follows. ◀

Next we formalize an observation that follows from the definition of FPT-Turing -reduction.

▶ Observation 13. Starting from an annotated instance (G, Γ, k, R), let (Gj , Γ, kj , Rj) be
one of the instances produced by Reduction Rule 3. Then, |Rj | ≤ |R| + (k − kj). In particular,
this implies that the size of |R′| in any of the instances produced by a sequence of decreasing
Turing FPT reductions, remains bounded by 5k.

We keep applying Reduction Rule 3 until each vertex in R has at most f(0) neighbors in
I in the graph C. In each step, we maintain the invariant that we have included all possible
solution edges within R in G and reduced k appropriately. Observe that when Reduction
Rule 3 is not applicable, the total number of vertices in the conflict is at most O(k · f(0)).

Let (G, Γ, k, R) be an annotated instance of Dilation 2-Augmentation. Find a dilation
2-augmentation set S such that |{x, y} ∩ R| ≤ 1. That is, every edge added must contain at
least one end-point that does not belong to R. In addition, |R| ≤ 5k and |Vc| = O(k · f(0)),
where f(0) = d · kd + kd+1 +

(
2 ·

∑d
j=2 kj

)
+ k.

3.3 Solving Annotated Instances with bounded Vc

In the rest of the section, we describe how to solve an annotated instance I = (G, Γ, k, R)
when the size of Vc is bounded by some function of k and d. Note that although |Vc| ≤ h(k, d),
we cannot completely forget about the vertices outside Vc – since some conflicts may be
resolved by using edges incident to vertices outside Vc. We will argue that we do not need to
keep all such vertices, but it suffices to keep one representative from each “equivalence class”,
which we formalize below. Note that in this last step, we do not need the vertex cover R.

A. Banik, F. V. Fomin, P. A. Golovach, T. Inamdar, S. Jana, and S. Saurabh 14:11

Let O = V (G) \ Vc denote the vertices outside Vc. For each A, B ⊆ Vc with A ∩ B = ∅,
let O(A, B) denote the set of vertices v ∈ O satisfying the following two properties:
1. Set of vertices u ∈ Vc such that dG(u, v) = 1 is exactly equal to A, and
2. Set of vertices w ∈ Vc such that (v, w) ̸∈ E(G), but dΓ(v, w) = 1 is exactly equal to B.
We have the following observation.

▶ Observation 14. 1. P = {O(A, B) : A, B ⊆ Vc, A ∩ B = ∅} forms a partition of O.
2. |P| is bounded by 3|Vc| ≤ g(k, d) for some computable function g.
For each O(A, B) ∈ P such that O(A, B) ̸= ∅, we mark an arbitrary vertex v(A, B) ∈ O(A, B).
Let U ⊆ O denote the set of unmarked vertices. In the following reduction rule, we eliminate
all the vertices of U from G and Γ, and then prove that it is correct.

▶ Reduction Rule 4. Given the annotated instance I1 = (G, Γ, k, R), produce the annotated
instance I2 = (G′, Γ′, k, R), where Γ′ = Γ − U and G′ = G − U .

▶ Lemma 15. Reduction Rule 4 is safe.

Proof. We argue that I1 is a yes-instance if and only if I2 is a yes-instance. The reverse
direction is trivial, since any solution for Is is also a solution for I1 (recall that the vertices
of U are not involved in any conflict). So we show the forward direction.

Let S ⊆ E(G) be a minimal solution of size k with the set of end-points being VS . From
this solution, we define another solution S′ as follows. Consider any u ∈ U ∩ VS , and let
S(u) = {(u, w) ∈ S}, and let N(u) = {w : (u, w) ∈ S(u)}. First, note that N(u) ⊆ Vc –
suppose not, i.e., there exists some w ∈ N(u) but w ̸∈ Vc, then (u, w) cannot be part of
a path of hop length 2 between two vertices in Vc, which contradicts the minimality of
S. Now, suppose u belongs to the set O(A, B) ∈ O, then O(A, B) ̸= ∅, which implies
that some v(A, B) ∈ V (G) \ U = V (Γ) \ U . We define another set S′ := S \ S(u) ∪
{(v(A, B), w : w ∈ S(u)}. Note that |S| = |S′|. We prove that S′ is also a solution.

Consider any path ⟨x, u, y⟩ in G + S, such that dΓ(x, u) = dΓ(u, y) = 1. There are
three cases: (i) (x, u) ∈ E(G) and (u, y) ∈ S. In this case, note that (x, v(A, B)) ∈ E(G′)
with dG′(x, v(A, B)) = dG(x, v(A, B)) = 1, and dΓ(u, y) = dΓ(v(A, B), y) = 1. Further,
(v(A, B), y) ∈ S′. (ii) (x, u) ∈ S and (u, y) ∈ E(G) is symmetric. (iii) (x, y), (y, u) ∈ S. In
this case, dΓ(v(A, B), x) = dΓ(u, x) = 1, and dΓ(v(A, B), y) = dΓ(u, y) = 1. Thus, in all three
cases, ⟨x, v(A, B), y⟩ path exists in G + S′, or in other words, the replaced edges incident
to v(A, B) can resolve the same set of conflicts as the edges of S(u). By iterating over the
vertices of VS ∩ U and modifying the solution in this way, we obtain a solution S′′ containing
entirely the edges within E(Γ′). This completes the forward direction. ◀

▶ Corollary 16. The number of vertices in the reduced annotated instance (G′, Γ′, k, R) is
bounded by some g(k, d).

Thus, there are at most
(

g(k,d)
2k

)
=

(2O(h(k,d))

2k

)
= 2O(k·h(k,d)) possibilities for the end-points of

the solution edges. For each such subset, we can guess the actual set of at most k edges in
time kO(k). Thus, the total number of possibilities is bounded by f(k, d) for some computable
function f . We finish the discussion with the following theorem, and its immediate corollary.

▶ Theorem 17. Dilation 2-Augmentation can be solved in time f(k, d) · nO(1) when G

is a Kd,d-free graph for any d ∈ N.

▶ Corollary 18. Dilation 2-Augmentation can be solved in time f(k) · nO(1) when G is a
forest, planar graph, bounded-treewidth graph, an H-minor free graph for some fixed H, a
nowhere dense graph, or bounded degeneracy graph.

STACS 2025

14:12 Multivariate Exploration of Metric Dilation

4 Dilation t-Augmentation for Bounded Degree Graphs is FPT

In this section either G is of bounded degree or Γ is of bounded degree. Observe that a
Kd,d-free graph generalizes bounded-degree graphs, and thus the result when G is of bounded
degree may appear to be subsumed by those presented in Section 3. However, the result
presented here works for any value of t, but the result in Section 3 only worked for t = 2.

In either case, we will use the following easy lemma to bound the number of vertices in a
ball of radius ℓ around a vertex subset of small size.

▶ Observation 19. Let H be a graph with maximum degree ∆. For any subset of vertices
U ⊆ V (H), |N ℓ

H(U)| ≤ |U | ·
∑ℓ

i=0 ∆i ≤ |U | · ∆ℓ+1.

4.1 Γ is of Bounded Degree
Let (G, Γ, k) be an instance of Dilation t-Augmentation. In this subsection, we consider
the case where Γ belongs to the family of graphs of maximum degree at most ∆. However,
there is no restriction on G. That is, G is an arbitrary undirected graph. The idea of the proof
is to identify a subset of vertices of Γ of size at most f(k, ∆, t) such that VS belongs to balls
of radius t around them. Once the set is identified, the algorithm tries all potential solutions
of size at most k and returns yes, if either leads to the desired solution. The hypothetical
solution S is of size at most k, and hence from Observation 19 we have |N t

Γ(VS)| ≤ 2k · ∆t+1.
First, we show that the vertices of VS are in distance t from the vertices of Vc in Γ.

▶ Lemma 20 (♠). Let (G, Γ, k) be a yes-instance of Dilation t-Augmentation. Then,
VS ⊆ N t

Γ(Vc).

Observe that we cannot upper bound the size of N t
Γ(Vc), as the size of Vc may not be

bounded by any function of t, k and ∆. Next, we show a kind of converse of Lemma 20
showing that, in fact, Vc is contained inside the balls of radius t around VS in Γ. The proof
is identical to Lemma 20 and is presented separately for clarity.

▶ Lemma 21 (♠). Let (G, Γ, k) be a yes-instance of Dilation t-Augmentation. Then,
Vc ⊆ N t

Γ(VS).

Lemma 21, along with Observation 19 implies that in a yes-instance, the size of Vc is
bounded by 2k ·∆t+1. Thus, if |Vc| > 2k ·∆t+1, we say no. Now assume that |Vc| ≤ 2k ·∆t+1.
Next, via Lemma 20, we have that VS ⊆ N t

Γ(Vc) =: Q, say. Again, by Observation 19,
|Q| ≤ |Vc| · ∆t+1 ≤ 2k · ∆2t+2. We know we have to add at most k edges between the vertices
in Q to resolve all the conflicts. Since the size of Q is bounded by a function of k, ∆, and t,
this leads to the following theorem.

▶ Theorem 22. Dilation t-Augmentation can be solved in time 2O(k log k) · ∆O(kt) · nO(1),
where ∆ denotes the maximum degree of the graph Γ.

4.2 G is of Bounded Degree
Let (G, Γ, k) be an instance of Dilation t-Augmentation. In this subsection, we consider
the case where G belongs to the family of graphs of maximum degree at most ∆. However,
there is no restriction on Γ. The proof strategy in this section is similar to that used for
Theorem 22. As before, the idea is to identify a subset of vertices of G of maximum size
f(k, ∆, t) such that VS belongs to balls of radius t2 around them.

A. Banik, F. V. Fomin, P. A. Golovach, T. Inamdar, S. Jana, and S. Saurabh 14:13

s1 = a1
s2a b

a2 a3 aj ∈ Vc

e ∈ S P
P ′ ∈ G+ S

Q ∈ Γ R ∈ G

Figure 3 Path in G + S is shown in red (solid lines), path in Γ is shown in green (dashed) and
path in G is shown in blue (dashed-dotted).

▶ Lemma 23 (♠). Let (G, Γ, k) be a yes-instance of Dilation t-Augmentation. Then,
Vc ⊆ N t

G(VS).

As |VS | ≤ 2k, the next observation follows from Observation 19.

▶ Observation 24. |N t
G(VS)| ≤ 2k · ∆t+1.

Lemma 23 and Observation 24 together yield the following reduction rule that yields an
upper bound on the size of the conflict set Vc.

▶ Reduction Rule 5. If |Vc| > 2k · ∆t+1, return no.

To identify the vertices in VS , we show that they lie in the balls of radius t2 around Vc in G.

▶ Lemma 25. Let (G, Γ, k) be a yes-instance of Dilation t-Augmentation and S be a
hypothetical minimal solution. Then, VS ⊆ N t2

G (Vc).

Proof. Let a ∈ VS and (a, b) be an edge in S containing a. Due to the minimality of S,
for every edge e = (a, b) in S, there exist at least two vertices s1 and s2 such that (i) s1
and s2 are in conflict (again, adjacent conflict) with each other in G, and (ii) e = (a, b)
appears in a shortest path P of length at most t between s1 and s2 in G + S. Note that
a and b may not be in conflict. We show that there exists a vertex w ∈ Vc such that w

is at most t2 hop distance from the vertex a in G (that is, hopG(w, a) ≤ t2). Let P ′ be
the subpath of length τ ≤ t between s1 and a (see Figure 3). Since G + S is also a graph
embedded in a metric space derived from the undirected graph Γ, by Observation 2 we have
dΓ(s1, a) ≤ dG+S(s1, a) = τ ≤ t.

Let Q = ⟨s1 = a1, a2 · · · , aτ+1 = a⟩ be a path between s1 and a in Γ of length dΓ(s1, a) ≤ t.
Let j ∈ [τ + 1] be the largest index such that aj ∈ Vc. Since s1 ∈ Vc, an index j always
exists. Observe that for all j ≤ i ≤ τ , ai and ai+1 are not in conflict and ai and ai+1 are
adjacent in Γ. Therefore, there exists a path Ri between ai and ai+1, j ≤ i ≤ τ , in G of
maximum length t. Thus, by concatenating the paths Rj • Rj+1 • · · · • Rτ , we get a walk
with a weighted length at most t2 between aj and a in G. This implies that there is a path
between aj and a in G of length t2. That is, dG(aj , a) ≤ t2. Since all the edge weights in G

are at least 1, we have hopG(aj , a) ≤ t2. This implies a ∈ N t2

G (aj) ⊆ N t2

G (Vc). ◀

From Lemma 25 and Reduction Rule 5, and Observation 19, we get the following.

▶ Lemma 26. Let (G, Γ, k) be a yes-instance of Dilation t-Augmentation. Then,
|N t2

G (Vc)| ≤ 2k · ∆t+1 · ∆t2+1.

We have to add at most k edges between the vertices in N t2

G (Vc) to resolve all the conflicts.
Since the size of N t2

G (Vc) is bounded by f(k, t, ∆), this leads to the following theorem.

▶ Theorem 27. Dilation t-Augmentation can be solved in time 2O(k log k) ·∆O(kt2) ·nO(1),
where ∆ denotes the maximum degree of the graph G.

STACS 2025

14:14 Multivariate Exploration of Metric Dilation

Γ

V1

V2

V3

V4V6

V7

V8

V5

c

V1

V3

V5
V6

V7

V8

U3

U4U5
U6

U7

U8

V4

V2

G

c

V1

V3

V5
V6

V7

V8

U1
U2

U3

U4

U5

U6

U7

U8

V4

V2

W1

W2

W3

W5

W6

W7

W8

W1

W2

W3

W4
W5

W6

W7

W8

H

k2 vertices

3k3 vertices

W4

U1
U2

Figure 4 Hardness for t = 3 when G is a disjoint union of a star, and a set of isolated vertices.

5 Dilation 3-Augmentation For Forest and Stars

In this section, we focus on Dilation 3-Augmentation when G is a forest (Section 5.1),
or when Γ is a star (Section 5.2). We show that Dilation 3-Augmentation is W-hard in
both cases. In contrast to this, we know that Dilation 2-Augmentation is FPT when G

is a forest, due to Theorem 17.

5.1 W[1]-hardness of Dilation 3-Augmentation when G is Forest

We sketch a polynomial-time parameter preserving reduction from the Multicolored
Clique problem – which is known to be W[1]-hard [9] – to an instance of Dilation
3-Augmentation when G is a disjoint union of a star and an independent set. The
input of Multicolored Clique consists of a graph H, an integer k, and a partition
V = (V1, V2, · · · , Vk) of the vertices of H; our aim is to decide if there is a clique of size k

containing exactly one vertex from each set Vi, i ∈ [k]. We denote this instance by (H, k, V).
We can assume that for each i ∈ k, Vi is an independent set. From an instance (H, k, V)
of Multicolored Clique for k ≥ 2, we construct an instance (G, Γ, k′) of Dilation
3-Augmentation with the following way (see Figure 4).

For every set Vi, i ∈ [k], we introduce a set Ui of k2 vertices and a set Wi of 3k3 vertices.
Construction of the graph Γ:

1. The vertex set in Γ consists of vertex set HG ∪ {U1 ∪ · · · ∪ Uk} ∪ {W1 ∪ · · · ∪ Wk} ∪ {c}
where HG = V (H).

2. The edge set of Γ is defined by E(Γ) = EH ∪ EU ∪ EW ∪ Ec; here EH = E(H),
EU = {(v, u)|v ∈ Vi, u ∈ Ui, i ∈ [k]}

⋃
{(v, u)|v ∈ Ui, u ∈ Uj , i, j ∈ [k], i ̸= j},

EW = {(u, w)|u ∈ Ui, w ∈ Wi, i ∈ [k]} and Ec = {(c, v)|v ∈ HG ∪ W1 ∪ . . . ∪ Wk}.
The graph G consists of the vertex set V (Γ) and the edge set Ec.
We set k′ =

(
k
2
)

+ k3.
It is easy to see that in the constructed instance (G, Γ, k′) the graph G is indeed a disjoint
union of a star and independent set. Also, the construction can be performed in time
polynomial in |V (H)| and k. Towards the correctness of our reduction, we prove the
following.

▶ Lemma 28. (H, k, V) is a yes-instance of Multicolored Clique if and only if (G, Γ, k′)
is a yes-instance of Dilation 3-Augmentation.

A. Banik, F. V. Fomin, P. A. Golovach, T. Inamdar, S. Jana, and S. Saurabh 14:15

Proof. (⇒)In the forward direction, suppose that there is a multicolored clique Q in H.
Let the set of vertices in Q be VQ = {v1, · · · , vk} where vi ∈ Vi and the edgeset of Q be
EQ. Consider the set of edges EV U = {(vi, u)|i ∈ [k], u ∈ Ui}. Observe that |EQ| =

(
k
2
)

and
|EV U | = k ·k2 as |Ui| = k2 for each i ∈ [k]. Next, we show that the dilation of G+(EQ ∪EV U)
is at most 3. Notice that all the edges incident to c in Γ are also present in G. Hence c is
not involved in any adjacent conflicts. Now we consider all other pairs of adjacent vertices
in Γ, say a and b, and show that there exists a path between them of length at most 3 in
G + (EQ ∪ EV U). This suffices our proof due to Lemma 1. We argue with the following cases.

Case (i): a ∈ Vi and b ∈ Vj . There is a length 2 path between them in G itself which is
precisely ⟨a, c, b⟩.

Case (ii): a ∈ Vi and b ∈ Ui. If a = vi then a and b are adjacent in G + EV U . Otherwise,
there is a length 3 path between them in G + EV U which is precisely ⟨a, c, vi, b⟩.

Case (iii): a ∈ Ui and b ∈ Uj . If i ̸= j, we use two edges from EQ ∪ EV U . The vertices a

and b are connected by a length 3 path ⟨a, vi, vj , b⟩ in G + (EQ ∪ EV U). Suppose that
i = j. Then ⟨a, vi, b⟩ is a path in G + (EQ ∪ EV U) of length 2.

Case (iv): a ∈ Ui and b ∈ Wi. In this case, we use an edge from EV U . The vertices a and
b are connected by a length 3 path ⟨a, vi, c, b⟩ in G + EV U .

(⇐) In the backward direction, let EX be a solution to the instance (G, Γ, k′) of Dilation
3-Augmentation, that means dilation of G + EX is at most 3. We start with the following
claim.

▷ Claim 29. For each i ∈ [k] and every u ∈ Ui, the set EX contains an edge (u, v) for
v /∈

⋃k
j=1 Uj .

Proof. The proof is by contradiction. Suppose that there are i ∈ [k] and u ∈ Ui such that for
every (u, v) ∈ EX , v ∈

⋃k
j=1 Uj . Because |EX | ≤ k′ =

(
k
2
)

+ k3 and |Wi| = 3k3, we have that
|Wi| − 2|EX | ≥ 1 and, therefore, there is w ∈ Wi such that w is not incident to any edge of
EX . Thus, any shortest (u, w)-path in G + EX contains the edge (w, c) and an edge (u, v)
for some v ∈

⋃k
j=1 Uj . However, the distance between c and v in Γ is 2. This implies that

the length of any (u, w)-path in G + EX is at least 4. Because u and w are adjacent in Γ,
this contradicts that the dilation of G + EX is at most 3 and proves the claim. ◁

Due to the above claim, summing over all i ∈ [k], we have that the set EX contains at
least k · k2 = k3 edges incident to the vertices of

⋃k
i=1 Ui whose second end-points are

outside
⋃k

i=1 Ui. Because |EX | ≤
(

k
2
)

+ k3, we have that for each i ∈ [k], there are at least
k2 − 2

(
k
2
)

≥ k ≥ 2 vertices of Ui that are adjacent to exactly one edge of EX . For i ∈ [k], we
denote by U ′

i ⊆ Ui the set of vertices incident to unique edges of EX . We make the following
observation.

▷ Claim 30. For each i ∈ [k], there is u ∈ U ′
i such that u is incident to a single edge

(u, v) ∈ EX such that (u, v) ∈ E(Γ).

Proof. Consider arbitrary u ∈ U ′
i . This vertex has a unique neighbor v in G + EX where

v /∈
⋃k

j=1 Ui by Claim 29. If (u, v) ∈ E(Γ), the claim holds. Suppose that (u, v) /∈ E(Γ).
Recall that |U ′

i | ≥ 2. Thus, there is u′ ∈ U ′
i distinct from u. In the same way as above, u′

has a unique neighbor v′ in G + EX where v′ /∈
⋃k

j=1 Ui. Then any (u, u′)-path in H + EX

contains the edges (u, v) and (u′, v′). Since (u, u′) ∈ E(Γ) and the dilation of G + EX is at
most 3, we have that the length of (u′, v) is one. Therefore, (u′, v′) ∈ E(Γ). This concludes
the proof. ◁

STACS 2025

14:16 Multivariate Exploration of Metric Dilation

Using Claim 30, for every i ∈ [k], we denote by ui the vertex of U ′
i that is incident to a

single edge of EX ∩ E(Γ) and we use vi to denote the second end-point of the edge.

▷ Claim 31. {v1, . . . , vk} is a clique of H.

Proof. First, we show that vi ∈ Vi for each i ∈ [k]. Consider i ∈ [k]. Note that by Claims 29
and 30 and the construction of Γ, either vi ∈ Wi or vi ∈ Vi. Suppose that vi ∈ Wi and
consider uj for j ∈ [k] distinct from i. We have that (ui, uj) ∈ E(Γ). Therefore, G + EX

should have a (ui, uj)-path of length at most 3. Any (ui, uj)-path contains the edges (ui, vi)
and (uj , vj). Thus, a shortest (ui, uj)-path should contain (vi, vj) ∈ E(Γ). However, since
vi ∈ Wi and vj ∈ Vj ∪ Wj , we have no such an edge by the construction of Γ. This
contradiction proves that vi ∈ Vi.

Finally, we show that for all distinct i, j ∈ [k], vi and vj are adjacent in H. For this, we
again observe that G + EX should have a (ui, uj)-path of length at most 3 that includes
(ui, vi) and (uj , vj). This implies that (vi, vj) ∈ E(Γ). Because vi ∈ Vi and vj ∈ Vj , we have
that (vi, vj) is in EX and is an edge of H. This proves the claim. ◁

Claim 31 completes the proof of the lemma. ◀

Hence, we have the following theorem.

▶ Theorem 32. Dilation 3-Augmentation is W[1]-hard parameterized by k when G is
star forest.

5.2 W[1]-hardness of Dilation 3-Augmentation when Γ is Star
We present a parameter preserving reduction from the Dominating Set problem.

Let (H, k) be an instance of Dominating Set. We create the instance (G, Γ, k) of the
Dilation 3-Augmentation problem as follows. Graphs Γ and G are defined over the vertex
sets V (H) ∪ {c}, where c is a new vertex distinct from the vertices of V (H). Γ is a star with
center c and leaves V (H). That is, E(Γ) = {(c, v) : v ∈ V (H)}. Note that in the shortest
path metric defined by Γ, dΓ(u, v) = 2 for any u, v ∈ V (H). We let E(G) = E(H), which
implies that G is a disjoint union of H and the singleton vertex c. Note that the weight of
each edge in G is 2. The proof of equivalence can be found in the full version.

▶ Observation 33 (♠). (H, k) is an yes-instance of Dominating Set if and only if (G, Γ, k)
is an yes-instance of Dilation 3-Augmentation.

Hence we have the following theorem.

▶ Theorem 34. Dilation 3-Augmentation is W[2]-hard parameterized by k even when Γ
is star.

6 Conclusion

In this article, we introduced Dilation t-Augmentation and explored its multivariate
complexity of the problem by restricting either the graph class to which Γ could belong or
the graph class to which G could belong. Other special graph classes that one could consider
include geometric intersection graphs such as interval graphs, unit-disk graphs, disk-graphs,
or, more generally, string graphs. In an alternate direction, we can consider the problem in
its full generality. However, as we saw, the problem in its full generality cannot admit FPT
algorithm. So, a next natural question that stems from our work is exploring these problems
from the perspective of FPT-approximation.

A. Banik, F. V. Fomin, P. A. Golovach, T. Inamdar, S. Jana, and S. Saurabh 14:17

References
1 Boris Aronov, Mark de Berg, Otfried Cheong, Joachim Gudmundsson, Herman J. Haverkort,

Michiel H. M. Smid, and Antoine Vigneron. Sparse geometric graphs with small dilation.
Comput. Geom., 40(3):207–219, 2008. doi:10.1016/J.COMGEO.2007.07.004.

2 Aritra Banik, Fedor V. Fomin, Petr A. Golovach, Tanmay Inamdar, Satyabrata Jana, and
Saket Saurabh. Multivariate exploration of metric dilation, 2025. arXiv:2501.04555.

3 Édouard Bonnet, Nicolas Bousquet, Stéphan Thomassé, and Rémi Watrigant. When maximum
stable set can be solved in FPT time. In Pinyan Lu and Guochuan Zhang, editors, 30th
International Symposium on Algorithms and Computation, ISAAC 2019, December 8-11,
2019, Shanghai University of Finance and Economics, Shanghai, China, volume 149 of
LIPIcs, pages 49:1–49:22. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, 2019. doi:
10.4230/LIPICS.ISAAC.2019.49.

4 Marek Cygan, Fedor V. Fomin, Lukasz Kowalik, Daniel Lokshtanov, Dániel Marx, Marcin
Pilipczuk, Michal Pilipczuk, and Saket Saurabh. Parameterized Algorithms. Springer, 2015.
doi:10.1007/978-3-319-21275-3.

5 Reinhard Diestel. Graph theory. Springer (print edition); Reinhard Diestel (eBooks), 2024.
6 Rodney G. Downey and Michael R. Fellows. Parameterized Complexity. Monographs in

Computer Science. Springer, 1999. doi:10.1007/978-1-4612-0515-9.
7 Jack Edmonds. Paths, trees, and flowers. Canadian Journal of mathematics, 17:449–467, 1965.
8 Mohammad Farshi, Panos Giannopoulos, and Joachim Gudmundsson. Improving the stretch

factor of a geometric network by edge augmentation. SIAM J. Comput., 38(1):226–240, 2008.
doi:10.1137/050635675.

9 Michael R Fellows, Danny Hermelin, Frances Rosamond, and Stéphane Vialette. On the
fixed-parameter intractability and tractability of multiple-interval graph properties. Theoretical
Computer Science. v410, pages 53–61, 2007.

10 Jörg Flum and Martin Grohe. Parameterized Complexity Theory. Texts in Theoretical
Computer Science. An EATCS Series. Springer, 2006. doi:10.1007/3-540-29953-X.

11 Yong Gao, Donovan R. Hare, and James Nastos. The parametric complexity of graph diameter
augmentation. Discret. Appl. Math., 161(10-11):1626–1631, 2013. doi:10.1016/J.DAM.2013.
01.016.

12 Panos Giannopoulos, Rolf Klein, Christian Knauer, Martin Kutz, and Dániel Marx. Computing
geometric minimum-dilation graphs is np-hard. Int. J. Comput. Geom. Appl., 20(2):147–173,
2010. doi:10.1142/S0218195910003244.

13 Joachim Gudmundsson and Michiel H. M. Smid. On spanners of geometric graphs. Int. J.
Found. Comput. Sci., 20(1):135–149, 2009. doi:10.1142/S0129054109006486.

14 Joachim Gudmundsson and Sampson Wong. Improving the dilation of a metric graph by
adding edges. ACM Trans. Algorithms, 18(3):20:1–20:20, 2022. doi:10.1145/3517807.

15 Yusuke Kobayashi. NP-hardness and fixed-parameter tractability of the minimum spanner
problem. Theor. Comput. Sci., 746:88–97, 2018. doi:10.1016/J.TCS.2018.06.031.

16 Yusuke Kobayashi. An FPT algorithm for minimum additive spanner problem. In 37th
International Symposium on Theoretical Aspects of Computer Science, STACS 2020, March
10-13, 2020, Montpellier, France, volume 154 of LIPIcs, pages 11:1–11:16. Schloss Dagstuhl –
Leibniz-Zentrum für Informatik, 2020. doi:10.4230/LIPICS.STACS.2020.11.

17 Jun Luo and Christian Wulff-Nilsen. Computing best and worst shortcuts of graphs embedded
in metric spaces. In Seok-Hee Hong, Hiroshi Nagamochi, and Takuro Fukunaga, editors,
Algorithms and Computation, 19th International Symposium, ISAAC 2008, Gold Coast,
Australia, December 15-17, 2008. Proceedings, volume 5369 of Lecture Notes in Computer
Science, pages 764–775. Springer, 2008. doi:10.1007/978-3-540-92182-0_67.

18 Giri Narasimhan and Michiel Smid. Geometric spanner networks. Cambridge University Press,
2007.

19 David Peleg and Alejandro A. Schäffer. Graph spanners. J. Graph Theory, 13(1):99–116, 1989.
doi:10.1002/JGT.3190130114.

20 Christian Wulff-Nilsen. Computing the dilation of edge-augmented graphs in metric spaces.
Comput. Geom., 43(2):68–72, 2010. doi:10.1016/J.COMGEO.2009.03.008.

STACS 2025

https://doi.org/10.1016/J.COMGEO.2007.07.004
https://arxiv.org/abs/2501.04555
https://doi.org/10.4230/LIPICS.ISAAC.2019.49
https://doi.org/10.4230/LIPICS.ISAAC.2019.49
https://doi.org/10.1007/978-3-319-21275-3
https://doi.org/10.1007/978-1-4612-0515-9
https://doi.org/10.1137/050635675
https://doi.org/10.1007/3-540-29953-X
https://doi.org/10.1016/J.DAM.2013.01.016
https://doi.org/10.1016/J.DAM.2013.01.016
https://doi.org/10.1142/S0218195910003244
https://doi.org/10.1142/S0129054109006486
https://doi.org/10.1145/3517807
https://doi.org/10.1016/J.TCS.2018.06.031
https://doi.org/10.4230/LIPICS.STACS.2020.11
https://doi.org/10.1007/978-3-540-92182-0_67
https://doi.org/10.1002/JGT.3190130114
https://doi.org/10.1016/J.COMGEO.2009.03.008

Structure-Guided Automated Reasoning
Max Bannach #

European Space Agency, Advanced Concepts Team, Noordwijk, The Netherlands

Markus Hecher #

Univ. Artois, CNRS UMR 8188, Centre de Recherche en Informatique de Lens (CRIL), 6230, France
Computer Science and Artificial Intelligence Lab, Massachusetts Institute of Technology,
Cambridge, MA, USA

Abstract
Algorithmic meta-theorems state that problems definable in a fixed logic can be solved efficiently
on structures with certain properties. An example is Courcelle’s Theorem, which states that all
problems expressible in monadic second-order logic can be solved efficiently on structures of small
treewidth. Such theorems are usually proven by algorithms for the model-checking problem of the
logic, which is often complex and rarely leads to highly efficient solutions. Alternatively, we can solve
the model-checking problem by grounding the given logic to propositional logic, for which dedicated
solvers are available. Such encodings will, however, usually not preserve the input’s treewidth.

This paper investigates whether all problems definable in monadic second-order logic can
efficiently be encoded into sat such that the input’s treewidth bounds the treewidth of the resulting
formula. We answer this in the affirmative and, hence, provide an alternative proof of Courcelle’s
Theorem. Our technique can naturally be extended: There are treewidth-aware reductions from
the optimization version of Courcelle’s Theorem to maxsat and from the counting version of the
theorem to #sat. By using encodings to sat, we obtain, ignoring polynomial factors, the same
running time for the model-checking problem as we would with dedicated algorithms. Another
immediate consequence is a treewidth-preserving reduction from the model-checking problem of
monadic second-order logic to integer linear programming (ilp). We complement our upper bounds
with new lower bounds based on ETH; and we show that the block size of the input’s formula and
the treewidth of the input’s structure are tightly linked.

Finally, we present various side results needed to prove the main theorems: A treewidth-preserving
cardinality constraints, treewidth-preserving encodings from cnfs into dnfs, and a treewidth-aware
quantifier elimination scheme for qbf implying a treewidth-preserving reduction from qsat to sat.
We also present a reduction from projected model counting to #sat that increases the treewidth
by at most a factor of 2k+3.59, yielding a algorithm for projected model counting that beats the
currently best running time of 22k+4

· poly(|ψ|).

2012 ACM Subject Classification Theory of computation → Constraint and logic programming;
Theory of computation → Finite Model Theory; Theory of computation → Fixed parameter
tractability

Keywords and phrases automated reasoning, treewidth, satisfiability, max-sat, sharp-sat, monadic
second-order logic, fixed-parameter tractability

Digital Object Identifier 10.4230/LIPIcs.STACS.2025.15

Related Version Technical Report: https://arxiv.org/abs/2312.14620

Funding This research was funded by the Austrian Science Fund (FWF), grants J 4656 and P 32830,
the Society for Research Funding in Lower Austria (GFF, Gesellschaft für Forschungsförderung NÖ)
grant ExzF-0004, as well as the Vienna Science and Technology Fund (WWTF) grant ICT19-065.

Acknowledgements Part of the research was carried out while Hecher was visiting the Simons
Institute for the Theory of Computing at UC Berkeley. Author names are stated alphabetically.

© Max Bannach and Markus Hecher;
licensed under Creative Commons License CC-BY 4.0

42nd International Symposium on Theoretical Aspects of Computer Science (STACS 2025).
Editors: Olaf Beyersdorff, Michał Pilipczuk, Elaine Pimentel, and Nguyễn Kim Thắng;
Article No. 15; pp. 15:1–15:18

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:max.bannach@esa.int
https://orcid.org/0000-0002-6475-5512
mailto:hecher@mit.edu
https://orcid.org/0000-0003-0131-6771
https://doi.org/10.4230/LIPIcs.STACS.2025.15
https://arxiv.org/abs/2312.14620
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

15:2 Structure-Guided Automated Reasoning

1 Introduction

Many tools from the automated reasoning quiver can be implemented efficiently if a graphical
representation of the given formula with good structural properties is given. The textbook
example is the satisfiability problem (sat), which can be solved in time O

(
2kpoly(|ψ|)

)
on

formulas ψ whose primal graph Gψ has treewidth k. (The primal graph contains a vertex
for every variable of the formula and connects them if they appear together in a clause. Its
treewidth intuitively measures how close it is to being a tree.) The result extends to the
maximum satisfiability problem (maxsat), in which the clauses of the formula have weights
and the goal is to minimize the weights of falsified clauses, and to the model counting problem
(#sat), in which the goal is to compute the number of satisfying assignments. In this article,
we will use the notation tower(h, t) to describe a tower of twos of height h with t at the top,
and tower*(h, t) as shorthand to hide polynomial factors, e.g., O

(
2kpoly(|ψ|)

)
= tower*(1, k):

▶ Fact 1 (folklore, see for instance [1, 4, 5, 14, 24, 29, 30]). One can solve sat, maxsat, and
#sat in time tower*(1, k) if a width-k tree decomposition is given.

It is worth to take some time to inspect the details of Fact 1. The hidden polynomial
factor is not the subject of this paper (as indicated by the notation), but can be made as
small as O(|φ|) [10, 26]. Our focus will be the value on top of the tower, which in Fact 1 is
simply “k”. Under the exponential-time hypothesis (ETH), this is best possible.

The natural extension of the satisfiability problem to higher logic is the validity problem of
fully quantified Boolean formulas (qsat). While it is well-known that qsat is fixed-parameter
tractable (i.e., it is in FPT) with respect to treewidth [11], the dependencies on the treewidth
is less sharp than in Fact 1. The height of the tower depends on the quantifier alternation
qa(ψ) of the formula, while the top value has the form O(k + log k + log log k + . . .) due to
the management of nested tables in the involved dynamic program.

▶ Fact 2 ([11, 10]). One can solve qsat in time tower*
(

qa(ψ) + 1, O(k)
)

if a width-k tree
decomposition is given.

In contrast to Fact 1, there is a big-oh on top of the tower in Fact 2. The higher order
version of the model counting problem is the projected model counting problem (pmc), in
which we need to count the number of models that are not identical on a given set of variables.

▶ Fact 3 ([15]). One can solve pmc in time tower*
(
2, k + 4

)
if a width-k tree decomposition

is given.

The fine art of automated reasoning is descriptive complexity, which studies the complexity
of problems in terms of the complexity of a description of these problems; independent of
any abstract machine model [21, 25]. A prominent example is Courcelle’s Theorem that
states that the problems that can be expressed in monadic second-order logic can be solved
efficiently on instances of bounded treewidth [12]. Differently phrased, the theorem states
that the model-checking problem for mso logic (mc(mso)) is fixed-parameter tractable (the
parameter is the size of the formula and the treewidth of the structure):

▶ Fact 4 ([12]). One can solve mc(mso) in time tower*
(

qa(φ) + 1, O(k + |φ|)
)

if a width-k
tree decomposition is given.

For instance, the 3-coloring problem (Can we color the vertices of a graph with three
colors such that adjacent vertices obtain different colors?) can be described by the sentence:

φ3col = ∃R∃G∃B ∀x∀y � (Rx ∨Gx ∨Bx)
∧ Exy → ¬((Rx ∧Ry) ∨ (Gx ∧Gy) ∨ (Bx ∧By)).

M. Bannach and M. Hecher 15:3

The sentence can be read aloud as: There are three colors red, blue, and green (∃R∃G∃B)
such that for all vertices x and y (∀x∀y) we have that (i) each vertex has at least one color
(Rx ∨ Gx ∨ Bx), and (ii), if x and y are connected by an edge (Exy) then they do not
have the same color (¬((Rx ∧Ry) ∨ (Gx ∧Gy) ∨ (Bx ∧By))). The model-checking problem
mc(mso) obtains as input a relational structure S (say a graph like or) and an mso
sentence φ (as the one from above) and asks whether S is a model of φ, denoted by S |= φ.
In our example we have |= φ3col and ̸|= φ3col. Using Fact 4, we can conclude from
φ3col that the 3-coloring problem parameterized by the treewidth lies in FPT.

Instead of utilizing Fact 4, another reasonable approach is to ground the mso sentence
to a propositional formula and to then apply Fact 1. Formally, this means to reduce the
model checking problem mc(mso) to sat, i.e., given a relational structure S and an mso
sentence φ, we need to produce, in polynomial time, a propositional formula ψ such that
S |= φ iff ψ ∈ sat. The naïve way of doing so is by generating an indicator variable Xu

for every set variable X and every element u in the universe of S. Then we replace every
first-order ∃-quantifier by a “big-or” and ∀-quantifier by a “big-and”:

ψ3col =

∀x∀y︷ ︸︸ ︷∧
u∈V (G)

∧
v∈V (G)

Rx∨Gx∨Bx︷ ︸︸ ︷
(Ru ∨ Gu ∨ Bu) ∧

Exy→︷︸︸︷∧
{u,v}∈E(G)

¬((Ru ∧ Rv) ∨ (Gu ∧ Gv) ∨ (Bu ∧ Bv)).

propositional variables
The emerging question now is whether an automated translation such as the one we

just sketched preserves treewidth in the following sense: Given a relational structure S
of treewidth tw(S) and an mso sentence φ, can we mechanically derive a propositional
formula ψ with S |= φ iff ψ ∈ sat and tw(ψ) ≤ f

(
tw(S)

)
for some function computable

f : N → N? Consider for instance the following graph shown on the left (it is “almost a
tree” and has treewidth 2) and the primal graph of ψ3col obtained using the just sketched
transformation on the right. In this example, the tree-like structure is preserved, as the
treewidth gets increased by a factor of 3 and is at most 6:

a b

c

d

e f Ra

Ba

Ga

Rb

Bb

Gb

Rc

Bc

Gc

Rd

Bd

Gd

Re

Be

Ge

Rf

Bf

Gf

We recap this finding as the following observation: The automated grounding process
from mc(mso) to sat implies a reduction from the 3-coloring problem parameterized by the
input’s treewidth to sat. We can, thus, derive that the 3-coloring problem can be solved in
time tower*(1, 3k) using Fact 1 – without actually utilizing Courcelle’s Theorem!

For a second example consider the optimization and counting version of the dominating
set problem: Given a graph G, the task is either to find a minimum-size set S ⊆ V (G) of
vertices such that every vertex is in S or adjacent to vertex in S, or to count the number of
such sets. Optimization and counting problems can be modeled in descriptive complexity by
“moving” an existential second-order quantifier (“guessing” the solution) out of the sentence
and making it a free variable. The task is either to find a set of minimum size such that the
given structure together with this set is a model of the formula, or to count the number of
such sets. For instance, the following formula describes that X is a dominating set:

φds(X) = ∀x∃y �Xx ∨ (Exy ∧Xy).

STACS 2025

15:4 Structure-Guided Automated Reasoning

We will also say that the formula Fagin-defines the property that X is a dominating set. The
problem #fd(mso) asks, given a relational structure S and an mso formula with a free-set
variable X, how many subsets S of the universe of S satisfy S |= φ(S). The optimization
problem fd(mso) gets as additional input an integer t and asks whether there is such a S
with |S| ≤ t. The reduction from mc(mso) to sat can be extended to a reduction from
fd(mso) to maxsat and from #fd(mso) to pmc. In order to ground fd(mso), we add new
indicator variables Xu for the free-variable X and every element u of S (as we did for the
second-order quantifiers). For fd(mso), we additionally add a soft clause (¬Xu) for each of
these variables – implying that we seek a model that minimizes |X|. We may now again ask:
If we mechanically ground φds(X) on a structure of bounded treewidth to a propositional
formula ψds, what can we say about the treewidth of ψds? Unfortunately, not so much. Even
if the input has treewidth 1, the primal graph of ψds may become a clique (of treewidth n):

a b

c
d

e

f

g
h

i

Xa Xb

Xc

Xd

Xe

Xf

Xg

Xh

Xi

It follows that we cannot derive an fpt-algorithm for the dominating set problem or its
counting version by reasoning about ψds, while we can conclude the fact from φds using
appropriate versions of Courcelle’s Theorem. To summarize, we can naturally describe
model-checking, optimization, and counting problems using monadic second-order logic.
Using Courcelle’s Theorem, we can solve all of these problems in fpt-time on structures of
bounded treewidth. Alternatively, we may ground the mso formulas to propositional logic
and solve the problems using Fact 1. The produced encodings sometimes preserve the input’s
structure (as for 3-coloring) and, thus, themselves serve as proof that the problems lie in FPT.
However, the input’s structure can also get eradicated, as we observed for the dominating
set problem. The present paper is concerned with the question whether there is a unifying
grounding procedure that maps Fagin-defined mso properties to propositional logic while
preserving the input’s treewidth.

Contribution I: Faster Structure-guided Reasoning. Before we develop a unifying, structure-
aware grounding process from the model-checking problem of monadic second order logic to
propositional logic, we first improve both of the underlying results. In particular, we remove
the logarithmic dependencies on k in top of the tower of Fact 2 and, thus, provide the first
major improvement on qbf upper bounds with respect to treewidth since 20 years:

▶ Theorem 1 (QBF Theorem). One can solve qsat in time tower*
(

qa(ψ) + 1, k + 3.92
)

if a
width-k tree decomposition is given.

This bound matches the eth lower bound for qsat:

▶ Fact 5 ([16]). Unless ETH fails, qsat cannot be solved in time tower*(qa(ψ)+1, o(tw(ψ))).

We will prove Theorem 1 fully in the spirit of an automated reasoning paper by an encoding
into sat. In particular, we will not need any pre-requirements other than Fact 1. With a
similar encoding scheme, we will also slightly improve on Fact 3:

▶ Theorem 2 (PMC Theorem). One can solve pmc in time tower*
(
2, k + 3.59

)
if a width-k

tree decomposition is given.

▶ Fact 6 ([15]). Unless ETH fails, pmc cannot be solved in time tower*(2, o(tw(ψ))).

M. Bannach and M. Hecher 15:5

Contribution II: A SAT Version of Courcelle’s Theorem. We answer the main question of
the introduction in the affirmative and provide a unifying, structure-aware encoding scheme
from properties Fagin-defined with monadic second-order logic to variants of sat:
▶ Theorem 3 (A SAT Version of Courcelle’s Theorem). Assuming that the mso formulas on
the left side are in prenex normal form and that a width-k tree decomposition is given, there
are encodings from . . .
1. mc(mso) to sat of size tower*(qa(φ), (k + 9)|φ| + 3.92);
2. fd(mso) to maxsat of size tower*(qa(φ) + 1, (k + 9)|φ| + 3.92);
3. #fd(mso) to #sat of size tower*(qa(φ) + 1, (k + 9)|φ| + 3.92).
All encodings of size tower*(s, t) have a treewidth of tower(s, t) and can be computed in linear
time with respect to their size.

In conjunction with Fact 1, the theorem implies Courcelle’s Theorem with sharp bounds
on the values on top of the tower:
▶ Corollary 4. One can solve mc(mso) in time tower*(qa(φ) + 1, (k + 9)|φ| + 3.92), and
fd(mso) and #fd(mso) in time tower*(qa(φ) + 2, (k + 9)|φ| + 3.92) if a width-k tree
decomposition is given.

Since the reduction [27] from sat to integer linear programming (ilp) is treewidth-
preserving and results in an instance of bounded domain, another consequence of Theorem 3
is an “ilp Version of Courcelle’s Theorem” via the dynamic program for ilp [22].

Contribution III: ETH Lower Bounds for the Encoding Size. Given that we can encode
mso definable properties into sat while preserving the input’s treewidth, we may ask next
whether we can improve on the size of the encodings. While it is well-known that incarnations
of Courcelle’s Theorem have to depend on the input’s treewidth and the formula’s size in a
non-elementary way [3] (and hence, the encodings have to be huge at some point as well),
these insights do not give us precise bounds on achievable encoding sizes.
▶ Theorem 5 (ETH Lower Bound). Under ETH, there is no sat encoding for mc(mso) of
size tower*(qa(φ) − 2, o(tw(S))) that can be computed in this time.

We can make the lower bound a bit more precise in the following sense: The value at the
top of the tower actually does not just depend on the treewidth tw(S), but on the product
of the treewidth and the block size bs(φ) of the sentence φ. The block size of a formula is
the maximum number of consecutive quantifiers of the same type.
▶ Theorem 6 (Trade-off Theorem). Under ETH, there is no sat encoding for mc(mso) of
size tower*(qa(φ) − 2, o(tw(S) bs(φ))) that can be computed within this time.

1.1 Related Work
The concept of treewidth was discovered multiple times. The name was coined in the work by
Robertson and Seymour [28], while the concept was studied by Arnborg and Proskurowski [2]
under the name partial k-trees simultaneously. However, treewidth was discovered even
earlier by Bertelè and Brioschi [6], and independently by Halin [19]. Courcelle’s Theorem was
proven in a series of articles by Bruno Courcelle [12], see also the textbook by Courcelle and
Engelfriet for a detailed introduction [13]. The expressive power of monadic second-order logic
was studied before, prominently by Büchi who showed that mso over strings characterizes
the regular languages [9]. Related to our treewidth-aware reduction from mc(mso) to sat is
the work by Gottlob, Pichler, and Wei, who solve mc(mso) using monadic Datalog [18]; and
the work of Bliem, Pichler, and Woltran, who solve it using asp [8].

STACS 2025

15:6 Structure-Guided Automated Reasoning

1.2 Structure of this Article
We provide preliminaries in the next section, prove Theorem 1 and 2 in Section 3, and
establish a sat version of Courcelle’s Theorem in Section 4. The technical details of the
latter can be found in the technical report version of this article. We extend the result to
Fagin-definable properties in Section 5 and provide corresponding ETH lower bounds in
Section 6. We conclude and provide pointers for further research in the last section, which
also contains an overview table of this article’s results. Due to lack of space, most proofs are
only avilable in the technical report and are replaced by a proof sketch within the main text.
The corresponding positions are clearly marked with a “▼”.

2 Preliminaries: Background in Logic and Structural Graph Theory

We use the notation of Knuth [23] and consider propositional formulas in conjunctive normal
form (cnfs) like ψ = (x1 ∨ ¬x2 ∨ ¬x3) ∧ (¬x1 ∨ x4 ∨ ¬x5) ∧ (x2) ∧ (x6) as set of sets
{{x1,¬x2,¬x3}, {¬x1, x4,¬x5}, {x2}, {x6}}. We denote the sets of variables, literals, and
clauses of ψ as vars(ψ), lits(ψ), and clauses(ψ). A (partial) assignment is a subset β ⊆ lits(ψ)
such that |{x,¬x} ∩ β| ≤ 1 for all x ∈ vars(ψ), that is, a set of literals that does not
contain both polarities of any variable. We use β⊑ vars(ψ) to denote partial assignments.
The formula conditioned under a partial assignment β is denoted by ψ|β and obtained by
removing all clauses from ψ that contain a literal l ∈ β and by removing all literals l′ with
¬l′ ∈ β from the remaining clauses. A assignment is satisfying for a cnf ψ if ψ|β = ∅, and it
is contradicting if ∅ ∈ ψ|β. A dnf is a disjunction of conjunctions, i.e., a set of terms. We
use the same notations as for cnfs, however, in ψ|β we delete terms that contain a literal
that appears negated in β and remove the literals in β from the remaining terms. Hence, β
is satisfying if ∅ ∈ ψ|β, and contradicting if ψ|β = ∅.

The model counting problem asks to compute the number of satisfying assignments of
a cnf and is denoted by #sat. In projected model counting (pmc) we count the number
of models that are not identical on a given set of variables. In the maximum satisfiability
problem (maxsat) we partition the clauses of ψ into a set hard(ψ) of hard clauses and a set
soft(ψ) of weighted soft clauses, i.e., every clause C ∈ soft(ψ) comes with a weight w(C) ∈ Q.
The formula is then called a wcnf and the goal is to find under all assignments β⊑ vars(ψ)
with hard(ψ)|β = ∅ the one that maximizes

∑
C∈soft(ψ),{C}|β=∅ w(c). In a fully quantified

Boolean formula (a qbf, also called a second-order propositional sentence) all variables are
bounded by existential or universal quantifiers. Throughout the paper we assume that qbfs
are in prenex normal form, meaning that all quantifers appear in the front of a quantifier-free
formula called the matrix. As is customary, we assume that the matrix is a cnf if the last
(i.e., most inner) quantifier is existential, and a dnf otherwise. A qbf is valid if it evaluates
to true (see Chapter 29–31 in [7]). Define qsat to be the problem of deciding whether a
given qbf is valid.

2.1 Descriptive Complexity
A vocabulary is a finite set τ = {Ra1

1 , Ra2
2 , . . . , Raℓ

ℓ } of relational symbols Ri of arity ai. A
(finite, relational) τ -structure S is a tuple

(
U(S), RS

1 , R
S
2 , . . . , R

S
ℓ

)
with universe U(S) and

interpretations RS
i ⊆ U(S)ai . The size of S is |S| = |U(S)| +

∑ℓ
i=1 ai · |RS

i |. We denote the
set of all τ -structures by struc[τ] – e.g., struc[{E2}] is the set of directed graphs.

Let τ be a vocabulary and x0, x1, x2, . . . be an infinite repertoire of first-order variables.
The first-order language L(τ) is inductively defined, where the atomic formulas are the
strings xi = xj and Ri(x1, . . . , xai) for relational symbols Ri ∈ τ . If α, β ∈ L(τ) then so are

M. Bannach and M. Hecher 15:7

¬(α), (α ∧ β), and ∃xi(α). A variable that appears next to ∃ is called quantified and free
otherwise. We denote a formula φ ∈ L(τ) with φ(xi1 , . . . , xiq) if xi1 , . . . , xiq are precisely the
free variables in φ. A formula without free variables is called a sentence. As customary, we
extend the language of first-order logic by the usual abbreviations, e.g., α → β ≡ ¬α ∨ β

and ∀xi(α) ≡ ¬∃xi(¬α). To increase readability, we will use other lowercase Latin letters
for variables and drop unnecessary braces by using the usual operator precedence instead.
Furthermore, we use the dot notation in which we place a “�” instead of an opening brace
and silently close it at the latest syntactically correct position. A τ -structure S is a model
of a sentence φ ∈ L(τ), denoted by S |= φ, if it evaluates to true under the semantics of
quantified propositional logic while interpreting equality and relational symbols as specified
by the structure. For instance, φundir = ∀x∀y �Exy → Eyx over τ = {E2} describes the set
of undirected graphs, and we have |= φundir and ̸|= φundir.

We obtain the language of second-order logic by allowing quantification over relational
variables of arbitrary arity, which we will denote by uppercase Latin letters. A relational
variable is said to be monadic if its arity is one. A monadic second-order formula is one in
which all quantified relational variables are monadic. The set of all such formulas is denoted
by mso. The model checking problem for a vocabulary τ is the set mcτ (mso) that contains all
pairs (S, φ) of τ -structures S and mso sentences φ with S |= φ. Whenever τ is not relevant
(meaning that a result holds for all fixed τ), we will refer to the problem as mc(mso). We
note that in the literature there is often a distinction between mso1- and mso2-logic, which
describes the way the input is encoded [20]. Since we allow arbitrary relations, we do not
have to make this distinction.

2.2 Treewidth and Tree Decompositions
While we consider graphs G as relational structures G as discussed in the previous section, we
also use common graph-theoretic terminology and denote with V (G) = U(G) and E(G) = EG

the vertex and edge set of G. Unless stated otherwise, graphs in this paper are undirected
and we use the natural set notations and write, for instance, {v, w} ∈ E(G). The degree of a
vertex is the number of its neighbors. A tree decomposition of G is a pair (T, χ) in which
T is a tree (a connected graph without cycles) and χ : V (T) → 2V (G) a function with the
following two properties:
1. for every v ∈ V (G) the set {x | v ∈ χ(x) } is non-empty and connected in T ;
2. for every {u, v} ∈ E(G) there is at least one node x ∈ V (T) with {u, v} ⊆ χ(x).

The width of a tree decomposition is the maximum size of its bags minus one, i.e.,
width(T, χ) = maxx∈V (T) |χ(x)| − 1. The treewidth tw(G) of a graph G is the minimum
width any tree decomposition of G must have. We do not require additional properties of tree
decompositions, but we assume that T is rooted at a root(T) ∈ V (T) and, thus, that nodes
t ∈ V (T) may have a parent(t) ∈ V (T) and children(t) ⊆ V (T). Without loss of generality,
we may also assume | children(t)| ≤ 2.

▶ Example 7. The treewidth of the Big Dipper constellation (as graph shown on the left) is
at most two, as proven by the tree decomposition on the right:

a
b c d

e

f
g

{a, b} {b, c} {c, d} {d, f}

{d, f, e}

{d, f, g}

STACS 2025

15:8 Structure-Guided Automated Reasoning

2.3 Treewidth of Propositional Formulas and Relational Structures
The definition of treewidth can be lifted to other objects by associating a graph to them.
The most common graph for cnfs (or dnfs) ψ is the primal graph Gψ, which is the graph
on vertex set V (Gψ) = vars(ψ) that connects two vertices by an edge if the corresponding
variables appear together in a clause. We then define tw(ψ) := tw(Gψ) and refer to a tree
decomposition of Gψ as one of ψ. Note that other graphical representations lead to other
definitions of the treewidth of propositional formulas. A comprehensive listing can be found in
the Handbook of Satisfiability [7, Chapter 17]. A labeled tree decomposition (T, χ, λ) extends
a tree decomposition with a mapping λ : V (T) → 2ψ (i.e., a mapping from the nodes of T
to a subset of the clauses (or terms) of ψ) such that for every clause (or term) C there is
exactly one t ∈ V (T) with C ∈ λ(t) that contains all variables appearing in C. It is easy
to transform a tree decomposition (T, χ) into a labeled one (T, χ, λ) by traversing the tree
once’s and by duplicating some bags. Hence, we will assume throughout this article that all
tree decompositions are labeled.

A similar approach can be used to define tree decompositions of arbitrary structures:
The primal graph GS of a structure S, in this context also called the Gaifman graph, has as
vertex set the universe of S, i.e., V (GS) = U(S), and contains an edge {u, v} ∈ E(GS) iff u

and v appear together in some tuple of S. As before, we define tw(S) := tw(GS). One can
alternatively define the concept of tree decompositions directly over relational structures,
which leads to the same definition [17].

3 New Upper Bounds for Second-Order Propositional Logic

Central to our reductions are treewidth-preserving encodings from qsat to sat and from pmc
to #sat. These encoding establishes new proofs of Chen’s Theorem [11] and the theorem by
Fichte et al. [15], and improve the dependencies on k in the tower of Fact 2 and 3.

3.1 Treewidth-Aware Encodings from QSAT to SAT
We use a quantifier elimination scheme that eliminates the most-inner quantifier block at
the cost of introducing O(2k|φ|) new variables while increasing the treewidth by a factor of
12 · 2k. Let first φ = Q1S1 . . . ∀ℓSℓ �ψ be the given qbf, in which ψ is a dnf. Let further
(T, χ, λ) be the given labeled width-k tree decomposition of φ. We describe an encoding into
a qbf, in which the last quantifier block QℓSℓ gets replaced by new variables in Sℓ−1.

We have to encode the fact that for an assignment on
⋃ℓ−1
i=1 Si all assignments to Sℓ

satisfy ψ, i. e., at least one term in ψ. For that end, we introduce auxiliary variables for every
term d ∈ terms(ψ) and any partial assignment α of the variables in Sℓ that also appear in
the bag that contains d. More precisely, let λ−1(d) be the node in V (T) with d ∈ λ(t) and
let α⊑χ(λ−1(d)) ∩Sℓ be an assignment of the variables of the bag that are quantified by Qℓ.
We introduce the variable satαd that indicates that this assignment satisfies d:∧

d∈terms(ψ)

∧
α⊑χ(λ−1(d))∩Sℓ

{d}|α ̸=∅

[
satαd ↔

∧
x∈lits({d}|α)

x
]
, // α may satisfy d (1)

∧
d∈terms(ψ)

∧
α⊑χ(λ−1(d))∩Sℓ

{d}|α=∅

[
¬satαd

]
. // α falsifies d (2)

We have to track whether ψ can be satisfied by a local assignment α. For every t ∈ V (T)
and every α⊑χ(t) ∩ Sℓ we introduce a variable satα≤t that indicates that α can be extended
to a satisfying assignment for the subtree rooted at t. Furthermore, we create variables

M. Bannach and M. Hecher 15:9

satα<t,t′ for t′ ∈ children(t) that propagate the information about satisfiability along the tree
decomposition. That is, satα<t,t′ is set to true if there is an assignment β⊑χ(t′) ∩ Sℓ that
can be extended to a satisfying assignment and that is compatible with α:

// Either there is a term satisfing the bag or we can propagate:∧
t∈V (T)

∧
α⊑χ(t)∩Sℓ

[
satα≤t ↔

∨
d∈λ(t)

satαd ∨
∨

t′∈children(t)

satα<t,t′
]
, (3)

// Propagate satisfiability:∧
t∈V (T)

∧
α⊑χ(t)∩Sℓ

∧
t′∈children(t)

[
satα<t,t′ ↔

∧
β⊑χ(t′)∩Sℓ

β∩lits(χ(t))=α∩lits(χ(t′))

satβ≤t′
]
. (4)

Finally, since Qℓ = ∀, we need to ensure that for all possible assignments of Sℓ there is at
least one term that gets satisfied. Since satisfiability gets propagated to the root of the tree
decomposition by the aforementioned constraint, we can enforce this property with:∧

α⊑χ(root(T))∩Sℓ

satα≤root(T). (5)

The following lemma observes the correctness of the construction, and the subsequent
lemma handles the case Qℓ = ∃.

▶ Lemma 8 (▼). There is an algorithm that, given a qbf φ = Q1S1 . . . ∃ℓ−1Sℓ−1∀ℓSℓ �ψ and
a width-k tree decomposition of Gφ, outputs in time O∗(2k) a qbf φ′ = Q1S1 . . . ∃ℓ−1S

′
ℓ−1 �ψ

′

and a width-(12 · 2k) tree decomposition of Gφ′ such that φ is valid iff φ′ is valid.

▶ Lemma 9 (▼). There is an algorithm that, given a qbf φ = Q1S1 . . . ∀ℓ−1Sℓ−1∃ℓSℓ �ψ and
a width-k tree decomposition of Gφ, outputs in time O∗(2k) a qbf φ′ = Q1S1 . . . ∀ℓ−1S

′
ℓ−1 �ψ

′

and a width-(12 · 2k) tree decomposition of Gφ′ such that φ is valid iff φ′ is valid.

Sketch of Proof. The case Qℓ = ∃ (in which ψ is a cnf) works similarly: The result follows
by negating the inverse, where the roles of cnf and dnf are switched, and universal and
existential quantification are switched as well. ◀

Proof of Theorem 1. The theorem follows by exhaustively applying Lemma 8 and Lemma 9
until a cnf is reached. The price for removing one alternation are O(2k|φ|) new variables and
an increase of the treewidth by a factor of 12 · 2k. Hence, after removing one quantifier block
we have a treewidth of 12 · 2k ≤ 2k+log 12, after two we have 12 · 22k+log 12 ≤ 22k+log 12+log 12,
after three we then have 222k+log 12+log 12+log 12; and so on. We can bound all the intermediate
“+ log 12” by adding a “+1” on top of the tower, leading to a bound on the treewidth of
tower(qa(φ), k + log 12 + 1) ≤ tower(qa(φ), k + 4.59). In fact, we can bound the top of the
tower even tighter by observing log 12 ≤ 3.59 and guessing 3.92 as a fix point. Inserting
yields 3.59 + 23.59+k ≤ 23.92+k and 23.92+23.59+k ≤ 223.92+k . Consequently, we can bound the
treeewidth of the encoding by tower(qa(φ), k+3.92) and the size by tower*(qa(φ), k+3.92). ◀

3.2 Treewidth-Aware Encodings from PMC to #SAT
Recall that the input for pmc is a cnf ψ and a set X ⊆ vars(ψ). The task is to count the
assignments α⊑X that can be extended to models α∗ ⊑ vars(ψ) of ψ. We can also think of
a formula ψ(X) = ∃Y �ψ′(X,Y) with free variables X and existential quantified variables Y

STACS 2025

https://arxiv.org/pdf/2312.14620
https://arxiv.org/pdf/2312.14620

15:10 Structure-Guided Automated Reasoning

(ψ′ is quantifier-free), for which we want to count the assignments to X that make the
formula satisfiable. The idea is to rewrite ψ(X) = ∃Y �ψ′(X,Y) ≡ ∃X∃Y �ψ′(X,Y), and to
use a similar encoding as in the proof of Lemma 9 to remove the second quantifier.

In detail, we add a variable satαc for every clause c ∈ clauses(ψ) and every assignment of
the corresponding bag α⊑χ(λ−1(c)) ∩ Y . The semantic of this variable is that the clause c
is satisfiable under the partial assignment α. We further add the propagation variables satα≤t
and satα<t,t′ for all t ∈ V (T), t′ ∈ children(t), and α⊑χ(λ−1(c)) ∩ Y . The former indicates
that the assignment α can be extended to a satisfying assignment of the subtree rooted at t;
the later propagates partial solutions from children to parents within the tree decomposition:

// α may satisfy c:∧
c∈clauses(ψ)

∧
α⊑χ(λ−1(c))∩Y

{c}|α ̸=∅

[
satαc ↔

∨
ℓ∈lits({c}|α)

ℓ
]
, (1)

// α satisfies c:∧
c∈clauses(ψ)

∧
α⊑χ(λ−1(c))∩Y

{c}|α=∅

[
satαc

]
. (2)

// Either there is a clause satisfying the bag or we can propagate:∧
t∈V (T)

∧
α⊑χ(t)∩Y

[
satα≤t ↔

∧
c∈λ(t)

satαc ∧
∧

t′∈children(t)

satα<t,t′
]
, (3)

// Propagate satisfiability:∧
t∈V (T)

∧
α⊑χ(t)∩Y

∧
t′∈children(t)

[
satα<t,t′ ↔

∧
β⊑χ(t′)∩Y

β∩lits(χ(t))=α∩lits(χ(t′))

satβ≤t′
]
. (4)

Observe that the constraints (1)–(4) contain no variable from Y (we removed them by locally
speaking about α) and, furthermore, constraints (1), (3), and (4) are pure propagations,
which leave no degree of freedom on the auxiliary variables. Hence, models of these constraint
only have freedom in the variables in X within constraint (2). We are left with the task to
count only models that actually satisfy the input formula, which we achieve with:∨

α⊑χ(root(T))∩Y

satα≤root(T). (5)

▶ Lemma 10 (▼). There is an algorithm that, given a cnf ψ, a set X ⊆ vars(ψ), and a
width-k tree decomposition of Gψ, outputs in time O∗(2k) a cnf ψ′ and a width-(12 · 2k) tree
decomposition of Gψ′ such that the projected model count of ψ on X equals #(ψ′).

Proof of Theorem 2. By applying Fact 1 to the formula generated by Lemma 10 we obtain
an algorithm for pmc with running time tower*(2, k + 3.59). ◀

4 A SAT Version of Courcelle’s Theorem

We demonstrate the power of treewidth-aware encodings by providing an alternative proof of
Courcelle’s theorem. We prove the main part of Theorem 3 in the following form:

https://arxiv.org/pdf/2312.14620

M. Bannach and M. Hecher 15:11

▶ Lemma 11. There is an algorithm that, given a relational structure S, a width-k tree
decomposition of S, and an mso sentence φ in prenex normal form, produces in time
tower*(qa(φ), (k + 9)|φ| + 3.92) a propositional formula ψ and tree decomposition of Gψ of
width tower(qa(φ), (k + 9)|φ| + 3.92) such that S |= φ ⇔ ψ ∈ sat.

The lemma assumes that the sentence is in prenex normal form with a quantifier-free
part ψ in cnf, i.e., φ ≡ Q1S1 . . . Qq−1Sq−1Qqsq . . . Qℓsℓ �

∧p
i=1 ψi with Qi ∈ {∃, ∀} and

Si (si) being second-order (first-order) variables. The requirement that the second-order
quantifers appear before the first-order ones is for sake of presentation, the encoding works
as is if the quantifiers are mixed. The main part of the proof is a treewidth-aware encoding
from mc(mso) into qsat; which is then translated to sat using Theorem 1.

4.1 Auxiliary Encodings
Let ψ be a propositional formula and X ⊆ lits(ψ) be an arbitrary set of literals. A cardinality
constraint card▷◁c(X) with ▷◁ ∈ {≤,=,≥} ensures that { at most, exactly, at least } c literals
of X get assigned to true. Classic encodings of cardinality constraints increase the treewidth
of ψ by quite a lot. For instance, the naive encoding for card≤1(X) ≡

∧
u,v∈X;u̸=v(¬u ∨ ¬v)

completes X into a clique. We encode a cardinality constraint without increasing the
treewidth by distributing a sequential unary counter:

▶ Lemma 12 (▼). For every c ≥ 0 we can, given a cnf ψ, a set X ⊆ lits(ψ), and a width-k
tree decomposition of ψ, encode card▷◁c(X) such that tw(ψ ∧ card▷◁c(X)) ≤ k + 3c+ 3.

Sketch of Proof. We add c + 1 variables to every bag t of the tree decomposition, which
count the number of literals set to true in the subtree rooted at t. The semantics of the
sequential counter encoding [31] is then implemented along the edges of the decomposition.
To cover the new constraints, we can add the auxiliary variables of the (at most two) children
of t to the bag of t as well, resulting in an overall increase of the treewidth by 3c+ 3. ◀

The second auxiliary encoding is a treewidth-preserving conversion from cnfs to dnfs.

▶ Lemma 13. There is a polynomial-time algorithm that, given a cnf ψ and a width-k tree
decomposition of Gψ, produce a dnf ψ′ and a width-(k + 4) tree decomposition of Gψ′ such
that for any α ⊑ vars(ψ), ψ|α = ∅ iff ψ′|α is a tautology (¬(ψ′|α) is unsatisfiable).

Sketch of Proof. For every clause C we add a variable fC that is true iff C is satisfied.
Satisfiability is encoded along the tree by variables f≤t indicating that ψ is satisfied in the
subtree rooted at t via

∨
t∈V (T) ¬

[
f≤t ↔

∧
C∈λ(t) fC ∧

∧
t′∈children(t) f≤t′

]
. ◀

4.2 Indicator Variables for the Quantifiers
To prove Lemma 11 we construct a qbf for a given mso sentence φ, structure S, and tree
decomposition of S. We first define the primary variables of ψ, i.e., the prefix of ψ (primary
here refers to the fact that we will also need some auxiliary variables later). For every
second-order quantifier ∃X or ∀X we introduce, as we did in the introduction, an indicator
variable Xu for every element u ∈ U(S) with the semantic that Xu is true iff u ∈ X. These
variables are either existentially or universally quantified, depending on the second-order
quantifier. If there are multiple quantifiers (say ∃X∀Y), the order in which the variables are
quantified is the same as the order of the second-order quantifiers. For first-order quantifiers
∃x or ∀x we do the same construction, i.e., we add variables xu for all u ∈ U(S) with the
semantics that xu is true iff x was assigned to u. Of course, of these variables we have to set
exactly one to true, which we enforce by adding card=1({xu | u ∈ U(S)}) using Lemma 12.

STACS 2025

https://arxiv.org/pdf/2312.14620

15:12 Structure-Guided Automated Reasoning

4.3 Evaluation of Atoms
The last ingredient of our qbf encoding is the evaluation of the atoms in the mso sentence φ.
An atom is Rx1, . . . , xa for a relational symbol R from the vocabulary of arity a, containment
in a second-order variable Xu, equality x = y, and the negation of the aforementioned. For
every atom ι that appears in φ we introduce variables pιt and pι≤t for all t ∈ V (T) that
indicate that ι is true in bag t or somewhere in the subtree rooted at t, respectively. Note
that the same atom can occur multiple times in φ, for instance in

∀x∀y∃z �(x = y → x = z) ∨ (x = y → y = z)

there are two atoms x = y. However, since φ is in prenex normal form (and, thus, variables
cannot be rebound), these always evaluate in exactly the same way. Hence, it is sufficient
to consider the set of atoms, which we denote by atoms(φ). We can propagate information
about the atoms along the tree decomposition with:∧

t∈V (T)

∧
ι∈atoms(φ)

[
pι≤t ↔ (pιt ∨

∨
t′∈children(t)

pι≤t′)
]
.

This encoding introduces two variables per atom ι per bag t (namely pιt and pι≤t), which
increases the treewidth by at most 2 · | atoms(φ)|. To synchronize with the two children t′

and t′′, we add pι≤t′ and pι≤t′′ to χ(t), yielding a total treewidth of at most 4 · | atoms(φ)|.
An easy atom to evaluate is x = y, since if x and y are equal (i.e., they both got assigned

to the same element u ∈ U(S)), we can conclude this fact within a bag that contains u:∧
t∈V (T)

[
px=y
t ↔

∨
u∈χ(t)

(xu ∧ yu)
]
.

For every u ∈ U(S) and every quantifier ∃x (or ∀x), we add the propositional variable xu
to all bags containing u. We increase the treewidth by at most the quantifier rank and, in
return, cover constraints as the above trivially. Similarly, if there is a second-order variable X
and a first-order variable x, the atom Xx can be evaluated locally in every bag:∧

t∈V (T)

[
pXx
t ↔

∨
u∈χ(t)

(Xu ∧ xu)
]
.

We have to evaluate atoms corresponding to relational symbols R of the vocabulary. For
each such symbol of arity a we encode:∧

t∈V (T)

[
p
R(x1,x2,...,xa)
t ↔

∨
u1,...,ua∈χ(t)
(u1,...,ua)∈RS

(
(x1)u1 ∧ (x2)u2 ∧ · · · ∧ (xa)ua

)]
.

Here “R(x1, x2, . . . , xa)” is an atom in which R is a relational symbol and x1, x2, . . . , xa
are quantified first-order variables. In the inner “big-or” we consider all u1, . . . , ua in χ(t),
i.e., elements u1, . . . , ua ∈ U(S) that are in the relation (u1, . . . , ua) ∈ RS . Then “(xi)ui

”
is a variable that describes that xi gets assigned to ui. Note that all tuples in RS appear
together in at least one bag of the tree decomposition and, hence, there is at least one bag t
for which p

R(x1,x2,...,xa)
t can be evaluated to true. The propagation ensures that, for every

ι ∈ atoms(φ), the variable pι≤root(T) will be true iff ι is true. Since the quantifier-free part of
φ is a cnf

∧p
j=1 ψj , we can encode it by replacing every occurrence of ι in ψj with pι≤root(T).

M. Bannach and M. Hecher 15:13

4.4 The Full Encoding in one Figure
For the readers convenience, we compiled the encoding into Figure 1. Combining the insights
of the last sections proves Lemma 11, but if the inner-most quantifier is universal, existentially
projecting the encoding variables would produce a qbf with one more block. This can,
however, be circumvent using Lemma 13. We formally prove that “combining the insights”
indeed leads to a sound proof of Lemma 11 in the technical report.

Cardinality Propagation

cx≤t ↔
∨

u∈χ(t)\χ(parent(t))

xu ∨
∨

t′∈children(t)

cx≤t′ for every t in T, x ∈ {sq, . . . , sℓ} (1)

At-Least-One Constraint
cx≤root(T) for every x ∈ {sq, . . . , sℓ} (2)

At-Most-One Constraint
¬xu ∨ ¬xu′ for every t in T, u, u′ ∈ χ(t), u ̸= u′, x ∈ {sq, . . . , sℓ} (3)
¬xu ∨ ¬cx≤t′ for every t in T, t′ ∈ children(t), u ∈ χ(t)\χ(parent(t)), x∈{sq, . . . , sℓ} (4)
¬cx≤t′ ∨ ¬cx≤t′′ for every t in T, t′, t′′ ∈ children(t), t′ ̸= t′′, x ∈ {sq, . . . , sℓ} (5)
Proofs of MSO Atoms

px=y
t ↔

∨
u∈χ(t)

(xu ∧ yu) for every t in T, x, y ∈ {sq, . . . , sℓ}, (x=y)∈ atoms(φ) (6)

p
X(x)
t ↔

∨
u∈χ(t)

(Xu ∧ xu) for every t in T,X∈{S1, . . . , Sq−1}, x∈{sq, . . . , sℓ}, X(x)∈ atoms(φ) (7)

p
R(x1,...,xa)
t ↔

∨
u1,...,ua∈χ(t)
(u1,...,ua)∈RS

((x1)u1
∧ · · · ∧ (xa)ua

) for every t in T, {x1, . . . , xa} ⊆ {sq, . . . , sℓ},

R ∈ S, R(x1, . . . , xr) ∈ atoms(φ) (8)

pι≤t ↔ pιt ∨
∨

t′∈children(t)

pι≤t′ for every t in T, ι ∈ atoms(φ) (9)

Deriving MSO Atoms requires Proof
ι ↔ pι≤root(T) for every t in T, ι ∈ atoms(φ)(10)

Verify MSO Formula
ψ (11)

Figure 1 The reduction Rmso→qsat(φ,S, T) that takes as input an mso formula in prenex normal
form φ = Q1S1 . . . Qq−1Sq−1Qqsq . . . Qℓsℓ �ψ and a structure S with a TD T =(T, χ) of S of width k.
It obtains a QBF φ′ = Q1S

′
1 . . . QℓS

′
ℓ∃E′ �ψ′, where ψ′ is the conjunction of Equations (1)–(11),

S′
i = {(Si)u | u ∈ U(S)} and E′ = vars(ψ′) \ (

⋃ℓ

i=1 S
′
i). Formula ψ′ can be easily converted into

cnf of width linear in k (for constant-size mso formulas φ).

5 Fagin Definability via Automated Reasoning

In this section we prove the remaining two items of Theorem 3, i.e., a treewidth-aware encoding
of the optimization version of Courcelle’s Theorem to maxsat; and a #sat encoding of the
counting version of the theorem. The general approach is as follows: We obtain a mso formula

STACS 2025

15:14 Structure-Guided Automated Reasoning

φ(X) with a free set variable X as input (rather than a mso sentence as in Lemma 11). The
objective of the model-checking problems adds requirements to this variable (for fd(mso) we
seek a S ⊆ U(S) of minimum size such that S |= φ(S); for #fd(mso) we want to count the
number of sets S ⊆ U(S) with S |= φ(S)). The “trick” is to rewrite φ(X) = ξ as φ′ = ∃Xξ
and apply Lemma 11 to φ′ in order to obtain a propositional formula ψ. Observe that the
quantifier alternation of φ′ may be one larger than the one of φ.

▶ Lemma 14 (▼). There is an algorithm that, given a structure S with weights wi : U(S) → Q
for i ∈ {1, . . . , ℓ}, a width-k tree decomposition of S, and an mso formula φ(X1, . . . , Xℓ)
in prenex normal form, produces in time tower*(qa(φ) + 1, (k + 9)|φ| + 3.92) a wcnf ψ

and a tree decomposition of width tower(qa(φ) + 1, (k + 9)|φ| + 3.92) of Gψ such that the
maximum weight of any model of ψ equals the maximum value of

∑ℓ
i=1

∑
s∈Si

wi(s) under
S1, . . . , Sℓ ⊆ U(S) with S |= φ(S1, . . . , Sℓ).

Sketch of Proof. Consider ψ ∧
∧
u∈U(S)(¬Xu) such that the clauses in ψ are hard and the

added clauses are soft. A model maximizing the soft clauses will minimize the number of Xu

variables set to true, i.e., corresponds to a minimum-size set S with S |= φ(S). ◀

▶ Lemma 15 (▼). There is an algorithm that, given a relational structure S, a width-k tree
decomposition of S, and an mso formula φ(X1, . . . , Xℓ) in prenex normal form, produces
in time tower*(qa(φ) + 1, (k + 9)|φ| + 3.92) a cnf ψ and a tree decomposition of width
tower(qa(φ) + 1, (k + 9)|φ| + 3.92) of Gψ such that the number of models of ψ equals the
number of sets S1, . . . , Sℓ ⊆ U(S) with S |= φ(S1, . . . , Sℓ).

Sketch of Proof. We need to compute the number of models of ψ projected to the Xu

variables. In other words, it is sufficient to solve the projected model counting problem on the
instance generated with Lemma 11 using Lemma 10. ◀

6 Lower Bounds for the Encoding Size of Model Checking Problems

We companion our sat encodings for mc(mso) with lower bounds on the achievable encoding
size under ETH. The first lower bound (Theorem 5) is obtained by an encoding from qsat
into mc(mso) that implies that sat encodings of mc(mso) lead to faster qsat algorithms.

▶ Lemma 16 (▼). There is a polynomial-time algorithm that, given a qsat sentence ψ,
outputs a structure S and an mso sentence φ with tw(S) ≤ tw(ψ) + 1 and qa(φ) ≤ qa(ψ) + 2
such that S |= φ iff ψ evaluates to true.

Sketch of Proof. The structure S is the incidence graph of ψ (the graph containing a node
for every variable and every clause that connects variables to the clauses containing them)
with some additional labels. The sentence φ uses qa(ψ) second-order quantifier to guess the
assignment of ψ, and one additional ∀x∃y-block to evaluate it. ◀

Proof of Theorem 5. Combine Lemma 16 with Fact 5. ◀

6.1 An Encoding for Compressing Treewidth
For qsat one can “move” complexity from the quantifier rank of the formula to its treewidth
and vice versa [16]. By Lemma 16, this means that any reduction from qsat to mc(mso)
may produce an instance with small treewidth or quantifier alternation while increasing the
other. We show that one can also decrease the treewidth by increasing the block size.

https://arxiv.org/pdf/2312.14620
https://arxiv.org/pdf/2312.14620
https://arxiv.org/pdf/2312.14620

M. Bannach and M. Hecher 15:15

▶ Lemma 17 (▼). For every c > 0 there is a polynomial-time algorithm that, on input of a
cnf ψ and a width-k tree decomposition of Gψ, outputs a constant-size mso sentence φ with
qa(φ) = 2 and bs(φ) = c, and a structure S with tw(S) ≤ ⌈k+1

c ⌉ such that ψ ∈ sat ⇔ S |= φ.

Sketch of Proof. The idea of the proof is to (i) encode the input’s formula as an incidence
graph over which we reason with an mso sentence; we then (ii) replace this structure by its
tree decomposition with additional “sync edges”; and finally we (iii) contract vertices in the
tree decomposition to lower the treewidth, while we encode statements like x ∈ S (for a set
variable S) by defining new set variables S1, . . . , Sc and by interpreting y ∈ Si as “the ith
vertex contracted to y is in S”. ◀

Proof of Theorem 6. We obtain the Trade-off Theorem by combining the proof strategy
of Lemma 17 with the reduction from qsat to mc(mso) of Lemma 16. The result is a
polynomial-time algorithm for every c > 0 that, on input of a qbf ψ and a width-k tree
decomposition of Gψ, outputs a constant-size mso sentence φ with qa(φ) ≤ qa(ψ) + 2 and
bs(φ) = c, and a structure S with tw(S) ≤ ⌈k+1

c ⌉ such that ψ is valid iff S |= φ. ◀

It is out of the scope of this article, but worth mentioning, that the proofs of Lemma 17
and Theorem 6 can be generalized to the following finite-model theoretic result:

▶ Proposition 18. For every c > 0 there is a polynomial-time algorithm that, given a
relational structure S, a width-k tree decomposition of S, and an mso sentence φ, outputs a
structure S ′ and a sentence φ′ such that:
1. S |= φ ⇐⇒ S ′ |= φ′;
2. tw(S ′) ≤ ⌈k+1

c ⌉;
3. bs(φ′) ≤ c · bs(φ).

7 Conclusion and Further Research

We studied structure-guided automated reasoning, where we utilize the input’s structure in
propositional encodings. The scientific question we asked was whether we can encode every
mso definable problem on structures of bounded treewidth into sat formulas of bounded
treewidth. We proved this in the affirmative, implying an alternative proof of Courcelle’s
Theorem. The most valuable aspects are, in our opinion, the simplicity of the proof (it
is “just” an encoding into propositional logic) and the potential advantages in practice for
formulas of small quantifier alternation (sat solvers are known to perform well on instances of
small treewidth, even if they do not actively apply techniques such as dynamic programming).
Another advantage is the surprisingly simple generalization to the optimization and counting
version of Courcelle’s Theorem – we can directly “plug in” maxsat or #sat and obtain
the corresponding results. As a byproduct, we also obtain new proofs showing (purely as
encodings into propositional logic) that qsat parameterized by the input’s treewidth plus
quantifier alternation is fixed-parameter tractable (improving a complex dynamic program
with nested tables) and that pmc parameterized by treewidth is fixed-parameter tractable
(improving a multi-pass dynamic program). Table 1 provides an overview of the encodings
presented within this article.

Our encodings are exponentially smaller than the best known running time for mc(mso),
i.e., when we solve the instances using Fact 1, we obtain the same runtime. We complemented
this finding with new ETH-based lower bounds. Further research will be concerned with
closing the remaining gap in the height of the tower between the lower and upper bounds.
We show in an upcoming paper that the terms “qa(φ)” in Theorem 3 and “qa(φ) − 2” in

STACS 2025

https://arxiv.org/pdf/2312.14620

15:16 Structure-Guided Automated Reasoning

Table 1 We summarize the encodings presented within this article. An encoding maps from one
problem to another. The third and fourth columns define the treewidth and size of the encoding,
whereby we assume that c > 0 is a constant, a width-k tree decomposition is given, ψ is a propositional
formula, and φ is a fixed mso formula.

Encoding. . .
From To Treewidth Size Reference

qsat sat tower(qa(ψ), k + 3.92) tower*(qa(ψ), k + 3.92) Theorem 1
pmc #sat tower(1, k + 3.59) tower*(1, k + 3.59) Theorem 2

card▷◁c(X) sat k + 3c+ 3 O(c|ψ|) Lemma 12
cnf dnf k + 4 O(|ψ|) Lemma 13

mc(mso) sat tower(qa(φ), (9k + 9)|φ| + 3.92) tower*(qa(φ), (9k + 9)|φ| + 3.92) Lemma 11
fd(mso) maxsat tower(qa(φ) + 1, (9k + 9)|φ| + 3.92) tower*(qa(φ) + 1, (9k + 9)|φ| + 3.92) Lemma 14
#fd(mso) #sat tower(qa(φ) + 1, (9k + 9)|φ| + 3.92) tower*(qa(φ) + 1, (9k + 9)|φ| + 3.92) Lemma 15

sat mc(mso) ⌈ k+1
c

⌉ O(k|ψ|) Lemma 17
qsat mc(mso) ⌈ k+1

c
⌉ O(k|ψ|) Theorem 6

Theorem 5 can be replaced by “qa2(φ)” on guarded formulas, i.e., formulas in which there are
only two first-order quantifers that are only allowed to quantify edges. Here, qa2(φ) refers
to the quantifier alternation of the second-order quantifers only. Hence, on such guarded
formulas (e.g., on all examples in the introduction), the bounds are tight. Another task that
remains for further research is to evaluate the encodings in practice. This would also be
interesting for the auxiliary encodings, e.g., can a treewidth-aware cardinality constraint
compete with classical cardinality constraint?

References
1 Michael Alekhnovich and Alexander A. Razborov. Satisfiability, Branch-Width and Tseitin

Tautologies. Comput. Complex., 20(4):649–678, 2011. doi:10.1007/S00037-011-0033-1.
2 Stefan Arnborg and Andrzej Proskurowski. Problems on Graphs with Bounded Decomposabil-

ity. Bull. EATCS, 25:7–10, 1985.
3 Albert Atserias and Sergi Oliva. Bounded-width QBF is PSPACE-complete. Journal of

Computer and System Sciences, 80(7):1415–1429, 2014. doi:10.1016/j.jcss.2014.04.014.
4 Fahiem Bacchus, Shannon Dalmao, and Toniann Pitassi. Algorithms and Complexity Results

for #SAT and Bayesian Inference. In 44th Symposium on Foundations of Computer Science
(FOCS 2003), 11-14 October 2003, Cambridge, MA, USA, Proceedings, pages 340–351, 2003.
doi:10.1109/SFCS.2003.1238208.

5 Max Bannach, Malte Skambath, and Till Tantau. On the Parallel Parameterized Complexity
of MaxSAT Variants. In 25th International Conference on Theory and Applications of
Satisfiability Testing, SAT 2022, August 2-5, 2022, Haifa, Israel, pages 19:1–19:19, 2022.
doi:10.4230/LIPIcs.SAT.2022.19.

6 Umberto Bertelè and Francesco Brioschi. On Non-serial Dynamic Programming. J. Comb.
Theory, Ser. A, 14(2):137–148, 1973. doi:10.1016/0097-3165(73)90016-2.

7 Armin Biere, Marijn Heule, Hans van Maaren, and Toby Walsh, editors. Handbook of
Satisfiability, Second Edition. IOS Press, 2021. doi:10.3233/FAIA336.

8 Bernhard Bliem, Reinhard Pichler, and Stefan Woltran. Declarative Dynamic Programming as
an Alternative Realization of Courcelle’s Theorem. In Parameterized and Exact Computation
– 8th International Symposium, IPEC 2013, Sophia Antipolis, France, September 4-6, 2013,
Revised Selected Papers, pages 28–40, 2013. doi:10.1007/978-3-319-03898-8_4.

9 J. Richard Büchi. Weak Second-Order Arithmetic and Finite Automata. Zeitschrift für
mathematische Logik und Grundlagen der Mathematik, 6(1-6):66–92, 1960.

https://doi.org/10.1007/S00037-011-0033-1
https://doi.org/10.1016/j.jcss.2014.04.014
https://doi.org/10.1109/SFCS.2003.1238208
https://doi.org/10.4230/LIPIcs.SAT.2022.19
https://doi.org/10.1016/0097-3165(73)90016-2
https://doi.org/10.3233/FAIA336
https://doi.org/10.1007/978-3-319-03898-8_4

M. Bannach and M. Hecher 15:17

10 Florent Capelli and Stefan Mengel. Tractable QBF by Knowledge Compilation. In 36th
International Symposium on Theoretical Aspects of Computer Science, STACS 2019, March
13-16, 2019, Berlin, Germany, pages 18:1–18:16, 2019. doi:10.4230/LIPICS.STACS.2019.18.

11 Hubie Chen. Quantified Constraint Satisfaction and Bounded Treewidth. In Proceedings of
the 16th Eureopean Conference on Artificial Intelligence, ECAI’2004, including Prestigious
Applicants of Intelligent Systems, PAIS 2004, Valencia, Spain, August 22-27, 2004, pages
161–165, 2004.

12 Bruno Courcelle. The Monadic Second-Order Logic of Graphs. I. Recognizable Sets of Finite
Graphs. Inf. Comput., 85(1):12–75, 1990. doi:10.1016/0890-5401(90)90043-H.

13 Bruno Courcelle and Joost Engelfriet. Graph Structure and Monadic Second-Order Logic – A
Language-Theoretic Approach, volume 138 of Encyclopedia of mathematics and its applications.
Cambridge University Press, 2012.

14 Adnan Darwiche. Decomposable Negation Normal Form. J. ACM, 48(4):608–647, 2001.
doi:10.1145/502090.502091.

15 Johannes Klaus Fichte, Markus Hecher, Michael Morak, Patrick Thier, and Stefan Woltran.
Solving Projected Model Counting by Utilizing Treewidth and its Limits. Artif. Intell.,
314:103810, 2023. doi:10.1016/j.artint.2022.103810.

16 Johannes Klaus Fichte, Markus Hecher, and Andreas Pfandler. Lower Bounds for QBFs
of Bounded Treewidth. In LICS ’20: 35th Annual ACM/IEEE Symposium on Logic in
Computer Science, Saarbrücken, Germany, July 8-11, 2020, pages 410–424, 2020. doi:
10.1145/3373718.3394756.

17 Jörg Flum and Martin Grohe. Parameterized Complexity Theory. Texts in Theoretical
Computer Science. An EATCS Series. Springer, 2006. doi:10.1007/3-540-29953-X.

18 Georg Gottlob, Reinhard Pichler, and Fang Wei. Monadic Datalog Over Finite Structures of
Bounded Treewidth. ACM Trans. Comput. Log., 12(1):3:1–3:48, 2010. doi:10.1145/1838552.
1838555.

19 Rudolf Halin. S-functions For Graphs. Journal of geometry, 8(1):171–186, 1976.
20 Petr Hlinený, Sang-il Oum, Detlef Seese, and Georg Gottlob. Width Parameters Beyond Tree-

width and their Applications. Comput. J., 51(3):326–362, 2008. doi:10.1093/comjnl/bxm052.
21 Neil Immerman. Descriptive Complexity. Graduate texts in computer science. Springer, 1999.

doi:10.1007/978-1-4612-0539-5.
22 Bart M. P. Jansen and Stefan Kratsch. A Structural Approach to Kernels for ILPs: Treewidth

and Total Unimodularity. In Algorithms – ESA 2015 – 23rd Annual European Symposium,
Patras, Greece, September 14-16, 2015, Proceedings, pages 779–791, 2015. doi:10.1007/
978-3-662-48350-3_65.

23 Donald E. Knuth. The Art of Computer Programming, volume 4, Fascicle 6. Addison-Wesley,
2016.

24 Tuukka Korhonen and Matti Järvisalo. Integrating Tree Decompositions into Decision Heur-
istics of Propositional Model Counters (Short Paper). In 27th International Conference on
Principles and Practice of Constraint Programming, CP 2021, Montpellier, France (Virtual
Conference), October 25-29, 2021, pages 8:1–8:11, 2021. doi:10.4230/LIPICS.CP.2021.8.

25 Stephan Kreutzer. Algorithmic meta-theorems. In Finite and Algorithmic Model Theory,
pages 177–270. Cambridge University Press, 2011.

26 Michael Lampis, Stefan Mengel, and Valia Mitsou. QBF as an Alternative to Courcelle’s
Theorem. In Theory and Applications of Satisfiability Testing – SAT 2018 – 21st International
Conference, SAT 2018, Held as Part of the Federated Logic Conference, FloC 2018, Oxford,
UK, July 9-12, 2018, Proceedings, pages 235–252, 2018. doi:10.1007/978-3-319-94144-8_15.

27 Ruiming Li, Dian Zhou, and Donglei Du. Satisfiability and Integer Pprogramming as Com-
plementary Tools. In Proceedings of the 2004 Conference on Asia South Pacific Design
Automation: Electronic Design and Solution Fair 2004, Yokohama, Japan, January 27-30,
2004, pages 879–882, 2004. doi:10.1109/ASPDAC.2004.178.

STACS 2025

https://doi.org/10.4230/LIPICS.STACS.2019.18
https://doi.org/10.1016/0890-5401(90)90043-H
https://doi.org/10.1145/502090.502091
https://doi.org/10.1016/j.artint.2022.103810
https://doi.org/10.1145/3373718.3394756
https://doi.org/10.1145/3373718.3394756
https://doi.org/10.1007/3-540-29953-X
https://doi.org/10.1145/1838552.1838555
https://doi.org/10.1145/1838552.1838555
https://doi.org/10.1093/comjnl/bxm052
https://doi.org/10.1007/978-1-4612-0539-5
https://doi.org/10.1007/978-3-662-48350-3_65
https://doi.org/10.1007/978-3-662-48350-3_65
https://doi.org/10.4230/LIPICS.CP.2021.8
https://doi.org/10.1007/978-3-319-94144-8_15
https://doi.org/10.1109/ASPDAC.2004.178

15:18 Structure-Guided Automated Reasoning

28 Neil Robertson and Paul D. Seymour. Graph Minors. II. Algorithmic Aspects of Tree-width.
Journal of Algorithms, 7(3):309–322, 1986. doi:10.1016/0196-6774(86)90023-4.

29 Sigve Hortemo Sæther, Jan Arne Telle, and Martin Vatshelle. Solving #SAT and MAXSAT
by Dynamic Programming. J. Artif. Intell. Res., 54:59–82, 2015. doi:10.1613/jair.4831.

30 Marko Samer and Stefan Szeider. Algorithms for Propositional Model Counting. J. Discrete
Algorithms, 8(1):50–64, 2010. doi:10.1016/j.jda.2009.06.002.

31 Carsten Sinz. Towards an Optimal CNF Encoding of Boolean Cardinality Constraints. In
Principles and Practice of Constraint Programming – CP 2005, 11th International Conference,
CP 2005, Sitges, Spain, October 1-5, 2005, Proceedings, pages 827–831, 2005. doi:10.1007/
11564751_73.

https://doi.org/10.1016/0196-6774(86)90023-4
https://doi.org/10.1613/jair.4831
https://doi.org/10.1016/j.jda.2009.06.002
https://doi.org/10.1007/11564751_73
https://doi.org/10.1007/11564751_73

Listing Spanning Trees of Outerplanar Graphs
by Pivot-Exchanges
Nastaran Behrooznia #

Department of Computer Science, University of Warwick, Coventry, UK

Torsten Mütze #

Institut für Mathematik, Universität Kassel, Germany
Department of Theoretical Computer Science and Mathematical Logic,
Charles University, Prague, Czech Republic

Abstract
We prove that the spanning trees of any outerplanar triangulation G can be listed so that any
two consecutive spanning trees differ in an exchange of two edges that share an end vertex. For
outerplanar graphs G with faces of arbitrary lengths (not necessarily 3) we establish a similar result,
with the condition that the two exchanged edges share an end vertex or lie on a common face. These
listings of spanning trees are obtained from a simple greedy algorithm that can be implemented
efficiently, i.e., in time O(n log n) per generated spanning tree, where n is the number of vertices
of G. Furthermore, the listings correspond to Hamilton paths on the 0/1-polytope that is obtained
as the convex hull of the characteristic vectors of all spanning trees of G.

2012 ACM Subject Classification Mathematics of computing → Trees

Keywords and phrases Spanning tree, generation, edge exchange, Hamilton path, Gray code

Digital Object Identifier 10.4230/LIPIcs.STACS.2025.16

Funding This work was supported by Czech Science Foundation grant GA 22-15272S. Both authors
participated in the workshop “Combinatorics, Algorithms and Geometry” in March 2024, which was
funded by German Science Foundation grant 522790373.

Acknowledgements We thank both reviewers of this paper for a number of very helpful suggestions
that improved the writing.

1 Introduction

For a given graph G, let T (G) denote the set of all spanning trees of G. Two spanning trees
of G differ in an edge exchange if the symmetric difference of their edge sets is a 2-element
set, i.e., each of the two spanning trees is obtained from the other one by removing one
edge and adding another. The flip graph F(G) has the set T (G) as vertex set, and an edge
between any two spanning trees that differ in an edge exchange; see Figure 1. It is well-known
that F(G) is the skeleton of the 0/1-polytope that is obtained as the convex hull of all
characteristic vectors χ(T) of spanning trees T ∈ T (G) (see [25, Thm. 40.6]). Specifically,
if the edge set of G is {1, . . . , m}, then for all e ∈ {1, . . . , m} the characteristic vector χ(T)
has a 1-bit at position e if the edge e belongs to T , and a 0-bit at position e otherwise.

We are interested in computing Hamilton paths or cycles in the flip graph F(G), i.e.,
we aim to list all spanning trees of G such that any two consecutive spanning trees differ
in an edge exchange. Such a listing of combinatorial objects subject to some small-change
condition is generally referred to as a Gray code [24, 19]. A Gray code is called cyclic if
the first and last object also differ in the small-change condition, i.e., this corresponds to a
Hamilton cycle in the flip graph.

Cummins [8] first proved that F(G) admits a Hamilton cycle for any graph G. He showed
more generally that for any prescribed edge of F(G), there is a Hamilton cycle containing this
edge. Similar results were obtained by Shank [26], Kamae [11], and Kishi and Kajitani [13].

© Nastaran Behrooznia and Torsten Mütze;
licensed under Creative Commons License CC-BY 4.0

42nd International Symposium on Theoretical Aspects of Computer Science (STACS 2025).
Editors: Olaf Beyersdorff, Michał Pilipczuk, Elaine Pimentel, and Nguyễn Kim Thắng;
Article No. 16; pp. 16:1–16:18

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:nastaran.behrooznia@warwick.ac.uk
mailto:tmuetze@mathematik.uni-kassel.de
https://orcid.org/0000-0002-6383-7436
https://doi.org/10.4230/LIPIcs.STACS.2025.16
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

16:2 Listing Spanning Trees of Outerplanar Graphs

1

2

3 5

4

{1,3,4}

{2,3,4}

{1,2,4}

{1,2,5}

{1,3,5}

{2,3,5}

{2,4,5}

{1,4,5}

{2,5}

{4,5}

{1,4}

{4,5} {1,2}

{1,3}

{2,4}
{2,3}

{1,2}

{3,4}

{4,5} {1,5}
{3,5}

{2,3}
{1,3} {3,4}

{3,5}

{1,2}

G

F(G)

11001 01011

01101

10101 01110

11010

10110

10011

Figure 1 The spanning tree flip graph F(G) for the “diamond” graph G on the left, with a
Hamilton cycle highlighted. For each spanning tree, the set of edges is shown above, and the
characteristic vector is shown below. Edges of F(G) are labelled by the two edges of G being
exchanged.

Harary and Holzmann [10] proved more generally that the base exchange flip graph of any
matroid has a Hamilton cycle. They showed this in the stronger sense that any edge of this
flip graph can be prescribed to be contained in the cycle, and to be avoided by another cycle.
Furthermore, Naddef and Pulleyblank [20, 21] proved that the skeleton of any 0/1-polytope
either admits a Hamilton path between any two prescribed end vertices, or it is a hypercube,
in which case it admits a Hamilton path between any two end vertices of opposite parity.

Algorithmically, a Hamilton path in F(G) can be computed in time O(1) on average
per generated tree using Smith’s algorithm [30] (this is Algorithm S in [14, Sec. 7.2.1.6]);
see Figure 2 (a). Given these strong Hamiltonicity properties of the graph F(G), there has
recently been interest to strengthen them by restricting the allowed edge exchanges.

1.1 The pivot-exchange property
We introduce some more notation. For a graph G, we write V (G) and E(G) for set of
vertices and edges of G, respectively. For a subgraph H ⊆ G and edges e ∈ E(H) and
f ∈ E(G) \ E(H), we write H − e and H + f for the graphs obtained from H by removing
and adding the edges e and f , respectively. We will think of a subgraph H as a subset of
edges from E(G), so the operations H − e and H + f remove and add an element from the
set, respectively. Formally, an edge exchange for a spanning tree T ∈ T (G) is a pair {e, f} of
edges such that e ∈ E(T) and f ∈ E(G) \ E(T) with T − e + f = T△{e, f} ∈ T (G).

N. Behrooznia and T. Mütze 16:3

2 4

3

6

5
71

(a) Smith [Smi97]

(b) Cameron, Grubb, Sawada [CGS24]

(c) Merino, Mütze, Williams [MMW22]

+3

−2

+2

−1

+5

−4

+1

−2

+2

−3

+4

−2

+2

−1

+1

−2

+2

−1

+2

−1

+1

−2

+2

−1

+7

−6

+3

−4

+1

−3

+4

−5

+3

−2

+6

−4

+2

−3

+4

−2

T4T1 T2 T3 T5 T1

T2

1234567
1101010
1011010
0111010
0110110
1010110
1100110
1001110
0101110
0101101
1001101
1010101
0110101
1100101
1101001
1011001
0111001
0110011
1010011
1100011
1001011
0101011

T3

T4

T5

T6

T7

T8

T9

T10

T11

T12

T13

T14

T15

T16

T17

T18

T19

T20

T6

T21

+1

−7

Figure 2 Three different edge exchange Gray codes for listing the 21 spanning trees of the fan
graph F5. In each spanning tree, the edge removed to reach the next tree is highlighted (prefixed
by − in (c)), and the non-edge being added is dashed (prefixed by + in (c)). In (b) and (c), the
common end vertex of each pivot-exchange operation is highlighted, and in (c), the common face
of each face-exchange operation is highlighted. The right-hand side of (c) shows the characteristic
vectors of each spanning tree.

Cameron, Grubb, and Sawada [3] introduced the stronger notion of a pivot-exchange,
which is an exchange {e, f} with the additional property that e and f have a common end
vertex. For example, in the graph G shown in Figure 1, all exchanges except {1, 5} and {2, 4}
are pivot-exchanges. They raised the following problem.

▶ Problem 1. Does every graph G admit a pivot-exchange Gray code of its spanning trees?

STACS 2025

16:4 Listing Spanning Trees of Outerplanar Graphs

Additionally, they asked if such a listing can be computed using a greedy strategy, and
possibly by an efficient algorithm. Problem 1 is a special case of a more general question
raised by Knuth in Vol. 4A of his seminal series “The Art of Computer Programming” [14],
stated as problem 102 in Section 7.2.1.6 with a difficulty rating of 46/50: 1

▶ Problem 2. Does every directed graph admit an edge exchange Gray code of its oriented
spanning trees, also known as arborescences, i.e., spanning trees in which all arcs are oriented
away from a fixed root vertex r?

Note that for any exchange {e, f} in this directed setting, in order to preserve the
arborescence property, the arcs e and f must point to the same vertex, i.e., it must be a
pivot-exchange. Furthermore, a positive answer to Problem 2 would imply an affirmative
answer to Problem 1: Indeed, given an undirected graph G, construct the directed graph G⇆

by replacing each undirected edge of G by two oppositely oriented arcs, and pick an arbitrary
vertex as root r. Listing the oriented spanning trees of G⇆ by arc exchanges produces every
spanning tree of G exactly once, namely in the orientation forced by the choice of r.

1.2 Fan graphs

1 2 n− 1

n

Fn

· · ·

Figure 3 The fan graphs Fn.

As a first step towards Problem 1, Cameron, Grubb, and Sawada [3] provided a pivot-
exchange Gray code for listing the spanning trees of fan graphs Fn, which are obtained by
joining an extra vertex to all vertices of a path on n − 1 vertices; see Figure 3.

▶ Theorem 3 ([3, Thm. 4]). For any n ≥ 3, there is a pivot-exchange Gray code for the
spanning trees of Fn.

The output of their algorithm for the case n = 5 is shown in Figure 2 (b). The algorithm
uses a greedy strategy that prioritizes exchanges based on vertex labels.

1.3 A simple greedy algorithm
Merino, Mütze and Williams [17] discovered a simple greedy algorithm for listing the spanning
trees of a graph G by (arbitrary) edge exchanges. The algorithm operates based on a total
ordering of the edges of G, which is captured by labeling the edges by integers. Specifically, if
m denotes the number of edges of G, then an edge labeling is a bijection ℓ : E(G) → {1, . . . , m}.
For an edge e ∈ E(G), we refer to ℓ(e) as the label of the edge e. In the following examples, we
will often identify edges by their labels. In particular, edge exchanges {e, f} will be denoted
by the pairs of labels {ℓ(e), ℓ(f)}. We will also use the abbreviation [m] := {1, . . . , m}.

The output of Algorithm G when applied to the fan graph F5 is shown in Figure 2 (c),
using the edge labeling displayed on the left. To illustrate the greedy rule in step G2, when
reaching the sixth spanning tree T6 = {1, 2, 5, 6}, there are seven possible edge exchanges to

1 A flawed attempt at settling this problem was published in [5] (see [22]).

N. Behrooznia and T. Mütze 16:5

Algorithm G Greedy edge exchanges.

This algorithm greedily generates the spanning trees of a graph G with m edges via edge
exchanges, using an edge labeling ℓ : E(G) → [m] and an initial spanning tree rT ∈ T (G).
G1. [Initialize] Visit the initial spanning tree rT .
G2. [Exchange] Perform an edge exchange in the current spanning tree that minimizes the

larger of the two edge labels in the exchange and that yields an unvisited spanning
tree from T (G). If no such exchange exists, then terminate. Otherwise visit this new
spanning tree and repeat G2.

obtain another spanning tree in T (F5), namely {1, 3}, {2, 3}, {1, 4}, {2, 4}, {4, 5}, {5, 7} and
{6, 7}; see Figure 4. Only {1, 4}, {2, 4}, {5, 7} and {6, 7} give an unvisited spanning tree,
and among those, {1, 4} and {2, 4}, minimize the larger label, which is 4. In this case, the
exchange {2, 4} is applied, but {1, 4} would be a valid alternative for the algorithm.

+3

−1

+3

−2

+4

−2

+4

−1

visited

T4 T5

T6

unvisited

T1

+4

−5
+7

−5

+7

−6

max{e, f}minmax{e, f} = 4

Figure 4 Illustration of the sixth iteration of Algorithm G in the run shown in Figure 2 (c).

In general, in step G2 there may be several edge exchanges

{e1, f}, {e2, f}, . . . , {et, f} with ℓ(e1) < ℓ(e2) < · · · < ℓ(et) < ℓ(f), (1)

applicable to the current spanning tree to give an unvisited spanning tree, which all have
ℓ(f) as the larger label, differing only in the smaller label ℓ(ei), i ∈ [t]. We refer to such
a situation as a tie. A tie-breaking rule is a procedure that determines which exchange to
apply in case of a tie.

By definition of the step G2, Algorithm G only selects edge exchanges that result in a
previously unvisited spanning tree of G, i.e., the produced listing of spanning trees will not
contain repetitions. However, it could be that the algorithm terminates before having visited
the entire set T (G), a situation that is ruled out by the next theorem.

▶ Theorem 4 ([17, Thm. 10]). For any graph G, for any edge labeling of G, for any initial
spanning tree rT ∈ T (G), and for any tie-breaking rule, Algorithm G yields a genlex listing of
all spanning trees of G.

A listing of bitstrings is called genlex if all strings with the same suffix appear consecutively.
In particular, all strings ending with 0 appear before all strings ending with 1, or vice versa. A
genlex listing of bitstrings is also sometimes referred to as suffix-partitioned in the literature.
Note that genlex order generalizes colexicographic order. In the context of spanning trees,
the genlex property refers to the corresponding characteristic vectors χ(T) of spanning

STACS 2025

16:6 Listing Spanning Trees of Outerplanar Graphs

trees T ∈ T (G); see the right-hand side of Figure 2 (c). In other words, all spanning trees
not containing the highest-labeled edge appear before all spanning trees containing this edge,
or vice versa, and this property is true recursively within the blocks.

As evidenced by this theorem, the greedy Algorithm G is very powerful and versatile.
In fact, the algorithm can be generalized for listing the bases of any matroid by base
exchanges, and even more generally, for traversing a Hamilton path on the skeleton of any
0/1-polytope [16].

1.4 The face-exchange property
The paper [17] also introduced another closeness condition for edge exchanges, which is
well-defined only for plane graphs. Specifically, a face-exchange between two spanning trees
of a plane graph is an exchange of two edges that lie on a common face. If an edge exchange
is both a pivot-exchange and face-exchange, then we refer to it as a pivot∧face-exchange. A
weaker requirement is that it is a pivot-exchange or a face-exchange, and then we refer to it
as a pivot∨face-exchange. These notions give rise to the following question.

▶ Problem 5. Does every plane graph G admit a pivot∧face-exchange or a pivot∨face-
exchange Gray code of its spanning trees?

Pivot- and face-exchanges are connected through the well-known concept of the dual
graph; see Figure 5 (a). For a plane graph G, we write F (G) for the set of faces of G. The
dual graph G′ is the plane graph obtained from G as follows: For every face α ∈ F (G), the
dual graph G′ has a vertex α′ ∈ V (G′), and for every edge e of G between faces α and β

of G, the dual graph G′ has the edge e′ = (α′, β′). For every vertex v ∈ V (G), we write
v′ ∈ F (G′) for the corresponding face of G′ dual to it. For a spanning tree T ∈ T (G), the dual
spanning tree T ′ ∈ T (G′) has the dual edge e′ ∈ E(T ′) for every non-edge e ∈ E(G) \ E(T)
and a dual non-edge e′ /∈ E(T ′) for every edge e ∈ E(T); see Figure 5 (b). Observe that
a pivot-exchange {e, f} in T is a face-exchange {e′, f ′} in the dual spanning tree T ′; see
Figure 5 (c). Symmetrically, a face-exchange {e, f} in T is a pivot-exchange {e′, f ′} in T ′.

G

G′

T ∈ T (G)

T ′ ∈ T (G′)

T − e+ f ∈ T (G)

e

f
f ′

e′

T ′ + e′ − f ′ ∈ T (G′)

pivot-exchange {e, f}

face-exchange {e′, f ′}

(a) (b) (c)

Figure 5 Connection between pivot- and face-exchanges via the dual spanning tree.

Merino, Mütze and Williams [17] strengthened Theorem 3, by showing that for a suitable
edge labeling of the fan graph Fn and a suitable tie-breaking rule, Algorithm G yields a
pivot∧face-exchange Gray code. Specifically, the edges of Fn are labeled from left-to-right,
as shown in Figure 2 (c), and ties are broken according to the closest tie-breaking rule, which
in case of a tie as in (1) selects the exchange {et, f}, i.e., the exchange that maximizes the
smaller of the edge labels ℓ(et) (equivalently, the one for which the smaller label is closest to
the larger label ℓ(f)).

N. Behrooznia and T. Mütze 16:7

2 1

45 9 11

6

3

10

G

7 8

3
1

2

4

5
6

7
8

9

10

11

12

13

G′

(a) (b)

Figure 6 (a) Pivot-exchange Gray code for the spanning trees of the outerplane triangulation G.
(b) Pivot∨face-exchange Gray code for the spanning trees of the outerplane graph G′, which has the
four marked face-exchanges {1, 7}, and the rest pivot-exchanges. Both listings were computed by
Algorithm G, and the spanning trees are represented by their characteristic vectors, with 1-bits and
0-bits drawn as black and white squares, respectively. The initial spanning tree is highlighted in
both graphs.

▶ Theorem 6. For any n ≥ 3, for the left-to-right labeling of the edges of Fn, for any initial
spanning tree rT ∈ T (Fn), and for the closest tie-breaking rule, Algorithm G yields a genlex
pivot∧face-exchange Gray code for the spanning trees of Fn.

In fact, the Gray code from Theorem 3 also has the stronger pivot∧face-exchange property.

STACS 2025

16:8 Listing Spanning Trees of Outerplanar Graphs

1.5 Our results
In this work, we solve Problems 1 and 5 for certain families of plane graphs that generalize
fan graphs, thus generalizing Theorems 3 and 6.

An outerplane graph is a plane graph in which all vertices are incident to the outer face.
An outerplane graph is a triangulation if all of its faces, except possibly the outer face, are
triangles. Note that fan graphs are a very special case of outerplane triangulations.

▶ Theorem 7. For any outerplane triangulation G, there is an edge labeling of G, so that
for any initial spanning tree rT ∈ T (G), there is a tie-breaking rule for which Algorithm G
yields a genlex pivot-exchange Gray code for the spanning trees of G.

▶ Theorem 8. For any outerplane graph G, there is an edge labeling of G, so that for any
initial spanning tree rT ∈ T (G), there is a tie-breaking rule for which Algorithm G yields a
genlex pivot∨face-exchange Gray code for the spanning trees of G.

These theorems directly yield efficient algorithms. Specifically, using the techniques
described in [16, Sec. 7.2+Cor. 32], Algorithm G can be implemented to output each
spanning tree in time O(n log n), where n is the number of vertices of G. The required space
for the algorithm is O(n). In particular, this implementation is history-free in the sense that
no previously computed spanning trees apart from the current spanning tree need to be
stored, plus some simple data structures for bookkeeping.

Two examples of Gray code listings of spanning trees obtained from these theorems are
shown in Figure 6.

▶ Corollary 9. Any outerplane triangulation admits a genlex pivot-exchange Gray code of its
spanning trees. Any outerplane graph admits a genlex pivot∨face-exchange Gray code of its
spanning trees.

The weak dual graph of a plane graph G, denoted G− is the graph obtained from the
dual graph G′ by removing the vertex corresponding to the outer face of G; see Figure 7 (a).

G

G−

(a)

G outerplane

G− a tree G− a path

(b) (c)

Figure 7 Illustration of (a) weak dual graph; (b) 2-connected outerplane triangulation and its
weak dual tree; (e) 2-connected outerplane triangulation whose weak dual tree is a path.

Note that G is a 2-connected outerplane graph if and only if the weak dual G− is a tree;
see Figure 7 (b). Also note that G− is a path if and only if G is 2-connected and all but
at most two sides of every inner face are incident with the outer face; see Figure 7 (c). In
particular, for a triangulation G, we have that G− is a path if and only if G is 2-connected
and at least one side of every triangle touches the outer face. This is true in particular for
fan graphs Fn.

N. Behrooznia and T. Mütze 16:9

We show that fan graphs, and more generally outerplane triangulations for which the
weak dual is a path, are exactly the outerplane graphs that have the maximum number of
spanning trees for a fixed number of edges. Moreover, the counts are the Fibonacci numbers,
defined as f0 := 0, f1 := 1 and

fm+1 := fm + fm−1 (2)

for all m ≥ 1. We write t(G) := |T (G)| for the number of spanning trees of G.

▶ Theorem 10. For any outerplane graph G with m edges we have t(G) ≤ fm+1, with
equality if and only if G is a triangulation such that G− is a path.

The identity t(G) = fm+1 when G is a triangulation for which G− is a path was already
noticed by Slater [29, Prop. 1].
▶ Remark 11. We remark that Problems 1, 2 and 5 are perfectly valid also for multigraphs,
i.e., graphs that may have parallel edges and/or loops (though loops are irrelevant in the
context of spanning trees). In fact, Theorems 4, 7 and 8, and hence Corollary 9, also
hold in this more general setting. An “outerplane triangulation” in this case has all inner
faces of lengths at most 3, instead of exactly 3. The time and space bounds stated after
Theorem 8 change to O(m log n) and O(m), respectively, where m is the number of edges of
the multigraph. However, for simplicity we do our proofs in the setting of simple graphs,
where no parallel edges nor loops are allowed. Nonetheless, our proof of Theorem 10 will
actually use multigraphs.
▶ Remark 12. The listings of spanning trees produced by Algorithm G are in general not
Hamilton cycles in F(G), but only Hamilton paths, i.e., the first and last spanning tree
in general do not differ in an edge exchange. This remark applies to all the Gray codes
mentioned in Theorems 4, 6, 7, and 8, and in Corollary 9. For some graphs, some edge
labelings, and some initial spanning trees, however, the Gray codes are cyclic, such as the
one mentioned in Theorem 6 for the L-shaped initial spanning tree shown in Figure 2 (c),
which ends with the mirrored L.

1.6 Related work
There has been an extensive amount of work [23, 9, 15, 12, 27, 28] on efficiently generating
the set T (G) of all spanning trees of G, without the requirement that any two consecutive
trees differ in an edge exchange, i.e., the computed listings are not Hamilton paths or cycles
in the flip graph F(G). The algorithms in the last three of the aforementioned papers achieve
this in time O(1) on average per generated tree. See the survey [4] for a comparison of the
different algorithms.

If instead of listing all spanning trees of G, we want to count them, then this can be
achieved by Kirchhoff’s Matrix-Tree Theorem, which reduces the problem to computing a
determinant, which can be done efficiently. This problem is closely connected to finding
the so-called most vital edge of G, which is the edge contained in the most spanning trees
from T (G). Random sampling [1, 2] and ranking/unranking [6, 7] of spanning trees have
also been considered.

1.7 Outline of this paper
In Section 2 we prove Theorems 7 and 8. In Section 3 we prove Theorem 10. We conclude
with some open questions in Section 4, and there we also report on some experimental
evidence.

STACS 2025

16:10 Listing Spanning Trees of Outerplanar Graphs

2 Proof of Theorems 7 and 8

For the proofs of Theorems 7 and 8, we will assume w.l.o.g. that the outerplane graph G is
2-connected. If G is not 2-connected, then all the arguments presented in the following apply
to each of its blocks, and the spanning trees of G are obtained by combining the spanning
trees in each block in all possible ways, and pivot- or face-exchanges remain valid within the
blocks.

We first describe the labeling of edges of a 2-connected outerplane graph G that we use
in order to run Algorithm G on the graph G. We then establish two important properties
of these labelings (Lemmas 13 and 14) that are crucial to show that whenever an arbitrary
edge exchange becomes applicable in step G2 of Algorithm G, then ties can be broken to
instead use a pivot- or face-exchange (Lemma 15).

2.1 The edge labeling

To define the edge labeling, we need another definition. Let v be the vertex of G′ corresponding
to the outer face of G, and let d be the degree of v. The split dual graph, denoted G∗, is
obtained from G′ by splitting v into d many degree-1 vertices, one adjacent to each neighbor
of v; see Figure 8 (a).

Note that the weak dual graph G− is a tree if and only if the split dual graph G∗ is a
tree; see Figures 7 (b) and 8 (b). Furthermore, G− is a path if and only if G∗ is a caterpillar,
i.e., a tree in which all vertices are in distance ≤ 1 from a central path; see Figures 7 (c)
and 8 (c).

G

G∗

(a)

G outerplane

G∗ a tree G∗ a caterpillar

(b) (c)

Figure 8 Illustration of (a) split dual graph; (b) 2-connected outerplane triangulation and its
split dual tree; (c) 2-connected outerplane triangulation whose split dual tree is a caterpillar (cf.
Figure 7).

Let G be a 2-connected outerplane graph with m edges. We consider the split dual
tree G∗, we pick a leaf r of this tree as root, and we orient all of its edges away from r,
giving an oriented tree # „

G∗, referred to as oriented split dual. We label the edges of # „

G∗ in
a depth-first-search manner with integers 1, . . . , m, starting at the root r and processing
subtrees in counterclockwise (ccw) order; see Figure 9. The labeling of the edges of # „

G∗

induces a labeling of the corresponding dual edges of G with integers from [m]. We refer to
this labeling of the edges of G as dual-tree labeling. Note that there is freedom in the choice
of the root in the tree G∗, and different choices yield different oriented split dual trees # „

G∗

and hence different edge labelings of the same graph G. Note that the left-to-right labeling
of the fan graph G = Fn shown in Figure 2 (c) is one particular dual-tree labeling.

N. Behrooznia and T. Mütze 16:11

(a) (b)

r

r

1
2

3

4
5

6

7

8

9

1011

12
13

14
15

16

17
18

19
20

21

23

24

25

26
27

28
29

1 3

2 4

5

6

7

8

9

10 12 14 17

11 13
15 1618

19 20

25 24 23 22 21G
G

„

G∗

„

G∗

22

Figure 9 Illustration of the dual-tree labeling procedure.

2.2 Proofs of theorems

Throughout this section, we let G be a 2-connected outerplane graph with m edges, # „

G∗ an
oriented split dual tree, and ℓ : E(G) → [m] the corresponding dual-tree labeling of the edges
of G. Before proving Theorems 7 and 8, we first derive two properties of the edge labelings
defined in the previous section, stated in Lemmas 13 and 14 below.

The following definitions are illustrated in Figure 10. We denote a face α of G of length t

by the sequence of edges (e1, . . . , et) bounding this face in ccw order, starting with the
edge e1 whose dual edge in # „

G∗ is oriented towards α′ (all other edges of # „

G∗ are oriented
away from α′). For a face α = (e1, . . . , et) and an index i ∈ [t], the (α, ei)-lobe Lα,ei

is the
set of edges of G that are dual to the edges in the maximal subtree of G∗ that contains the
edge e′

i, but none of the other edges e′
j , j ∈ [t] \ {i}.

αe1

e2

e3e4
e5Lα,e5

Lα,e1

Lα,e2

Lα,e3

Lα,e4

f ′

G

„

G∗

α = (e1, e2, e3, e4, e5)

Figure 10 Illustration of lobes.

▶ Lemma 13. For any face α = (e1, . . . , et) of G, we have ℓ(e1) < ℓ(e2) < · · · < ℓ(et).
Furthermore, for any i ∈ {2, . . . , t} and f ∈ Lα,ei

\ {ei} we have ℓ(ei) < ℓ(f), and ℓ(f) <

ℓ(ei+1) if i < t.

Proof. This is an immediate consequence of the labeling procedure which processes subtrees
in the oriented split dual in ccw order and in a depth-first-search manner. Specifically, for all
i ∈ {2, . . . , t}, all edges of Lα,ei \ {ei} are labeled directly after ei, and directly before ei+1 if
i < t. ◀

STACS 2025

16:12 Listing Spanning Trees of Outerplanar Graphs

For a vertex v of G, the incidence list Ev is the sequence of edges incident to v in
clockwise order around v, starting and ending with the two edges that bound the outer face;
see Figure 11. We say that an edge e incident with v is a cw-edge or ccw-edge, respectively,
according to the clockwise or counterclockwise orientation of the dual edge e′ in # „

G∗ around v.

▶ Lemma 14. For any vertex v, let Ev =: (e1, . . . , et) be its incidence list. Then there is
an index i ∈ {0, . . . , t} such that e1, . . . , ei are ccw-edges, ei+1, . . . , et are cw-edges, and we
have ℓ(ei) < ℓ(ei−1) < · · · < ℓ(e1) < ℓ(ei+1) < ℓ(ei+2) < · · · < ℓ(et). In particular, for any
cw-edge ej and any i ∈ [j − 1] we have ℓ(ei) < ℓ(ej).

v

et

Ev = (e1, . . . , et)

e1

ei+1

fi

f1

fi+1fi−1

P = (e′1, . . . , e
′
t)

f0 = ft

e2 f2

ei

ft−1

e3

e′i

e′1

e′i+1

e′t
e′2

ei+2

Figure 11 Illustration of Lemma 14.

Proof. For any sequence of edges P = (a1, . . . , at) that form a path in the oriented tree # „

G∗,
there is an index i ∈ {0, . . . , t} such that a1, . . . , ai are oriented towards the start vertex of P

and ai+1, . . . , at are oriented towards the end vertex of P . The special cases i = 0 and i = t

mean that the path is oriented conformly, towards the end or start vertex, respectively.
The sequence of dual edges P := (e′

1, . . . , e′
t) is a path in # „

G∗ to which the aforementioned
observation applies. For j ∈ {1, . . . , t − 1}, let fj be the face of G bounded by ej and ej+1.
Furthermore, we denote the outer face of G by f0 = ft. Note that e′

j is oriented towards f ′
j−1

in # „

G∗ for j = 1, . . . , i, i.e., these are all ccw-edges w.r.t. v. Furthermore, e′
j is oriented

towards f ′
j in # „

G∗ for j = i + 1, . . . , t, i.e., these are all cw-edges w.r.t. v.
Applying Lemma 13 to the faces fj , j = 1, . . . , i − 1 and j = i + 1, . . . , t − 1, yields

ℓ(ei) < ℓ(ei−1) < · · · < ℓ(e1) and ℓ(ei+1) < ℓ(ei+2) < · · · < ℓ(et), respectively. Furthermore,
applying Lemma 13 to Lfi,ei and Lfi,ei+1 proves that ℓ(e1) < ℓ(ei+1). Combining these
inequalities proves the lemma. ◀

▶ Lemma 15. Let T ∈ T (G) and let {e, f} with ℓ(e) < ℓ(f) be an edge exchange for T . Then
there is a pivot∨face-exchange {d, f} with ℓ(d) < ℓ(f). Furthermore, if G is a triangulation,
then {d, f} is a pivot-exchange.

Proof. We let α = (e1, . . . , et) be the face incident with f in G for which the dual edge f ′

in # „

G∗ is oriented away from α′. As ℓ(f) > ℓ(e) ≥ 1 we have ℓ(f) > 1, and consequently
α is not the outer face, but an inner face. We have f = ei for some i ∈ {2, . . . , t}. The
graph T ∪ {e, f} contains exactly one cycle C, which contains both edges e and f . As
ℓ(e) < ℓ(f), Lemma 13 implies that e /∈ Lα,f , and as e ∈ C, we obtain that C contains edges
from every lobe Lα,ei for all i ∈ [t], and furthermore e ∈ Lα,ej for some j ∈ {1, . . . , i − 1}.

We now distinguish the cases whether f ∈ T or f /∈ T , i.e., whether the exchange {e, f}
adds the edge e and removes f , or removes e and adds f , respectively. These two cases are
illustrated in Figure 12 (a) and (b), respectively.

N. Behrooznia and T. Mütze 16:13

α

f

Lα,f

G

„

G∗

f /∈ T

e1

Lα,ej

Lα,ei−1

C ⊆ T ∪ {f}

d

e

{e, f} → {d, f}

α

Lα,f

G

„

G∗

f ∈ T

e1

Lα,ej

C ⊆ T ∪ {e}
{e, f} → {d, f}

ej

ei−1ei
f
ei

d

face-exchange
pivot-exchange if t = 3

pivot-exchange

e

α = (e1, . . . , et) α = (e1, . . . , et)

(a) (b)

ej

Figure 12 Illustration of the two cases in the proof of Lemma 15.

Case (a). f ∈ T . Note that {d, f} with d := ej is a valid face-exchange for T , and we
have ℓ(d) < ℓ(f) by Lemma 13. Furthermore, if G is a triangulation, then we have t = 3
and consequently f = ei and d = ej share an end vertex, so the exchange {d, f} is a
pivot-exchange.

Case (b). f /∈ T . Let d be the edge of C incident with f in the lobe Lα,ei−1 . Note that
{d, f} is a valid pivot-exchange for T . If i > 2, then we have ℓ(d) < ℓ(f) by Lemma 13.
If i = 2, then let v be the common end vertex of e1 = ej and e2 = ei, and consider the
incidence list Ev of v. The edge e1 is a cw-edge and d comes before it (or is equal to e1) on
the list Ev, and so Lemma 14 yields ℓ(d) ≤ ℓ(e1). By Lemma 13 we have ℓ(e1) < ℓ(f) and
therefore ℓ(d) < ℓ(f). ◀

We are now in position to prove Theorems 7 and 8.

Proof of Theorems 7 and 8. By Lemma 15, whenever Algorithm G considers an edge ex-
change {e, f} with ℓ(e) < ℓ(f), there is a pivot∨face-exchange {d, f} with ℓ(d) < ℓ(f). By
Theorem 4, the listing of spanning trees produced by Algorithm G has the genlex property,
which implies that if T△{e, f} is unvisited, then T△{d, f} is also unvisited. It follows that
there is a tie-breaking rule for Algorithm G to only ever use pivot ∨face-exchanges.

Furthermore, if G is a triangulation, then by Lemma 15 the alternative exchange {d, f}
is a pivot-exchange, so there is a tie-breaking rule for Algorithm G to only ever use pivot-
exchanges. ◀

3 Proof of Theorem 10

We prove Theorem 10 in the more general setting of multigraphs (recall Remark 11), i.e.,
from now on we allow multiple edges between pairs of vertices. Two edges between the same
pair of vertices are sometimes referred to as parallel edges. Loops may be present, but are
never contained in a spanning tree and hence irrelevant for us. However, the distinction of
parallel edges is important. For example, the plane graph formed by two vertices connected
by m parallel edges has m different spanning trees, each containing exactly one of the m

edges.

STACS 2025

16:14 Listing Spanning Trees of Outerplanar Graphs

All notions introduced in Section 1 are valid in the more general context of multigraphs.
The only exception is the definition of an outerplane triangulation, which we change from
“face length 3” to “face length ≤ 3”. A length-2 face comes from two parallel edges, and is
called a digon.

In addition to edge removal and edge addition, we now also introduce the operation
of edge contraction. Given a graph G and an edge e ∈ E(G), we write G/e for the graph
obtained from G by contracting the edge e. Note that even if G is a simple graph, G/e

may still contain parallel edges, and if G has parallel edges, then G/e may contain loops
(which can be ignored when counting spanning trees). The number of spanning trees t(G) of
a graph G obeys the well-known recursive relation

t(G) = t(G − e) + t(G/e), (3)

valid for any (non-loop) edge e ∈ E(G) (see [18]).
We need the following auxiliary lemma about Fibonacci numbers.

▶ Lemma 16. For any two integers i, j ≥ 1, we have fi · fj ≤ fi+j−1, with equality if and
only if i = 1 or j = 1.

Proof. If i = 1 or j = 1, then one can check directly that the claimed equality holds.
Now assume that i, j ≥ 2. We prove that fi · fj < fi+j−1 by induction on i + j. In the

base case i + j = 4 we have i = j = 2 and therefore fi = fj = f2 = 1 and fi+j−1 = f3 = 2,
so the claim is true. For the induction step we distinguish the cases j ∈ {2, 3} and j > 3.
If j = 2 we have fi · fj = fi < fi+1 = fi+j−1 (recall that i ≥ 2). If j = 3 we have
fi · fj = 2fi < fi + fi+1 = fi+2 = fi+j−1. It remains to consider the case j > 3. We have

fi · fj = fi · (fj−2 + fj−1) = fi · fj−2 + fi · fj−1 < fi+j−3 + fi+j−2 = fi+j−1,

where the strict inequality in the third step holds by induction, using that j − 2 > 1. ◀

Theorem 10 is an immediate consequence of the following more general statement for
multigraphs.

▶ Theorem 17. For any outerplane (multi)graph G with m edges we have t(G) ≤ fm+1,
with equality if and only if G is a triangulation such that G− is a path and all digons are
incident with the outer face.

Note that digons incident with the outer face correspond to degree 1 vertices in the dual
graph G−, so if G− is a path, then there are at most two such digons corresponding to end
vertices of the path.

Theorem 17 is illustrated in Figure 13.

Proof. We argue by induction on m. The induction basis m = 0 is trivial. For the induction
step we assume that m ≥ 1.

If G is not 2-connected, then it has at least two blocks A and B with a ≥ 1 and b ≥ 1
edges, respectively, where a + b = m. We have t(G) = t(A) · t(B) and therefore t(G) ≤
fa+1 · fb+1 < fa+b+1 = fm+1, where the strict inequality follows from Lemma 16.

It remains to consider the case that G is 2-connected. If G is a single edge, then
t(G) = 1 = f2. If G has only one inner face, then it is a cycle and we have t(G) = m ≤ fm+1,
and this inequality is tight for m ∈ {2, 3} and strict for m ≥ 4. The same estimates hold
if all inner faces of G are digons, i.e., G has 2 vertices and all m edges are parallel to each
other. For the rest of the proof we assume that G has at least two faces, not all of which

N. Behrooznia and T. Mütze 16:15

1 1 2 3 5 8 13 21 34 55 89 144

233 377 610 1597 2584967

Figure 13 Sequence of outerplane graphs that maximize the number of spanning trees, with the
corresponding counts, the Fibonacci numbers. They are all triangulations for which G− is a path,
and they either have no digons (red) or one digon incident with the outer face (blue). For each
graph, deleting or contracting the bold edge yields the two preceding graphs.

are digons. This implies in particular that m ≥ 4. We consider a face α of G for which the
dual vertex α′ has degree at most 1 in G−. We denote the sequence of edges bounding α

by e1, . . . , et in clockwise order, ending with the edge et that has a dual edge in G−. We
distinguish two cases, namely whether α is a digon (t = 2) or not (t ≥ 3), and we bound the
number of spanning trees using (3) with respect to the edge e := e1, i.e., the first edge of the
face α. These two cases are illustrated in Figure 14 (a) and (b), respectively.

e = e1

e = e1

e2
α

t = 2

t ≥ 3(b)

(a)

e2

t(G− e) ≤ fm t(G/e)

et

α

t(G− e)

= t(G− {e1, . . . , et−1}) ≤ fm−1

t(G/e) ≤ fm

G G− e G/e

G G− e G/e

α/eet et
G−

G− es

= t(G/e− {e2, . . . , es}) ≤ fm−1

β

e2

et−1 et−1

β β

β
es e2 es e2

β/es

et−1

Figure 14 Illustration of the proof of Theorem 17.

Case (a). t = 2. G − e has m − 1 edges, and therefore

t(G − e) ≤ fm (4)

by induction. Let s ≥ 2 be the number of edges that are parallel to e1 (including e1 and e2),
and denote them by e1, e2, . . . , es in ccw order around the corresponding common end vertex;
see Figure 14 (a). Furthermore, we let β be the face incident with es but not es−1. In the
graph G/e, the edges e2, . . . , es are loops, and we can therefore remove all of them, so we
have

STACS 2025

16:16 Listing Spanning Trees of Outerplanar Graphs

t(G/e) = t(G/e − {e2, . . . , es}) ≤ fm−1 (5)

by induction. Combining (2), (3), (4), and (5) proves that t(G) ≤ fm+1, as claimed.
Furthermore, this inequality is tight if and only if (4) and (5) are tight, which happens if
and only if the conditions stated in the theorem hold for G − e and G/e, which happens if
and only if s = 2 and β is a triangle that is incident with the outer face, if and only if the
conditions stated in the theorem hold for G.

Case (b). t ≥ 3. Let β be the face incident with et but not e1. G/e has m − 1 edges, and
therefore

t(G/e) ≤ fm (6)

by induction. In the graph G − e, the edges e2, . . . , et−1 are present in every spanning tree,
so we have

t(G − e) = t(G − {e1, . . . , et−1}) ≤ fm−1 (7)

by induction. Combining (2), (3), (6) and (7) proves that t(G) ≤ fm+1, as claimed. Further-
more, this inequality is tight if and only if (6) and (7) are tight, which happens if and only if
the conditions stated in the theorem hold for G/e and G − e, which happens if and only if
t = 3 and β is a triangle that is incident with the outer face, if and only if the conditions
stated in the theorem hold for G. ◀

4 Open problems

Problems 1 and 5 remain open for general graphs, i.e., for graphs not covered by Theorems 7
and 8 (recall Remark 11). Also, Knuth’s more general Problem 2 for directed graphs remains
very much open.

Concerning Problem 1, we checked experimentally that all 2-connected graphs on up to 6
vertices admit a pivot-exchange Gray code for their spanning trees, and these Gray codes
are all cyclic. Regarding Problem 2, we checked that all directed graphs on up to 5 vertices
(oppositely oriented arcs are allowed) whose underlying undirected graph is 2-connected
admit an edge exchange Gray code for their arborescences, for any choice of fixed root. In
some cases those flip graphs admit no Hamilton cycle, but only a Hamilton path (see [22]), so
not all of these Gray codes are cyclic. Regarding Problem 5, we checked that all outerplane
graphs on up to 6 vertices admit a cyclic pivot∧face-exchange Gray code for their spanning
trees.

Furthermore, Knuth [14] asked in Exercise 101 in Section 7.2.1.6 whether the complete
graph Kn admits a “nice” Gray code listing of its spanning trees. One interpretation of
this question, in the spirit of Problem 1, could be: Is there a pivot-exchange Gray code for
the spanning trees of Kn? Alternatively, is there a Gray code listing that provides a more
fine-grained explanation of Cayley’s formula nn−2 for the number of spanning trees? Similar
questions can be asked for the complete bipartite graph Kn,n.

Does Theorem 10 hold without the outerplane requirement for m sufficiently large? The
only complete graphs Kn that violate the bound t(Kn) ≤ f(n

2)+1 arise for n = 4, 5, 6.

N. Behrooznia and T. Mütze 16:17

References
1 D. J. Aldous. The random walk construction of uniform spanning trees and uniform labelled

trees. SIAM J. Discrete Math., 3(4):450–465, 1990. doi:10.1137/0403039.
2 A. Z. Broder. Generating random spanning trees. In 30th Annual Symposium on Foundations

of Computer Science, Research Triangle Park, North Carolina, USA, 30 October - 1 November
1989, pages 442–447. IEEE Computer Society, 1989. doi:10.1109/SFCS.1989.63516.

3 B. Cameron, A. Grubb, and J. Sawada. Pivot Gray codes for the spanning trees of a graph ft. the
fan. Graphs Combin., 40(4):Paper No. 78, 26 pp., 2024. doi:10.1007/s00373-024-02808-2.

4 M. Chakraborty, S. Chowdhury, J. Chakraborty, R. Mehera, and R. K. Pal. Algorithms for
generating all possible spanning trees of a simple undirected connected graph: an extensive
review. Complex & Intelligent Systems, 5:265–281, 2019.

5 W.-K. Chen. Hamilton circuits in directed-tree graphs. IEEE Trans. Circuit Theory, CT-
14:231–233, 1967.

6 C. J. Colbourn, R. P. J. Day, and L. D. Nel. Unranking and ranking spanning trees of a graph.
J. Algorithms, 10(2):271–286, 1989. doi:10.1016/0196-6774(89)90016-3.

7 C. J. Colbourn, W. J. Myrvold, and E. Neufeld. Two algorithms for unranking arborescences.
J. Algorithms, 20(2):268–281, 1996. doi:10.1006/jagm.1996.0014.

8 R. L. Cummins. Hamilton circuits in tree graphs. IEEE Trans. Circuit Theory, CT-13:82–90,
1966.

9 H. N. Gabow and E. W. Myers. Finding all spanning trees of directed and undirected graphs.
SIAM J. Comput., 7(3):280–287, 1978. doi:10.1137/0207024.

10 C. A. Holzmann and F. Harary. On the tree graph of a matroid. SIAM J. Appl. Math.,
22:187–193, 1972. doi:10.1137/0122021.

11 T. Kamae. The existence of a Hamilton circuit in a tree graph. IEEE Trans. Circuit Theory,
CT-14:279–283, 1967.

12 S. Kapoor and H. Ramesh. Algorithms for generating all spanning trees of undirected, directed
and weighted graphs. In Algorithms and data structures (Ottawa, ON, 1991), volume 519
of Lecture Notes in Comput. Sci., pages 461–472. Springer, Berlin, 1991. doi:10.1007/
BFb0028284.

13 G. Kishi and Y. Kajitani. On Hamilton circuits in tree graphs. IEEE Trans. Circuit Theory,
CT-15(1):42–50, 1968.

14 D. E. Knuth. The Art of Computer Programming. Vol. 4A. Combinatorial Algorithms. Part 1.
Addison-Wesley, Upper Saddle River, NJ, 2011.

15 T. Matsui. A flexible algorithm for generating all the spanning trees in undirected graphs.
Algorithmica, 18(4):530–543, 1997. doi:10.1007/PL00009171.

16 A. Merino and T. Mütze. Traversing combinatorial 0/1-polytopes via optimization. SIAM J.
Comput., 53(5):1257–1292, 2024. doi:10.1137/23M1612019.

17 A. Merino, T. Mütze, and A. Williams. All your bases are belong to us: listing all bases of
a matroid by greedy exchanges. In 11th International Conference on Fun with Algorithms,
volume 226 of LIPIcs. Leibniz Int. Proc. Inform., pages Paper No. 22, 28. Schloss Dagstuhl –
Leibniz-Zentrum für Informatik, 2022. doi:10.4230/lipics.fun.2022.22.

18 G. Minty. A simple algorithm for listing all the trees of a graph. IEEE Trans. Circuit Theory,
12(1):120, 1965.

19 T. Mütze. Combinatorial Gray codes—an updated survey. Electron. J. Combin., DS26(Dynamic
Surveys):99 pp., 2023. doi:10.37236/11023.

20 D. J. Naddef and W. R. Pulleyblank. Hamiltonicity and combinatorial polyhedra. J. Combin.
Theory Ser. B, 31(3):297–312, 1981. doi:10.1016/0095-8956(81)90032-0.

21 D. J. Naddef and W. R. Pulleyblank. Hamiltonicity in (0-1)-polyhedra. J. Combin. Theory
Ser. B, 37(1):41–52, 1984. doi:10.1016/0095-8956(84)90043-1.

22 V. Rao and N. Raju. On tree graphs of directed graphs. IEEE Trans. Circuit Theory,
19(3):282–283, 1972.

STACS 2025

https://doi.org/10.1137/0403039
https://doi.org/10.1109/SFCS.1989.63516
https://doi.org/10.1007/s00373-024-02808-2
https://doi.org/10.1016/0196-6774(89)90016-3
https://doi.org/10.1006/jagm.1996.0014
https://doi.org/10.1137/0207024
https://doi.org/10.1137/0122021
https://doi.org/10.1007/BFb0028284
https://doi.org/10.1007/BFb0028284
https://doi.org/10.1007/PL00009171
https://doi.org/10.1137/23M1612019
https://doi.org/10.4230/lipics.fun.2022.22
https://doi.org/10.37236/11023
https://doi.org/10.1016/0095-8956(81)90032-0
https://doi.org/10.1016/0095-8956(84)90043-1

16:18 Listing Spanning Trees of Outerplanar Graphs

23 R. C. Read and R. E. Tarjan. Bounds on backtrack algorithms for listing cycles, paths, and
spanning trees. Networks, 5(3):237–252, 1975. doi:10.1002/net.1975.5.3.237.

24 C. D. Savage. A survey of combinatorial Gray codes. SIAM Rev., 39(4):605–629, 1997.
doi:10.1137/S0036144595295272.

25 A. Schrijver. Combinatorial optimization. Polyhedra and efficiency. Vol. B, volume 24 of
Algorithms and Combinatorics. Springer-Verlag, Berlin, 2003. Matroids, trees, stable sets,
Chapters 39–69.

26 H. Shank. A note on Hamilton circuits in tree graphs. IEEE Trans. Circuit Theory, 15(1):86,
1968. doi:10.1109/TCT.1968.1082765.

27 A. Shioura and A. Tamura. Efficiently scanning all spanning trees of an undirected graph. J.
Oper. Res. Soc. Japan, 38(3):331–344, 1995. doi:10.15807/jorsj.38.331.

28 A. Shioura, A. Tamura, and T. Uno. An optimal algorithm for scanning all spanning trees of
undirected graphs. SIAM J. Comput., 26(3):678–692, 1997. doi:10.1137/S0097539794270881.

29 P. J. Slater. Fibonacci numbers in the count of spanning trees. Fibonacci Quart., 15(1):11–14,
1977.

30 M. J. Smith. Generating spanning trees. Master’s thesis, University of Victoria, 1997.

https://doi.org/10.1002/net.1975.5.3.237
https://doi.org/10.1137/S0036144595295272
https://doi.org/10.1109/TCT.1968.1082765
https://doi.org/10.15807/jorsj.38.331
https://doi.org/10.1137/S0097539794270881

Tight Approximation and Kernelization Bounds for
Vertex-Disjoint Shortest Paths
Matthias Bentert #

University of Bergen, Norway

Fedor V. Fomin #

University of Bergen, Norway

Petr A. Golovach #

University of Bergen, Norway

Abstract
We examine the possibility of approximating Maximum Vertex-Disjoint Shortest Paths. In
this problem, the input is an edge-weighted (directed or undirected) n-vertex graph G along
with k terminal pairs (s1, t1), (s2, t2), . . . , (sk, tk). The task is to connect as many terminal pairs
as possible by pairwise vertex-disjoint paths such that each path is a shortest path between the
respective terminals. Our work is anchored in the recent breakthrough by Lochet [SODA ’21], which
demonstrates the polynomial-time solvability of the problem for a fixed value of k.

Lochet’s result implies the existence of a polynomial-time ck-approximation for Maximum
Vertex-Disjoint Shortest Paths, where c ≤ 1 is a constant. (One can guess 1/c terminal pairs to
connect in kO(1/c) time and then utilize Lochet’s algorithm to compute the solution in nf(1/c) time.)
Our first result suggests that this approximation algorithm is, in a sense, the best we can hope
for. More precisely, assuming the gap-ETH, we exclude the existence of an o(k)-approximation
within f(k) · poly(n) time for any function f that only depends on k.

Our second result demonstrates the infeasibility of achieving an approximation ratio of m
1/2−ε

in polynomial time, unless P = NP. It is not difficult to show that a greedy algorithm selecting a
path with the minimum number of arcs results in a ⌈

√
ℓ⌉-approximation, where ℓ is the number

of edges in all the paths of an optimal solution. Since ℓ ≤ n, this underscores the tightness of
the m

1/2−ε-inapproximability bound.
Additionally, we establish that Maximum Vertex-Disjoint Shortest Paths is fixed-parameter

tractable when parameterized by ℓ but does not admit a polynomial kernel. Our hardness results
hold for undirected graphs with unit weights, while our positive results extend to scenarios where
the input graph is directed and features arbitrary (non-negative) edge weights.

2012 ACM Subject Classification Theory of computation → Approximation algorithms analysis;
Theory of computation → Shortest paths; Theory of computation → Problems, reductions and
completeness; Theory of computation → Fixed parameter tractability

Keywords and phrases Inapproximability, Fixed-parameter tractability, Parameterized approxima-
tion

Digital Object Identifier 10.4230/LIPIcs.STACS.2025.17

1 Introduction

We study a variant of the well-known problem Vertex-Disjoint Paths. In the latter, the
input comprises a (directed or undirected) graph G and k terminal pairs. The task is to
identify whether pairwise vertex-disjoint paths can connect all terminals. Vertex-Disjoint
Paths has long been established as NP-complete [21] and has played a pivotal role in the
graph-minor project by Robertson and Seymour [29].

Eilam-Tzoreff [14] introduced a variant of Vertex-Disjoint Paths where all paths in
the solution must be shortest paths between the respective terminals. The parameterized
complexity of this variant, known as Vertex-Disjoint Shortest Paths, was recently

© Matthias Bentert, Fedor V. Fomin, and Petr A. Golovach;
licensed under Creative Commons License CC-BY 4.0

42nd International Symposium on Theoretical Aspects of Computer Science (STACS 2025).
Editors: Olaf Beyersdorff, Michał Pilipczuk, Elaine Pimentel, and Nguyễn Kim Thắng;
Article No. 17; pp. 17:1–17:17

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:matthias.bentert@uib.no
mailto:fedor.fomin@uib.no
https://orcid.org/0000-0003-1955-4612
mailto:petr.golovach@uib.no
https://orcid.org/0000-0002-2619-2990
https://doi.org/10.4230/LIPIcs.STACS.2025.17
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

17:2 Tight Approximation and Kernelization Bounds for Vertex-Disjoint Shortest Paths

resolved [25] and subsequently the running time improved [3]: The problem, parameterized
by k, is W[1]-hard and in XP (that is, polynomial-time solvable for constant k) for undirected
graphs. On directed graphs, the problem is NP-hard already for k = 2 if zero-weight edges
are allowed [16]. The problem is solvable in polynomial time for k = 2 for positive edge
weights [4]. It is NP-hard when k is part of the input and the complexity for constant k > 2
remains open.

The optimization variant of Vertex-Disjoint Shortest Paths, where not necessarily
all terminal pairs need to be connected, but at least p of them, is referred to as Maximum
Vertex-Disjoint Shortest Paths.

Input: A graph G = (V, E), an edge-length function w : E → Q≥0, terminal
pairs (s1, t1), (s2, t2), . . . , (sk, tk) where si ̸= ti for i ∈ [k], and an integer p.

Question: Is there a set S ⊆ [k] with |S| ≥ p such that there is a collection C = {Pi}i∈S

of pairwise vertex-disjoint paths such that for each i ∈ S, path Pi is a
shortest path from si to ti?

Maximum Vertex-Disjoint Shortest Paths

A few remarks are in order. In the literature concerning Vertex-Disjoint Paths and
its variants, one usually distinguishes between vertex-disjoint and internally vertex-disjoint
paths. In the latter, two paths in a solution might share common endpoints while in the
former, all paths must be completely vertex disjoint – including the two ends. We focus on
the variant where paths must be completely vertex-disjoint, but most of our results also hold
for internally vertex-disjoint paths.

Note that Vertex-Disjoint Shortest Paths is a special case of Maximum Vertex-
Disjoint Shortest Paths with p = k. For the maximization version, we are not given p

as input but are instead asked to find a set S that is as large as possible. Slightly abusing
notation, we do not distinguish between these two variants and refer to both as Maximum
Vertex-Disjoint Shortest Paths.

While parameterization by k yields strong hardness bounds (both in terms of parameter-
ized complexity and, as we will show later, approximation), another natural parameterization
would be the sum of path lengths in a solution. We initiate the study of a related parameter ℓ,
the minimum number of edges in an optimal solution (assuming the instance is a yes-instance,
otherwise, we define ℓ = n). If we confine all edge weights to be positive integers, then ℓ serves
as a lower bound for the sum of path lengths. Since our hardness results apply to unweighted
graphs, studying ℓ instead of the sum of path lengths does not weaken the negative results
and ℓ proves to be very useful for approximation and parameterized algorithms. Note that
the sum of path lengths is not a suitable parameter as dividing all edge weights by m · wmax
(where wmax is the maximum weight of any edge in the input) yields an equivalent instance
where the sum of path lengths in the solution is at most one.

For the parameterized complexity of Maximum Vertex-Disjoint Shortest Paths, we
note that the results for Vertex-Disjoint Shortest Paths [3, 25] for the parameterization
by k directly translate for Maximum Vertex-Disjoint Shortest Paths parameterized
by p. The problem is W[1]-hard as a generalization of Vertex-Disjoint Shortest Paths,
and to obtain an XP algorithm, it is sufficient to observe that in nO(p) time we can guess a
set S ⊆ [k] of size p and apply the XP algorithm for Vertex-Disjoint Shortest Paths
for the selected set of terminal pairs.

Before the recent work of Chitnis, Thomas, and Wirth [8], little was known about
approximation algorithms for the Maximum Vertex-Disjoint Shortest Paths problem.
Chitnis, Thomas, and Wirth demonstrated that no (2 − ε)-approximation could be achieved
in time f(k) · no(k) assuming the gap-ETH.

M. Bentert, F. V. Fomin, and P. A. Golovach 17:3

Table 1 Overview of our results. New results are bold. All hardness results hold for unweighted
and undirected graphs, while all new algorithmic results hold even for directed graphs with arbitrary
non-negative edge weights.

Parameter Exact Approximation
no NP-complete no m1/2−ε-approximation in poly(n) time
k XP and W[1]-hard no o(k)-approximation in f(k) · poly(n) time
ℓ FPT and no poly kernel ⌈

√
ℓ⌉-approximation

For the related Maximum Vertex-Disjoint Paths, where the task is to connect the
maximum number of terminal pairs by disjoint but not necessarily shortest paths, O(

√
n)-

approximation algorithms are due to Kleinberg [23] and Kolliopoulos and Stein [24]. The
best known lower bounds for this variant are 2Ω(

√
log n) and nΩ(1/(log log n)2). The first lower

bound holds even if the input graph is an unweighted planar graph, while the second holds
even if the input graph is an unweighted grid graph [9, 10]. For these two special cases, there
are approximation algorithms achieving ratios Õ(n9/19) and Õ(n1/4), respectively [9, 10].

When requiring the solution paths to be edge-disjoint rather than vertex-disjoint, it is
known that even computing a m1/2−ε-approximation is NP-hard in the directed setting [18].
There have also been some studies on relaxing the notion so that each edge appears in at
most c > 1 of the solution paths. The integer c is called the congestion and the currently
best known approximation algorithm achieves a poly(log n)-approximation with c = 2 [11].

Our results. We show that computing a m1/2−ε-approximation for Maximum Vertex-
Disjoint Shortest Paths is NP-hard for any ε > 0 (Theorem 3). Moreover in terms of
FPT-approximations, we demonstrate in Theorem 1 that any ko(1)-approximation in time
f(k) · poly(n) implies FPT = W[1] and that it is impossible to achieve an o(k)-approximation
in time f(k) · poly(n) unless the gap-ETH fails. This significantly improves the current
state of approximation results for Maximum Vertex-Disjoint Shortest Paths in two
ways. First, we use the weaker assumption FPT ̸= W[1] instead of the gap-ETH. Second,
our theorem excludes approximation factors polynomial in the input size, rather than only
constant factors larger than 2 as shown by Chitnis et al. [8].

We complement the first lower bound by showing that a simple greedy strategy for
Maximum Vertex-Disjoint Paths achieves a ⌈

√
ℓ⌉-approximation also for Maximum

Vertex-Disjoint Shortest Paths (Theorem 4). In Theorems 5 and 7, we show that
Maximum Vertex-Disjoint Shortest Paths is fixed-parameter tractable when para-
meterized by ℓ, but it does not admit a polynomial kernel. We mention that our hardness
results hold for undirected graphs with unit weights, and all our positive results hold even
for directed and edge-weighted input graphs. We summarize our results in Table 1.

2 Preliminaries

For a positive integer x, we denote by [x] = {1, 2, . . . , x} the set of all positive integers at
most x. We denote by G = (V, E) a graph and by n and m the number of vertices and
edges in G, respectively. A graph G is said to be k-partite if V can be partitioned into k

disjoint sets V1, V2, . . . , Vk such that each set Vi induces an independent set, that is, there
is no edge {u, v} ∈ E with {u, v} ⊆ Vi for some i ∈ [k]. The degree of a vertex v is the
number of edges in E that contain v as an endpoint and the maximum degree of a graph is
the highest degree of any vertex in the graph.

STACS 2025

17:4 Tight Approximation and Kernelization Bounds for Vertex-Disjoint Shortest Paths

A path in a graph G is a sequence (v0, v1, . . . , vℓ) of distinct vertices such that each
pair (vi−1, vi) is connected by an edge in G. The first and last vertex v0 and vℓ are called the
ends of P . We also say that P is a path from v0 to vℓ or a v0-vℓ-path. The length of a path
is the sum of its edge lengths or simply the number ℓ of edges if the graph is unweighted. For
two vertices v, w, we denote the length of a shortest v-w-path in G by distG(v, w) or dist(v, w)
if the graph G is clear from the context.

We assume the reader to be familiar with the big-O notation and basic concepts in
computational complexity like NP-completeness and reductions. We refer to the textbook by
Garey and Johnson [17] for an introduction.

For a detailed introduction to parameterized complexity and kernelization, we refer
the reader to the text books by Cygan et al. [12] and Fomin et al. [15]. A parameterized
problem P is a language containing pairs (I, ρ) where I is an instance of an (unparameter-
ized) problem and ρ is an integer called the parameter. In this paper, the parameter will
usually be either the number k of terminal pairs or the minimum number ℓ of edges in a
solution (a maximum collection of vertex-disjoint shortest paths between terminal pairs). A
parameterized problem P is fixed-parameter tractable if there exists an algorithm solving
any instance (I, ρ) of P in f(ρ) · poly(|I|) time, where f is some computable function only
depending on ρ. To show that a problem is presumably not fixed-parameter tractable, one
usually shows that the problem is hard for a complexity class known as W[1]. The class
XP contains all parameterized problems which can be solved in |I|f(ρ) time, that is, in
polynomial time if ρ is constant. A parameterized problem is said to admit a polynomial
kernel, if there is a polynomial-time algorithm that given an instance (I, ρ) computes an
equivalent instance (I ′, ρ′) (called the kernel) such that |I ′| + ρ′ are upper-bounded by a
polynomial in ρ. It is known that any parameterized problem admitting a polynomial kernel
is fixed-parameter tractable and each fixed-parameter tractable problem is contained in XP.

An α-approximation algorithm for a maximization problem is a polynomial-time algorithm
that for any input returns a solution of size at least OPT/α where OPT is the size of an
optimal solution. A parameterized α-approximation algorithm also returns a solution of size
at least OPT/α, but its running time is allowed to be f(ρ) · poly(n), where ρ is the parameter
and f is some computable function only depending on ρ. In this work, we always consider
(unparameterized) approximation algorithms unless we specifically state a parameterized
running time.

To exclude an α-approximation for an optimization problem, one can use the framework
of approximation-preserving reductions. A strict approximation-preserving reduction is a pair
of algorithms – called the reduction algorithm and the solution-lifting algorithm – that both
run in polynomial time and satisfy the following. The reduction algorithm takes as input an
instance I of a problem L and produces an instance I ′ of a problem L′. The solution-lifting
algorithm takes any solution S′ of I ′ and transforms it into a solution S of I such that if S′

is an α-approximation for I ′ for some α ≥ 1, then S is an α-approximation for I. If a strict
approximation-preserving reduction from L to L′ exists and L is hard to approximate within
some value β, then L′ is also hard to approximate within β.

The exponential time hypothesis (ETH) introduced by Impagliazzo and Paturi [20] states
that there is some ε > 0 such that each (unparameterized) algorithm solving 3-Sat takes
at least 2εn+o(n) time, where n is the number of variables in the input instance. A stronger
conjecture called the gap-ETH was independently introduced by Dinur [13] and Manurangsi
and Raghavendra [27]. It states that there exist ε, δ > 0 such that any (1 − ε)-approximation
algorithm for Max 3-Sat1 takes at least 2δn+o(n) time.

1 Max 3-Sat is a generalization of 3-Sat where the question is not whether the input formula is satisfiable

M. Bentert, F. V. Fomin, and P. A. Golovach 17:5

3 Approximation

In this section, we show that Maximum Vertex-Disjoint Shortest Paths admits no o(k)-
approximation in f(k) · poly(n) time unless the gap-ETH fails and no m1/2−ε-approximation
in polynomial time unless P = NP. We complement the latter result by developing a ⌈

√
ℓ⌉-

approximation algorithm that runs in polynomial time. We start with a reduction based on
a previous reduction by Bentert et al. [3] and make it approximation-preserving.2 Moreover,
our result is tight in the sense that a k-approximation can be computed in polynomial time
by simply connecting any terminal pair by a shortest path. A ck-approximation for any
constant c ≤ 1 can also be computed in polynomial time by guessing 1

c terminal pairs to
connect and then using the XP-time algorithm by Bentert et al. [3] to find a solution. Note
that since c is a constant, the XP-time algorithm for 1

c terminal pairs runs in polynomial
time.

▶ Theorem 1. Unless FPT = W[1], Maximum Vertex-Disjoint Shortest Paths cannot
be ko(1)-approximated in f(k) · poly(n) time, and assuming the gap-ETH, it cannot be o(k)-
approximated in f(k) · poly(n) time. All of these results hold even for subcubic graphs with
terminals of degree one.

Proof. We present a strict approximation-preserving reduction from Multicolored Clique
to Maximum Vertex-Disjoint Shortest Paths such that the maximum degree is three
and each terminal vertex has degree one. Moreover, the maximum number OPT of vertex-
disjoint shortest paths between terminal pairs will be equal to the largest clique in the
original instance. The theorem then follows from the fact that a f(k) · poly(n)-time ko(1)-
approximation for Clique would imply that FPT = W[1] [7, 22], a f(k) · poly(n)-time
o(k)-approximation for Clique refutes the gap-ETH [6], and that the textbook reduction
from Clique to Multicolored Clique only increases the number of vertices by a quadratic
factor and does not change the size of a largest clique in the graph [12].

The reduction is depicted in Figure 1 and works as follows. Let G = (V, E) be a k-partite
graph (or equivalently a graph colored with k colors where all vertices of any color form
an independent set) with ν vertices of each color. Let Vi = {vi

1, vi
2, . . . , vi

ν} be the set of
vertices of color i ∈ [k] in G. We start with a terminal pair (si, ti) for each color i and a
pair of (non-terminal) vertices (sj

i , tj
i) for each vertex vi

j ∈ Vi. Next for each color i, we
add a binary tree of height ⌈log(ν)⌉ where the vertices sj

i are the leaves for all vi
j ∈ Vi. We

make si adjacent to the root of the binary tree. Analogously, we add a binary tree of the
same height with leaves ti

j and make ti adjacent to the root. Next, we add a crossing gadget
for each pair of vertices (vi

j , va
b) with i < a. If {vi

j , va
b } ∈ E, then the gadget consists of four

vertices ui,a
j,b , vi,a

j,b , xi,a
j,b , and yi,a

j,b and edges {ui,a
j,b , vi,a

j,b } and {xi,a
j,b , yi,a

j,b }. If {vi
j , va

b } /∈ E, then
the gadget consists of only two vertices ui,a

j,b and vi,a
j,b and the edge {ui,a

j,b , vi,a
j,b }. For the sake

of notational convenience, we will in the latter case also denote ui,a
j,b by xi,a

j,b and vi,a
j,b by yi,a

j,b .
To complete the construction, we connect the different gadgets as follows. First, we connect
via paths of length two vi,a

j,b and ui,a
j,b+1 for all b < ν and yi,a

j,b and xi,a
j−1,b for all j > 1. Second,

we connect via paths of length two the vertices vi,a
j,ν to ui,a+1

j,1 for all j ∈ [ν] and all a < k

but rather how many clauses can be satisfied simultaneously.
2 We mention in passing that essentially the same modification to the reduction by Bentert et al. has

been found by Akmal et al. [1] in independent research. While we use the modification to show stronger
inapproximability bounds, they use it to show stronger fine-grained hardness results with respect to the
minimum degree of a polynomial-time algorithm for constant k.

STACS 2025

17:6 Tight Approximation and Kernelization Bounds for Vertex-Disjoint Shortest Paths

s11

s41

t11t41

u1,2
1,1

v1,21,1

u2,3
3,1

x1,3
4,4

1, 1

2, 1

3, 1

4, 1

1, 2

2, 2

3, 2

4, 2

1, 3

2, 3

3, 3

4, 3

1, 4

2, 4

3, 4

4, 4

s1

t1

s2

t2

s3

t3

s4

t4

Figure 1 An illustration of the reduction from Multicolored Clique to Maximum Vertex-
Disjoint Shortest Paths.
Top right: Example instance for Multicolored Clique with k = 4 colors and n = 4 vertices per
color. A multicolored clique is highlighted (by thick edges).
Bottom left: The constructed instance with the four shortest paths corresponding to the vertices of
the clique highlighted. Note that these paths are pairwise disjoint. The dotted edges (incident to si

and ti vertices) indicate binary trees (where all leaves have distance ⌈log(ν)⌉ from the root). Red
edges indicate paths of length 2ν and blue edges indicate paths of length 2.

and yi,a
1,b to xi+1,a

ν,b for all b ∈ [ν] and all i < a − 1. Third, we connect also via paths of length
two yi,i+1

1,b to ui+1,i+2
b,1 for all i < k − 1 and all b ∈ [ν]. Next, we connect via paths of length 2ν

each vertex sj
i to x1,i

ν,j for each i > 1 and j ∈ [ν]. Similarly, vi,k
j,ν is connected to tj

i via paths of
length 2ν. Finally, we connect s1

j with u1,2
j,1 for all j ∈ [ν] and yk−2,k−1

1,j with tk
j for all j ∈ [ν].

This concludes the construction.
We next prove that all shortest si-ti-paths are of the form

si − sj
i − x1,i

ν,j − yi−1,i
1,j − ui,i+1

j,1 − vi,k
j,ν − tj

i − ti (1)

for some j ∈ [ν] and where the s1-t1-paths go directly from sj
i to u1,2

j,1 and the sk-tk-paths
go directly from yk−1,k

1,j to ti
j . We say that the respective path is the jth canonical path for

color i.
To show the above claim, first note that the distance from si to any vertex sj

i is the
same value x = ⌈log(ν)⌉ + 1 for all pairs of indices i and j. Moreover, the same holds for ti

and tj
i , each si-ti-path contains at least one vertex sj

i and one vertex tj′

i for some j, j′ ∈ [ν],
and all paths of the form in Equation (1) are of length y = 2x + 4ν + 3(k − 1)ν − 2. We
first show that each si-ti-path of length at most y contains an edge of the form yi,i+1

1,b

to ui+1,i+2
b,1 . Consider the graph where all of these edges are removed. Note that due to the

M. Bentert, F. V. Fomin, and P. A. Golovach 17:7

grid-like structure, the distance between si and xi′,a
j,b for any values i′ ≤ i ≤ a, j, and b is at

least x+2ν+3(i′−1)ν+3(ν−j) if i = a and at least x+2ν+3(i′−1)ν+3(a−i)ν+3(ν−j)+3b

if i < a.3 Hence, all shortest si-ti-paths use an edge of the form yi,i+1
1,b to ui+1,i+2

b,1 and the
shortest path from sj

i to some vertex yi,i+1
1,b is to the vertex yi,i+1

1,j . Note that the other
endpoint of the specified edge is ui,i+1

j,1 and the shortest path to ti now goes via tj
i for

analogous reasons. Thus, all shortest si-ti-paths have the form (1).
We next prove that any set of p disjoint shortest paths between terminal pairs (si, ti) in

the constructed graph has a one-to-one correspondence to a multicolored clique of size p

for any p. For the first direction, assume that there is a set P of disjoint shortest paths
between p terminal pairs. Let S ⊆ [k] be the set of indices such that the paths in P connect si

and ti for each i ∈ S. Moreover, let ji be the index such that the shortest si-ti-path in P

is the ji
th canonical path for i for each i ∈ S. Now consider the set K = {vi

ji
| i ∈ S} of

vertices in G. Clearly K contains at most one vertex of each color and is of size p as S is
of size p. It remains to show that K induces a clique in G. To this end, consider any two
vertices vi

ji
, vi′

ji′ ∈ K. We assume without loss of generality that i < i′. By assumption,
the ji

th canonical path for i and the ji′ th canonical path for i′ are disjoint. This implies
that ui,i′

ji,ji′ ̸= xi,i′

ji,ji′ as the ji
th canonical path for i contains the former and the ji′ th canonical

path for i′ contains the latter. By construction, this means that {vi
ji

, vi′

ji′ } ∈ E. Since the
two vertices were chosen arbitrarily, it follows that all vertices in K are pairwise adjacent,
that is, K induces a multicolored clique of size p.

For the other direction assume that there is a multicolored clique C = {vi1
j1

, vi2
j2

, . . . , v
ip

jp
}

of size p in G. We will show that the jq
th canonical path for iq is vertex-disjoint from

the jr
th canonical path for ir for all q ̸= r ∈ [p]. Let q, r be two arbitrary distinct indices

in [p] and let without loss of generality be q < r. Note that the two mentioned paths can
only overlap in vertices u

iq,ir

jq,jr
, v

iq,ir

jq,jr
, x

iq,ir

jq,jr
, or y

iq,ir

jq,jr
and that the jq

th canonical path for iq

only contains vertices u
iq,ir

jq,jr
and v

iq,ir

jq,jr
and the jr

th canonical path for ir only contains x
iq,ir

jq,jr

and y
iq,ir

jq,jr
. Moreover, since by assumption v

iq

jq
and vir

jr
are adjacent, it holds by construction

that u
iq,ir

jq,jr
, v

iq,ir

jq,jr
, x

iq,ir

jq,jr
, and y

iq,ir

jq,jr
are four distinct vertices. Thus, we found vertex disjoint

paths between p distinct terminal pairs. This concludes the proof of correctness.
To finish the proof, observe that the constructed instance has maximum degree three,

all terminal vertices have degree one, and the construction can be computed in polynomial
time. ◀

We mention in passing that in graphs of maximum degree three with terminal vertices
of degree one, two paths are vertex disjoint if and only if they are edge disjoint. Hence,
Theorem 1 also holds for Maximum Edge-Disjoint Shortest Paths, the edge-disjoint
version of Maximum Vertex-Disjoint Shortest Paths.

▶ Corollary 2. Unless FPT = W[1], Maximum Edge-Disjoint Shortest Paths cannot
be ko(1)-approximated in f(k) · poly(n) time, and assuming the gap-ETH, it cannot be o(k)-
approximated in f(k) · poly(n) time. All of these results hold even for subcubic graphs with
terminals of degree one.

3 We mention that there are some pairs of vertices xi1,a1
j1,b1

and xi2,a2
j2,b2

, where the distance between the two is
less than 3(|i1−i2|+|a1−a2|)ν+3(|j1−j2|+|b1−b2|). An example is the pair (x1,2

1,1 = u1,2
1,1, x1,2

2,2) in Figure 1
with a distance of 4. However, in all examples it holds that i1ν − j1 ̸= i2ν − j2 and a1ν + b1 ̸= a2ν + b2
such that the left side is either smaller in both inequalities or larger in both inequalities. Hence, these
pairs cannot be used as shortcuts as they move “down and left” instead of towards “down and right” in
Figure 1.

STACS 2025

17:8 Tight Approximation and Kernelization Bounds for Vertex-Disjoint Shortest Paths

v1 v2 v3

v4 v5 v6

s1

t1

s2

t2

s3

t3

s4

t4

s5

t5

s6

t6

Figure 2 An illustration of the reduction from Clique to Maximum Vertex-Disjoint Shortest
Paths.
Left side: Example instance for Clique with a highlighted solution (by thick edges).
Right side: The constructed instance with the four shortest paths corresponding to the solution on
the left side highlighted. Note that each shortest si-ti-path uses exactly two of the diagonal edges.

We continue with an unparameterized lower bound by establishing that computing
a m

1
2 −ε-approximation is NP-hard. We mention that the reduction is quite similar to the

reduction in the proof for Theorem 1.

▶ Theorem 3. Computing a m1/2−ε-approximation for any ε > 0 for Maximum Vertex-
Disjoint Shortest Paths is NP-hard.

Proof. It is known that computing a n1−ε-approximation for Clique is NP-hard [19, 30].
We present an approximation-preserving reduction from Clique to Maximum Vertex-
Disjoint Shortest Paths based on Theorem 1. We use basically the same reduction as
in Theorem 1 but we start from an instance of Clique and have a separate terminal pair
for each vertex in the graph. Moreover, we do not require the binary trees pending from
the terminal vertices and neither do we require long induced paths (red edges in Figure 1).
These are instead paths with one internal vertex. An illustration of the modified reduction is
given in Figure 2. Note that the number of vertices and edges in the graph is at most 3N2,
where N is the number of vertices in the instance of Clique. Moreover, for each terminal
pair (si, ti), there is exactly one shortest si-ti-path (the path that moves horizontally in
Figure 2 until it reaches the main diagonal, then uses exactly two edges on the diagonal, and
finally moves vertically to ti).

We next prove that for any p, there is a one-to-one correspondence between a set of p

disjoint shortest paths between terminal pairs (si, ti) in the constructed graph and a clique
of size p in the input graph. For the first direction, assume that there is a set P of disjoint
shortest paths between p terminal pairs. Let S ⊆ [k] be the set of indices such that the
paths in P connect si and ti for each i ∈ S. Now consider the set K = {vi | i ∈ S} of
vertices in G. Clearly K contains p vertices. It remains to show that K induces a clique
in G. To this end, consider any two vertices vi, vj ∈ K. We assume without loss of generality
that i < j. By assumption, the unique shortest si-ti-path and the unique shortest sj-tj-path
are vertex-disjoint. By the description of the shortest paths between terminal pairs and the
fact that si is higher than sj and ti is to the left of tj , it holds that the two considered paths
both visit the region that is to the right of sj and above ti. This implies that two edges must
be crossing at this position, that is, there are four vertices in the described region and not

M. Bentert, F. V. Fomin, and P. A. Golovach 17:9

only two. By construction, this means that {vi, vj} ∈ E. Since the two vertices were chosen
arbitrarily, it follows that all vertices in K are pairwise adjacent, that is, K induces a clique
of size p in the input graph.

For the other direction assume that there is a clique C = {vi1 , vi2 , . . . , vip
} of size p

in the input graph. We will show that the unique shortest siq -tiq -path is vertex-disjoint
from the unique shortest sir

-tir
-path for all q ̸= r ∈ [p]. Let q, r be two arbitrary distinct

indices in [p] and let without loss of generality be q < r. Note that the two mentioned paths
can only overlap in the region that is to the right of sir

and above tiq
. Moreover, since by

assumption viq
and vir

are adjacent, it holds by construction that there are four distinct
vertices in the described region and the two described paths are indeed vertex-disjoint. Thus,
we found vertex disjoint paths between p distinct terminal pairs.

We conclude by analyzing the approximation ratio. Note that we technically did not
prove a strict reduction for the factor m1−ε as the number of vertices in the original instance
and the number of edges in the constructed instance are not identical. Still, the number m

of edges in the constructed instance is at most 3N2, where N is the number of vertices in
the original instance of Clique. Hence, any m1/2−ε-approximation for Maximum Vertex-
Disjoint Shortest Paths corresponds to a (3N2)1/2−ε = N1−ε′ -approximation for Clique
for some 0 < ε′ < 2ε and therefore computing a m1/2−ε-approximation for Maximum
Vertex-Disjoint Shortest Paths is NP-hard. ◀

Note that the maximum degree of the constructed instance is again three and all terminal
vertices are of degree one. Thus, Theorem 3 also holds for the edge disjoint version of
Maximum Vertex-Disjoint Shortest Paths. However in this case, a very similar
result was already known before. Guruswami et al. [18] showed that computing a m1/2−ε-
approximation is NP-hard for a related problem called Length Bounded Edge-Disjoint
Paths. Their reduction immediately implies the same hardness for Maximum Edge-
Disjoint Shortest Paths. To the best of our knowledge, the best known unparameterized
approximation lower bound for Maximum Vertex-Disjoint Shortest Paths was the
2 − ε lower bound due to Chitnis et al. [8] and we are not aware of any lower bound for
Maximum Vertex-Disjoint Paths.

We next show that this result is tight, that is, we show how to compute a
√

n-approximation
for Maximum Vertex-Disjoint Shortest Paths in polynomial time. We also show that
the same algorithm achieves a ⌈

√
ℓ⌉-approximation. Note that we can always assume

that ℓ ≤ n as a set of vertex-disjoint paths is a forest and the number of edges in a forest
is less than its number of vertices. We mention that this algorithm is basically identical
to the best known (unparameterized) approximation algorithm for Maximum Disjoint
Paths [23, 24].

▶ Theorem 4. There is a polynomial-time algorithm for Maximum Vertex-Disjoint
Shortest Paths on directed and weighted graphs that achieves an approximation factor
of min{

√
n, ⌈

√
ℓ⌉}.

Proof. Let OPT be a maximum subset of terminal pairs that can be connected by shortest
pairwise vertex-disjoint paths and let j be the index of a terminal pair (sj , tj) such that a
shortest (sj , tj)-path contains a minimum number of arcs. We can compute the index j as well
as a shortest sj-tj-path with a minimum number of arcs by running a folklore modification
of Dijkstra’s algorithm from each terminal vertex si.4 Let ℓj be the number of arcs in the

4 The standard Dijkstra’s algorithm is modified by assigning to each vertex a pair of labels: the distance

STACS 2025

17:10 Tight Approximation and Kernelization Bounds for Vertex-Disjoint Shortest Paths

found path. Our algorithm iteratively picks the shortest sj-tj-path using ℓj arcs, removes
all involved vertices from the graph, recomputes the distance between all terminal pairs,
removes all terminal pairs whose distance increased, updates the index j, and recomputes ℓj .
We distinguish whether ℓj + 1 ≤ min(

√
n, ⌈

√
ℓ⌉) or not.

While ℓj + 1 ≤ min(
√

n, ⌈
√

ℓ⌉), note that we removed at most ℓj + 1 terminals pairs
in OPT. Hence, if ℓj + 1 ≤ min(

√
n, ⌈

√
ℓ⌉) holds at every stage, then we connected at

least | OPT |/min(
√

n,⌈
√

ℓ⌉) terminal pairs, that is, we found a min(
√

n, ⌈
√

ℓ⌉)-approximation.
So assume that at some point ℓj > min(

√
n, ⌈

√
ℓ⌉) and let x be the number of terminal

pairs that we already connected by disjoint shortest paths. By the argument above, we
have removed at most x · min(

√
n, ⌈

√
ℓ⌉) terminal pairs from OPT thus far. We now make

a case distinction whether or not
√

n ≤ ⌈
√

ℓ⌉. If ℓj + 1 > ⌈
√

ℓ⌉ ≥
√

n, then we note
that all remaining paths in OPT contain at least

√
n vertices each and since the paths

are vertex-disjoint, there can be at most
√

n paths left in OPT. Hence, we can infer
that | OPT | ≤ (x + 1) ·

√
n. Consequently, even though we might remove all remaining

terminal pairs in OPT by connecting sj and tj , this is still a
√

n-approximation (and
a ⌈

√
ℓ⌉-approximation as we assumed ⌈

√
ℓ⌉ ≥

√
n).

If ℓj + 1 >
√

n ≥ ⌈
√

ℓ⌉, then we note that all remaining paths in OPT contain at
least ℓj > ⌈

√
ℓ⌉ − 1 edges each. Moreover, since ℓj and ⌈

√
ℓ⌉ are integers, each path contains

at least ⌈
√

ℓ⌉ edges each. Since all paths in OPT contain by definition at most ℓ edges
combined, the number of paths in OPT is at most ℓ/⌈

√
ℓ⌉ ≤ ⌈

√
ℓ⌉. Hence, we can infer in that

case that | OPT | ≤ (x + 1) · ⌈
√

ℓ⌉. Again, even if we remove all remaining terminal pairs
in OPT by connecting sj and tj , this is still a ⌈

√
ℓ⌉-approximation (and a

√
n-approximation

as we assumed
√

n ≥ ⌈
√

ℓ⌉). This concludes the proof. ◀

4 Exact Algorithms

In this section, we show that Maximum Vertex-Disjoint Shortest Paths is fixed-
parameter tractable when parameterized by ℓ, but it does not admit a polynomial kernel.
The proof for the first result uses the technique of color coding of Alon, Yuster, and Zwick [2].
Imagine we are searching for some structure of size k in a graph. The idea of color coding is
to color the vertices (or edges) of the input graph with a set of k colors and then only search
for colorful solutions, that is, structures in which all vertices have distinct colors. Of course,
this might not yield an optimal solution, but by trying enough different random colorings,
one can often get a constant error probability in f(k) · poly(n) time. Using the standard
tool of (n, k)-perfect hash families, these types of algorithms can be derandomized without
significant overhead in the running time.

▶ Theorem 5. Maximum Vertex-Disjoint Shortest Paths on weighted and directed
graphs can be solved in 2O(ℓ) poly(n) time.

Proof. Let (G, w, (s1, t1), . . . , (sk, tk), p) be an instance of Maximum Vertex-Disjoint
Shortest Paths. First, we guess the value of ℓ by starting with ℓ = p and increasing the
value of ℓ by one whenever we cannot find a solution with at least p shortest paths and at
most ℓ edges. We start with ℓ = p as any set of p disjoint paths contains at least ℓ edges.
Notice that the total number of vertices in a (potential) solution with p paths is at most
ℓ + p. We use the color-coding technique of Alon, Yuster, and Zwick [2]. We color the

from the terminal and the number of arcs in the corresponding path; then the pairs of labels are
compared lexicographically.

M. Bentert, F. V. Fomin, and P. A. Golovach 17:11

vertices of G uniformly at random using p + ℓ colors (the set of colors is [ℓ + p]) and observe
that the probability that all the vertices in the paths in a solution have distinct colors is
at least (p+ℓ)!

(p+ℓ)(p+ℓ) ≥ e−(p+ℓ). We say that a solution to the considered instance is colorful if
distinct paths in the solution have no vertices of the same color. Note that we do not require
that the vertices within a path in the solution are colored by distinct/equal colors. The
crucial observations are that any colorful solution is a solution and the probability of the
existence of a colorful solution for a yes-instance of Maximum Vertex-Disjoint Shortest
Paths is at least e−(p+ℓ) as any solution in which all vertices receive distinct colors is a
colorful solution.

We use dynamic programming over subsets of colors to find a colorful solution. More
precisely, we find the minimum number of arcs in a collection C = {Pi}i∈S of p pairwise
vertex-disjoint paths for some S ⊆ [k] satisfying the conditions: (i) for each i ∈ S, the path Pi

is a shortest path from si to ti and (ii) there are no vertices of distinct paths of the same
color.

For a subset X ⊆ [p + ℓ] of colors and a positive integer r ≤ p, we denote by f [X, r] the
minimum total number of arcs in r shortest paths connecting distinct terminal pairs such
that the paths contains only vertices of colors in X and there are no vertices of distinct paths
of the same color. We set f [X, r] = ∞ if such a collection of r paths does not exist.

To compute f , if r = 1, then let W ⊆ V be the subset of vertices colored by the colors
in X. We use Dijkstra’s algorithm to find the set I ⊆ [k] of all indices i ∈ [k] such that
the lengths of the shortest si-ti-paths in G and G[W] are the same. If I = ∅, then we
set f [X, 1] = ∞. Assume that this is not the case. Then, we use the variant of Dijkstra’s
algorithm mentioned in Theorem 4 to find the index i ∈ I and a shortest si-ti-path P in G[W]
with a minimum number of arcs. Finally, we set f [X, 1] to be equal to the number of arcs
in P .

For r ≥ 2, we compute f [X, r] for each X ⊆ [p + ℓ] using the recurrence relation

f [X, r] = min
Y ⊂X

{f [X \ Y, r − 1] + f [Y, 1]}. (2)

The correctness of computing the values of f [X, 1] follows from the description and the
correctness of recurrence (2) follows from the condition that distinct paths should not have
vertices of the same color.

We compute the values f [X, r] in order of increasing r ∈ [p]. Since computing f [Y, 1]
for a given set Y of colors can be done in polynomial time, we can compute all values in
overall 3p+ℓ poly(n) time. Once all values f [X, r] are computed, we observe that a colorful
solution exists if and only if f [S, p] ≤ ℓ.

If there is a colorful solution, then we conclude that (G, w, (s1, t1), . . . , (sk, tk), p) is
a yes-instance of Maximum Vertex-Disjoint Shortest Paths. Otherwise, we dis-
card the considered coloring and try another random coloring and iterate. If we fail
to find a solution after executing N = ⌈ep+ℓ⌉ iterations, we obtain that the probabil-
ity that (G, w, (s1, t1), . . . , (sk, tk), p) is a yes-instance is at most (1 − 1

ep+ℓ)ep+ℓ ≤ e−1. Thus,
we return that (G, w, (s1, t1), . . . , (sk, tk), p) is a no-instance with the error probability upper
bounded by e−1 < 1. Since the running time in each iteration is 3p+ℓ poly(n) and p ≤ ℓ,
the total running time is in 2O(ℓ) poly(n). Note that we do the color coding and dynamic
programming for each value between p and the actual value ℓ. However, this only adds an
additional factor of ℓ ≤ n which disappears in the poly(n).

The above algorithm can be derandomized using the results of Naor, Schulman, and
Srinivasan [28] by replacing random colorings by prefect hash families. We refer to the
textbook by Cygan et al. [12] for details on this common technique. ◀

STACS 2025

17:12 Tight Approximation and Kernelization Bounds for Vertex-Disjoint Shortest Paths

The FPT result of Theorem 5 immediately raises the question about the existence of a
polynomial kernel. To show that a parameterized problem P does presumably not admit
a polynomial kernel, one can use the framework of cross-compositions. Given an NP-hard
problem L, a polynomial equivalence relation R on the instances of L is an equivalence
relation such that (i) one can decide for any two instances in polynomial time whether
they belong to the same equivalence class, and (ii) for any finite set S of instances, R

partitions the set into at most maxI∈S poly(|I|) equivalence classes. Given an NP-hard
problem L, a parameterized problem P , and a polynomial equivalence relation R on the
instances of L, an OR-cross-composition of L into P (with respect to R) is an algorithm
that takes q instances I1, I2, . . . , Iq of L belonging to the same equivalence class of R and
constructs in poly(

∑q
i=1 |Ii|) time an instance (I, ρ) of P such that (i) ρ is polynomially

upper-bounded by maxi∈[q] |Ii| + log(q), and (ii) (I, ρ) is a yes-instance of P if and only if at
least one of the instances Ii is a yes-instance of L. If a parameterized problem admits an
OR-cross-composition, then it does not admit a polynomial kernel unless NP ⊆ coNP/poly [5].

In order to exclude a polynomial kernel, we first show that a special case of Max-
imum Vertex-Disjoint Shortest Paths remains NP-hard. We call this special case
Layered Vertex-Disjoint Shortest Paths and it is the special case of Vertex-Disjoint
Shortest Paths where all edges have weight 1 and the input graph is layered, that is,
there is a partition of the vertices into (disjoint) sets V1, V2, . . . , Vλ such that all edges {u, v}
are between two consecutive layers, that is u ∈ Vi and v ∈ Vi+1 or u ∈ Vi+1 and v ∈ Vi for
some i ∈ [λ − 1]. Moreover, each terminal pair (si, ti) satisfies that si ∈ V1, ti ∈ Vλ, and each
shortest path between the two terminals is monotone, that is, it contains exactly one vertex
of each layer. Layered Vertex-Disjoint Shortest Paths is formally defined as follows.

Input: A λ-layered graph G = (V, E) with a λ-partition {V1, V2, . . . , Vλ} of the
vertex set, terminal pairs (s1, t1), (s2, t2), . . . , (sk, tk) with si ∈ V1, ti ∈ Vλ,
and dist(si, ti) = λ − 1 for all i ∈ [λ].

Question: Is there a collection C = {Pi}i∈[k] of pairwise vertex-disjoint paths such
that Pi is an si-ti-path of length λ − 1 for all i ∈ [k]?

Layered Vertex-Disjoint Shortest Paths

It is quite straight-forward to prove that Layered Vertex-Disjoint Shortest Paths is
NP-complete.

▶ Proposition 6. Layered Vertex-Disjoint Shortest Paths is NP-complete.

Proof. We focus on the NP-hardness as Layered Vertex-Disjoint Shortest Paths
is a special case of Vertex-Disjoint Shortest Paths and therefore clearly in NP. We
reduce from 3-Sat. The main part of the reduction is a selection gadget. The gadget
consists of a set U of n + 1 vertices u0, u1, . . . , un and between each pair of consecutive
vertices ui−1, ui, there are two paths with m internal vertices each. Let the set of vertices
be Vi = {vi

1, vi
2, . . . , vi

m} and Wi = {wi
1, wi

2, . . . , wi
m}. The set of edges in the selection gadget

is

E = {{ui−1, vi
1}, {ui−1, wi

1}, {vi
m, ui}, {wi

m, ui} | i ∈ [n]}
∪ {{vi

j , vi
j+1}, {wi

j , wi
j+1} | i ∈ [n] ∧ j ∈ [m − 1]}.

The constructed instance will have m + 1 terminal pairs and is depicted in Figure 3. We
set sm+1 = u0 and tm+1 = un and we will ensure that any shortest sm+1-tm+1-path contains
all vertices in U and for each i ∈ [n] either all vertices in Vi or all vertices in Wi. These

M. Bentert, F. V. Fomin, and P. A. Golovach 17:13

s3

u1

u2

t3

s1

t1

s2

t2

Figure 3 An example of the construction in the proof of Proposition 6 for the input formula
(x1 ∨ x2 ∨ x3) ∧ (x1 ∨ x2 ∨ x3).

choices will correspond to setting the ith variable to either true or false. Additionally, we have
a terminal pair (sj , tj) for each clause Cj . There are (up to) three disjoint paths between sj

and tj , each of which is of length n · (m + 1). These paths correspond to which literal in the
clause satisfies it. For each of these paths, let xi be the variable corresponding to the path.
If xi appears positively in Cj , then we identify the (i − 1)(m + 1) + j + 1st vertex in the path
with wi

j and if xi appears negatively, then we identify the vertex with vi
j . Note that the

constructed instance is (m + 1)n-layered and that once any monotone path starting in sm+1
leaves the selection gadget, it cannot end in tm+1 as any vertex outside the selection gadget
has degree at most two and at the end of these paths are only terminals t1, t2, . . . , tm.

Since the construction runs in polynomial time, we focus on the proof of correctness. If
the input formula is satisfiable, then we connect all terminal pairs as follows. Let β be a
satisfying assignment. The terminal pair (sm+1, tm+1) is connected by a path containing all
vertices in U and for each i ∈ [n], if β assigns the ith variable to true, then the path contains
all vertices in Vi and otherwise all vertices in Wi. For each clause Cj , let xij be variable
in Cj which β uses to satisfy Cj (if multiple such variables exist, we choose an arbitrary
one). By construction, there is a path associated with xij that connects sj and tj and only
uses one vertex in Wi if xij

appears positively in Cj and a vertex in Vi, otherwise. Since
each vertex in Vi and Wi is only associated with at most one such path, we can connect
all terminal pairs. For the other direction assume that all m + 1 terminal pairs can be
connected by disjoint shortest paths. As argued above, the sm+1-tm+1-path stays in the
selection gadget. We define a truth assignment by assigning the ith variable to true if and
only if the sm+1-tm+1-path contains the vertices in Vi. For each clause Cj , we look at the
neighbor of sj in the solution. This vertex belongs to a path of degree-two vertices that at
some point joins the selection gadget. By construction, the vertex where this happens is
not used by the sm+1-tm+1-path, which guarantees that Cj is satisfied by the corresponding
variable. Since all clauses are satisfied by the same assignment, the formula is satisfiable and
this concludes the proof. ◀

With the NP-hardness of Layered Vertex-Disjoint Shortest Paths at hand, we can
now show that it does not admit a polynomial kernel when parameterized by ℓ by providing
an OR-cross-composition from its unparameterized version to the version parameterized by ℓ.

STACS 2025

17:14 Tight Approximation and Kernelization Bounds for Vertex-Disjoint Shortest Paths

s1 s2 s3
. . .

sk

si
1 si

2 si
3

. . . si
k

Gi

ti
1ti

2ti
3

. . .ti
k

sj
1 sj

2 sj
3

. . . sj
k

Gj

tj
1tj

2tj
3

. . .tj
k

t1t2t3
. . .

tk

Figure 4 The construction to merge two instances of Layered Vertex-Disjoint Shortest
Paths into one equivalent instance. The dotted edges can be read as regular edges for k = 4 and
indicate where additional vertices and edges have to be added for more terminal pairs. Note that
the height of a vertex in the drawing does not indicate its layer as dotted edges distort the picture.

▶ Theorem 7. Layered Vertex-Disjoint Shortest Paths parameterized by ℓ = k ·(λ−1)
does not admit a polynomial kernel unless NP ⊆ coNP/poly.

Proof. We present an OR-cross-composition from Layered Vertex-Disjoint Shortest
Paths into Layered Vertex-Disjoint Shortest Paths parameterized by ℓ. To this end,
assume we are given t instances of Layered Vertex-Disjoint Shortest Paths all of
which have the same number λ of layers and the same number k of terminal pairs. Moreover,
we assume that t is some power of two. Note that we can pad the instance with at most t

trivial no-instances to reach an equivalent instance in which the number of instances is a
power of two and the size of all instances combined has at most doubled.

The main ingredient for our proof is a construction to merge two instances into one.
The construction is depicted in Figure 4. We first prove that the constructed instance is a
yes-instance if and only if at least one of the original instances was a yes-instance. Afterwards,
we will show how to use this construction to get an OR-cross-composition for all t instances.

To show that the construction works correctly, first assume that one of the two original
instances is a yes-instance. Since both cases are completely symmetrical, assume that there
are shortest disjoint paths between all terminal pairs (si

a, ti
a) for all a ∈ [k] in Gi. Then, we

can connect all terminal pairs (sb, tb) by using the unique shortest paths between sb and si
b

and between ti
b and tb for all b ∈ [k] together with the solution paths inside Gi. Now assume

that there is a solution in the constructed instance, that is, there are pairwise vertex-disjoint
shortest paths between all terminal pairs (sb, tb) for all b ∈ [k]. First assume that the s1-t1-
path passes through Gi. Then, this path uses the unique shortest path from ti

1 to ti. Note
that this path blocks all paths between tj

b and vertices in Gj for all b ̸= 1. Thus, all paths
have to pass through the graph Gi. Note that the only possible way to route vertex-disjoint
paths from all s-terminals to all si terminals and from all ti-terminals to all t-terminals is
to connect sa to si

a and ti
a to ta for all a ∈ [k]. This implies that there is a solution that

contains vertex-disjoint shortest paths between si
a and ti

a in Gi for all a ∈ [k], that is, at
least one of the two original instances is a yes-instance. The case where the s1-t1-path passes

M. Bentert, F. V. Fomin, and P. A. Golovach 17:15

through Gj is analogous since the only monotone path from s1 to a vertex in Gj is the unique
shortest s1-sj

1-path and this path blocks all monotone paths from sa to vertices in Gi for
all a ̸= 1.

Note that the constructed graph is layered and that the number of layers is λ + 2k.
Moreover, the size of the new instance is in O(|Gi| + |Gj | + k2). To complete the reduction,
we iteratively half the number of instances by partitioning all instances into arbitrary pairs
and merge the two instances in a pair into one instance. After log t iterations, we are left
with a single instance which is a yes-instance if and only if at least one of the t original
instances is a yes-instance. The size of the instance is in O(

∑
i∈[t] |Gi| + t · k2) which is

clearly polynomial in
∑

i∈[t] |Gi| as each instance contains at least k vertices. Moreover,
the parameter ℓ in the constructed instance is k · (λ − 1) + 2k log t, which is polynomial
in |Gi| + log t for each graph Gi as Gi contains at least one vertex in each of the λ layers
and at least k terminal vertices. Thus, all requirements of an OR-cross-composition are met
and this concludes the proof. ◀

Note that since Layered Vertex-Disjoint Shortest Paths is a special case of
Vertex-Disjoint Shortest Paths (and therefore of Maximum Vertex-Disjoint
Shortest Paths), Theorem 7 also excludes polynomial kernels for these problems paramet-
erized by ℓ.

▶ Corollary 8. Vertex-Disjoint Shortest Paths and Maximum Vertex-Disjoint
Shortest Paths parameterized by ℓ do not admit polynomial kernels unless NP ⊆ coNP/poly.

5 Conclusion

In this paper, we studied Maximum Vertex-Disjoint Shortest Paths. We show that
there is no m1/2−ε-approximation in polynomial time unless P = NP. Moreover, if FPT ̸= W[1]
or assuming the stronger gap-ETH, we show that there are no non-trivial approximations for
Maximum Vertex-Disjoint Shortest Paths in f(k) · poly(n) time. When parameterized
by ℓ, there is a simple ⌈

√
ℓ⌉-approximation in polynomial time that matches the m1/2−ε

lower bound as ℓ ≤ min(n, m). Finally, we showed that Maximum Vertex-Disjoint
Shortest Paths is fixed-parameter tractable when parameterized by ℓ, but it does not
admit a polynomial kernel.

A way to combine approximation algorithms and the theory of (polynomial) kernels
are lossy kernels [26]. Since the exact definition is quite technical and not relevant for this
work, we only give an intuitive description. An α-approximate kernel or lossy kernel for an
optimization problem is a pair of algorithms that run in polynomial time which are called
pre-processing algorithm and solution-lifting algorithm. The pre-processing algorithm takes
as input an instance (I, ρ) of a parameterized problem P and outputs an instance (I ′, ρ′)
of P such that |I ′| + ρ′ ≤ g(ρ) for some computable function g. The solution-lifting algorithm
takes any solution S of (I ′, ρ′) and transforms it into a solution S∗ of (I, ρ) such that
if S is a γ-approximation for (I ′, ρ′) for some γ ≥ 1, then S∗ is an γ · α-approximation
for (I, ρ). If the size of the kernel is g(ρ) and if g is constant or a polynomial, then we call
it a constant-size or polynomial-size α-approximate kernel, respectively. It is known that a
(decidable) parameterized problem admits a constant-size approximate α-kernel if and only
if the unparameterized problem associated with P can be α-approximated (in polynomial
time) [26]. Moreover, any (decidable) parameterized problem admits an α-approximate kernel
(of arbitrary size) if and only if the problem can be α-approximated in f(ρ) · poly(|I|) time.

STACS 2025

17:16 Tight Approximation and Kernelization Bounds for Vertex-Disjoint Shortest Paths

In terms of lossy kernelization, our results imply that there are no non-trivial lossy kernels
for the parameter k. For the parameter ℓ, Theorem 4 implies a constant-size lossy kernel
for α ∈ Ω(

√
ℓ) and Theorem 5 implies an f(ℓ)-size lossy kernels for any α ≥ 1. This leaves

the following gap which we pose as an open problems.

▶ Open Problem 1. Are there any poly(ℓ)-size lossy kernels for Maximum Vertex-Disjoint
Shortest Paths with α ∈ o(

√
ℓ) (or even constant α)?

References
1 Shyan Akmal, Virginia Vassilevska Williams, and Nicole Wein. Detecting disjoint shortest paths

in linear time and more. In Proceedings of the 51st International Colloquium on Automata,
Languages, and Programming, ICALP, pages 9:1–9:17. Schloss Dagstuhl – Leibniz-Zentrum
für Informatik, 2024. doi:10.4230/LIPICS.ICALP.2024.9.

2 Noga Alon, Raphael Yuster, and Uri Zwick. Color-coding. Journal of the ACM, 42(4):844–856,
1995. doi:10.1145/210332.210337.

3 Matthias Bentert, André Nichterlein, Malte Renken, and Philipp Zschoche. Using a geometric
lens to find k-disjoint shortest paths. SIAM Journal on Discrete Mathematics, 37(3):1674–1703,
2023.

4 Kristof Berczi and Yusuke Kobayashi. The directed disjoint shortest paths problem. In
Proceedings of the 25th Annual European Symposium on Algorithms (ESA), pages 13:1–13:13.
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, 2017. doi:10.4230/LIPIcs.ESA.2017.13.

5 Hans L. Bodlaender, Bart M. P. Jansen, and Stefan Kratsch. Kernelization lower bounds
by cross-composition. SIAM Journal on Discrete Mathematics, 28(1):277–305, 2014. doi:
10.1137/120880240.

6 Parinya Chalermsook, Marek Cygan, Guy Kortsarz, Bundit Laekhanukit, Pasin Manurangsi,
Danupon Nanongkai, and Luca Trevisan. From gap-exponential time hypothesis to fixed
parameter tractable inapproximability: Clique, dominating set, and more. SIAM Journal on
Computing, 49(4):772–810, 2020. doi:10.1137/18M1166869.

7 Yijia Chen, Yi Feng, Bundit Laekhanukit, and Yanlin Liu. Simple combinatorial construction
of the ko(1)-lower bound for approximating the parameterized k-clique. CoRR, abs/2304.07516,
2023. doi:10.48550/arXiv.2304.07516.

8 Rajesh Chitnis, Samuel Thomas, and Anthony Wirth. Lower bounds for approximate (& exact)
k-disjoint-shortest-paths. In Proceedings of the 22nd International Workshop on Approximation
and Online Algorithms (WAOA), 2024. Accepted for Publication.

9 Julia Chuzhoy, David H. K. Kim, and Rachit Nimavat. Almost polynomial hardness of node-
disjoint paths in grids. Theory of Computing, 17:1–57, 2021. doi:10.4086/TOC.2021.V017A006.

10 Julia Chuzhoy, David H. K. Kim, and Rachit Nimavat. New hardness results for routing on
disjoint paths. SIAM Journal on Computing, 51(2):17–189, 2022. doi:10.1137/17M1146580.

11 Julia Chuzhoy and Shi Li. A polylogarithmic approximation algorithm for edge-disjoint paths
with congestion 2. Journal of the ACM, 63(5):45:1–45:51, 2016. doi:10.1145/2893472.

12 Marek Cygan, Fedor V. Fomin, Lukasz Kowalik, Daniel Lokshtanov, Dániel Marx, Marcin
Pilipczuk, Michal Pilipczuk, and Saket Saurabh. Parameterized Algorithms. Springer, 2015.
doi:10.1007/978-3-319-21275-3.

13 Irit Dinur. Mildly exponential reduction from gap 3SAT to polynomial-gap label-cover.
Electronic Colloquium on Computational Complexity, 2016.

14 Tali Eilam-Tzoreff. The disjoint shortest paths problem. Discrete Applied Mathematics,
85(2):113–138, 1998. doi:10.1016/S0166-218X(97)00121-2.

15 Fedor V. Fomin, Daniel Lokshtanov, Saket Saurabh, and Meirav Zehavi. Kernelization.
Cambridge University Press, Cambridge, 2019.

16 Steven Fortune, John E. Hopcroft, and James Wyllie. The directed subgraph homeomorphism
problem. Theoretical Computer Science, 10:111–121, 1980. doi:10.1016/0304-3975(80)
90009-2.

https://doi.org/10.4230/LIPICS.ICALP.2024.9
https://doi.org/10.1145/210332.210337
https://doi.org/10.4230/LIPIcs.ESA.2017.13
https://doi.org/10.1137/120880240
https://doi.org/10.1137/120880240
https://doi.org/10.1137/18M1166869
https://doi.org/10.48550/arXiv.2304.07516
https://doi.org/10.4086/TOC.2021.V017A006
https://doi.org/10.1137/17M1146580
https://doi.org/10.1145/2893472
https://doi.org/10.1007/978-3-319-21275-3
https://doi.org/10.1016/S0166-218X(97)00121-2
https://doi.org/10.1016/0304-3975(80)90009-2
https://doi.org/10.1016/0304-3975(80)90009-2

M. Bentert, F. V. Fomin, and P. A. Golovach 17:17

17 M. R. Garey and David S. Johnson. Computers and Intractability: A Guide to the Theory of
NP-Completeness. W. H. Freeman, 1979.

18 Venkatesan Guruswami, Sanjeev Khanna, Rajmohan Rajaraman, F. Bruce Shepherd, and
Mihalis Yannakakis. Near-optimal hardness results and approximation algorithms for edge-
disjoint paths and related problems. Journal of Computer and System Sciences, 67(3):473–496,
2003. doi:10.1016/S0022-0000(03)00066-7.

19 Johan Håstad. Clique is hard to approximate within n1−ε. In Proceedings of the 37th Annual
Symposium on Foundations of Computer Science (FOCS), pages 627–636. IEEE Computer
Society, 1996.

20 Russell Impagliazzo and Ramamohan Paturi. On the complexity of k-sat. Journal on Computer
and Syststem Sciences, 62(2):367–375, 2001. doi:10.1006/JCSS.2000.1727.

21 Richard M. Karp. On the computational complexity of combinatorial problems. Networks,
5(1):45–68, 1975. doi:10.1002/NET.1975.5.1.45.

22 Karthik C. S. and Subhash Khot. Almost polynomial factor inapproximability for parameterized
k-clique. In Proceedings of the 37th Computational Complexity Conference (CCC), pages
6:1–6:21. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, 2022. doi:10.4230/LIPICS.CCC.
2022.6.

23 Jon M. Kleinberg. Approximation algorithms for disjoint paths problems. PhD thesis, Mas-
sachusetts Institute of Technology, 1996.

24 Stavros G. Kolliopoulos and Clifford Stein. Approximating disjoint-path problems using
packing integer programs. Mathematical Programming, 99(1):63–87, 2004. doi:10.1007/
S10107-002-0370-6.

25 William Lochet. A polynomial time algorithm for the k-disjoint shortest paths problem.
In Proceedings of the 32nd ACM-SIAM Symposium on Discrete Algorithms (SODA), pages
169–178. SIAM, 2021. doi:10.1137/1.9781611976465.12.

26 Daniel Lokshtanov, Fahad Panolan, M. S. Ramanujan, and Saket Saurabh. Lossy kernelization.
In Proceedings of the 49th Annual ACM SIGACT Symposium on Theory of Computing (STOC),
pages 224–237. ACM, 2017. doi:10.1145/3055399.3055456.

27 Pasin Manurangsi and Prasad Raghavendra. A birthday repetition theorem and complexity of
approximating dense CSPs. In Proceedings of the 44th International Colloquium on Automata,
Languages, and Programming (ICALP), pages 78:1–78:15. Schloss Dagstuhl – Leibniz-Zentrum
für Informatik, 2017. doi:10.4230/LIPICS.ICALP.2017.78.

28 Moni Naor, Leonard J. Schulman, and Aravind Srinivasan. Splitters and near-optimal
derandomization. In Proceedings of the 36th Annual Symposium on Foundations of Computer
Science (FOCS), pages 182–191. IEEE Computer Society, 1995. doi:10.1109/SFCS.1995.
492475.

29 Neil Robertson and Paul D. Seymour. Graph minors. XIII: The disjoint paths problem. Journal
of Combinatorial Theory. Series B, 63(1):65–110, 1995. doi:10.1006/JCTB.1995.1006.

30 David Zuckerman. Linear degree extractors and the inapproximability of max clique and chro-
matic number. Theory of Computing, 3(1):103–128, 2007. doi:10.4086/TOC.2007.V003A006.

STACS 2025

https://doi.org/10.1016/S0022-0000(03)00066-7
https://doi.org/10.1006/JCSS.2000.1727
https://doi.org/10.1002/NET.1975.5.1.45
https://doi.org/10.4230/LIPICS.CCC.2022.6
https://doi.org/10.4230/LIPICS.CCC.2022.6
https://doi.org/10.1007/S10107-002-0370-6
https://doi.org/10.1007/S10107-002-0370-6
https://doi.org/10.1137/1.9781611976465.12
https://doi.org/10.1145/3055399.3055456
https://doi.org/10.4230/LIPICS.ICALP.2017.78
https://doi.org/10.1109/SFCS.1995.492475
https://doi.org/10.1109/SFCS.1995.492475
https://doi.org/10.1006/JCTB.1995.1006
https://doi.org/10.4086/TOC.2007.V003A006

Online Disjoint Set Covers: Randomization Is Not
Necessary
Marcin Bienkowski #

University of Wrocław, Poland

Jarosław Byrka #

University of Wrocław, Poland

Łukasz Jeż #

University of Wrocław, Poland

Abstract
In the online disjoint set covers problem, the edges of a hypergraph are revealed online, and the goal
is to partition them into a maximum number of disjoint set covers. That is, n nodes of a hypergraph
are given at the beginning, and then a sequence of hyperedges (subsets of [n]) is presented to
an algorithm. For each hyperedge, an online algorithm must assign a color (an integer). Once
an input terminates, the gain of the algorithm is the number of colors that correspond to valid set
covers (i.e., the union of hyperedges that have that color contains all n nodes).

We present a deterministic online algorithm that is O(log2 n)-competitive, exponentially improv-
ing on the previous bound of O(n) and matching the performance of the best randomized algorithm
by Emek et al. [ESA 2019].

For color selection, our algorithm uses a novel potential function, which can be seen as an online
counterpart of the derandomization method of conditional probabilities and pessimistic estimators.
There are only a few cases where derandomization has been successfully used in the field of online
algorithms. In contrast to previous approaches, our result extends to the following new challenges:
(i) the potential function derandomizes not only the Chernoff bound, but also the coupon collector’s
problem, (ii) the value of Opt of the maximization problem is not bounded a priori, and (iii) we do
not produce a fractional solution first, but work directly on the input.

2012 ACM Subject Classification Theory of computation → Online algorithms

Keywords and phrases Disjoint Set Covers, Derandomization, pessimistic Estimator, potential
Function, online Algorithms, competitive Analysis

Digital Object Identifier 10.4230/LIPIcs.STACS.2025.18

Funding Supported by Polish National Science Centre grants 2022/45/B/ST6/00559,
2020/39/B/ST6/01641, and 2020/39/B/ST6/01679.

Acknowledgements The authors are grateful to the anonymous reviewers for their insightful com-
ments.

1 Introduction

In this paper, we study online algorithms for maximizing the number of set covers of a set of
nodes. We focus on a hypergraph (set system) G = (V, E) that has n = |V | nodes and where
each hyperedge S ∈ E is a subset of nodes from V . A subset E′ ⊆ E is called set cover if⋃

S∈E′ S = V , i.e., every node is covered by at least one hyperedge of E′. In the disjoint
set covers (DSC) problem [15, 12, 20], the goal is to partition the set of hyperedges E into
maximum number of mutually disjoint subsets E = E1 ⊎E2 ⊎ · · · ⊎Ek, where each Ej is a set
cover. Note that E is a multi-set, i.e., it can contain multiple copies of the same hyperedge.

The problem has been studied in a theoretical setting, but as we discuss later, it also
finds applications in sensor networks [12] or assignment tasks [20].

© Marcin Bienkowski, Jarosław Byrka, and Łukasz Jeż;
licensed under Creative Commons License CC-BY 4.0

42nd International Symposium on Theoretical Aspects of Computer Science (STACS 2025).
Editors: Olaf Beyersdorff, Michał Pilipczuk, Elaine Pimentel, and Nguyễn Kim Thắng;
Article No. 18; pp. 18:1–18:16

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:marcin.bienkowski@cs.uni.wroc.pl
https://orcid.org/0000-0002-2453-7772
mailto:jaroslaw.byrka@cs.uni.wroc.pl
https://orcid.org/0000-0002-3387-0913
mailto:lukasz.jez@cs.uni.wroc.pl
https://orcid.org/0000-0002-7375-0641
https://doi.org/10.4230/LIPIcs.STACS.2025.18
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

18:2 Online Disjoint Set Covers: Randomization Is Not Necessary

Coloring Perspective. When constructing a solution to the DSC problem, it is convenient to
think in terms of coloring hyperedges.1 Each color then corresponds to a subset of hyperedges
that have that color, and the color is fully used if the hyperedges colored with it form a set
cover. The problem then becomes equivalent to coloring hyperedges, so that the number of
fully used colors is maximized.

Online Variant. In this paper, we focus on the online variant of the DSC problem, where
the set V is given in advance, but the hyperedges of E arrive in an online fashion. Once
a hyperedge S ∈ E arrives, it must be colored immediately and irrevocably. Again, the goal
is to maximize the number of fully used colors. The performance of an online algorithm is
measured by the competitive ratio, i.e., the ratio of the number of fully used colors produced
by the optimal offline algorithm Opt to that of an online algorithm Alg.

Our Contribution. We present a deterministic online O(log2 n)-competitive algorithm Det
for the DSC problem, which exponentially improves on the O(n)-competitive algorithm by
Emek et al. [14] and matches the performance of their randomized algorithm [14]. We discuss
the challenges and technical contribution in more detail in Subsection 1.3.

1.1 Offline Scenario: Previous Results

The disjoint set covers problem is a fundamental NP-complete problem [12] that can be
approximated within a factor of (1 + o(1)) · ln |V | [20] and cannot be approximated within
a factor of (1− ε) · ln |V | for ε > 0 unless NP ⊆ DTIME(nlog log n) [15].2

OPT vs. Min-degree. We use Opt(E) to denote the maximum number of disjoint set covers
of a hypergraph G = (V, E). This value is also called cover-decomposition number [6]. We
denote the minimum degree of the hypergraph G = (V, E) as δ(E) ≜ mini∈V |S ∈ E : i ∈ S|.
Note that trivially Opt(E) ⩽ δ(E). While this bound may not be tight (cf. Subsection 1.4),
δ(E) serves as a natural benchmark for approximation and online algorithms.

Random Coloring and its Straightforward Derandomization. An O(log n)-approximation
algorithm for the offline DSC problem [21] can be obtained by coloring each hyperedge with
a color chosen uniformly at random from the palette of Θ(δ(E)/ log n) colors. To analyze this
approach, we focus on a single node i ∈ V . We say that node i gathers color r if i is contained
in a hyperedge colored with r. Since node i is contained in at least δ(E) hyperedges, and
there are Θ(δ(E)/ log n) available colors, i gathers all palette colors with high probability.
By the union bound, this property holds for all nodes, i.e., all Θ(δ(E)/ log n) colors are fully
used by an algorithm (also with high probability). Since Opt(E) ⩽ δ(E), the approximation
ratio of O(log n) follows.

The hyperedges can be processed in a fixed order, and the random choice of a color can
be replaced by the deterministic one by a simple application of the method of conditional
probabilities [21, 3].

1 The DSC problem should not be confused with the hyperedge coloring problem, which requires that the
hyperedges of the same color be disjoint.

2 The authors of [15] call this problem set cover packing or one-sided domatic problem.

M. Bienkowski, J. Byrka, and Ł. Jeż 18:3

1.2 Online Scenario: Previous Results
In the online case, an algorithm first learns the set of nodes V , and then the edges of E

are revealed sequentially. For notational convenience, we use E to denote both the set and
a sequence of hyperedges (the input). We use Alg(E) to denote the number of fully used
colors in the solution of an online algorithm Alg.

It is important to note that no parameter of the hypergraph other than the number of
nodes is known a priori. In particular, an online algorithm does not know the value of δ(E)
in advance.

Competitive Ratio. We say that Alg is (non-strictly) c-competitive if there exists β ⩾ 0
such that

Alg(E) ⩾ Opt(E) / c− β. (1)

While β can be a function of n, it cannot depend on the input sequence E. If (1) holds with
β = 0, the algorithm is strictly c-competitive.

For randomized algorithms, we replace Alg(E) with its expected value taken over the
random choices of the algorithm.

Randomized Algorithms. The current best randomized algorithm was given by Emek
et al. [14]; it achieves the (strict) competitive ratio of O(log2 n). The general idea of
their algorithm is as follows. To color a hyperedge S, their algorithm first computes the
minimum degree δ∗ of a node from S. By a combinatorial argument, they show that they
can temporarily assume that δ(E) = O(n · δ∗). Their algorithm then chooses ℓ uniformly
at random from the set {δ∗, 2δ∗, 4δ∗, . . . , 2log n · δ∗}; with probability Ω(1/ log n) such ℓ is
a 2-approximation of δ(E). Finally, to color S, it chooses a color uniformly at random from
the palette of Θ(ℓ/ log2 n) colors, using the arguments similar to those in the offline case.

We refrain from discussing it further here, as we present a variant of their algorithm, called
Rand, in Subsection 2.1 (along with a description of the differences from their algorithm).

The best lower bound for the (strict and non-strict) competitive ratio of a randomized al-
gorithm is Ω(log n/ log log n) [14]; it improves on an earlier bound of Ω(

√
log n) by Pananjady

et al. [20].

Deterministic Algorithms. The deterministic case is well understood if we restrict our
attention to strict competitive ratios. In such a case the lower bound is Ω(n) [20]. The
asymptotically matching upper bound O(n) is achieved by a simple greedy algorithm [14].

On the other hand, the current best lower bound for the non-strict deterministic compet-
itive ratio is Ω(log n/ log log n) [14].3 The O(n) upper bound of [14] clearly holds also in the
non-strict setting, but no better algorithm has been known so far.

Lack of General Derandomization Tools. Unlike approximation algorithms, derandom-
ization is extremely rare in online algorithms.4 To understand the difficulty, consider the
standard (offline) method of conditional probabilities [3] applied to the offline DSC problem:

3 This discrepancy in achievable strict and non-strict competitive ratios is quite common for many
maximization problems: the non-strict competitive ratio allows the algorithm to have zero gain on very
short sequences, thus avoiding initial choices that would be bad in the long run.

4 Many online problems (e.g., caching [23, 1] or metrical task systems [7, 8, 9]) exhibit a provable
exponential discrepancy between the performance of the best randomized and deterministic algorithms.
For many other problems, the best known deterministic algorithms are quite different (and more
complex) than randomized ones.

STACS 2025

18:4 Online Disjoint Set Covers: Randomization Is Not Necessary

Table 1 Previous and new bounds on the strict and non-strict competitive ratios for the online
DSC problem, for randomized and deterministic algorithms.

Upper bound Lower bound
randomized

O(log2 n) [14] Ω(log n/ log log n) [14]
strict and non-strict

deterministic
O(n) [14] Ω(n) [20]

strict
deterministic O(n) [14] Ω(log n/ log log n) [14]

non-strict O(log2 n) (Theorem 5)

the resulting algorithm considers all the random choices (color assignments) it could make for
a given hyperedge S, and computes the probability that future random choices, conditioned
on the current one, will lead to the desired solution. Choosing the color that maximizes this
probability ensures that the probability of reaching the desired solution does not decrease as
subsequent hyperedges are processed. In some cases, exact computations are not possible,
but the algorithm can instead estimate this probability by computing a so-called pessimistic
estimator [22]. This is not feasible in the online setting, since an algorithm does not know
the future hyperedges, and thus cannot even estimate these probabilities.5

1.3 Our Technical Contribution
In this paper, we present a deterministic online polynomial-time algorithm Det that is
O(log2 n)-competitive, which exponentially improves the previous bound of O(n). This
resolves an open question posed by the authors of [14] who asked whether the method of
conditional expectations could be used to derandomize their algorithm.

Our bound is obtained for the non-strict competitive ratio: as we discussed in the
previous subsection, this is unavoidable for the DSC problem. Our result requires a relatively
small (1/4) additive term β in the definition of the competitive ratio (1).

We begin by constructing a randomized solution Rand. It will be a variation of the
approach by Emek et al. [14]; we present it in Subsection 2.1. As Rand is closely related to
the previous randomized algorithm, it is quite plausible that it achieves the same competitive
ratio of O(log2 n). However, our analysis does not support this conjecture. Instead, we use
Rand as a stepping stone to our deterministic algorithm in the following way.

We define a particular random event, denoted TE , of Rand executed on instance E.
We show that for each execution of Rand satisfying TE , it holds that Rand(E) ⩾
Ω(1/ log2 n) ·Opt(E)− 1/4.

We will provide the exact definition of the event TE in Subsection 2.2. For now, we just
note that TE is a property that certifies that, at each step t, we can relate the number of
colors gathered so far by each node i to its current degree.

While a relaxed version of the property TE (requiring that the relation between the
gathered colors and the current degree only at the end of the input) follows quite easily
with a constant probability, it seems that TE itself is quite strong and does not hold with
a reasonable probability. However, this is not an obstacle to creating a deterministic solution,
as we show in the following claim.

5 As observed by Pananjady et al. [20], however, these probabilities can be estimated if an online algorithm
knows the final min-degree δ(E) in advance, which would lead to an O(log n)-competitive algorithm for
this semi-offline scenario.

M. Bienkowski, J. Byrka, and Ł. Jeż 18:5

It is possible to replace the random choices of Rand by deterministic ones (in an online
manner), so that TE always holds.

This will immediately imply the competitive ratio of the resulting deterministic algorithm.

Our approach is based on a novel potential function that guides the choice of colors. As we
discuss later in Subsection 2.2, our approach can be seen as an online-computable counterpart
of the method of conditional probabilities that simultaneously controls the derandomization
of the Chernoff bound and the coupon collector’s problem.

1.4 Related Work

Applications of the DSC problem include allocating servers to users in file systems and users
to tasks in crowd-sourcing platforms [20].

Another application arises in a sensor network, where each node corresponds to a moni-
toring target and each hyperedge corresponds to a sensor that can monitor a set of targets.
At any given time, all targets must be monitored. A possible battery-saving strategy is to
partition the sensors into disjoint groups (each group covering all targets) and activate only
one group at a time, while the other sensors remain in a low-power mode [12].

When the assumption that each sensor can only participate in a single group is dropped,
this leads to more general sensor coverage problems. The goal is then to maximize the
lifetime of the network of sensors while maintaining the coverage of all targets. The offline
variants of this problem have been studied both in general graphs [4, 13, 21] and in geometric
settings [11, 16].

Another line of work studied the relationship between the minimum degree δ(E) and the
cover-decomposition number Opt(E). As pointed out in Subsection 1.1, δ(E)/Opt(E) ⩾ 1.
This ratio is constant if G is a graph [17], and it is at most O(log n) for every hypergraph;
the latter bound is asymptotically tight [6]. Interestingly enough, all the known papers on
the DSC problem (including ours) relate the number of disjoint set covers to δ(E). It is
an open question whether our estimate of the competitive ratio is tight: it could possibly be
improved by relating the gain of an algorithm directly to Opt(E) instead of δ(E).

1.5 Preliminaries

An input to our problem is a gradually revealed hypergraph G = (V, E). V consists of n

nodes numbered from 1 to n, i.e., V = [n]. The set E of hyperedges is presented one by one:
in a step t, an algorithm learns St ∈ E, where St ⊆ [n], and has to color it. We say that
node i gathers color r if i is contained in a hyperedge colored with r. We say that a color r

is fully used if all nodes have gathered it. The objective of an algorithm is to maximize the
number of fully used colors.

At any point in time, the degree of a node j, denoted deg(j), is the current number of
hyperedges containing j. Let δ(E) = mini∈[n] |{St ∈ E : vi ∈ St}|, i.e., δ(E) is the minimum
degree of G at the end of the input E. Clearly, Opt(E) ⩽ δ(E). It is important to note that
δ(E) is not known in advance to an online algorithm.

STACS 2025

18:6 Online Disjoint Set Covers: Randomization Is Not Necessary

Algorithm 1 Definition of Rand for a hyperedge S in step t.

1: ▷ Initialization
2: for each node i ∈ [n] do
3: p(i)← 0 ▷ all nodes start in phase 0
4: for each integer k ⩾ 0 do ▷ and they have no colors yet
5: Ci,k ← ∅

6: ▷ Runtime
7: for each hyperedge S appearing in sequence E do
8: pS ← mini∈S p(i)
9: Sample k∗ from {pS , pS + 1, . . . , pS + h− 1} ▷ uniform distribution

10: Sample color r from Rk∗ ▷ uniform distribution
11: for each node i ∈ S do
12: Ci,k∗ ← Ci,k∗ ∪ {r}
13: if |Ci,p(i)| ⩾ qp(i) then ▷ end node phase if it gathered qp(i) colors
14: p(i)← p(i) + 1

2 Our Algorithm

2.1 Definition of RAND
We start with some notions, defined for each integer k ⩾ 0:

h ≜ ⌈log n⌉, qk ≜

⌈(
1− 1

2n

)
· 2k

⌉
, Rk ≜

{
2k, . . . , 2k+1 − 1

}
.

Note that |Rk| = 2k.
For each node i independently, Rand maintains its phase p(i), initially set to 0. We

use Cik to denote the set of colors from the palette Rk that node i has gathered so far.
A phase k for node i ends when it has gathered qk colors from palette Rk. In such a case,
node i increments its phase number p(i) at the end of the step.

We now describe the behavior of Rand in a single step, when a hyperedge S appears.
Let pS = mini∈S p(i), where p(i) is the phase of node i before S appears. Rand first chooses
a random integer k∗ uniformly from the set {pS , pS + 1, . . . , pS + h − 1}. Second, Rand
chooses a color r uniformly at random from the set Rk∗ and colors S with it; in effect all
nodes in S gather color r.

The pseudocode of Rand is given in Algorithm 1.

Comparison with the Previous Randomized Algorithm. Rand is closely related to the
randomized algorithm by Emek et al. [14]. The main difference is that the phases of the
nodes in their algorithm are of fixed lengths, being powers of 2.6 They use probabilistic
arguments to argue that with high probability each node gathers qk colors in a phase of
length Θ(2k · log2 n). Instead, we treat the number of colors gathered in a phase as a hard
constraint (we require that each node gathers qk of them), and instead the phase lengths
of the nodes become random variables. As it turns out, this subtle difference allows us to
derandomize the algorithm.

6 The pseudocode of their algorithm does not use phases, but with some fiddling with constants, it can
be transformed into one that does.

M. Bienkowski, J. Byrka, and Ł. Jeż 18:7

Another small difference concerns the color selection. While Rand chooses the color
uniformly at random from the set Rk∗ , the algorithm of [14] would choose it from the
set ⊎k∗

j=0Rj . This difference affects only the constant factors of the analysis.

Gain of RAND. As mentioned earlier, the gain of Rand is directly ensured by the algorithm
definition provided that each node has completed some number of phases.

Note that qk is slightly less than |Rk| = 2k; this gives a better bound on the the expected
phase lengths, while still ensuring that if all nodes completed phase ℓ, they gathered at least
2ℓ−1 common colors.

▶ Lemma 1. If every node has completed phase ℓ, then Rand(E) ⩾ 2ℓ−1.

Proof. In phase ℓ, each node gathers at least qℓ colors from the palette Rℓ, i.e., all colors
from Rℓ except at most |Rℓ| − qℓ ⩽ 2ℓ/(2n) colors. Thus, all nodes share at least |Rℓ| − n ·
(2ℓ/(2n)) = 2ℓ−1 common colors from Rℓ, i.e., Rand fully uses at least 2ℓ−1 colors. ◀

Note that we could sum the above bound over all phases completed by all nodes, but this
would not change the asymptotic gain.

The above lemma points us to the goal: to show that for an input E with a sufficiently
large δ(E), each node completes an appropriately large number of phases. In Subsection 2.3,
we show that if δ(E) = Ω(2ℓ · log2 n), then each node completes ℓ phases, provided a certain
random event TE occurs.

2.2 Constructing the Potential: Insights and Definitions
In the field of online algorithms, the derandomization has been successfully conveyed several
times by replacing the method of conditional probabilities by an online-computable potential
function that guides the choice of the deterministic algorithm [2, 5, 10, 18].

This method is based on the following framework. First, introduce ℓ random expres-
sions {Zi}ℓ

i=1 to be controlled. Second, define a potential function Φ =
∑ℓ

i=1 exp(Zi). Third,
show that the random actions of an algorithm at each step decrease exp(Zi) (for each i)
in expectation, which implies that Φ decreases as well. (By the probabilistic method, this
implies the existence of a deterministic action of an algorithm in a step that does not
increase Φ.) Finally, by the non-negativity of the exponential function, exp(Zi) is bounded
by the initial value Φ0 of the potential (in each step), which shows that Zi can always be
bounded by ln(Φ0). This process can be seen as a derandomization of the Chernoff bound /
high probability argument.

In order to apply this very general framework, we must overcome several technical
difficulties, which we explain below. Except for the definition of Φ (and related definitions
of wik, cik, dk and Zi), the discussion in this section is informal and will not be used in
formal proofs later.

Variables to be Controlled. The first step is to identify the variables to control. Natural
choices are the node degrees and the number of colors gathered so far by each node.

For this purpose, we define cik = |Cik| for each node i and each phase k ⩾ 0.
We also introduce counters wik, which are initially set to zero. Recall that whenever

a new hyperedge S containing node i arrives, Rand computes pS = mini∈S p(i). For each
node i ∈ S such that p(i) ⩽ pS + h− 1, we increment the counter wi,p(i). Note that these
wi,p(i) variables are incremented exactly for nodes i for which there is a non-zero probability
of increasing their set of colors Ci,p(i) (as then a random integer k∗ chosen by Rand has
a non-zero chance of being equal to p(i)).

STACS 2025

18:8 Online Disjoint Set Covers: Randomization Is Not Necessary

By the definition of wik, at each step
∑

k⩾0 wik ⩽ deg(i). While these quantities are
not necessarily equal, we will treat

∑
k⩾0 wik as a good proxy for deg(i) and deal with the

discrepancy between these two quantities later.

Linking the Variables. Now we want to introduce an expression that links
∑

k⩾0 wik (the
proxy for degree) with

∑
k⩾0 cik (the number of colors gathered) for a node i. A simple

difference of these two terms does not make sense: the expected growth of cik varies over
time, since it is easier to gather new colors when cik is small. This effect has been studied in
the context of the coupon collector’s problem [19]. To overcome this issue, we introduce the
following function, defined for each integer k ⩾ 0:

dk(m) ≜ h ·
m∑

j=1

2k

2k − j + 1 (defined for each m ⩽ 2k)

Note that in a process of choosing random colors from palette Rk of 2k colors, the expected
number of steps till m different colors are gathered is dk(m)/h.

Now we focus on a single node i in phase p(i). We consider a sequence of hyperedges S

containing node i, neglecting those hyperedges S for which p(i) ⩾ pS + h. That is, all
considered hyperedges increment the counter wi,p(i). Then, the value of dk(ci,p(i)) corresponds
to the expected number of such hyperedges needed to gather ci,p(i) colors from the palette Rp(i).
We can thus use the expression

∑
k⩾0(wik − 2 · dk(cik)) to measure the progress of node i:

small values of this expression indicate that it is gathering colors quite fast, while large values
indicate that it is falling behind. Note that since cik ⩽ qk ⩽ 2k, the value of dk(cik) is always
well defined.

We note that the previous applications of the potential function method [2, 5, 10, 18]
did not require such transformations of variables: in their case, the potential function was
used to guide deterministic rounding: the function Φ directly compared the cost (or gain) of
a deterministic algorithm with that of an online fractional solution. Instead, our solution
operates directly on the input, without the need to generate a fractional solution first.

Scaling. Using the random choices of Rand, we can argue that in expectation the value
of Z∗

i ≜
∑

k⩾0(wik − 2 · dk(cik)) is decreasing in time. However, to argue that exp(Z∗
i) is

also decreasing in expectation, we would have to ensure that Z∗
i is upper-bounded by a small

constant (and use the fact that exp(x) can be approximated by a linear function for small x).
In the previous papers [2, 5, 10, 18], this property was achieved by scaling down Z∗

by the value of Opt. An algorithm was then either given an upper bound on Opt (in
the case of the throughput maximization of the virtual circuit routing [10]) or Opt was
estimated by standard doubling techniques (in the case of the cost minimization for set
cover variants [2, 5, 18]). In the latter case, the algorithm was restarted each time the
estimate on Opt was doubled. Unfortunately, the DSC problem (which is an unbounded-gain
maximization problem) does not fall into any of the above categories, and the doubling
approach does not seem to work here.

Instead, we replace the scaling with a weighted average. That is, for each node i, we
define

Zi ≜
∑
k⩾0

wik − 2 · dk(cik)
4h · 2k

and the potential as

Φ ≜
∑
i∈[n]

exp(Zi).

M. Bienkowski, J. Byrka, and Ł. Jeż 18:9

Note that all counters and variables defined above are random variables; they depend on
particular random choices of Rand. We use pt(i), degt(i), wt

ik, ct
ik, Zt

i and Φt to denote the
values of the corresponding variables at the end of step t of the algorithm (after Rand has
processed the hyperedge presented in step t). The value of t = 0 corresponds to the state of
these variables at the beginning of the algorithm; note that p0(i) = deg0(i) = w0

ik = c0
ik =

Z0
i = 0 for all i and k. Therefore,

Φ0 = n. (2)

Random event TE. For an input instance E consisting of T steps, we define a random
event TE that occurs if Φt ⩽ n for each step t ∈ {0, . . . , T} of Rand execution on input E.

2.3 Relating Potential to Algorithm Performance
We begin by presenting the usefulness of the event TE . We emphasize that the following
lemma holds for all executions of Rand in which the event TE occurs. Its proof is deferred
to Section 3.

▶ Lemma 2. Fix a sequence E such that δ(E) > 24h · ln(4e · n) · 2ℓ for some integer ℓ ⩾ 0.
If TE occurs, then each node has completed its phase ℓ.

Using the lemma above, we can relate the gain of Rand on an arbitrary input E to that
of Opt, if only TE occurs.

▶ Lemma 3. Fix a sequence E. If TE occurs, then Rand(E) ⩾ Opt(E)/(96h·ln(4e·n))−1/4.

Proof. Let r ≜ 24h · ln(4e · n). We consider two cases.
First, we assume that δ(E) > r. Then we can find an integer ℓ ⩾ 0 such that r · 2ℓ <

δ(E) ⩽ r · 2ℓ+1. By Lemma 2, each node then completes its phase ℓ, and so by Lemma 1,
Rand(E) ⩾ 2ℓ−1 ⩾ δ(E)/(4r).
Second, we assume that δ(E) ⩽ r. Trivially, Rand(E) ⩾ 0 ⩾ (δ(E)− r)/(4r).

In both cases, Rand(E) ⩾ (δ(E)− r)/(4r) ⩾ Opt(E)/(4r)− 1/4. ◀

2.4 Derandomization of RAND
To analyze the evolution of Φ, we note that Φt (and also other variables wt

ik, ct
ik or Zt

i)
depends only on the random choices of Rand till step t (inclusively). Moreover, {Φt}t⩾0
is a supermartingale with respect to the random choices of Rand in consecutive steps.
Specifically, the following lemma holds; its proof is deferred to Section 4.

▶ Lemma 4. Fix a step t and an outcome of random choices till step t− 1 inclusively. (In
particular, this will fix the value of Φt−1.) Then, E[Φt] ⩽ Φt−1, where the expectation is
taken exclusively over random choices of Rand in step t.

The above lemma states that the value of Φ is non-increasing in expectation. In fact,
an inductive application of this lemma shows that E[Φt] ⩽ Φ0 = n. However, this does
not imply that TE occurs with a reasonable probability, especially when the input length is
large.7

7 By Markov’s inequality, for a chosen step t, Φt ⩽ 2n holds with probability at least 1/2. While such
a relaxed bound on Φt would be sufficient for our needs, in our proof, we need such a bound to hold for
all steps t simultaneously.

STACS 2025

18:10 Online Disjoint Set Covers: Randomization Is Not Necessary

However, using Lemma 4, we can easily derandomize Rand using the method of condi-
tional probabilities using potential Φ as an online-computable counterpart of a pessimistic
estimator. To do this, we proceed iteratively, ensuring at each step t that Φt ⩽ n. This is
trivial at the beginning, since Φ0 = n by (2).

Suppose we have already fixed the random choices of Rand till step t − 1 inclusively
and have Φt−1 ⩽ n. Consider a hyperedge S presented in step t. Note that all other
variables indexed by t − 1, such as pt−1(i), are also fixed. Then Lemma 4 states that
E[Φt] ⩽ Φt−1 ⩽ n. That is, the random choice of a color at step t guarantees that E[Φt] ⩽ n.
This choice is made from a finite and well-defined set of colors R ≜

⊎
pS⩽k⩽pS+h−1 Rk, where

pS = mini∈S pt−1(i).
By the probabilistic method, at each step t, there exists a deterministic choice of a color

from R that ensures that Φt ⩽ n. The resulting algorithm is called Det. (If more than one
color leads to Φt ⩽ n, Det chooses any of them.) Since |R| is bounded by a polynomial of n

and |E|, Det can be implemented in polynomial time by simply checking all possible colors
of R.

▶ Theorem 5. Det is O(log2 n)-competitive for the DSC problem.

Proof. As described above, Det guarantees that Φt ⩽ n for each step t ∈ {0, . . . , T},
i.e., TE occurs. Note that Lemma 3 lower-bounds the gain of Rand in every execution
conditioned on TE , and Det can be seen as such an execution. Therefore, the bound of
Lemma 3 can be applied, yielding

Det(E) ⩾ Opt(E)
96 · h · ln(4e · n) −

1
4 ,

i.e., the competitive ratio of Det is at most 96 · h · ln(4e · n) = O(log2 n).
Note that, by the lower bounds of [20, 14], an additive term (in our case equal to 1/4) is

inevitable for obtaining a sub-linear competitive ratio. ◀

3 Bounding Number of Phases

In this section, we fix an input sequence E consisting of T steps. Our goal is to estimate the
number of phases of nodes in the execution of Rand, conditioned on the random event TE ,
i.e., to prove Lemma 2. To this end, we consider a node i, assume that it has completed
ℓ phases, and show an upper bound on the final degree of i as a function of ℓ.

Bounding Variables w Using Potential. Recall that in some steps where the degree of
a node i grows, the counter wi,p(i) is incremented. Thus, our first goal is to upper-bound
values of these counters at the end of the execution of Rand.

Below, H(m) denotes the m-th harmonic number. The following technical claim is proved
in Appendix A.

▷ Claim 6. For each k ⩾ 0 it holds that H(2k)−H(2k − qk) ⩽ ln(4e · n).

▶ Lemma 7. Fix a step t ⩽ T , a node i and a phase k ⩾ 0. Then, dk(ct
ik) ⩽ h · ln(4e ·n) · 2k.

Proof. Note that at all times, ct
ik ⩽ qk. Using the definition of dk,

dk(cik) ⩽ dk(qk) = h ·
qk∑

j=1

2k

2k − j + 1

= h ·
(
H(2k)−H(2k − qk)

)
· 2k

⩽ h · ln(4e · n) · 2k. (by Claim 6) ◀

M. Bienkowski, J. Byrka, and Ł. Jeż 18:11

▶ Lemma 8. Fix a node i and a phase ℓ ⩾ 0. If the event TE occurs, then
∑ℓ

k=0 wT
ik ⩽

8h · ln(4e · n) · 2ℓ.

Proof. Fix the last step t ⩽ T in which
∑ℓ

k=0 wik increases. By the choice of t, we have
wt

ik = ct
ik = 0 for every phase k > ℓ.

Since TE occurs, n ⩾ Φt =
∑

j∈[n] exp(Zt
j). Due to the non-negativity and monotonicity

of the exponential function, Zt
i ⩽ ln n. Using the definition of Zt

i , we get

ln n ⩾ Zt
i =

∑
k⩾0

wt
ik − 2 · dk(ct

ik)
4h · 2k

=
ℓ∑

k=0

wt
ik − 2 · dk(ct

ik)
4h · 2k

⩾
1

4h · 2ℓ
·

(
ℓ∑

k=0
wt

ik − 2 ·
ℓ∑

k=0
h · ln(4e · n) · 2k

)
. (by Lemma 7)

Hence, again by the choice of t,

ℓ∑
k=0

wT
ik =

ℓ∑
k=0

wt
ik ⩽ 4h · 2ℓ · ln n + 4h · ln(4e · n) · 2ℓ < 8h · ln(4e · n) · 2ℓ. ◀

Bounding Node Degrees. Recall that whenever a new hyperedge S containing node i

arrives, pS = mini∈S p(i) is determined. Then, for each node i ∈ S, if p(i) ⩽ pS + h − 1,
the counter wi,p(i) is incremented. If p(i) ⩾ pS + h, the degree of i grows, but wi,p(i) is
not incremented. To estimate the degree of i, we therefore introduce the counters sik,
which are incremented in the latter case. That is, for each node i ∈ S, we always have∑

k⩾0(wik + sik) = deg(i).
The growth of the variables sik is not controlled by the potential, but they grow only

for nodes whose degree is very high compared to the current minimum degree. By con-
structing an appropriate charging argument, we can link their growth to the growth of other
variables wik.

▶ Lemma 9. Fix a step t ⩽ T , a node i, and a phase ℓ ⩾ 0. Then, st
iℓ ⩽

∑
j∈[n]

∑ℓ−h
r=0 wt

jr.

Proof. We fix node i, phase ℓ ⩾ 0, and show the lemma by induction on t. The inductive
basis is trivial, as s0

iℓ = 0 =
∑

j∈[n]
∑ℓ−h

r=0 w0
jr.

Now suppose that the lemma statement holds for step t− 1. We look at how both sides
of the inequality change as we increase the step superscripts from t− 1 to t, and argue that
the increase of the right hand side is at least as large as the increase of the left hand side.
If siℓ does not change, the inductive claim follows trivially. Otherwise, siℓ is incremented
by 1. This happens only if ℓ = p(i), i ∈ S, and ℓ ⩾ pS + h. By the definition of pS , this
means that there exists at least one node j∗ ∈ S such that p(j∗) = pS , and the corresponding
counter wj∗,pS

is also incremented. This means that the right hand side of the lemma
inequality is incremented by at least

∑
j∈[n]

∑ℓ−h
r=0(wt

jr − wt−1
jr) ⩾ wt

j∗,pS
− wt−1

j∗,pS
= 1, and

the inductive claim follows. ◀

▶ Lemma 10. Fix a node i and a phase ℓ ⩾ 0. If the event TE occurs, then
∑ℓ

k=0 sT
ik ⩽

16h · ln(4e · n) · 2ℓ.

STACS 2025

18:12 Online Disjoint Set Covers: Randomization Is Not Necessary

Proof. By Lemma 9,

sT
ik ⩽

∑
j∈[n]

k−h∑
r=0

wT
jr ⩽ n · 8h · ln(4e · n) · 2k−h (by Lemma 8)

⩽ 8h · ln(4e · n) · 2k. (as h = ⌈log n⌉)

Hence,
∑ℓ

k=0 sT
ik < 16h · ln(4e · n) · 2ℓ. ◀

Finally, we can show Lemma 2, restated below.

▶ Lemma 2. Fix a sequence E such that δ(E) > 24h · ln(4e · n) · 2ℓ for some integer ℓ ⩾ 0.
If TE occurs, then each node has completed its phase ℓ.

Proof. Suppose for a contradiction that there exists a node i for which p(i) ⩽ ℓ at the end
of the input. Then,

δ(E) ⩽ degT (i) =
∑
k⩾0

(
wT

ik + sT
ik

)
=

ℓ∑
k=0

(
wT

ik + sT
ik

)
⩽ 24h · ln(4e · n) · 2ℓ,

where the last inequality follows by Lemma 8 and Lemma 10. This would contradict the
assumption of the lemma. ◀

4 Controlling the Potential

In this section, we show that {Φt}t⩾0 is a supermartingale with respect to the choices of
Rand made in corresponding steps, i.e., we prove Lemma 4.

Throughout this section, we focus on a single step t, in which Rand processes a hy-
peredge S. Recall that Rand first chooses a random integer k∗ uniformly from the set
{pS , pS + 1, . . . , pS + h− 1}. Second, conditioned on the first choice, it chooses a random
color uniformly from the set Rk∗ .

By the definition of our variables, for each node i and each integer k ⩾ 0, it holds that
wt

ik − wt−1
ik ∈ {0, 1} and ct

ik − ct−1
ik ∈ {0, 1}.

▶ Lemma 11. Fix a node i ∈ S and let p = pt−1(i). If p ⩽ pS + h− 1, then ct
ip = ct−1

ip + 1
with probability (2p − ct−1

ip)/(h · 2p).

Proof. By the definition of pS , we have p ⩾ pS . Combining this with the lemma assumption,
we get p ∈ {pS , . . . , pS + h− 1}.

Note that ct
ip = ct−1

ip + 1 when node i gathers a new color from Rp, and ct
ip = ct−1

ip

otherwise. For a node i to gather a new color from Rp, first the integer k∗ chosen randomly
from the set {pS , . . . , pS + h− 1} must be equal to p, which happens with probability 1/h.
Second, conditioned on the former event, a color chosen randomly from the palette Rp must
be different from all ct−1

ip colors from Rp gathered so far by node i, which happens with
probability (|Rp| − ct−1

ip)/|Rp| = (2p − ct−1
ip)/2p. Hence, the probability of gathering a new

color is (2p − ct−1
ip)/(h · 2p). ◀

We emphasize that the relations involving random variables in the following lemma
(e.g., the statements such as Zt

i ⩽ Zt−1
i) hold for all random choices made by Rand.

M. Bienkowski, J. Byrka, and Ł. Jeż 18:13

▶ Lemma 12. Fix a node i. Let p = pt−1(i). Then, either Zt
i ⩽ Zt−1

i or

Zt
i ⩽ Zt−1

i + 1
4h · 2p

+
{
−1/(2h · 2p · α) with probability α,
0 otherwise.

where α = (2p− ct−1
ip)/(h · 2p). The probability is computed exclusively with respect to random

choices of Rand in step t.

Proof. For brevity, for an integer k ⩾ 0, we define

∆wik = wt
ik − wt−1

ik ,

∆dk(cik) = dk(ct
ik)− dk(ct−1

ik).

As ct
ik ⩾ ct−1

ik and dk is a non-decreasing function, we have ∆dk(cik) ⩾ 0.
Let S be the hyperedge presented in step t. By the definition of the variables wik

(cf. Subsection 2.2), we have

∆wik =
{

1 if i ∈ S and k = p and p ⩽ pS + h− 1,
0 otherwise.

Now we consider two cases.

It holds that i /∈ S or p ⩾ pS + h. Then,

Zt
i − Zt−1

i =
∑
k⩾0

∆wik − 2 ·∆dk(cik)
4h · 2k

⩽
∑
k⩾0

∆wik

4h · 2k
= 0.

It holds that i ∈ S and p ⩾ pS + h − 1. Then, ∆wip = 1 and ∆wik = 0 for k ̸= p.
Therefore,

Zt
i − Zt−1

i =
∑
k⩾0

∆wik − 2 ·∆dk(cik)
4h · 2k

= ∆wip − 2 ·∆dp(cip)
4h · 2p

+
∑
k ̸=p

∆wik − 2 ·∆dk(cik)
4h · 2k

⩽
1

4h · 2p
− ∆dp(cip)

2h · 2p
.

To complete the proof, it now suffices to argue that ∆dp(ct
ip) = 1/α with probability α

and 0 with the remaining probability. This follows immediately by Lemma 11: With
probability α we have ct

ip = ct−1
ip + 1, and hence ∆dp(cip) = dp(ct

ip) − dp(ct−1
ip) =

h · 2p/(2p− ct
ip + 1) = h · 2p/(2p− ct−1

ip) = 1/α. With the remaining probability ct
ip = ct−1

ip

and thus ∆dp(cip) = 0. ◀

For the final lemma, we need the following technical bound (proven in Appendix A). This
can be seen as a reverse Jensen’s type inequality.

▷ Claim 13. Fix ε ∈ [0, 1], α ∈ [ε, 1] and a real x. Let X be a random variable such that

X =
{

x− ε/α with probability α,
x otherwise.

Then, E[eX] ⩽ ex−ε/2.

STACS 2025

18:14 Online Disjoint Set Covers: Randomization Is Not Necessary

Finally, we can prove Lemma 4, restated below.

▶ Lemma 4. Fix a step t and an outcome of random choices till step t− 1 inclusively. (In
particular, this will fix the value of Φt−1.) Then, E[Φt] ⩽ Φt−1, where the expectation is
taken exclusively over random choices of Rand in step t.

Proof. Fix a node i. We will show that

E[exp(Zt
i)] ⩽ exp(Zt−1

i). (3)

The lemma then follows by summing the above inequality over all nodes.
If Zt

i ⩽ Zt−1
i , (3) follows trivially. Otherwise, Lemma 12 implies that

Zt
i ⩽ Zt−1

i + 1
4h · 2p

+
{
−1/(2h · 2p · α) with probability α,
0 otherwise.

where p = pt−1(i) and α = (2p − ct−1
ip)/(h · 2p). As the random choices are fixed until

step t− 1, the variables Zt−1
i , p and α are no longer random variables, but real numbers.

Note that ct−1
ip ⩽ qp − 1 ⩽ 2p − 1 as otherwise phase p of node i would have ended in

an earlier step. Hence, α = (2p − ct−1
ip)/(h · 2p) ⩾ 1/(2h · 2p).

Thus, x = Zt−1
i + 1/(4h · 2p), ε = 1/(2h · 2p), and α satisfy the conditions of Claim 13.

(In particular, ε ⩽ α ⩽ 1.) This claim now yields

E[exp(Zt
i)] ⩽ exp

(
Zt−1

i + 1
4h · 2p

− 1
2 ·

1
2h · 2p

)
= exp(Zt−1

i),

which concludes the proof of (3), and thus also the lemma. ◀

5 Conclusions

In this paper, we have constructed a deterministic O(log2 n)-competitive algorithm for the
disjoint set covers (DSC) problem. Closing the remaining logarithmic gap between the
current upper and lower bounds is an interesting open problem that seems to require a new
algorithm that goes beyond the phase-based approach.

We have developed new derandomization techniques that extend the existing potential
function methods. We hope that these extensions will be useful for derandomizing other
online randomized algorithms, and eventually for providing a coherent online derandomization
toolbox.

References
1 Anna Adamaszek, Artur Czumaj, Matthias Englert, and Harald Räcke. An O(log k)-

competitive algorithm for generalized caching. ACM Transactions on Algorithms, 15(1):6:1–
6:18, 2019. doi:10.1145/3280826.

2 Noga Alon, Baruch Awerbuch, Yossi Azar, Niv Buchbinder, and Joseph Naor. The online set
cover problem. SIAM Journal on Computing, 39(2):361–370, 2009. doi:10.1137/060661946.

3 Noga Alon and Joel H. Spencer. The Probabilistic Method, Second Edition. John Wiley, 2000.
doi:10.1002/0471722154.

4 Piotr Berman, Gruia Călinescu, C. Shah, and Alexander Zelikovsky. Power efficient monitoring
management in sensor networks. In 2004 IEEE Wireless Communications and Networking
Conference, pages 2329–2334. IEEE, 2004. doi:10.1109/WCNC.2004.1311452.

https://doi.org/10.1145/3280826
https://doi.org/10.1137/060661946
https://doi.org/10.1002/0471722154
https://doi.org/10.1109/WCNC.2004.1311452

M. Bienkowski, J. Byrka, and Ł. Jeż 18:15

5 Marcin Bienkowski, Björn Feldkord, and Pawel Schmidt. A nearly optimal deterministic
online algorithm for non-metric facility location. In Proc. 38th Symp. on Theoretical Aspects
of Computer Science (STACS), LIPIcs, pages 14:1–14:17, 2021. doi:10.4230/LIPIcs.STACS.
2021.14.

6 Béla Bollobás, David Pritchard, Thomas Rothvoß, and Alex D. Scott. Cover-decomposition
and polychromatic numbers. SIAM Journal on Discrete Mathematics, 27(1):240–256, 2013.
doi:10.1137/110856332.

7 Alan Borodin, Nati Linial, and Michael E. Saks. An optimal on-line algorithm for metrical
task system. Journal of the ACM, 39(4):745–763, 1992. doi:10.1145/146585.146588.

8 Sébastien Bubeck, Christian Coester, and Yuval Rabani. The randomized k-server conjecture
is false! In Proc. 55th ACM Symp. on Theory of Computing (STOC), pages 581–594. ACM,
2023. doi:10.1145/3564246.3585132.

9 Sébastien Bubeck, Michael B. Cohen, James R. Lee, and Yin Tat Lee. Metrical task systems
on trees via mirror descent and unfair gluing. In Proc. 30th ACM-SIAM Symp. on Discrete
Algorithms (SODA), pages 89–97. SIAM, 2019. doi:10.1137/1.9781611975482.6.

10 Niv Buchbinder and Joseph (Seffi) Naor. Online primal-dual algorithms for covering and
packing. Mathematics of Operations Research, 34(2):270–286, 2009. doi:10.1287/MOOR.1080.
0363.

11 Adam L. Buchsbaum, Alon Efrat, Shaili Jain, Suresh Venkatasubramanian, and Ke Yi.
Restricted strip covering and the sensor cover problem. In Proc. 18th ACM-SIAM Symp.
on Discrete Algorithms (SODA), pages 1056–1063. SIAM, 2007. URL: http://dl.acm.org/
citation.cfm?id=1283383.1283497, doi:10.5555/1283383.1283497.

12 Mihaela Cardei and Ding-Zhu Du. Improving wireless sensor network lifetime through
power aware organization. Wireless Networks, 11(3):333–340, 2005. doi:10.1007/
S11276-005-6615-6.

13 Mihaela Cardei, My T. Thai, Yingshu Li, and Weili Wu. Energy-efficient target coverage
in wireless sensor networks. In Proc. 2005 IEEE Int. Conf. on Computer Communications
(INFOCOM), pages 1976–1984. IEEE, 2005. doi:10.1109/INFCOM.2005.1498475.

14 Yuval Emek, Adam Goldbraikh, and Erez Kantor. Online disjoint set cover without prior
knowledge. In Proc. 27th European Symp. on Algorithms (ESA), LIPIcs, pages 44:1–44:16,
2019. doi:10.4230/LIPICS.ESA.2019.44.

15 Uriel Feige, Magnús M. Halldórsson, Guy Kortsarz, and Aravind Srinivasan. Approximating
the domatic number. SIAM Journal on Computing, 32(1):172–195, 2002. doi:10.1137/
S0097539700380754.

16 Matt Gibson and Kasturi R. Varadarajan. Optimally decomposing coverings with trans-
lates of a convex polygon. Discret. Comput. Geom., 46(2):313–333, 2011. doi:10.1007/
S00454-011-9353-9.

17 Ram P. Gupta. On the chromatic index and the cover index of a multigraph. In Theory and
Applications of Graphs, pages 204–215. Springer Berlin Heidelberg, 1978.

18 Ngoc Mai Le, Seeun William Umboh, and Ningyuan Xie. The power of clairvoyance for
multi-level aggregation and set cover with delay. In Proc. 2023 ACM-SIAM Symp. on Discrete
Algorithms (SODA), pages 1594–1610. SIAM, 2023. doi:10.1137/1.9781611977554.CH59.

19 Michael Mitzenmacher and Eli Upfal. Probability and Computing: Randomization and Proba-
bilistic Techniques in Algorithms and Data Analysis. Cambridge University Press, USA, 2nd
edition, 2017.

20 Ashwin Pananjady, Vivek Kumar Bagaria, and Rahul Vaze. The online disjoint set cover
problem and its applications. In Proc. 2015 IEEE Int. Conf. on Computer Communications
(INFOCOM), pages 1221–1229. IEEE, 2015. doi:10.1109/INFOCOM.2015.7218497.

21 Ashwin Pananjady, Vivek Kumar Bagaria, and Rahul Vaze. Optimally approximating the
coverage lifetime of wireless sensor networks. IEEE/ACM Transactions on Networking,
25(1):98–111, 2017. doi:10.1109/TNET.2016.2574563.

STACS 2025

https://doi.org/10.4230/LIPIcs.STACS.2021.14
https://doi.org/10.4230/LIPIcs.STACS.2021.14
https://doi.org/10.1137/110856332
https://doi.org/10.1145/146585.146588
https://doi.org/10.1145/3564246.3585132
https://doi.org/10.1137/1.9781611975482.6
https://doi.org/10.1287/MOOR.1080.0363
https://doi.org/10.1287/MOOR.1080.0363
http://dl.acm.org/citation.cfm?id=1283383.1283497
http://dl.acm.org/citation.cfm?id=1283383.1283497
https://doi.org/10.5555/1283383.1283497
https://doi.org/10.1007/S11276-005-6615-6
https://doi.org/10.1007/S11276-005-6615-6
https://doi.org/10.1109/INFCOM.2005.1498475
https://doi.org/10.4230/LIPICS.ESA.2019.44
https://doi.org/10.1137/S0097539700380754
https://doi.org/10.1137/S0097539700380754
https://doi.org/10.1007/S00454-011-9353-9
https://doi.org/10.1007/S00454-011-9353-9
https://doi.org/10.1137/1.9781611977554.CH59
https://doi.org/10.1109/INFOCOM.2015.7218497
https://doi.org/10.1109/TNET.2016.2574563

18:16 Online Disjoint Set Covers: Randomization Is Not Necessary

22 Prabhakar Raghavan. Probabilistic construction of deterministic algorithms: Approximating
packing integer programs. Journal of Computer and System Sciences, 37(2):130–143, 1988.
doi:10.1016/0022-0000(88)90003-7.

23 Neal E. Young. On-line file caching. Algorithmica, 33(3):371–383, 2002. doi:10.1007/
S00453-001-0124-5.

A Proofs of Technical Claims

▷ Claim 6. For each k ⩾ 0 it holds that H(2k)−H(2k − qk) ⩽ ln(4e · n).

Proof. Assume first that 2k < 4n. As H(m) ⩽ 1 + ln m = ln(e · m) for each m, we get
H(2k)−H(2k − qk) < H(4n) ⩽ ln(4e · n) and the lemma follows.

Hence, in the following, we assume that 2k ⩾ 4n, obtaining

2k − qk = 2k − ⌈(1− 1/(2n)) · 2k⌉ (by the definition of qk)
⩾ 2k − (1− 1/(2n)) · 2k − 1
= 2k/(2n)− 1
⩾ 2k/(4n). (as 2k ⩾ 4n)

As qk ⩽ 2k, we can use the relation H(m) ⩾ ln m holding for every m ⩾ 0, obtaining

H(2k)−H(2k − qk) ⩽ ln(e · 2k)− ln(2k − qk) ⩽ ln(e · 2k)− ln(2k/(4n)) = ln(4e · n). ◁

▷ Claim 13. Fix ε ∈ [0, 1], α ∈ [ε, 1] and a real x. Let X be a random variable such that

X =
{

x− ε/α with probability α,
x otherwise.

Then, E[eX] ⩽ ex−ε/2.

Proof. Using α ⩾ ε, we obtain

(1 + ε/α) · (1− ε/(2α)) = 1 + ε/(2α)− ε2/(2α2) ⩾ 1. (4)

Next, we use the relation e−y ⩽ (1 + y)−1 (holding for every y > −1) and (4) to argue that

exp(−ε/α) ⩽ (1 + ε/α)−1 ⩽ 1− ε/(2α). (5)

Finally, this gives

E[eX] = α · exp(x− ε/α) + (1− α) · exp(x)
= ex · (α · exp(−ε/α) + 1− α)
⩽ ex · (α− ε/2 + 1− α) (by (5))

⩽ ex−ε/2. (as 1− ε/2 ⩽ e−ε/2 for each ε) ◁

https://doi.org/10.1016/0022-0000(88)90003-7
https://doi.org/10.1007/S00453-001-0124-5
https://doi.org/10.1007/S00453-001-0124-5

The Complexity of Learning LTL, CTL and ATL
Formulas
Benjamin Bordais
TU Dortmund University, Center for Trustworthy Data Science and Security,
University Alliance Ruhr, Dortmund, Germany

Daniel Neider
TU Dortmund University, Center for Trustworthy Data Science and Security,
University Alliance Ruhr, Dortmund, Germany

Rajarshi Roy
Department of Computer Science, University of Oxford, UK

Abstract
We consider the problem of learning temporal logic formulas from examples of system behavior.
Learning temporal properties has crystallized as an effective means to explain complex temporal
behaviors. Several efficient algorithms have been designed for learning temporal formulas. However,
the theoretical understanding of the complexity of the learning decision problems remains largely
unexplored. To address this, we study the complexity of the passive learning problems of three
prominent temporal logics, Linear Temporal Logic (LTL), Computation Tree Logic (CTL) and
Alternating-time Temporal Logic (ATL) and several of their fragments. We show that learning
formulas with unbounded occurrences of binary operators is NP-complete for all of these logics. On
the other hand, when investigating the complexity of learning formulas with bounded occurrences of
binary operators, we exhibit discrepancies between the complexity of learning LTL, CTL and ATL
formulas (with a varying number of agents).

2012 ACM Subject Classification Theory of computation

Keywords and phrases Temporal logic, passive learning, complexity

Digital Object Identifier 10.4230/LIPIcs.STACS.2025.19

Related Version Full Version: https://arxiv.org/abs/2408.04486 [8]

Funding Rajarshi Roy acknowledges partial funding by the ERC under the European Union’s
Horizon 2020 research and innovation programme (grant agreement No.834115, FUN2MODEL).

1 Introduction

Temporal logics are the de-facto standard for expressing temporal properties for software
and cyber-physical systems. Originally introduced in the context of program verification [33,
15], temporal logics are now well-established in numerous areas, including reinforcement
learning [40, 25, 10], motion planning [17, 12], process mining [13], and countless others. The
popularity of temporal logics can be attributed to their unique blend of mathematical rigor
and resemblance to natural language.

Until recently, formulating properties in temporal logics has been a manual task, requiring
human intuition and expertise [6, 39]. To circumvent this step, in the past ten years, there
have been numerous works to automatically learn (i.e., generate) properties in temporal logic.
Among them, a substantial number of works [29, 11, 35, 26, 41] target Linear Temporal Logic
(LTL) [33]. There is now a growing interest in learning formulas [16, 34, 9] in Computation
Tree Logic (CTL) [15] and Alternating-time Temporal Logic (ATL) [1] due to their ability to
express branching-time properties, including for multi-agent systems.

© Benjamin Bordais, Daniel Neider, and Rajarshi Roy;
licensed under Creative Commons License CC-BY 4.0

42nd International Symposium on Theoretical Aspects of Computer Science (STACS 2025).
Editors: Olaf Beyersdorff, Michał Pilipczuk, Elaine Pimentel, and Nguyễn Kim Thắng;
Article No. 19; pp. 19:1–19:20

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

https://orcid.org/0009-0000-4143-6298
https://orcid.org/0000-0001-9276-6342
https://orcid.org/0000-0002-0202-1169
https://doi.org/10.4230/LIPIcs.STACS.2025.19
https://arxiv.org/abs/2408.04486
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

19:2 Learning LTL, CTL and ATL Formulas

Table 1 The complexity results for learning LTL, CTL and ATL formulas. The notation ATLk

refers to ATL-formulas with k agents. Ut ⊆ {¬, X, F, G} refers to the set of unary temporal operators.

Unbounded Bounded use of binary operators
use of binary

X ∈ Ut X /∈ Ut

operators {F, G} ⊆ Ut Ut = {F}, {G}
LTL

NP-c

L
CTL NP-c NL-c
ATL2 NP-c P-c
ATLk NP-c

While existing approaches for learning temporal properties demonstrate impressive
empirical performance, detailed comparisons of computational complexity across different
temporal logics remain underexplored. Most related works focus on LTL, either in the
verification domain [18, 27] or the database domain [19, 24]. These studies primarily report
complexity results, often highlighting NP-completeness for learning LTL-formulas and their
fragments. In contrast, the computational complexity of learning CTL- and ATL-formulas
has not yet been thoroughly examined.

In this work, we extend the study of learning temporal properties to include CTL-
and ATL-formulas. Additionally, we broaden existing results for LTL to cover a more
comprehensive set of operators, specifically addressing all binary operators (temporal or not).

To elaborate on our contributions, let us precisely describe the problem that we consider,
the passive learning problem for temporal logic [29, 11]. Its decision version asks the following
question: given two sets P , N of positive and negative examples of a system’s behavior and
a size bound B, does there exist a “separating” formula of size at most B, which is satisfied
by the positive examples and violated by the negative ones.

Our instantiation of the above problem depends on the considered logic, following related
literature [29, 34, 9]: LTL-formulas express linear-time properties, CTL-formulas express
branching-time properties, and ATL-formulas express properties on multi-agent systems.
Accordingly, the input examples for learning LTL, CTL and ATL are linear structures (or
equivalently infinite words), Kripke structures and concurrent game structures, respectively.
We refer to Section 2 for formal definitions and other prerequisites.

We summarize our contributions in Table 1. Our first result, illustrated in the left column,
shows that allowing formulas with unrestricted use of at least one binary operator makes
the corresponding learning decision problem NP-complete for all considered logics. Some
of these NP-hardness results are (closely) inspired by [27], involving reductions from the
hitting set problem – one of Karp’s 21 NP-complete problem; some others require novel proof
techniques, e.g. one involves a reduction from an NP-complete modulo-2 calculus problem.
We describe the outline of the proofs in Section 3.

All of the above NP-hardness proofs rely on separating formulas with linearly many (in
the size of the input) occurrences of binary operators. Thus, in the search of expressive
temporal logic fragments with lower complexities, we focus on formulas with a bounded
occurrences of binary logical operators such as ∧ (and), ∨ (or), etc. and no binary temporal
operators such as U (until), R (release), etc. This choice of formulas is motivated by the
fact that such formulas can still express interesting properties (e.g., GR(1) [32] formulas,
mode-target formulas [4], etc.) and are used in several practical applications (see Section 4.1
for details). We explore several fragments with different unary temporal operators, X (next),

B. Bordais, D. Neider, and R. Roy 19:3

F (eventually) and G (globally), and present the results in the rightmost column of Table 1.
We notice that, in this case, the complexity of the learning problems varies considerably
between different logics and unary operators. Importantly, we exhibit fragments where the
learning problem is below NP. We prove the three NP-hardness results using a reduction
from the hitting set problem; we give key insights on all of these results in Section 4.

All details can be found in the extended version [8].

Related Works. The most closely related works are [18] and [27], which operate within a
similar framework to ours. Both works consider learning problems in several fragments of
LTL, especially involving boolean operators such as ∨ and ∧, and temporal operators such as
X, F and G and prove their NP-completeness. We extend part of their work by categorizing
fragments based on the arity of the operators and studying which type of operators contribute
to the hardness. Moreover, there are several differences in the parameters considered for
the learning problem. The most important one is the following: the above works consider
the size upper bound B to be in binary, while we assume B given in unary. Although, in
complexity problems, integers are most often assumed to be written in binary, we believe
that considering size bound in unary is justified since one may want to not only decide the
existence of a formula but also effectively output one, which will require to explicitly write it.
The other differences with the setting of the above works are mostly due to the fact that we
do not only consider LTL learning, but CTL and ATL learning as well. A thorough discussion
of these differences can be found in the extended version of this paper [8].

In the past, complexity analysis of passive learning has been studied for formalisms
other than temporal logics. For instance, [21] and [2] proved NP-completeness of the passive
learning problems of deterministic finite automata (DFAs) and regular expressions (REs).

When it comes to temporal logics, most related works focus on developing efficient al-
gorithms for learning temporal logic formulas. Among these, the emphasis has predominantly
been on learning LTL (or its significant fragments), which has been discussed in detail in
a recent survey summarizing various learning techniques [30]. Broadly, the techniques can
be categorized into three main types: constraint solving [29, 11, 37, 20, 22], enumerative
search [35, 41], and neuro-symbolic techniques [26, 42].

For learning CTL, some approaches rely on handcrafted templates [14, 43] for simple
enumerative search, while others employ constraint-solving methods to learn formulas with
arbitrary structures [34]. The constraint-solving methods are extended to learn ATL-formulas
as well [9]. There are also works on learning other logics such as Signal Temporal Logic [7, 28],
Metric Temporal Logic [36], Past LTL [3], Property Specification Language [38], etc.

2 Preliminaries and Definitions

We let N denote the set of all integers and N1 denote the set of all positive integers. For all
i ≤ j ∈ N, we let [i, . . . , j] ⊆ N denote the set of integers {i, i+ 1, . . . , j}.

Given any non-empty set Q, we let Q∗, Q+ and Qω denote the sets of finite, non-empty
finite and infinite sequences of elements in Q, respectively. For all ρ ∈ Q+, we denote by
|ρ| ∈ N the number of elements of ρ. For all • ∈ {+, ω}, ρ ∈ Q• and i ∈ N1, if ρ has at least
i elements, we let: ρ[i] ∈ Q denote the i-th element in ρ, in particular ρ[1] ∈ Q is the first
element of ρ; ρ[: i] ∈ Q+ denotes the non-empty finite sequence ρ1 · · · ρi ∈ Q+; ρ[i :] ∈ Q•

denotes the non-empty sequence ρi · ρi+1 · · · ∈ Q•, in particular we have ρ[1 :] = ρ.
For the remainder of this section, we fix a non-empty set of propositions Prop.

STACS 2025

19:4 Learning LTL, CTL and ATL Formulas

2.1 Structures
Usually, ATL-formulas are interpreted on concurrent game structures, i..e. games where, at
each state, the concurrent actions of several agents have an impact on the next state reached.
A special kind of concurrent game structures are turn-based game structures, where each
state belongs to a specific agent who decides what the next state is. Here, we introduce only
this special kind of games mainly due to a lack of space, but also because all of our hardness
results, presented in Table 1, hold even when only considering turn-based game structures.

▶ Definition 1. A turn-based game structure (TGS for short) T = ⟨Q, I, Succ,Ag, α,Prop, π⟩
is a tuple where: Q is a finite set of states; I ⊆ Q is the set of initial states; Succ : Q → 2Q \∅
maps each state to its set of successors; Ag ⊆ N denotes the set of agents; α : Q → Ag maps
each state to the agent owning it; and π : Q 7→ 2Prop maps each state q ∈ Q to the set of
propositions that hold in q. A state q is said to be self-looping if q ∈ Succ(q). A structure is
self-looping if all of its states are self-looping.

For all coalitions of agents A ⊆ Ag, a strategy sA for the coalition A is a function
sA : Q+ → Q such that, for all ρ = ρ1 · · · ρn ∈ Q+, if α(ρn) ∈ A, then sA(ρ) ∈ Succ(ρn). We
denote by SA the set of strategies for the coalition A. Then, from any state q ∈ Q, we define
the set Out(q, sA) of infinite paths compatible with the strategy sA from q: Out(q, sA) := {ρ ∈
q ·Qω | ∀i ∈ N1 : α(ρ[i]) ∈ A =⇒ ρ[i+ 1] = sA(ρ[: i])}.

Finally, the size |T | of the turn-based structure T is equal to: |T | = |Q| + |Ag| + |Prop|.

Unless otherwise stated, a turn-based structure T will always refer to the tuple T =
⟨Q, I, Succ, A, α,Prop, π⟩.

There are also special kinds of turn-based structures of interest for us, introduced below.

▶ Definition 2. A Kripke structure is a turn-based structure with only one agent. A linear
structure is a Kripke structure such that: |I| = 1, and for all q ∈ Q, we have |Succ(q)| = 1.
Finally, a turn-based structure is size-1 if |Q| = 1.

Unless otherwise stated, a Kripke structure K will always refer to a tuple ⟨Q, I, Succ,Prop, π⟩1.
We have introduced the notion of linear structures as we are going to interpret LTL-

formulas on them. In the literature, they are usually interpreted on ultimately periodic words.
However, both models are equivalent and can be encoded into each other straightforwardly.

2.2 ATL, CTL and LTL formulas
The LTL, CTL and ATL-formulas that we consider throughout this paper use the following
temporal operators: X (neXt), F (Future), G (Globally), U (Until), R (Release), W (Weak
until), M (Mighty release). We group these operators into the sets of unary and binary
operators: OpUn := {¬,X,F,G} and Optp

Bin := {U,R,W,M}. We also let Oplg
Bin be the set

of all logical binary operators, i.e. classical logical operators, along with their negations:
Oplg

Bin := {∨,∧,⇒,⇐,⇔, ¬∨, ¬∧, ¬⇒, ¬⇐, ¬⇔} (we have |Oplg
Bin| = 10).

To define ATL-formulas, we consider two types of formulas: state formulas – where
strategic operators occur, denoted with the Greek letter ϕ – and path formulas – where
temporal operators occur, denoted with the Greek letter ψ. Consider some Ut ⊆ OpUn,
Bt ⊆ Optp

Bin, and Bl ⊆ Oplg
Bin. For all k ∈ N1, we denote by ATLk(Prop,Ut,Bt,Bl) the set of

ATLk-state formulas defined by the grammar:

ϕ ::= p | ¬ϕ | ϕ ∗ ϕ | ⟨⟨A⟩⟩ψ ψ ::= ∗1ϕ | ϕ ∗2 ϕ

1 In Kripke structures, there is only one agent, thus Ag and α are irrelevant.

B. Bordais, D. Neider, and R. Roy 19:5

where ϕ is a state-formula, ψ is a path formula, p ∈ Prop, ∗ ∈ Bl, A ⊆ [1, . . . , k] is a subset
of agents, ∗1 ∈ Ut \ {¬}, and ∗2 ∈ Bt. We denote by ATLk the set of all ATLk-state formulas
ϕ. Note that CTL-formulas are ATL1(Prop,Ut,Bt,Bl)-formulas. Hence, there are only two
possible strategic operator: ⟨⟨∅⟩⟩, usually denoted ∀, and ⟨⟨{1}⟩⟩ usually denoted ∃. We
define LTL-formulas as ATL1-formulas using only the quantifier ∃. Since LTL-formulas are
interpreted on linear structures, where each state has exactly one successor, the strategic
operators used have no impact on the satisfaction of the formula. For readability, we will
depict LTL-formulas without the ∃ quantifier.

The set of sub-formulas SubF(ϕ) of a formula ϕ is then defined inductively as follows:
SubF(ϕ) := {ϕ} ∪ S where S := ∅ if ϕ = p ∈ Prop, S := SubF(ϕ′) if ϕ ∈ {¬ϕ′, ⟨⟨A⟩⟩ ∗1 ϕ

′}
and S := SubF(ϕ1) ∪ SubF(ϕ2) if ϕ ∈ {ϕ1 ∗ ϕ2, ⟨⟨A⟩⟩(ϕ1 ∗2 ϕ2)}. The size |ϕ| of a formula is
then defined as its number of sub-formulas: |ϕ| := |SubF(ϕ)|. We also denote by |ϕ|bin the
number of sub-formulas of ϕ using a binary operator, |ϕ|bin := |SubBin(ϕ)| with: SubBin(ϕ) :=
{ϕ1 ∗ ϕ2 ∈ SubF(ϕ) | ϕ1, ϕ2 ∈ SubF(ϕ), ∗ ∈ Optp

Bin ∪ Oplg
Bin}.

We interpret ATL-formulas over TGS using the standard definitions [1]. That is, given a
state q and a state formula ϕ, the fact q satisfies ϕ, denoted q |= ϕ, is defined inductively:

q |= p iff p ∈ π(q)
q |= ¬ϕ iff q ̸|= ϕ

q |= ϕ1 ∗ ϕ2 iff (q |= ϕ1) ∗ (q |= ϕ2) = True
q |= ⟨⟨A⟩⟩ψ iff ∃sA ∈ SA, ∀π ∈ Out(q, s), π |= ψ

where ∗ ∈ Oplg
Bin is a binary operator seen as a boolean function ∗ : B × B → B with

B := {True,False}. Furthermore, given a path π ∈ Qω and a path formula ψ, the fact that ψ
holds for the path π, also denoted π |= ϕ, is defined inductively as follows:

π |= X ϕ iff π[2 :] |= ϕ;
π |= F ϕ iff ∃i ∈ N1, π[i :] |= ϕ;
π |= G ϕ iff ∀i ∈ N1, π[i :] |= ϕ

π |= ϕ1 W ϕ2 iff π |= (ϕ1 U ϕ2) ∨ G ϕ1

π |= ϕ1 U ϕ2 iff ∃i ∈ N1, π[i :] |= ϕ2 and
∀1 ≤ j ≤ i − 1, π[j :] |= ϕ1

π |= ϕ1 R ϕ2 iff π |= ¬(¬ϕ1 U ¬ϕ2)
π |= ϕ1 M ϕ2 iff π |= (ϕ1 R ϕ2) ∧ F ϕ1

An ATL-formula ϕ accepts a TGS T , denoted by T |= ϕ, if q |= ϕ for all initial states
q ∈ I, otherwise it rejects it. Given two formulas ϕ, ϕ′, we write ϕ =⇒ ϕ′ if, for all TGS T ,
if T |= ϕ, then T |= ϕ′. We write ϕ ≡ ϕ′ when ϕ =⇒ ϕ′ and ϕ′ =⇒ ϕ.

2.3 Learning decision problem
We define the LTL, CTL and ATL learning problems below, where models for LTL, CTL, and
ATL are linear structures, Kripke structures and turn-based game structures, respectively.

▶ Definition 3. Let TL ∈ {LTL,CTL,ATLk | k ∈ N1} and consider some sets of operators Ut ⊆
OpUn, Bt ⊆ Optp

Bin and Bl ⊆ Oplg
Bin. For all n ∈ N ∪ {∞}, we denote by TLLearn(Ut,Bt,Bl, n)

the decision problem:
Input: (Prop,P,N , B) where Prop is a set of propositions, P,N are two finite sets of
models for TL, and B ∈ N.
Output: yes if and only if there exists a TL-formula φ ∈ TL(Prop,Ut,Bt,Bl) such that
|φ| ≤ B, |φ|bin ≤ n, and φ is separating, i.e. such that : for all X ∈ P (resp. X ∈ N),
we have X |= φ (resp. X ̸|= φ).

The size of the input is equal to |Prop| + |P| + |N | +B (i.e. B is written in unary).

As the model checking problems for LTL, CTL, ATL are in P [1], it follows that the learning
problems for all these logics are in NP, with a straightforward guess-and-check subroutine.

STACS 2025

19:6 Learning LTL, CTL and ATL Formulas

▶ Proposition 4. For all Ut ⊆ OpUn, Bt ⊆ Optp
Bin, Bl ⊆ Oplg

Bin, n ∈ N ∪ {∞}, and TL ∈
{LTL,CTL,ATLk | k ∈ N1}, the decision problem TLLearn(Ut,Bt,Bl, n) is in NP.

2.4 Hitting set problem
We recall below the NP-complete problem from which we will establish almost all of our
(NP-hardness) reductions.

▶ Definition 5 (Hitting set problem). We denote by Hit the following decision problem:
Input: a triple (l, C, k) where l ∈ N1, C = C1, . . . , Cn are non-empty subsets of [1, . . . , l]
Output: yes iff there is a subset H ⊆ [1, . . . , l] of size at most k such that, we have
H ∩ Ci ̸= ∅ for all 1 ≤ i ≤ n. In such a case, the set H is called a hitting set.

In the following, if (l, C, k) is an instance of the hitting set problem, then C refers to
C1, . . . , Cn for some n ∈ N1.

3 Learning with unbounded use of binary operators

First, we consider the case of learning a formula with arbitrarily many occurrences of binary
operators. The main result of this section is stated in Theorem 6 below.

▶ Theorem 6. Let Bt ⊆ Optp
Bin and Bl ⊆ Oplg

Bin such that Bt ∪Bl ̸= ∅. Then, for all Ut ⊆ OpUn,
the decision problem LTLLearn(Ut,Bt,Bl,∞) is NP-hard.

In the passive learning setting that we consider, the size of the formulas is crucial due
to the upper bound B. Therefore, although it is possible to express e.g. disjunctions with
conjunctions and negations, since doing so affects the size of the formulas involved, if we have
proved that a learning problem is NP-hard with the operators ∨,¬, it does not imply a priori
that it is also NP-hard with the operator ∧. Hence, for the sake of completeness, we consider
all those fourteen binary operators (ten logical, four temporal), although it seems that some
of these binary operators (like ∨ or ∧) make much more sense to consider than others (like
⇔ or ¬⇔). Since these operators behave differently, we cannot do a single reduction working
for all these operators at once. However, we do partition these operators in different groups
and exhibit a reduction per group of operators.

Most of the reductions use only size-1 structures, that are (almost) entirely defined by the
subset of propositions labeling their only state. In addition, most of the reductions are done
from the hitting set problem. In that case, how we extract a hitting set from a (small enough)
separating formula relies only on the variables that need to occur in a formula separating
the positive and negative structures, regardless of the operators involved.

We start with the operators ∨,⇒,⇐, i.e. we assume that Bl ∩ {∨,⇒,⇐} ̸= ∅. The
reduction for this case is actually a straightforward adaptation of the proof of [27, Theorem
2]. We describe it here. Given an instance (l, C, k) of the hitting set problem, we let
Prop := {aj , bj | 1 ≤ j ≤ l}. Furthermore, for all subsets T ⊆ [1, . . . , l], we let L(T) denote
a size-1 (linear) structure whose only state is labeled by the set {aj , bj′ | j ∈ T, j′ /∈ T}.
Then, we let In∨,⇒,⇐ := (Prop,P,N , B) for P := {L(Ci) | 1 ≤ i ≤ n}, N := {L(∅)}, and
B := 2k − 1. Let us illustrate this reduction on a simple example. Assume that l = 4,
C = ({1, 2, 3}, {2, 4}, {1, 4}), and k = 2. Then, the sets labeling the only state of the positive
structures are {a1, a2, a3, b4}, {b1, a2, b3, a4}, and {a1, b2, b3, a4} while the set labeling the
only state of the negative structure is {b1, b2, b3, b4}. Furthermore, B = 3. Then, H := {1, 4}
is the a hitting set with |H| ≤ 2, while φ∨ := a1 ∨ a4, φ⇒ := b1 ⇒ a4, and φ⇐ := a1 ⇐ b4
are all separating formulas with |φ∨| = |φ⇒| = |φ⇐| ≤ 3.

B. Bordais, D. Neider, and R. Roy 19:7

We claim that (l, C, k) is a positive instance of Hit iff In∨,⇒,⇐ is a positive instance of
LTLLearn(Ut,Bt,Bl,∞). Indeed, given a hitting set H = {i1, . . . , ir} with r ≤ k, one can check
that the LTL-formula φ∨ := ∨1≤x≤r aix

of size 2r−1 ≤ B accepts P and rejects N . Note that,
the LTL-formulas φ⇒ := bj1 ⇒ (bj2 ⇒ (. . . ⇒ ajr)) and φ⇐ := ((aj1 ⇐ bj2) ⇐ . . .) ⇐ bjr of
size 2r+1 ≤ B also accept P and reject N . On the other hand, consider an LTL-formula φ of
size at most B that accepts P and rejects N . We let H := {1 ≤ j ≤ l | aj or bj occurs in φ}.
Since |φ| ≤ B, we have |H| ≤ k. Furthermore, consider any 1 ≤ i ≤ n. Let us consider
the set Si (resp. S) labeling the only state of the structure L(Ci) (resp. L(∅)). We have
∆(Si, S) := Si \ S ∪ S \ Si = {aj , bj | j ∈ Ci}. One can then show (rather straightforwardly,
by induction on LTL-formulas) that, since φ accepts L(Ci) and rejects L(∅), at least one
variable in ∆(Si, S) occurs in φ. That is, Ci ∩H ≠ ∅ and H is a hitting set of size at most k.

In fact, the reduction for the operators ∧, ¬⇒, ¬⇐ is obtained from the above one by
reversing the positive and negative sets (the arguments are almost identical).

We then handle the operators ¬∨, ¬∧. The above reductions cannot be used since,
when the operator ¬∧ (or the operator ¬∨) is used successively, the formula obtained is
semantically equivalent to an alternation of conjunctions and disjunctions. For instance,
consider six variables r1, r2, r3, r4, x1, x2 to use in a single LTL-formula using only the ¬∧
operator, e.g.: φ := r1

¬∧ (x1
¬∧ (r2

¬∧ (x2
¬∧ (r3

¬∧ r4)))). It is semantically equivalent
to: φ ≡ ¬r1 ∨ (x1 ∧ (¬r2 ∨ (x2 ∧ (¬r3 ∨ ¬r4))). This is in sharp contrast with the above-
formulas φ∨, φ⇐ and φ⇒. To circumvent this difficulty, we change the reduction by adding
propositions labeling the only state of all the positive size-1 linear structures (but not the
only state of all the negative ones). We can then place these propositions where x2 and
x4 were in the above formula. That way, we semantically obtain a disjunction on relevant
variables r1, r2, r3, r4. The obtained reduction is slightly more subtle than the previous ones.

Before considering the last two logical operators ⇔, ¬⇔, we handle the temporal operators
W,M. The two previous reductions only use size-1 structures. On such structures, the
temporal operators W,M are actually equivalent to ∨ and ∧ respectively. Hence, the
reductions for ∨ and ∧ can also be used as is for the operators W and M respectively.

We then handle the final two logical operators ⇔, ¬⇔. These operators are unlike the
other operators. Let us give an intuition of how the learning problems with these operators
behave. Consider an LTL-formula φ using only the operators ¬,⇒ and ¬⇔ and a size-1
structure L. Let S denote the set of propositions labeling the only state of L. We let Neg(φ)
denote the number of occurrences of the operators ¬, ¬⇔ in φ. We also let NbOcS̄(φ) denote
the number of occurrences of the propositions not in S in φ. Then, one can realize that
L |= φ if and only if Neg(φ) and NbOcS̄(φ) have the same parity. This simple observation
suggests that the learning problem with the operators ⇔, ¬⇔ is linked to modulo-2 calculus.
The reduction for these operators is established from an NP-complete problem dealing with
modulo-2 calculus, known as the Coset Weight problem [5].

Finally, we handle the temporal operators U and R. On size-1 structures, for all LTL-
formulas φ1, φ2, we have the following equivalences: φ1 Uφ2 ≡ φ1 Rφ2 ≡ φ2. That is,
contrary to the temporal operators W and M, on size-1 structures, U and R are equivalent
to unary operators. Hence, the reduction that we consider does not involve only size-1
structures. It is once again established from the hitting set problem, though the construction
and the correctness proof are more involved than for the above cases.

On top of that, for all sets of operators, ATL learning is at least as hard as CTL learning,
which is itself at least as hard as LTL learning. Thus, from Theorem 6, we obtain that CTL
and ATL learning with unbounded use of binary operators are NP-hard. This justifies the
leftmost column of Table 1.

STACS 2025

19:8 Learning LTL, CTL and ATL Formulas

4 Learning with a bounded amount of binary operators

Since, with unbounded use of binary operators, all the learning problems are NP-hard, we
focus on learning formulas where the number of occurrences of binary operators is bounded.
Note that the bound n parameterizes the decision problem itself, and therefore is independent
of the input. For simplicity, we restrict ourselves to formulas that do not use at all binary
temporal operators. Before we dive into the details of our results as summarized in the
rightmost column of Table 1, let us first argue why this fragment is interesting to focus on.

4.1 Expressivity
The passive learning problem that we consider in this paper bounds the size of the formulas
considered. This is because we want a separating formula not to overfit the input (i.e. not
to simply describe the positive and negative models). However, another benefit is that the
smaller the formulas, the more understandable they are for users. Similarly, using too many
binary operators could make the formulas hard to grasp, regardless of their size.

In addition, there are examples of interesting specifications that can be expressed with a
bounded amount of binary operators. We give three examples below with LTL-formulas.

Consider first so-called “mode-target” formulas of the shape
∧

j (F GMj ⇒
∨

i F GTi,j),
where all Mj , Ti,j are propositions. These types of formulas were introduced in [4] and exhibit
two interesting features: the corresponding LTL-synthesis problem is tractable, and these
formulas express an interesting property, which can be summarized as follows: if a model
eventually settles in a mode Mj , then it should eventually settle in one of the target Ti,j .
Interestingly, when the number of different modes and targets that a system can have is fixed,
then the number of binary operators sufficient to express such specification is also bounded.

Similarly, there are also interesting specifications related to “generalized reactivity” (from
[32] for LTL-formulas). Such specifications are of the shape

∧
i G Fψi ⇒

∧
i G Fψ′

i, where
all formulas ψi and ψ′

i do not feature at all temporal operators. As such, up to introducing
additional propositions, these could be expressible with few binary operators. These formulas
can be read as an implication between assumptions and guarantees. As above, when the
number of assumptions and guarantees is bounded, then the number of binary operators
sufficient to express such formulas also is.

Finally, one of the popular LTL learning tools, Scarlet [35], relies on a fragment of LTL,
directed LTL and its dual, which uses unary temporal operators and binary logical operators
only. In these fragments, formulas of a fixed length (a search parameter they define) can use
several of F G and X operators while using only bounded occurrences of ∧ and ∨ operators.

4.2 Abstract recipes
The six decision problems captured in the rightmost column of Table 1 are of two kinds:
three are NP-complete, while three others are below NP. In fact, the proofs of all three
results of the same kind will follow the same abstract recipes. We present them below.

Recipe for the membership-below-NP proofs. Let TL denote either LTL formulas, or CTL
formulas without the operator X, or ATL2 formulas with only one unary operator F or G
(i.e. one of the three logical fragment for which the corresponding decision problem is below
NP). Then, we follow the two steps below:
A) First, we show that given the set of propositions Prop and the bound B, there is a set of

relevant TL-formulas RelForm(Prop, B) such that: 1) For all TL(Prop)-formulas ϕ of size
at most B, there is a formula ϕ′ ∈ RelForm(Prop, B) such that ϕ ≡ ϕ′; and 2) the size of
RelForm(Prop, B) is polynomial in |Prop| and B.

B. Bordais, D. Neider, and R. Roy 19:9

B) Second, we show that for all TL-formulas ϕ ∈ RelForm(Prop, B), deciding if ϕ satisfies a
TL-model M can be done, depending on |Prop|, B, |M |, within the resources allowed, i.e.
logarithmic space for the LTL case, non-deterministic logarithmic space for the CTL case,
and polynomial time for the ATL2 case.

Due to a lack of space, in this paper we will only present these two steps in the context of
formulas that do not use any binary operator. Since the occurrences of binary operators
is bounded in any case, the arguments are essentially the same for the general case. For
instance, for the first step, from the result established for formulas without binary operators,
we can straightforwardly deduce the result for all formulas, by induction on the bound n.
That way, we obtain that |RelForm(Prop, B)| could be exponential in the bound n, but this
does not have an impact complexity-wise, since n is fixed.

Recipe for the NP-hardness proofs. The formulas that we consider only use a bounded
amount of binary operators. Thus, contrary to the NP-hardness reductions of Section 3,
here, our NP-hardness proofs do not rely on binary operators. In fact, these binary operators
make it harder to argue about how the permitted unary operators interact. For this reason,
our proof of NP-hardness is decomposed into two steps. We first exhibit reductions for
the learning problems without binary operators. Then, from these reductions, we devise
reductions for the learning problems with bounded occurrences of binary operators. We
present in details the former reductions in this paper and give intuition behind the later
reductions below.

Let n ∈ N and ∗ ∈ Oplg
Bin be a binary (non-temporal) operator. We consider n propositions

{p1, . . . , pn} and we define multiple size-1 structures using the propositions {p1, . . . , pn}
forming two sets An,∗ and Bn,∗. The idea is that to distinguish these two sets, a separating
formula will necessarily feature all the propositions {p1, . . . , pn}. In fact, from a positive
and a negative sets of structures P and N on the set of proposition {p}2 (which is the only
proposition that unary formulas can use in our reductions), we can show the following: if a
formula of size at most B+2n, with at most n occurrences of binary operators, separates both
P and N , and An,∗ and Bn,∗, then there is a unary formula of size at most B that separates
P and N .3 That way, a reduction for the learning problem without binary operators can be
translated (in logspace) into a reduction for the learning with bounded occurrences of binary
operators. Note that the arguments presented in this paragraph are not straightforward to
formally state and prove (this is handled in Theorem “Proving NP-hardness without binary
operators is sufficient” in the extended version [8]).

Let us now consider how we handle the reduction without binary operators. From an
instance (l, C, k) of the hitting problem, we proceed as follows. We define a sample of
structures (and a bound B) such that all separating formulas have a specific shape, and there
is a bijection between subsets H ⊆ [1, . . . , l] and formulas φ(l,H) of that specific shape. This
correspondence allows us to extract a hitting set. More specifically, we follow the abstract
recipe below:
(a) We define the bound B and positive and negative structures that “eliminate” certain

operators or pattern of operators from any potential separating formula. This way we
ensure that any separating formula will be of the form φ(l,H), for some H ⊆ [1, . . . , l].

(b) We define a negative structure satisfied by a formula φ(l,H) if and only if |H| ≥ k + 1.
(c) For all 1 ≤ i ≤ n, we define a positive structure that a formula φ(l,H) accepts if and

only if H ∩ Ci ̸= ∅.

2 In fact, for technical reason, in [8], we use two propositions {p, p̄}.
3 Actually, we can also show the converse (which is important for us to prove that the reduction is correct).

STACS 2025

19:10 Learning LTL, CTL and ATL Formulas

By construction, the instance of the learning decision problem that we obtain is a positive
instance if and only if the hitting set instance (l, C, k) also is. Furthermore, note that in all
three cases, this reduction can be computed in logspace.

4.3 LTL learning
We start with LTL learning. We have the proposition below.

▶ Proposition 7. For all sets of unary operators Ut ⊆ OpUn, sets of binary (non-temporal)
operators Bl ⊆ Oplg

Bin, and n ∈ N, the decision problem LTLLearn(Ut, ∅,Bl, n) is in L.

We present Steps A and B of Section 4.2 in the case n = 0. Toward Step A, we have the
equivalences below (see e.g. [27, Prop. 8]), which imply the corollary that follows.

▶ Observation 8. For all LTL-formulas φ and k ∈ N, we have: 1) F Xk φ ≡ Xk Fφ,
G Xk φ ≡ Xk Gφ; 2) F Fφ ≡ Fφ, G Gφ ≡ Gφ; 3) F G Fφ ≡ G Fφ, G F Gφ ≡ F Gφ.

▶ Corollary 9. Consider a set of propositions Prop. We let Lit(Prop) := {x,¬x | x ∈ Prop}
and LTLUn(Prop) := {Xk x,Xk Fx,Xk Gx,Xk F Gx,Xk G Fx | k ∈ N, x ∈ Lit(Prop)}.

Then, for any LTL-formula φ ∈ LTL(Prop,OpUn, ∅,Bl, 0), there is an LTL-formula φ′ ∈
LTLUn(Prop) ∩ LTL(Prop,OpUn, ∅,Bl, 0) such that φ ≡ φ′ and |φ′| ≤ |φ|.

Proof sketch. With the equivalences 1) from Observation 8, we can push the X operators
in φ at the beginning of the formula. The equivalences 2) and 3) from Observation 8 ensure
that it is possible to have at most two nested F,G operators in the resulting formula φ′. ◀

The set of relevant formulas RelForm(Prop, B) is then obtained directly from the set
of formulas LTLUn(Prop). Note that however, how it is obtained depends on the exact
operators in Ut. For instance, if G /∈ Ut while ¬,F ∈ Ut, we should replace the occurrences
of G in formulas in RelForm(Prop, B) by ¬ F ¬. Nonetheless, in any case, we obtain a set
RelForm(Prop, B) of relevant formulas whose number of elements is linear in |Prop| ·B. This
concludes the arguments for Step A. As for Step B, one can realize that since there are at
most two nested F,G operators in formulas in RelForm(Prop, B), then checking that they
hold on a linear structure can be done in logarithmic space (because it suffices to have a
constant number of pointers browsing the structure).

4.4 CTL learning
Consider now the more involved case of CTL learning. As can be seen in Table 1, we
distinguish two cases: with and without the operator X.

Assume that X ∈ Ut. The goal is to show the theorem below.

▶ Theorem 10. For all sets Ut ⊆ OpUn, Bl ⊆ Oplg
Bin, and bound n ∈ N, if X ∈ Ut, then the

decision problem CTLLearn(Ut, ∅,Bl, n) is NP-hard.

As stated in Section 4.2, we argue the theorem in the case n = 0. Recall that in that case
we consider a single proposition {p}. Consider an instance (l, C, k) of the hitting set problem
Hit. We follow the three Steps a, b, and c. Toward Step a, we define Kripke structures
that prevent the use of the operators F,G,¬. To do so, we let B := l + 1 and for two sets
S1, S2 ⊆ {p}, we consider the Kripke structure Kl,S1,S2 that is depicted in Figure 1. These
structures satisfy the lemma below.

B. Bordais, D. Neider, and R. Roy 19:11

q1

∅
. . . ql

∅
ql+1

S1

ql+2

S2

Figure 1 The structure Kl,S1,S2 where S1 ⊆ {p} (resp. S2 ⊆ {p}) labels ql+1 (resp. ql+2).

q0,1

∅
q0,2

∅
q0,3

∅
q0,4

∅
q0,5

∅
q0,6

∅

q1,2

∅
q1,3

∅
q1,4

∅
q1,5

∅
q1,6

∅

q2,3

∅
q2,4

∅
q2,5

∅
q2,6

∅

qwin
{p}

Figure 2 The Kripke structure K5
∃>2.

▶ Lemma 11. A formula ϕ ∈ CTL({p},Ut, ∅,Bl, 0) of size at most l + 1 accepting Kl,{p},∅
and rejecting Kl,∅,{p} and Kl,∅,∅ cannot use the operators F,G,¬.

Proof sketch. Consider an equivalent CTL-formula ϕ′ with |ϕ′| ≤ |ϕ| where negations, if any,
occur right before the proposition p. Then, if ϕ′ uses the operator G, it cannot distinguish
the structures Kl,{p},∅ and Kl,∅,∅. Otherwise, if it uses the operator F, it cannot distinguish
the structures Kl,{p},∅ and Kl,∅,{p}. Otherwise, since Kl,{p},∅,Kl,∅,{p}, and Kl,∅,∅ coincide
on the first l states, ϕ′ has to use at least l operators X. Since |ϕ′| ≤ l + 1, it cannot use a
negation. Thus ϕ′ does not use F,G,¬, and neither does ϕ. ◀

In fact, a CTL-formula ϕ ∈ CTL({p},Ut, ∅,Bl, 0) of size at most l + 1 accepting Kl,{p},∅
and rejecting Kl,∅,{p},Kl,∅,∅ necessarily uses exactly l operators X followed by the proposition
p. Such a formula is therefore entirely defined by the X operators before which it uses the
∃ quantifier. This suggests the definition below of the CTL-formula ϕ(l,H) induced by a
subset H ⊆ [1, . . . , l].

▶ Definition 12. For all H ⊆ [1, . . . , l], we let ϕ(l,H) ∈ CTL({p},Ut, ∅,Bl, 0) denote the CTL-
formula defined by ϕ(l,H) := Q1 X · · ·Ql X p where, for all 1 ≤ i ≤ l, we have Qi ∈ {∃, ∀}
and Qi = ∃ if and only if i ∈ H.

For 1 ≤ i ≤ l + 1, we let ϕi(l,H) := Qi X . . . Ql X p (with ϕl+1(l,H) := p).

Let us now turn toward Step b. We define a structure Kl
∃>k with k + 2 different levels,

where: the single starting state q0,1 is at the bottommost level; the proposition p only labels
the state qwin at the topmost level; and every state of the bottom k+ 1 levels has a successor
at the same level and one level higher. That way, going from q0,1 to qwin is equivalent to
leveling up k + 1 times. Furthermore, the top most level can be reached in at most l. An
example is depicted in Figure 2. This structure satisfies the lemma below.

▶ Lemma 13. For all H ⊆ [1, . . . , l], we have Kl
∃>k |= ϕ(l,H) if and only if |H| > k.

STACS 2025

19:12 Learning LTL, CTL and ATL Formulas

q1

∅
q2

∅
q3

∅
q4

∅
q5

∅
q6

∅

qwin
{p}

Figure 3 The Kripke structure K5,{2,5}.

Consider now Step c. For C ⊆ [1, . . . , l], we define the Kripke structure K(l, C) with
{q1, . . . , ql, ql+1, q

win} as set of states where qwin is the only state labeled with p; and for
all 1 ≤ j ≤ l, qj branches to qj+1 and, if (and only if) j ∈ C, qj also branches to qwin, as
exemplified in Figure 3. Such structures satisfy the lemma below.

▶ Lemma 14. For all C,H ⊆ [1, . . . , l], we have K(l,C) |= ϕ(l,H) if and only if C ∩H ̸= ∅.

Proof sketch. We can show by induction on l + 1 ≥ j ≥ 1 the property P(j): qj |= ϕj(l,H)
if and only if H ∩ [j, . . . , l] ∩ C ̸= ∅. The lemma is then given by P(1). ◀

We can finally define the reduction that we consider. We let InCTL := ({p},P,N , B), with
B := l + 1, P := {Kl,{p},∅,Ki | 1 ≤ i ≤ n} and N := {Kl,∅,∅,Kl,∅,{p},K

l
∃>k}, be an input of

the decision problem CTLLearn(Ut, ∅,Bl, 0). By Lemmas 11, 13, 14, InCTL is a positive instance
of the decision problem CTLLearn(Ut, ∅,Bl, 0) if and only if (l, C, k) is a positive instance of
the decision problem Hit. Theorem 10 follows (in the case n = 0).

Assume that X /∈ Ut. In that case, the CTL learning problem is now in NL.

▶ Theorem 15. For all sets of operators Ut ⊆ {F,G,¬}, Bl ⊆ Oplg
Bin, and bounds n ∈ N, the

decision problem CTLLearn(Ut, ∅,Bl, n) is in NL.

Toward Step A, a crucial observation is that using the operators F or G twice in a row is
useless. This is stated in the lemma below in the context of ATL-formula because this lemma
will be used again in the next subsection.

▶ Lemma 16. Let I ⊆ J ⊆ N, and ϕ be an ATL-formula. We have:

⟨⟨J⟩⟩ F ϕ ≡ ⟨⟨I⟩⟩ F⟨⟨J⟩⟩ F ϕ ≡ ⟨⟨J⟩⟩ F⟨⟨I⟩⟩ F ϕ ⟨⟨I⟩⟩ G ϕ ≡ ⟨⟨I⟩⟩ G⟨⟨J⟩⟩ G ϕ ≡ ⟨⟨J⟩⟩ G⟨⟨I⟩⟩ G ϕ

Proof sketch. We argue the result for F, the case of G is dual. We have ⟨⟨J⟩⟩ Fϕ =⇒
⟨⟨I⟩⟩ F⟨⟨J⟩⟩ F by definition of F. Furthermore, if a state q satisfies ⟨⟨I⟩⟩ F⟨⟨J⟩⟩ Fϕ then there
is a strategy sI for the coalition I such that eventually a state satisfying ⟨⟨J⟩⟩ Fϕ is surely
reached. For all such states q, we consider a strategy sq

J for the coalition J ensuring to
eventually visit a state satisfying ϕ. Then, consider a strategy s′

J for the coalition J that:
mimics sI (which is possible since I ⊆ J) until a state q satisfying ⟨⟨J⟩⟩ Fϕ is reached, and
then switches to the strategy sq

J . That strategy ensures eventually reaching a state satisfying
ϕ. Therefore, ⟨⟨I⟩⟩ F⟨⟨J⟩⟩ Fϕ =⇒ ⟨⟨J⟩⟩ Fϕ. This is similar for ⟨⟨J⟩⟩ F⟨⟨I⟩⟩ Fϕ. ◀

From this, we can actually deduce (this is not direct) that there is a bound M ∈
N such that, for any set of propositions Prop and for all Ut ⊆ {F,G,¬}, given any
CTL(Prop,Ut, ∅,Bl, 0)-formula ϕ, there is an equivalent CTL(Prop,Ut, ∅,Bl, 0)-formula ϕ′,
with |ϕ′| ≤ M . Thus, the number of CTL-formulas to consider is linear in |Prop|. As for
Step B, consider any such formula ϕ. Since the number of quantifiers it uses is bounded by
M and NL = coNL, we deduce that checking that it satisfies a Kripke structure can be done
in NL.

B. Bordais, D. Neider, and R. Roy 19:13

q1,24

∅
q1,23

∅
q1,22

∅
q1,21

∅
qwin

{p}

Figure 4 The turn-based structure T4:1,2.

qwin
{p}

q
{p}

qlose

∅

Figure 5 On the left Tp, on the right Tno 2 G.

Proof of NL-hardness. In Table 1, we do not state only that CTL learning without the
operator X is in NL, but also that it is NL-hard. Proving this result is actually straightforward.
We exhibit a reduction from the problem of reachability in a graph (which is NL-complete [23]).
Given an input (G, s, t) of that problem, with G a graph, s the source state and t the target
state, we define a positive Kripke structure K that is obtained from G by making s its only
initial state, and t the only state labeled by the proposition p. Additionally, we consider
B := 2 as the bound, and with an additional structure, we ensure that if there is a separating
formula, then the formula ϕ := ∃ F p is separating.

4.5 ATL learning
We have seen that CTL learning with the operator X is NP-hard, which implies that it is
also the case for ATL learning. Here, we consider the case of ATL learning without the
operator X. First, let us informally explain why the NP-hardness reduction that we have
described above for CTL cannot possibly work without the operator X. A central aspect
of the proof of Lemma 14 is to be able to associate a specific operator in a prospective
formula with a specific state in a Kripke structure. That is intrinsically not possible with the
operator F since this operator looks at arbitrarily distant horizons. At least, this is true with
CTL-formulas interpreted on Kripke structures. However, with ATL-formulas interpreted on
turn-based structures, it is possible to “block the horizon” of F operators. Indeed, consider
the structure of Figure 4, where blue lozenge-shaped states are Agent-1 states, and red
square-shaped states are Agent-2’s. Here, one can see that q1,2

2 ̸|= ⟨⟨1⟩⟩ F p because Agent 2
can enforce to loop on the Agent-2 state q1,2

1 and not see the state qwin, labeled by p.
These kinds of turn-based games will be extensively used in the following. In all generality,

there are defined as follows: given a pair of agents i ̸= j and l ∈ N, in the turn-based structure
Tl:i,j , there are l + 1 self-looping states, alternatively belonging to Agents i and j, that can
get closer and closer to the self-looping sink qwin, the only state labeled by p. In fact, such
structures are linked to alternating-formulas, defined below.

▶ Definition 17. An ATL-formula is positive if it does not use any negation. For a pair of
agents i ̸= j and l ∈ N, a positive ATL-formula ϕ is (i, j)-free if it does not use an operator
⟨⟨A⟩⟩ F with i, j ∈ A. It is (i, j, l)-alternating if it is (i, j)-free and if there are at least l
alternating occurrences of operators ⟨⟨Ai⟩⟩ F with i ∈ Ai and ⟨⟨Aj⟩⟩ F with j ∈ Aj.

▶ Lemma 18. Consider two agents i ̸= j, l ∈ N, and a positive ATL-formula ϕ that is
(i, j)-free. The formula ϕ accepts the structure Tl:i,j if and only if it is (i, j, l)-alternating.

ATL2 learning with {F, G} ⊆ Ut. Here, all the turn-based structures that we consider
use the set of agents Ag = {1, 2}. The goal is to show the theorem below.

▶ Theorem 19. For all sets Ut ⊆ OpUn, Bl ⊆ Oplg
Bin, and bound n ∈ N, if {F,G} ⊆ Ut and

X /∈ Ut, then the decision problem ATL2
Learn(Ut, ∅,Bl, n) is NP-hard.

STACS 2025

19:14 Learning LTL, CTL and ATL Formulas

qG4

∅
qG3

∅

qG2

∅
qG1

∅

qwin
{p}

qlose
∅

Figure 6 The structure Tno 1 G≥2.

q11
∅

q21
∅

q12
∅

q22
∅

qlose

∅

q1,22

∅
q1,21

∅
qwin

{p}
qlose

∅
qTest1

∅

Figure 7 The structure T2,{1},2.

In the following, to ease the notations, the strategic operators ⟨⟨∅⟩⟩, ⟨⟨{1}⟩⟩, ⟨⟨{2}⟩⟩, ⟨⟨{1, 2}⟩⟩
will simply be denoted ∅, 1, 2 and 1, 2 respectively. Consider an instance (l, C, k) of the
hitting set problem. We follow the recipe of Subsection 4.2. Here, we want separating
formulas to be promising, i.e. to only use the operators 1 F, 2 F and 1 G. To this end, all the
structures we use are self-looping, thus making the operators ∅ F and 1, 2 G useless.

▶ Lemma 20. For all ATL-formulas ϕ and self-looping states q, we have: q |=
ϕ if and only if q |= ∅ Fϕ if and only if q |= 1, 2 Gϕ

Proof. Since q is self-looping the coalition of agents {1, 2} has a strategy s such that
Out(q, s) = {qω}. The lemma follows from the definition of the operators F and G. ◀

We also consider the two structures Tp, Tno 2 G, of Figure 5 satisfying the lemma below.

▶ Lemma 21. For all ATL-formulas ϕ ∈ ATL({p},Ut, ∅,Bl, 0) accepting Tp, Tno 2 G and
rejecting T2l+1:1,2, there is a promising formula ϕ′ ∈ ATL({p},Ut, ∅,Bl, 0) with |ϕ′| ≤ |ϕ| that
is equivalent to ϕ on self-looping structures.

Proof sketch. Consider an ATL-formula ϕ′ equivalent to ϕ with |ϕ′| ≤ |ϕ| and with at most
one negation occurring before the proposition p. Since ϕ′ accepts Tp, it follows that it is
positive. By Lemma 20, we can remove the operators 1, 2 G and ∅ F from ϕ′. Furthermore: ϕ′

cannot use ∅ G, 2 G, since it accepts Tno 2 G, and it cannot use 1, 2 F since it rejects T2l+1:1,2.
It is therefore promising. ◀

We will also consider T2l:1,2 as a positive structure, thus allowing us to focus on (1, 2, 2l)-
alternating formulas (recall Lemma 18). Then, we want to associate to a subset H ⊆ [1, . . . , l]
a promising (1, 2, 2l)-alternating ATL-formula. To get an intuition, let us consider the turn-
based structure Tno 1 G≥t for t = 2 of Figure 6. This structure Tno 1 G≥t is analogous to the
structure T2t:1,2 except that all Agent-2 states have an additional successor: the state qlose

that does not satisfy any positive formula. Back to the structure of Figure 6, because Agent 2
owns the states qG

3 , q
G
1 , these states do not accept any positive ATL-formula of the shape

1 Gϕ. Therefore, for all q ∈ {qG
4 , q

G
2 } and positive ATL-formulas ϕ, we have q |= 1 F 1 G 2 Fϕ

if and only if q |= ϕ. This actually implies that a (1, 2, 2l)-alternating formula ϕ accepts

B. Bordais, D. Neider, and R. Roy 19:15

Tno 1 G≥2 if and only if the sequence of operators 1 F 2 F (without 1 G in between) occurs at
least twice in ϕ (to go from qG

4 to qG
2 and then from qG

2 to qwin). In fact, we consider formulas
that only use 1 G operators after 1 F and before 2 F, as defined below. Such formulas satisfy
the lemma that follows.

▶ Definition 22. For all H ⊆ [1, . . . , l], we let ϕ(l,H, 2) ∈ ATL2({p},Ut, ∅,Bl, 0) denote the
ATL-formula defined by: ϕ(l,H, 2) := 1 FQ12 F · · · 1 FQl2 F p where, for all 1 ≤ i ≤ l, we
have Qi ∈ {ϵ, 1 G} and Qi = 1 G iff i /∈ H.

For all 1 ≤ i ≤ l+1, we let ϕi(l,H, 2) := 1 FQi2 F · · · 1 FQl2 F p (with ϕl+1(l,H, 2) := p).

▶ Lemma 23. A promising (1, 2, 2l)-alternating formula ϕ with |ϕ| ≤ 3l + 1 − k rejects
Tno 1 G≥k+1 if and only if ϕ = ϕ(l,H, 2) for some H ⊆ [1, . . . , l] such that |H| = k.

Proof sketch. Since ϕ is (1, 2, 2l)-alternating, it uses at least l operators 1 F and 2 F. Thus,
it can use at most l−k operators 1 G. In addition, ϕ accepts Tno 1 G≥k+1 iff there are at least
k + 1 occurrences of the sequence 1 F 2 F in ϕ. Thus, ϕ uses each l − k remaining operators
1 G between a different pair of successive 1 F, 2 F iff it rejects Tno 1 G≥k+1. ◀

With Tp, Tno 2 G, T2l:1,2 as positive structures and T2l+1:1,2, Tno 1 G≥k+1 as negative struc-
tures, we have achieved both Steps a and b. Let us turn to Step c. For all C ⊆ [1, . . . , l],
we define a turn-based structure Tl,C,2. An example is depicted in Figure 7 for l = 2. The
structure Tl,C,2 features a sequence of states q1

1 , q
2
1 , . . . , q

1
l , q

2
l alternating between Agent-1

and Agent-2 states ending in a self-looping sink qlose not labeled by p. However, the Agent-1
states q1

i for which i ∈ C have a “testing state” qTest
i as successor. That state is self-looping,

and may branch to the self-looping sink qlose or to the structure T2(l−i):1,2. That state is such
that qTest

i |= Qi2 Fϕi+1(l,H, 2) iff Qi = ϵ (iff i ∈ H). Furthermore, note that it is useless
to “wait” at the state q1

i before branching to qTest
i . Indeed, if for instance Qi = 1 G but

Qi+1 = ϵ, then it may seem that qTest
1 |= φ′, for φ′ := Qi+12 Fϕi+2(l,H, 2) and therefore

q1
i |= ϕi(l,H, 2) = 1 FQi2 F 1 Fφ′. However, it is not the case because we do not have
qTest

i |= φ′, since ϕi+2(l,H, 2) is not (1, 2, 2(l − i))-alternating, and thus it does not satisfy
the structure T2(l−i):1,2. Overall, we have the lemma below.

▶ Lemma 24. For all C,H ⊆ [1, . . . , l], we have T(l,C) |= ϕ(l,H, 2) if and only if C ∩H ̸= ∅.

We have achieved Step c. Then, we let InATL(2) := ({p},P,N , B) be an input of the
decision problem ATL2

Learn(Ut, ∅,Bl, 0) where P := {Tp, Tno 2 G, T2l:1,2, T(l,Ci,2) | 1 ≤ i ≤ n},
N := {T2l+1:1,2, Tno 1 G≥k+1}, and B := 3l + 1 − k. By Lemmas 21, 23 and 24, InATL(2) is a
positive instance of ATL2

Learn(Ut, ∅,Bl, 0) iff (l, C, k) is a positive instance of Hit.

ATL2 learning with Ut = {F} or Ut = {G}. The ATL2 learning problem is now in P.

▶ Theorem 25. For all sets of operators Ut ∈ {{F}, {G}}, Bl ⊆ Oplg
Bin, and bounds n ∈ N,

the decision problem ATL2
Learn(Ut, ∅,Bl, n) is in P.

We focus on the case Ut = {F}, the other is analogous. Towards Step A, consider a formula
ϕ ∈ ATL2(Prop, {F}, ∅,Bl, 0) and the only proposition p ∈ Prop occurring in ϕ. By Lemma 16,
we can make the following observations: 1) If the operator 1, 2 F occurs in ϕ, then ϕ ≡ 1, 2 F p;
2) Otherwise, if the only operator occurring in ϕ is ∅ F then ϕ ≡ ∅ F p; 3) Otherwise, ϕ is
equivalent to a formula ϕ′ alternating between the operators 1 F and 2 F, with |ϕ′| ≤ |ϕ|.
These observations suggest the definition below, which satisfies the lemma that follows.

STACS 2025

19:16 Learning LTL, CTL and ATL Formulas

▶ Definition 26. For a set of propositions Prop, we define the set ATL2
F(Prop) := {Qt ·

p | p ∈ Prop, Qt ∈ QuantF
Alt} where QuantF

Alt := {ϵ, ∅ F, 1, 2 F, (1 F ·2 F)∗, (1 F ·2 F)∗ ·
1 F, (2 F ·1 F)∗, (2 F ·1 F)∗ · 2 F}.

▶ Lemma 27. For a set of propositions Prop, and ϕ ∈ ATL2(Prop, {F}, ∅,Bl, 0), there is an
ATL-formula ϕ′ ∈ ATL2

F(Prop) such that ϕ ≡ ϕ′ and |ϕ′| ≤ |ϕ|.

This concludes Step A since the number of formulas of size at most B in ATL2
F(Prop) is

polynomial in B and |Prop|. As for Step B, in this case it is trivial since checking that an
ATL-formula satisfies a structure can always be done in polynomial time.

Proof of P-hardness. In Table 1, we additionally state only that ATL2 learning with
Ut ∈ {{F}, {G}} is P-hard. The proof of this fact is actually very similar to the proof that
CTL learning without the operator X is NL-hard, except that the reduction is made from
the problem of reachability in a turn-based game (which is P-complete [31]).

ATL3 learning with Ut ∈ {{F}, {G}}. Let us consider ATL learning with one more agent,
i.e. ATL3 learning, still with Ut ∈ {{F}, {G}}. The turn-based structures that we consider
now use the set of agents Ag = {1, 2, 3}. The goal is to show the theorem below.

▶ Theorem 28. For all sets Ut ∈ {{F}, {G}}, Bl ⊆ Oplg
Bin, and bound n ∈ N, the decision

problem ATL3
Learn(Ut, ∅,Bl, n) is NP-hard.

We focus on the case Ut = {F} (the case Ut = {G} is analogous since the operators F and
G have a dual behavior). Once again, let us consider an instance (l, C, k) of the problem Hit.
We start right away by defining the ATL3-formula associated to a subset H ⊆ [1, . . . , l].

▶ Definition 29. For H ⊆ [1, . . . , l], we let ϕ(l,H, 3) denote the ATL3-formula defined by
ϕ(l,H, 3) := 1 F⟨⟨A1⟩⟩ F · · · 1 F⟨⟨Al⟩⟩ F p where, for all 1 ≤ i ≤ l, we have Ai ∈ {{2}, {2, 3}}
and Ai = {2, 3} F if and only if i ∈ H.

For 1 ≤ i ≤ l+ 1, we let ϕi(l,H, 3) := 1 F⟨⟨Ai⟩⟩ F · · · 1 F⟨⟨Al⟩⟩ F p (with ϕl+1(l,H, 3) = p).

Toward Step a, we define T2l+1:1,2, T2(k+1):1,3 as negative structures, thus ensuring that a
separating formula does not use an operator ⟨⟨A⟩⟩ F with 1, 2 ∈ A, or 1, 3 ∈ A. We also define
T2l:1,2 as a positive structure with the bound B := 2l + 1. That way, a separating formula is
necessarily (1, 2, 2l)-alternating and only uses the operators 1 F, 2 F, and 2, 3 F.

▶ Lemma 30. If a formula ϕ ∈ ATL3({{p}, {F}, ∅,Bl, n) with |ϕ| ≤ 2l+ 1 accepts T2l:1,2 and
rejects T2l+1:1,2, T2(k+1):1,3, then there is some H ⊆ [1, . . . , l] such that ϕ = ϕ(l,H, 3).

Note that, if |H| ≥ k + 1, then ϕ(l,H, 3) is (1, 3, 2(k + 1))-alternating. Therefore, since
T2(k+1):1,3 is a negative structure, if ϕ(l,H, 3) is separating, then |H| ≤ k, i.e. we have
also achieved Step b. Let us now turn to Step c. For all C ⊆ [1, . . . , l], we define the
structure Tl,C,3. An example is given in Figure 8 with l = 3. This structure Tl,C,3 features a
sequence of states q1

1 , q
2
1 , . . . , q

1
l , q

2
l alternating between Agent-1 and Agent-2 states ending

in a self-looping sink qlose. However, the Agent-1 states q1
i for which i ∈ C have an Agent-3

“testing state” qTest
i as successor. That state is self-looping and also branches to the structure

T(l−i):1,2. Note that, given r ≥ i+ 1, the sub-formula ϕr(l,H, 3) is (1, 2, l− r+ 1)-alternating,
and therefore satisfies the structure T(l−i):1,2, iff r = i+ 1. Thus, since qTest

i is an Agent-3
state, qTest

i |= ⟨⟨Ai⟩⟩ Fϕi+1(l,H, 3) iff 3 ∈ Ai iff i ∈ H. Thus, we have the following lemma.

▶ Lemma 31. For all C,H ⊆ [1, . . . , l], we have T(l,C,3) |= ϕ(l,H, 3) if and only if C∩H ̸= ∅.

B. Bordais, D. Neider, and R. Roy 19:17

q11
∅

q21
∅

q12
∅

q22
∅

q13
∅

q23
∅

qlose

∅

q1,22

∅

q1,21

∅
qwin

{p}

qTest2

∅

Figure 8 The turn-based structure T3,{2},3.

This concludes Step c. Overall, we let InATL(3),F := ({p},P,N , B) be an input of
the decision problem ATL3

Learn({F}, ∅,Bl, 0) where P := {T2l:1,2, T(l,Ci,3) | 1 ≤ i ≤ n},
N := {T2l+1:1,2, T2(k+1):1,3}, and B := 2l + 1. We have that InATL(3),F is a positive instance
of ATL3

Learn({F}, ∅,Bl, 0) if and only if (l, C, k) is a positive instance of Hit.

5 Future Work

Within our setting, we have covered many cases, as can be seen in Table 1. That is why the
complete version of this work [8] is already quite long. However, there are still some cases that
we have not tackled. First, there is the case of ATL2 learning with Ut ∈ {{F,¬}, {G,¬}}. We
believe that it behaves like the case F,G ∈ Ut, but the proofs would entail many additional
technical details, since replacing F with ¬ G ¬ increases the size of the formulas.

More importantly, when considering a bounded amount of binary operators, we have not
allowed binary temporal operators (U,R,W,M). Doing so would enhance the expressivity
of the fragment that we consider, and we conjecture that we would obtain the same result as
in this paper, with proofs that should be only moderately more involved.

On a more high level perspective, in this paper we have focused solely on solving exactly
the learning problems and although we have found some relevant tractable cases, many are
untractable. A promising research direction would be to look for tractable approximation
algorithms, similarly to what is done in [27].

References
1 Rajeev Alur, Thomas A. Henzinger, and Orna Kupferman. Alternating-time temporal logic.

J. ACM, 49(5):672–713, September 2002. doi:10.1145/585265.585270.
2 Dana Angluin. On the complexity of minimum inference of regular sets. Inf. Control.,

39(3):337–350, 1978. doi:10.1016/S0019-9958(78)90683-6.
3 M. Fareed Arif, Daniel Larraz, Mitziu Echeverria, Andrew Reynolds, Omar Chowdhury, and

Cesare Tinelli. SYSLITE: syntax-guided synthesis of PLTL formulas from finite traces. In
FMCAD, pages 93–103. IEEE, 2020. doi:10.34727/2020/ISBN.978-3-85448-042-6_16.

4 Ayca Balkan, Moshe Y. Vardi, and Paulo Tabuada. Mode-target games: Reactive synthesis
for control applications. IEEE Trans. Autom. Control., 63(1):196–202, 2018. doi:10.1109/
TAC.2017.2722960.

5 Elwyn R. Berlekamp, Robert J. McEliece, and Henk C. A. van Tilborg. On the inherent
intractability of certain coding problems (corresp.). IEEE Trans. Inf. Theory, 24(3):384–386,
1978. doi:10.1109/TIT.1978.1055873.

6 Dines Bjørner and Klaus Havelund. 40 years of formal methods - some obstacles and some
possibilities? In FM, volume 8442 of Lecture Notes in Computer Science, pages 42–61. Springer,
2014. doi:10.1007/978-3-319-06410-9_4.

STACS 2025

https://doi.org/10.1145/585265.585270
https://doi.org/10.1016/S0019-9958(78)90683-6
https://doi.org/10.34727/2020/ISBN.978-3-85448-042-6_16
https://doi.org/10.1109/TAC.2017.2722960
https://doi.org/10.1109/TAC.2017.2722960
https://doi.org/10.1109/TIT.1978.1055873
https://doi.org/10.1007/978-3-319-06410-9_4

19:18 Learning LTL, CTL and ATL Formulas

7 Giuseppe Bombara, Cristian-Ioan Vasile, Francisco Penedo, Hirotoshi Yasuoka, and Calin
Belta. A decision tree approach to data classification using signal temporal logic. In Proceedings
of the 19th International Conference on Hybrid Systems: Computation and Control, HSCC
’16, pages 1–10, New York, NY, USA, 2016. Association for Computing Machinery. doi:
10.1145/2883817.2883843.

8 Benjamin Bordais, Daniel Neider, and Rajarshi Roy. The complexity of learning temporal
properties. CoRR, abs/2408.04486, 2024. doi:10.48550/arXiv.2408.04486.

9 Benjamin Bordais, Daniel Neider, and Rajarshi Roy. Learning branching-time properties
in CTL and ATL via constraint solving. In André Platzer, Kristin Yvonne Rozier, Matteo
Pradella, and Matteo Rossi, editors, Formal Methods - 26th International Symposium, FM
2024, Milan, Italy, September 9-13, 2024, Proceedings, Part I, volume 14933 of Lecture Notes
in Computer Science, pages 304–323. Springer, 2024. doi:10.1007/978-3-031-71162-6_16.

10 Alberto Camacho, Rodrigo Toro Icarte, Toryn Q. Klassen, Richard Anthony Valenzano, and
Sheila A. McIlraith. LTL and beyond: Formal languages for reward function specification in
reinforcement learning. In Sarit Kraus, editor, Proceedings of the Twenty-Eighth International
Joint Conference on Artificial Intelligence, IJCAI 2019, Macao, China, August 10-16, 2019,
pages 6065–6073. ijcai.org, 2019. doi:10.24963/IJCAI.2019/840.

11 Alberto Camacho and Sheila A. McIlraith. Learning interpretable models expressed in linear
temporal logic. In ICAPS, pages 621–630. AAAI Press, 2019. URL: https://ojs.aaai.org/
index.php/ICAPS/article/view/3529.

12 Alberto Camacho, Eleni Triantafillou, Christian J. Muise, Jorge A. Baier, and Sheila A.
McIlraith. Non-deterministic planning with temporally extended goals: LTL over finite and
infinite traces. In AAAI, pages 3716–3724. AAAI Press, 2017. doi:10.1609/AAAI.V31I1.
11058.

13 Alessio Cecconi, Giuseppe De Giacomo, Claudio Di Ciccio, Fabrizio Maria Maggi, and Jan
Mendling. Measuring the interestingness of temporal logic behavioral specifications in process
mining. Inf. Syst., 107:101920, 2022. doi:10.1016/J.IS.2021.101920.

14 William Chan. Temporal-logic queries. In CAV, volume 1855 of Lecture Notes in Computer
Science, pages 450–463. Springer, 2000.

15 Edmund M. Clarke and E. Allen Emerson. Design and synthesis of synchronization skeletons
using branching-time temporal logic. In Dexter Kozen, editor, Logics of Programs, Workshop,
Yorktown Heights, New York, USA, May 1981, volume 131 of Lecture Notes in Computer
Science, pages 52–71. Springer, 1981. doi:10.1007/BFB0025774.

16 Rüdiger Ehlers, Ivan Gavran, and Daniel Neider. Learning properties in LTL ∩ ACTL from
positive examples only. In 2020 Formal Methods in Computer Aided Design, FMCAD 2020,
Haifa, Israel, September 21-24, 2020, pages 104–112. IEEE, 2020. doi:10.34727/2020/ISBN.
978-3-85448-042-6_17.

17 Georgios E. Fainekos, Hadas Kress-Gazit, and George J. Pappas. Temporal logic motion
planning for mobile robots. In ICRA, pages 2020–2025. IEEE, 2005. doi:10.1109/ROBOT.
2005.1570410.

18 Nathanaël Fijalkow and Guillaume Lagarde. The complexity of learning linear temporal formu-
las from examples. In Jane Chandlee, Rémi Eyraud, Jeff Heinz, Adam Jardine, and Menno van
Zaanen, editors, Proceedings of the 15th International Conference on Grammatical Inference, 23-
27 August 2021, Virtual Event, volume 153 of Proceedings of Machine Learning Research, pages
237–250. PMLR, 2021. URL: https://proceedings.mlr.press/v153/fijalkow21a.html.

19 Marie Fortin, Boris Konev, Vladislav Ryzhikov, Yury Savateev, Frank Wolter, and Michael
Zakharyaschev. Reverse engineering of temporal queries mediated by LTL ontologies. In
Proceedings of the Thirty-Second International Joint Conference on Artificial Intelligence,
IJCAI 2023, 19th-25th August 2023, Macao, SAR, China, pages 3230–3238. ijcai.org, 2023.
doi:10.24963/IJCAI.2023/360.

https://doi.org/10.1145/2883817.2883843
https://doi.org/10.1145/2883817.2883843
https://doi.org/10.48550/arXiv.2408.04486
https://doi.org/10.1007/978-3-031-71162-6_16
https://doi.org/10.24963/IJCAI.2019/840
https://ojs.aaai.org/index.php/ICAPS/article/view/3529
https://ojs.aaai.org/index.php/ICAPS/article/view/3529
https://doi.org/10.1609/AAAI.V31I1.11058
https://doi.org/10.1609/AAAI.V31I1.11058
https://doi.org/10.1016/J.IS.2021.101920
https://doi.org/10.1007/BFB0025774
https://doi.org/10.34727/2020/ISBN.978-3-85448-042-6_17
https://doi.org/10.34727/2020/ISBN.978-3-85448-042-6_17
https://doi.org/10.1109/ROBOT.2005.1570410
https://doi.org/10.1109/ROBOT.2005.1570410
https://proceedings.mlr.press/v153/fijalkow21a.html
https://doi.org/10.24963/IJCAI.2023/360

B. Bordais, D. Neider, and R. Roy 19:19

20 Jean-Raphaël Gaglione, Daniel Neider, Rajarshi Roy, Ufuk Topcu, and Zhe Xu. Maxsat-based
temporal logic inference from noisy data. Innov. Syst. Softw. Eng., 18(3):427–442, 2022.
doi:10.1007/S11334-022-00444-8.

21 E. Mark Gold. Complexity of automaton identification from given data. Inf. Control.,
37(3):302–320, 1978. doi:10.1016/S0019-9958(78)90562-4.

22 Antonio Ielo, Mark Law, Valeria Fionda, Francesco Ricca, Giuseppe De Giacomo, and
Alessandra Russo. Towards ilp-based ltlf passive learning. In Inductive Logic Programming:
32nd International Conference, ILP 2023, Bari, Italy, November 13–15, 2023, Proceedings,
pages 30–45, Berlin, Heidelberg, 2023. Springer-Verlag. doi:10.1007/978-3-031-49299-0_3.

23 Neil Immerman. Number of quantifiers is better than number of tape cells. J. Comput. Syst.
Sci., 22(3):384–406, 1981. doi:10.1016/0022-0000(81)90039-8.

24 Jean Christoph Jung, Vladislav Ryzhikov, Frank Wolter, and Michael Zakharyaschev. Extremal
separation problems for temporal instance queries. In Proceedings of the Thirty-Third Interna-
tional Joint Conference on Artificial Intelligence, IJCAI 2024, Jeju, South Korea, August 3-9,
2024, pages 3448–3456. ijcai.org, 2024. URL: https://www.ijcai.org/proceedings/2024/
382.

25 Xiao Li, Cristian Ioan Vasile, and Calin Belta. Reinforcement learning with temporal logic
rewards. In 2017 IEEE/RSJ International Conference on Intelligent Robots and Systems,
IROS 2017, Vancouver, BC, Canada, September 24-28, 2017, pages 3834–3839. IEEE, 2017.
doi:10.1109/IROS.2017.8206234.

26 Weilin Luo, Pingjia Liang, Jianfeng Du, Hai Wan, Bo Peng, and Delong Zhang. Bridging ltlf
inference to GNN inference for learning ltlf formulae. In AAAI, pages 9849–9857. AAAI Press,
2022. doi:10.1609/AAAI.V36I9.21221.

27 Corto Mascle, Nathanaël Fijalkow, and Guillaume Lagarde. Learning temporal formulas from
examples is hard. CoRR, abs/2312.16336, 2023. doi:10.48550/arXiv.2312.16336.

28 Sara Mohammadinejad, Jyotirmoy V. Deshmukh, Aniruddh Gopinath Puranic, Marcell
Vazquez-Chanlatte, and Alexandre Donzé. Interpretable classification of time-series data using
efficient enumerative techniques. In HSCC ’20: 23rd ACM International Conference on Hybrid
Systems: Computation and Control, Sydney, New South Wales, Australia, April 21-24, 2020,
pages 9:1–9:10. ACM, 2020. doi:10.1145/3365365.3382218.

29 Daniel Neider and Ivan Gavran. Learning linear temporal properties. In Nikolaj S. Bjørner
and Arie Gurfinkel, editors, 2018 Formal Methods in Computer Aided Design, FMCAD
2018, Austin, TX, USA, October 30 - November 2, 2018, pages 1–10. IEEE, 2018. doi:
10.23919/FMCAD.2018.8603016.

30 Daniel Neider and Rajarshi Roy. What Is Formal Verification Without Specifications? A
Survey on Mining LTL Specifications, pages 109–125. Springer Nature Switzerland, Cham,
2025. doi:10.1007/978-3-031-75778-5_6.

31 C.H. Papadimitriou. Computational Complexity. Theoretical computer science. Addison-Wesley,
1994. URL: https://books.google.de/books?id=JogZAQAAIAAJ.

32 Nir Piterman, Amir Pnueli, and Yaniv Sa’ar. Synthesis of reactive(1) designs. In E. Allen
Emerson and Kedar S. Namjoshi, editors, Verification, Model Checking, and Abstract Interpret-
ation, 7th International Conference, VMCAI 2006, Charleston, SC, USA, January 8-10, 2006,
Proceedings, volume 3855 of Lecture Notes in Computer Science, pages 364–380. Springer,
2006. doi:10.1007/11609773_24.

33 Amir Pnueli. The temporal logic of programs. In Proc. 18th Annu. Symp. Found. Computer
Sci., pages 46–57, 1977. doi:10.1109/SFCS.1977.32.

34 Adrien Pommellet, Daniel Stan, and Simon Scatton. Sat-based learning of computation
tree logic. In Christoph Benzmüller, Marijn J. H. Heule, and Renate A. Schmidt, editors,
Automated Reasoning - 12th International Joint Conference, IJCAR 2024, Nancy, France,
July 3-6, 2024, Proceedings, Part I, volume 14739 of Lecture Notes in Computer Science, pages
366–385. Springer, 2024. doi:10.1007/978-3-031-63498-7_22.

STACS 2025

https://doi.org/10.1007/S11334-022-00444-8
https://doi.org/10.1016/S0019-9958(78)90562-4
https://doi.org/10.1007/978-3-031-49299-0_3
https://doi.org/10.1016/0022-0000(81)90039-8
https://www.ijcai.org/proceedings/2024/382
https://www.ijcai.org/proceedings/2024/382
https://doi.org/10.1109/IROS.2017.8206234
https://doi.org/10.1609/AAAI.V36I9.21221
https://doi.org/10.48550/arXiv.2312.16336
https://doi.org/10.1145/3365365.3382218
https://doi.org/10.23919/FMCAD.2018.8603016
https://doi.org/10.23919/FMCAD.2018.8603016
https://doi.org/10.1007/978-3-031-75778-5_6
https://books.google.de/books?id=JogZAQAAIAAJ
https://doi.org/10.1007/11609773_24
https://doi.org/10.1109/SFCS.1977.32
https://doi.org/10.1007/978-3-031-63498-7_22

19:20 Learning LTL, CTL and ATL Formulas

35 Ritam Raha, Rajarshi Roy, Nathanaël Fijalkow, and Daniel Neider. Scalable anytime algorithms
for learning fragments of linear temporal logic. In Dana Fisman and Grigore Rosu, editors,
Tools and Algorithms for the Construction and Analysis of Systems, pages 263–280, Cham,
2022. Springer International Publishing. doi:10.1007/978-3-030-99524-9_14.

36 Ritam Raha, Rajarshi Roy, Nathanaël Fijalkow, Daniel Neider, and Guillermo A. Pérez.
Synthesizing efficiently monitorable formulas in metric temporal logic. In VMCAI (2), volume
14500 of Lecture Notes in Computer Science, pages 264–288. Springer, 2024. doi:10.1007/
978-3-031-50521-8_13.

37 Heinz Riener. Exact synthesis of LTL properties from traces. In FDL, pages 1–6. IEEE, 2019.
doi:10.1109/FDL.2019.8876900.

38 Rajarshi Roy, Dana Fisman, and Daniel Neider. Learning interpretable models in the property
specification language. In IJCAI, pages 2213–2219. ijcai.org, 2020. doi:10.24963/IJCAI.
2020/306.

39 Kristin Yvonne Rozier. Specification: The biggest bottleneck in formal methods and autonomy.
In VSTTE, volume 9971 of Lecture Notes in Computer Science, pages 8–26, 2016. doi:
10.1007/978-3-319-48869-1_2.

40 Dorsa Sadigh, Eric S. Kim, Samuel Coogan, S. Shankar Sastry, and Sanjit A. Seshia. A learning
based approach to control synthesis of markov decision processes for linear temporal logic
specifications. In 53rd IEEE Conference on Decision and Control, CDC 2014, Los Angeles, CA,
USA, December 15-17, 2014, pages 1091–1096. IEEE, 2014. doi:10.1109/CDC.2014.7039527.

41 Mojtaba Valizadeh, Nathanaël Fijalkow, and Martin Berger. LTL learning on gpus. In
Arie Gurfinkel and Vijay Ganesh, editors, Computer Aided Verification - 36th International
Conference, CAV 2024, Montreal, QC, Canada, July 24-27, 2024, Proceedings, Part III,
volume 14683 of Lecture Notes in Computer Science, pages 209–231. Springer, 2024. doi:
10.1007/978-3-031-65633-0_10.

42 Hai Wan, Pingjia Liang, Jianfeng Du, Weilin Luo, Rongzhen Ye, and Bo Peng. End-to-end
learning of ltlf formulae by faithful ltlf encoding. In AAAI, pages 9071–9079. AAAI Press,
2024. doi:10.1609/AAAI.V38I8.28757.

43 Andrzej Wasylkowski and Andreas Zeller. Mining temporal specifications from object usage.
Autom. Softw. Eng., 18(3-4):263–292, 2011. doi:10.1007/S10515-011-0084-1.

https://doi.org/10.1007/978-3-030-99524-9_14
https://doi.org/10.1007/978-3-031-50521-8_13
https://doi.org/10.1007/978-3-031-50521-8_13
https://doi.org/10.1109/FDL.2019.8876900
https://doi.org/10.24963/IJCAI.2020/306
https://doi.org/10.24963/IJCAI.2020/306
https://doi.org/10.1007/978-3-319-48869-1_2
https://doi.org/10.1007/978-3-319-48869-1_2
https://doi.org/10.1109/CDC.2014.7039527
https://doi.org/10.1007/978-3-031-65633-0_10
https://doi.org/10.1007/978-3-031-65633-0_10
https://doi.org/10.1609/AAAI.V38I8.28757
https://doi.org/10.1007/S10515-011-0084-1

On Cascades of Reset Automata
Roberto Borelli #

University of Udine, Italy

Luca Geatti # Ñ

University of Udine, Italy

Marco Montali # Ñ

Free University of Bozen-Bolzano, Italy

Angelo Montanari # Ñ

University of Udine, Italy

Abstract
The Krohn-Rhodes decomposition theorem is a pivotal result in automata theory. It introduces the
concept of cascade product, where two semiautomata, that is, automata devoid of initial and final
states, are combined in a feed-forward fashion. The theorem states that any semiautomaton can
be decomposed into a sequence of permutation-reset semiautomata. For the counter-free case, this
decomposition consists entirely of reset components with two states each. This decomposition has
significantly impacted recent research in various areas of computer science, including the identification
of a class of transformer encoders equivalent to star-free languages and the conversion of Linear
Temporal Logic formulas into past-only expressions (pastification).

The paper revisits the cascade product in the context of reset automata, thus considering each
component of the cascade as a language acceptor. First, we give regular expression counterparts of
cascades of reset automata. We then establish several expressiveness results, identifying hierarchies
of languages based on the restriction of the height (number of components) of the cascade or of the
number of states in each level. We also show that any cascade of reset automata can be transformed,
with a quadratic increase in height, into a cascade that only includes two-state components. Finally,
we show that some fundamental operations on cascades, like intersection, union, negation, and
concatenation with a symbol to the left, can be directly and efficiently computed by adding a
two-state component.

2012 ACM Subject Classification Theory of computation → Regular languages; Theory of compu-
tation → Automata extensions

Keywords and phrases Automata, Cascade products, Regular expressions, Krohn-Rhodes theory

Digital Object Identifier 10.4230/LIPIcs.STACS.2025.20

Funding Luca Geatti and Angelo Montanari acknowledge the support from the 2024 Italian INdAM-
GNCS project “Certificazione, monitoraggio, ed interpretabilità in sistemi di intelligenza artificiale”,
ref. no. CUP E53C23001670001 and the support from the Interconnected Nord-Est Innovation
Ecosystem (iNEST), which received funding from the European Union Next-GenerationEU (PIANO
NAZIONALE DI RIPRESA E RESILIENZA (PNRR) – MISSIONE 4 COMPONENTE 2, INVEST-
IMENTO 1.5 -– D.D. 1058 23/06/2022, ECS00000043). In addition, Marco Montali and Angelo
Montanari acknowledges the support from the MUR PNRR project FAIR - Future AI Research
(PE00000013) also funded by the European Union Next-GenerationEU.

Acknowledgements The authors would like to thank Alessio Mansutti for his valuable comments
during the preparation of this paper.

1 Introduction

The Krohn-Rhodes decomposition theorem is a fundamental result both in automata theory
and in semigroup algebra [12]. It relies on the concept of cascade product of two semiautomata,
i.e., automata devoid of initial and final states, and thus, ultimately, edge-labeled graphs.

© Roberto Borelli, Luca Geatti, Marco Montali, and Angelo Montanari;
licensed under Creative Commons License CC-BY 4.0

42nd International Symposium on Theoretical Aspects of Computer Science (STACS 2025).
Editors: Olaf Beyersdorff, Michał Pilipczuk, Elaine Pimentel, and Nguyễn Kim Thắng;
Article No. 20; pp. 20:1–20:22

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:borelli.roberto@spes.uniud.it
https://orcid.org/0000-0003-2586-8183
mailto:luca.geatti@uniud.it
https://users.dimi.uniud.it/~luca.geatti/
https://orcid.org/0000-0002-7125-787X
mailto:montali@inf.unibz.it
https://www.unibz.it/it/faculties/engineering/academic-staff/person/31326-marco-montali
https://orcid.org/0000-0002-8021-3430
mailto:angelo.montanari@uniud.it
https://users.dimi.uniud.it/~angelo.montanari/index.php
https://orcid.org/0000-0002-4322-769X
https://doi.org/10.4230/LIPIcs.STACS.2025.20
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

20:2 On Cascades of Reset Automata

In this setup, the first semiautomaton operates on an alphabet Σ, while the second one
reads symbols belonging to the Cartesian product of Σ and the set of states of the first
semiautomaton. The key feature of the cascade product, which extends the notion of direct
product, is that the second semiautomaton transitions from state s to state s′ by reading
the pair (σ, q) if and only if the input symbol is σ and the first semiautomaton is in state q.

The Krohn-Rhodes theorem states that any semiautomaton can be decomposed into
a cascade (i.e., a sequence of cascade products) of permutation-reset semiautomata.1 In
such semiautomata, each symbol of the alphabet induces a function on the set of states
that is either a permutation, i.e., a bijective function, or a reset, that is, there is a specific
state to which all other states are mapped into when reading that symbol. Crucially, if
the semiautomaton is counter-free, that is, it does not contain non-trivial cycles [18], the
Krohn-Rhodes theorem guarantees the existence of a decomposition that consists of reset
automata only, i.e., automata where all symbols induce reset functions (as described above)
or the identity function.

The Krohn-Rhodes theorem, in particular the decomposition of counter-free automata
into reset automata, had a significant impact on some meaningful problems of current
research in computer science. A notable example comes from Angluin et al. [1], who employ
the Krohn-Rhodes decomposition theorem to prove that Linear Temporal Logic (LTL [19])
is equivalent to transformer encoders with hard attention and strict future masking (see
also [13]). Specifically, they show how reset semiautomata can be encoded in B-RASP, a
minimal programming language that compiles into transformers. Similarly, studies such
as [21, 10, 11] utilized this theorem to analyze the sample complexity of cascades and the
expressiveness of Recurrent Neural Networks without circular dependencies. Another example
is provided by Maler [14, 15], who used the decomposition theorem to transform any formula
of LTL, interpreted over finite words, into an equivalent formula using only past operators
(see also [20]), a problem now known as pastification [2].

In this paper, we revisit the cascade product in the reset automata setting, i.e., language
acceptors whose underlying semiautomaton is a reset. We address various expressiveness
issues for cascade products by themselves and in relation to regular expressions. These
results represent a necessary step towards a more efficient exploitation of Krohn-Rhodes
decomposition in pastification, with the ultimate goal of lowering its current, triply exponential
upper bound, which is far away from the know, singly exponential lower bound.

The paper consists of three main parts. In the first part, we address the question:
given a cascade of reset automata, which is its corresponding regular expression? We begin
by focusing on cascades of height 1, proving that the language corresponding to a reset
automaton over the alphabet Σ is always of the form J ∪ (Σ∗ · R · I∗), for some I, R ⊆ Σ,
such that I ∩ R = ∅ and either J = I∗ or J = ∅. Then, we extend the analysis to cascades
of reset automata of arbitrary height. As a first step, we show that the last level can always
be transformed into a two-state automaton, and then, by exploiting such a result, we derive
the regular expression corresponding to a generic cascade of reset automata.

In the second part, we build on the previously obtained results and establish several
expressiveness results about cascades of reset automata. We structure the analysis into three
types of cascades:

(i) short cascades (whose height is bounded by 2),
(ii) narrow cascades (where each component has two states, but there is not a height

limitation), and
(iii) general cascades (with no limitations on the height or on the number of states per

level).

1 Formally, the decomposition is guaranteed to preserve a homomorphism from the cascade to the initial
semiautomaton.

R. Borelli, L. Geatti, M. Montali, and A. Montanari 20:3

As for short cascades, we prove that any language L over an alphabet Σ of cardinality k

that is definable by a reset cascade of height 2 can also be defined by one where the first
component has at most k + 1 states. Additionally, we show that increasing the number of
states in the first component results in a strict increase in expressiveness: there exists a
family of languages which are definable by a two-reset cascade whose first component has n

states, but are not definable if the first component is restricted to n − 1 states. Similarly, for
narrow cascades, we show that increasing the height results in an increase in expressiveness.
These two results – the increase in the number of states in the first component for short
cascades and the increase in height for narrow cascades – lead to two hierarchies (with
infinitely many levels) of languages that are not definable at previous levels. Finally, we show
that any general cascade can be transformed into one whose components have all 2 states,
with an increase in height of at most a quadratic factor (relative to the height of the original
cascade).

In the last part, we deal with closure properties of the languages recognized by reset
cascades, and show that some fundamental operations can be computed in an efficient
way. More precisely, we prove that the operations of intersection, union, negation, and
concatenation with Σ to the left (“next operation”) all require the addition of one component
with 2 states only.

The paper is structured as follows. Related work is discussed in Section 2. In Section 3,
we provide some background knowledge. In Section 4, we introduce the cascades of reset
automata, we state some basic results about them, and we provide a characterization of the
languages that they recognize in terms of regular expressions. In Section 5, we present some
expressiveness results for short, narrow, and general cascades of reset automata. Section 6
focus on closure properties and the efficient computation of some basic operations. Finally,
Section 7 provides an assessment of the work done, and it outlines some directions for future
research.

2 Related Work

The Krohn-Rhodes theorem and the cascade product turn out be quite useful in understanding
the structure and the expressiveness of finite-state systems, in particular in the context of
automata and neural networks, and their connection to logic. Various recent contributions
have leveraged this foundational theory to explore the expressiveness, modularity, and
learning potential of automata in such a context.

A pivotal contribution in this area is the work by Maler on the cascade decomposition of
semiautomata [14, 15]. It revisits the Eilenberg’s variant of the Krohn-Rhodes theorem [6]
and offers a constructive proof that any semiautomaton can be decomposed into a cascade
of elementary (permutation and reset) semiautomata. The paper introduces the holonomy
tree as a data structure to represent cascade decompositions and an algorithm to build such
a tree. Crucially, the algorithm carefully maps the permutations of the obtained cascade
product to non-trivial cycles of the starting semiautomaton: this guarantees that, whenever
the starting semiautomaton is counter-free, that is, devoid of non-trivial cycles, the generated
cascade decomposition only consists of reset components. An exponential bound on the size
of the cascade decomposition in terms of the size of the starting semiautomaton is given.
This algorithm can be used to actually translate counter-free automata to temporal logic.
More precisely, Maler shows how to translate any cascade product of reset semiautomata
into a pure past LTL formula, that is, a formula featuring only past temporal modalities.

STACS 2025

20:4 On Cascades of Reset Automata

Together with the transformation of the future fragment of LTL, interpreted over finite words,
into counter-free automata, this leads to a triply exponential upper bound to the problem of
transforming pure-future LTL over finite words into pure-past LTL (pastification problem).
Equivalently, in the case of LTL interpreted over infinite words, Maler shows how to use the
proposed algorithm to normalize every LTL formula by mapping it into one belonging to the
Reactivity class [16], at a cost of a triply exponential blowup. For both problems, that is,
pastification and normalization, the best known lower bounds are singly exponential [3, 17].

The Krohn-Rhodes theorem has also been applied to analyze the complexity of semigroups,
as shown in [9]. This study examines semigroups of upper triangular matrices over finite
fields and establishes that the Krohn-Rhodes complexity of these semigroups corresponds to
n − 1, where n is the matrix dimension. These results underline the deep connection between
the algebraic structure of semigroups and their matrix representations, providing a measure
of how intricate the cascade product representation needs to be for such semigroups.

In [8], the Krohn-Rhodes theorem is used to characterize piecewise testable and commutat-
ive languages. The authors define biased reset semiautomata, where the current state changes
at most once, and characterize cascades A ◦ B, where B is a biased reset semiautomaton.
Theorem 4.12 in Section 4 can be seen as a simplification and a generalization (to cascades
of unbounded height) of such a characterization. Finally, the authors propose the notion of
scope of a cascade, which is used to analyze the dot-depth of star-free languages.

In [21], Ronca builds on the Krohn-Rhodes theorem, proposing automata cascades as a
structured and modular framework to describe complex systems. The resulting framework
allows automata to be decomposed into components with specific functionalities, enabling
fine-grained control of their expressiveness. By focusing on component-based decomposition,
the study demonstrates that the sample complexity of learning automata cascades is linear in
the number of components and their individual complexities, up to logarithmic factors. This
contrasts with traditional state-centric perspectives, where sample complexity scales with the
number of states, often limiting the feasibility of learning large systems. The relationships
between the cascade product and neural networks are investigated in [10]. Recurrent Neural
Cascades (RNCs) are a class of networks with acyclic connections, which naturally align with
the cascade product of automata. By exploiting the Krohn-Rhodes theorem, the authors
prove that RNCs capture star-free regular languages.

The Krohn-Rhodes theorem also underpins the exploration of transformer models in [13].
While transformers lack recurrence, the paper demonstrates that their layered architecture
can simulate the cascade decomposition of finite automata. Leveraging Krohn-Rhodes
theory, the authors show that shallow transformers can hierarchically approximate automata
computations, enabling polynomial-sized and constant-depth shortcuts for specific automata.

In [1], Angluin et al. draws direct parallels between the expressive power of masked
hard-attention transformers and star-free regular languages. These models, constrained
by strict future masking, are shown to be equivalent to LTL and counter-free automata –
both closely tied to the Krohn-Rhodes cascade framework. The study underscores how the
structured limitations of these transformers, akin to a cascade decomposition, yield expressive
yet computationally efficient models.

Together, these contributions extend the applicability of the Krohn-Rhodes theory to
neural networks, transformers, and beyond, demonstrating the versatiliy of the cascade
framework as a powerful principle in computation.

R. Borelli, L. Geatti, M. Montali, and A. Montanari 20:5

3 Background

A semiautomaton A is a tuple (Σ, Q, δ) such that:
(i) Σ is a (finite) alphabet;
(ii) Q is a set of states;
(iii) δ : Q × Σ → Q is a transition function.

An automaton A = (Σ, Q, δ, q0, F) is a semiautomaton extended with an initial state q0 ∈ Q

and a set F ⊆ Q of final states. With δ∗ we denote the Kleene’s closure of δ. We say that A
is two-state iff |Q| = 2.

Given an automaton A = (Σ, Q, δ, q0, F) and a (finite) word σ := ⟨σ0, . . . , σn⟩ ∈ Σ∗, the
run τ ∈ Q+ induced by σ is a sequence ⟨q0, q1, . . . , qn+1⟩ such that δ(qi, σi) = qi+1, for all
0 ≤ i ≤ n. We say that τ is accepting iff qn+1 ∈ F . A word σ ∈ Σ∗ is accepted by A iff
the run induced by σ is accepting. We define the language of A, denoted by L(A), as the
set of accepted words. Given a state q ∈ Q, let Lq(A) be the set of words inducing a run
τ := ⟨q0, . . . , qm⟩ with qm = q. The classic direct product of automata is defined as follows.

▶ Definition 3.1 (Direct product of automata). Let A = (Σ, Q, δ, q0, F) and A′ = (Σ, Q′, δ′, q′
0,

F ′) be two automata. The direct product of A and A′, denoted by A × A′, is the automaton
(Σ, Q × Q′, δ′′, (q0, q′

0), F × F ′) such that, for all (q, q′) ∈ Q × Q′ and for all a ∈ Σ, it holds
that δ′′((q, q′), a) = (δ(q, a), δ′(q′, a)).

The cascade product of semiautomata is defined as follows.

▶ Definition 3.2 (Cascade Product of semiautomata [15, 22]). Let Σ be a finite alphabet and
let A = (Σ, Q, δ) and A′ = (Σ × Q, Q′, δ′) be two semiautomata over the alphabets Σ and
Σ × Q, respectively. We define the cascade product between A and A′, denoted with A ◦ A′,
as the semiautomaton (Σ, Q × Q′, δ′′) such that, for all (q, q′) ∈ Q × Q′ and for all a ∈ Σ:

δ′′((q, q′), a) = (δ(q, a), δ′(q′, (a, q)))

We will often simply use “cascade” for “cascade product”.
It is worth noticing that the cascade product of semiautomata is a generalization of the

classic direct product: the latter can be recovered by imposing the alphabet of the second
semiautomaton to be Σ (i.e., the alphabet of the first one) instead of Σ × Q.

The cascade product is an associative operation, meaning that (A ◦ A′) ◦ A′′ is the same
semiautomaton as A ◦(A′ ◦ A′′). We define the height of the product A1 ◦ · · · ◦ An as n.

We now introduce two classes of semiautomata, reset and permutation, depending on the
form of their transitions. We first define the notion of function induced by a symbol.

▶ Definition 3.3 (Function induced by a symbol). Let A = (Σ, Q, δ) be a semiautomaton. For
each symbol a ∈ Σ, we define the function induced by a in A, denoted by τA

a (or simply τa

when A is clear from the context), as the transformation τa : Q → Q such that, for all q ∈ Q,
it holds τa(q) = q′ iff δ(q, a) = q′.

Reset and permutation functions are defined as follows.

▶ Definition 3.4 (Reset and permutation functions). Let τ : Q → Q. We say that τ is a reset
function iff there exists q′ ∈ Q such that τ(q) = q′, for all q ∈ Q. In this case, we say that τ

is a reset on q′. If τ : Q → Q is a bijection, then it is called a permutation.

On the basis of the functions induced by the symbols of their alphabet, we define the
following classes of semiautomata.

STACS 2025

20:6 On Cascades of Reset Automata

▶ Definition 3.5 (Classes of semiautomata). Let A = (Σ, Q, δ) be a semiautomaton. We say
that A is:

a permutation-reset semiautomaton iff, for each a ∈ Σ, τa is either a permutation or a
reset.
a permutation semiautomaton iff, for each a ∈ Σ, τa is a permutation;
a reset semiautomaton iff, for each a ∈ Σ, τa is either the identity function or a reset
function;
a pure-reset semiautomaton iff, for each a ∈ Σ, τa is a reset function.

We now introduce counter-free semiautomata [18]. Let σ ∈ Σ∗. From now on, we denote
by (σ)i the word generated by concatenating i times the word σ to itself. A word σ ∈ Σ∗,
with σ ̸= ε, defines a nontrivial cycle in a semiautomaton A = (Σ, Q, δ) if there exists a state
q ∈ Q such that:

(i) δ∗(q, σ) ̸= q

(ii) δ∗(q, (σ)i) = q, for some i > 1.
We say that a semiautomaton A is counter-free if there are no words that define a nontrivial
cycle. Counter-free automata recognize exactly the set of languages definable by star-free
regular expressions, i.e., expressions devoid of Kleene’star. We denote this set by SF .

A fundamental result in the field is the Krohn-Rhodes Cascade Decomposition Theorem.
The theorem’s initial formulation was expressed in the context of semigroups [12], and its
automata-theoretic counterpart [14] can be articulated as follows.

▶ Theorem 3.6 (The Krohn-Rhodes Cascade Decomposition Theorem [12, 14]). For each
semiautomaton A = (Σ, Q, δ), there exists a cascade product of semiautomata C :=
A1 ◦ A2 ◦ · · · ◦ An such that:

(i) Ai is a permutation-reset semiautomaton, for each 1 ≤ i ≤ n;
(ii) there is an homomorphism2 from C to A;
(iii) if A is counter-free, then Ai is a two-state reset semiautomaton, for each 1 ≤ i ≤ n.

4 Cascades of automata

In this section, we begin our study of the languages recognized by cascades of automata.
We start by formally defining them and stating some basic properties. Then, we focus on
cascades of reset automata, and provide a characterization of the languages they recognize
in terms of regular expressions.

4.1 Definitions and basic properties
To begin with, we generalize the notion of cascade product of semiautomata (Definition 3.2)
to automata.

▶ Definition 4.1 (Cascade product of automata). Let Σ be a finite alphabet and let A =
(Σ, Q, δ, q0, F) and A′ = (Σ × Q, Q′, δ′, q′

0, F ′) be two automata over the alphabets Σ and
Σ × Q, respectively. We define the cascade product of A and A′, denoted by A ◦ A′, as the
automaton (Σ, Q × Q′, δ′′, (q0, q′

0), F × F ′) where δ′′ is defined as in Definition 3.2.

We say that a language L is definable by a cascade C iff L = L(C). Figure 1 shows the
cascade product of two reset automata defining the language a · Σ∗.

2 We refer to [12, 14] for a formal definition of homomorphism between semiautomata.

R. Borelli, L. Geatti, M. Montali, and A. Montanari 20:7

q0 q1
*

*

s0 s1

(b, q0)
(∗, q1)

(a, q0)

(∗, ∗)

q0, s0 q0, s1

q1, s0 q1, s1

b
a ∗

∗∗

Figure 1 The reset automaton A1 with set of states Q = {q0, q1} over the alphabet Σ = {a, b}
(left). The reset automaton A2 over the alphabet Σ × Q (middle). The cascade product A1 ◦ A2

over the alphabet Σ that recognizes the languages a · Σ∗ (right).

In the following, we will use the term cascade to refer both to the component automata
and to the resulting automaton.

We now show how to compute the language recognized by a cascade of automata on the
basis of the languages recognized by its components. Let Σ1 and Σ2 be two alphabets. Let
σ1 = σ1

1 . . . σ1
n ∈ (Σ1)n and σ2 = σ2

1 . . . σ2
n ∈ (Σ2)n be two words of length n. We define

aug(σ1, σ2) ∈ (Σ1 × Σ2)n as the word (σ1
1 , σ2

1) . . . (σ1
n, σ2

n).

▶ Definition 4.2 (Language of B at a state s over A). Let A = ⟨Σ, Q, δA, q0, FA⟩ and
B = ⟨Σ × Q, S, δB , s0, FB⟩ be two automata. The language of B at state s ∈ S over A,
denoted by Ls(B)[A], is defined as follows: the empty word only belongs to Ls0(B)[A]; a word
σ = σ1 . . . σk, with k ≥ 1, belongs to Ls(B)[A] if

(i) σ1 . . . σk−1 induces a run τ = ⟨q0, q1 . . . , qk−1⟩ on A; and
(ii) aug(σ, τ) ∈ Ls(B).

The language of a cascade can be computed from those of its components as follows. Let
C = A ◦ B be a cascade. The words forcing C to reach a state (q, s) are exactly those words
such that:

(i) they force A to reach state q; and
(ii) they force B to reach state s, when augmented with the run of A.

▶ Proposition 4.3 (Language of a cascade in terms of its components). Let A = ⟨Σ, Q, δA, q0,

FA⟩ and B = ⟨Σ × Q, S, δB , s0, FB⟩ be two automata. It holds that:
1. L(q,s)(A ◦ B) = Lq(A) ∩ Ls(B)[A], for all states q ∈ Q and s ∈ S;
2. L(A ◦ B) =

⋃
(q,s)∈F

L(q,s)(A ◦ B).

We now show that, as it happens with semiautomata, the direct product of automata
is just a special case of the cascade product. To this end, we first define the notion of
augmentation of an automaton.

▶ Definition 4.4 (Augmentation). Let A = ⟨Σ, Q, δ, q0, F ⟩ and A′ = (Σ′, Q′, δ′, q′
0, F ′) be two

automata such that either Σ′ = Σ or Σ′ = Σ × S, for an arbitrary finite set S. We define the
augmentation of A′ relative to A, denoted by aug(A, A′), as the automaton (Σ′′, Q′, δ′′, q′

0, F ′)
such that:

if Σ′ = Σ, then Σ′′ := Σ × Q and for all q ∈ Q′ and all a ∈ Σ, δ′′(q, (a, ∗)) = δ′(q, a);
if Σ′ = Σ × S, then Σ′′ := Σ × Q × S and, for all q ∈ Q′ and for all (a, s) ∈ Σ × S, it
holds that δ′′(q, (a, ∗, s)) = δ′(q, (a, s)).

Given a cascade C = A′
1 ◦ · · · ◦ A′

n over Σ, we define the augmentation of C relative to A,
denoted by aug(A, C), as the cascade aug(A, A′

1) ◦ · · · ◦ aug(A, A′
n).

STACS 2025

20:8 On Cascades of Reset Automata

The notion of augmentation can be generalized to a pair of cascades C and C′ by treating
C as a single automaton: from now on, when we will refer to the cascade product of C and
C′, we will interpret it as the cascade product of the automaton A generated by C and C′.

The next proposition shows that direct product can be simulated by means of augmentation
and cascade product.

▶ Proposition 4.5 (Direct product by means of cascade product). Let A = ⟨Σ, Q, δ, q0, F ⟩ be
an automaton and let C be a cascade over Σ. It holds that A ◦ aug(A, C) = A × C.

Furthermore, augmenting an automaton does not affect its property of being reset (or
permutation), as stated by the following Proposition 4.6.

▶ Proposition 4.6. Let Σ be a finite alphabet and let A be an automaton over Σ or Σ × S,
for an arbitrary finite set S. If A is a reset (resp., permutation) automaton, then, for any
automaton A′ over Σ, aug(A′, A) is a reset (resp., permutation) automaton.

It follows that, in particular, if C is a cascade of reset (resp., permutation) automata,
then aug(A, C) is a cascade of reset (resp., permutation) automata. From Propositions 4.5
and 4.6, it follows directly that, given two cascades C and C′ of height m and n of reset (resp.,
permutation) automata, there exists a cascade of height m + n of reset (resp., permutation)
automata for L(C) ∩ L(C′). In Section 6, we will show how to compute other basic operations
on cascades of resets.

4.2 Languages of cascades of resets
In this part, we characterize the language recognized by a cascade of reset automata in terms
of regular expressions. We begin with the case of cascades of height 1 and then we move to
cascades of unbounded height.

4.2.1 Cascades of height 1
The study of which regular expressions characterize height-1 cascades of resets coincides
with the study of the languages recognized by reset automata. The following theorem gives a
characterization of reset automata in terms of regular expressions.

▶ Theorem 4.7 (The languages of reset automata). Let Σ be a finite alphabet. A language
L ⊆ Σ∗ is recognized by a reset automaton if and only if L = J ∪ (Σ∗ · R · I∗) for some
I, R ⊆ Σ such that I ∩ R = ∅ and either J = I∗ or J = ∅.

Intuitively, an automaton reading a symbol that induces a reset function on a final state
is forced to end up in that state, regardless of which state it was in before. Furthermore, it
remains in that state if all subsequent symbols induce identity functions. In the case of words
containing multiple resets on a final state, only the last of these symbols matters, resulting in
words of the form Σ∗ · R · I∗. The case of J = I∗ arises when the initial state is also final. In
this scenario, to accept a word, the automaton does not need to read a symbol that induces
a reset on a final state (since it is already there), but only needs to stay in the initial state.

A by-product of Theorem 4.7 is that any reset automaton is equivalent to one with two
states, only one of which is final. The rationale is as follows:

(i) the symbols in R induce a reset on the single final state;
(ii) the symbols in I act as identities; and
(iii) the symbols neither in R nor in I induce resets on the single non-final state.

R. Borelli, L. Geatti, M. Montali, and A. Montanari 20:9

q0 q1

I

Σ \ (R ∪ I) R

Σ \ (R ∪ I)

I, R

q0 q1

I, R

R

Σ \ (R ∪ I)
I

Σ \ (R ∪ I)

Figure 2 The reset automaton corresponding to a language of the form J ∪ (Σ∗ · R · I∗) in the
case J = ∅ (on the left) and in the case J = I∗ (on the right).

Moreover, the initial state is also the final state if and only if J = I∗. A graphical account is
given in Figure 2.

▶ Proposition 4.8. For every reset automaton, there exists an equivalent one with two states,
exactly one of which is final.

Theorem 4.7 allows us to establish a first connection between Linear Temporal Logic
on finite traces (LTLf [5]) formulas and equivalent reset cascades. As highlighted in the
introduction, the languages expressible in LTLf are exactly the star-free languages, that
is, those languages that can be represented by regular expressions that do not use the
Kleene star, or equivalently, by languages whose minimal automaton is counter-free [18]. By
Krohn-Rhodes’ theorem (Theorem 3.6), it follows that the languages definable in LTLf are
precisely those expressible through cascades of resets. Given the relevance of reset cascade
decomposition in problems such as pastification [2, 4] and normalization [7] of temporal logic
formulas, it is crucial to understand which LTLf formulas can be expressed with cascades of a
specific height. The following result shows that even simple formulas like p (the proposition
letter “p” holds at the initial time point) or p U q (there is a future point where “q” holds,
and until then, “p” remains true) cannot be expressed with cascades of resets of height 1. In
fact, the languages they recognize3 are respectively p⃗ · Σ∗ and (p⃗)∗ · q⃗ · Σ∗, which are not
of the form J ∪ (Σ∗ · R · I∗), for any choice of R, I, and J . However, the formula Fp (there
exists a point in the future where “p” holds) can be expressed with reset cascades of height
1, as its language is of the form J ∪ (Σ∗ · R · I∗), choosing R := p⃗, I := Σ \ p⃗, and J = ∅.

▶ Corollary 4.9. The languages defined by the LTLf formulas p and p U q are not definable
with height-1 cascades of resets.

4.2.2 Cascades of unbounded-height
In this section we derive regular expressions for cascades of arbitrary height. As a first step,
we show that a cascade of height h of reset automata, say A1 ◦ · · · ◦ Ah, can be transformed
into an equivalent cascade of the same height, still consisting of reset automata, where the
last automaton (Ah) has exactly two states, one of which is the only accepting state. This
result forms the basis for Theorem 4.12, which provides the characterization of cascades of
arbitrary height.

▶ Lemma 4.10. Let A be an automaton with set of states Q over the alphabet Σ, and let B
be a reset automaton over the alphabet Σ × Q. There exists a 2-states reset automaton B′,
with exactly one final state, such that L(A ◦ B) = L(A ◦ B′).

3 Here, assuming a set of atomic propositions AP := {p, q, r, . . .}, the languages of formulas over AP are
defined over the alphabet Σ := 2AP . Moreover, given any p ∈ AP, we indicate with p⃗ all the letters
a ∈ Σ such that p ∈ a.

STACS 2025

20:10 On Cascades of Reset Automata

The proof of Lemma 4.10 heavily relies on the characterization of cascades of height 1.
More precisely, since B is a reset automaton over the alphabet Σ × Q, by Proposition 4.8,
there exists an equivalent reset automaton with two states (one of which is the only accepting
state) over the same alphabet. Since B is at the bottom of the cascade, the language of
the cascade A ◦ B′ is the same as the language of A ◦ B. This is because there are no other
automata below B in the cascade that can exploit information about B’s current state. As a
matter of fact, in Section 5, we will prove that this no longer true when applying the same
procedure to A: there exist languages definable by a cascade A ◦ B, where A has 3 states
and B has 2 states, that cannot be expressed if the number of states of A is limited to 2.

Let us now introduce the notion of filtered automaton, which is obtained from a given
automaton by removing (filtering) certain outgoing transitions and possibly changing its
initial state.

▶ Definition 4.11 (Filtered Automaton). Let A = ⟨Q, Σ, q0, δ, F ⟩ be an automaton. A filter
is pair (q, H), where q ∈ Q and H ⊆ Σ × Q. The partial automaton A, filtered by (q, H),
denoted as A ↓q

H , is the automaton (Q, Σ, q, δ′, F) where δ′(q′, σ) := δ(q′, σ) if (σ, q′) ∈ H,
or is undefined otherwise.

Before formally stating Theorem 4.12, that characterizes the languages of cascades of
unbounded-height, we give an intuitive account of it. Let A ◦ B be a cascade, with A an
automaton and B a reset automaton, where, w.l.o.g. (Lemma 4.10), B has only two states
and exactly one final state. Any word accepted by A ◦ B must drive both A and B to an
accepting state. Its language can be captured by analyzing the symbols inducing a reset
function that leads to a final state of B, and the symbols inducing identities in B. The words
in the language of A ◦ B are precisely those consisting of

(i) a prefix that, for any symbol (σ, q) inducing a reset on a final state of B, drives
automaton A to state q;

(ii) followed by the symbol σ ∈ Σ (let qσ be the state reached by A after reading it);
(iii) a suffix that forces B to remain in its accepting state through its identity functions IB ,

and forces A to reach a final state starting from qσ.
In addition, A cannot transition from state q′ when reading a symbol σ′ if the pair (σ′, q′)
does not belong to B’s identity functions, as this would cause B to leave its accepting state.
Therefore, the suffix corresponds to the language of automaton A, filtered by (δA(q, σ), IB).
This is formally expressed by the following theorem.

▶ Theorem 4.12 (Languages of cascades of unbounded-height). Let A = ⟨Σ, Q =
{q0, . . . , qn}, δA, q0, FA⟩ be an automaton and let B = ⟨Σ × Q, {s0, s1}, δ, s0, {sf }⟩, with
sf ∈ {s0, s1}, be a two-state reset automaton with one final state. It holds that:

L(A ◦ B) = M ∪
⋃

(σ,q)∈Rsf

Lq(A) · σ · L
(

A ↓δA(q,σ)
IB

)
where Rsf

is the set of symbols in Σ × Q that induce a reset function on state sf , and
M := L(A ↓q0

IB
) if s0 = sf or M := ∅ otherwise.

Figure 3 gives an example of application of Theorem 4.12 to a cascade over the alphabet
Σ := {a, b} of two reset automata, A (on the left) and B (on the center), with two states
each, recognizing the language b∗ · a+. Using Theorem 4.12, we have that L(A ◦ B) =
Lq0(A) ·a ·L(A ↓q1

IB
), where A ↓q1

IB
is the automaton obtained from A filtered by the identities

IB = {(a, q1), (b, q0)} of automaton B. Since Lq0(A) = b∗ and L(A ↓q1
IB

) = a∗, we obtain
L(A ◦ B) = b∗ · a+. The following is a corollary of Theorem 4.12 in the case in which B is a
pure-reset automaton.

R. Borelli, L. Geatti, M. Montali, and A. Montanari 20:11

q0 q1
a

b a, b

s0 s1

(a, q1)
(b, ∗)

(a, q0)

(b, q1)

(b, q0)
(a, ∗)

q0 q1

b a

Figure 3 On the left and on the center, the reset automata A and B, respectively, for the
cascade A ◦ B recognizing the language b∗ · a+. On the right, the automaton A ↓s1

IB
, where IB =

{(a, q1), (b, q0)} are the identities of automaton B.

▶ Corollary 4.13. Let A = ⟨Σ, {q0, . . . , qn}, δA, q0, FA⟩ be an automaton and let B = ⟨Σ ×
Q, {s0, s1}, δ, s0, {sf }⟩ be a two-state pure-reset automaton with one final state. It holds that

L(A ◦ B) = M ∪
⋃

(σ,q)∈Rsf

δA(q,σ)∈FA

Lq(A) · σ

where M := ϵ if s0 = sf and q0 ∈ FA, or M := ∅ otherwise.

It is worth noticing that the regular expressions in Theorem 4.12 and Corollary 4.13 refer to
states of the cascade under consideration. This is a major difference with the characterization
of reset cascades of height 1 (Theorem 4.7). In order to prove some undefinability results
in the next section, we provide a characterization of the languages recognized by cascades
of two-states resets of height 2 where the second component is pure-reset, based on regular
expressions that do not refer to states of the cascade.

▶ Lemma 4.14. Let L ⊆ Σ∗ be a language. L is definable by a cascade of height 2 in which
the second component is pure-reset if and only if L = M ∪

⋃n
i=1 Ki · σi for some M , n, σi

and Ki such that:
(i) M is either ϕ or ϵ;
(ii) 0 ≤ n ≤ 2 · |Σ|;
(iii) for all i = 1 . . . n it holds σi ∈ Σ;
(iv) there exists a language L recognizable by a two-state reset automaton such that for all

i = 1 . . . n, either Ki is L or Ki is L = Σ∗ \ L.

Notice that the Lemma above can be easily extended to the case in which the first
automaton in the cascade has k states, for some k ≥ 2. This is done by relaxing (iv) and
imposing that Ki can be chosen between k languages K1, . . . , Kk such that {K1, . . . , Kk} is
a partition of Σ∗ and each Ki is definable by a cascade of resets of height 1. Constraint (ii)
is also relaxed to 0 ≤ n ≤ k · |Σ|.

We will use Theorem 4.12, Corollary 4.13, and Lemma 4.14 in the next section to prove
undefinability results of certain languages by cascades of a given height and with a specified
number of states at each level.

5 Expressiveness results

In this section, we analyze the expressive power of various types of reset automaton cascades.
We begin by defining several language classes, and subsequently structure our analysis into
short cascades (where the height is constrained to at most two), narrow cascades (where the
height is unbounded but each component contains two states), and general cascades (with
no restrictions on either the height or the number of states).

STACS 2025

20:12 On Cascades of Reset Automata

Figure 4 Summary of (some of) the results in Section 5.

▶ Definition 5.1 (Classes R and RPR). Let h ∈ N>0 and let k1, . . . , kh ∈ N>1. We denote
by R(k1, . . . , kh) the class of languages definable by a cascade A1 ◦ · · · ◦ Ah of reset automata
such that Ai has ki states, for each 1 ≤ i ≤ h. We denote by RPR(k1, . . . , kh) the subclass
of R(k1, . . . , kh) where the last automaton (Ah) is required to be pure-reset. For h > 0 and
k > 1, we define Rh

k :=
⋃

2≤k1,...,kh≤k R(k1, . . . , kh) as the set of languages definable by a
cascade of height h, where each component has at most k states. We define R :=

⋃
h>0,k>1 Rh

k

as the set of languages definable by any cascade of reset automata. The classes RPRh
k and

RPR are defined analogously.

Figure 4 provides an overview of (some of) the results presented in this section. Specifically,
it illustrates that increasing the cascade height and increasing the number of states at the
first level lead to two distinct language hierarchies.

5.1 Short Cascades
We begin by considering short cascades, i.e. cascades of reset automata of height 2. As a
first step, we start by comparing the classes R(2), RPR(2, 2) and R(2, 2), and then we focus
on RPR(k, 2) and R(k, 2) for every k > 2.

We already know that with a single pure-reset automaton we can recognize the set of
all words ending with a certain symbol of the alphabet (this follows from Theorem 4.7 in
the special case in which I = ∅). As an example, it holds that Σ∗a ∈ RPR(2). Now, if we
introduce an additional pure-reset layer, we can effectively recognize the set of words ending
with a two-character suffix. However, we also demonstrate that this is impossible using a
single reset automaton.

▶ Lemma 5.2. Let L = Σ∗aa. It holds that:
(i) L ∈ RPR(2, 2);
(ii) L ̸∈ R(2).

Lemma 5.2 shows that increasing the height of a cascade, even of height 1 and even with
a pure-reset automaton, results into a gain of expressive power.

In the upcoming lemma, we demonstrate that, at the same height, prohibiting identities
in the final layer results in a loss of expressive power. To illustrate this, let us consider the
language a·Σ∗. As shown in Figure 1, this language can be defined using a cascade of two reset

R. Borelli, L. Geatti, M. Montali, and A. Montanari 20:13

q0

q1

q2

a

b

c

b

a b

c

c

a

s0 s1

(a, q0)
(b, q1)
(c, q2)

(Σ \ a, q0)
(Σ \ b, q1)
(Σ \ c, q2)

(a, q0)
(b, q1)
(c, q2)

(Σ \ a, q0)
(Σ \ b, q1)
(Σ \ c, q2)

Figure 5 On the left, the reset automaton A and on the right the reset automaton B such
that, for Σ = {a, b, c}, the cascade C := A ◦ B accepts the language Σ∗ (

Σ2 \ {aa, bb, cc}
)

∪ {b, c},
which precisely corresponds to the language L3 described in Lemma 5.4. When viewed as a single
automaton, C is also the minimal automaton for the language L3.

automata, with the last one specifically containing identities. Building upon Lemma 4.14,
we further demonstrate that achieving the same language recognition is not possible when
prohibiting identities in the final layer, no matter of the number of states of the first
automaton.

▶ Lemma 5.3. Let Σ be an alphabet with at least two symbols, let L = aΣ∗. It holds that:
(i) L ∈ R(2, 2);
(ii) L ̸∈ RPR(k, 2), for every k ≥ 2.

In Lemma 4.10, we have shown that the final component of a cascade can always be
restricted to two states. A natural question arises: Can the first component also be limited to
just two states? The answer is negative, as illustrated by the following example. Consider
an alphabet of three symbols and the language L consisting of all words that end with two
distinct symbols (e.g. cb ∈ L but aa /∈ L). As demonstrated in Figure 5, this language can
be recognized by a cascade of two reset automata where the first component has three states.
However, we will prove that it cannot be recognized if the first component has only two
states. Intuitively, the first component’s role is to remember the second-to-last symbol, but
with an alphabet of three symbols and only two states, this task becomes impossible. The
following Width-Hierarchy Lemma formalizes this intuition, demonstrating the existence of
an infinite hierarchy of languages that can be defined using cascades of two resets where
the first component contains k states, but cannot be defined when the first component is
restricted to k − 1 states.

▶ Lemma 5.4 (Width-Hierarchy Lemma). For each k > 2, let Σ = {σ0, . . . , σk−1}. Let
Lk = Σ∗

(
Σ2 \

⋃
0≤i<k σiσi

)
∪ (Σ \ σ0), it holds that:

(i) Lk ∈ RPR(k, 2);
(ii) Lk ̸∈ R(k − 1, 2).

The following corollary (depicted in Figure 4) follows from Lemmas 5.2–5.4.

▶ Corollary 5.5. It holds that:
∅ ⊊ R(2) ⊊ RPR(2, 2) ⊊ R(2, 2);
RPR(3, 2) ̸⊆ R(2, 2) and R(2, 2) ̸⊆ RPR(3, 2).

Additionally, we prove that for a fixed alphabet Σ of cardinality k, any language over Σ
expressible by a cascade of height 2 can also be expressed by a cascade of height 2 where
the first component has at most k + 1 states. The intuition behind this is that, due to

STACS 2025

20:14 On Cascades of Reset Automata

qi q0

q1

q2
a

b

c

a

b

c

b

a b

c

c

a

s0 s1

(a, q0)
(b, q1)
(c, q2)
(∗, qi)

(Σ \ a, q0)
(Σ \ b, q1)
(Σ \ c, q2)

(a, q0)
(b, q1)
(c, q2)
(∗, qi)

(Σ \ a, q0)
(Σ \ b, q1)
(Σ \ c, q2)

Figure 6 The cascade C := A ◦ B accepts the language L′
3 := Σ∗ (

Σ2 \ {aa, bb, cc}
)
. When treated

as a single automaton, C consists of 8 states, in contrast to the minimal automaton for L′
3, which

has only 7 states.

the restriction of transitions to resets or identities, only a finite number of states can be
reached from the initial state. This is formalized in the next lemma, which also establishes
the optimality of the bound on the number of states of the first component.

▶ Lemma 5.6. Let Σ be a finite alphabet with size |Σ| = k. Let L be a language such that
L ⊆ Σ∗. For every m ∈ N>0, if L ∈ R(m, 2), then L ∈ R(k + 1, 2). Furthermore, there
exists a language L′

k ⊆ Σ∗ such that L′
k ∈ R(k + 1, 2) but L′

k ̸∈ R(k, 2).

The language L′
k used to prove the optimality of the bound in Lemma 5.6 is defined as

Σ∗
(

Σ2 \
⋃

0≤i<k σiσi

)
. As an example, Figure 6 shows the case of L′

3.

5.2 Narrow Cascades

Thus far, our discussion has centered around cascades composed of one or two components.
Now, we shift our focus to narrow cascades, i.e. cascades of greater height but in which
each components is restricted to have two states (i.e. Rh

2). Just as we have seen that some
languages cannot be expressed by cascades of height 1, we will demonstrate that for any
given height, there exists a language that cannot be captured at that height, provided the
components of the cascade are restricted to two states. We call this the Height-Hierarchy
Lemma, and is a counterpart of the Width-Hierarchy Lemma (Lemma 5.4) focused on the
height of cascades. It is based on the following family of languages: for each h ≥ 2, we
consider the language Lh = Σh−2aΣ∗, that is all words that contain symbol “a” precisely at
position h − 1. The Height-Hierarchy Lemma below proves that, for any h ≥ 2, the language
Lh is not definable by cascades of two states reset automata of height less than h.

▶ Lemma 5.7 (Height-Hierarchy Lemma). For each h ≥ 2, let Lh = Σh−2aΣ∗. It holds that:

(i) Lh ∈ Rh
2 ;

(ii) Lh ̸∈ Rh−1
2 .

R. Borelli, L. Geatti, M. Montali, and A. Montanari 20:15

off on∗

∗

Figure 7 Switch automaton.

We briefly explain the intuition behind Lemma 5.7. Regarding point (i) Lh ∈ Rh
2 , the

construction of the two-state reset cascade proceeds as follows. The base case corresponds
to Figure 1, while the inductive step for height h involves the use of the two-state reset
automaton Aswitch (illustrated in Figure 7) in cascade with the augmentation of the cascade
for the case h − 1. Intuitively, Aswitch recognizes all words containing at least one symbol.
Using in cascade h − 2 copies of Aswitch together with the cascade in Figure 1, corresponds
exactly to the language Σh−2aΣ∗. In Figure 8, we provide an example of the construction
for the case h = 3.

The proof that Lh ̸∈ Rh−1
2 is more involved and proceeds by induction on h. For the

base case (h = 2), we have L2 = aΣ∗. This case is verified by Lemma 5.3. For the inductive
step, assume that the statement holds for every i ≤ h. We need to prove that it also
holds for i = h + 1. Suppose, by contradiction, that Lh+1 ∈ Rh

2 . By definition, this would
imply the existence of a cascade C = A1 ◦ · · · ◦ Ah of two-state reset automata such that
L(C) = Lh+1 = Σh−1aΣ∗. However, starting from C, the proof shows how to construct a new
cascade C ′ = B1 ◦ · · · ◦ Bh−1 of two-state reset automata such that L(C ′) = Σh−2aΣ∗ = Lh.
The existence of C ′ contradicts the inductive hypothesis, which states that Lh /∈ Rh−1

2 .
Therefore, the assumption that Lh+1 ∈ Rh

2 must be false, and the cascade C cannot exist.

5.3 General Cascades
In this subsection, we examine cascades of reset automata without imposing restrictions
on the number of states in each component or on the total number of components. In the
previous part, Lemma 5.6 demonstrates that, for cascade of two resets over the alphabet Σ,
the maximum expressiveness is achieved when the first component has |Σ| + 1 states. Here,
we extend this result to cascades of unbounded height in the Width-Collapse Lemma, that
provides lower bounds on the number of states in each component, for which adding states
at certain levels does not affect expressiveness.

▶ Lemma 5.8 (Width-Collapse Lemma). Let Σ be a finite alphabet with |Σ| = k ≥ 2. Let
L ⊆ Σ∗ be a language. For any positive integers h and k1, . . . , kh, if L ∈ R(k1, . . . , kh, 2),
then L ∈ R(f(1), . . . , f(h), 2), where f(i) = ki+1−1

k−1 .

We now demonstrate how to transform general cascades into narrow cascades. Specifically,
we show how any cascade of reset automata (of height h and with ki states at level i, for each
i ∈ {1, . . . , h}) can be transformed into an equivalent narrow cascade (i.e. made of two-state
resets), at the cost of increasing its height at most by a factor of 2 +

∑h−1
i=1 ⌈log2(ki)⌉. This

result is based on two key points:
1. Given a general cascade, we can always append a pure-reset automaton at the end without

altering its language;
2. the Narrowing Lemma, which we prove below, demonstrates that any cascade of reset

automata, whose final component is pure-reset and containing a component Aj with kj

states (and kj > 2), can be transformed into a new cascade where Aj is replaced by two
new automata, with 2 and ⌈ kj

2 ⌉ states each.

STACS 2025

20:16 On Cascades of Reset Automata

off on*

*
q0 q1

(∗, off) (∗, on)
(∗, on)

(∗, off)

s0 s1

(∗, on, q1)
(b, on, q0)
(∗, off, ∗)

(a, on, q0)

(∗, off, ∗)

(∗, on, q1)
(b, on, q0)
(a, on, q0)

Figure 8 A cascade C3 = A1 ◦ A2 ◦ A3 that recognizes the language ΣaΣ∗. The first two
components enforce that any accepted word contains at least two symbols, as L(A1 ◦ A2) = ΣΣΣ∗.

Instrumental to the Narrowing Lemma, the following result demonstrates that, given a
general cascade whose last component is a pure-reset automaton, we can modify this last
component to make all the states of the preceding components final, without altering the
recognized language.

▶ Lemma 5.9. Consider a cascade A ◦ B of automata, where B is a two-state pure-reset
automaton. Let A′ be the automaton obtained from A by making all states final. Then, there
exists a two-state pure-reset automaton B′ such that L(A ◦ B) = L(A′ ◦ B′).

The Narrowing Lemma is stated as follows.

▶ Lemma 5.10 (Narrowing Lemma). Let C = A1 ◦ · · · ◦ Ah be a cascade where Ai is a reset
automaton with ki states for each 1 ≤ i ≤ h − 1, and Ah is a pure-reset automaton. Let j be
an index such that 1 ≤ j ≤ h − 1. Then, there exists a cascade C ′ of reset automata

C ′ = A′
1 ◦ · · · ◦ A′

j−1 ◦ B1 ◦ B2 ◦ A′
j+1 ◦ · · · ◦ A′

h

such that:
(i) each A′

i has ki states for i ̸= j;
(ii) if Ai is pure-reset (resp., reset), then also A′

i is pure-reset (resp., reset), for i ̸= j;
(iii) B1 has 2 states and B2 has ⌈ kj

2 ⌉ states; and
(iv) L(C) = L(C ′).

By iteratively applying the Narrowing Lemma to every component with more than two
states, we obtain a procedure that, given a cascade of reset automata, produces an equivalent
cascade where all components are two-state reset automata. Moreover, it is worth noticing
that:

(i) by Lemma 4.10, w.l.o.g. the last component of any cascades of reset (or pure-resets)
has two states, and therefore the Narrowing Lemma does not need to be applied at the
last level;

(ii) if the final component of a cascade is not a pure-reset, a new pure-reset level can always
be added without affecting the language of the cascade.

This leads to the following inclusions.

▶ Corollary 5.11. For each positive h, k1, . . . , kh it holds that
1. RPR(k1, . . . , kh) ⊆ RPRH+1

2
2. R(k1, . . . , kh) ⊆ RH+2

2
where H = ⌈log2 k1⌉ + · · · + ⌈log2 kh−1⌉.

Combining Lemma 5.8 and Corollary 5.11, we conclude that if a language L is recognized
by a cascade of resets of height h, it can also be recognized by a cascade of height Θ(h2)
composed entirely of two-state resets.

R. Borelli, L. Geatti, M. Montali, and A. Montanari 20:17

▶ Corollary 5.12. Let Σ be an alphabet such that |Σ| = k ≥ 2 and let L ⊆ Σ∗ be a language.
If L admits a cascade of reset automata of height h, then L ∈ RH

2 where H ∈ Θ(h2). If
k = 2, then H = h2+h+2

2 .

Exploiting the bound for the case |Σ| = 2, we can prove undefinability of certain languages
by general cascades, i.e. without any bound on their height nor on the number of states
of its component. As an example, by Lemma 5.7, we know that the language L = Σ6aΣ∗

over the alphabet Σ = {a, b} does not belong to the class R7
2. If L could be recognized by a

cascade of height h = 3, then it would also be recognized by a two-state cascade of height
H = h2+h+2

2 = 7, leading to the following conclusion: with Σ = {a, b}, the language Σ6aΣ∗

does not admit any cascade of resets of height 3.
Building upon this reasoning, we can formulate the Generalized Height-Hierarchy Lemma.

Unlike the original Height-Hierarchy Lemma, which focuses solely on two-state cascades, the
generalized version addresses the undefinability of cascades in a broader context, encompassing
general cascades.

▶ Lemma 5.13 (Generalized Height-Hierarchy Lemma). Let h be a positive integer, and define
H = h2+h+2

2 + 1. Consider the language LH ⊆ Σ∗, where LH = ΣH−2aΣ∗ and Σ is a
two-symbol alphabet. The language LH cannot be recognized by any cascade of reset automata
of height h, but it holds that LH ∈ RH

2 .

6 Efficient closure properties of cascades of reset automata

In this section, we present an efficient method for computing specific closure properties of
reset cascades. For instance, for the case in which the operation ⊗ is binary, given two
cascades of resets C and C′ (made of only two-states components), we show how it is possible
to compute a cascade of two-states resets that recognizes L(C) ⊗ L(C′) by adding at most
one two-state reset automaton (that, in this context, we call brick). We show this for the
following operations:

(i) intersection;
(ii) complementation;
(iii) union; and
(iv) left-concatenation of Σ, i.e. given a language L to compute Σ · L.4

Proposition 4.5 already shows that intersection can be implemented efficiently for cas-
cades of resets: given two reset cascades C and C′ (with m and n two-states components,
respectively), there exists a cascade for L(C) ∩ L(C′) with m + n two-state resets.

Before showing the construction for the remaining operations, we give the following key
definitions. We define the finalized version of an automaton A, denoted with finv(A), as the
automaton obtained from A by setting all its states as final. The definition naturally extends to
cascades: the finalized version of C, denoted with finv(C), is defined as finv(A1)◦· · ·◦ finv(An).
Clearly, if C is a cascade of reset automata, finv(C) is still a cascade of reset automata. We
define the reachability set of an automaton relative to a set of states as follows.

▶ Definition 6.1 (Reachability Set). Let A = ⟨Σ, Q, δ, q0, F ⟩ be an automaton. Let P ⊆ Q be
a set of states. The reachability set of A with respect to P , denoted with RS(A, P), is the
set {(σ, q) ∈ (Σ × Q) : δ(q, σ) ∈ P}. We denote with RS(A, P) the set (Σ × Q) \ RS(A, P).
We write RS(A) to refer to RS(A, F).

4 It is worth noticing that this operation corresponds to compute the closure under the LTL next modality.

STACS 2025

20:18 On Cascades of Reset Automata

n0 n1

RS(A) RS(A)

RS(A)

RS(A)

n0 n1

RS(A)

RS(A)

RS(A) RS(A)

Figure 9 The negation brick negb(A) in the two cases: (a) ϵ ∈ L(A) (b) ϵ ̸∈ L(A).

We now show how to efficiently compute the remaining closure properties.

Complementation

To compute complementation, we introduce the negation brick, whose structure is illustrated
in Figure 9 and is formally defined here below.

▶ Definition 6.2 (Negation brick). Let A = ⟨Σ, Q, δ, q0, F ⟩ be an automaton. The neg-
ation brick for A, denoted with negb(A), is the two-state pure-reset automaton ⟨Σ ×
Q, {n0, n1}, δ, n0, {nf }⟩ such that:

(i) the final state nf is n1 if and only if ϵ ∈ L(A);
(ii) the function τ induced by symbols in RS(A) maps all states in the non-final state, i.e.

τ : {n0, n1} 7→ {n0, n1} \ {nf };
(iii) the function τ ′ induced by symbols in RS(A) maps all states in the final one, i.e.

τ : {n0, n1} 7→ {nf }.

The intuition is that the negation brick, when appended to the end of a cascade C, reaches
its final state if and only if the underlying cascade C is not in a final state. Consequently, by
setting all the states of C as final, we obtain a cascade that recognizes the complement of
L(C), as proved by the following lemma.

▶ Lemma 6.3. Let C be a cascade of automata. The cascade C′ := finv(C)◦negb(C) recognizes
the language L(C). Moreover, if C is a cascade of reset automata, then so is C′.

Interestingly, if the cascade terminates with a pure-reset layer A, this automaton can
itself serve the function of the negation brick, without the need of an additional component.

▶ Lemma 6.4. Let C = A1 ◦ · · · ◦ An be a cascade of automata such that An is a pure-reset
automaton. There exists a cascade C′ = A′

1 ◦ · · · ◦ A′
n such that:

(i) L(C′) = L(C);
(ii) each automaton A′

i has the same number of states as Ai;
(iii) if Ai is a reset (resp., pure-reset), then A′

i is also a reset (resp., pure-reset).

Union

Given two cascades C and C′ of height m and n, respectively, since L(C)∪L(C′) = L(C) ∩ L(C′),
it is possible to build cascade for L(C) ∪ L(C′) of height m + n + 3, using the previously
discussed constructions. In this section, we present a more efficient construction that
introduces only one additional component, referred to as the union brick, resulting in a
cascade for L(C) ∪ L(C′) of height n + m + 1.

▶ Definition 6.5 (Union brick). Let A = ⟨Σ, QA, δA, q0A, FA⟩ and B = ⟨Σ, QB , δB , q0B , FB⟩
be two automata. Let U ⊆ QA × QB the set of states {(qA, qB) : qA ∈ FA ∨ qB ∈ FB}. Let
C = A ◦ aug(A, B). The union brick of A and B, denoted with unionb(A, B), is the two-state
pure-reset automaton ⟨Σ × Q, {u0, u1}, δ, u0, {uf }⟩ such that:

R. Borelli, L. Geatti, M. Montali, and A. Montanari 20:19

(i) the final state uf is u0 if and only if ϵ ∈ L(A) ∪ L(B);
(ii) the function τ induced by symbols in RS(C, U) maps all states in the final one, i.e.

τ : {n0, n1} 7→ {nf };
(iii) the function τ ′ induced by symbols in RS(C, U) maps all states in the non-final state,

i.e. τ : {n0, n1} 7→ {n0, n1} \ {nf }.

Similarly to the case of complementation, when appended to the end of a cascade
C ◦ aug(C, C′), the union brick reaches its final state if and only if either C is in a final state
or aug(C, C′) is in a final state. This leads to the following lemma.

▶ Lemma 6.6. Let C and C′ be two cascade of automata. The cascade C′′ :=
finv(C ◦ aug(C, C′)) ◦ unionb(C, C′) recognizes the language L(C) ∪ L(C′). Moreover, if C and
C′ are cascades of reset automata, then so is C′′.

Also in this case, if one of the two automata corresponds to a cascade terminating with a
pure-reset component A, the union can be performed without the need for additional layers:
the automaton A effectively serves as the union brick.

Left-concatenation of Σ

Given a cascade C, we demonstrate how to construct a cascade that recognizes the language
Σ · L(C), adding only one brick and guaranteeing that the property of being a reset cascade
is preserved. As a by-product of this construction, we obtain that, given a cascade of resets
of height h equivalent to an LTL formula ϕ (interpreted over finite words), it is possible to
construct a cascades of resets for X(ϕ) of height h + 1, where X is the next modality of LTL.

We first define the next version of an automaton. The next version of an automaton A,
denoted as nextv(A), is defined considering the Cartesian product between the alphabet of
A and the set {off, on}. Intuitively, if A transitions from q to q′ with a symbols σ, so does
nextv(A) with the symbol (σ, on). On the contrary, all symbols (σ, off) force nextv(A) to
transition to the initial state. The formal definition of nextv(A) is given here below.

▶ Definition 6.7 (Next version of an automaton). Let A = ⟨Σ′, Q, δ, q0, F ⟩ be an automaton
such that either Σ′ = Σ or Σ′ = Σ × S, for an arbitrary finite set S. We define the next
version of A, denoted as nextv(A), as the automaton (Σ′′, Q, δ′, q0, F) such that:

if Σ′ = Σ, then Σ′′ := Σ × {off, on} and, for all q ∈ Q and for all a ∈ Σ, it holds:
δ′(q, (a, on)) = δ(q, a) and δ′(q, (∗, off)) = q0.
if Σ′ = Σ × S, then Σ′′ := Σ × {off, on} × S and, for all q ∈ Q and for all (a, s) ∈ Σ × S,
it holds that: δ′(q, (a, on, s)) = δ(q, (a, s)) and δ′(q, (∗, off, ∗)) = q0.

Given a cascade C = A1 ◦ · · · ◦ An over Σ, we define the next version of C, denoted with
nextv(C), as the cascade nextv(A1) ◦ · · · ◦ nextv(An) over Σ × {off, on}.

Figure 10 shows the next versions of the automata in Figure 1. Crucially, computing the
next version of an automaton does not alter its property of being a reset automaton.

▶ Lemma 6.8. Let Σ be a finite alphabet and let A be an automaton over Σ or over Σ×S for
an arbitrary finite set S. If A is reset automaton, then also nextv(A) is a reset automaton.

Now, given any cascade C, to capture the language Σ · L(C), it suffices to consider the
automaton Aswitch (depicted in Figure 7) with the next version of C. In fact, considering
that initially both Aswitch and nextv(C) are in their initial states (which, for Aswitch , is state
off), reading the first input symbol σ forces:

STACS 2025

20:20 On Cascades of Reset Automata

s0 s1

(*,on)
(*,on)(*,off)

(*,off)

t0 t1

(b, on, s0)
(∗, on, s1)
(∗, off, ∗)

(a, on, s0)
(∗, on, ∗)

(∗, off, ∗)

Figure 10 The next version of the two automata in the cascade of Figure 1.

(i) Aswitch to transition to state on; and
(ii) nextv(C) to remain in its initial state, because the symbol it reads is (σ, off).

After the first symbol and for all the rest of the input word, Aswitch remains in state on,
while nextv(C) operates like C because it reads symbols of the form (σ′, on). As shown by
the following lemma, this captures exactly Σ · L(C).

▶ Lemma 6.9. Let C be a cascade of automata. The cascade C′ := Aswitch ◦ nextv(C)
recognizes the language Σ · L(C). Moreover, if C is a cascade of reset automata, then so is C′.

From Lemma 5.7, it follows the optimality of the construction outlined in Lemma 6.9.

7 Conclusions and Future Work

In this paper, we investigated some fundamental properties of cascades of reset automata.
Unlike the approach commonly followed in the literature, where the cascade product is
restricted to semi-automata, we focused on the case of automata. This allowed us to study
the properties of the recognized languages. As an initial step, we showed how to compute
regular expressions equivalent to a cascade. Then, on the basis of such a transformation, we
established some meaningful expressiveness results, in particular lower bounds to the height
and to the minimum number of states per level of a cascade of resets for specific families of
languages. Finally, we showed how to compute the closure of reset cascades under certain
basic operations by adding at most one brick to the end of the cascade.

As for the future developments of the work, finding an efficient construction for the closure
of reset cascades under the concatenation operation is undoubtedly a crucial direction. This
would enable the design of an efficient approach to handling the eventually and until operators
of LTL, providing, together with the results given in the last section of the paper, an efficient
decomposition into reset cascades for full LTL. This would improve the triply-exponential
upper bound to such a decomposition achieved by Maler’s algorithm [4, 15]. Last but not
least, giving analogous expressiveness and closure results for permutation automata appears
to be another promising avenue for further investigation.

References
1 Dana Angluin, David Chiang, and Andy Yang. Masked hard-attention transformers and

boolean RASP recognize exactly the star-free languages. CoRR, abs/2310.13897, 2023.
doi:10.48550/arXiv.2310.13897.

2 Alessandro Artale, Luca Geatti, Nicola Gigante, Andrea Mazzullo, and Angelo Montanari.
A Singly Exponential Transformation of LTL[X, F] into Pure Past LTL. In Pierre Marquis,
Tran Cao Son, and Gabriele Kern-Isberner, editors, Proceedings of the 20th International
Conference on Principles of Knowledge Representation and Reasoning, KR 2023, Rhodes,
Greece, September 2-8, 2023, pages 65–74, 2023. doi:10.24963/KR.2023/7.

https://doi.org/10.48550/arXiv.2310.13897
https://doi.org/10.24963/KR.2023/7

R. Borelli, L. Geatti, M. Montali, and A. Montanari 20:21

3 Alessandro Artale, Luca Geatti, Nicola Gigante, Andrea Mazzullo, and Angelo Montanari.
Succinctness issues for LTLf and safety and cosafety fragments of LTL. Information and
Computation, 302:105262, 2025. doi:10.1016/j.ic.2024.105262.

4 Giuseppe De Giacomo, Antonio Di Stasio, Francesco Fuggitti, and Sasha Rubin. Pure-past
linear temporal and dynamic logic on finite traces. In Proceedings of the Twenty-Ninth
International Conference on International Joint Conferences on Artificial Intelligence, pages
4959–4965, 2021.

5 Giuseppe De Giacomo and Moshe Y. Vardi. Linear Temporal Logic and Linear Dynamic
Logic on Finite Traces. In Francesca Rossi, editor, Proceedings of the 23rd International
Joint Conference on Artificial Intelligence, pages 854–860. IJCAI/AAAI, 2013. URL: http:
//www.aaai.org/ocs/index.php/IJCAI/IJCAI13/paper/view/6997.

6 Samuel Eilenberg. Automata, languages, and machines., B. Pure and applied mathematics.
Academic Press, 1976. URL: https://www.worldcat.org/oclc/310535259.

7 Javier Esparza, Rubén Rubio, and Salomon Sickert. Efficient Normalization of Linear Temporal
Logic. J. ACM, 71(2):16:1–16:42, 2024. doi:10.1145/3651152.

8 Marcus Gelderie. Classifying regular languages via cascade products of automata. In
Language and Automata Theory and Applications: 5th International Conference, LATA
2011, Tarragona, Spain, May 26-31, 2011. Proceedings 5, pages 286–297. Springer, 2011.
doi:10.1007/978-3-642-21254-3_22.

9 Mark Kambites. On the krohn-rhodes complexity of semigroups of upper triangular matrices.
Int. J. Algebra Comput., 17(1):187–201, 2007. doi:10.1142/S0218196707003548.

10 Nadezda Alexandrovna Knorozova and Alessandro Ronca. On the expressivity of recurrent
neural cascades. In Michael J. Wooldridge, Jennifer G. Dy, and Sriraam Natarajan, editors,
Thirty-Eighth AAAI Conference on Artificial Intelligence, AAAI 2024, Thirty-Sixth Conference
on Innovative Applications of Artificial Intelligence, IAAI 2024, Fourteenth Symposium on
Educational Advances in Artificial Intelligence, EAAI 2014, February 20-27, 2024, Vancouver,
Canada, pages 10589–10596. AAAI Press, 2024. doi:10.1609/AAAI.V38I9.28929.

11 Nadezda Alexandrovna Knorozova and Alessandro Ronca. On the expressivity of recur-
rent neural cascades with identity. In Pierre Marquis, Magdalena Ortiz, and Maurice Pag-
nucco, editors, Proceedings of the 21st International Conference on Principles of Know-
ledge Representation and Reasoning, KR 2024, Hanoi, Vietnam. November 2-8, 2024, 2024.
doi:10.24963/KR.2024/82.

12 Kenneth Krohn and John Rhodes. Algebraic theory of machines. I. Prime decomposition
theorem for finite semigroups and machines. Transactions of the American Mathematical
Society, 116:450–464, 1965.

13 Bingbin Liu, Jordan T. Ash, Surbhi Goel, Akshay Krishnamurthy, and Cyril Zhang. Trans-
formers learn shortcuts to automata. In The Eleventh International Conference on Learning
Representations, ICLR 2023, Kigali, Rwanda, May 1-5, 2023. OpenReview.net, 2023. URL:
https://openreview.net/forum?id=De4FYqjFueZ.

14 Oded Maler. On the Krohn-Rhodes Cascaded Decomposition Theorem. In Zohar Manna
and Doron A. Peled, editors, Time for Verification, Essays in Memory of Amir Pnueli,
volume 6200 of Lecture Notes in Computer Science, pages 260–278. Springer, 2010. doi:
10.1007/978-3-642-13754-9_12.

15 Oded Maler and Amir Pnueli. Tight Bounds on the Complexity of Cascaded Decomposition
of Automata. In 31st Annual Symposium on Foundations of Computer Science, St. Louis,
Missouri, USA, October 22-24, 1990, Volume II, pages 672–682. IEEE Computer Society, 1990.
doi:10.1109/FSCS.1990.89589.

16 Zohar Manna and Amir Pnueli. A hierarchy of temporal properties (invited paper, 1989). In
Proceedings of the 9th annual ACM symposium on Principles of distributed computing, pages
377–410, 1990. doi:10.1145/93385.93442.

17 Nicolas Markey. Temporal logic with past is exponentially more succinct, concurrency column.
Bull. EATCS, 79:122–128, 2003.

STACS 2025

https://doi.org/10.1016/j.ic.2024.105262
http://www.aaai.org/ocs/index.php/IJCAI/IJCAI13/paper/view/6997
http://www.aaai.org/ocs/index.php/IJCAI/IJCAI13/paper/view/6997
https://www.worldcat.org/oclc/310535259
https://doi.org/10.1145/3651152
https://doi.org/10.1007/978-3-642-21254-3_22
https://doi.org/10.1142/S0218196707003548
https://doi.org/10.1609/AAAI.V38I9.28929
https://doi.org/10.24963/KR.2024/82
https://openreview.net/forum?id=De4FYqjFueZ
https://doi.org/10.1007/978-3-642-13754-9_12
https://doi.org/10.1007/978-3-642-13754-9_12
https://doi.org/10.1109/FSCS.1990.89589
https://doi.org/10.1145/93385.93442

20:22 On Cascades of Reset Automata

18 Robert McNaughton and Seymour A Papert. Counter-Free Automata (MIT research monograph
no. 65). The MIT Press, 1971.

19 Amir Pnueli. The temporal logic of programs. In 18th Annual Symposium on Foundations of
Computer Science (sfcs 1977), pages 46–57. IEEE, 1977. doi:10.1109/SFCS.1977.32.

20 Alessandro Ronca. The transformation logics. In Proceedings of the Thirty-Third International
Joint Conference on Artificial Intelligence, IJCAI 2024, Jeju, South Korea, August 3-9, 2024,
pages 3549–3557. ijcai.org, 2024. URL: https://www.ijcai.org/proceedings/2024/393.

21 Alessandro Ronca, Nadezda Alexandrovna Knorozova, and Giuseppe De Giacomo. Automata
cascades: Expressivity and sample complexity. In Brian Williams, Yiling Chen, and Jennifer
Neville, editors, Thirty-Seventh AAAI Conference on Artificial Intelligence, AAAI 2023, Thirty-
Fifth Conference on Innovative Applications of Artificial Intelligence, IAAI 2023, Thirteenth
Symposium on Educational Advances in Artificial Intelligence, EAAI 2023, Washington, DC,
USA, February 7-14, 2023, pages 9588–9595. AAAI Press, 2023. doi:10.1609/AAAI.V37I8.
26147.

22 Karl-Heinz Zimmermann. On Krohn-Rhodes theory for semiautomata. CoRR, abs/2010.16235,
2020. arXiv:2010.16235.

https://doi.org/10.1109/SFCS.1977.32
https://www.ijcai.org/proceedings/2024/393
https://doi.org/10.1609/AAAI.V37I8.26147
https://doi.org/10.1609/AAAI.V37I8.26147
https://arxiv.org/abs/2010.16235

Computability of Extender Sets in
Multidimensional Subshifts
Antonin Callard # Ñ

Normandie Univ, UNICAEN, ENSICAEN, CNRS, GREYC, 14000, Caen, France

Léo Paviet Salomon #

Université de Lorraine, CNRS, Inria, LORIA, 54000, Nancy, France

Pascal Vanier # Ñ

Normandie Univ, UNICAEN, ENSICAEN, CNRS, GREYC, 14000, Caen, France

Abstract
Subshifts are sets of colorings of Zd defined by families of forbidden patterns. Given a subshift
and a finite pattern, its extender set is the set of admissible completions of this pattern. It has
been conjectured that the behavior of extender sets, and in particular their growth called extender
entropy [10], could provide a way to separate the classes of sofic and effective subshifts. We prove
here that both classes have the same possible extender entropies: exactly the Π3 real numbers of
[0, +∞).

2012 ACM Subject Classification Mathematics of computing → Discrete mathematics; Theory of
computation → Models of computation

Keywords and phrases Symbolic dynamics, subshifts, extender sets, extender entropy, computability,
sofic shifts, tilings

Digital Object Identifier 10.4230/LIPIcs.STACS.2025.21

Related Version Extended Version: https://doi.org/10.48550/arXiv.2401.07549

Funding This research was partially funded by ANR JCJC 2019 19-CE48-0007-01.

Acknowledgements We are thankful to the referees for their many helpful remarks and suggestions.

1 Introduction

In dimension d ∈ N, subshifts are sets of colorings of Zd where a family of patterns,
i.e. colorings of finite portions of Zd, have been forbidden. They were originally introduced
to discretize continuous dynamical systems [19]. One of the main families of subshifts that
has been studied is the class of subshifts of finite type (SFTs), which can be defined with a
finite family of forbidden patterns. This class has independently been introduced under the
formalism of Wang tiles [25] in dimension 2 in order to study fragments of second order logic.

In dimension 1, sofic subshifts [26], which are obtained as letter-to-letter projections of
SFTs, are studied mainly through their defining graphs. In dimension 2 and higher, SFTs (and
thus sofic subshifts) can embed arbitrary Turing machine computations; as such, the main
tool in the study of subshifts becomes computability theory. This led to the introduction of a
new class of subshifts, the effective subshifts, which can be defined by computably enumerable
families of forbidden patterns [13].

An important question in symbolic dynamics is thus to find criteria separating sofic from
effective subshifts [15, 22, 12, 3]. In dimension 1, a subshift is sofic if it can be defined by a
regular language of forbidden patterns: the Myhill–Nerode theorem states that these are
exactly the languages that have finitely many Nerode congruence classes. In dimension 2
and higher, no such clear characterization exists. Indeed, many effective subshifts have been

© Antonin Callard, Léo Paviet Salomon, and Pascal Vanier;
licensed under Creative Commons License CC-BY 4.0

42nd International Symposium on Theoretical Aspects of Computer Science (STACS 2025).
Editors: Olaf Beyersdorff, Michał Pilipczuk, Elaine Pimentel, and Nguyễn Kim Thắng;
Article No. 21; pp. 21:1–21:19

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:contact@acallard.net
https://www.acallard.net
https://orcid.org/0000-0002-4673-4881
mailto:leo.paviet-salomon@univ-lorraine.fr
https://orcid.org/0009-0005-4498-3832
mailto:pascal.vanier@unicaen.fr
https://vanier.users.greyc.fr/
https://orcid.org/0000-0001-9207-9112
https://doi.org/10.4230/LIPIcs.STACS.2025.21
https://doi.org/10.48550/arXiv.2401.07549
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

21:2 Computability of Extender Sets in Multidimensional Subshifts

proved to be sofic, such as substitutive subshifts [20], or effective subshifts on {0, 1} whose
densities of symbols 1 are sublinear [6]; it even turns out that sofic subshifts of dimension
d + 1 capture all the behaviors of effective shifts of dimension d [13, 8, 2].

All the methods used to prove some cases of non-soficity that are known by the authors
revolve around a counting argument: only a linear amount of information may cross the
border of an n × n square pattern (see for example [1, Proposition 9.4.5]). The most recent
argument in this vein uses resource-bounded Kolmogorov complexity [7].

One formalization of this counting argument relies on extender sets of patterns [15],
which can be considered as a higher-dimensional generalization of Nerode congruence classes:
the extender set of a pattern p is the set of all configurations with a p-shaped hole that
may extend p. For SFTs, the extender set of a given pattern is entirely determined by its
boundary, which implies that the number of extender sets of an SFT cannot grow too quickly.
For subshifts in dimension 1, [21, Lemma 3.4] proves the analog of Myhill-Nerode theorem:
a subshift is sofic if and only if its number of extender sets of every size is bounded. In
dimension 2 and higher, only sufficient conditions are known: for example, a subshift whose
number of extender sets for patterns of size nd is bounded by n must be sofic [21].

The study of the growth rate of the number of extender sets can be done asymptotically
through the notion of the extender entropy, which is defined in a similar way to the classical
notion of topological entropy [17]. Extender entropies in fact relate to the to notion of follower
entropies [4], but are more robust in the sense that, despite it not being decreasing under
factor map applications, the extender entropy of a subshift is still a conjugacy invariant.

In this paper, we achieve characterizations of the possible extender entropies in terms of
computability, in the same vein as recent results on conjugacy invariants of subshifts [14, 18].

▶ Theorem A. The set of extender entropies of Z effective subshifts is exactly Π3 ∩ [0, +∞).

▶ Theorem B. The set of extender entropies of Z2 sofic subshifts is exactly Π3 ∩ [0, +∞).

These results generalize to dimension d ≥ 2 by Claim 8 and Corollary 12. While sofic
subshifts were conjectured in [15] to have extender entropy zero, this was later disproved
(see for example [7]); in fact, our characterization shows that the possible values are dense in
[0, +∞). This also proves that extender entropies do not separate sofic from effective shifts.

Z Zd, d ≥ 2

SFT {0} (Folklore: see Proposition 6)

Sofic {0} ([9, Theorem 1.1]) Π3 (Theorem B)

Effective Π3 (Theorem A)

Computable (Z effective, Zd sofic) Π2 (Theorem 27)

Sofic and minimal {0} (Corollary 29)

Effective and minimal Π1 (Corollary 30)

Effective and 1-Mixing/Block-Gluing Π3 (Proposition 32) Π3 (Proposition 34)

Figure 1 Sets of possible extender entropies for various classes of subshifts.

Finally, we also study extender entropies of subshifts constrained by some dynamical
assumptions, such as minimality or mixingness. What is known by the authors at this stage
can be summed up by the table Figure 1.

A. Callard, L. Paviet Salomon, and P. Vanier 21:3

2 Definitions

2.1 Subshifts
Let A denote a finite set of symbols and d ∈ N the dimension. A configuration is a coloring
x ∈ AZd , and the color of x at position p ∈ Zd is denoted by xp. A (d-dimensional) pattern
over A is a coloring w ∈ AP for some set P ⊆ Zd called its support1. For any pattern w over
A of support P , we say that w appears in a configuration x (and we denote w ⊑ x) if there
exists p0 ∈ Zd such that wp = xp+p0 for all p ∈ P .

The shift functions (σt)t∈Zd act on configurations as (σt(x))p = xp+t. For t ∈ Zd, a
configuration x is t-periodic if σt(x) = x. We sometimes consider patterns or configuration
by their restriction: for S ⊆ Zd either finite or infinite, and x ∈ AZd a configuration (resp. w

a pattern), we denote by x|S (resp. w|S) the coloring of AS it induces on S.

▶ Definition 1 (Subshift). For any family of finite patterns F , we define

XF =
{

x ∈ AZd

| ∀w ∈ F , w ̸⊑ x
}

A set X ⊆ AZd is called a subshift if it is equal to some XF .

Given a subshift X and a finite support P ⊆ Zd, we define LP (X) as the set of patterns
w of support P that appear in the configurations of X. Such patterns are said to be globally
admissible in X. We define the language of X as L(X) =

⋃
P ⊆Zd finite

LP (X). Slightly abusing
notations, we denote Ln(X) = LJ0,n−1Kd(X) for n ∈ N.

For X ⊆ AZd and Y ⊆ BZd two subshifts, φ : X → Y is a factor map if there exists some
N ⊆ Zd and f : AN → B such that φ(x)p = f(x|p+N): then Y is a factor of X. X and Y

are conjugate if there exists a bijective factor map φ : X → Y (called a conjugacy). Any
object associated with subshifts that is preserved by conjugacy is a conjugacy invariant.

Subshifts can be classified as follows: a subshift is of finite type (SFT) if it is equal to
XF for some finite family F of forbidden patterns; a subshift X is effective if it is equal to
XF for some computably enumerable family F of forbidden patterns; and a subshift is sofic
if it is a factor of some SFT, called its SFT cover. SFTs are sofic by definition, and sofic
subshifts are effective.

Reciprocally, for a Zd subshift X ⊆ AZd , define the following lifts:
the periodic lift X↑ = {x↑ ∈ AZd+1 | x ∈ X}, where (x↑)|Zd×{i} = x for all i ∈ Z;
the free lift X⇑ = {y ∈ AZd+1 | ∀i ∈ Z, yZd×{i} ∈ X}.

If X is sofic (resp. effective), then both X↑ and X⇑ are also sofic (resp. effective) since they
can be defined by the same forbidden patterns. On the other hand:

▶ Theorem 2 ([13], [2, Theorem 3.1], [8, Theorem 10]). If X is an effective Zd subshift, then
X↑ is a sofic Zd+1 subshift.

Finally, most of our constructions will involve the notion of layers: for a subshift of a
cartesian product X ⊆

∏
i∈I Li, the layers of X are the projections of X onto each of the Li,

which are often named for convenience. For J ⊆ I, we will denote by πLj1 ×Lj2 ×... :
∏

i∈I Li 7→∏
j∈J Lj the cartesian projection.

1 It is sometimes convenient to consider patterns up to the translation of their support. Usually, context
will make it clear whether patterns are truly equal, or only up to a Zd translation.

STACS 2025

21:4 Computability of Extender Sets in Multidimensional Subshifts

2.2 Pattern Complexity and Extender Sets
The traditional notion of complexity is called pattern complexity and is defined by NX(n) =
Ln(X). The exponential growth rate of |NX(n)| is the topological entropy:

h(X) = lim
n7→+∞

log |NX(n)|
nd

.

In this article, we focus on another notion of complexity based on extender sets:

▶ Definition 3 (Extender set). For X ⊆ AZd a d-dimensional subshift, P ⊆ Zd and w ∈ AP

a pattern of support P , the extender set of w is the set

EX(w) = {x ∈ AZd\P | x ⊔ w ∈ X},

where (x ⊔ w)p = wp if p ∈ P and (x ⊔ w)p = xp otherwise.

In other words, EX(w) is the set of all possible valid “completions” of the pattern w in X.
For example, for two patterns with the same support w, w′, we have EX(w) ⊆ EX(w′) if and
only if the pattern w can be replaced by w′ every time it appears in any configuration of X.

In the case of Z subshifts, extender sets are similar to the more classical notions of
follower (resp. predecessor) sets, which are the set of right-infinite (resp. left-infinite) words
that complete a finite given pattern (see for example [9]). Parallels can also be drawn with
Nerode congruence classes.

For X a Zd subshift, denote EX(n) = {EX(w) | w ∈ Ln(X)} its set of extender sets. The
extender set sequence (|EX(n)|)n∈N and its growth rate2 are defined in [9]:

▶ Definition 4 ([10, Definition 2.17]). For a Zd subshift X, its extender entropy is

hE(X) = lim
n→+∞

log |EX(n)|
nd

.

This limit is well-defined by the multivariate subadditive lemma (see [5, Theorem 1]). In
particular, hE(X) = inf

n→+∞
log |EX (n)|

nd , and hE(X) could actually be computed along any

sequence of hyperrectangles that eventually fills Zd.

Examples

1. Let us consider X = AZd some full-shift in dimension d. Then X has maximal topological
entropy, but hE(X) = 0: indeed, for any two patterns w, w′ ∈ Ln(X), we have EX(w) =
EX(w′) = {AZd\J0,n−1Kd}; which implies that |EX(n)| = 1 for every n ∈ N.

2. Let us consider X a (strongly) periodic subshift: there exist p1, . . . , pd ∈ N such that, for
every x ∈ X and i ≤ d, we have σpi·ei(x) = x. Then X has zero topological entropy, and
we also have hE(X) = 0. Indeed, for n ≥ max pi and w ∈ Ln(X), w is the only pattern
w′ such that EX(w′) = EX(w); so that |EX(n)| = |Ln(X)| ≤ pAp for p =

∏
i pi.

Some Properties

▶ Theorem 5 (From [10] on Z subshifts). On Zd subshifts:
hE is a conjugacy invariant.
hE is not necessarily decreasing under factor map.

2 The authors define it for Z subshifts, but the definition makes sense for higher dimensional shifts.

A. Callard, L. Paviet Salomon, and P. Vanier 21:5

hE is additive under product (i.e. for X, Y two subshifts, hE(X × Y) = hE(X) + hE(Y)).
hE is upper bounded by h (i.e. for X a subshift, hE(X) ≤ h(X)).
For SFTs, the following proposition is folklore:

▶ Proposition 6 ([15, Section 2]). Let X be a d-dimensional SFT. Then hE(X) = 0.
Sketch of proof. In an SFT defined by adjacency constraints, the extender set of a pattern
w ∈ AJ0,n−1Kd is determined by its border; and there are at most 2O(nd−1) such borders. ◀

By an analog of the Myhill-Nerode theorem, Z sofic subshifts have extender entropy zero:
▶ Proposition 7 ([21, Lemma 3.4]). Let X be a 1-dimensional subshift. Then X is sofic if
and only if (|En(X)|)n∈N is uniformly bounded.

2.3 Computability Notions
2.3.1 Arithmetical Hierarchy
The arithmetical hierarchy [24, Chapter 4] stratifies formulas of first-order arithmetic over N
by the number of their alternating unbounded quantifiers: for n ∈ N, define

Π0
n = {∀k1, ∃k2, ∀k3, . . . ϕ(k1, . . . , kn) | ϕ only contains bounded quantifiers}

Σ0
n = {∃k1, ∀k2, ∃k3, . . . ϕ(k1, . . . , kn) | ϕ only contains bounded quantifiers}.

A decision problem is said to be in Π0
n (resp. Σ0

n) if its set of solutions S ⊆ N is described
by a Π0

n (resp. Σ0
n) formula: in other words, Π0

0 = Σ0
0 corresponds to the set of computable

decision problems; Σ0
1 is the set of computably enumerable decision problems, etc. . .

2.3.2 Arithmetical Hierarchy of Real Numbers
The arithmetical hierarchy of real numbers [27] stratifies real numbers depending on the
difficulty of computably approximating them: for n ≥ 0, define

Σn = {x ∈ R | {r ∈ Q | r ≤ x} is a Σ0
n set}

Πn = {x ∈ R | {r ∈ Q | r ≥ x} is a Σ0
n set} = {x ∈ R | {r ∈ Q | r ≤ x} is a Π0

n set}.

In particular, Σ0 = Π0 is the set of computable real numbers, i.e. numbers that can
be computably approximated up to arbitrary precision; Π1 real numbers are also called
right-computable, since they can be computably approximated from above; etc. . .

Alternatively, this hierarchy is also defined by the number of alternating limit operations
needed to obtain a real number from the computable ones [27]. In other words, for n ≥ 1:

Σn =
{

sup
k1∈N

inf
k2∈N

sup
k3∈N

. . . βk1,...,kn | (βk1,...,kn)k1,...,kn∈N ∈ QNn

is computable
}

Πn =
{

inf
k1∈N

sup
k2∈N

inf
k3∈N

. . . βk1,...,kn | (βk1,...,kn)k1,...,kn∈N ∈ QNn

is computable
}

3 Elementary Constructions on Extender Sets

The free lift

We use this construction to generalize results on Z or Z2 subshifts to higher dimensions:
▷ Claim 8. For a subshift X ⊆ AZd , hE(X) = hE(X⇑).
Proof. Consider X⇑ ⊆ AZd+1 . Since each d-dimensional hyperplane of Zd+1 contains an
independent configuration, we have |EX⇑(n)| = |EX(n)|n and hE(X⇑) = hE(X). ◁

STACS 2025

21:6 Computability of Extender Sets in Multidimensional Subshifts

The (semi)-mirror construction

▷ Claim 9. Let Y be any Z2 sofic subshift over an alphabet A. There exists a Z2 sofic
subshift Ymirror such that hE(Ymirror) = h(Y) (= h(Ymirror)).

A first idea to create one extender set per pattern of Y is the mirror construction: add a
line of some special symbol ∗ to separate two half-planes; the upper half-plane contains a
half-configuration of Y , while the lower half-plane contains its reflection by the line of ∗. As
any two patterns of Y have distinct reflections, they generate different extender sets: this
results in a subshift Y ′ verifying hE(Y ′) = h(Y). Unfortunately, Y ′ is not always sofic, see
for example [1, Proposition 57].

∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗

(a) The (classical) mirror shift.

∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗

(b) The semi-mirror shift.

Figure 2 Example configurations of the mirror and semi-mirror subshifts.

To solve this non-soficness issue, the semi-mirror with large discrepancy from [7, Ex-
ample 5′′] reflects a single symbol instead of the whole upper-plane:

Sketch of proof. For A′ = A ∪ {□, ∗}, define Ymirror over the alphabet A′ as follows:
Symbols ∗ must be aligned in a row, and there is at most one such row per configuration.
If a row of ∗ appears in a configuration x, then the lower half-plane contains at most one
non-□ position; and the upper half-plane must appear in a configuration of Y .
If xi,j = ∗ and xi,j−k ∈ A for some i ∈ Z, j ∈ Z, k ∈ N, then xi,j+k = xi,j−k. In other
words, the only symbol of A in the lower half-plane must be the mirror of the same
symbol in the upper half-plane, as reflected by the horizontal row of ∗ symbols.

Then Ymirror is sofic and hE(Ymirror) = h(Y). Indeed, any two distinct patterns of Y must
appear in Ymirror and have distinct extender sets, since they can have different reflections. ◀

This construction shows that there exist subshifts with arbitrarily large extender entropy;
and since every Π1 real number is the topological entropy of some (SFT, thus) sofic sub-
shift [14], every Π1 number can be realized as the extender entropy of some sofic subshift. In
particular, this further disproves the conjecture from [15] mentioned in the introduction.

4 Decision Problems on Extender Sets

4.1 Inclusion of Extender Sets
Let us consider the following decision problem:

Extender-inclusion
Input: An effective subshift X ⊆ AZd

, and u, v ∈ L(X),
Output: Whether EX(u) ⊆ EX(v).

A. Callard, L. Paviet Salomon, and P. Vanier 21:7

▶ Proposition 10. Extender-inclusion is a Π0
2-complete problem.

Proof of inclusion. As EX(u) ⊆ EX(v) if and only if ∀B ∈ A∗, u ⊑ B =⇒ (B ̸∈ L(X) ∨
((B \ u) ⊔ v) ∈ L(X)), we obtain inclusions: indeed, for X effective, deciding whether a
pattern w belongs in L(X) is a Π0

1 problem. ◀

Proof of Π0
2-hardness for Z subshifts. We reduce the following known Π0

2 problem3:
Det-Rec-state
Input: A deterministic Turing Machine M , and a state q,
Output: Is q visited infinitely often by M during its run on the empty input?

Let (M, q) be an instance of this Det-Rec-state. We construct an effective subshift X

over the alphabet {0, 1,□} as follows:
Symbols 0 and 1 cannot appear together in a configuration. The symbol 1 can only
appear at most once in a configuration.
If two symbols 0 appear in a configuration at distance, say, n > 0, then the whole
configuration is n-periodic; and if M enters q at least n′ times, then we impose n > n′.

As the rules above forbid an enumerable set of patterns, X is an effective subshift.
Finally, EX(0) ⊆ EX(1) if and only if M enters q infinitely many times. Indeed, the

symbol 0 can be extended either by semi-infinite lines of symbols □, which also extend the
symbol 1 ; or by configurations containing n-periodic symbols 0, which do not extend the
symbol 1 because of the first rule. However, by the second rule, this n-periodic configuration
exists if and only if M visits q less than n times. ◀

4.2 Computing the Number of Extender Sets
Let us determine the computational complexity of the problem “k ≤ |EX(n)|”, when given a
subshift X, some size n and some k. It is equivalent to the following:∨

v1,...,vk∈Ln(X)

∧
1≤i<j≤k

EX(vi) ̸= EX(vj).

Since vi ∈ Ln(X) is a Π0
1 ⊆ Σ0

2 problem and that the class of Σ0
2 problems is stable by

finite disjunctions and conjunctions, we conclude from Proposition 10 that:

▶ Lemma 11. For an effective subshift X, “ k ≤ |EX(n)|” is a Σ0
2 problem.

4.3 Upper Computational Bounds on Extender Entropies
▶ Corollary 12. For X an effective subshift, hE(X) ∈ Π3.

Proof. Given X and n, the set {k ≤ |EX(n)|} is a Σ0
2 set if X is effective by Lemma 11.

This implies that log |EX (n)|
nd is Σ2; and since hE(X) = infn

log |EX (n)|
nd , we obtain hE(X) ∈ Π3

as the infimum of Σ2 real numbers. ◀

5 Π3 Extender Entropies for Z Effective Subshifts

Let us focus on one-dimensional subshifts for the time being.

▶ Theorem A. The set of extender entropies of Z effective subshifts is exactly Π3 ∩ [0, +∞).

3 It is equivalent to Inf (does a given machine halt on infinitely many inputs?). See [24, Theorem 4.3.2].

STACS 2025

21:8 Computability of Extender Sets in Multidimensional Subshifts

In order to construct a subshift Zα with hE(Zα) = α, we would like to have |EZα(n)| ≃ 2αn.
To do so, we could create one extender set per pattern, and 2αn patterns of size n (as the
semi-mirror in Section 3); however, since effective subshifts have Π1 entropies, this would
not realize the whole class of Π3 numbers.

Yet, realizing the right number of patterns is the main idea behind the proof that follows:
we just do not blindly create one extender set per pattern, but only separate extender sets
when some conditions are met.

5.1 Preliminary: Encoding Integers With Configurations ⟨i⟩k

Before we begin our construction, we fix a way to encode integers in configurations: to encode
the integer i ∈ N, we use configurations where a symbol ∗ is i-periodic, and the rest is blank.

More formally, consider the alphabet A∗ = {∗, ␣}. Denote by ⟨i⟩k1
the i-periodic

configuration ⟨i⟩k1
= σk1(. . . ␣ ∗ ␣ . . . ␣ ∗︸ ︷︷ ︸

i+1 symbols

␣ . . . ␣∗␣ . . .) properly defined as (⟨i⟩k1
)p = ∗ if and

only if p = k1 mod i. A configuration ⟨i⟩k1
is said to encode the integer i ∈ N. Considering

the subshift all the configurations ⟨i⟩k1
for i ∈ N and k1 ≤ i generate, we denote:

X∗ =
⋃
i∈N

{⟨i⟩k1
∈ AZ

∗ | k1 ≤ i} ∪ ⟨∞⟩

where ⟨∞⟩ = {x ∈ AZ
∗ | |x|∗ ≤ 1} is the set of configurations having at most one symbol ∗.

The configurations of ⟨∞⟩ are said to be degenerate, and they appear when taking the closure
of all ⟨i⟩k1

.

5.2 Preliminary: Toeplitz Density in Periodic Configurations
Our construction will also need to build configurations with a controlled density of symbols,
i.e. configurations on {0, 1} where the number of symbols 1 in large patterns converges
to some value: for some fixed α, we want to build configurations x ∈ {0, 1}Z such that
limn→+∞

1
n · |x|J0,n−1K|1 = α. Several explicit constructions of such configurations and

subshifts exist. We choose to work with Toeplitz sequences.

Toeplitz density words

Consider the ruler sequence T = 12131214 . . . defined by Tn = max{m ∈ N : 2m | 2n}
(see Oeis A001511). For a given binary sequence u = (un)n∈N ∈ {0, 1}N, we consider its
Toeplitzification T (u) ∈ {0, 1}N defined as T (u)n = uTn

for n ∈ N.
In particular, for β ∈ [0, 1] a real number and (βn)n∈N its proper binary expansion, we

consider the word T (β) = (βTn)n∈N = β1 β2 β1 β3 β1 β2 Denoting by |w|1 the numbers of
letters 1 in a binary word w ∈ {0, 1}∗ and by |w| its length, we have:

▷ Claim 13. For β ∈ [0, 1] and w ⊑ T (β) a factor of T (β), we have |w|1 = β · |w| + O(1).

Toeplitz density in periodic configurations

For our specific construction, let α ∈ [0, 1] and i ∈ N, and consider the subshift T≤α,i

composed of i-periodic configurations made of truncated Toeplitz words:

T≤α,i = {x ∈ {0, 1}Z | ∃β ≤ α, ∃k1 ∈ J0, i − 1K, ∀p ∈ Z, xp = T (β)(p+k1 mod i)}

https://oeis.org/A001511

A. Callard, L. Paviet Salomon, and P. Vanier 21:9

We denote T (β, i)k1 ∈ {0, 1}Z the configuration defined by (T (β, i)k1)p = T (β)(p+k1 mod i)
for p ∈ Z. Notice that, for any α ∈ [0, 1], i ∈ N and n ∈ N, there are |Ln(T≤α,i)| =
2log(min(i,n))+O(1) · O(min(i, n)) factors of length n in T≤α,i.

▷ Claim 14. Let α ∈ [0, 1] ∩ Π1. Then T≤α,i is an SFT, and a family of forbidden patterns
realizing T≤α,i can be computably enumerated from α.

Proof. Consider α ∈ Π1: the set {r ∈ Q | r > α} is computably enumerable. Thus, the
following family F of forbidden patterns that realizes T≤α,i is recursively enumerable: forbid
finite pattern that are either not i-periodic, or do not respect the structure of the ruler
sequence in an i-period; and inside an i-period, forbid patterns rT1 rT2 rT1 . . . ∈ {0, 1}i that
encode the finite expansion of a rational r =

∑log i
k=1 rk2−k if r is such that r > α. ◁

5.3 Construction: the Effective Z Subshift Zα

Let us now begin the construction to prove Theorem A. Let α ∈ Π3 be a positive real number,
α = infi supj αi,j for some computable sequence (αi,j) of Π1 real numbers. We can assume
α ≤ 1 since extender entropy is additive under cartesian products, and using [27, Lemma 3.1]
we can assume that (αi,j)i,j∈N2 satisfies some monotonicity properties: for all i, (αi,j)j∈N is
weakly increasing towards some αi; and the sequence (αi)i∈N is weakly decreasing towards α.

Auxiliary subshift Z′
α

We create an auxiliary subshift Z ′
α on the following three layers:

1. First layer L1: We take L1 = X∗ to encode integers i ∈ N. Intuitively, i will denote
which Σ2 number αi is approximated in the configuration.

2. Second layer L2: We also set L2 = X∗ to encode integers j ∈ N, j ≥ i. Intuitively, j will
denote which Π1 number αi,j is approximated in the configuration.

3. Density layer Ld: We define the density layer as Ld = {0, 1}Z. Whenever the first two
layers are non-degenerate, this layer will be restricted to densities ≲ αi,j . Since the real
numbers αi,j are Π1, the subshifts T≤αi,j ,i are effective from the numbers αi,j .

such that Z ′
α is defined as:

Z ′
α =

{
(z(1), z(2), z(d)) ∈ L1 × L2 × Ld | z(2) ∈ ⟨∞⟩

}
∪

⋃
i∈N

⋃
j≥i

{
(z(1), z(2), z(d)) ∈ L1 × L2 × Ld | ∃k1, k2 ∈ N,

z(1) = ⟨i⟩k1
, z(2) = ⟨j⟩k2

and ∃β ≤ αi,j , z(d) = T (β, i)k1

}
∗ ∗ ∗ ∗∗ ∗ ∗
1 0 1 1 1 0 1 0 1 0 1 1 1 0 1 1 0 1 1 1 0 1 0 1 0 1 1 1 0 1 1 0 1 1 1 0 1 0 1 0 1 1 1 0 1

Figure 3 A proper configuration: Ld contains a Toeplitz encoding of .10102 = 5
8 . z =

(⟨15⟩11 , ⟨18⟩1 , T (5
8 , 15)10). The vertical red line indicates the origin.

▷ Claim 15. The Z subshift Z ′
α is an effective subshift.

Proof. Since the subshift X∗ is effective, the conditions on the first two layers L1 and L2 are
straightforward to enforce. Furthermore, since the αi,j are Π1 real numbers enumerated by a
single machine, by Claim 14 we can obtain Z ′

α as follows: a pattern w = (w(1), w(2), w(d)) ∈
L(X∗) × L(X∗) × {0, 1}n is forbidden whenever both w(1) and w(2) contain at least two
symbols ∗ (so that w(1) encodes an integer i ∈ N, w(2) encodes an integer j ≥ i) and w(d)

contains a pattern forbidden in T≤αi,j ,i. ◁

STACS 2025

21:10 Computability of Extender Sets in Multidimensional Subshifts

A configuration z = (⟨i⟩k1
, ⟨j⟩k2

, T (β, i)k1) ∈ Z ′
α is said to be proper. A configuration

z = (z(1), z(2), ·) ∈ Z ′
α with z(2) ∈ ⟨∞⟩ is said to be degenerate. Thus, we separate patterns

into two categories: whenever w ∈ L(Z ′
α) only appears in degenerate configurations, we call

it a degenerate pattern; if w can appear in a proper configuration, we call it a proper pattern.

On the one hand, degenerate patterns of Z ′
α do not contribute much to the number of

extender sets, despite being exponentially many:

▷ Claim 16. Let n ∈ N, and consider DE(n) = {EZ′
α

(w) | w ∈ Ln(Z ′
α) degenerate}, the set

of extender sets of degenerate patterns of size n. Then |DE(n)| = O(n3).

Proof. Let u, v ∈ Ln(Z ′
α) be two degenerate patterns. Whenever u(1) = v(1) and u(2) = v(2),

we have EZ′
α

(u) = EZ′
α

(v) because the density layer of such patterns can be anything. Since
at most a single symbol ∗ can appear on the second layer of degenerate patterns, by counting
possibilities for their first layers we obtain |DE(n)| = O(n3). ◁

On the other hand, all proper patterns of Z ′
α belong to distinct extender sets:

▷ Claim 17. Let u, v ∈ Ln(Z ′
α) be two distinct proper patterns. Then EZ′

α
(u) ̸= EZ′

α
(v).

Proof. Let u ∈ Ln(Z ′
α) be a proper pattern. It can be extended into a whole proper

configuration z = (⟨i⟩k1
, ⟨j⟩k2

, z(d)) ∈ Z ′
α such that z|J0,n−1K = u. By definition, z is

periodic of period i · j: thus, z|J0,n−1K is entirely determined by z|Jn,i·j+n−1K, and z|Z\J0,n−1K

can only extend the pattern u itself. ◁

However, there are only polynomially many distinct proper patterns of a given size in Z ′
α.

The next section will neverthelesss create a subshift Zα with the correct (exponential) amount
of proper patterns, thanks to the following remark:

▷ Claim 18.
For an integer i ∈ N and a proper configuration z ∈ Z ′

α such that z(1) = ⟨i⟩k1
, an i-period

of the density layer z(d) contains at most αi · i + O(1) symbols 1.
For integers n ∈ N and i ≥ n, and a proper configuration z ∈ Z ′

α such that z(1) = ⟨i⟩k1
, a

factor of length n of the density layer z(d) contains at most αn · n + O(1) symbols 1.

Proof. This follows from Claim 13 and the monotonicity of the sequence (αi,j)i,j∈N2 . ◁

Free bits in the subshift Zα

To create the desired exponential number of extender sets, we create the subshift Zα by
adding free bits on top of the symbols 1 of the density layer. Informally, if there were
β · i + O(1) symbols 1 in an i-period of the density layer in Z ′

α, adding free bits on top of the
symbols 1 creates 2β·i+O(1) patterns in Zα. Thus, we add a fourth layer to Z ′

α:

4. Free layer Lf : We define the free layer as Lf = {␣, 0, 1}Z. Given the synchronizing map
πsync : {␣, 0, 1} → {0, 1} defined as πsync(0) = πsync(1) = 1 and πsync(␣) = 0, we say that
two configurations z(d) ∈ Ld and z(f) ∈ Lf are synchronized if πsync(z(f)) = z(d).

and we define Zα as:

Zα =
{

(z(1), z(2), z(d), z(f)) ∈ L1 × L2 × Ld × Lf | z(1) ∈ ⟨∞⟩ or z(2) ⟨∞⟩
}

∪
⋃
i∈N

⋃
j≥i

{
(z(1), z(2), z(d), z(f)) ∈ L1 × L2 × Ld × Lf | ∃k1, k2 ∈ N,

z(1) = ⟨i⟩k1
, z(2) = ⟨j⟩k2

πsync(z(f)) = z(d),

∃β ≤ αi,j , z(d) = T (β, i)k1 and z(f) is i-periodic
}

.

A. Callard, L. Paviet Salomon, and P. Vanier 21:11

▷ Claim 19. The Z subshift Zα is effective.

Proof. In addition to the forbidden patterns of Z ′
α, forbid patterns w = (w(1), w(2), w(d), w(f))

for which w(1) and w(2) both contain two symbols ∗ (in which case, denote by i the distance
between two symbols ∗ in w(1)), but w(f) is either not synchronized with w(d) or not i-periodic.

◁

We extend the terminology from Z ′
α to Zα and call proper the configurations of Zα that

encode integers i ∈ N and j ≥ i on their first two layers, and degenerate those who do not.
Similarly, a pattern is proper if it can be extended into a proper configuration, and degenerate
if it only extends into degenerate configurations.

Since the free layer is required to be i-periodic only in proper configurations, Claims 16
and 17 both extend from Z ′

α to Zα by the very same arguments:

▷ Claim 20.
For n ∈ N, consider DE(n) = {EZα(w) | w ∈ Ln(Zα) degenerate}. Then DE(n) = O(n2).
Let u, v ∈ Ln(Zα) be two distinct proper patterns. Then EZα

(u) ̸= EZα
(v).

▶ Lemma 21. Let P (n) = {w ∈ Ln(Zα) | w is proper}. Then

2n·αn+O(1) ≤ P (n) ≤ poly(n) ·
n∑

i=1
2αi·i+O(1).

Proof: lower bound. Consider the patterns w′ = (⟨n⟩0 , ⟨j⟩0 , T (αn,j , n)0)|J0,n−1K in Z ′
α for

j ≥ n : the number of symbols 1 in the density layer w′(d) of such w′ is αn,j · n + O(1)
by Claim 13. Since αn,j → αn, by taking j ≥ n large enough we obtain a proper pattern
w′ ∈ Ln(Z ′

α) such that its density layer w′(d) contains αn · n + O(1) symbols 1.
Thus, we obtain 2αn·n+O(1) proper patterns w ∈ Ln(Zα) such that πL1×L2×Ld

(w) = w′

(since each symbol 1 in w(d) leads to two distinct patterns in the free layer Lf). ◀

Proof: upper bound. To overestimate the number of proper patterns |P (n)|, we consider
the restrictions w′ = z′

J0,n−1K for z′ ranging in the proper configurations of Z ′
α (consider all

values of ⟨i⟩k1
, ⟨j⟩k2

and of n-factors in y(d)), and bound the number of symbols 1 in each
case: by Claim 18,

If i ≤ n, an i-period of the density layer w′(d) contains less than αi · i + O(1) symbols 1.
For i > n, w′(d) contains less than αn · n + O(1) symbols 1.

Since each symbol 1 in an i-period of the density layer results in two distinct patterns in the
free layer, and there are less than O(i2) possibilities for such periods, we obtain:

P (n) ≤
n∑

i=1

i−1∑
k1=0

n∑
j=1

j−1∑
k2=0

O(i2) · 2αi·i+O(1) +
n∑

k1=0

n∑
k2=0

O(n2) · 2αn·n+O(1)

≤ poly(n) ·
n∑

i=1
2αi·i+O(1). ◀

Combining Lemma 21 with Claim 20, we obtain by taking the limit over αn → α that
hE(Zα) = α, which concludes the proof.

STACS 2025

21:12 Computability of Extender Sets in Multidimensional Subshifts

6 Π3 Extender Entropies for Z2 Sofic Subshifts

We now want to extend Theorem A to multidimensional sofic shifts: an idea could be to
replace i-periodic words on Z in the previous construction with (i, i)-periodic squares on Z2.
Unfortunately, such a subshift cannot be sofic4.

Yet, making configurations periodic is not necessary to ensure that two proper patterns u

and v have distinct extender sets: it is enough to have a configuration that witnesses the
difference between u and v (by extending one but not the other). This was already illustrated
in the semi-mirror shift (see Section 3): instead of mirroring the whole half-plane (which is
not sofic), non-deterministically reflecting a single bit from the upper to the lower half-plane
is actually enough, since each bit can be reflected individually in some configuration. In this
section, we use this idea to prove (see Figure 4):

∗
∗
∗
∗
∗
∗
∗
∗
∗
∗
∗
∗
∗
∗
∗
∗
∗
∗

∗
∗
∗
∗
∗
∗
∗
∗
∗
∗
∗
∗
∗
∗
∗
∗
∗
∗

∗
∗
∗
∗
∗
∗
∗
∗
∗
∗
∗
∗
∗
∗
∗
∗
∗
∗

∗
∗
∗
∗
∗
∗
∗
∗
∗
∗
∗
∗
∗
∗
∗
∗
∗
∗

∗
∗
∗
∗
∗
∗
∗
∗
∗
∗
∗
∗
∗
∗
∗
∗
∗
∗

(a) Whole (i, i)-periodic squares of free bits.
∗
∗
∗
∗
∗
∗
∗
∗
∗
∗
∗
∗
∗
∗
∗
∗
∗
∗

∗
∗
∗
∗
∗
∗
∗
∗
∗
∗
∗
∗
∗
∗
∗
∗
∗
∗

∗
∗
∗
∗
∗
∗
∗
∗
∗
∗
∗
∗
∗
∗
∗
∗
∗
∗

∗
∗
∗
∗
∗
∗
∗
∗
∗
∗
∗
∗
∗
∗
∗
∗
∗
∗

∗
∗
∗
∗
∗
∗
∗
∗
∗
∗
∗
∗
∗
∗
∗
∗
∗
∗

(b) A single (i, i)-periodic free bit.

Figure 4 The periodized area is highlighted in color ■ and hatched. To make the figure readable,
symbols for free bits are {■,■} instead of {b, b′}.

▶ Theorem B. The set of extender entropies of Z2 sofic subshifts is exactly Π3 ∩ [0, +∞).

6.1 Preliminary: Marking Offsets With Configurations [2i]m1,m2

In our construction, we will need to mark some positions (m1 + iZ, m2 + iZ). To do so, we
consider the alphabet Am = {□,■}. Denote by [2i]m1,m2 the (2i, 2i)-periodic configuration
formally defined as ([2i]m1,m2

)p = ■ if and only if p = (m1, m2) mod (2i, 2i). We say that a
symbol ■ is a marker.

For a configuration x = [2i]m1,m2
with (m1, m2) ∈ J0, 2i − 1K2, we say that a position

p ∈ Z2 is marked if p ∈ (m1 + iZ, m2 + iZ). This lattice has unit cells of size i × i instead of
2i × 2i: this is voluntary. In particular, some marked positions p ∈ Z2 satisfy xp = □.

Considering the subshift generated by all the configurations [i]m1,m2
, we define:

G =
⋃
i∈N

{[i]m1,m2
| (m1, m2) ∈ J0, i − 1K2} ∪ [∞]

where [∞] = {x ∈ AZ2

m | |x|■ ≤ 1} is the set of configurations having at most one marker
symbol ■: these are the configurations that appear when taking the closure of all [i]m1,m2

.

4 The argument proving that the classical mirror subshift cannot be sofic still applies here: there would
be 2O(i2) distinct i × i patterns, but only 2O(i) borders in the SFT cover.

A. Callard, L. Paviet Salomon, and P. Vanier 21:13

6.2 Construction: the Sofic Z2 Subshift Yα

Let us now begin a construction to prove Theorem B. We use the notations introduced in the
proof of Theorem A: we fix α ∈ [0, 1] ∩ Π3 such that α = infi supj αi,j for αi,j a computable
sequence of Π1 real numbers (we assume the same monotonicity properties). We define a
subshift Yα on the following five layers:

Lifted layers: We define the first three layers of Yα as L↑
1 × L↑

2 × L↑
d, where L1, L2 and

Ld are the three layers of the subshift Z ′
α defined in the proof of Theorem A.

Marker layer Lm: We define Lm = G to mark positions p ∈ (m1 + iZ, m2 + iZ).
Free layer Lf : We also define the free layer by Lf = {␣, 0, 1}Z2 .

and we define Yα as (see Figure 5 for an illustration):

Yα =
{

(y(1)↑, y(2)↑, y(d)↑, y(m), y(f)) ∈ L↑
1 × ⟨∞⟩↑ × L↑

d × Lm × Lf |

∀i ∈ N, (∃k1 ∈ N, y(1) = ⟨i⟩k1
⇐⇒ ∃m1, m2 ∈ N, y(m) = [2i]m1,m2

)
}

∪
⋃
i∈N

⋃
j≥i

{
(y(1)↑, y(2)↑, y(d)↑, y(m), y(f)) ∈ L↑

1 × L↑
2 × L↑

d × Lm × Lf | ∃k1, m1, m2, k2 ∈ N,

y(1) = ⟨i⟩k1
, y(m) = [2i]m1,m2

, y(2) = ⟨j⟩k2
, πsync(y(f)) = y(d)↑,

∃β ≤ αi,j , y(d) = T (β, i)k1 and y(f)|(m1+iZ)×(m2+iZ) is constant
}

.

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

∗
∗
∗
∗
∗
∗
∗
∗
∗
∗
∗
∗
∗
∗
∗

∗
∗
∗
∗
∗
∗
∗
∗
∗
∗
∗
∗
∗
∗
∗

∗
∗
∗
∗
∗
∗
∗
∗
∗
∗
∗
∗
∗
∗
∗

∗
∗
∗
∗
∗
∗
∗
∗
∗
∗
∗
∗
∗
∗
∗

∗
∗
∗
∗
∗
∗
∗
∗
∗
∗
∗
∗
∗
∗
∗

Figure 5 Projection of a proper configuration on L↑
1 × Lm × Lf . The symbols ∗ are on L↑

1, the
symbols ■ on Lm the symbols 1 on Lf . All the other bits of Lf (not drawn here) are free.

Extending the terminology from Zα to Yα, we call proper the configurations of Yα that
encode integers i ∈ N and j ≥ i on their first two layers, and degenerate those which do not.
Additionally we say that a pattern is proper if it can be extended into a proper configuration,
and degenerate otherwise. We say that two proper patterns u, v ∈ Ln(Yα) are similar if they
are equal on their first four layers (i.e. πL↑

1×L↑
2×L↑

d
×Lm

(u) = πL↑
1×L↑

2×L↑
d

×Lm
(v)).

▷ Claim 22. Two similar proper patterns u, v ∈ Ln(Yα) have distinct extender sets if
and only if there exists a proper configuration y that extends u and that marks a position
p ∈ J0, n − 1K2 such that u

(f)
p ̸= v

(f)
p .

We would very much like an analog of Claim 20: unfortunately, not all proper patterns
generate distinct extender sets. Indeed, by the previous claim, similar proper patterns
generate distinct extender sets only when the positions at which they differ can be marked by
an extending configuration (this depends on the relative position of an n× n window covering
the four quadrants of a 2i × 2i square, etc. . .). Yet, we do not need precise considerations to
count the number of extender sets, and simply prove the following bounds:

STACS 2025

21:14 Computability of Extender Sets in Multidimensional Subshifts

▶ Lemma 23. Let PE(n) = {EYα
(w) ∈ Ln(Yα) | w is proper}. Then

2αn·n2+O(n) ≤ PE(n) ≤ poly(n) ·
n∑

i=0
2αi·i2+O(i).

Proof: lower bound. For j ≥ n, consider the set Jj = {(y ∈ Yα | y(1) = ⟨n⟩0 , y(2) =
⟨j⟩0 , y(d) = T (αn,j , n)}. The number of symbols 1 in an (n × n)-period in the density layer
of such configurations is αn,j · n2 + O(n) by Claim 13. Since αn,j → αn, by taking j ≥ n

large enough we obtain a set J = Jj of proper configurations y whose density layer y(d)

contains αn · n2 + O(n) symbols 1 in an (n × n)-period.
Considering the free layer of such patterns, there are at least 2αn·n2+O(n) distinct patterns

in the finite set W = {y|J0,n−1K2 | y ∈ Jj and y(m)|J0,n−1K2 = □J0,n−1K2}, and we claim that
they all generate distinct extender sets. Indeed, for any two distinct patterns u, v ∈ W , there
exists a position p ∈ J0, n − 1K2 such that u

(f)
p ̸= v

(f)
p ; and there exists a configuration y ∈ Jj

that extends u with y(m) = [2n]p+(n,n): in particular, y marks the position p.5 By Claim 22,
we obtain EYα(u) ̸= EYα(v). This proves that PE(n) ≥ 2αn·n2+O(n). ◀

Proof: upper bound. We proceed as with the Z effective subshift Zα: to bound the car-
dinality of PE(n), we consider the restrictions w = y|J0,n−1K2 for y ranging in the proper
configurations of Yα (for all values of ⟨i⟩k1

, ⟨j⟩k2
, T (β, i) and [2i]m1,m2

), and count free layers
by Claim 18:

If i ≤ n, an i× i square of the density layer w(d) contains less than αi · i2 +O(i) symbols 1.
If i > n, the density layer w(d) contains less than αn · n2 + O(n) symbols 1.

Finally, when summing over all these cases, we overestimate the number of extender
sets generated by the free layer by assuming that each position p ∈ J0, i − 1K2 containing
a symbol 1 on the density layer can be marked by a proper configuration y extending the
pattern (while only a subset of such positions can be marked):

PE(n) ≤
n∑

i=1

i−1∑
k1=0

n∑
j=1

j−1∑
k2=0

O(i4) · 2αi·i2+O(i) +
n∑

k1=0

n∑
k2=0

O(n4) · 2αn·n2+O(n)

≤ poly(n) ·
n∑

i=1
2αi·i2+O(i). ◀

By taking the limit α = limn αn, we obtain that hE(Yα) = α. Thus, we are left to prove:

▷ Claim 24. The subshift Yα is a sofic subshift.

This proof is very standard and unsurprising, yet is included for the sake of exhaustiveness.

Sketch of proof. First, we introduce a grid subshift. Let us denote by Ygrid the subshift
on the alphabet { , , } defined as the closure of all the square grid configurations
(see Figure 6a). It is a sofic subshift: by enforcing the continuity of black lines between
adjacent positions, we obtain an irregular grid; to obtain a regular square grid, we make each
cross send diagonals in the SFT cover (since diagonals can only go through a cross, the
grid becomes regular).

Let us now synchronize Ygrid with L↑
1: we define Ygrid∗ ⊆ L↑

1×Ygrid the set of configurations
(x(1)↑, x(g)) such that x(g) has mesh i×i if and only if x(1) encodes some i ∈ N (see Figure 6b).

5 Markers were chosen to be (2i, 2i)-periodic for this reason: we need to be able to mark a position
p ∈ J0, i − 1K2 in a configuration without seeing a marker in the square J0, i − 1K2.

A. Callard, L. Paviet Salomon, and P. Vanier 21:15

(a) A square grid configuration of mesh i × i.
∗∗
∗∗
∗∗
∗∗
∗∗
∗∗
∗∗
∗∗
∗∗
∗∗
∗∗
∗∗

∗∗
∗∗
∗∗
∗∗
∗∗
∗∗
∗∗
∗∗
∗∗
∗∗
∗∗
∗∗

∗∗
∗∗
∗∗
∗∗
∗∗
∗∗
∗∗
∗∗
∗∗
∗∗
∗∗
∗∗

∗∗
∗∗
∗∗
∗∗
∗∗
∗∗
∗∗
∗∗
∗∗
∗∗
∗∗
∗∗

(b) Vertical blue columns of symbols ∗ are i-periodic,
the square grid has mesh i × i.

Figure 6 Two configurations using grids.

▷ Claim 25. Ygrid∗ is a Z2 sofic subshift.

Sketch of proof. Using areas of colors in the SFT cover, ensure that exactly one black vertical
line in Ygrid can appear between two vertical lines of symbols ∗ in L↑

1. ◁

Let us now prove that Yα is a Z2 sofic subshift. Intuitively, it follows from Theorem 2:
Yα is a “decorated version” of Z ′↑

α . The most tricky step is in the periodicity condition:
periodicity of a free bit in L(f) should only be enforced whenever both layers y(1) and y(2) do
not belong in ⟨∞⟩↑, i.e. whenever they both actually encode some integers i ∈ N and j ∈ N.

To proceed, we slightly alter the Z subshift Z ′
α to define a new subshift Z ′′

α: it contains
an additional layer Lp (the proper layer) that can take two values (either pZ or dZ), and is
forced to be pZ whenever both the first and second layer do encode integers:

Z ′′
α =

{
(z(1), z(2), z(d), z(p)) ∈ L1 × L2 × Ld × {pZ, dZ} | z(2) ∈ ⟨∞⟩

}
∪

⋃
i∈N

⋃
j≥i

{
(z(1), z(2), z(d), z(p)) ∈ L1 × L2 × Ld × {pZ} | ∃k1, k2 ∈ N,

z(1) = ⟨i⟩k1
, z(2) = ⟨j⟩k2

and ∃β ≤ αi,j , z(d) = T (β, i)k1

}
.

By a slight alteration of Claim 15, the subshift Z ′′
α is effective whenever α is a Π3 real

number. By Theorem 2, the Z2 subshift Z ′′↑
α is thus sofic. Then, we use the proper layer to

enforce periodicity of a free bit in L(f) only whenever y(p) = pZ2 , and define Y ′
α as:

Y ′
α =

{
(y(1)↑, y(2)↑, y(d)↑, y(p)↑, y(g), y(f)) ∈ Z ′′↑

α × Ygrid × {␣, 0, 1}Z
2

|

(y(1)↑, y(g)) ∈ Ygrid∗, πsync(y(f)) = y(d)↑,

∃b ∈ {␣, 0, 1}, ∀p ∈ Z2, y(p) = pZ ∧ y(g)
p = =⇒ y(f)

p = b
}

▷ Claim 26. Y ′
α is a Z2 sofic subshift.

Sketch of proof. By the previous paragraph, the first four layers are sofic; and by Claim 25,
the synchronization Ygrid∗ of L↑

1 and Ygrid is sofic. To make a free bit periodic, one can carry
a unique symbol bgrid ∈ {␣, 0, 1} along the black lines of Ygrid in an SFT cover, and enforce
the following: on positions at which a cross symbol appears on the grid layer y(g), and a
symbol p appears on the proper layer y(p)↑, the free bit in y(f) is then made equal to the
symbol bgrid. ◁

STACS 2025

21:16 Computability of Extender Sets in Multidimensional Subshifts

We can now prove that Yα is sofic. Indeed, fix an SFT cover of Y ′
α in which we color

cross symbols into two colors alternatingly: let us say, red and blue. On each horizontal
and vertical line of the grid layer Ygrid, crosses are now alternating between red and blue.
We claim that we obtain the subshift Yα by projecting this SFT cover as follows:

Erase the proper layer.
Projection of the grid layer: red crosses become ■, and all other symbols become □.

Indeed, projecting the grid layer as mentioned creates the marker layer Lm. The only
condition that remains to be checked is the (i, i)-periodicity condition on a free bit.

Notice that in Y ′
α, both cases y(p)↑ = pZ2 and y(p)↑ = dZ2 are possible whenever y(1) ∈ ⟨∞⟩

or y(2) ∈ ⟨∞⟩, so that erasing the proper layer in the projection merges the two cases together
and removes the periodicity enforced a free bit of y(f); while whenever y(1) = ⟨i⟩k1

and
y(2) = ⟨j⟩k2

, only the case y(p) = pZ2 is allowed: so that, when projecting, the periodicity
condition is still enforced. ◁

7 Realizing Extender Entropies: Computable Subshifts

A subshift X is said to be computable if its language L(X) is decidable. Following the
proofs from Section 4, one proves that extender entropies of computable subshifts are Π2
real numbers. We prove the converse inclusion and obtain:

▶ Theorem 27. The set of extender entropies of computable Z effective subshifts (resp.
computable Z2 sofic subshifts) is exactly Π2 ∩ [0, +∞).

Sketch of proof. We slightly alter our previous constructions. The subshift Z ′
α constructed

in Theorem A might not be computable whenever α ∈ Π3, since, given some i, j ∈ N and
some factor of T (β, i), it might be undecidable to know whether β ≤ αi,j when αi,j ∈ Π1.

Yet, when taking α = infi αi = infi supj αi,j ∈ Π2 for (αi,j) a computable sequence, the
previous problem becomes decidable; thus, the subshift Z ′

α is computable. Both proofs, on Z
and Z2, then go through without any other modification. ◀

8 Extender Sets of Minimal Subshifts

Minimality is a general dynamical notion; in our context, a subshift is minimal if it contains
no nonempty proper subshift. Extender sets are much easier in minimal subshifts and do not
even depend on the computability of the language:

▶ Proposition 28. Let X be a minimal subshift over Zd. Then for any n > 0 and any
patterns u, v ∈ Ln(X), EX(u) ⊆ EX(v) ⇐⇒ u = v.

Proof. Let u, v ∈ Ln(X) and suppose that EX(u) ⊆ EX(v). Then any appearance of u

in a configuration can be replaced by v: by iterating the process while ordering patterns
lexicographically (see [23, Lemma 2.2] for the complete argument), we obtain by compactness
a configuration of X is which u does not appear, which contradicts minimality. ◀

This implies that hE(X) = h(X) if X is minimal. Since minimal sofic subshifts have zero
entropy (folklore, see [11, Proposition 6.1]), and minimal effective subshifts have arbitrary
Π1 entropy (consider [16, Theorem 4.77] with computable sequences (kn)n∈N), we obtain:

▶ Corollary 29. The extender entropy of a minimal Zd sofic subshift is always 0.
▶ Corollary 30. The set of extender entropies of minimal Zd effective subshifts is exactly
Π1 ∩ [0, +∞).

A. Callard, L. Paviet Salomon, and P. Vanier 21:17

9 Extender Sets of Subshifts With Mixing Properties

9.1 Mixing Z Subshifts
Mixingness is another dynamical notion. In the context of Z subshifts, mixingness intuitively
implies that for any pair of admissible words, there exists a configuration containing both of
them at arbitrary positions, provided they are sufficiently far apart:

▶ Definition 31 (Mixing subshift). A Z subshift X is mixing if

∀n > 0, ∃N > 0, ∀u, v ∈ Ln(X), ∀k ≥ N, ∃w ∈ Lk(X), uwv ∈ L(X).

We say that X is f(n)-mixing for some function f if N can be taken equal to f(n) in the
previous definition. When f is constant f(n) = N , we simply write that X is N -mixing.

One could expect that strong mixing conditions would restrict the behaviors of extender
sets: indeed, all the examples we mentioned so far either have strong mixing properties (the
full shift, Z SFTs. . .) and zero extender entropy, or have positive extender entropy but are
far from mixing (periodicity, reflected positions, . . .). However, we show in this section that
even very restrictive mixing properties do not imply anything on extender entropies.

▶ Proposition 32. Let X be a one-dimensional subshift. There exists a 1-mixing subshift X#
with hE(X) = hE(X#). (Furthermore, if X was effective, then X# can be taken effective.)

Proof. Let X ⊆ AZ be a subshift, and α = hE(X). Denote F = A∗ \ L(X). Let us define
a subshift X# over the alphabet A ⊔ {#} (assuming that # is a free symbol not in A) by
the same family of forbidden patterns F : configurations of X# are composed of (possibly
infinite) words of L(X) separated by the safe symbol #. Then X# is 1-mixing, as for any
u, v ∈ L(Y), we have u#v ∈ L(Y).

We are left with proving that hE(X#) = hE(X). First, we need to introduce the notion
of follower and predecessor sets: in X, the follower and predecessor sets are respectively
defined as FX(w) = {x ∈ AN | wx ⊑ X} and PX(w) = {x ∈ A−N | xw ⊑ X}. In other words,
the follower set (resp. predecessor set) of some word w correspond to the set of right-infinite
(resp. left-infinite) sequences x such that ux (resp. xu) appears in some configuration of X.

Let n ≥ 0. We prove that:

|EX(n)| ≤ |EX#(n)| ≤ |EX(n)| +
∑

i+j<n

|PX(i)||FX(j)|

Lower bound. The lower bound holds simply because if x extends a pattern w ∈ L(X) but
not w′ ∈ L(X), then x also belongs in X# and still extends w but not w′ in X#, so that
EX#(w) ̸= EX#(w′). ◁

Upper bound. For the rightmost inequality, we need to distinguish some cases according to
whether a pattern contains a # or not.

Let w ∈ Ln(X#) that does not contain a symbol #. Then

EX#(w) = EX(w) ∪
⋃

l,r∈A∗|lwr∈L(X)

{(x # l, r # x′) | x, x′ admissible in X#}

So, for w, w′ ∈ Ln(X#). So, for w, w′ ∈ Ln(X#) that do not contain a symbol #, we
have EX#(w) = EX#(w′) if and only if EX(w) = EX(w′).

STACS 2025

21:18 Computability of Extender Sets in Multidimensional Subshifts

Let w ∈ Ln(X#) containing at least a symbol #, and let i ≤ j be the first and last
positions in w at which a symbol # appear. Let l, r ∈ A∗ be respectively wJ0,i−1K and
wJj+1,n−1K). Since # is a safe symbol, EX#(w) is entirely determined by (PX(l), FX(r)):

EX#(w) = (PX(l) × FX(r)) ∪
⋃

l′,r′∈A∗|
l′·l, r·r′∈L(X)

{(y # l′, r′# y′) | y, y′ admissible in X#}.

Doing a disjunction on these two cases, and over the pairs i + j < n in the second case (and
abusing notations again by denoting PX(i) = {PX(w) | w ∈ Li(X)} and FX(j) = {FX(w) |
w ∈ Lj(X)) we obtain:

|EX#(n)| ≤ |EX(n)| +
∑

i+j<n

|PX(i)||FX(j)| ◁

As |PX(n)| ≤ |EX(n)| and |FX(n)| ≤ |EX(n)|, and that |EX(n)| = 2αn+o(n), we obtain
2αnn+o(n) ≤ |EX#(n)| ≤ poly(n) · 2αnn+o(n), and conclude that hE(X#) = α. ◀

9.2 Block-gluing Zd Subshifts
There exists various mixing notions in higher dimension. We formulate our results for
block-gluing subshifts:

▶ Definition 33. Let X ⊆ AZd be a subshift, and f : N → N be a (weakly) increasing function.
We say that X is f -block-gluing if

∀p, q ∈ Ln(X), ∀k ≥ n + f(n), ∀u ∈ Zd, ∥u∥∞ ≥ k =⇒ (p ∪ σu(q) ∈ L(X))

Said differently, X is f -block-gluing if any two square patterns of size n can appear at any
position as long as they are placed with a gap of size at least f(n) between them. As with
Definition 31, we will simply write N -block-gluing for constant gluing distance (f : n → N).

▶ Proposition 34. For any α ∈ Π3 ∩ [0, +∞), there exists an effective and 1-block-gluing Zd

subshift Zα,# such that hE(Zα,#) = α.

Proof. Notice that the free lift of a 1-block-gluing Zd subshift to Zd+1 is also 1-block-gluing.
By Claim 8, the free lift preserves the extender entropy: thus, we reduce to the one-dimensional
case. We conclude by combining the previous Proposition 32 with Theorem A. ◀

References
1 Nathalie Aubrun, Sebastián Barbieri, and Emmanuel Jeandel. About the Domino Problem

for Subshifts on Groups, pages 331–389. Springer International Publishing, Cham, 2018.
doi:10.1007/978-3-319-69152-7_9.

2 Nathalie Aubrun and Mathieu Sablik. Simulation of effective subshifts by two-dimensional
subshifts of finite type. Acta applicandae mathematicae, 126:35–63, 2013. doi:10.1007/
s10440-013-9808-5.

3 Sebastián Barbieri, Mathieu Sablik, and Ville Salo. Soficity of free extensions of effective
subshifts. Discrete and Continuous Dynamical Systems, 45(4):1117–1149, 2025. doi:10.3934/
dcds.2024125.

4 Jérôme Buzzi. Subshifts of quasi-finite type. Inventiones mathematicae, 2003. doi:10.1007/
s00222-004-0392-1.

https://doi.org/10.1007/978-3-319-69152-7_9
https://doi.org/10.1007/s10440-013-9808-5
https://doi.org/10.1007/s10440-013-9808-5
https://doi.org/10.3934/dcds.2024125
https://doi.org/10.3934/dcds.2024125
https://doi.org/10.1007/s00222-004-0392-1
https://doi.org/10.1007/s00222-004-0392-1

A. Callard, L. Paviet Salomon, and P. Vanier 21:19

5 Silvio Capobianco. Multidimensional cellular automata and generalization of Fekete’s lemma.
Discrete Mathematics & Theoretical Computer Science (DMTCS), 10(3):95–104, 2008. doi:
10.46298/dmtcs.442.

6 Julien Destombes. Algorithmic Complexity and Soficness of Shifts in Dimension Two. PhD
thesis, Université de Montpellier, 2023. arXiv:2309.12241, doi:10.48550/arXiv.2309.12241.

7 Julien Destombes and Andrei Romashchenko. Resource-bounded Kolmogorov complexity
provides an obstacle to soficness of multidimensional shifts. Journal of Computer and System
Sciences, 128:107–134, 2022. doi:10.1016/j.jcss.2022.04.002.

8 Bruno Durand, Andrei Romashchenko, and Alexander Shen. Fixed-point tile sets and their
applications. Journal of Computer and System Sciences, 78(3):731–764, 2012. doi:10.1016/j.
jcss.2011.11.001.

9 Thomas French. Characterizing follower and extender set sequences. Dynamical Systems,
31(3):293–310, 2016. doi:10.1080/14689367.2015.1111865.

10 Thomas French and Ronnie Pavlov. Follower, predecessor, and extender entropies. Monatshefte
für Mathematik, 188:495–510, 2019. doi:10.1007/s00605-018-1224-5.

11 Silvère Gangloff. Algorithmic complexity of growth-type invariants of SFT under dynam-
ical constraints. PhD thesis, Aix-Marseille Université, 2018. URL: http://www.theses.fr/
2018AIXM0231/document.

12 Pierre Guillon and Emmanuel Jeandel. Infinite communication complexity, 2015. arXiv:
1501.05814.

13 Michael Hochman. On the dynamics and recursive properties of multidimensional symbolic sys-
tems. Inventiones Mathematicae, 176(1):2009, April 2009. doi:10.1007/s00222-008-0161-7.

14 Michael Hochman and Tom Meyerovitch. A characterization of the entropies of multi-
dimensional shifts of finite type. Annals of Mathematics, 171(3):2011–2038, 2010. doi:
10.4007/annals.2010.171.2011.

15 Steve Kass and Kathleen Madden. A sufficient condition for non-soficness of higher-dimensional
subshifts. Proceedings of the American Mathematical Society, 141(11):3803–3816, 2013. doi:
10.1090/S0002-9939-2013-11646-1.

16 Petr Kůrka. Topological and Symbolic Dynamics. Société mathématique de France, 2003.
17 Douglas Lind and Brian Marcus. An Introduction to Symbolic Dynamics and Coding. Cambridge

university press, 2021.
18 Tom Meyerovitch. Growth-type invariants for Zd subshifts of finite type and arithmetical classes

of real numbers. Inventiones Mathematicae, 184(3), 2010. doi:10.1007/s00222-010-0296-1.
19 Harold Marston Morse and Gustav Arnold Hedlund. Symbolic Dynamics. American Journal

of Mathematics, 60(4):815–866, October 1938. doi:10.2307/2371264.
20 Shahar Mozes. Tilings, substitution systems and dynamical systems generated by them.

Journal d’Analyse Mathématique, 53(1):139–186, 1989. doi:10.1007/bf02793412.
21 Nic Ormes and Ronnie Pavlov. Extender sets and multidimensional subshifts. Ergodic Theory

and Dynamical Systems, 36(3):908–923, 2016. doi:10.1017/etds.2014.71.
22 Ronnie Pavlov. A class of nonsofic multidimensional shift spaces. Proceedings of the American

Mathematical Society, 141(3):987–996, 2013. doi:10.1090/S0002-9939-2012-11382-6.
23 Anthony N. Quas and Paul B. Trow. Subshifts of multi-dimensional shifts of finite type. Ergodic

Theory and Dynamical Systems, 20(3):859–874, 2000. doi:10.1017/S0143385700000468.
24 Robert I Soare. Turing computability: Theory and applications, volume 300. Springer, 2016.

doi:10.1007/978-3-642-31933-4.
25 Hao Wang. Proving theorems by Pattern Recognition II. Bell Systems technical journal,

40:1–41, 1961. doi:10.1002/j.1538-7305.1961.tb03975.x.
26 Benjamin Weiss. Subshifts of finite type and sofic systems. Monatshefte für Mathematik,

77:462–474, 1973. doi:10.1007/BF01295322.
27 Xizhong Zheng and Klaus Weihrauch. The arithmetical hierarchy of real numbers. Math-

ematical Logic Quarterly: Mathematical Logic Quarterly, 47(1):51–65, 2001. doi:10.1002/
1521-3870(200101)47:1<51::AID-MALQ51>3.0.CO;2-W.

STACS 2025

https://doi.org/10.46298/dmtcs.442
https://doi.org/10.46298/dmtcs.442
https://arxiv.org/abs/2309.12241
https://doi.org/10.48550/arXiv.2309.12241
https://doi.org/10.1016/j.jcss.2022.04.002
https://doi.org/10.1016/j.jcss.2011.11.001
https://doi.org/10.1016/j.jcss.2011.11.001
https://doi.org/10.1080/14689367.2015.1111865
https://doi.org/10.1007/s00605-018-1224-5
http://www.theses.fr/2018AIXM0231/document
http://www.theses.fr/2018AIXM0231/document
https://arxiv.org/abs/1501.05814
https://arxiv.org/abs/1501.05814
https://doi.org/10.1007/s00222-008-0161-7
https://doi.org/10.4007/annals.2010.171.2011
https://doi.org/10.4007/annals.2010.171.2011
https://doi.org/10.1090/S0002-9939-2013-11646-1
https://doi.org/10.1090/S0002-9939-2013-11646-1
https://doi.org/10.1007/s00222-010-0296-1
https://doi.org/10.2307/2371264
https://doi.org/10.1007/bf02793412
https://doi.org/10.1017/etds.2014.71
https://doi.org/10.1090/S0002-9939-2012-11382-6
https://doi.org/10.1017/S0143385700000468
https://doi.org/10.1007/978-3-642-31933-4
https://doi.org/10.1002/j.1538-7305.1961.tb03975.x
https://doi.org/10.1007/BF01295322
https://doi.org/10.1002/1521-3870(200101)47:1<51::AID-MALQ51>3.0.CO;2-W
https://doi.org/10.1002/1521-3870(200101)47:1<51::AID-MALQ51>3.0.CO;2-W

CMSO-Transducing Tree-Like Graph
Decompositions
Rutger Campbell #

Discrete Mathematics Group, Institute for Basic Science, Daejeon, South Korea

Bruno Guillon #

Université Clermont Auvergne, Clermont Auvergne INP, LIMOS, CNRS, Clermont-Ferrand, France

Mamadou Moustapha Kanté #

Université Clermont Auvergne, Clermont Auvergne INP, LIMOS, CNRS, Clermont-Ferrand, France

Eun Jung Kim #

KAIST, Daejeon, South Korea
CNRS, France

Noleen Köhler #

University of Leeds, UK

Abstract
We show that given a graph G we can CMSO-transduce its modular decomposition, its split
decomposition and its bi-join decomposition. This improves results by Courcelle [Logical Methods
in Computer Science, 2006] who gave such transductions using order-invariant MSO, a strictly
more expressive logic than CMSO. Our methods more generally yield C2MSO-transductions of
the canonical decomposition of weakly-partitive set systems and weakly-bipartitive systems of
bipartitions.

2012 ACM Subject Classification Theory of computation → Finite Model Theory

Keywords and phrases MSO-transduction, MSO-definability, graph decomposisions

Digital Object Identifier 10.4230/LIPIcs.STACS.2025.22

Related Version Extended Version: arXiv:2412.04970 [6]

Funding Rutger Campbell: Supported by the Institute for Basic Science (IBS-R029-C1).
Mamadou Moustapha Kanté : Supported by the French National Research Agency (ANR-18-CE40-
0025-01 and ANR-20-CE48-0002).

1 Introduction

A decomposition of a graph, especially a tree-like decomposition, is a result of recursive
separations of a graph and is extremely useful for investigating combinatorial properties such
as colourability, and for algorithm design. Such a decomposition also plays a fundamental
role when one wants to understand the relationship between logic and a graph class. Different
notions of the complexity of a separation motivate different ways to decompose, such as
tree-decomposition, branch-decomposition, rank-decomposition and carving-decomposition.
Furthermore, some important graph classes can be defined through the tree-like decomposition
they admit; cographs with cotrees and distance-hereditary graphs with split decompositions
being prominent examples.

For a logic L, an L-transduction is a non-deterministic map from a class of relational
structures to a new class of relational structures using L-formulas. Transducing a tree-
like decomposition is of particular interest. Notably, transducing a decomposition of a
graph implies that any property that is definable using a decomposition, is also definable
on graphs that admit such a decomposition. Moreover, tree-like decompositions can be

© Rutger Campbell, Bruno Guillon, Mamadou Moustapha Kanté, Eun Jung Kim, and
Noleen Köhler;
licensed under Creative Commons License CC-BY 4.0

42nd International Symposium on Theoretical Aspects of Computer Science (STACS 2025).
Editors: Olaf Beyersdorff, Michał Pilipczuk, Elaine Pimentel, and Nguyễn Kim Thắng;
Article No. 22; pp. 22:1–22:18

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:rutger@ibs.re.kr
mailto:bruno.guillon@uca.fr
mailto:mamadou.kante@uca.fr
https://orcid.org/0000-0003-1838-7744
mailto:eunjung.kim@kaist.ac.kr
https://orcid.org/0000-0002-6824-0516
mailto:N.Koehler@leeds.ac.uk
https://orcid.org/0000-0002-1023-6530
https://doi.org/10.4230/LIPIcs.STACS.2025.22
https://arxiv.org/abs/2412.04970
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

22:2 CMSO-Transducing Tree-Like Graph Decompositions

often represented by labelled trees, for which the equivalence of recognisability by a tree
automaton and definability in CMSO is well known [8]. Hence, it is an interesting question
to consider what kind of graph decompositions can be transduced using L-transductions for
some extension L of MSO.

In a series of papers [8, 9, 10, 12], Courcelle investigated the relationship between the
graph properties that can be defined in an extension of MSO and the graph properties that
can be recognized by a tree automaton. In particular, for graphs of bounded treewidth,
Courcelle’s theorem states that any property that is definable in the logic MSO with modulo
counting predicate, denoted CMSO, can be recognized by a tree automaton [8]. Combining
this result with the linear time algorithm for computing tree-decompositions [1], yields that
CMSO model-checking can be done in linear time on graphs of bounded treewidth. The
converse statement – whether recognisability by a tree automaton implies definability in
CMSO on graphs of bounded treewidth – was conjectured by Courcelle in [8] and finally
settled by Bojańczyk and Pilipczuk [4]. The key step to obtain this result is obtaining
a tree-decomposition of a graph via an MSO-transduction, a strategy which was initially
proposed in [9] and is now standard.

The obvious next question is whether an analogous result can be proved for graphs of
bounded clique-width and for more general combinatorial objects, most notably, matroids
representable over a fixed finite field and of bounded branch-width. Due to the above-
mentioned strategy, the key challenge is to produce corresponding tree-like decompositions
by MSO-transduction. It is known that clique-width decompositions can be MSO-transduced
for graphs of bounded linear clique-width [3]. However, it is unknown if clique-width
decompositions can be MSO-transduced in general. In fact, this question remains open even
for distance-hereditary graphs, which are precisely graphs of rank-width 1 (thus, of constant
clique-width).

Besides tree-decompositions, the problem of transducing cotrees, and in general hier-
archical decompositions such as modular decompositions and split decompositions were
considered in the literature [10, 11, 12, 14]. In [10], Courcelle provides transductions us-
ing order-invariant MSO for cographs and modular decompositions of graphs of bounded
modular width. Order-invariant MSO allows the use of a linear order of the set of vertices
and is more expressive than CMSO [20]. The applicability of these transductions was later
generalized using the framework of weakly-partitive set systems1 to obtain order-invariant
MSO-transductions of modular and split decompositions [12]. It was left as an open question
whether one can get rid of the order (see for instance [13] where an overview of the result on
hierarchical decompositions was given).

1.1 Our results
In this paper, we consider decompositions given by separations that do not overlap with
any other separations of the same type. We view separations of a given kind as a “set
system”. A set system consists of a set U , the universe, and a set S of subsets of U . Two
sets overlap if they have non-empty intersection but neither of them is contained in the
other. If no two elements in a set system (U, S) overlap, i.e. the set system is laminar, then
the subset relation in (U, S) can be described by a rooted tree T , called the laminar tree
of (U, S). For any set system (U, S) we can look at the subset of strong sets, i.e., sets that

1 Weakly-partitive set systems are set systems enjoying some nice closure properties, which were then
used to show that some set systems allow canonical tree representations, see for instance the thesis by
Montgolfier and Rao [17, 24].

R. Campbell, B. Guillon, M. M. Kanté, E. J. Kim, and N. Köhler 22:3

do not overlap with any other set, and the laminar tree T they induce. Additionally, we
consider systems of bipartitions B of a universe U . Two bipartitions of U overlap if neither
side of one of the bipartition is contained in either side of the other bipartition. In case
(U, B) has no overlapping bipartitions, then (U, B) can be described by an undirected tree,
also called laminar tree, in which bipartitions correspond to edge cuts. We can define the
concept of strong bipartitions equivalently and consider the laminar tree induced by the
strong bipartitions in (U, B).

Given a graph G we can consider the set system (V (G), M) where M is the set of all
modules in G, or the system of bipartition (V (G), S) where S contains all splits in G, or the
system of bipartitions (V (G), B) where B contains all bi-joins in G. We obtain the modular
decomposition/cotree/split decomposition/bi-join decomposition by equipping the laminar
tree of the suitable set system/system of bipartitions with some additional structure. The
additional structure allows us to recover the graph from the respective decomposition.

Abstractly, the set systems/systems of bipartitions mentioned are instances of weakly-
partitive set systems/weakly-bipartitive systems of bipartitions. Roughly speaking, if a set
system (U, S) is well behaved, i.e. (U, S) is weakly-partitive (definition in Section 2), then
there is a labelling λ of T and a partial order < of its nodes such that (U, S) is completely
described by (T, λ, <) [7, 24]. A similar statement holds for systems of bipartitions [17].

We show the following, wherein each item λ is a suitable labelling of the nodes of the
laminar tree T , < is a partial ordering of its nodes, and F is an additional edge relation
defined only on pairs of siblings in T . A visualization how results depend on each other is
given in Figure 1. Due to space constraints, some proofs are omitted, but they are available
in the extended preprint [6].

▶ Theorem 1. There are non-deterministic C2MSO-transductions τ1, . . . , τ7 such that:
1. For any laminar set system (U, S), τ1(U, S) is non-empty and every output in τ1(U, S) is

a laminar tree T of (U, S) (Theorem 2);
2. For any graph G, τ2(G) is non-empty and every output in τ2(G) is a modular decomposition

(T, F) of G (Theorem 18);
3. For any cograph G, τ3(G) is non-empty and every output in τ3(G) is a cotree (T, λ) of G

(Corollary 20);
4. For any graph G, τ4(G) is non-empty and every output in τ4(G) is a split decomposition

(T, F) of G [6, Theorem 29];
5. For any graph G, τ5(G) is non-empty and every output in τ5(G) is a bi-join decomposition

(T, F) of G [6, Theorems 32 & 37];
6. For any weakly-partitive set system (U, S), τ6(U, S) is non-empty and every output

in τ6(U, S) is a weakly-partitive tree (T, λ, <) of (U, S) (Theorem 15);
7. For any weakly-bipartitive set system (U, B), τ7(U, B) is non-empty and every output

in τ7(U, B) is a weakly-bipartitive tree (T, λ, <) of (U, B) [6, Theorem 24].
The key step in obtaining these transductions is to transduce the laminar tree T of a set
system (U, S), namely Theorem 2. The crux here is to find a suitable representative of
each node of T amongst the elements of U and a non-deterministic coloring which allows
the assignment of representatives to nodes by means of a C2MSO-formula. It should be
mentioned that a similar result is claimed in the preprint [2], where a proof sketch designing a
C3MSO-transduction is described. Once the laminar tree is obtained, the additional relations
for each decomposition can be obtained using a deterministic MSO-transduction. Notice
that for each of these transductions, there exists an inverse deterministic MSO-transduction,
namely a transduction that from the tree-like decomposition outputs the original structure.

STACS 2025

22:4 CMSO-Transducing Tree-Like Graph Decompositions

Section 3

Section 4 Preprint [6]

Theorem 2
laminar set system
→ laminar tree

Lemma 13
weakly-partitive
set system →
laminar tree

[6, Lemma 22]
weakly-bipartitive
set system →
laminar tree

Theorem 15
weakly-partitive
set system →
weakly-partitive tree

Theorem 18
graph → modular
decomposition

[6, Theorem 24]
weakly-bipartitive set
system → weakly-
bipartitive tree

[6, Theorem 29]
graph → split
decomposition

Corollary 20
cograph → cotree

[6, Theorems 32 & 37]
graph → bi-join decomposition

Figure 1 Overview of the various transductions in the paper. An arrow from x to y indicates
that result x is used in the proof of result y.

1.2 Organization
The paper is organized as follows. In Section 2 we introduce terminology and notation needed.
In Section 3 we prove Theorem 2. In Section 4 we provide the proof of Theorems 15 and 18
and obtain Corollary 20.

2 Preliminaries

2.1 Graphs, trees, set systems
Graphs. We use standard terminology of graph theory, and we fix some notations. Given a
directed graph G, its sets of vertices and edges are denoted by V (G) and E(G), respectively.
We denote by uv an edge (u, v) ∈ E(G). An undirected graph is no more than a directed
graph for which E(G) is symmetric (i.e., uv ∈ E(G) ⇐⇒ vu ∈ E(G)). The notions of paths,
connected components, etc. . . are defined as usual. Given a subset Z of V (G), we denote by
G[Z] the sub-graph of G induced by Z.

Trees. A tree is a connected undirected graph without cycles. In the context of trees, we
use a slightly different terminology than for graphs. In particular, vertices are called nodes,
nodes of degree at most 1 are called leaves, and nodes of degree greater than 1 are called
inner. The set of leaves is denoted L(T); thus the set of inner nodes is V (T) \ L(T). For
a node t of a tree T and a neighbor s of t, we denote by T t

s the connected component of
T − t containing s. We sometimes consider rooted trees, namely trees with a distinguished
node, called the root. Rooted trees enjoy a natural orientation of their edges toward the root,
which induces the usual notions of parent, child, sibling, ancestor and descendant. Hence, we
represent a rooted tree by a set of nodes with an ancestor/descendant relationship (instead of
specifying the root). We use the convention that every node is one of its own ancestors and
descendants. We refer to ancestors (resp. descendants) of a node that are not the node itself
as proper ancestors (resp. proper descendants). For a node t of a rooted tree T , we denote
by Tt the subtree of T rooted in t (i.e., the restriction of T to the set of descendants of t).

R. Campbell, B. Guillon, M. M. Kanté, E. J. Kim, and N. Köhler 22:5

Set systems and laminar trees. A set system is a pair (U, S) where U is a finite set,
called the universe, and S is a family of subsets of U where ∅ /∈ S, U ∈ S, and {a} ∈ S
for every a ∈ U .2 Two sets X and Y overlap if they are neither disjoint nor related by
containment. A set system (U, S) is said to be laminar (aka overlap-free) when no two sets
from S overlap. By extension, a set family S is laminar if (

⋃
S, S) is a laminar set system

(note this also requires that ∅ /∈ S,
⋃

S ∈ S, and {a} ∈ S for every a ∈
⋃

S).
A laminar family S of subsets of U naturally defines a rooted tree where the nodes are

the sets from S, the root is U , and the ancestor relation corresponds to set inclusion. We
call this rooted tree the laminar tree of U induced by S (or laminar tree of (U, S)). In this
rooted tree, the leaves are the singletons {x} for x ∈ U , which we identify with the elements
themselves. That is to say, L(T) = U . Laminar trees have the property that each inner node
has at least two children. Observe also that the size of a laminar tree is linearly bounded in
the size of the universe.

2.2 Logic and transductions
We use relational structures to model both graphs and the various tree-like decompositions
used in this paper. In order to concisely model set systems we use the more general notion of
extended relational structures, namely relational structure extended with set predicate names.
Such structures also naturally arise as outputs of MSO-transductions defined below.

Define an (extended) vocabulary to be a set of symbols, each being either a relation name R

with associated arity ar(R) ∈ N, or a set predicate name P with associated arity ar(P) ∈ N.
Set predicate names are aimed to describe relations between sets, e.g., one may have a unary
set predicate for selecting finite sets of even size, or a binary set predicate for selecting
pairs of disjoint sets. We use capital R or names starting with a lowercase letter (e.g., edge,
ancestor, t-edge) for relation names, and capital P or uppercase names (e.g., SET, C2) for
set predicate names. To refer to an arbitrary symbol of undetermined kind, we use capital Q.
A relational vocabulary is an extended vocabulary in which every symbol is a relation name.

Let Σ be a vocabulary. An extended relational structure over Σ (Σ-structure) is a structure
A = ⟨UA, (QA)Q∈Σ⟩ consisting on the one hand of a set UA called universe, and on the other
hand, for each symbol Q in Σ, an interpretation QA of Q, which is a relation of arity ar(Q)
either over the universe if Q is a relation name, or over the family of subsets of the universe
if Q is a set predicate name. When Σ is not extended, A is simply a relational structure.

Given a Σ-structure A and, for some vocabulary Γ, a Γ-structure B, we write A ⊑ B
if Σ ⊆ Γ, UA ⊆ UB and for each symbol Q in Σ, QA = QB.3 We write A ⊔ B to denote the
(Σ ∪ Γ)-structure consisting of the universe UA ∪ UB and, for each symbol Q ∈ Σ ∪ Γ, the
interpretation QA⊔B which is QA, QB, or QA ∪ QB according to whether Q belongs to Σ \ Γ,
to Γ \ Σ, or to Σ ∩ Γ.4

To describe properties of (extended) relational structures, we use monadic second order
logic (MSO) and refer for instance to [15, 19, 22, 25] for the definition of MSO on extended
relational structures such as matroids or set systems in general. This logic allows quantification

2 Though these restrictions on S are not usual for set systems, it is convenient for our contribution and
it does not significantly impact the generality of set systems: every family F of subsets of U can be
associated with a set system (U, S) where S =

(
F \ {∅}

)
∪

{
U

}
∪

{
{a} | a ∈ U

}
.

3 We require equality here (in particular only elements or subsets of UA are related in QB). This differs
from classical notions of inclusions of relational structures which typically require equality only on the
restriction of the universe to UA, i.e., QA = QB/UA

, e.g., in order to correspond to induced graphs.
4 We do not require A and B to be disjoint structures whence we may have A ̸⊑ A ⊔ B.

STACS 2025

22:6 CMSO-Transducing Tree-Like Graph Decompositions

both over single elements of the universe and over subsets of the universe. We also use
counting MSO (CMSO), which is the extension of MSO with, for every positive integer p,
a unary set predicate Cp that checks whether the size of a subset is divisible by p or not.
We only use C2. As usual, lowercase variables indicates first-order-quantified variables,
while uppercase variables indicates monadic-quantified variables. For a formula ϕ, we write,
e.g., ϕ(x, y, X) to indicate that the variables x, y, and X belong to the set of free variables
of ϕ, namely, the set of variables occurring in ϕ that are not bound to a quantifier within ϕ.
A sentence is a formula without free variables.

We now fix some (extended) vocabularies that we will use.
Graphs. To model both graphs, unrooted trees, and directed graphs, we use the relational

vocabulary {edge} where edge is a relation name of arity 2. A (directed) graph G = (V, E)
is modeled as the {edge}-structure G with universe UG = V and interpretation edgeG = E.
In particular if G is undirected, then edgeG is symmetric.

Rooted trees. We use the relational vocabulary {ancestor} to model rooted trees where
ancestor is a relation name of arity 2. A rooted tree T is modeled as the {ancestor}-
structure T with universe UT = V (T) and the interpretation ancestorT being the set of
pairs (u, v) such that u is an ancestor of v in T . It is routine to define FO-formulas over
this vocabulary to express the binary relations parent, child, proper ancestor, (proper)
descendant, as well as the unary relations leaf and root.

Set systems. To model set systems, we use the extended vocabulary {SET} where SET is a
set predicate name of arity 1. A set system S = (U, S) is thus naturally modeled as the
{SET}-structure S with universe US = U and interpretation SETS = S.

Transductions

Let Σ and Γ be two extended vocabularies. A Σ-to-Γ transduction is a set τ of pairs formed
by a Σ-structure, call the input, and a Γ-structure, called the output. We write B ∈ τ(A)
when (A,B) ∈ τ . When for every pair (A,B) ∈ τ we have A ⊑ B, we call τ an overlay
transduction. Some transductions can be defined by means of MSO- or C2MSO-formulas.
This leads to the notion of MSO- and C2MSO-transductions. Following the presentation
of [3], for L denoting MSO or C2MSO, define an L-transduction to be a transduction obtained
by composing a finite number of atomic L-transductions of the following kinds.
Filtering. An overlay transduction specified by an L-sentence ϕ over the input vocabulary Σ,

which discards the inputs that do not satisfy ϕ and keeps the other unchanged. Hence, it
defines a partial function (actually, a partial identity) from Σ-structures to Σ-structures.

Universe restriction. A transduction specified by a L-formula ϕ over the input vocabulary Σ,
with one free first-order variable, which restricts the universe to those elements that
satisfy ϕ. The output vocabulary is Σ and the interpretation of every relation (resp. every
predicate) in the output structure is defined as the restriction of its interpretation in the
input structure to those tuples of elements satisfying ϕ (resp. tuples of sets of elements
that satisfy ϕ). This defines a total function from Σ-structures to Σ-structures.

Interpretation. A transduction specified by a family (ϕQ)Q∈Γ over the input vocabulary Σ
where Γ is the output vocabulary and each ϕQ has ar(Q) free variables which are first-
order if Q is a relation name and monadic if it is a set predicate name. The transduction
outputs the Γ-structure that has the same universe as the input structure and in which
each relation or predicate Q is interpreted as those set of tuples that satisfy ϕQ. This
defines a total function from Σ-structures to Γ-structures.

Copying. An overlay transduction parametrized by a positive integer k that adds k copies of
each element to the universe. The output vocabulary consists in the input vocabulary Σ
extended with k binary relational symbols (copyi)i∈[k] interpreted as pairs of elements (x, y)

R. Campbell, B. Guillon, M. M. Kanté, E. J. Kim, and N. Köhler 22:7

saying that “y is the i-th copy of x”. The interpretation of the relations (resp. predicates)
of the input structure are preserved, on original elements. This defines a total function
from Σ-structures to Γ-structures, where Γ = Σ ∪ {copyi | i ∈ [k]}.

Colouring. An overlay transduction that adds a new unary relation color /∈ Σ to the structure.
Any possible interpretation yields an output; indeed the interpretation is chosen non-
deterministically. The interpretation of the relations (resp. predicates) of the input
structure are preserved. Hence, it defines a total (non-functional) relation from Σ-
structures to Γ-structures where Γ = Σ ∪ {color} (providing color /∈ Σ).

We say an L-transduction is deterministic if it does not use colouring, it is non-deterministic
otherwise. By definition, deterministic L-transductions define functions.

3 Transducing the laminar-tree

In this section, we present an overlay C2MSO-transduction that takes as input a laminar set
system and outputs the laminar tree it induces.

▶ Theorem 2. Let Σ be an extended vocabulary, including a unary set predicate name SET
and not including the binary relational symbol ancestor. There exists a non-deterministic
C2MSO-transduction τ such that, for each laminar set system (U, S) represented as the {SET}-
structure S and inducing the laminar tree T with L(T) = U , and for each Σ-structure A
with S ⊑ A, τ(A) is non-empty and every output in τ(A) is equal to some {ancestor}-structure
T representing T .

Since the sets from S are precisely the sets of leaves of the subtrees of T , there is an
MSO-transduction which is the inverse of the above C2MSO-transduction; that is to say,
given an {ancestor}-structure T representing the laminar tree, it outputs the original set
system S. Namely,
1. An interpretation ΦSET(S) that is true for a set S when there exists an element a such

that an element x is in S if and only if a is an ancestor of x.
2. The filtering ϕ(x) keeping leaves only.

We prove Theorem 2 in Section 3.2, using the key tools developed in Section 3.1, that
allow us to represent each inner node of T with a pair of leaves from its subtree, while keeping
the number of inner nodes represented by a given leaf bounded.

3.1 Inner node representatives
In this section, the root of any rooted tree is always an inner node (unless the tree is a
unique node). We fix a rooted tree T , in which every inner node has at least two children (a
necessary assumption that is satisfied by laminar trees), and we let V denote the set of its
nodes (V = V (T)) and L ⊆ V denote the subset of its leaves (L = L(T)).

Let S ⊆ V \ L, and let (π, σ) be a pair of injective mappings from S to L. We say that
the pair (π, σ) identifies S if for each s ∈ S, s is the least common ancestor of π(s) and σ(s).
For s ∈ S and x ∈ V , we say that x is s-requested in (π, σ) if x lies on the path from π(s)
to σ(s) (namely, on either of the paths from π(s) to s and from σ(s) to s). We say that x is
requested in (π, σ) if it is s-requested for some s. The pair (π, σ) has unique request if every
node x of T is requested at most once in (π, σ), i.e., there exists at most one s ∈ S such
that x is s-requested in (π, σ). Note that if (π, σ) has unique request then the paths from
π(s) to σ(s) are pairwise disjoint for all the s ∈ S. We now state a few basic observations.

STACS 2025

22:8 CMSO-Transducing Tree-Like Graph Decompositions

▶ Remark 3. Let (π, σ) identifying some subset S of V \ L.
1. The reversed pair (σ, π) also identifies S and has unique request whenever (π, σ) does.
2. If S′ ⊂ S, then (π|S′ , σ|S′) identifies S′, and has unique request if (π, σ) does.
3. For each s ∈ S, s is s-requested in (π, σ).
4. If (σ, π) has unique request, then π(S) and σ(S) are disjoint subsets of L.

▶ Lemma 4. Let (π, σ) identifying some subset S of V \ L with unique request. Then for
each a ∈ π(S) the node π−1(a) is the least ancestor of a which belongs to S.

Proof. Let a ∈ π(S) and let s = π−1(a). By definition, s is an ancestor of a which belongs
to S. Let y be the least ancestor of a that is contained in S. As s is an ancestor of a

belonging to S, y must be a descendant of s. Hence, y is s-requested in (π, σ). Additionally,
by Item 3 of Remark 3, y is y-requested in (π, σ). Since (π, σ) has unique request, y = s.
Thus, s is the least ancestor of a which belongs to S. ◀

Notice that, by Item 1 of Remark 3, a similar result holds for each b ∈ σ(S). It follows
that the sets π(S) and σ(S) characterize (π, σ).

▶ Lemma 5. Let S ⊆ V \ L, and (π, σ) and (π′, σ′) be two pairs of injections from S to L

identifying S with unique request. If π(S) = π′(S) and σ(S) = σ′(S) then π = π′ and σ = σ′.

Proof. Let s ∈ S, a = π(s), and s′ = π′−1(a). Both s and s′ are the least ancestor of a

which belongs to S, hence s = s′ and π′(s) = a. Thus π = π′. By Item 1 of Remark 3, we
also obtain that σ = σ′. ◀

Let A and B be two disjoint subsets of L. We call such a pair (A, B) a bi-colouring. We
say that (A, B) identifies S if there exists a pair (π, σ) identifying S with unique request
such that π(S) = A and σ(S) = B. By the previous lemma, for a fixed set S ⊆ V \ L the pair
(π, σ) identifying S is unique when it exists. We will also prove that S is actually uniquely
determined from (A, B). Before that, we state the following technical lemma.

▶ Lemma 6. Let (A, B) identify some subset S of V \ L through a pair (π, σ) of injections
having unique request. Then, for each inner node x, exactly one of the three following cases
holds:
1. x /∈ S, x is not requested in (π, σ), and for each child c of x, |A ∩ V (Tc)| = |B ∩ V (Tc)|;
2. x /∈ S, x is requested in (π, σ), and there exists one leaf z ∈ (A ∪ B) ∩ V (Tx) such that,

for each child c of x, |(A \ {z}) ∩ V (Tc)| = |(B \ {z}) ∩ V (Tc)|;
3. x ∈ S, x is requested in (π, σ), and there exists two leaves a ∈ A ∩ V (Tx) and b ∈

B ∩ V (Tx) such that, for each child c of x, |(A \ {a}) ∩ V (Tc)| = |(B \ {b} ∩ V (Tc))|
and {a, b} ⊈ V (Tc).

Proof. Let x be an inner node. We consider the set S′ = S \ (V (Tx) \ {x}) of all nodes
which are not proper descendants of x and the restrictions π′ and σ′ of, respectively, π and σ

to S′. By Item 2 of Remark 3 (π′, σ′) identify S′ with unique request. We denote A′ = π′(S′)
and B′ = σ′(S′), thus (A′, B′) identify S′. Let A′

x = A′ ∩ V (Tx) and B′
x = B′ ∩ V (Tx)

be the sets of representatives contained in Tx of nodes in S′. Let a be an element of A′
x.

The element sa = π−1(a) is an ancestor of x because it is an ancestor of a ∈ V (Tx) and
belongs to S′ whence not to V (Tx) \ {x}. Therefore, x is sa-requested. As (π′, σ′) has unique
request, there exists at most one element in A′

x. Similarly, B′
x has size at most 1. Moreover,

A′
x ∩ B′

x = ∅ by Item 4 of Remark 3. We thus we have three cases:

R. Campbell, B. Guillon, M. M. Kanté, E. J. Kim, and N. Köhler 22:9

Case A′
x ∪ B′

x = ∅. Then there is no s ∈ S′ such that π(s) ∈ V (Tx) or σ(s) ∈ V (Tx).
Hence, x is not requested in (π, σ), in particular, x /∈ S.
Let c be a child of x. If |A ∩ V (Tc)| ̸= |B ∩ V (Tc)|, then there exists a ∈ (A ∪ B) ∩ V (Tc)
such that, assuming without loss of generality that a ∈ A and denoting sa = π−1(a),
σ(sa) /∈ V (Tc). Hence, sa is a proper ancestor of c, thus, equivalently, an ancestor of x,
implying that x is sa-requested in (π, σ). This contradicts the above argument. So,
|A ∩ V (Tc)| = |B ∩ V (Tc)| for each child c of x.

Case A′
x ∪ B′

x = {a}. Assume, without loss of generality, that a ∈ A, and denote sa =
π−1(a) and b = σ(sa). We have that sa is a proper ancestor of x, since it is the least
common ancestor of a ∈ V (Tx) and b /∈ V (Tx). Thus, x is sa-requested and sa ≠ x

so x /∈ S.
Let c be a child of x. If |A ∩ V (Tc)| ̸= |B ∩ V (Tc)|, then it means that there exists
z ∈ (A ∪ B) ∩ V (Tc), such that either z ∈ A and sz = π−1(z) /∈ V (Tc), or z ∈ B

and sz = σ−1(z) /∈ V (Tc). In both cases, sz is a proper ancestor of c, whence an
ancestor of x. Thus, x is sz-requested in (π, σ). However, x is sa-requested in (π, σ)
which has unique request, hence sz = sa. If z ∈ B, it follows that z = b, which
contradicts the fact b /∈ V (Tx). Hence, z ∈ A and thus, z = π(sa) = a. Therefore,
|(A \ {a}) ∩ V (Tc)| = |B ∩ V (Tc)| for each child c of x.

Case A′
x = {a} and B′

x = {b}. Let sa = π−1(a) and sb = σ−1(b). The node x is sa-
requested and sb-requested in (π, σ), so, by the unique request property, sa = sb. Since sa

is the least common ancestor of a and b, it belongs to V (Tx) whence sa = x implying x ∈ X.
Let c be a child of x. If |A ∩ V (Tc)| ̸= |B ∩ V (Tc)|, then there exists z ∈ (A ∪ B) ∩ V (Tc)
such that either z ∈ A and sz = π−1(z) /∈ V (Tc), or z ∈ B and sz = σ−1(z) /∈ V (Tc). In
both cases, sz is a proper ancestor of c, whence an ancestor of x, and thus x is sz-requested
in (π, σ). However, x is x-requested in (π, σ) which has unique request, hence sz = x and
thus z ∈ {a, b}. Therefore, |(A \ {a}) ∩ V (Tc)| = |(B \ {b}) ∩ V (Tc)| for each child c of x.
Because the least common ancestor of a and b is x, there is no child c of x containing
both a and b as leaves, i.e., {a, b} ⊈ V (Tc).

This concludes the proof of the statement. ◀

It follows that for each bi-colouring (A, B), there exists at most one set S of inner nodes
identified by (A, B).

▶ Lemma 7. Let (A, B) be two disjoint subsets of L and let S and S′ be two subsets of V \ L.
If (A, B) identify both S and S′, then S = S′.

Proof. We proceed by contradiction and thus assume S ̸= S′. Let s ∈ S \ S′. By Lemma 6,
the number of children c of s for which the set (A ∪ B) ∩ V (Tc) has odd size is 2 since s ∈ S,
while it should also be less than 2 since s /∈ S′. A contradiction. ◀

When (A, B) identifies a set S, we call A-representative (resp. B-representative) of s ∈ S

the leaf π(s) ∈ A (resp. σ(s) ∈ B), where (π, σ) witnessing that (A, B) identifies S. An
example of bi-colouring identifying a subset of inner nodes is given in Figure 2.

Not every set of inner nodes has a bi-colouring identifying it. To ensure that such a
pair exists, we consider thin sets of inner nodes. While thin sets always have bi-colourings
identifying them, it is also guaranteed that the set of inner nodes can be partitioned into
only 4 thin sets. A subset X ⊆ V \ L is thin when, for each x ∈ X not being the root, on
the one hand, the parent px of x does not belong to X, and on the other hand, x admits at
least one sibling (including possible leaves) that does not belong to X. Having a thin set X

allows to find branches avoiding it.

STACS 2025

22:10 CMSO-Transducing Tree-Like Graph Decompositions

Figure 2 Illustration of a bi-colouring (A, B) identifying some set S ⊆ V \ L in a binary tree T .
Leaves from A are coloured blue, leaves from B are coloured red, and inner nodes from S are marked
purple. Furthermore, the two paths connecting an inner node s ∈ S to its A- and B-representatives
are coloured blue and red, respectively.

▶ Lemma 8. Let X ⊆ V \ L and s ∈ V \ X. If X is thin, then there exists a leaf t ∈ V (Ts)
such that the path from t to s avoids X (i.e., none of the nodes along this path belong to X).

Proof. If Ts has height 0, then s is a leaf and taking t = s trivially gives the expected
path. Otherwise, s is an inner node and, because X is thin, s has at least one child cs not
belonging to X. By induction, there is a path from some leaf t ∈ V (Tcs

) to cs avoiding X

and, since s /∈ X, this path could be extended into a path from t to s avoiding X. ◀

The previous lemma allows to identify every thin set.

▶ Lemma 9. If X is a thin set, then there exists a pair (π, σ) of injections from X to L that
has unique request and that identifies X.

Proof. We proceed by induction on the size of X. If X = ∅, the result is trivial. Let n ∈ N
and suppose that for every thin set of size n there exists a pair of injections identifying it with
unique request. Let X be a thin set of size n + 1, and let s ∈ X be of minimal depth. Clearly,
X \ {s} is thin and thus there exists, by induction, a pair (π, σ) of injections from X \ {s}
to L identifying X \ {s} with unique request. Since X is thin and s ∈ X, we can find two
distinct children ca and cb of s not belonging to X.5 Then, by Lemma 8, there exists a
leaf a ∈ V (Tca

) (resp. a leaf b ∈ V (Tcb
)) such that the path from a to ca (resp. from b to cb)

avoids X. In particular, for each node y along these paths, since y has no ancestor that
belongs to X but s, y is not requested in (π, σ). Hence, extending π (resp. σ) in such a way
that, besides mapping each x ∈ X \ {s} to π(x) (resp. to σ(x)), it maps s to a (resp. to b),
we obtain a pair (π̂, σ̂) of injections from X to L that identifies X with unique request. ◀

A family F = (A1, B1), . . . , (An, Bn) of bi-colourings identifies a set S ⊆ V \ L, if there
exists a partition (S1, . . . , Sn) of S such that, for each i ∈ [n], (Ai, Bi) identifies Si. Whenever
S = V \ L we say that F identifies T . A collection of subsets of V \ L is thin if each of its
subsets is thin. We now show that there exists a thin 4-partition.

▶ Lemma 10. There exists a thin 4-partition of V \ L.

5 Remember that every inner node of T has at least two children (including possible leaves).

R. Campbell, B. Guillon, M. M. Kanté, E. J. Kim, and N. Köhler 22:11

A B

A B

A B

A B

Figure 3 Illustration of a partition of the inner nodes into 4 thin sets indicated by different
shapes/fillings. The four colourings identifying each thin set are indicated in the table below the
leaves.

Proof. We build such a thin 4-partition as follows. First, consider the partition (De, Do)
of V \ L in which De (resp. Do = V \ (De ∪ L)) is the set of all inner nodes of even (resp.
odd) depth. Second, arbitrarily fix one child cx of x for each inner node x, and consider the
set C = {cx | x ∈ V \ L} \ L, inducing a partition (C, C) of V \ L where C = V \ (L ∪ C). By
refining these two bi-partitions, we obtain a 4-partition which is thin by construction.5 ◀

Hence, four bi-colourings are enough to identify T . For an example see Figure 3.

▶ Corollary 11. There exists a family of four bi-colourings identifying T .

Proof. The result immediately follows from Lemmas 9 and 10. ◀

3.2 The transduction
The goal of this section is to prove Theorem 2, that is, to design a C2MSO-transduction
that produces the laminar tree induced by an input laminar set system. We fix a laminar
set system (U, S), represented by a {SET}-structure S. Before proving the theorem, we
make the following basic observation. On S, we can define two MSO-formulas desc(X, Y)
and child(X, Y) expressing that in the laminar tree induced by S, X and Y are nodes and X

is a descendant or a child of Y , respectively:

desc(X, Y) := SET(X) ∧ SET(Y) ∧ X ⊆ Y ;

child(X, Y) := desc(X, Y) ∧ X ̸= Y ∧ ∀Z
((

desc(Z, Y) ∧ Z ̸= Y
)

→ desc(Z, X)
)

.

The key point of our construction consists in defining a C2MSO-formula reprA,B(a, X)
which, assuming a bi-colouring (A, B) of the universe modeled as disjoint unary relations
and identifying a subset S of inner nodes of T , is satisfied exactly when X ∈ S and a is its
A-representative.

▶ Lemma 12. Let (A, B) be a bi-colouring of L(T) identifying a subset S of inner nodes
of T . There exists a C2MSO-formula reprA,B(a, X) that is satisfied exactly when X is an
inner node of T that belongs to S and is A-represented by a.

STACS 2025

22:12 CMSO-Transducing Tree-Like Graph Decompositions

Proof. First, we define a formula ϕA,B(X) that, under the above assumption, is satisfied
exactly when X belongs to S. According to Lemma 6, this happens if and only if X is a
node of T (i.e., SET(X) is satisfied) and there exists a ∈ X ∩ A and b ∈ X ∩ B such that for
each child Z of X, {a, b} ⊈ Z and the set (Z \ {a, b}) ∩ (A ∪ B) has even size. This property
is easily expressed in C2MSO, using the MSO-formula child(X, Y) defined previously, as well
as the predicate SET:

ϕA,B(X) := SET(X) ∧ ∃a∃b
[
a ∈ (X ∩ A) ∧ b ∈ (X ∩ B)∧

∀Z
(

child(Z, X) →
(

{a, b} ⊈ Z ∧ C2
(
(Z \ {a, b}) ∩ (A ∪ B)

)))]
.

Now, we can easily define reprA,B(a, X) based on Lemma 4:

reprA,B(a, X) := ϕA,B(X) ∧ a ∈ (X ∩ A) ∧ ∀Z ⊊ X
(

a ∈ Z → ¬ϕA,B(Z)
)

.

This concludes the proof. ◀

We are now ready to prove the theorem.

Proof of Theorem 2. The C2MSO-transduction is obtained by composing the following
atomic C2MSO-transductions. The transduction makes use of the formulas reprA,B(a, X)
given by Lemma 12.
1. Guess a family of four bi-colourings (Ai, Bi)i∈[4] identifying T (which exists by Corol-

lary 11).
2. Copy the input graph four times, thus introducing four binary relations (copyi)i∈[4] where

copyi(x, y) indicates that x is the i-th copy of the original element y.
3. Filter the universe keeping only the original elements as well as the i-th copy of each

vertex a for which there exists X such that reprAi,Bi
(a, X).

4. Define the relation ancestor(x, y) so that it is satisfied exactly when there exist x′, X, i,
and Y such that, on the one hand desc(Y, X) and copyi(x, x′) ∧ reprAi,Bi

(x′, X), and, on
the other hand, either y is an original element and Y = {y}, or there exists y′ and j such
that copyj(y, y′) ∧ reprAj ,Bj

(y′, Y). ◀

4 Transducing modular decompositions

The set of modules of a directed graph is a specific example of a particular type of set system,
a “weakly-partitive set system” (and a “partitive set system” in the case of an undirected
graph). In this section, we first give a general C2MSO-transduction to obtain the canonical
tree-like decomposition of a weakly-partitive set system from the set system itself. We then
show how to obtain the modular decomposition of a graph via a C2MSO-transduction as an
application.

4.1 Transducing weakly-partitive trees
A set system (U, S) is weakly-partitive if for every two overlapping sets X, Y ∈ S, the
sets X ∪ Y , X ∩ Y , X \ Y , and Y \ X belong to S. It is partitive if, moreover, for every
two overlapping sets X, Y ∈ S, their symmetric difference, denoted X △ Y , also belongs
to S. By extension, a set family S is called weakly-partitive or partitive whenever (

⋃
S, S)

is a set system which is weakly-partitive or partitive, respectively (note these also requires
that ∅ /∈ S,

⋃
S ∈ S, and {a} ∈ S for every a ∈

⋃
S).

R. Campbell, B. Guillon, M. M. Kanté, E. J. Kim, and N. Köhler 22:13

A member of a set system (U, S) is said to be strong if it does not overlap any other set
from S. The sub-family S! of strong sets of S is thus laminar by definition. Hence, it induces
a laminar tree T . By extension, we say that T is induced by the set system (U, S) (or simply
by S). The next result extends Theorem 2, by showing that T can be C2MSO-transduced
from S.

▶ Lemma 13. Let Σ be an extended vocabulary, including a set unary predicate name SET and
not including the binary relational symbol ancestor. There exists a non-deterministic C2MSO-
transduction τ such that, for each set system (U, S) represented as the {SET}-structure S and
inducing the laminar tree T with L(T) = U , and for each Σ-structure A with S ⊑ A, τ(A) is
non-empty and every output in τ(A) is equal to some {ancestor}-structure T representing T .

Proof. On the {SET}-structure S, it is routine to define an MSO-formula ϕSET!(Z) that
identifies those subsets Z ⊆ U that are strong members of S:

ϕSET!(Z) := SET(Z) ∧ ∀X
((

SET(X) ∧ X ∩ Z ̸= ∅
)

→
(
X ⊆ Z ∨ Z ⊆ X

))
.

Hence, we can design an MSO-interpretation that outputs the Σ ∪ {SET!}-structure corres-
ponding to A equipped with the set unary predicate SET! that selects strong members of S.
Thus, up to renaming the predicates SET! and SET, by Theorem 2, we can produce, through
a C2MSO-transduction, the Σ ∪ {ancestor}-structure A ⊔ T where T is the tree-structure
modeling the laminar tree T induced by S! with L(T) = U (once the output obtained, the
interpretation drops the set predicate SET! which is no longer needed). ◀

Clearly, the laminar tree T of a weakly-partitive set system (U, S) does not characterize
(U, S). However, as shown by the below theorem, a labeling of its inner nodes and a controlled
partial ordering of its nodes are sufficient to characterize all the sets of S. For Z a set
equipped with a partial order < and X a subset of Z, we say that X is a <-interval whenever
< defines a total order on X and for every a, b ∈ X and every c ∈ Z, a < c < b implies c ∈ X.

▶ Theorem 14 ([7, 24]). Let S be a weakly-partitive family, S! be its subfamily of strong
sets, and T be the laminar tree it induces. There exists a total labeling function λ from the
set V (T) \ L(T) of inner nodes of T to the set {degenerate, prime, linear}, and, for each inner
node t ∈ λ−1(linear), a linear ordering <t of its children, such that every inner node having
exactly two children is labeled by degenerate and the following two conditions are satisfied:

for each X ∈ S \ S!, there exists t ∈ V (T) and a subset C of children of t such that
X =

⋃
c∈C L(Tc) and either λ(t) = linear and C is a <t-interval, or λ(t) = degenerate;

conversely, for each inner node t and each non-empty subset C of children of t, if
either λ(t) = linear and C is a <t-interval, or λ(t) = degenerate, then

⋃
c∈C L(Tc) ∈ S.

Furthermore, T and λ are uniquely determined from S, and, for each inner node t of T

labeled by linear, only two orders <t are possible, one being the inverse of the other (indeed,
inverting an order < does preserve the property of being a <-interval). Hence, every weakly-
partitive family S is characterized by a labeled and partially-ordered tree (T, λ, <) where T

is the laminar tree induced by the subfamily S! of strong sets of S, λ : V (T) \ L(T) →
{degenerate, prime, linear} is the labeling function, and < is the partial order

⋃
t∈λ−1(linear) <t

over V (T). As, up-to inverting some of the <t orders, (T, λ, <) is unique, we abusively call
it the weakly-partitive tree induced by S. Conversely, a weakly-partitive tree characterizes
the unique weakly-partitive set system which induced it.

We naturally model a weakly-partitive tree (T, λ, <) of a partitive set system (U, S)
by the {ancestor, degenerate, betweeness}-structure T of universe UT = V (T) such that
⟨V (T), ancestorT⟩ ⊑ T models T with L(T) = U , degenerateT is a unary relation which selects

STACS 2025

22:14 CMSO-Transducing Tree-Like Graph Decompositions

the inner nodes of T of label degenerate, i.e., degenerateT = λ−1(degenerate), and betweenessT
is a ternary relation selecting triples (x, y, z) satisfying x < y < z or z < y < x. (Although it
is possible, through a non-deterministic MSO-transduction, to define < from betweenessT,
the use of betweenessT rather than <T ensures unicity of the output weakly-partitive tree.)
The inner nodes of T that are labeled by linear can be recovered through an MSO-formula as
those inner nodes whose children are related by betweeness. The inner nodes labeled by prime
can be recovered through an MSO-formula as those inner nodes that are labeled neither
by degenerate nor by linear. Using Theorem 14, it is routine to design an MSO-transduction
which takes as input a weakly-partitive tree and outputs the weakly-partitive set system
which induced it. The inverse C2MSO-transduction is the purpose of the next result. The
proof is omitted due to space constraints.

▶ Theorem 15. There exists a non-deterministic C2MSO-transduction τ such that, for every
weakly-partitive set system (U, S) represented as the {SET}-structure S and inducing the
weakly-partitive tree (T, λ, <) represented as the {ancestor, degenerate, betweeness}-structure
T, we have T ∈ τ(S) and every output in τ(S) is a weakly-partitive tree of (U, S).

If S is partitive then the weakly-partitive tree it induces enjoys a simple form, and is
truly unique. Indeed, the label linear and, thus, the partial order <, are not needed.

▶ Theorem 16 ([7]). Let S be a weakly-partitive family and (T, λ, <) be the weakly-partitive
tree it induces. If S is partitive, then λ−1(linear) = ∅ and < is empty.

Hence, in case of a partitive set systems (U, S), we can consider the simpler object (T, λ),
called the partitive tree induced by S (or the partitive tree of (U, S)) in which λ maps
V (T) \ L(T) to {degenerate, prime}. As a direct consequence of Theorems 15 and 16, we can
produce, through a C2MSO-transduction, the partitive tree induced by a partitive set system
and naturally modeled by an {ancestor, degenerate}-structure.

▶ Corollary 17. There exists a non-deterministic C2MSO-transduction τ such that, for each
partitive set system (U, S) represented as the {SET}-structure S and inducing the partitive
tree (T, λ) represented as the {ancestor, degenerate}-structure T, we have T ∈ τ(S) and every
output in τ(S) is a partitive tree of (U, S).

4.2 Application to modular decomposition
Let G be a directed graph and let M ⊆ V (G). We say that M is a module (of G) if for every
u /∈ M and every v, w ∈ M , uv ∈ E(G) ⇐⇒ uw ∈ E(G) and vu ∈ E(G) ⇐⇒ wu ∈ E(G).
Clearly, the empty set, V (G), and all the singletons {x} for x ∈ V (G) are modules; they
are called the trivial modules of G. We say a non-empty module M is maximal if it is not
properly contained in any non-trivial module. Let M and M ′ be two disjoint non-empty
modules of G. Considering the edges that go from M to M ′, namely edges from the set
(M × M ′) ∩ E(G), we have two possibilities: either it is empty, or it is equal to M × M ′.
We write M ̸→M ′ in the former case and M→M ′ in the latter. (It is of course possible to
have both M→M ′ and M ′→M .) A modular partition of G is a partition P = {M1, . . . , Mℓ}
of V (G) such that every Mi is a non-empty module. A modular partition P = {M1, . . . , Mℓ}
is called maximal if it is non-trivial and every Mi is strong and maximal. Note that every
graph has exactly one maximal modular partition.

A modular decomposition of G is a rooted tree T in which the leaves are the vertices of G,
and for each inner node t ∈ T , t has at least two children and the set L(Tt) is a module of G.
In a modular decomposition T of G, for each inner node t ∈ V (T) with children c1, . . . , cr,

R. Campbell, B. Guillon, M. M. Kanté, E. J. Kim, and N. Köhler 22:15

the family Pt = {L(Tc1), . . . , L(Tcr)} is a modular partition of G[V (Tt)]. When each such
partition is maximal, the decomposition is unique and it is called the maximal modular
decomposition of G. The maximal modular decomposition T of G alone is not sufficient to
characterize G. However, enriching T with, for each inner node t with children c1, . . . , cj , the
information of which pair of modules

(
L(Tci

), L(Tcj
)
)

is such that L(Tci
)→L(Tcj

), yields a
unique canonical representation of G. Formally, the enriched modular decomposition of G is
the pair (T, F) where T is the maximal modular decomposition of G (with L(T) = V (G))
and F ⊂ V (T) × V (T) is a binary relation, that relates a pair (s, t) of nodes of T , denoted
st ∈ F , exactly when s and t are siblings and L(Ts)→L(Tt). The elements of F are called
m-edges.

It should be mentioned that the family of all non-empty modules of G is known to
be weakly-partitive (or even partitive when G is undirected). In particular, the maximal
modular decomposition T of G is the laminar tree induced by the family of strong modules.
Hence Theorem 15 could be used to produce a partially-ordered and labeled tree which
displays all the modules of G. However, this weakly-partitive tree is not sufficient for being
able to recover the graph G from it. We now prove how to obtain the enriched modular
decomposition of G through a C2MSO-transduction.

To model enriched modular decompositions as relational structures we use the relational
vocabulary {ancestor, m-edge} where ancestor and m-edge are two binary relation names. An
enriched modular decomposition (T, F) of a graph G is modeled by the {ancestor, m-edge}-
structure M with universe UM = V (T), ancestorM being the set of pairs (s, t) for which s

is an ancestor of t in T , and m-edgeM being the set of all pairs (s, t) such that st ∈ F (in
particular, s and t are siblings in T). We use Lemma 13 in order to transduce the maximal
modular decomposition of a graph.

▶ Theorem 18. There exists a non-deterministic C2MSO-transduction τ such that for every
directed graph G represented as the {edge}-structure G, τ(G) is non-empty and every output
in τ(G) is equal to some {ancestor, m-edge}-structure M representing the enriched modular
decomposition (T, F) of G.

Proof. Let G be a graph represented by the {edge}-structure G. Several objects are associated
to G, and each of them can be described by a structure:

let M be the family of non-empty modules of G and let S be the {SET}-structure modeling
the weakly-partitive set system (V (G), M) with US = V (G);
let T be the laminar tree induced by the weakly-partitive family M and let T be the
{ancestor}-structure modeling it with UT = V (T) and L(T) = V (G) ⊂ UT;
let F be the m-edge relation, namely the subset of V (T) × V (T) such that (T, F) is the
maximal modular decomposition of G, and let M be the {ancestor, m-edge}-structure
modeling it with T ⊏ M and UT = UM.

Our C2MSO-transduction is obtained by composing the three following transductions:
τ1: an MSO-interpretation which outputs the {edge, SET}-structure G ⊔ S from G;
τ2: the non-deterministic C2MSO-transduction given by Lemma 13 which produces the
{edge, SET, ancestor}-structure G ⊔ S ⊔ T from G ⊔ S;
τ3: an MSO-interpretation which outputs the {ancestor, m-edge}-structure M from G ⊔
S ⊔ T.

In order to define τ1 it is sufficient to observe that there exists an MSO-formula ϕSET(Z)
with one monadic free-variable, which is satisfied exactly when Z is a non-empty module
of G. Then, since τ2 is given by Lemma 13, it only remains to define τ3. Given an inner
node t, we can select, within MSO, the set L(Tt) of leaves of the subtree rooted in t. We

STACS 2025

22:16 CMSO-Transducing Tree-Like Graph Decompositions

thus assume a function leafset, with one first-order free-variable which returns the set of
leaves of the subtree rooted at the given node. Equipped with this function, we can define
the MSO-formula ϕm-edge which selects pairs (s, r) of siblings such that sr ∈ F . Remember
that this happen exactly when there exist u ∈ L(Ts) and v ∈ L(Tr) such that uv ∈ E(G).
Hence, ϕm-edge could be defined as:

ϕm-edge(s, r) := s ̸= r ∧ ∃t
(
parent(t, s) ∧ parent(t, r)

)
∧

∃x∃y
(
x ∈ leafset(s) ∧ y ∈ leafset(r) ∧ edge(x, y)

)
.

Once defined, the MSO-interpretation τ3 simply drops all non-necessary relations and
predicates (namely edge and SET) and keeps only the ancestor and m-edge relations. ◀

Notice that it is routine to design a deterministic MSO-transduction which, given an
{ancestor, m-edge}-structure M representing an enriched modular decomposition of some
directed graph G, produces the {edge}-structure G representing G.

Cographs

Let G be a graph, (T, F) be its modular decomposition, and (T, λ, <) be the weakly-partitive
tree induced by the (weakly-partitive) family of its modules. Let t be an inner node of T ,
let C be its set of children, and let C be the graph

(
V (T) \ L(T), F

)
[C] induced by F on

the set of children of t. It can be checked that, if λ(t) = degenerate then C is either a clique
or an independant, and if λ(t) = linear then C is a tournament consistent with <t (i.e., for
every x, y ∈ C, xy is an edge of C if and only if x <t y) or with the inverse of <t. In the
former case, we can refine the degenerate label into series and parallel labels, thus expressing
that C is a clique or an indenpendant, respectively. In the latter case, up-to reversing <t, we
can ensure that C is a tournament consistent with <t. This yields a refined weakly-partitive
tree (T, γ, <), where γ maps inner nodes to {series, parallel, prime, linear} and < is the order⋃

t∈γ−1(linear) <t which ensures that tournaments are consistent with the corresponding <t.
Notice that this labeled and partially-ordered tree is now uniquely determined from G.
Moreover, edges from F that connect children of a node not labeled by prime can be recovered
from the so-refined weakly-partitive tree. In particular, if no nodes of T is labeled by prime,
(T, F) and thus G is fully characterized by (T, γ, <). Graphs for which this property holds
are known as directed cographs, and can be described by the refined weakly-partitive tree,
called cotree, explained above and formalized in the following statement.

▶ Theorem 19. Let G be a directed cograph and let T be the laminar tree induced by the
family of its strong modules. There exists a unique total labeling λ from the set V (T) \ L(T)
of inner nodes of T to the set {series, parallel, linear} of labels, and, for each inner node
t ∈ λ−1(linear), a unique linear ordering <t of its children, such that every inner node having
exactly two children is labeled series or parallel, and the following condition is satisfied:

for every two leaves x and y of T , denoting by t their least common ancestor, xy is an
edge of G if and only if either t is labeled by linear and x <t y, or t is labeled by series.

We naturally model cotrees as {ancestor, series, ε-ord}-structures as follow. A cotree
(T, γ, <) is modeled by C where UC = V (T), seriesC = γ−1(series), and ε-ordC = {(x, y) |
x < y}. The nodes that are labeled by linear could be recovered as those inner nodes whose
children are related by ε-ord, while the nodes that are labeled by parallel could be recovered
as those inner nodes which are labeled neither by series nor by linear. Based on Theorem 19
and as a consequence of Theorem 18, we can design a C2MSO-transduction which produces
the cotree of a cograph G from G.

R. Campbell, B. Guillon, M. M. Kanté, E. J. Kim, and N. Köhler 22:17

▶ Corollary 20. There exists a non-deterministic C2MSO-transduction τ such that, for each
cograph G modeled by the {edge}-structure G, τ(G) is non-empty and every output in τ(G)
is equal to some {ancestor, series, ε-ord}-structure C representing the cotree (T, γ, <) of G.

5 Conclusion

We provide transductions for obtaining tree-like graph decompositions such as modular
decompositions, cotrees, split decompositions and bi-join decompositions from a graph using
CMSO. This improves upon results of Courcelle [10, 12] who gave such transductions for
ordered graphs. In a more general settings, we also obtain CMSO-transductions outputing
weakly-partitive and weakly-bipartitive trees of weakly-partitive and weakly-bipartitive
systems (Items 6 and 7 of Theorem 1). It is worth mentionning that the latter transduction can
be also used to CMSO-transduce canonical decompositions of other structures such as Tutte’s
decomposition of matroids or generally split-decompositions of submodular functions [16]
or modular decompositions of 2-structures [18] or of hypergraphs [21]. As shown by the
application given in [12] for transducing Whitney’s isomorphism class of a graph, a line of
research is to more investigate which structures can be CMSO-transduced from a graph or a
set system by using the transductions from Theorem 1. Also, naturally, the question arises
whether counting is necessary or whether MSO is sufficient to transduce such decompositions.
Furthermore, our results include that transducing rank decompositions for graphs of rank-
width 1 is possible using CMSO. But it is not known whether rank-decompositions can be
transduced in general using some suitable extension of MSO. Nevertheless, a corollary of
our results is that CMSO-transducing rank-decompositions can be now reduced to consider
CMSO-transducing rank-decompositions of prime graphs wrt either modular decomposition
or split-decomposition as if a graph has rank-width at least 2, then its rank-width is equal
to the rank-width of its prime induced graphs wrt either modular or split decomposition.
Thus, our results imply that, for any fixed k, there is a CMSO-transduction that computes a
clique-decomposition of small width for any graph belonging to a graph class whose prime
graphs have sizes bounded by k or prime graphs have linear clique-width bounded by k,
e.g., many H-free graphs have small prime graphs or have small linear clique-width (see for
instance [5] or [23] for prominent such examples).

References
1 Hans L Bodlaender. A linear time algorithm for finding tree-decompositions of small treewidth.

In Proceedings of the twenty-fifth annual ACM symposium on Theory of computing, pages
226–234, 1993. doi:10.1145/167088.167161.

2 Mikołaj Bojańczyk. The category of mso transductions. CoRR, May 2023. arXiv:2305.
18039v1.

3 Mikołaj Bojańczyk, Martin Grohe, and Michał Pilipczuk. Definable decompositions for
graphs of bounded linear cliquewidth. Log. Methods Comput. Sci., 17(1), 2021. URL:
https://lmcs.episciences.org/7125.

4 Mikołaj Bojańczyk and Michał Pilipczuk. Definability equals recognizability for graphs
of bounded treewidth. In Martin Grohe, Eric Koskinen, and Natarajan Shankar, editors,
Proceedings of the 31st Annual ACM/IEEE Symposium on Logic in Computer Science, LICS
’16, New York, NY, USA, July 5-8, 2016, pages 407–416. ACM, 2016. doi:10.1145/2933575.
2934508.

5 Andreas Brandstädt, Feodor F. Dragan, Hoàng-Oanh Le, and Raffaele Mosca. New graph
classes of bounded clique-width. Theory Comput. Syst., 38(5):623–645, 2005. doi:10.1007/
S00224-004-1154-6.

STACS 2025

https://doi.org/10.1145/167088.167161
https://arxiv.org/abs/2305.18039v1
https://arxiv.org/abs/2305.18039v1
https://lmcs.episciences.org/7125
https://doi.org/10.1145/2933575.2934508
https://doi.org/10.1145/2933575.2934508
https://doi.org/10.1007/S00224-004-1154-6
https://doi.org/10.1007/S00224-004-1154-6

22:18 CMSO-Transducing Tree-Like Graph Decompositions

6 Rutger Campbell, Bruno Guillon, Mamadou Moustapha Kanté, Eun Jung Kim, and Noleen
Köhler. CMSO-transducing tree-like graph decompositions, 2024. doi:10.48550/arXiv.2412.
04970.

7 Michel Chein, Michel Habib, and Marie-Catherine Maurer. Partitive hypergraphs. Discrete
mathematics, 37(1):35–50, 1981. doi:10.1016/0012-365X(81)90138-2.

8 Bruno Courcelle. The monadic second-order logic of graphs. I. recognizable sets of finite graphs.
Information and computation, 85(1):12–75, 1990. doi:10.1016/0890-5401(90)90043-H.

9 Bruno Courcelle. The monadic second-order logic of graphs V: On closing the gap between
definability and recognizability. Theoretical Computer Science, 80(2):153–202, 1991. doi:
10.1016/0304-3975(91)90387-H.

10 Bruno Courcelle. The monadic second-order logic of graphs X: linear orderings. Theor. Comput.
Sci., 160(1&2):87–143, 1996. doi:10.1016/0304-3975(95)00083-6.

11 Bruno Courcelle. The monadic second-order logic of graphs XI: hierarchical decompositions of
connected graphs. Theor. Comput. Sci., 224(1-2):35–58, 1999. doi:10.1016/S0304-3975(98)
00306-5.

12 Bruno Courcelle. The monadic second-order logic of graphs XVI: Canonical graph decomposi-
tions. Logical Methods in Computer Science, 2, 2006. doi:10.2168/LMCS-2(2:2)2006.

13 Bruno Courcelle. Canonical graph decompositions. Talk, 2012. Available at https://www.
labri.fr/perso/courcell/Conferences/ExpoCanDecsJuin2012.pdf.

14 Bruno Courcelle. The atomic decomposition of strongly connected graphs. Technical re-
port, Université de Bordeaux, 2013. Available at https://www.labri.fr/perso/courcell/
ArticlesEnCours/AtomicDecSubmitted.pdf.

15 Bruno Courcelle and Joost Engelfriet. Graph Structure and Monadic Second-Order Logic.
Cambridge University Press, 2009. doi:10.1017/cbo9780511977619.

16 William H Cunningham. Decomposition of directed graphs. SIAM Journal on Algebraic
Discrete Methods, 3(2):214–228, 1982.

17 Fabien de Montgolfier. Décomposition modulaire des graphes. Théorie, extension et algorithmes.
Phd thesis, Université Montpellier II, LIRMM, 2003.

18 Andrzej Ehrenfeucht, Tero Harju, and Grzegorz Rozenberg. The Theory of 2-Structures – A
Framework for Decomposition and Transformation of Graphs. World Scientific, 1999. URL:
http://www.worldscibooks.com/mathematics/4197.html.

19 Daryl Funk, Dillon Mayhew, and Mike Newman. Tree automata and pigeonhole classes of
matroids: I. Algorithmica, 84(7):1795–1834, 2022. doi:10.1007/S00453-022-00939-7.

20 Tobias Ganzow and Sasha Rubin. Order-invariant MSO is stronger than counting MSO in the
finite. In Susanne Albers and Pascal Weil, editors, STACS 2008, 25th Annual Symposium on
Theoretical Aspects of Computer Science, Bordeaux, France, February 21-23, 2008, Proceedings,
volume 1 of LIPIcs, pages 313–324. Schloss Dagstuhl – Leibniz-Zentrum für Informatik,
Germany, 2008. doi:10.4230/LIPICS.STACS.2008.1353.

21 Michel Habib, Fabien de Montgolfier, Lalla Mouatadid, and Mengchuan Zou. A general al-
gorithmic scheme for combinatorial decompositions with application to modular decompositions
of hypergraphs. Theor. Comput. Sci., 923:56–73, 2022. doi:10.1016/J.TCS.2022.04.052.

22 Petr Hlinený. Branch-width, parse trees, and monadic second-order logic for matroids. J.
Comb. Theory B, 96(3):325–351, 2006. doi:10.1016/J.JCTB.2005.08.005.

23 Michaël Rao. MSOL partitioning problems on graphs of bounded treewidth and clique-width.
Theor. Comput. Sci., 377(1-3):260–267, 2007. doi:10.1016/J.TCS.2007.03.043.

24 Michaël Rao. Décompositions de graphes et algorithmes efficaces. Phd thesis, Université Paul
Verlaine – Metz, 2006.

25 Yann Strozecki. Monadic second-order model-checking on decomposable matroids. Discret.
Appl. Math., 159(10):1022–1039, 2011. doi:10.1016/J.DAM.2011.02.005.

https://doi.org/10.48550/arXiv.2412.04970
https://doi.org/10.48550/arXiv.2412.04970
https://doi.org/10.1016/0012-365X(81)90138-2
https://doi.org/10.1016/0890-5401(90)90043-H
https://doi.org/10.1016/0304-3975(91)90387-H
https://doi.org/10.1016/0304-3975(91)90387-H
https://doi.org/10.1016/0304-3975(95)00083-6
https://doi.org/10.1016/S0304-3975(98)00306-5
https://doi.org/10.1016/S0304-3975(98)00306-5
https://doi.org/10.2168/LMCS-2(2:2)2006
https://www.labri.fr/perso/courcell/Conferences/ExpoCanDecsJuin2012.pdf
https://www.labri.fr/perso/courcell/Conferences/ExpoCanDecsJuin2012.pdf
https://www.labri.fr/perso/courcell/ArticlesEnCours/AtomicDecSubmitted.pdf
https://www.labri.fr/perso/courcell/ArticlesEnCours/AtomicDecSubmitted.pdf
https://doi.org/10.1017/cbo9780511977619
http://www.worldscibooks.com/mathematics/4197.html
https://doi.org/10.1007/S00453-022-00939-7
https://doi.org/10.4230/LIPICS.STACS.2008.1353
https://doi.org/10.1016/J.TCS.2022.04.052
https://doi.org/10.1016/J.JCTB.2005.08.005
https://doi.org/10.1016/J.TCS.2007.03.043
https://doi.org/10.1016/J.DAM.2011.02.005

How to Play the Accordion:
Uniformity and the (Non-)Conservativity of the
Linear Approximation of the λ-Calculus
Rémy Cerda # Ñ

Aix-Marseille Université, CNRS, I2M, France
Université Paris Cité, CNRS, IRIF, F-75013, Paris, France

Lionel Vaux Auclair # Ñ

Aix-Marseille Université, CNRS, I2M, France

Abstract
Twenty years after its introduction by Ehrhard and Regnier, differentiation in λ-calculus and in linear
logic is now a celebrated tool. In particular, it allows to write the Taylor formula in various λ-calculi,
hence providing a theory of linear approximations for these calculi. In the standard λ-calculus, this
linear approximation is expressed by results stating that the (possibly) infinitary β-reduction of
λ-terms is simulated by the reduction of their Taylor expansion: in terms of rewriting systems, the
resource reduction (operating on Taylor approximants) is an extension of the β-reduction.

In this paper, we address the converse property, conservativity: are there reductions of the Taylor
approximants that do not arise from an actual β-reduction of the approximated term? We show that
if we restrict the setting to finite terms and β-reduction sequences, then the linear approximation is
conservative. However, as soon as one allows infinitary reduction sequences this property is broken.
We design a counter-example, the Accordion. Then we show how restricting the reduction of the
Taylor approximants allows to build a conservative extension of the β-reduction preserving good
simulation properties. This restriction relies on uniformity, a property that was already at the core
of Ehrhard and Regnier’s pioneering work.

2012 ACM Subject Classification Theory of computation → Rewrite systems; Theory of computation
→ Lambda calculus; Theory of computation → Proof theory; Theory of computation → Linear logic

Keywords and phrases program approximation, quantitative semantics, lambda-calculus, linear
approximation, Taylor expansion, conservativity

Digital Object Identifier 10.4230/LIPIcs.STACS.2025.23

Related Version A short abstract of a preliminary version of this work has been presented at the
7th International Workshop on Trends in Linear Logic and its Applications (TLLA’23). Most of
this work has also appeared in the first author’s PhD thesis, with the noticeable difference that
Theorem 27 was only proved in a qualitative setting.
Previous Version (Short abstract presented at TLLA’23): https://lipn.univ-paris13.fr/TLLA/
2023/abstracts/05-Final.pdf
Previous Version (PhD thesis version, see Chapter 5): https://hal.science/tel-04664728 [7]

Funding Rémy Cerda: Partially supported by the French ANR project RECIPROG (ANR-21-CE48-
019).
Lionel Vaux Auclair : Partially supported by the French ANR projects LambdaComb (ANR-21-CE48-
0017), RECIPROG (ANR-21-CE48-019), and PPS (ANR-19-CE48-0014).

1 Introduction

The traditional approach to program approximation in a functional setting consists in
describing the total information that a (potentially non-terminating) program can produce
by the supremum of the finite pieces of information it can produce in finite time. This

© Rémy Cerda and Lionel Vaux Auclair;
licensed under Creative Commons License CC-BY 4.0

42nd International Symposium on Theoretical Aspects of Computer Science (STACS 2025).
Editors: Olaf Beyersdorff, Michał Pilipczuk, Elaine Pimentel, and Nguyễn Kim Thắng;
Article No. 23; pp. 23:1–23:21

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:remy.cerda@math.cnrs.fr
https://www.i2m.univ-amu.fr/perso/remy.cerda/
https://orcid.org/0000-0003-0731-6211
mailto:lionel.vaux@univ-amu.fr
https://www.i2m.univ-amu.fr/perso/lionel.vaux/
https://orcid.org/0000-0001-9466-418X
https://doi.org/10.4230/LIPIcs.STACS.2025.23
https://lipn.univ-paris13.fr/TLLA/2023/abstracts/05-Final.pdf
https://lipn.univ-paris13.fr/TLLA/2023/abstracts/05-Final.pdf
https://hal.science/tel-04664728
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

23:2 How to Play the Accordion

continuous approximation is tightly related to the Scott semantics of λ-calculi [29]: the Böhm
tree of a term (or equivalently its semantics) is the limit of the approximants produced by
hereditary head reduction [21, 32, 3].

More recently, Ehrhard and Regnier introduced the differential λ-calculus and differential
linear logic [16, 17], following ideas rooted in the semantics of linear logic [20, 13, 14].
This suggested the renewed approach of linear approximation of functional programs. In
this setting, a program (i.e. a λ-term) is approximated by multilinear (or “polynomial”)
programs, obtained by iterated differentiation at zero. Using this differential formalism, the
Taylor formula yields a weighted sum T (M) of all multilinear approximants of a λ-term M ,
producing the same total information as M , via normalization. More precisely, Ehrhard
and Regnier’s “commutation” theorem [19, 18] ensure that the normal form of the Taylor
expansion of M is the Taylor expansion of the Böhm tree of M :

nf(T (M)) = T (BT(M)) (1)

(and a Böhm tree is uniquely determined by its Taylor expansion). This approach subsumes
the previous one [2]. In addition, it allows for characterising quantitative properties of
programs (e.g. complexity [11]), which is a key benefit of linearity. This approximation
technique has been fruitfully applied to many languages, richer than the plain λ-calculus:
nondeterministic [31], probabilistic [10], extensional [5], call-by-value [23], and call-by-push-
value [15, 9] calculi, as well as for Parigot’s λμ-calculus [1]. The interplay of the operational
and Taylor approximations also suggests a broader notion of a approximation of a computation
process [26, 12].

Another benefit of linear approximation is that it can approximate not only β-normal-
isation (the information ultimately produced by a program) but β-reduction (the “information
flow” along program execution). In particular, Equation (1) can be refined into

M −→∗
β N ⇒ T (M) −↠r T (N), (2)

where −↠r denotes the so-called “resource” reduction acting linearly on approximants. As
highlighted by our previous work [8, 7], this can even be extended to

M −→∞
β N ⇒ T (M) −↠r T (N) (3)

if one extends the λ-calculus with infinite λ-terms and an infinitary closure of the β-reduction,
which is a way to encompass infinite computations and their limits [22].

This paper is interested in the converse of Equations (2) and (3): is the linear approxima-
tion of the λ-calculus conservative? In other terms, we ask whether every resource reduction
from T (M) to T (N) corresponds to a β-reduction sequence from M to N .

We show that the finite β-reduction of finite λ-terms is conservatively approximated
(Section 3), but we are able to design a counter-example to conservativity (the Accordion A)
as soon as we want to approximate infinitary β-reductions (Section 4). However, we introduce
a uniform linear approximation allowing for the same good properties as the standard one,
while enjoying conservativity (Section 5).

2 Preliminaries

In this section, we briefly recall the linear approximation of the λ-calculus, following its
refined presentation in [7]. We first recall the definition of the λ-calculus, as well as its “001”
infinitary extension: this is the version of the infinitary λ-calculus that fits the formalism

R. Cerda and L. Vaux Auclair 23:3

of both continuous and linear approximations as they are usually presented (Section 2.1).
Then we present the resource λ-calculus, i.e. a linear variant of the λ-calculus (there are no
duplications or erasures of subterms during the reduction) enjoying strong confluence and
normalisation properties (Section 2.2). Finally, the linear approximation relies on the Taylor
expansion, that maps a λ-term to a sum of resource terms, in a way such that the reduction
of λ-terms is simulated by the reduction of the resource approximants (Section 2.3).

2.1 Finite and infinitary λ-calculi
We give a brief presentation of the 001-infinitary λ-calculus. A more detailed exposition
and a general account of infinitary λ-calculi can be found in [7, 4]. From now on, we fix a
countable set V of variables.

▶ Definition 1. The set Λ of (finite) λ-terms is the set X defined by the inductive rules:

x ∈ V (V)
x ∈ X

x ∈ V M ∈ X (λ)
λx.M ∈ X

M ∈ X N ∈ X (@)
(M)N ∈ X .

The set Λ001 of 001-infinitary λ-terms is the set X defined by the rules (V), (λ), and:

M ∈ X ▷ N ∈ X (@001)
(M)N ∈ X

N ∈ X
(▷)

▷ N ∈ X

where the rule (▷) is treated coinductively: infinite derivations are allowed provided each
infinite branch crosses infinitely often this coinductive rule.

This means that Λ001 contains the infinitary λ-terms whose syntax tree contains only
infinite branches entering infinitely often the argument side of an application.

Notice that we use Krivine’s notation for applications [25], i.e. we parenthesise functions
instead of arguments. We abbreviate the application of a term to successive arguments
(· · · ((M)N1) · · ·)Nk as (M)N1 · · ·Nk, which is obtained by nesting applications on the left:
this allows to use parentheses more sparingly, which will be a great relief later on. By contrast,
(M1)(M2) · · · (Mk)N is obtained by nesting applications on the right. A typical example of
a term in Λ001 is (x)ω := (x)(x)(x) Observe also that there is an immediate inclusion
Λ ⊆ Λ001. On the contrary, neither λx0.λx1.λx2. . . . nor (((. . .)x2)x1)x0 are allowed in Λ001.

In practice we only consider infinitary terms having finitely many free variables, which
allows us to consider them up to α-equivalence (i.e. renaming of bound variables) – as one
usually does when dealing with λ-terms, and as we will do implicitely in all this paper.
This enables us to define capture-avoiding substitution in the usual way, and we denote by
M [N/x] the term obtained by substituting N to x in M . We refer to [6] for a more careful
and detailed presentation. These sets come equipped with the following dynamics.

▶ Definition 2. The relation −→β ⊂ Λ001 × Λ001 of β-reduction is defined by the rules:

(β)
(λx.M)N −→β M [N/x]

P −→β P
′

(λβ)
λx.P −→β λx.P

′

P −→β P
′

(@lβ)
(P)Q −→β (P ′)Q

Q −→β Q
′

(@rβ)
(P)Q −→β (P)Q′.

STACS 2025

23:4 How to Play the Accordion

▶ Definition 3. The relation −→001
β ⊂ Λ001 ×Λ001 of 001-infinitary β-reduction is defined

by the rules:

M −→∗
β x

(V001
β)

M −→001
β x

M −→∗
β λx.P P −→001

β P ′

(λ001
β)

M −→001
β λx.P ′

M −→∗
β (P)Q P −→001

β P ′ ▷ Q −→001
β Q′

(@001
β)

M −→001
β (P ′)Q′

Q −→001
β Q′

(▷)
▷ Q −→001

β Q′

where −→∗
β denotes the reflexive-transitive closure of −→β.

Infinitary β-reduction can be understood as allowing an infinite number of β-reduction
steps, as long as the β-redexes are fired inside increasingly nested arguments of applications.
This is formalised in the following result:

▶ Theorem 4 (stratification). Given M,N ∈ Λ001, there is a reduction M −→001
β N iff there

exists a sequence of terms (Md) ∈ (Λ001)N such that for all d ∈ N,

M = M0 −→∗
β≥0 M1 −→∗

β≥1 M2 −→∗
β≥2 . . . −→∗

β≥d−1 Md −→001
β≥d N,

where −→∗
β≥d and −→001

β≥d denote β-reductions occurring inside (at least) d nested arguments
of applications. Formally, β-reduction at minimum depth d is defined by:

M −→β M
′

(Vβ≥0)
M −→β≥0 M

′

P −→β≥d+1 P
′

(λβ≥d+1)
λx.P −→β≥d+1 λx.P

′

P −→β≥d+1 P
′

(@lβ≥d+1)
(P)Q −→β≥d+1 (P ′)Q

Q −→β≥d Q
′

(@rβ≥d+1)
(P)Q −→β≥d+1 (P)Q′

and 001-infinitary β-reduction at minimum depth d is defined by:

M −→001
β M ′

(V001
β≥0)

M −→001
β≥0 M

′
(V001

β≥d+1)
x −→001

β≥d+1 x

P −→001
β≥d+1 P

′

(λ001
β≥d+1)

λx.P −→001
β≥d+1 λx.P

′

P −→001
β≥d+1 P

′ Q −→001
β≥d Q

′

(@001
β≥d+1)

(P)Q −→001
β≥d+1 (P ′)Q

.

A typical (and even motivating) example of an infinitary β-reduction involves the fix-point
combinator Y := λf.(λx.(f)(x)x)λx.(f)(x)x. It consists in the reduction (Y)M −→001

β (M)ω

corresponding to the sequence (Y)M −→∗
β≥0 (M)(Y)M −→∗

β≥1 (M)(M)(Y)M −→∗
β≥2 . . .

On the contrary, the infinite reduction sequence Ω −→β Ω −→β Ω −→β . . ., where Ω :=
(λx.(x)x)λx.(x)x, does not give rise to a 001-infinitary reduction because the redexes are
fired at top-level all the way. On the other hand, each finite reduction sequence Ω −→∗

β Ω

induces a reduction Ω −→001
β Ω, but only because −→001

β contains −→∗
β (see [8], Lemma 2.13).

2.2 The resource λ-calculus
The resource λ-calculus is the target language of the linear approximation of the λ-calculus.
We recall its construction, and we refer to [31, 7] for more details. The main intuition behind
this calculus is that arguments become finite multisets, and that (λx.s)[t1, . . . , tn] will reduce
to a term obtained by substituting linearly one ti for each occurrence of x in s. The different
matchings of the ti’s and the occurrences of x are superposed by a sum operator; if a wrong
number of ti’s is provided, the term collapses to the empty sum.

R. Cerda and L. Vaux Auclair 23:5

Given a set X , we denote by !X the set of finite multisets of elements of X . A multiset
is denoted by x̄ = [x1, . . . , xn], with its elements in an arbitrary order. Multiset union is
denoted multiplicatively, by x̄ · ȳ. Accordingly, the empty multiset is denoted by 1. We may
also write [xk1

1 , . . . , xkm
m] to indicate multiplicities: this is the same as [x1]k1 · . . . · [xm]km .

▶ Definition 5. The set Λr of resource terms is defined by the rules:

x ∈ V (V)
x ∈ Λr

x ∈ V s ∈ Λr (λ)
λx.s ∈ Λr

s ∈ Λr t̄ ∈ !Λr (@!)
(s)t̄ ∈ Λr

and is implicitely quotiented by α-equivalence. Multisets in !Λr are called resource mono-
mials. To denote indistinctly Λr or !Λr, we write (!)Λr.

Given a semiring S and a set X , we denote by SX the set of possibly infinite linear
combinations of elements of X with coefficients in S, considered as formal weighted sums.
Given a sum S ∈ SX , its support |S| is the set of all elements of X bearing a non-null
coefficient. We also denote by S(X) the sub-semimodule of SX of all sums having a finite
support.

We use the following syntactic sugar. The empty sum
∑

x∈X 0 · x is denoted by 0. The
one-element sum

∑
x∈X δx,y · x is assimilated to y, yielding an inclusion X ⊆ SX . Sums can

be summed, i.e.
∑

x∈X ax · x +
∑

x∈X bx · x =
∑

x∈X (ax + bx) · x. It is also convenient to
extend by linearity all the constructors of the calculus to sums of resource terms, i.e.

λx.

(∑
i∈I

ai · si

)
:=

∑
i∈I

ai · λx.si,(∑
i∈I

ai · si

) ∑
j∈J

bj · t̄j :=
∑
i∈I

∑
j∈J

aibj · (si)t̄j ,[∑
i∈I

ai · si

]
·

∑
j∈J

bj · t̄ :=
∑
i∈I

∑
j∈J

aibj · [si] · t̄j .

(4)

▶ Definition 6. For all u ∈ (!)Λr, t̄ = [t1, . . . , tn] ∈ !Λr and x ∈ V, the multilinear
substitution of x by t̄ in u is the finite sum s⟨t̄/x⟩ ∈ N((!)Λr) defined by

s⟨t̄/x⟩ :=

∑

σ∈S(n)

u[tσ(1)/x1, . . . , tσ(n)/xn] if x occurs n times in u

0 otherwise

where x1, . . . , xn is an arbitrary enumeration of the occurrences of x in u, and u[tσ(1)/x1, . . .]
denotes the result of the (capture-avoiding) substitution of each xi by the corresponding tσ(i).

▶ Definition 7. The relation −→r ⊂ N((!)Λr) × N((!)Λr) of resource β-reduction is defined
using the auxiliary relation −⇀r ⊂ (!)Λr × N((!)Λr) generated by the rules

(βr)
(λx.s) t̄ −⇀r s⟨t̄/x⟩

s −⇀r S
′

(λr)
λx.s −⇀r λx.S

′

s −⇀r S
′

(@lr)
(s) t̄ −⇀r (S′) t̄

t̄ −⇀r T̄
′

(@rr)
(s) t̄ −⇀r (s) T̄ ′

s −⇀r S
′

(!r)
[s] · t̄ −⇀r [S′] · t̄

as well as the lifting rule

u1 −⇀r U
′
1 ∀i ≥ 2, ui −⇀?

r U
′
i (Σr)∑n

i=1 ui −→r
∑n

i=1 U
′
i

where −⇀?
r is the reflexive closure of −⇀r.

STACS 2025

23:6 How to Play the Accordion

From now on, we fix a semiring S. We consider N as a subset of S through the map
n 7→ 1 + . . .+ 1 (notice however that it might not be an injection), and we suppose that S
“has fractions”, i.e. for all non-null n ∈ N there is some 1

n ∈ S such that n× 1
n = 1. This is

the case of the semirings Q+ and R+ of non-negative rational (resp. real) numbers, but also
of the semiring B of boolean values (equipped with the logical “or” and “and” operations).

▶ Definition 8. Given a set X and a semiring S, a family of sums (Si)i∈I ∈ (SX)I is
summable when each x ∈ X bears a non-null coefficient in finitely many of the Si. If this is
the case then

∑
i∈I Si is a well-defined sum.

▶ Definition 9. The relation −↠r ⊂ S(!)Λr × S(!)Λr of pointwise resource reduction is
defined by saying that there is a reduction U −↠r V whenever there are summable families
(ui)i∈I ∈ ((!)Λr)I and (Vi)i∈I ∈ (N((!)Λr))I such that

U =
∑
i∈I

ai · ui, V =
∑
i∈I

ai · Vi and ∀i ∈ I, ui −→∗
r Vi.

Notice that whereas −→r reduces finite sums with integer coefficients, −↠r reduces
arbitrary sums with arbitrary coefficients.

2.3 Linear approximation and the conservativity problems
We recall the definition of the Taylor expansion of λ-terms, and the approximation theorems
it enjoys. Again, a detailed presentation can be found in [31], and in [7] for the adaption to
infinitary λ-calculi. In the latter setting, we shall start with the following unusual definition.

▶ Definition 10. The Taylor expansion is the map T : Λ001 → SΛr defined by

T (M) :=
∑
s∈Λr

T (M, s) · s,

where the coefficient T (M, s) is defined by induction on s ∈ Λr as follows:

T (x, x) := 1
T (λx.P, λx.s) := T (P, s)

T
(

(P)Q, (s)[tk1
1 , . . . , tkm

m]
)

:= T (P, s) ×
m∏

i=1

T (Q,ti)ki

ki! , the ti’s being pairwise distinct

T (M, s) := 0 in all other cases.

Let us stress a crucial observation: whenever s ∈ |T (M)|, the value of T (M, s) does not
depend on M , hence T (M) is uniquely determined by its support [19].

Using the notation from Equation (4), we obtain the following description of the Taylor
expansion. This is usually how the definition is presented for finite λ-terms, but since it is
not a valid coinductive definition we had to provide Definition 10 in the infinitary setting.

▶ Lemma 11 ([7], Corollary 4.7). For all variables x ∈ V and terms P,Q ∈ Λ001,

T (x) = x T (λx.P) = λx.T (P) T ((P)Q) = (T (P))T (Q)!,

where the operation of promotion is defined for all S ∈ SΛr by S! :=
∑

n∈N

1
n! · [S]n.

We defined a map T taking λ-terms to weighted sums of approximants. This induces an
approximation of the λ-calculus, thanks to the following theorems expressing the fact that
the reduction of the approximants can simulate the reduction of the approximated term.

▶ Theorem 12 ([31], Lemma 7.6). For M,N ∈ Λ, if M −→∗
β N then T (M) −↠r T (N).

▶ Theorem 13 ([7], Theorem 4.56). For M,N ∈ Λ001, if M −→001
β N then T (M) −↠r T (N).

R. Cerda and L. Vaux Auclair 23:7

In particular, the latter theorem encompasses the “Commutation theorem” [19, 18], which
is usually presented as the cornerstone of the linear approximation of the λ-calculus: the
normal form of T (M) is equal to the Taylor expansion of the Böhm tree of M (which is a
notion of infinitary β-normal form of M), i.e. normalisation commutes with approximation1.

▶ Definition 14. Let (A,−→A) and (B,−→B) be two reduction systems. The latter is an
extension of the former if:
1. there is an injection i : A ↪→ B,
2. −→A simulates −→B through i, i.e. ∀a, a′ ∈ A, if a −→A a′ then i(a) −→B i(a′).

This extension is said to be conservative2 if ∀a, a′ ∈ A, if i(a) −→B i(a′) then a −→A a′.

Theorems 12 and 13 can be reformulated using this definition, thanks to the fact that
T : Λ001 → SΛr is injective [8, Lemma 5.18]:

Theorem 12 tells that (SΛr ,−↠r) simulates (Λ,−→∗
β),

Theorem 13 tells that (SΛr ,−↠r) simulates (Λ001,−→001
β),

which leads us to the problems we tackle in this paper.

▷ Problem 15. Is (SΛr ,−↠r) conservative wrt. (Λ,−→∗
β)?

▷ Problem 16. Is (SΛr ,−↠r) conservative wrt. (Λ001,−→001
β)?

3 Conservativity wrt. the finite λ-calculus

In this first section, we give a positive answer to Problem 15:

▶ Theorem 17 (conservativity). For all M,N ∈ Λ, if T (M) −↠r T (N) then M −→∗
β N .

We adapt a proof technique by Kerinec and the second author [24], who used it to prove
that the algebraic λ-calculus is a conservative extension of the usual λ-calculus. Their proof
relies on a relation ⊢, called “mashup” of β-reductions, relating λ-terms (from the “small
world”) to their algebraic reducts (in the “big world”). In our setting, M ⊢ s when s is an
approximant of a reduct of M .

▶ Definition 18. The mashup relation ⊢ ⊂ Λ × Λr is defined by the following rules:

M −→∗
β x

M ⊢ x

M −→∗
β λx.P P ⊢ s

M ⊢ λx.s

M −→∗
β (P)Q P ⊢ s Q ⊢ t̄

M ⊢ (s) t̄
M ⊢ t1 . . . M ⊢ tn

M ⊢ [t1, . . . , tn]

It is extended to Λ × SΛr by the following rule:

∀i ∈ I, M ⊢ si

M ⊢
∑

i∈I ai · si

for any index set I and coefficients ai ∈ S such that the sum exists.

1 To be rigorous, Theorem 13 must first be extended to a variant of the β-reduction called β⊥-reduction.
We remain allusive here, and refer to [8, 7] for more details.

2 Notice that our definition varies from the one chosen by the Terese [30, § 1.3.21], where the conservativity
of −→B wrt. −→A is defined as a property of the conversions =A and =B they generate. We prefer
to distinguish between a conservative extension of a reduction (“in the small world, the big reduction
reduces the same people to the same people”) and a conservative extension of the corresponding
conversion.

STACS 2025

23:8 How to Play the Accordion

▶ Lemma 19. For all M ∈ Λ, M ⊢ T (M).

Proof. Take any s ∈ |T (M)|. By an immediate induction on s, M ⊢ s follows from the rules
of Definition 18 (where all the assumptions −→∗

β are just taken to be equalities). ◀

▶ Lemma 20. For all M,N ∈ Λ and S ∈ SΛr , if M −→∗
β N and N ⊢ S then M ⊢ S.

Proof. Take any s ∈ |S|, then N ⊢ s. By an immediate induction on s, M ⊢ s follows from
the rules of Definition 18 (where the assumptions M −→∗

β . . . follow from the corresponding
M −→∗

β N −→∗
β . . .). ◀

▶ Lemma 21. For all M,N ∈ Λ, x ∈ V, s ∈ Λr and t̄ ∈ !Λr, if M ⊢ s and N ⊢ t̄ then
∀s′ ∈

∣∣s⟨t̄/x⟩
∣∣ , M [N/x] ⊢ s′.

Proof. Assume M and N are given and show the following equivalent result by induction on
s: if M ⊢ s then for all t̄ such that N ⊢ t̄ and for all s′ ∈

∣∣s⟨t̄/x⟩
∣∣, M [N/x] ⊢ s′. ◀

▶ Lemma 22. For all M ∈ Λ and S,T ∈ SΛr , if M ⊢ S and S −↠r T then M ⊢ T.

Proof. Let us first show that for all M ∈ Λ and s ∈ Λr and T ∈ N(Λr), if M ⊢ s −⇀r T then
∀t ∈ |T |, M ⊢ t. We do so by induction on s −⇀r T . When s = (λx.u) v̄ is a redex, there
exists a derivation:

M −→∗
β (P)Q

P −→∗
β λx.P

′ P ′ ⊢ u

P ⊢ λx.u Q ⊢ v̄

M ⊢ (λx.u) v̄

By Lemma 21 with P ′ ⊢ u, Q ⊢ v̄, for all t ∈ |u⟨v̄/x⟩|, we obtain P ′[Q/x] ⊢ t. Finally, since
M −→∗

β (λx.P ′)Q −→β P
′[Q/x], we concude by Lemma 20. The other cases of the induction

follow immediately by lifting to the context.
As a consequence, we can easily deduce the following steps:
if M ⊢ s −⇀r T then M ⊢ T , for all M ∈ Λ, s ∈ Λr and T ∈ N(Λr),
if M ⊢ S −→r T then M ⊢ T , for all M ∈ Λ and S, T ∈ N(Λr),
if M ⊢ S −→∗

r T then M ⊢ T , for all M ∈ Λ and S, T ∈ N(Λr),
which leads to the result. ◀

Before we state the last lemma of the proof, recall that there is a canonical injection
⌊−⌋r : Λ → Λr defined by:

⌊x⌋r := x ⌊λx.P ⌋r := λx.⌊P ⌋r ⌊(P)Q⌋r := (⌊P ⌋r) [⌊Q⌋r]

and such that for all N ∈ Λ, ⌊N⌋r ∈ |T (N)|.

▶ Lemma 23. For all M,N ∈ Λ, if M ⊢ T (N) then M −→∗
β N .

Proof. If M ⊢ T (N), then in particular M ⊢ ⌊N⌋r. We proceed by induction on N :

If N = x, then M ⊢ x so M −→∗
β x by definition.

If N = λx.P ′, then M ⊢ λx.⌊P ′⌋r, i.e. there is a P ∈ Λ such that M −→∗
β λx.P and

P ⊢ ⌊P ′⌋r. By induction, P −→∗
β P

′, thus M −→∗
β λx.P

′ = N .
If N = (P ′)Q′, then M ⊢ (⌊P ′⌋r) [⌊Q′⌋r] i.e. there are P,Q ∈ Λ such that M −→∗

β (P)Q,
P ⊢ ⌊P ′⌋r and Q ⊢ [⌊Q′⌋r]. By induction, P −→∗

β P ′ and Q −→∗
β Q′, thus M −→∗

β

(P ′)Q′ = N . ◀

Proof of Theorem 17. Suppose that T (M) −↠r T (N). By Lemma 19 we obtain M ⊢
T (M), hence by Lemma 22 M ⊢ T (N). We can conlude with Lemma 23. ◀

R. Cerda and L. Vaux Auclair 23:9

4 Non-conservativity wrt. the infinitary λ-calculus

The previous theorem relied on the excellent properties of the Taylor expansion of finite
λ-terms: a single (well-chosen) term ⌊M⌋r ∈ |T (M)| is enough to characterise M , and a single
(again, well-chosen) sequence of resource reducts of some s ∈ |T (M)| suffices to characterise
any sequence M −→∗

β N . These properties are not true any more when considering more
complicated settings, like the 001-infinitary λ-calculus. This does not only make the “mashup”
proof technique fail, but also enables us to give a negative answer to Problem 16.

4.1 Failure of the “mashup” technique
Let us first describe where we hit an obstacle if we try to reproduce the proof we have given
in the finite setting, which will make clearer the way we later build a counterexample.

First, it is not obvious what the mashup relation should be: we could just use the relation
⊢ defined on Λ001 × Λr by the same set of rules as in Definition 18, or define an infinitary
mashup ⊢001 by the rules

M −→001
β x

M ⊢001 x

M −→001
β λx.P P ⊢001 s

M ⊢001 λx.s

M −→001
β (P)Q P ⊢001 s Q ⊢001 t̄

M ⊢001 (s) t̄
M ⊢001 t1 . . . M ⊢001 tn

M ⊢001 [t1, . . . , tn]

and extend it to SΛr accordingly. In fact, this happens to define the same relation.

▶ Lemma 24. For all M ∈ Λ001 and s ∈ Λr, M ⊢001 s iff M ⊢ s.

Proof. The inclusion ⊢ ⊆ ⊢001 is immediate. Let us show the converse. First, observe that
the proof of Lemma 20 can be easily extended in order to show that for all M,N ∈ Λ001 and
s ∈ Λr, if M −→001

β N ⊢001 s then M ⊢001 s. Then we proceed by induction on s.
If M ⊢001 x, then M −→001

β x, i.e. M −→∗
β x, and finally M ⊢ x.

If M ⊢001 λx.u, then there is a derivation:

M −→∗
β λx.P P −→001

β P ′

M −→001
β λx.P ′ P ′ ⊢001 u

M ⊢001 λx.u

Since P −→001
β P ′ ⊢001 u, we have P ⊢001 u, and by induction on u we obtain P ⊢ u.

With M −→∗
β λx.P , this yields M ⊢ λx.u.

The case of M ⊢001 (u) v̄ is similar. ◀

As a consequence, Lemmas 19–22 can be easily extended to −→001
β and ⊢001. We have

already explained how the proof of this can be done for Lemma 20; for the other ones, one
just needs to observe that the proofs are all by induction on resource terms or on some
inductively defined relation, hence replacing −→∗

β with −→001
β does not change anything

(and neither does replacing ⊢ with ⊢001, thanks to Lemma 24).
The failure of the infinitary “mashup” proof occurs in the extension of Lemma 23. Indeed,

this proof crucially relies on the existence of an injection ⌊−⌋r : Λ → Λr, whereas for Λ001

there is only the counterpart ⌊−⌋r,− : Λ001 × N → Λr defined by

STACS 2025

23:10 How to Play the Accordion

⌊x⌋r,d := x ⌊(P)Q⌋r,0 := (⌊P ⌋r,0) 1
⌊λx.P ⌋r,d := λx.⌊P ⌋r,d ⌊(P)Q⌋r,d+1 := (⌊P ⌋r,d+1) [⌊Q⌋r,d] .

Now, if we suppose that M ⊢ T (N) and we want to show that M −→001
β N , we cannot rely

any more on the fact that M ⊢ ⌊N⌋r, but only on the fact that ∀d ∈ N, M ⊢ ⌊N⌋r,d. This
makes the induction fail. For instance, for the case where N is an abstraction λx.P ′, we
obtain a d-indexed sequence of derivations

M −→∗
β λx.Pd Pd ⊢ ⌊P ′⌋r,d

M ⊢ ⌊N⌋r,d = ⌊λx.P ′⌋r,d

but nothing tells us that the terms Pd and reductions M −→∗
β λx.Pd are coherent! This

failure is what enables us to design a counterexample.

4.2 The Accordion
In this section, we define 001-infinitary λ-terms A and Ā and show that they form a counterex-
ample not only to the 001-infinitary counterpart of Lemma 23, but also to the conservativity
property in the infinitary setting.

▶ Notation 25. We denote as follows the usual representation of booleans, an “applicator”
⟨−⟩, and the Church encodings of integers and of the successor function:

T := λx.λy.x F := λx.λy.y ⟨M⟩ := λb.(b)M
n := λf.λx.(f)nx Succ := λn.λf.λx.(n) f (f)x

▶ Definition 26. The Accordion λ-term is defined as A := (P)0, where:

P := (Y)λϕ.λn. (⟨T⟩) ((n)⟨F⟩) Qϕ,n Qϕ,n := (Y)λψ.λb. ((b)(ϕ)(Succ)n)ψ.

We also define Ā := (⟨T⟩)(⟨F⟩)ω.

Let us show how this term behaves (and why we named it the Accordion). There exist
terms P′′ (which is nothing but the first head reduct of P) and Qn (for all n ∈ N) such that
the following reductions hold:

A −→∗
β @

P′′ 0

−→∗
β @

⟨T⟩ Q0

−→∗
β @

P′′ 1

−→∗
β @

⟨T⟩ @

⟨F⟩ Q1

−→∗
β @

P′′ n

−→∗
β @

⟨T⟩ @

⟨F⟩ @

⟨F⟩
@

⟨F⟩ Qn.

This means that:
1. for any d ∈ N, A reduces to terms Ad that are similar to Ā up to depth d (and, as a

consequence, any finite approximant of Ā is a reduct of approximants of A);
2. but this is not a valid infinitary reduction because we need to reduce a redex at depth 0

to obtain Ad −→∗
β Ad+1, thus the stratification property (Theorem 4) is violated: the

depth of the reduced redexes does not tend to the infinity.

R. Cerda and L. Vaux Auclair 23:11

Our definition of A and Ā was entirely guided by this specification. More concretely:
when fed with a Church integer argument n, the term P′′ produces a term mimicking Ā
up to the n-th copy of ⟨F⟩, the latter being applied to Qn = QP′′,n;
the applicator ⟨−⟩ enforces a kind of call-by-value discipline, giving control to the argument
(observe that (⟨M⟩)N −→β (N)M);
QP′′,n eats up boolean arguments F, until it is fed with a boolean T (marking the root of
the tree), at which point it restores P′′, applied to the next Church integer.

In particular, this dynamics (A is “stretched” and “compressed” over and over) justifies the
name “Accordion”.

To be a counterexample to conservativity, A actually has to satisfy a stronger property:
all reduction paths starting from A should have this “accordion” behaviour. A thorough
analysis of the dynamics will allow us to establish this, and obtain:

▶ Theorem 27. (i) T (A) −↠r T (Ā), but (ii) there is no reduction A −→001
β Ā.

This theorem improves on the results from the first author’s PhD thesis [7, Theorem 5.12],
where only the qualitative setting was treated (i.e. when S = B). Non-conservativity in the
general case was presented as Conjecture 5.15, which is thereby solved.

4.3 Proof of the counterexample
In this (highly technical) section, we prove Theorem 27: a reader already satisfied with the
above intuitions might prefer to skip it, and jump to Section 5. The key ingredient in the
proof are the following well-known notions as well as the associated factorization property,
due to Mitschke [28, cor. 5].

▶ Definition 28. A λ-term M ∈ Λ001 has two possible head forms:
either the form λx1 . . . λxm.(y)M1 . . .Mn, called head normal form (hnf),
or the form λx1 . . . λxm.(λx.P)QM1 . . .Mn, where (λx.P)Q is called the head redex.

As a consequence, a β-reduction M −→β N reduces:
either a head redex: it is a head reduction, denoted by M −→h N ,
or any other redex: it is an internal reduction, denoted by M −→i N .

▶ Lemma 29 (head-internal decomposition). For all M,N ∈ Λ such that M −→∗
β N , there

exists an M ′ ∈ Λ such that M −→∗
h M

′ −→∗
i N .

Let us also introduce some abbreviations3:

P′ := λϕ.λn. (⟨T⟩) ((n)⟨F⟩) Qϕ,n P′′ := (λx. (P′)(x)x) λx.(P′)(x)x Qn := QP′′,(Succ)n0

Q′
n := λψ.λb. ((b)(P′′)(Succ)n+10)ψ Q′′

n := (λx.(Q′
n)(x)x)λx.(Q′

n)(x)x.

Using these definitions, Figure 1 describes the head reduction path starting from A.

Proof of Theorem 27, item (i). For all d ∈ N, we define:
Ād := (⟨T⟩)(⟨F⟩)dQn. As a consequence of the reduction described in Figure 1, in particular
its step 7, there are reductions A −→∗

β Ā0 −→∗
β Ā1 −→∗

β Ā2 −→∗
β . . . By Theorem 12, we

obtain

T (A) −↠r T (Ā0) −↠r T (Ā1) −↠r T (Ā2) −↠r . . . (29)

3 Notice that the Qn we define here are slightly different from those in the example reduction described
above, but they play the same role.

STACS 2025

23:12 How to Play the Accordion

The first step is:

A = ((Y)P′)0 −→h (P′′)0

Then, for each n ∈ N, we do the following head
reduction steps:

(P′′)(Succ)n0

−→h

(
(P′)P′′

)
(Succ)n0 (5)

−→h

(
λn. (⟨T⟩) ((n)⟨F⟩) QP′′,n

)
(Succ)n0 (6)

−→h (⟨T⟩) (((Succ)n0) ⟨F⟩) Qn (7)

−→h (Succ)n0 ⟨F⟩ Qn T (8)

−→h

(
λf.λx.(((Succ)n−10)f)(f)x

)
⟨F⟩ Qn T (9)

−→h

(
λx.(((Succ)n−10)⟨F⟩)(⟨F⟩)x

)
Qn T (10)

−→h

(
(Succ)n−10 ⟨F⟩ (⟨F⟩)Qn

)
T (11)

and by repeating steps (9) to (11):

−→∗
h

(
(0)⟨F⟩ (⟨F⟩)nQn

)
T (12)

−→h

(
(λx.x) (⟨F⟩)nQn

)
T (13)

−→h

(
(λb.(b)F) (⟨F⟩)n−1Qn

)
T (14)

−→h

(
(⟨F⟩)n−1Qn

)
F T (15)

and by repeating step (15):

−→∗
h

(
(Y)Q′

n

)
F . . . F︸︷︷︸
n times

T (16)

−→h (Q′′
n) F . . . F T (17)

−→h

(
(Q′

n)Q′′
n

)
F . . . F T (18)

−→h

(
λb. ((b)(P′′)(Succ)n+10) Q′′

n

)
F . . . F T (19)

−→h

((
(λx.λy.y)(P′′)(Succ)n+10

)
Q′′

n

)
F . . . F︸︷︷︸

n−1
times

T (20)

−→h

(
(λy.y)Q′′

n

)
F . . . F T (21)

−→h (Q′′
n) F . . . F T (22)

and by repeating steps (18) to (22):

−→∗
h (Q′′

n) T (23)

−→h

(
(Q′

n)Q′′
n

)
T (24)

−→h

(
λb. ((b)(P′′)(Succ)n+10) Q′′

n

)
T (25)

−→h

(
(λx.λy.x)(P′′)(Succ)n+10

)
Q′′

n (26)

−→h

(
λy.(P′′) (Succ)n+10

)
Q′′

n (27)

−→h (P′′) (Succ)n+10 (28)

which brings us back to step (5).

Figure 1 Exhaustive head reduction of the Accordion. We highlight the fired head redexes.

T ′
d (Ā) := T ((⟨T⟩)(⟨F⟩)d⊥), where ⊥ is a constant such that T (⊥) := 0 (this is just a trick

to “cut” the Taylor expansion at some point), as well as T0(Ā) := T ′
0 (Ā)

Td+1(Ā) := T ′
d+1(Ā) − T ′

d (Ā) =
∑

s∈|T ′
d+1(Ā)|\|T ′

d
(Ā)| T (s, Ā) · s.

By construction (using the observation that the coefficient of s ∈ |T (M)| does not depend
on M), we obtain:

T (Ād) = Td(Ā) + Sd, for some Sd such that |Td(Ā)| ∩ |Sd| = ∅ (30)

T (Ā) =
∑
n∈N

Td(Ā) (31)

Before we use this material to prove the theorem, we need to make the following crucial
observation:

∀s ∈ Td(Ā), ∀k > 0, ∄t ∈ Td+k(Ā), s −→∗
r t+ T (32)

for some T ∈ N(Λr). This is due to the fact that terms in T (Ā) cannot see their (applicative)
depth increase through resource reduction.

Now we start with Equation (29), having T (A) −↠r T (Ā0) −↠r T (Ā1). Thanks to
Equation (30), this can be rewritten as T (A) −↠r T0(Ā) + S0 −↠r T1(Ā) + S1. Equation (32)
allows to say that only S0 contributes to T1(Ā) in the second reduction. If we leave T0(Ā)
untouched and only reduce S0, we obtain T0(Ā) + S0 −↠r T0(Ā) + T1(Ā) + S′

1 for some S′
1

that is part of S1. If we keep applying Equations (30) and (32) and we iterate the process,
we obtain:

R. Cerda and L. Vaux Auclair 23:13

T (A) −↠r T0(Ā) + S0 −↠r T0(Ā) + T1(Ā) + S′
1 −↠r . . . −↠r

N∑
d=0

Td(Ā) + S′
N (33)

for all N ∈ N. For each s ∈ |T (A)|, this can be turned into4:

s −→∗
r Ts,0 + Ss,0 −→∗

r Ts,0 + Ts,1 + Ss,1 −→∗
r . . . −→∗

r

N∑
d=0

Ts,d + Ss,N (34)

for some Ts,d, Ss,d ∈ N(Λr) satisfying Td(Ā) =
∑

s∈Λr
T (s, A) · Ts,d. In fact:

There are only finitely many d’s such that Ts,d ̸= 0 (this is due to the fact that a resource
terms has only finitely many reducts [31, Lemma 3.13]).
A has no head normal form as demonstrated in Figure 1, which entails that T (A) −↠r 0
[8, Theorem 5.6]. Since S′

d only contains reducts of terms in T (A), this means that we
can reduce S′

N −→∗
r 0.

As a consequence, s −→∗
r

∑
d∈N Ts,d and we can conclude:

T (A) =
∑
s∈Λr

T (s, A) · s −↠r
∑
s∈Λr

T (s, A) ·
∑
d∈N

Ts,d =
∑
d∈N

Td(Ā) = T (Ā)

by Equation (31). ◀

Proof of Theorem 27, item (ii). We suppose that there is a reduction A −→001
β Ā and we

show that this leads to a contradiction. By Theorem 4 and Lemma 29, there exists respectively
a sequence of terms Ad ∈ Λ and a term A′

0 ∈ Λ such that there are reductions

A −→∗
h A′

0 −→∗
i A1 −→∗

β≥1 Ad −→001
β≥d Ā.

A′
0 and Ā must have the same head form, i.e. there must be M,N ∈ Λ such that A′

0 = (λb.M)N .
The exhaustive description of the head reducts of A detailed in Figure 1 allows to observe
that this only happens in four cases (corresponding to steps 6, 7, 25 and 27 in Figure 1):

4 This inference might not be possible for an arbitrary reduction sequence, because the obtained reduc-
tions (34) occur in N(Λr) (with integer coefficients only) while the original reductions (33) occur in SΛr

(possibly with rational coefficients): if for some s ∈ S′
d the original reduction S′

d −↠r Td+1(Ā) + S′
d+1

consists in doing s = 1
3 s + 2

3 s −↠r
1
3 S′ + 2

3 S′′, we will not be able to retrieve a reduction s −→∗
r . . . of

the desired shape.
But the reductions in SΛr we consider are not arbitrary: Equation (29) was obtained by simulating a
sequence of β-reductions via Theorem 12, so that we can apply uniformity. With the notations to be
introduced in Section 5, using Corollary 34 we obtain reductions S′

d −→⌢ ∗
r Td+1(Ā) + S′

d+1 instead of
S′

d −↠r Td+1(Ā) + S′
d+1. These reductions can only be derived as follows:

(ss,d,i) s∈Λr
1≤i≤ns,d

−⇀⌢ ∗
r (T ′

s,d,i + S′
s,d,i) s∈Λr

1≤i≤ns,d

∑
s∈Λr

T (s, A) ·
ns,d∑
i=1

ss,d,i︸ ︷︷ ︸
Ss,d︸ ︷︷ ︸

S′
d

−→⌢ ∗
r

∑
s∈Λr

T (s, A) ·

ns,d∑
i=1

Ts,d+1,i︸ ︷︷ ︸
Ts,d+1

+
ns,d∑
i=1

Ss,d+1,i︸ ︷︷ ︸
Ss,d+1

︸ ︷︷ ︸

Td+1(Ā)+S′
d+1

the premise of which allows to build a reduction Ss,d −→∗
r Ts,d+1 + Ss,d+1.

STACS 2025

23:14 How to Play the Accordion

1. A′
0 = (λn. (⟨T⟩) ((n)⟨F⟩) QP′′,n) (Succ)n0,

2. A′
0 = (⟨T⟩) (((Succ)n0) ⟨F⟩) Qn,

3. A′
0 =

(
λb. ((b)(P′′)(Succ)n+10) Q′′

n

)
T,

4. A′
0 =

(
λy.(P′′) (Succ)n+10

)
Q′′

n,
for some n ∈ N (in the following, n denotes this specific integer appearing in A′

0). In particular,
for one of these possible values of A′

0 there must be a reduction

A′
0 −→∗

i An+4 −→001
β≥n+4 Ā.

Since An+4 and Ā are identical up to applicative depth n + 3, we can write An+4 =
(⟨T⟩)(⟨F⟩)n+1M for some M ∈ Λ such that M −→001

β (⟨F⟩)ω (we need to go up to depth n+ 3
since ⟨T⟩ and ⟨F⟩ are themselves of applicative depth 2). Finally, there must be a reduction

A′
0 −→∗

i (⟨T⟩)(⟨F⟩)n+1M.

For each of the possible cases for A′
0, let us show that this is impossible. The easy cases are:

Case 1, step (6) Such a reduction would imply that (Succ)n0 −→∗
β (⟨F⟩)n+1M . However

(Succ)n0 −→∗
β n, which is in β-normal form, while (⟨F⟩)n+1M has no normal form. We

conclude by confluence of the finite λ-calculus.
Case 3, step (25) Immediate because T is in normal form.
Case 4, step (27) Such a reduction would imply that λy.(P′′)(Succ)n+10 −→∗

β ⟨T⟩ =
λy.(y)T, and therefore that (P′′)(Succ)n+10 has a hnf (y)T. This is impossible, as
detailed in the exhaustive head reduction of A in Figure 1.

The remaining case concerns the reduct (⟨T⟩) (((Succ)n0) ⟨F⟩) Qn. It is the only “non-
degenerate” one, in the sense that it is where the accordion-like behaviour of A is illustrated:
the sub-term ⟨T⟩ here is really “the same” as the one appearing at the root of Ā but we need
to reduce this sub-term at some point (i.e. to “compress” the Accordion). Thus there can be
no 001-infinitary reduction towards Ā. The formal proof of this case, i.e. of the impossibility
of (Succ)n0⟨F⟩Qn −→∗

β (⟨F⟩)n+1M , is given by Lemma 31 below. ◀

▶ Lemma 30. For all k ∈ N, n ∈ N and M ∈ Λ, there is no reduction

(⟨F⟩)k Qn −→∗
β (⟨F⟩)k+1M.

Proof. We proceed by induction on k. First, take k = 0 and suppose there is a reduction
Qn −→∗

β (⟨F⟩)M . By Lemma 29, there are R,R′ ∈ Λ such that

Qn −→∗
h (λb.R)R′ −→∗

i (⟨F⟩)M = (λb.(b)F)M.

An exhaustive head reduction of Qn gives the possible values of R and R′:

Qn = (Y)Q′
n

−→h (λx.(Q′
n)(x)x) λx.(Q′

n)(x)x
−→h

(
λψ.λb. ((b)(P′′)(Succ)n+10)ψ

)
Q′′

n

−→h λb. ((b)(P′′)(Succ)n+10) Q′′
n,

the last reduct being in hnf, which leaves only the first three possibilities. In any of those
three cases, R −→∗

β (b)F (modulo renaming of b by α-conversion) is impossible by immediate
arguments, so that (λb.R)R′ −→∗

i (⟨F⟩)M cannot hold.

R. Cerda and L. Vaux Auclair 23:15

If k ≥ 1, let us again suppose that there is a reduction (⟨F⟩)k Qn −→∗
β (⟨F⟩)k+1M .

Lemma 29 states that there are R,R′ ∈ Λ such that

(⟨F⟩)k Qn −→∗
h (λb.R)R′ −→∗

i (λb.(b)F)(⟨F⟩)kM.

An exhaustive head reduction of (⟨F⟩)k Qn gives the possible values of R and R′ (we write
only the reduction steps corresponding to the well-formed reducts – see the details in the
detailed head reduction of A, steps (15) and following):

(⟨F⟩)k Qn = (λb.(b)F) (⟨F⟩)k−1 Qn

−→∗
h

(
λb.

(
(b)(P′′)(Succ)n+10

)
Q′′

n

)
F

−→∗
h (λy.y)Q′′

n

−→h Q′′
n

In the first case, a reduction (λb.(b)F) (⟨F⟩)k−1 Qn −→∗
i (λb.(b)F)(⟨F⟩)kM is impossible because

it would imply that (⟨F⟩)k−1 Qn −→∗
β (⟨F⟩)kM , which is impossible by induction. The second

and third cases are impossible by immediate arguments; the fourth case has already been
explored (Q′′

n is exactly the term from the second line of the reduction of Qn above). ◀

▶ Lemma 31. For all n ∈ N, k ∈ [0, n] and M ∈ Λ, there is no reduction:

(Succ)n−k 0 ⟨F⟩ (⟨F⟩)kQn −→∗
β (⟨F⟩)n+1M.

Proof. We proceed by induction on n− k. The base case is k = n: if there is a reduction
(0) ⟨F⟩ (⟨F⟩)nQn −→∗

β (⟨F⟩)n+1M , then by Lemma 29 there are terms R,R′ ∈ Λ such that

(0) ⟨F⟩ (⟨F⟩)nQn −→∗
h (λb.R)R′ −→∗

i (λb.(b)F)(⟨F⟩)nM.

Observe that

(0) ⟨F⟩ (⟨F⟩)nQn −→h (λx.x) (⟨F⟩)nQn −→h (⟨F⟩)nQn

hence, because λx.x is in β-normal form and by Lemma 30, we reach a contradiction.

If k < n and there is a reduction (Succ)n−k 0 ⟨F⟩ (⟨F⟩)kQn −→∗
β (⟨F⟩)n+1M , then again

by Lemma 29 there are terms R,R′ ∈ Λ such that

(Succ)n−k 0 ⟨F⟩ (⟨F⟩)kQn −→∗
h (λb.R)R′ −→∗

i (λb.(b)F)(⟨F⟩)nM.

Observe that

(Succ)n−k 0 ⟨F⟩ (⟨F⟩)kQn −→h

(
λf.λx.(Succ)n−k−1 0 f (f)x

)
⟨F⟩ (⟨F⟩)kQn

−→h

(
λx.(Succ)n−k−1 0 ⟨F⟩ (⟨F⟩)x

)
(⟨F⟩)kQn

−→h (Succ)n−k−1 0 ⟨F⟩ (⟨F⟩)k+1Qn

The first reduct does not have the expected head form. In the second case, (λb.R)R′ −→∗
i

(λb.(b)F)(⟨F⟩)nM would imply that (⟨F⟩)kQn −→∗
β (⟨F⟩)nM , which is impossible by Lemma 30

because k < n. In the third case, apply the induction hypothesis. ◀

STACS 2025

23:16 How to Play the Accordion

5 The missing ingredient: Uniformity

The fact that the simulation of −→001
β by −↠r via the Taylor expansion is not conservative

confirms that the pointwise reduction −↠r, even if needed in order to express the pointwise
normal form of a sum through the resource reduction, weakens the dynamics of the β-reduction
by allowing to reduce resource approximants along reductions paths that do not correspond
to an actual reduction of the approximated term. As already underlined by Ehrhard and
Regnier in their seminal work [19], uniformity is what gives the linear approximation all its
robustness; this will also be the case for our study.

▶ Definition 32. The relation ⌢⌣ ⊂ (!)Λr × (!)Λr of coherence is defined by the rules:

x ⌢⌣ x

s ⌢⌣ s′

λx.s ⌢⌣ λx.s′
s ⌢⌣ s′ t̄ ⌢⌣ t̄′

(s) t̄ ⌢⌣ (s) t̄′

∀i ∈ {1, . . . ,m}, ∀j ∈ {1, . . . , n}, ti ⌢⌣ t′j
(m, n ∈ N)

[t1, . . . , tm] ⌢⌣ [t′1, . . . , t′n]

For S,T ∈ S(!)Λr , we write S ⌢⌣ T whenever ∀s ∈ |S| , ∀t ∈ |T| , s ⌢⌣ t.

▶ Definition 33. Given an index set I and a depth d ∈ N, we define a relation −⇀⌢ r≥d ⊂
((!)Λr)I × (N((!)Λr))I by the following rules:

∀i, j, si
⌢⌣ sj ∀i, j, t̄i ⌢⌣ t̄j

((λx.si) t̄i)i∈I −⇀⌢ r≥0 (si⟨t̄i/x⟩)i∈I

(si)i∈I −⇀⌢ r≥d (S′
i)i∈I

(λx.si)i∈I −⇀⌢ r≥d (λx.S′
i)i∈I

(si)i∈I −⇀⌢ r≥d (S′
i)i∈I ∀i, j, t̄i ⌢⌣ t̄j

((si) t̄i)i∈I −⇀⌢ r≥d ((S′
i) t̄i)i∈I

(ti,j)i∈I
1≤j≤ki

−⇀⌢ r≥d (T ′
i,j)i∈I

1≤j≤ki

([ti,1, . . . , ti,ki
])i∈I −⇀⌢ r≥d ([T ′

i,1, . . . , T
′
i,ki

])i∈I

∀i, j, si
⌢⌣ sj (t̄i)i∈I −⇀⌢ r≥0 (T̄ ′

i)i∈I

((si) t̄i)i∈I −⇀⌢ r≥0 ((si) T̄ ′
i)i∈I

∀i, j, si
⌢⌣ sj (t̄i)i∈I −⇀⌢ r≥d (T̄ ′

i)i∈I

((si) t̄i)i∈I −⇀⌢ r≥d+1 ((si) T̄ ′
i)i∈I

The relation −→⌢ r≥d ⊂ S(!)Λr × S(!)Λr of uniform resource reduction at minimum
depth d is defined by

(ui)i∈I −⇀⌢ r≥d (U ′
i)i∈I∑

i∈I aiui −→⌢ r≥d

∑
i∈I aiU

′
i .

We denote −⇀⌢ r≥0 and −→⌢ r≥0 simply by −⇀⌢ r and −→⌢ r, and call the latter uniform
resource reduction.

The intuition behind −→⌢ r is that:
it can only reduce “uniform” sums, i.e. sums containing resource terms that all have the
same shape (formally, sums S such that S ⌢⌣ S),
each reduction step of a sum is a “bundle” of resource reduction steps occurring at the
same address in the elements of the sum (−⇀⌢ r is an inductive reformulation of Midez’
Γ-reduction [27]).

R. Cerda and L. Vaux Auclair 23:17

This allows to capture only the reductions of some T (M) that correspond to a β-reduction
of M , as we will formally show. In fact, all the pointwise reductions −↠r occurring in the
proof of Theorem 12 are already instances of the particular case −→⌢ ∗

r , hence the following
reformulation.

▶ Corollary 34 (of Theorem 12; [7], Lemma 4.50). For all M,N ∈ Λ, if M −→β≥d N then
T (M) −→⌢ r≥d T (N).

Let us show how this property can be used to build a conservative simulation of −→001
β .

The simulating reduction needs to be:
a restriction of −↠r, because we want to eliminate the non-uniform reductions that
cannot be turned into actual β-reductions,
an extension of −→⌢ ∗

r , because we want to be able to simulate not only finite, but also
infinitary reductions.

The way we proceed is guided by the stratification property (Theorem 4).

▶ Notation 35. The (applicative) depth of a resource term is the integer defined by

depth(x) := 0 depth((s) t̄) := max
(
depth(s), 1 + depth(t̄)

)
depth(λx.s) := depth(s) depth([t1, . . . , tn]) := max

1≤i≤n
depth(ti).

For all sum
∑
i∈I

ai · si ∈ SΛr and integer d ∈ N, we write
(∑

i∈I

ai · si

)
<d

:=
∑
i∈I

depth(si)<d

ai · si.

▶ Definition 36. The relation −→⌢ ∞
r ⊂ S(!)Λr × S(!)Λr of infinitary uniform resource

reduction is defined by writing U −→⌢ ∞
r V whenever there is a sequence (Ud)d∈N such that

U0 = U ∀d ∈ N, Ud −→⌢ ∗
r≥d Ud+1 ∀d ∈ N, (Ud)<d = (V)<d .

By design, −→⌢ ∞
r simulates the stratification of an infinitary β-reduction, hence the

following property.

▶ Corollary 37 (of Theorem 4 and Corollary 34). For all M,N ∈ Λ001, if M −→001
β N then

T (M) −→⌢ ∞
r T (N).

Proof. We need to define a sequence (Ud)d∈N as in Definition 36. By stratification (Theo-
rem 4), we obtain a sequence (Md)d∈N and we can define Ud := T (Md). The conclusion follows
by Corollary 34 and by the fact that whenever M −→001

β≥d N , then (T (M))<d = (T (N))<d. ◀

As announced, this simulation enjoys a converse conservativity property.

▶ Theorem 38 (conservativity). For M,N ∈ Λ001, if T (M) −→⌢ ∞
r T (N) then M −→001

β N .

The proof of the theorem goes as follows.

▶ Lemma 39. For all M,N ∈ Λ001 and d ∈ N, if T (M) −→⌢ r≥d T (N) then M −→β≥d N .

Proof. By an immediate induction on the reduction (s)s∈|T (M)| −⇀⌢ r≥d (Ts)s∈|T (M)| induced
by T (M) −→⌢ r≥d T (N). ◀

▶ Lemma 40. For all M ∈ Λ001 and S ∈ SΛr , if T (M) −→⌢ r S then there exists an M ′ ∈ Λ001

such that S = T (M ′).

STACS 2025

23:18 How to Play the Accordion

Proof. By an immediate induction on the reduction (s)s∈|T (M)| −⇀⌢ r≥d (Ts)s∈|T (M)| induced
by T (M) −→⌢ r≥d S. The base case relies on the same substitution lemma (Lemma 4.8 of
[31]) as the proof of Theorem 12. ◀

▶ Lemma 41. Consider families (ui)i∈I ∈ ((!)Λr)I and (Vi)i∈I ∈ (N((!)Λr))I such that
(ui)i∈I −⇀⌢ r (Vi)i∈I . For all i, j ∈ I, if ui = uj then Vi = Vj.

Proof. By induction on (ui)i∈I −⇀⌢ r (Vi)i∈I . ◀

In particular, this lemma allows to change the index set I when writing a reduction
(ui)i∈I −⇀⌢ r (Vi)i∈I , as soon as no ui (and corresponding Vi) is erased or created – but
duplications and erasures of duplicates are allowed.

▶ Lemma 42. For all S,T ∈ SΛr , if S! −→⌢ r T! then S −→⌢ r T.

Proof. Suppose that S! −→⌢ r T!. Thanks to Lemma 41, there is a derivation

(si) n∈N
s1,...,sn∈|S|

1≤i≤n

−⇀⌢ r (Tsi) n∈N
s1,...,sn∈|S|

1≤i≤n

([s1, . . . , sn]) n∈N
s1,...,sn∈|S|

−⇀⌢ r ([Ts1 , . . . , Tsn
]) n∈N

s1,...,sn∈|S|∑
n∈N

∑
s1,...,sn∈|S|

∏n

i=1
asi

n! · [s1, . . . , sn]

︸ ︷︷ ︸
S!

−→⌢ r
∑
n∈N

∑
s1,...,sn∈|S|

∏n

i=1
asi

n! · [Ts1 , . . . , Tsn]

︸ ︷︷ ︸
T!

with S =
∑

s∈|S| as · s. By Lemma 41 again, the hypothesis of the derivation is equivalent to
(s)s∈|S| −⇀⌢ r (Ts)s∈|S|, hence we can derive:

(s)s∈|S| −⇀⌢ r (Ts)s∈|S|

S −→⌢ r
∑

s∈|S| as · Ts.

To see that T =
∑

s∈|S| as · Ts, observe that

the coefficient of t in T
= the coefficient of [t] in T!

= the coefficient of [t] in
∑
n∈N

∑
s1,...,sn∈|S|

∏n

i=1
asi

n! · [Ts1 , . . . , Tsn
]

=
∑

s∈|S|

as × the coefficient of t in Ts

= the coefficient of t in
∑

s∈|S|

as · Ts,

which concludes the proof. ◀

Proof of theorem 38. Suppose that there is a sequence (Sd)d∈N such that

S0 = T (M) ∀d ∈ N, Sd −→⌢ ∗
r≥d Sd+1 ∀d ∈ N, (Sd)<d = (T (N))<d .

By Lemma 40 there is a sequence of terms (Md)d∈N such that ∀d ∈ N, Sd = T (Md). We can
take M0 = M , and our hypotheses yield

∀d ∈ N, T (Md) −→⌢ ∗
r≥d T (Md+1) (35)

∀d ∈ N, (T (Md))<d = (T (N))<d . (36)

R. Cerda and L. Vaux Auclair 23:19

For any sequence (Md)d∈N such that Equations (35) and (36) hold, we build a reduction
M0 −→001

β N by nested induction and coinduction on N .

Case N = x. (T (M1))<1 = (T (N))<1 = x hence also T (M1) = x. As a consequence,
T (M0) −→⌢ r x so by Lemma 39 M0 −→∗

β x, which leads to the conclusion.
Case N = λx.P ′. For all d ≥ 1, (T (Md))<d = (T (N))<d = λx. (T (P ′))<d hence there is a
term Pd ∈ Λ001 such that Md = λx.Pd. We also define P0 := P1, so that M0 −→∗

β λx.P0
by Equation (35) and Lemma 39.
The sequence (Pd)d∈N satisfies Equations (35) and (36) wrt. P ′, hence by induction we
can build a reduction P0 −→001

β P ′. We conclude with the rule (λ001
β) from Definition 3.

Case N = (P ′)Q′. For all d ≥ 1, (T (Md))<d = (T (N))<d =
(
(T (P ′))<d

) (
T (Q′)!)

<d−1
hence there are terms Pd, Qd ∈ Λ001 such that Md = (Pd)Qd. We also define P0 := P1,
so that M0 −→∗

β (P0)Q1 by Equation (35) and Lemma 39.
By Equation (35), for all d ≥ 1 there are reductions

T (Pd) −→⌢ ∗
r≥d T (Pd+1) and T (Qd)! −→⌢ ∗

r≥d−1 T (Qd+1)!.

From the first reduction we deduce that the sequence (Pd)d∈N satisfies Equations (35)
and (36) wrt. P ′, hence by induction we can build a reduction P0 −→001

β P ′. From
the second reduction, by Lemma 42 we deduce that the sequence (Qd+1)d∈N satisfies
Equations (35) and (36) wrt. Q′: we apply rule (@001

β) and proceed coinductively, through
the guard (▷), to establish Q1 −→001

β Q′. ◀

In particular, observe that there is no reduction A −→⌢ ∞
r Ā: in the sequence of reductions

given in Equation (29) in the proof of Theorem 27, item 1, all steps T (Ad) −↠r T (Ad+1) can
be turned into T (Ad) −→⌢ ∗

r T (Ad+1) (as explained in Footnote 4), but not into T (Ad) −→⌢ r≥d

T (Ad+1) because there is always a reduction step occurring at depth 0.

We finally obtained a conservative approximation of the 001-infinitary λ-calculus. As a
conclusive remark, let us mention that we did not take any ⊥-reductions into account, though
they are needed if one wants to simulate the reductions M −→001

β⊥ BT(M) corresponding to
Ehrhard and Regnier’s commutation theorem. These reductions could be taken into account
by adding the following rule:

∀i, j, ui
⌢⌣ uj ∀i, ui −→∗

r 0
(ui)i∈I −⇀⌢ r⊥ (0)i∈I

to Definition 33. One would then be able to provide a conservative simulation of −→001
β⊥ by

−→⌢ ∞
r⊥.
The question naturally arises whether this approach is transferrable to the richer λ-

calculi already endowed with a linear approximation (as listed in the introduction). This
remains unclear, since most of these settings are non-uniform, i.e. it is not true any more
that T (M) ⌢⌣ T (M) in general. Investigating how existing techniques used to tame non-
uniformity, e.g. in [31], can be exploited to address the conservativity problem in richer
settings, remains an open line of research.

References
1 Davide Barbarossa. Resource approximation for the λμ-calculus. In Proceedings of the 37th

Annual ACM/IEEE Symposium on Logic in Computer Science, 2022. doi:10.1145/3531130.
3532469.

STACS 2025

https://doi.org/10.1145/3531130.3532469
https://doi.org/10.1145/3531130.3532469

23:20 How to Play the Accordion

2 Davide Barbarossa and Giulio Manzonetto. Taylor Subsumes Scott, Berry, Kahn and Plotkin.
In 47th Symposium on Principles of Programming Languages, 2020. doi:10.1145/3371069.

3 Henk P. Barendregt. The Lambda Calculus. Elsevier, Amsterdam, 2 edition, 1984.
4 Henk P. Barendregt and Giulio Manzonetto. A Lambda Calculus Satellite. Number 94 in

Mathematical logic and foundations. College publications, 2022.
5 Lison Blondeau-Patissier, Pierre Clairambault, and Lionel Vaux Auclair. Extensional Taylor

Expansion, 2024. arXiv:2305.08489v2.
6 Rémy Cerda. Nominal algebraic-coalgebraic data types, with applications to infinitary λ-calculi.

To appear in the proceedings of the 12th International Workshop on Fixed Points in Computer
Science (FICS’24).

7 Rémy Cerda. Taylor Approximation and Infinitary λ-Calculi. PhD thesis, Aix-Marseille
Université, 2024. URL: https://hal.science/tel-04664728.

8 Rémy Cerda and Lionel Vaux Auclair. Finitary Simulation of Infinitary β-Reduction via
Taylor Expansion, and Applications. Logical Methods in Computer Science, 19, 2023. doi:
10.46298/LMCS-19(4:34)2023.

9 Jules Chouquet and Christine Tasson. Taylor expansion for call-by-push-value. In 28th EACSL
Annual Conference on Computer Science Logic, 2020. doi:10.4230/LIPICS.CSL.2020.16.

10 Ugo Dal Lago and Thomas Leventis. On the Taylor Expansion of Probabilistic Lambda
Terms. In Herman Geuvers, editor, 4th International Conference on Fromal Structures for
Computation and Deduction, 2019. doi:10.4230/LIPIcs.FSCD.2019.13.

11 Daniel de Carvalho. Execution time of λ-terms via denotational semantics and intersection
types. Mathematical Structures in Computer Science, 28(7):1169–1203, 2017. doi:10.1017/
s0960129516000396.

12 Aloÿs Dufour and Damiano Mazza. Böhm and Taylor for All! In 9th International Conference
on Formal Structures for Computation and Deduction (FSCD 2024), 2024. doi:10.4230/
LIPICS.FSCD.2024.29.

13 Thomas Ehrhard. On Köthe sequence spaces and linear logic. Mathematical Structures in
Computer Science, 12(5):579–623, 2002. doi:10.1017/s0960129502003729.

14 Thomas Ehrhard. Finiteness spaces. Mathematical Structures in Computer Science, 15(4):615–
646, 2005. doi:10.1017/S0960129504004645.

15 Thomas Ehrhard and Giulio Guerrieri. The bang calculus: an untyped lambda-calculus
generalizing call-by-name and call-by-value. In Proceedings of the 18th International Symposium
on Principles and Practice of Declarative Programming, 2016. doi:10.1145/2967973.2968608.

16 Thomas Ehrhard and Laurent Regnier. The differential lambda-calculus. Theoretical Computer
Science, 309(1):1–41, 2003. doi:10.1016/S0304-3975(03)00392-X.

17 Thomas Ehrhard and Laurent Regnier. Differential interaction nets. Electronic Notes in
Theoretical Computer Science, 123:35–74, 2005. doi:10.1016/j.entcs.2004.06.060.

18 Thomas Ehrhard and Laurent Regnier. Böhm Trees, Krivine’s Machine and the Taylor
Expansion of Lambda-Terms. In Arnold Beckmann, Ulrich Berger, Benedikt Löwe, and John V.
Tucker, editors, Logical Approaches to Computational Barriers, pages 186–197. Springer, 2006.
doi:10.1007/11780342_20.

19 Thomas Ehrhard and Laurent Regnier. Uniformity and the Taylor expansion of ordinary
lambda-terms. Theoretical Computer Science, 403(2):347–372, 2008. doi:10.1016/j.tcs.
2008.06.001.

20 Jean-Yves Girard. Linear logic. Theoretical Computer Science, 50:1–102, 1987. doi:10.1016/
0304-3975(87)90045-4.

21 Martin Hyland. A syntactic characterization of the equality in some models for the lambda
calculus. Journal of the London Mathematical Society, s2-12:361–370, 1976. doi:10.1112/
jlms/s2-12.3.361.

22 Richard Kennaway, Jan Willem Klop, Ronan Sleep, and Fer-Jan de Vries. Infinitary lambda
calculus. Theoretical Computer Science, 175(1):93–125, 1997. doi:10.1016/S0304-3975(96)
00171-5.

https://doi.org/10.1145/3371069
https://arxiv.org/abs/2305.08489v2
https://hal.science/tel-04664728
https://doi.org/10.46298/LMCS-19(4:34)2023
https://doi.org/10.46298/LMCS-19(4:34)2023
https://doi.org/10.4230/LIPICS.CSL.2020.16
https://doi.org/10.4230/LIPIcs.FSCD.2019.13
https://doi.org/10.1017/s0960129516000396
https://doi.org/10.1017/s0960129516000396
https://doi.org/10.4230/LIPICS.FSCD.2024.29
https://doi.org/10.4230/LIPICS.FSCD.2024.29
https://doi.org/10.1017/s0960129502003729
https://doi.org/10.1017/S0960129504004645
https://doi.org/10.1145/2967973.2968608
https://doi.org/10.1016/S0304-3975(03)00392-X
https://doi.org/10.1016/j.entcs.2004.06.060
https://doi.org/10.1007/11780342_20
https://doi.org/10.1016/j.tcs.2008.06.001
https://doi.org/10.1016/j.tcs.2008.06.001
https://doi.org/10.1016/0304-3975(87)90045-4
https://doi.org/10.1016/0304-3975(87)90045-4
https://doi.org/10.1112/jlms/s2-12.3.361
https://doi.org/10.1112/jlms/s2-12.3.361
https://doi.org/10.1016/S0304-3975(96)00171-5
https://doi.org/10.1016/S0304-3975(96)00171-5

R. Cerda and L. Vaux Auclair 23:21

23 Axel Kerinec, Giulio Manzonetto, and Michele Pagani. Revisiting Call-by-value Böhm trees in
light of their Taylor expansion. Logical Methods in Computer Science, 16:1860–5974, 2020.
URL: https://lmcs.episciences.org/6638, doi:10.23638/LMCS-16(3:6)2020.

24 Axel Kerinec and Lionel Vaux Auclair. The algebraic λ-calculus is a conservative extension of
the ordinary λ-calculus, 2023. arXiv:2305.01067, doi:10.48550/arXiv.2305.01067.

25 Jean-Louis Krivine. Lambda-calcul, types et modèles. Masson, 1990.
26 Damiano Mazza. An axiomatic notion of approximation for programming languages and

machines, 2021. Unpublished. URL: https://www.lipn.fr/~mazza/papers/ApxAxiom.pdf.
27 Jean-Baptiste Midez. Une étude combinatoire du lambda-calcul avec ressources uniforme. PhD

thesis, Aix-Marseille Université, 2014. URL: http://www.theses.fr/2014AIXM4093.
28 Gerd Mitschke. The standardization theorem for λ-calculus. Zeitschrift für mathematische

Logik und Grundlagen der Mathematik, 25:29–31, 1979. doi:10.1002/malq.19790250104.
29 Dana Scott. A type-theoretical alternative to ISWIM, CUCH, OWHY. Theoretical Computer

Science, 121(1–2):411–440, 1993. doi:10.1016/0304-3975(93)90095-b.
30 Terese. Term Rewriting Systems. Cambridge University Press, 2003.
31 Lionel Vaux. Normalizing the Taylor expansion of non-deterministic λ-terms, via parallel

reduction of resource vectors. Logical Methods in Computer Science, 15:9:1–9:57, 2019.
doi:10.23638/LMCS-15(3:9)2019.

32 Christopher P. Wadsworth. Approximate reduction and lambda calculus models. SIAM
Journal on Computing, 7(3):337–356, 1978. doi:10.1137/0207028.

STACS 2025

https://lmcs.episciences.org/6638
https://doi.org/10.23638/LMCS-16(3:6)2020
https://arxiv.org/abs/2305.01067
https://doi.org/10.48550/arXiv.2305.01067
https://www.lipn.fr/~mazza/papers/ApxAxiom.pdf
http://www.theses.fr/2014AIXM4093
https://doi.org/10.1002/malq.19790250104
https://doi.org/10.1016/0304-3975(93)90095-b
https://doi.org/10.23638/LMCS-15(3:9)2019
https://doi.org/10.1137/0207028

A Deterministic Approach to Shortest Path
Restoration in Edge Faulty Graphs
Keerti Choudhary #

Department of Computer Science and Engineering, IIT Delhi, India

Rishabh Dhiman #

Department of Computer Science and Engineering, IIT Delhi, India

Abstract
Afek, Bremler-Barr, Kaplan, Cohen, and Merritt (PODC’01) in their seminal work on shortest
path restorations demonstrated that after a single edge failure in a graph G, a replacement shortest
path between any two vertices s and t, which avoids the failed edge, can be represented as the
concatenation of two original shortest paths in G. They also showed that we cannot associate a
canonical1 shortest path between the vertex pairs in G that consistently allows for the replacement
path (in the surviving graph) to be represented as a concatenation of these canonical paths. Recently,
Bodwin and Parter (PODC’21) proposed a randomized tie-breaking scheme for selecting canonical
paths for the “ordered” vertex pairs in graph G with the desired property of representing the
replacement shortest path as a concatenation of canonical shortest-paths provided for ordered pairs.

An interesting open question is whether it is possible to provide a deterministic construction
of canonical paths in an efficient manner. We address this question in our paper by presenting an
O(mn) time deterministic algorithm to compute a canonical path family F = {Px,y, Qx,y | x, y ∈ V }
comprising of two paths per (unordered) vertex pair. Each replacement is either a PQ-path (of type
Px,y ◦ Qy,z), a QP-path, a QQ-path, or a PP-path. Our construction is fairly simple and is a
straightforward application of independent spanning trees. We also present various applications of
family F in computing fault-tolerant structures.

2012 ACM Subject Classification Theory of computation → Data structures design and analysis;
Mathematics of computing → Graph algorithms

Keywords and phrases Fault-tolerant Data-structures, Shortest Path Restoration, Replacement path

Digital Object Identifier 10.4230/LIPIcs.STACS.2025.24

Funding Keerti Choudhary: The author is supported in part by Google India Algorithms Research
grant 2021.

1 Introduction

In their seminal work on shortest path restorations, Afek, Bremler-Barr, Kaplan, Cohen, and
Merritt [1] studied the question of how the structure of shortest paths in a graph changes
when edges fail. They showed that, after failure of any single edge in a graph, a replacement
shortest path between any two vertices s and t avoiding a failed edge can be represented as
the concatenation of two original shortest paths in the graph.

▶ Theorem 1 (Afek et al. [1]). For any vertices s, t and any failing edge e in G, a replacement
shortest path between s and t in G \ e is a concatenation of two original shortest paths in G,
namely, π(s, x) and π(x, t), where vertex x is a function of s, t, and e.

Various works in the past have employed the restoration path theory to develop efficient
solutions for problems such as distance sensitivity oracles [2, 7, 8, 9], replacement paths [6, 5],
fault-tolerant distance preservers [4, 5], routing schemes [5], among others.

1 In Afek et al. (1991), the term “set of base paths” is used to refer to what is termed as “canonical paths”
here.

© Keerti Choudhary and Rishabh Dhiman;
licensed under Creative Commons License CC-BY 4.0

42nd International Symposium on Theoretical Aspects of Computer Science (STACS 2025).
Editors: Olaf Beyersdorff, Michał Pilipczuk, Elaine Pimentel, and Nguyễn Kim Thắng;
Article No. 24; pp. 24:1–24:10

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:keerti@iitd.ac.in
https://orcid.org/0000-0002-8289-5930
mailto:rishabh.dhiman.145@gmail.com
https://doi.org/10.4230/LIPIcs.STACS.2025.24
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

24:2 A Deterministic Approach to Shortest Path Restoration in Edge Faulty Graphs

An f -fault-tolerant distance preserver for a graph G is a sparse subgraph H such that,
after failure of at most f edges, the distances between a pre-specified set of vertex pairs in
the surviving part of H still match the corresponding distances in the surviving part of G.
They are formally defined as follows.

▶ Definition 2 (Fault Tolerant Distance Preservers). For a graph G = (V, E) and demand pairs
P , a subgraph H = (V, EH ⊆ E) of G is an f -fault tolerant distance preserver (f -preserver)
for P if for any subset F of E of size at most f , we have

dist(s, t, G \ F) = dist(s, t, H \ F), for all (s, t) ∈ P.

For a set S ⊆ V , we say that H is a source-wise distance preserver for S if P = S × V ;
and a subset distance preserver for S if P = S × S.

Parter and Peleg [15] showed that for any n-vertex unweighted undirected graph, there
exists a 1-fault-tolerant S×V preserver with O(|S|1/2n3/2) edges. They also showed that this
bound is existentially tight. Specifically, there exist n-vertex graphs and a set of sources S

such that any S×V fault-tolerant preserver must have Ω
(
|S|1/2n3/2)

edges. Later, Parter [14]
extended this result by providing an upper bound of O(|S|1/3n5/3) for dual fault-tolerant
S × V preservers in undirected graphs. Gupta and Khan [11] extended this to directed
graphs. For general f , Bodwin, Grandoni, Parter, and Williams [4] presented a construction
of an f -fault-tolerant S × V preserver with Õ(|S|1/2f

fn2−1/2f) edges.
For the problem of computing subset distance preservers, Bodwin, Choudhary, Parter

and Shahar [3] presented a construction of 1-fault-tolerant S × S distance preserver with
Õ(|S|n) edges. Recently, Bodwin and Parter [5] extended this work to general f failures by
providing a construction of (f + 1)-fault-tolerant S × S preserver with Õ(fn2−1/2f |S|1/2f)
edges, for any f ⩾ 0. These constructions for S × S preservers are obtained by employing
the work of Afek, Bremler-Barr, Kaplan, Cohen, and Merritt [1] (see Theorem 1) on the
structure of shortest paths in fault-prone graphs.

To exploit Theorem 1, Bodwin and Parter [5] introduced a tie-breaking scheme for
selecting shortest paths in graph G \ F . Specifically, they used the Isolation lemma [13] to
show that if each edge in G is assigned a random integer weight from the range [1, nf+c+2],
then with probability 1− 1/nc, for any pair of vertices s and t, and for any set F of edges,
where |F | ⩽ f , exactly one of the shortest paths from s to t in G \ F will be the unique
shortest path in the modified edge weighted graph G \ F .

The main drawback of this tie-breaking scheme is that it is randomized and requires an
additional nO(f) time to derandomize. This raises the following natural question:

Question: Is it possible to bypass randomness and have an efficient deterministic
construction of the canonical path family?

We address this question by presenting a deterministic algorithm that runs in O(mn)
time to compute a canonical path family F = {Px,y, Qx,y | x, y ∈ V } comprising of two paths
for each (unordered) vertex pair in G. We show that each replacement path in G can take
the form of a PQ-path (of type Px,y ◦ Qy,z), a QP-path, a QQ-path, or a PP-path. Our
construction is not only straightforward but also represents a simple yet effective application
of independent spanning trees [10].

We present in this paper an efficient construction of the family F (see Theorem 10) and
also explore various applications of these structures.

K. Choudhary and R. Dhiman 24:3

Sourcewise Distance Preservers

We introduce a stronger notion of fault-tolerant distance preserving subgraphs, which we call
(f, 1)-preservers.

▶ Definition 3 ((f, 1)-Preservers). For a graph G = (V, E) and a set of demand pairs P , a
subgraph H = (V, EH ⊆ E) of G is an (f, 1)-preserver if, for every pair (s, t) ∈ P , every
set F of edges of size at most f , and every edge e in G that satisfies dist(s, t, G \ F) =
dist(s, t, G \ F ∪ e), we have

dist(s, t, H \ (F ∪ e)) = dist(s, t, G \ (F ∪ e)).

Note that for any f ⩾ 0, an (f + 1)-preserver is also an (f, 1)-preserver. However, an
f -preserver is not necessarily an (f, 1)-preserver.

Our first contribution is a construction of (f, 1)-preservers in polynomial time that
matches the size of the current best construction of f -preservers given by Bodwin, Grandoni,
Parter, and Williams [4].

▶ Theorem 4. Let f ⩾ 1 be a positive integer. For any undirected, unweighted n-vertex
graph G = (V, E) with a set of source vertices S ⊆ V , we can compute a (f, 1)-source-wise
preserver for G with Õ(fn2−1/2f |S|1/2f) edges in O(fmn) time.

Further, for f = 0, we can compute a (0, 1)-source-wise preserver for G with O(|S|n)
edges in O(m + n) time.

Subset Distance Preservers

We provide the following relation between (f, 1)-preservers and (f + 1)-fault-tolerant subset
distance preservers.

▶ Theorem 5. In any undirected graph G = (V, E), a source-wise (f, 1)-preserver H with
respect to a set S is an (f + 1)-fault-tolerant subset distance preserver for pairs in S × S.

Combined with the construction of (f, 1)-preservers, this gives us a deterministic algorithm
to compute subset distance preservers in polynomial time.

▶ Theorem 6. For any n-vertex graph G = (V, E), a set of source vertices S ⊆ V , and a
fixed non-negative integer f , there is an (f + 1)-fault-tolerant distance preserver of G for
pairs in S × S with Õ((f + 1)n2−1/2f |S|1/2f) edges which can be computed in O(fmn) time
when f ⩾ 1, and O(|S|m) time when f = 0.

Prior to our work, Bodwin et al. [5] gave construction for such preservers that takes
O(n2−1/2f |S|1/2f) space and requires O(mn) computation time in the randomized setting.
However, the deterministic variant of their algorithm had a time complexity of nO(f), which
is polynomial only for constant values of f . Our work improves upon this by providing
a deterministic algorithm with a time complexity of O((f + 1)mn), almost matching the
efficiency of the randomized version of [5].

Fault-tolerant Distance Labeling Scheme

A distance labeling scheme is an assignment of bit-string labels to each node of G such that
we can recover dist(s, t, G) by looking at only the labels at s and t. An f -fault-tolerant
distance labeling scheme allows us to compute the distances even when a set F of edges of
size at most f fail.

STACS 2025

24:4 A Deterministic Approach to Shortest Path Restoration in Edge Faulty Graphs

While it is possible to store the entire graph within the labels, our objective is to find a
labeling of subquadratic size. Bodwin et al. [5] gave an f -fault-tolerant distance labeling
scheme that requires O(n2−1/2f log n) bits per vertex and can be computed in O(mn) time
in the randomized setting, and in nO(f) time deterministically. We offer an improvement
to this by employing our (f, 1)-preservers, which allows for the computation of the labels
deterministically in polynomial time.

▶ Theorem 7. For any fixed nonnegative integer f ⩾ 0, and n-vertex unweighted undirected
graph, there is an (f + 1)-fault-tolerant distance labeling scheme that assigns each vertex a
label of O((f + 1)n2−1/2f log n) bits that can be computed in O(fmn) time each when f ⩾ 1,
and O(m) time when f = 0.

2 Preliminaries

Given a directed graph G = (V, E) on n = |V | vertices and m = |E| edges, the following
notations and definitions will be used throughout the paper. We omit the term G when
graph is clear from context.

dist(x, y, G): Distance of node y from x in the graph G.
G \ F : The graph obtained by removing the edges that lie in F from the graph G.
G ∪H: The graph obtained by taking a union of the vertices and edges of G and H.
E(P): The edges lying in path P .
T [x, y]: The path from vertex x to vertex y in tree T .
P [x, y]: The subpath of path P lying between vertices x, y, assuming x precedes y on P .
In-Edges(v, G): The set of all edges incoming to v in G.
(s, v)-cut-edge: An edge which lies on all (s, v)-paths and hence whose removal disconnects
v from s.
(s, v)-distance-cut edge: An edge that lies on all the (s, v) shortest paths and hence whose
removal increases the distance from s to v.
LastE(P): the last edge lying on the path P .

All graphs in this paper are undirected and unweighted, unless stated otherwise.

3 Fault Tolerant Preservers

3.1 Preservers for Source-wise setting
▶ Theorem 8. Any undirected or directed graph G = (V, E) with a positive integer f ⩾ 1
and a set S ⊆ V of sources has a source-wise (f, 1)-preserver H with Õ(f |S|1/2f

n2−1/2f)
edges, which can be computed in O(fmn) time.

We also improve the running time for f = 0.

▶ Theorem 9. Any undirected or directed graph G = (V, E) and a set S ⊆ V of sources has
a source-wise (0, 1)-preserver H with Õ(|S|n) edges which can be computed in O(|S|m) time.

We first establish the following theorem.

▶ Theorem 10. Any directed/undirected graph G = (V, E) with a destination vertex t ∈ V can
be processed in O(m + n) time to implicitly compute, for each s ∈ V , a pair of (s, t)-shortest
paths, denoted as Ps,t and Qs,t, which intersect solely at the (s, t)-distance-cut edges.

K. Choudhary and R. Dhiman 24:5

Furthermore, if G is undirected then for any s, t ∈ V and any e ∈ E, there exists a vertex
w ∈ V such that at least one of the four paths obtained by concatenating paths from the family
{Ps,w, Qs,w} × {Pw,t, Qw,t} forms a replacement shortest path between s and t in G \ e.

In order to prove Theorem 10, we use the concept of independent trees. Given a directed
graph G and a designated source r, a pair of trees T1, T2 rooted at r are said to be independent
trees, if for each v ̸= r, the paths from v to r in T1 and T2 intersect only at the (v, r)-cut-edges.

▶ Theorem 11 (Georgiadis and Tarjan [10]). Given a directed graph G and a designated
source r, a pair of independent trees T1, T2 rooted at r are computable in O(m + n) time.

We are now ready to prove Theorem 10.

Proof of Theorem 10. We begin by proving the first claim. Consider a directed acyclic
graph (DAG) D = (V, ED ⊆ E) containing only those edges e = (x, y) ∈ E for which
dist(x, t, G) = dist(y, t, G) + 1. Let T1 and T2 be a pair of independent trees rooted at t in
D. Then, for any vertex v ∈ V , the paths from v to t in T1 and T2 intersect only at the
(v, t)-cut edges in D. By Theorem 11, the time required to compute T1 and T2 is O(m + n).

For each s ∈ V , we define Ps,t and Qs,t to be the paths T1[s, t] and T2[s, t], respectively.
Note that there is a one-to-one correspondence between (v, t)-cut edges in D and (v, t)-
distance-cut edges in G. Therefore, Ps,t and Qs,t are the shortest (s, t)-paths in G, and they
intersect only at the edges whose failure increases the (s, t)-distance in G.

Next, we prove the second claim. By Theorem 1, for any pair s, t ∈ V and any failing
edge e, there exists a vertex w such that:
1. dist(s, w, G \ e) = dist(s, w, G),
2. dist(w, t, G \ e) = dist(w, t, G),
3. dist(s, t, G \ e) = dist(s, w, G) + dist(w, t, G).
This implies that e is not a distance cut-edge for the pairs (s, w) and (w, t). Therefore, at
least one of the paths from Ps,w, Qs,w must avoid e, and similarly, at least one of the paths
from Pw,t, Qw,t must avoid e.

Thus, we conclude that at least one of the four paths obtained by concatenating paths
from the family {Ps,w, Qs,w} × {Pw,t, Qw,t} forms a replacement shortest path between s

and t in G \ e. ◀

Proof of Theorem 9. For a source s ∈ S, let T s
1 and T s

2 be the independent trees constructed
in the proof of Theorem 10. Then the graph

⋃
s∈S(T s

1 ∪ T s
2) is a (0, 1)-preserver. The

correctness is a corollary of the earlier proof. ◀

In order to compute H in Theorem 8 we associate a set Et of edges incident to each node
t ∈ V , so that the graph H =

⋃
t∈V Et obtained by taking the union of edges lying in Et is

an (f, 1)-preserver.
Our construction is inspired by FT-BFS algorithm of Bodwin et al. [4], and the running

time matches the time taken by their construction of f -FT-BFS. Let S be the source set. For
each s ∈ S, we compute a pair of (s, t)-shortest-paths, say Ps,t and Qs,t, using Theorem 10.

Now we set L =
√

8f |S|n log n, and compute a uniformly random subset R of V \ {t} of
size L. Further, for s ∈ S, let

Ws = {u ∈ V | 1 ⩽ dist(u, t, Ps,t ∪Qs,t) ⩽ 8nf log n/L}.

Finally, with respect to (∪s∈SWs) ∪R as the source, we compute an (f − 1, 1)-preserver
for the graph G0 =

(
V, E \

⋃
s∈S E(Ps,t) ∪ E(Qs,t)

)
and designate Et as the set of in-edges

of t lying in this (f − 1, 1)-preserver. To compute a (0, 1)-preserver, we simply take Et to be
the last edges of E(Ps,t) and E(Qs,t). This completes the description of our algorithm. For
pseudocode see Algorithm 1.

STACS 2025

24:6 A Deterministic Approach to Shortest Path Restoration in Edge Faulty Graphs

Algorithm 1 Compute-Incident-Edges(G, S, t, f).

1 if f = 0 then
2 Return {LastE(Ps,t), LastE(Qs,t) | s ∈ S};
3 end
4 L←

√
8f |S|n log n;

5 R← uniformly random subset of V \ {t} of size L;
6 for s ∈ S do
7 (Ps,t, Qs,t)← Pair of (s, t)-shortest-paths computed using Theorem 10;
8 Ws ← {u ∈ V | 1 ⩽ dist(u, t, Ps,t ∪Qs,t) ⩽ 8nf log n/L}
9 end

10 G0 ←
(
V, E \

⋃
s∈S E(Ps,t) ∪ E(Qs,t)

)
;

11 Return Compute-Incident-Edges(G0, (∪s∈SWs) ∪R, t, f − 1);

▶ Lemma 12 (Correctness). The graph H =
(
V,

⋃
t∈V Et

)
, where Et are sets computed using

Algorithm 1, is an (f, 1)-preserver of G with respect to the source S.

Proof. We prove the correctness using induction on the value of f . Consider a source
node s ∈ S, a set F of failing edges of size t most f , and an edge e ∈ E \ F satisfying
dist(s, t, G \F) = dist(s, t, G \F ∪ e). For f = 0, note that F = ∅, and on the failure of e, at
least one of Ps,t or Qs,t must remain intact. Therefore, we focus on the case where |F | ⩾ 1.

Let Ps,t,F and Qs,t,F denote an arbitrary pair of (s, t)-shortest paths in G \F intersecting
only at (s, v)-distance-cut edges. Further, let x and y be respectively the last vertices
in Ps,t,F and Qs,t,F lying in the structure

⋃
r∈S(Pr,t ∪ Qr,t) \ t, where, Pr,t and Qr,t are

(r, t)-shortest-paths computed using Theorem 10. Observe that we can assume (Ps,t ∪Qs,t)
contains at least one edge from the set F , as otherwise, it suffices to keep the last edges of
Ps,t, Qs,t in the set Et.

Next, we compute a vertex x̄ lying in Ps,t,F as follows. If x lies in Ws, then simply
set x̄ = x. If x does not lie in Ws, then |Ps,t,F [x, t]| = dist(x, t, G \ F) ⩾ dist(x, t, G) > L,
implying that with a high probability R contains a vertex of path Ps,t,F [x, t]. So, in this
case, x̄ is set as an arbitrary vertex of R lying in Ps,t,F [x, t]. In a similar manner, ȳ lying in
Qs,t,F can be computed. It must be noted that the internal vertices of suffixes Ps,t,F [x̄, t]
and Qs,t,F [ȳ, t] are disjoint from the structure

⋃
r∈S(Pr,t ∪Qr,t) \ t.

Observe that on the failure of e in the graph G \ F , at least one of the paths Ps,t,F or
Qs,t,F must be intact. Without loss of generality assume that Ps,t,F does not contain e. Due
to sub-structure property of shortest paths, we have dist(x̄, t, G \ F) = dist(x̄, t, G \ (F ∪ e)).
Thus, Ps,t,F [s, x̄] concatenated with an (x, t)-shortest-path in G \ F that is disjoint from e

gives us an (s, t)-shortest-path in G \ F ∪ e. Such an (x̄, t)-shortest-path lies in
⋃

t∈V Et as
it contains incoming edges of t in an (f − 1, 1) preserver of

(
V, E \

⋃
r∈S E(Pr,t) ∪ E(Qr,t)

)
with respect to x̄ ∈ (∪s∈SWs) ∪R. ◀

In order to bound the size of Et, we establish a recurrence relation on the size of Et in
the following lemma.

▶ Lemma 13. Let M(f, z) denote an upper bound on the in-degree of a vertex t in an
(f, 1)-preserver of an n-vertex graph with respect to a source set comprising z vertices. Then,

M(f, z) ⩽M(f − 1, 3
√

8fzn log n) .

Proof. In Algorithm 1, the size of the set |Ws| is at most 2(8nf log n/L) by Theorem 10,
and |R| is exactly L by definition. Since

∑
s∈S |Ws| = 2L, we have |(∪s∈SWs)∪R| ⩽ 3L. By

correctness of the algorithm, we get the required recurrence. ◀

K. Choudhary and R. Dhiman 24:7

▶ Lemma 14 (Size Analysis). M(f, |S|) = Õ(f |S|1/2f

n1−1/2f), and therefore, the number of
edges in the (f, 1)-preserver is Õ(f |S|1/2f

n2−1/2f).

Proof. Let αf = 3
√

8f log n, and |S| be z. By using αf ⩾ αf−1 and that M(f, x) is an
increasing function in x, we can resolve the recurrence in Lemma 13 as follows,

M(f, z) ⩽M(0, α
2−1/2f−1

f z1/2f

n1−1/2f

).

By the algorithm’s description M(0, z) ⩽ 2z, therefore,

M(f, z) ⩽ 2α
2−1/2f−1

f z1/2f

n1−1/2f

⩽ 2α2
f z1/2f

n1−1/2f

= Õ(f |S|1/2f

n1−1/2f

). ◀

▶ Lemma 15 (Running Time). Algorithm 1 can be made to run in O(fmn) time.

Proof. Rather than explicitly computing (Ps,t, Qs,t) in the algorithm, we compute the two
trees T1, T2 once using Theorem 10 in O(m + n). We discard all edges from T1 and T2 which
don’t lie on an s-t path, ∪s∈SWs can then be computed as {u ∈ V | 1 ⩽ dist(u, t, T1 ∪ T2) ⩽
8nf log n/L} which takes O(n) time. In the final iteration, we simply compute a (0, 1)-
preserver which takes O(m + n) time. We require f + 1 iterations of this and run it for each
node t, hence, the algorithm takes O(fmn) time. ◀

3.2 Subset Distance Preservers
In this subsection, we will provide an efficient construction of subset distance preserver. In
particular, we will prove the following result.

▶ Theorem 16. Given an n-vertex graph G = (V, E), a set of source vertices S ⊆ V , and a
nonnegative integer f , there is an (f + 1)-fault-tolerant distance preserver of G for all pairs
in S × S on Õ((f + 1)n2−1/2f |S|1/2f) edges which can be computed in O((f + 1)mn) time.

Further, the computation time can be reduced to O(|S|m) when f = 0.

We make use of the shortest path restoration theory by Afek et al. [1] to first prove the
following.

▶ Lemma 17. For any undirected graph G = (V, E) and any nonnegative integer f , a
source-wise (f, 1)-preserver H of G with respect to a source set S is an (f + 1)-fault-tolerant
subset distance preserver for pairs in S × S.

Proof. Let (F, e) be a pair such that F ⊆ E, has at most f edges and e is an edge in E \ F .
Applying Theorem 1 on G \F , for any s, t ∈ S and failing edge e there exists a vertex w such
that, (i) dist(s, w, G\(F ∪e)) = dist(s, w, G\F), (ii) dist(w, t, G\(F ∪e)) = dist(w, t, G\F),
and (iii) dist(s, t, G \ (F ∪ e)) = dist(s, w, G \ F) + dist(w, t, G \ F).

For any s, t ∈ S and the corresponding node w, dist(s, w, H \ (F ∪ e)) = dist(s, w, G \ F)
and dist(w, t, H \ (F ∪ e)) = dist(w, t, G \ F) by Definition 3, since H is an (f, 1)-preserver
with respect to source S. Therefore,

dist(s, t, H \ (F ∪ e)) ⩽ dist(s, w, H \ (F ∪ e)) + dist(w, t, H \ (F ∪ e))
= dist(s, w, G \ F) + dist(w, t, G \ F)
= dist(s, t, G \ (F ∪ e)).

However, since H is a subgraph of G, dist(s, t, H \ (F ∪ e)) ⩾ dist(s, t, G \ (F ∪ e)) as
well, which implies dist(s, t, H \ (F ∪ e)) = dist(s, t, G \ (F ∪ e)). ◀

As a corollary of Theorem 8, Theorem 9, and Lemma 17, we get the construction in
Theorem 16.

STACS 2025

24:8 A Deterministic Approach to Shortest Path Restoration in Edge Faulty Graphs

4 Other Applications

4.1 Distance Labeling Schemes
In this section, we make use of our (f, 1)-preserver to provide an alternate construction for
distance labels of sub-quadratic size.

▶ Theorem 18. For any fixed nonnegative integer f ⩾ 0, and n-vertex unweighted undirected
graph, there is an (f + 1)-fault-tolerant distance labeling scheme that assigns each vertex a
label of O((f + 1)n2−1/2f log n) bits that can be computed in O(fmn) time each when f ⩾ 1,
and O(m) time when f = 0.

Proof. Let Hs be an (f, 1)-preserver with respect to source {s}. At each node s, store Hs

as the label. Since the number of edges in Hs is O((f + 1)n2−1/2f) and it takes O(log n) bits
to describe an edge, each label takes O((f + 1)n2−1/2f log n) bits.

To compute dist(s, t, G\F) for any |F | ⩽ f +1, we read the labels of s and t to determine
Hs and Ht, then union them together to get Hst = Hs∪Ht. We then simply find the distance
in Hst \ F .

Hst is a (f, 1)-preserver with respect to the source {s, t}. By Lemma 17, Hst is an
(f + 1)-fault-tolerant distance-preserver for pairs in {s, t} × {s, t}. Thus, dist(s, t, Hst \ F) =
dist(s, t, G \ F) as desired. ◀

4.2 Subset Replacement Path Algorithm
In the Subset Replacement Path problem (Subset-RP), the input is a graph G = (V, E)
and a set of source vertices S, and for every pair of vertices s, t ∈ S and failing edge e ∈ E,
report dist(s, t, G \ e).

We modify the algorithm by Bodwin et al. [5] to use our (0, 1)-preserver from Theorem 9
to solve the Subset-RP problem.

▶ Theorem 19. Given a graph G = (V, E) and a set of source vertices S, we can solve the
Subset-RP problem in O(|S|m) + Õ(|S|2n) time in the word-RAM model.

To this end, we will make use of the following result whose proof we will omit as we only
make a black box use of it.

▶ Theorem 20 (Hershberger and Suri [12]). When |S| = 2, there is an algorithm that solve
Subset-RP(G, S) in time Õ(m + n).

We now propose Algorithm 2 to solve the general problem.

Algorithm 2 Algorithm for Subset-RP(G, S).

1 for s ∈ S do
2 Compute Hs ← (0, 1)-preserver of G with source s.
3 end
4 for s, t ∈ S do
5 Solve Subset-RP(Hs ∪Ht, {s, t}) using Theorem 20 to get the result for (s, t).
6 end

▶ Lemma 21 (Correctness). Algorithm 2 solves the Subset-RP(G, S) problem.

K. Choudhary and R. Dhiman 24:9

Proof. Hs ∪ Ht is a (0, 1)-preserver with respect to the source set {s, t}. By Lemma 17,
Hs∪Ht is a 1-fault-tolerant distance-preserver for pairs in {s, t}×{s, t}. Thus for any edge e,
dist(s, t, (Hs ∪Ht) \ e) = dist(s, t, G \ e). Thus, applying Theorem 20 on Hs ∪Ht correctly
computes dist(s, t, G \ e) for all edges e. ◀

▶ Lemma 22 (Running Time). Algorithm 2 runs in O(|S|m) + Õ(|S|2n) time.

Proof. By Theorem 10, we can compute Hs in O(m + n) time. Since Hs has O(n) size,
Subset-RP(Hs ∪Ht, {s, t}) can be solved in Õ(n) time by Theorem 20. Therefore, the total
time taken is O(|S|m) + Õ(|S|2n). ◀

References
1 Yehuda Afek, Anat Bremler-Barr, Haim Kaplan, Edith Cohen, and Michael Merritt. Restora-

tion by path concatenation: fast recovery of MPLS paths. Distributed Computing, 15(4):273–
283, 2002. doi:10.1007/S00446-002-0080-6.

2 Davide Bilò, Shiri Chechik, Keerti Choudhary, Sarel Cohen, Tobias Friedrich, Simon Krogmann,
and Martin Schirneck. Approximate Distance Sensitivity Oracles in Subquadratic Space. In
Proceedings of the 55th Symposium on Theory of Computing (STOC), pages 1396–1409, 2023.
doi:10.1145/3564246.3585251.

3 Greg Bodwin, Keerti Choudhary, Merav Parter, and Noa Shahar. New fault tolerant subset
preservers. In Artur Czumaj, Anuj Dawar, and Emanuela Merelli, editors, 47th International
Colloquium on Automata, Languages, and Programming, ICALP 2020, July 8-11, 2020,
Saarbrücken, Germany (Virtual Conference), volume 168 of LIPIcs, pages 15:1–15:19. Schloss
Dagstuhl – Leibniz-Zentrum für Informatik, 2020. doi:10.4230/LIPICS.ICALP.2020.15.

4 Greg Bodwin, Fabrizio Grandoni, Merav Parter, and Virginia Vassilevska Williams. Preserving
distances in very faulty graphs. In 44th International Colloquium on Automata, Languages,
and Programming, ICALP 2017, July 10-14, 2017, Warsaw, Poland, pages 73:1–73:14, 2017.
doi:10.4230/LIPICS.ICALP.2017.73.

5 Greg Bodwin and Merav Parter. Restorable shortest path tiebreaking for edge-faulty graphs.
J. ACM, 70(5), October 2023. doi:10.1145/3603542.

6 Shiri Chechik and Sarel Cohen. Near optimal algorithms for the single source replacement
paths problem. In Timothy M. Chan, editor, Proceedings of the Thirtieth Annual ACM-SIAM
Symposium on Discrete Algorithms, SODA 2019, San Diego, California, USA, January 6-9,
2019, pages 2090–2109. SIAM, 2019. doi:10.1137/1.9781611975482.126.

7 Shiri Chechik, Sarel Cohen, Amos Fiat, and Haim Kaplan. (1 + ϵ)-approximate f -sensitive
distance oracles. In Philip N. Klein, editor, Proceedings of the Twenty-Eighth Annual ACM-
SIAM Symposium on Discrete Algorithms, SODA 2017, Barcelona, Spain, Hotel Porta Fira,
January 16-19, pages 1479–1496. SIAM, 2017.

8 Dipan Dey and Manoj Gupta. Nearly optimal fault tolerant distance oracle. In Bojan Mohar,
Igor Shinkar, and Ryan O’Donnell, editors, Proceedings of the 56th Annual ACM Symposium
on Theory of Computing, STOC 2024, Vancouver, BC, Canada, June 24-28, 2024, pages
944–955. ACM, 2024. doi:10.1145/3618260.3649697.

9 Ran Duan and Hanlin Ren. Maintaining exact distances under multiple edge failures. In
Stefano Leonardi and Anupam Gupta, editors, STOC ’22: 54th Annual ACM SIGACT
Symposium on Theory of Computing, Rome, Italy, June 20–24, 2022, pages 1093–1101. ACM,
2022. doi:10.1145/3519935.3520002.

10 Loukas Georgiadis and Robert Endre Tarjan. Dominators, directed bipolar orders, and
independent spanning trees. In Automata, Languages, and Programming – 39th International
Colloquium, ICALP 2012, Warwick, UK, July 9-13, 2012, Proceedings, Part I, pages 375–386,
2012. doi:10.1007/978-3-642-31594-7_32.

STACS 2025

https://doi.org/10.1007/S00446-002-0080-6
https://doi.org/10.1145/3564246.3585251
https://doi.org/10.4230/LIPICS.ICALP.2020.15
https://doi.org/10.4230/LIPICS.ICALP.2017.73
https://doi.org/10.1145/3603542
https://doi.org/10.1137/1.9781611975482.126
https://doi.org/10.1145/3618260.3649697
https://doi.org/10.1145/3519935.3520002
https://doi.org/10.1007/978-3-642-31594-7_32

24:10 A Deterministic Approach to Shortest Path Restoration in Edge Faulty Graphs

11 Manoj Gupta and Shahbaz Khan. Multiple source dual fault tolerant BFS trees. In 44th
International Colloquium on Automata, Languages, and Programming, ICALP 2017, July 10-
14, 2017, Warsaw, Poland, pages 127:1–127:15, 2017. doi:10.4230/LIPIcs.ICALP.2017.127.

12 J. Hershberger and S. Suri. Vickrey prices and shortest paths: what is an edge worth? In
Proceedings 42nd IEEE Symposium on Foundations of Computer Science, pages 252–259, 2001.
doi:10.1109/SFCS.2001.959899.

13 Ketan Mulmuley, Umesh V. Vazirani, and Vijay V. Vazirani. Matching is as easy as matrix
inversion. In Alfred V. Aho, editor, Proceedings of the 19th Annual ACM Symposium on
Theory of Computing, 1987, New York, New York, USA, pages 345–354. ACM, 1987. doi:
10.1145/28395.383347.

14 Merav Parter. Dual failure resilient BFS structure. arXiv, 2015. arXiv:1505.00692.
15 Merav Parter and David Peleg. Sparse fault-tolerant BFS trees. In Algorithms – ESA 2013 –

21st Annual European Symposium, Sophia Antipolis, France, September 2-4, 2013. Proceedings,
pages 779–790, 2013. doi:10.1007/978-3-642-40450-4_66.

https://doi.org/10.4230/LIPIcs.ICALP.2017.127
https://doi.org/10.1109/SFCS.2001.959899
https://doi.org/10.1145/28395.383347
https://doi.org/10.1145/28395.383347
https://arxiv.org/abs/1505.00692
https://doi.org/10.1007/978-3-642-40450-4_66

Local Density and Its Distributed Approximation
Aleksander Bjørn Christiansen #

Technical University of Denmark, Lyngby, Denmark

Ivor van der Hoog #

Technical University of Denmark, Lyngby, Denmark

Eva Rotenberg #

Technical University of Denmark, Lyngby, Denmark

Abstract
The densest subgraph problem is a classic problem in combinatorial optimisation. Graphs with low
maximum subgraph density are often called “uniformly sparse”, leading to algorithms parameterised
by this density. However, in reality, the sparsity of a graph is not necessarily uniform. This calls for
a formally well-defined, fine-grained notion of density.

Danisch, Chan, and Sozio propose a definition for local density that assigns to each vertex v a
value ρ∗(v). This local density is a generalisation of the maximum subgraph density of a graph. I.e.,
if ρ(G) is the subgraph density of a finite graph G, then ρ(G) equals the maximum local density
ρ∗(v) over vertices v in G. They present a Frank-Wolfe-based algorithm to approximate the local
density of each vertex with no theoretical (asymptotic) guarantees.

We provide an extensive study of this local density measure. Just as with (global) maximum
subgraph density, we show that there is a dual relation between the local out-degrees and the
minimum out-degree orientations of the graph. We introduce the definition of the local out-degree
g∗(v) of a vertex v, and show it to be equal to the local density ρ∗(v). We consider the local
out-degree to be conceptually simpler, shorter to define, and easier to compute.

Using the local out-degree we show a previously unknown fact: that existing algorithms already
dynamically approximate the local density for each vertex with polylogarithmic update time. Next,
we provide the first distributed algorithms that compute the local density with provable guarantees:
given any ε such that ε−1 ∈ O(poly n), we show a deterministic distributed algorithm in the LOCAL
model where, after O(ε−2 log2 n) rounds, every vertex v outputs a (1 + ε)-approximation of their
local density ρ∗(v). In CONGEST, we show a deterministic distributed algorithm that requires
poly(log n, ε−1) · 2O(

√
log n) rounds, which is sublinear in n.

As a corollary, we obtain the first deterministic algorithm running in a sublinear number of
rounds for (1 + ε)-approximate densest subgraph detection in the CONGEST model.

2012 ACM Subject Classification Theory of computation → Graph algorithms analysis; Theory of
computation → Distributed algorithms

Keywords and phrases Distributed graph algorithms, graph density computation, graph density
approximation, network analysis theory

Digital Object Identifier 10.4230/LIPIcs.STACS.2025.25

Related Version Full Version: https://arxiv.org/abs/2411.12694

Funding This work was supported by the the VILLUM Foundation grant (VIL37507) “Efficient
Recomputations for Changeful Problems”, the Independent Research Fund Denmark grant 2020-2023
(9131-00044B) “Dynamic Network Analysis”, and the European Union’s Horizon 2020 research and
innovation programme under the Marie Skłodowska-Curie grant agreement No 899987.

© Aleksander Bjørn Christiansen, Ivor van der Hoog, and Eva Rotenberg;
licensed under Creative Commons License CC-BY 4.0

42nd International Symposium on Theoretical Aspects of Computer Science (STACS 2025).
Editors: Olaf Beyersdorff, Michał Pilipczuk, Elaine Pimentel, and Nguyễn Kim Thắng;
Article No. 25; pp. 25:1–25:20

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:abgch@dtu.dk
https://orcid.org/0000-0002-9486-9115
mailto:idjva@dtu.dk
https://orcid.org/0009-0006-2624-0231
mailto:erot@dtu.dk
https://orcid.org/0000-0001-5853-7909
https://doi.org/10.4230/LIPIcs.STACS.2025.25
https://arxiv.org/abs/2411.12694
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

25:2 Local Density and Its Distributed Approximation

1 Introduction

Density or sparsity measures of graphs are widely studied and have many applications.
Examples include the arboricity, the degeneracy, and the maximum subgraph density, all
of which are asymptotically related within a factor of 2. Given a graph or subgraph H, its
density, ρ(H), is the average number of edges per vertex in H. The maximum subgraph
density ρmax(G) of a graph G is the maximum density ρ(H) amongst all subgraphs H ⊆ G.

Computing maximum subgraph density has been studied both in the dynamic [10, 27],
streaming [1, 4] and distributed [15, 28] setting. Often these measures are used to parameterise
the sparsity of “uniformly sparse graphs” [2, 8, 25]. These measures are global measures in
the sense that they measure the sparsity of the most dense part of the graph. In many cases
the graph is not equally sparse (or dense) everywhere. Consider for example a lollipop graph:
a large clique joined to a long path. The clique is a subgraph of high density, yet the vertices
along the path sit in a part of the graph that is significantly less dense. Often, solutions
for graph density related problems provide guarantees based on the most dense part of the
graph. In some areas of computation more “local” solutions are desirable. Prior works of
a global nature often completely disregard certain parts of the graphs, meaning that the
output in sparser parts holds little to no information. We give three examples:

1) Many dynamic algorithms for estimating the subgraph density rely on modifying the
solution locally. Algorithmic performance is expressed in terms of (global) graph sparsity,
and thus fails to exploit the more fine-grained guarantee that local sparse areas yield.

2) In network analysis, one is often interested in determining dense subgraphs as these
subgraphs can be interpreted, for instance, as communities within a social network. However,
since many classical algorithms are tuned towards only detecting the densest subgraphs,
these algorithms might fail to detect communities in sparser parts of the network [14, 26, 29].

3) Computing the maximum subgraph density is not very local, nor distributed. We
consider the models LOCAL and CONGEST, and the lollipop graph. Here, almost instantly,
the vertices of the clique realise they are part of a (very dense) clique. The vertices on the
path may have to wait for diameter-many rounds before realising the maximum subgraph
density of the graph. Distributed algorithms that wish to compute the value of the subgraph
density are thus posed with a choice: either use Ω(D) rounds (where D is the diameter of the
graph), or let every vertex output a value that is at most the maximum subgraph density.

1.1 Local density and results
We consider the definition of local density ρ∗(v) by Danisch, Chan, and Sozio [14], defined at
each node v of the graph (Definition 7). Our contributions can be split into four categories,
which we present in four sections with corresponding titles.

A: Conceptual results for local density. Our primary contribution is an extensive overview
of the theoretical properties of this local density measure. We show that, just as in the
maximum-subgraph density problem, computing local density has a natural dual problem as
we define the local out-degree. Consider a (fractional) orientation of the graph that is locally
fair. i.e., for each directed edge (u, v), the out-degree g(u) is at most g(v). We prove that
for each vertex v, the out-degree of v has the same value over all locally fair orientations.
We define this value g∗(v) as the local out-degree of v. We prove that the local density of
each vertex is the dual of its local out-degree and thereby g∗(v) = ρ∗(v). This new definition
for local out-degree is considerably shorter than the definition for local density. It allows us
to show some previously unknown interesting properties of local density:

A. B. Christiansen, I. van der Hoog, and E. Rotenberg 25:3

B: Results for dynamic algorithms. We prove that in an approximately fair orientation (a
definition by Chekuri et al. [10]) the out-degree g(v) of each vertex is a (1 + ε)-approximation
of g∗(v) = ρ∗(v) (Theorem 12). This implies a previously unknown fact: that there exist
dynamic polylogarithmic algorithms [10, 13, 12] where each vertex v maintains a (1 + ε)-
approximation of its local density ρ∗(v) as by Danisch, Chan, and Sozio [14].

C: Results in LOCAL. We show that each node v can obtain a (1 + ε)-approximation of
ρ∗(v) by surveying its O(ε−2 log2 n)-hop neighbourhood. This induces a LOCAL algorithm
where each vertex v ∈ V computes a (1 + ε)-approximation of ρ∗(v) in O(ε−2 log2 n) rounds.

Commentary on runtime: We observe that ρmax(G) can be computed in LOCAL in
O(ε−1 log n) rounds. In contrast, the stricter local density is computed in O(ε−2 log2 n)
rounds. This gap may be explained by considering the local density ρ∗(v) for low-local-
density vertices v in a graph that has high global density. The local density of v can be
affected by a dense subgraph within a hop distance of Θ(ε−2 log2 n) (although it unclear if it
can be affected enough to prohibit a (1 + ε)-approximation of ρ∗(v) in o(ε−2 log2 n) time).
The potential for a barrier of O(ε−2 log2 n) rounds is also illustrated by existing dynamic
algorithms [10, 28] that maintain η-fair orientations. In this scenario, these algorithms have
a worst-case recourse of Ω(ε−2 log2 n). We consider it an interesting open problem to either
improve our running time in LOCAL, or, show that O(ε−2 log2 n) is tight.

D: Results in CONGEST. We show a significantly more involved algorithm in CON-
GEST, where after O(poly{ε−1, log n} · 2O(

√
log n)) rounds, each vertex v outputs a (1 + ε)-

approximation of ρ∗(v). Since max
v∈V

ρ∗(v) = ρmax(G), this is the first deterministic algorithm
for (1 + ε)-approximating of the global subgraph density ρmax(G) in CONGEST, that runs
in a number of rounds that is sublinear in the diameter of the graph.

In the main body, we focus on the value variant where we want each vertex v to output
an approximation of ρ∗(v). In the full version, we extend our analysis so that each vertex v

can output a subgraph H with v ∈ H where ρ(H) approximates ρ∗(v). See also Table 1.

Table 1 Results in LOCAL (L) or CONGEST (C) where prior work for computing the global
subgraph density is compared to our running time for the local subgraph density. D denotes the
diameter. Orange running times are not deterministic and occur with high probability.

Model Problem Each v outputs ρv with Rounds Source
L 2.1 ρv ∈ [(1 + ε)−1ρmax(G), (1 + ε)ρmax(G)] Θ(D) [28]

2.2 maxv ρv ∈ [(1 + ε)−1ρmax(G), (1 + ε)ρmax(G)] O(ε−1 log n) [28]
3 ρv ∈ [(1 + ε)−1ρ∗(v), (1 + ε)ρ∗(v)]ρv ∈ [(1 + ε)−1ρ∗(v), (1 + ε)ρ∗(v)]ρv ∈ [(1 + ε)−1ρ∗(v), (1 + ε)ρ∗(v)] O(ε−2 log2 n)O(ε−2 log2 n)O(ε−2 log2 n) Cor. 15

C 2.1 ρv ∈ [(2 + ε)−1ρmax(G), (2 + ε)ρmax(G)] O(D · ε−1 log n) [15]
2.1 ρv ∈ [(1 + ε)−1ρmax(G), (1 + ε)ρmax(G)] O(ε−4 log4 n + D) whp. [28]
2.2 maxv ρv ∈ [(1 + ε)−1ρmax(G), (1 + ε)ρmax(G)] O(ε−4 log4 n) whp. [28]
2.2 ρv ∈ [(1 + ε)−1ρ∗(v), (1 + ε)ρ∗(v)]ρv ∈ [(1 + ε)−1ρ∗(v), (1 + ε)ρ∗(v)]ρv ∈ [(1 + ε)−1ρ∗(v), (1 + ε)ρ∗(v)] O(poly{log n, ε−1}) · 2O(

√
log n)O(poly{log n, ε−1}) · 2O(

√
log n)O(poly{log n, ε−1}) · 2O(

√
log n) Thm. 16

3 ρv ∈ [(1 + ε)−1ρ∗(v), (1 + ε)ρ∗(v)]ρv ∈ [(1 + ε)−1ρ∗(v), (1 + ε)ρ∗(v)]ρv ∈ [(1 + ε)−1ρ∗(v), (1 + ε)ρ∗(v)] O(poly{log n, ε−1}) · 2O(
√

log n)O(poly{log n, ε−1}) · 2O(
√

log n)O(poly{log n, ε−1}) · 2O(
√

log n) Thm. 16
3 ρv ∈ [(1 + ε)−1ρ∗(v), (1 + ε)ρ∗(v)]ρv ∈ [(1 + ε)−1ρ∗(v), (1 + ε)ρ∗(v)]ρv ∈ [(1 + ε)−1ρ∗(v), (1 + ε)ρ∗(v)] O(poly{log n, ε−1})O(poly{log n, ε−1})O(poly{log n, ε−1}) whp. Thm. 16

2 Preliminaries and related work

Let G = (V, E) be an undirected weighted graph with n vertices and m edges. For any v ∈ V

and any integer k, we denote by Hk(v) the k-hop neighborhood of v. For each edge e ∈ E

we denote by g(e) the weight of e. Any edge with endpoints u, v may be denoted as uv.

STACS 2025

25:4 Local Density and Its Distributed Approximation

We can augment any weighted graph G with a (fractional) orientation. An orientation
−→
G assigns to each edge uv two positive real values: g(u → v) and g(v → u) such that
g(uv) = g(u→ v) + g(v→ u). These values may be interpreted as pointing a fraction of
the edge uv from u to v, and the other fraction from v to u. Given an orientation −→G , we
denote by g(u) =

∑
v∈V

g(u→ v) the out-degree of u (i.e., how much fractional edges point

outwards from u in −→G). Given these definitions, we can consider two graph measures of G:
the maximum subgraph density and the minimum orientation of G.

Global graph measures. For any subgraph H ⊆ G, its density ρ(H) is defined as ρ(H) =
1

|V (H)|
∑

e∈E(H)
g(e). The maximum subgraph density ρmax(G) is then the maximum over

all H ⊆ G of ρ(H). A subgraph H ⊆ G is densest whenever ρ(H) = ρmax(G). For any
orientation −→G of G, its maximum out-degree ∆(−→G) is the maximum over all u of the out-
degree g(u). The optimal out-degree of G, denoted by ∆min(G), is subsequently the minimum
over all −→G of ∆(−→G). An orientation −→G itself is minimum whenever ∆(−→G) = ∆min(G).

The density of G and the optimal out-degree are closely related. One way to illustrate
this is through the following dual linear programs:

DS (Densest Subgraph) ∥ FO (Fractional Orientation)

max
∑

uv∈E

g(uv) · yu,v s.t. ∥ min ρ s.t.

xu, xv ≥ yu,v ∀uv ∈ E ∥ g(u→v) + g(v→u) ≥ g(uv) ∀uv ∈ E∑
v∈V

xv ≤ 1 ∥ ρ ≥
∑
v∈V

g(u→v) ∀u ∈ V

xv, yu,v ≥ 0 ∀u, v ∈ V ∥ g(u→v), g(v→u) ≥ 0 ∀u, v ∈ V

Denote by R the optimal value of DS and by ∆ the optimal value of FO. By duality, R = ∆.
Moreover, Charikar [9] relates these two linear programs to the densest subgraph problem:

▶ Theorem 1 (Theorem 1 in [9]). Let G be a unit weight graph. Denote by R the optimal
solution of DS and by D the optimal solution of FO. Then ρmax(G) = R = ∆ = ∆min(G).

We show that this can be generalised to when G is a weighted graph:

▶ Lemma 2 (See the full version). Let G be any weighted graph. Denote by R the optimal
solution of DS and by D the optimal solution of FO. Then ρmax(G) = R = D = ∆min(G).

2.1 Densest subgraph in dynamic algorithms
In a classical, non-distributed model of computation we can immediately formalise both the
value variant of the (approximate) densest subgraph:

▶ Problem 1. Given a graph G and an ε > 0, output ρ′ ∈ [(1+ε)−1ρmax(G), (1+ε)ρmax(G)].

Alternatively, in the Fractional Orientation (FO) problem the goal is to output a (1 + ε)-
approximation of ∆min(G). It turns out that FO is a more accessible problem to study.
The LP formulations allow for a straightforward way to compute ∆min(G) and/or ρmax(G).
However, solving the LP requires information about the entire graph, and this information is
expensive to collect. Sawlani and Wang [27] get around this difficulty by instead solving an
approximate version of (FO). They work with a concept we call local fairness.

A. B. Christiansen, I. van der Hoog, and E. Rotenberg 25:5

▶ Definition 3. Let −→G be a fractional orientation of a graph G. We say that −→G is locally
fair whenever g(u→v) > 0 implies g(u) ≤ g(v).

Chekuri et al. [10] extend this definition to η-fairness:

▶ Definition 4. Let −→G be a fractional orientation of a graph G. We say that −→G is η-fair
(for η > 0) whenever g(u→v) > 0 implies that g(u) ≤ (1 + η)g(v).

Related work in dynamic algorithms. Chekuri et al. [10] continue to focus on computing
a (1 + ε)-approximation of the Densest Subgraph problem. They show that, if G is a unit
weight graph, there exists a (1 + ε)-approximate solution to FO that is η-fair (for some
smartly chosen η). They subsequently prove that an η-fair orientation allows you to find a
(1 + ε)-approximate densest subgraph. This allows them to dynamically maintain the value of
the densest subgraph of G in O(ε−6 log3 n log ρmax(G)) time per insertion or deletion of edges
in G. By leveraging the η-fairness of the orientation, they can report a (1 + ε)-approximate
densest subgraph in time proportional to the size of the subgraph.

2.2 Approximate densest subgraph in LOCAL and CONGEST
We focus on the value variant of the problem, where each vertex outputs a value (as opposed
to the reporting variant in the full version, where the goal is to report a densest subgraph).

▶ Problem 2. Given a graph G and an ε > 0, each vertex v outputs a value ρv and either:
Problem 2.1: we require that ∀v, ρv ∈ [(1 + ε)−1ρmax(G), (1 + ε)ρmax(G)], or
Problem 2.2: we require that maxv ρv ∈ [(1 + ε)−1ρmax(G), (1 + ε)ρmax(G)].

Related work. Problem 2.1 has a trivial Ω(D) lower bound, obtained by constructing a
lollipop graph (where D denotes the diameter). In LOCAL, it is trivial to solve Problem 2.1
in Θ(D) time. Problem 2.2 was studied by Ghaffari and Su [20] who present a randomised
(1 + ε)-approximation in LOCAL that uses O(ε−3 log4 n) rounds. Fischer et al. [16] present
a deterministic (1 + ε)-approximation in LOCAL that uses 2O(log2(ε−1 log n)) rounds. Ghaffari
et al. [19] improve this to O(ε−9 log15 n) rounds. The work by Harris [24] improves this
to Õ(ε−6 log6 n) rounds. Su and Vu [28] present the state-of-the-art in this area. They
prove that for any graph G, there exists a vertex v such that for the k-hop neighbourhood
Hk(v) (with k ∈ O(ε−1 log n)) the density ρmax(Hk) is a (1 + ε)-approximation of ρmax(G).
This immediately leads to a trivial LOCAL algorithm: each vertex u collects its k-hop
neighbourhood Hk(u) in O(ε−1 log n) rounds, solves the LP of Densest Subgraph in its own
node, and reports the value ρmax(Hk(u)).

In CONGEST, the state-of-the-art deterministic algorithm for Problem 2.1 and 2.2 is
by Das Sarma et al. [15] who present a (2 + ε)-approximation in O(D · ε−1 log n) rounds.
The best randomised work is by Su and Vu [28] who present a randomised algorithm for
Problem 2.2 that runs in O(ε−4 log4 n) rounds w.h.p. See also Table 1 for an overview.

2.3 Local density
Danisch, Chan, and Sozio [14] introduce a more local measure which they call the local
density. Its lengthy definition assigns to each vertex v a value. We note for the reader
that we almost immediately define our local out-degree (Definition 8), and only use local
out-degree in proofs. Hence, the reader is not required to have a thorough understanding of
the following:

STACS 2025

25:6 Local Density and Its Distributed Approximation

▶ Definition 5 (Definition 2.2 in [14]). Let G = (V, E) be a weighted graph where an edge e

has weight g(e). Let B ⊆ V . For any X ⊆ V −B, we define the quotient edges ÊB(X) as
all edges in G with one endpoint in X, and the other endpoint in X or B. We define:

for X ⊆ V −B, the quotient subgraph density ρ̂B(X) := 1
|X|

∑
e∈ÊB(X)

g(e).

the maximum quotient density ρ̂B(G) := max
X⊆V −B

ρ̂B(X).

▶ Definition 6 (Definition 2.3 in [14]). Given a weighted undirected graph G = (V, E), we
define the diminishing-dense decomposition B of G as the sequence B0 ⊂ B1 . . . ⊂ Bℓ = V :

We define B0 = ∅. For i ≥ 1 if Bi−1 = V then ℓ := i. Otherwise:

Si := arg max
X⊆V −Bi−1

ρ̂Bi−1(X), and Bi := Bi−1 ∪ Si.

▶ Definition 7 (Definition 2.3 in [14]). Given a weighted undirected graph G = (V, E) and a
diminishing-dense decomposition B, each vertex v ∈ V has one integer i where v ∈ Si. We
define the local density ρ∗(v) := ρ̂Bi−1(Si).

The benefit of local measures. Problem 2’s variants have drawbacks in a distributed
model of computation. Problem 2.1 has an Ω(d) lower bound (making it trivial in LOCAL).
Problem 2.2 allows some vertices to output nonsense. The definition of local density alleviates
these issues, as we may define an algorithmic problem which we consider to be more natural:

▶ Problem 3. Given (G, ε), each vertex v outputs ρv ∈ [(1 + ε)−1ρ∗(v), (1 + ε)ρ∗(v)].

Related work. Danisch, Chan, and Sozio [14] introduce the local density (Definition 7).
Intuitively, they define a partition V1 . . . Vk of V . For each i, they consider the set Xi =⋃i

j=1 Vj . They then define the graph Hi as the vertex-induced subgraph of Xi where for
each edge in G between a vertex in Xi and a vertex not in Xi, they add a self loop. They
define the quotient density of Vi as the density of Hi. The local density ρ∗(v) of a vertex v is
the quotient density of Vi for v ∈ Vi. Danisch, Chan, and Sozio [14] then define a quadratic
program FO2. The domain of this program is the space of all orientations of the graph
G. The cost function is the sum over all vertices u, of the out-degree squared. Consider
an orientation −→G of G that optimises the cost function. Danisch, Chan, and Sozio show
that for each vertex v it out-degree g(v) equals the local density ρ∗(v). As a consequence,
over all optimal solutions to FO2, the out-degree of each vertex is unique. They provide a
Frank-Wolfe based algorithm to solve the quadratic program with no theoretical guarantees.

Chekuri, Harb, and Quanrud [22] study computing the local density by solving the
quadratic program. They show [22, Theorem 3.4] some interesting properties of FO2.
Specifically, they show that the uniqueness property by Danish, Chan and Sozio is a
special case of Fujishige’s result [18] from 1980. They additionally show that the algorithm
GREEDY++ by Boob, Gao, Peng, Sawlani, Tsourakakis, Wang, and Wang [5] (when applied
to this quadratic program) converges to an orientation where the out-degree of each vertex v

is a (1 + ε)-approximation of ρ∗(v). Chekuri, Harb, and Quanrud [23] subsequently show
that the more general SUPER-GREEDY++ algorithm by Chekuri, Quanrud and Torres [11]
also converges to (1 + ε)-approximation of each ρ∗(v).

Borradaile, Migler, and Wilfong [7] observe that there is a correlation between the fairness
of an orientation and local density. An integral orientation is any orientation of the graph
where for each edge (u, v), g(u→v) ∈ {0, 1}. They consider an egalitarian orientation which
is defined as an integral orientation where “the total available out-degree is shared among

A. B. Christiansen, I. van der Hoog, and E. Rotenberg 25:7

the vertices as equally as allowed by the topology of the graph”. An egalitarian orientation,
and other equivalent notions of “fair integral orientations”, are formally defined through an
integer flow problem on the graph [6, 17, 30]. From section 2 in [6] it follows that an integral
orientation is egalitarian if and only if g(u→v) = 1 implies that g(u) ≤ g(v) + 1.

Using an egalitarian orientation, they create a decomposition of the graph that they call
a density decomposition. The density decomposition by Borradaile, Migler, and Wilfong [7]
is not equal to the local density. The analysis of Kopelowitz, Krauthgamer, Porat, and
Solomon shows that if −→G is an egalitarian orientation then maxv g(v) ≤ ρ(G) + O(log n).
Their decomposition, compared to the one used for the local density, can thus be viewed as
one that is coarser but similar in spirit. It can thereby be argued that Borradaile, Migler, and
Wilfong [7] are the first to show a connection between the local density and fair orientations
of a graph. However, we note that the integrality of their orientation prevents exact (or
(1 + ε)-approximate) computations of the local density.

3 Results and organisation

Now we are ready to formally state our contributions. Our primary contribution is that we
show a dual definition to local density, which we call the local out-degree:

▶ Definition 8. Given a graph G = (V, E), we define the local out-degree as:

g∗(u) := the out-degree g(u) in any locally fair fractional orientation of G.

It is not immediately clear that the local out-degree is well-defined. We prove (Theorem 9)
that each vertex in G has the same out-degree across all locally fair orientations of G (and
thus, the set of all locally fair orientations of G assigns to each vertex a real value). We
believe that the local out-degree is conceptually simpler that the local density. Through this
definition, we are able to show various algorithms to approximate the local density.

3.A Conceptual results for local density
We prove in Section 4 that these local definitions generalise the global definition of subgraph
density and out-degree, as they exhibit the same dual behaviour. We show several previously
unknown properties of the local density, which we consider to be of independent interest:

▶ Theorem 9. For any weighted graph G, ∀v ∈ V , g∗(v) is well-defined and equals ρ∗(v).

▶ Corollary 10. Given a weighted graph G, ρmax(G) = ∆min(G) = maxv g∗(v).

▶ Corollary 11. For any graph G, there exists a fractional orientation −→G that is locally fair.

3.B Results for dynamic algorithms
We show in Section 5 that η-fair orientations imply approximations for our local measures:

▶ Theorem 12. Let G be a weighted graph and −→G be an η-fair fractional orientation for
η ≤ ε2

128·log n . Then ∀v ∈ V : (1 + ε)−1ρ∗(v) ≤ g(v) ≤ (1 + ε)ρ∗(v).

This immediately implies the following Corollary by applying [10]:

▶ Corollary 13. There exists an algorithm [10] that can fractionally orient a dynamic unit-
weight graph G with n vertices subject to edge insertions and deletions with deterministic
worst-case O(ε−6 log4 n)) update time such that for all v ∈ V :

g(v) ∈ [(1 + ε)−1ρ∗(v), (1 + ε)ρ∗(v)].

STACS 2025

25:8 Local Density and Its Distributed Approximation

3.C Results in LOCAL
The local density as a measure is not entirely local. However, we prove in Section 6 that
far-away subgraphs affect the local density of a vertex v only marginally:

▶ Theorem 14. Let G be a unit-weight graph. For any ε > 0 and vertex v, denote by ρ∗(v) its
local density and by ρ∗

k(v) its local density in Hk(v). Then ρ∗
k(v) ∈ [(1+ε)−1ρ∗(v), (1+ε)ρ∗(v)]

for k ∈ Θ(ε−2 log2 n).

This immediately implies a trivial algorithm for problem 2 in LOCAL (where each vertex v

collects its k-hop neighbourhood Hk(v) for k ∈ Θ(ε−2 log2 n) and then solves FO on Hk(v)):

▶ Corollary 15. There exists an algorithm in LOCAL that given a unit graph G and ε > 0
computes in O(ε−2 log2 n) rounds for all v ∈ V a value ρv ∈ [(1 + ε)−1ρ∗(v), (1 + ε)ρ∗(v)].

3.D Results in CONGEST
Finally in Section 7, we solve Problem 3 in CONGEST by computing an η-fair orientation.
We use as a subroutine algorithm to compute blocking flows in an h-layered DAG [21]:

▶ Theorem 16. Suppose one can compute a blocking flow in an n-node h-layered DAG in
Blocking(h, n) rounds. There exists an algorithm in CONGEST that given a unit-weight
graph G and ε > 0 computes in O(ε−3 log4 n · (ε−2 log2 n + Blocking(ε−2 log2 n, n))) rounds
an orientation −→G such that for all v ∈ V : g(v) ∈ [(1 + ε)−1ρ∗(v)), (1 + ε)ρ∗(v)ρ∗(v)].

As a corollary, we obtain the first deterministic algorithm running in a sublinear number of
rounds for (1 + ε)-approximate dense subgraph detection in the CONGEST model (Table 1).

4 Conceptual results for local density

Our primary contribution is the definition of local out-degree as a dual to local density.

▶ Lemma 17. The local density is well-defined. That is, for any two locally fair orientations−→
G or −→G ′ where a vertex u has out-degree g(u) or g′(u) respectively, g(u) = g′(u).

Proof. Suppose for the sake of contradiction that there exists two locally fair orientations
(−→G,
−→
G ′) and a vertex u ∈ V where g(u) > g′(u). We define their symmetric difference

graph S as a digraph where the vertices are V and there exists an edge
−→
ab whenever

g(a→b) > g′(a→b). We may assume that S contains no directed cycles:
Indeed if S contains any directed cycle π we change

−→
G′, where for all

−→
ab ∈ π we slightly

increase g′(a→b) until S loses an edge. This operation does not change the out-degree of
any vertex in −→G ′. So, we still have two locally fair orientations (−→G,

−→
G ′) with g(u) > g′(u).

Since g(u) > g′(u), the vertex u must have at least one out-edge in S and since S has no
cycles, it follows that u must have some directed path πv to a sink v in S. Since v is a sink
in the symmetric difference graph it follows that g(v) < g′(v).
However we now observe the following property of the path πv:
∀
−→
ab ∈ πv, g(a→ b) > g′(a→ b). Thus, g(a→ b) > 0 and so there exists a directed path

from u to v in −→G . Since −→G is locally fair this implies that g(u) ≤ g(v).
∀
−→
ab ∈ πv, g(a→ b) > g′(a→ b). Thus, g′(a→ b) < g(ab) and so g′(b→a) > 0. It follows

that there exists a directed path from v to u in −→G ′. Local fairness implies g′(v) ≤ g′(u).
The 4 equations: g(u) > g′(u), g(v) < g′(v), g(u) ≤ g(v), and g′(u) ≥ g′(v) give a
contradiction. ◀

A. B. Christiansen, I. van der Hoog, and E. Rotenberg 25:9

Lemma 17 would imply that the local out-degree is well-defined, if the set of locally fair
orientations is non-empty. Bera, Bhattacharya, Choudhari and Ghosh already aim to prove
this in Section 4.1 of [3] (right above Equation 9). They claim that a locally fair orientation
always exist by the following argument: They consider an arbitrary orientation −→G that is
not locally fair. They claim that for any pair (u, v) where g(u) > g(v) and g(u→ v) > 0
it is possible to transfer some out-degree from g(u) to g(v). The existence of a locally fair
orientation would follow, if it can be shown that this procedure converges to a locally fair
orientation. Indeed, since the space of all orientations is a compact polytope, the limit of a
converging sequence over this domain must lie within the space.

It is intuitive but not clear that this procedure indeed converges. Indeed, decreasing
g(u) and increasing g(v) may cause some other edge (w, u) or (v, w) to start violating local
fairness. One way to show convergence is to define a potential function and to show that
such a transfer always decreases the potential. We define the potential function

∑
v∈V g2(v),

thereby creating a quadratic program where the domain is the space of all orientations of
G. We prove that any optimal solution to this quadratic program must be a locally fair
orientation. Any quadratic function over a compact domain has an optimum and so the
existence of a locally fair orientation follows.

▶ Theorem 9. For any weighted graph G, ∀v ∈ V , g∗(v) is well-defined and equals ρ∗(v).

Proof. We consider the following quadratic program FO2 from [14, Section 4] where we
compute a fractional orientation of the graph G subject to a quadratic cost function:

min
∑

g(u)2 s.t.

g(u→v) + g(v→u) ≥ g(uv) ∀uv ∈ E

g(u) ≥
∑
v∈V

g(u→v) ∀u ∈ V

g(u→v), g(v→u) ≥ 0 ∀u, v ∈ V

Consider any optimal solution to the quadratic program. It must be that g(u) =∑
v∈V g(u→v). Danisch, Chan, and Sozio [14, Corollary 4.4] prove that for any vertex u,

the local density ρ∗(u) = g(u).
We first note that any solution to the quadratic program is an orientation. Indeed,

suppose for the sake of contradiction that there exists an edge uv ∈ E where g(u→v)+g(v→
u) > g(uv). We may now decrease either g(u→ v) or g(v→ u) to obtain another viable
solution to the program. Consider decreasing g(u→ v), then we may decrease g(u) and
maintain a viable and better solution to the program – a contradiction.

Secondly, we claim that the optimal solution to the quadratic program is a locally fair
orientation. Suppose for the sake of contradiction that there exist u, v with g(u) = g(v) + δ′

and g(u→v) = δ for δ, δ′ > 0. We can decrease g(u→v) to zero by increasing g(v→u) by
∆ = min{δ, δ′} and still maintain a solution to the program. This reduces the solution’s
value by (g(u) −∆)2 − (g(v) + ∆)2. However, we now found a solution to the quadratic
program with a lower value than the optimal solution – a contradiction.

Thus, the solution to FO2 gives a locally fair orientation −→G where each vertex u has
out-degree g(u). The local density g∗(u) = g(u) is by Lemma 17 well-defined. Danisch, Chan
and Sozio [14, Corollary 4.4] show that ρ∗(u) = g(u), which proves the theorem. ◀

Since the local density equals the local out-degree, we conclude from [14] that:

▶ Corollary 10. Given a weighted graph G, ρmax(G) = ∆min(G) = maxv g∗(v).

STACS 2025

25:10 Local Density and Its Distributed Approximation

Since a quadratic program over a convex domain always has a solution, we may also note
the following interesting fact:

▶ Corollary 11. For any graph G, there exists a fractional orientation −→G that is locally fair.

5 Results for dynamic algorithms

We use our definition of local out-degree to show that there already exist dynamic algorithms
that approximate the local density of each vertex. Recall that an orientation −→G is η-fair
whenever for all uv ∈ E(−→G), g(u→v) > 0 implies that g(u) ≤ (1 + η)g(v). We show that
if we choose η ≤ ε2

128·log n , then for any η-fair orientation, for all v, the out-degree g(v)
is a (1 + ε) approximation of g∗(v) = ρ∗(v). Moreover, we prove that the maximal local
out-degree (i.e. maxu∈V g(u)) is a (1 + ε) approximation of ∆min(G) = ρmax(G); illustrating
that approximating the local measures is a strictly more general problem. To this end, we
prove the following helper lemma:

▶ Lemma 18. Let η ≤ ε2

128·log n and k ≤ log(1+ 1
16 ε) n. Then (1 + η)−k ≥ (1 + 0.5ε)−1.

Proof. Using log(1 + x) ≥ x/2 whenever x < 1, we obtain:

− log1+ ε
16

(n) = − log(n)
log 1 + ε

16
≥ − log(n)

ε
32

≥ −ε

4 ·
128 log(n)

ε2

(1 + η)−k ≥ (1 + ε2

128 · c · log n
)−c·log1+ ε

16
(n) ≥ (1 + ε2

128 · c log n
)− ε

4 · 128·c·log(n)
ε2

(1 + η)−k ≥ EXP
[
−ε

4

]
≥ EXP

[
− log(1 + ε

2)
]
≥ (1 + ε

2)−1 ◀

▶ Theorem 12. Let G be a weighted graph and −→G be an η-fair fractional orientation for
η ≤ ε2

128·log n . Then ∀v ∈ V : (1 + ε)−1ρ∗(v) ≤ g(v) ≤ (1 + ε)ρ∗(v).

Proof. First, we show that for all vertices v, g(v) ≤ (1 + ε)ρ∗(v).
Suppose for the sake of contradiction that there exists a vertex u with g(u) > (1+ε)ρ∗(u).

We fix ρ∗(u) = g∗(u) = γ and work with γ throughout the remainder of this proof to show a
contradiction. By Corollary 11, there exists at least one locally fair fractional orientation −→Gx.
By Corollary 10, every vertex v in this orientation has out-degree gx(v) = g∗(v) = ρ∗(v).
And thus, the fractional orientation −→Gx is not equal to −→G .

Given −→G and a locally fair fractional orientation −→Gx, we do three steps:
We partition the vertices of G to create two graphs G1 and G2. The partition is based
on the orientation −→Gx as we set: G1 = G[v ∈ V | gx(v) ≤ γ] and by G2 = G[v ∈ V |
gx(v) > γ]. For ease of notation, we write any edge with one endpoint a ∈ V (G1) and
one endpoint b ∈ V (G2) as (a, b) and never as (b, a).
From G1, we create a family of nested subgraphs using −→G . We define graphs G1

i :=
G1[v ∈ V (G1) | g(v) ≥ g(u)

(1+η)i]. We denote by k the lowest integer such that |V (G1
k+1)| <

(1 + ε
16)|V (G1

k)|. We apply Lemma 18 to observe that (1 + η)−k ≥ (1 + ε/2)−1.
Finally, we use both orientations to create three claims that contradict one another.

The first claim. We denote by E↑ the set of all edges e = (a, b) with a ∈ V (G1
k+1) and

b ∈ V (G2) and claim that:∑
e∈E(G1

k+1)

g(e) +
∑

e∈E↑

g(e) ≤
∑

v∈V (G1
k+1)

gx(v). (1)

A. B. Christiansen, I. van der Hoog, and E. Rotenberg 25:11

Indeed for ab ∈ E(G1
k+1), both endpoints are in V (Gk+1). Because −→Gx is locally fair, this

implies that gx(a→b) + gx(b→a) = g(ab). For all ab ∈ E↑, gx(b) > γ ≥ gx(a) per definition
of G1 and G2. By local fairness, gx(a→b) = g(ab) and the inequality follows.
The second claim. We secondly claim that:∑

v∈V (G1
k

)

g(v) >
∑

v∈V (G1
k+1)

gx(v). (2)

This is because we can lower bound
∑

v∈V (G1
k

) g(v) as follows:

∑
v∈V (G1

k
)

g(v) ≥ (1 + η)−k · g(u) · |V (G1
k)| > (1 + η)−k · g(u) · |V (G1

k+1)| · (1 + ε

16)−1

> (1 + ε

2)−1 · (1 + ε)γ · |V (G1
k+1)| · (1 + ε

16)−1 ≥ γ · |V (G1
k+1)|

The claim follows by noting that per definition of G1, for all v ∈ V (G1
k+1), gx(v) ≤ γ.

The third claim. Lastly, we claim that:

∑
v∈V (G1

k
)

g(v) ≤
∑

e∈E(G1
k+1)

g(e) +
∑

e∈E↑

g(e) (3)

Consider any v ∈ V (G1
k) and any vertex a with g(v→ a) > 0. Recall that −→G is an η-fair

orientation. Thus, if a ∈ G1, then va ∈ E(G1
k+1). If a ∈ G2, then per definition va ∈ E↑.

Per definition of a fractional orientation g(v→a) ≤ g(va) and so the claim follows.
A contradiction. Equation 1, 2 and 3 contradict each other. Thus, we have proven that for
all vertices v, g(v) ≤ (1 + ε)ρ∗(v).

The full version finishes the proof by showing the other direction. ◀

If G is a unit-weight graph, Chekuri et al. [10] present a dynamic algorithm to maintain
an η-fair orientation in a unit-weight graph with η ∈ O(ε−2 log n). Thus, by Theorem 12, we
may now conclude that they approximate the local density (and/or the local out-degree):

▶ Corollary 13. There exists an algorithm [10] that can fractionally orient a dynamic unit-
weight graph G with n vertices subject to edge insertions and deletions with deterministic
worst-case O(ε−6 log4 n)) update time such that for all v ∈ V :

g(v) ∈ [(1 + ε)−1ρ∗(v), (1 + ε)ρ∗(v)].

6 Results in LOCAL

We prove that the local out-degree of each v ∈ V is (largely) determined by its local
neighbourhood. As a result, we immediately get an algorithm to solve Problem 3 in LOCAL.

▶ Theorem 14. Let G be a unit-weight graph. For any ε > 0 and vertex v, denote by ρ∗(v) its
local density and by ρ∗

k(v) its local density in Hk(v). Then ρ∗
k(v) ∈ [(1+ε)−1ρ∗(v), (1+ε)ρ∗(v)]

for k ∈ Θ(ε−2 log2 n).

Proof. To prove the theorem, we design a simple deletion-only algorithm to maintain an
η-fair orientation. For η = ε2

128 log n , this algorithm has a recursive depth of O(ε−2 log2 n).

STACS 2025

25:12 Local Density and Its Distributed Approximation

Algorithm 1 decrease(g(u→v) by ∆ – assuming that ∆ ≤ g(u→v)).

w∗ ← arg maxw∈V {g(w) | g(w→u) > 0}
while ∆ > 0 and g(w∗) > (1 + η)(g(u)−∆) do

if ∆ > g(w∗→u) then
Decrease(g(w∗→v) by g(w∗→v))
∆ = ∆− g(w∗→u)

else
Decrease(g(w∗→v) by ∆)

w∗ ← arg maxw∈V {g(w) | g(w→u) > 0}

Specifically, we say that a directed edge uv is bad whenever g(u→ v) > 0 and g(u) >

(1 + η)g(v). In an η-fair orientation no edge is bad. Whenever we delete an edge x1x0, the
out-degree g(x1) decreases by g(x1→x0). For vertices x2 with g(x2→x1) > 0, it may now
be that g(x2) > (1 + η)g(x1) (and thus the edge x2x1 becomes bad). Note if there exists such
a vertex x2, then it must hold for the vertex x∗

2 := arg maxx2∈V {g(x2) | g(x2→ x1) > 0}.
This leads to a recursive algorithm to decrease the out-degree of a vertex (Algorithm 1).

We claim that this algorithm as a recursive depth of O(log1+η n). Indeed any sequence
of recursive calls is a path in G. Denote the path belonging to the longest sequence of
recursive calls by x0, x1, . . . xℓ. Since ∆ is always at most 1, it must hold for all i that:
g(xi) > (1 + η)(g(xi−1)− 1)). Since a graph may have at most n2 edges, g(xℓ) ≤ n and it
follows that the recursive depth is at most ℓ ∈ O(log1+η n). We now apply log(1 + x) ≥ x/2
and note that: ℓ ≤ log n

log(1+η) ≤
log n
η/2 ⊆ O(log n

64ε2/ log n) ⊆ O(log2 n
ε2).

Given this theoretical algorithm, we prove the lemma. Consider any fair orientation−→
G . Then by Theorem 9 for any vertex v, g(v) = ρ∗(v). Choose some k ∈ Θ(ε−2 log2 n)
sufficiently large and let Hk(v) be the k-hop neighbourhood of v and Ek be all the edges in
Hk+1(v) that are not in Hk.

Choose η = ε2

128 log n . The orientation −→G is per definition an η-fair orientation. We run on
−→
G our deletion-only algorithm, deleting all edges in Ek. Since our algorithm has a recursive
depth of ℓ < k, we end up with an η-fair orientation of Hk(v) where g(v) = ρ∗(v). We apply
Theorem 12 to conclude that ρ∗(v) = g(v) ∈ [(1 + ε)−1ρ∗

k(v), (1 + ε)−1ρ∗
k(v)] which concludes

the theorem. ◀

▶ Corollary 15. There exists an algorithm in LOCAL that given a unit graph G and ε > 0
computes in O(ε−2 log2 n) rounds for all v ∈ V a value ρv ∈ [(1 + ε)−1ρ∗(v), (1 + ε)ρ∗(v)].

7 Results in CONGEST

We now describe an algorithm in CONGEST that for any unit-weight graph G, creates an
η-fair orientation (with η = ε2

128·log n). Our algorithm uses as a subroutine a distributed
algorithm to compute a blocking flow in an h-layered DAG in O(Blocking(h, n)) rounds.

▶ Definition 19. An edge-capacitated DAG G is h-layered if the vertices can be embedded on
a grid of height h, such that every directed edge uv points downwards.

▶ Definition 20. For an edge-capacitated DAG G with sources S and terminals T , a flow f

from S to T is blocking if every augmenting path of f contains at least one saturated edge.

A. B. Christiansen, I. van der Hoog, and E. Rotenberg 25:13

L1 : [0, 1]

L2 : [1, 3]

L3 : [3, 5]

L4 : [5, 10]

L0 : [0, 0]

Figure 1 Given a graph G, we arbitrarily orient G. This allows us to partition the vertices of
G into levels L1, . . . L6 based on their current out-degree. We say that an edge (u, v) is violating
whenever g(u→v) > 0, u ∈ Li, v ∈ Lj and i > j + 1. We show violating edges in red. Our algorithm
iterates over an integer h from high to low, and tries to flip all violating edges from level Lh.

▶ Lemma 21 (Lemma 7.2 and 9.1 in [21]). There exists an algorithm which, given an n-node
h-layer edge-capacitated DAG D with sources S and terminals T computes a blocking ST-flow
in CONGEST in:

Blocking(h, n) = Õ(h4) rounds with high probability,
Blocking(h, n) = Õ(h6 · 2c

√
log n) deterministic rounds for some constant c.

We compute an η-fair orientation by repeatedly constructing a DAG with h ∈ O(ε−2 log2 n)
and computing blocking flows. Theorem 12 implies in an η-fair orientation (for our choice of
η) the out-degree of each vertex v is a (1 + ε)-approximation ρ∗(v).

The initialising step. Before we start our algorithm, we create a starting orientation where
we set for every edge e = uv, g(u→v) = 1

2 g(e) and g(v→u) = 1
2 g(e). This gives each vertex

u some out-degree g(u) which we partition:

▶ Definition 22. Let each vertex u have out-degree g(u). We define level i as:

Li :=
{

u ∈ V | g(u) ∈
[
(1 + η

2)i, (1 + η

2)i+1
]}

.

A vertex u ∈ Li is at level i and ℓ′ denotes the highest level that is not empty.
Whenever g(u) = (1+ η

2)i, u may decide whether u ∈ Li or u ∈ Li−1; whenever our algorithm
increases g(u) the vertex u defaults to the lowest possible level and vice versa.

▶ Definition 23. Consider an edge uv with u ∈ Li and v ∈ Lj. We say that:
(u, v) is an out-edge from u and an in-edge into v whenever i > j and g(u→v) > 0, and
(u, v) is violating whenever i > j + 1 and g(u→v) > 0

Note that the orientation is η-fair whenever there exist no violating edges.

▶ Lemma 24. Let η ≤ ε2

128·log n . For our orientation, let ℓ′ be the highest level such that Lℓ′

is not empty then ℓ′ ≤ ε−2 log2 n.

Proof. The maximal out-degree of a vertex is n. Thus, ℓ′ ≤ log n
log(1+ η

2) . We now apply

log(1 + x) ≥ x/2 and note that: ℓ′ ≤ log n
log(1+ η

2) ≤
log n
η/4 = log n

32ε2/ log n ≤
log2 n

ε2 . ◀

7.1 Algorithm overview
Denote ℓ = ⌈ε−2 log2 n⌉. Our algorithm runs on a “clock” denoted by (h : m : s) where:

Each hour h lasts 2⌈η−1⌉+ 2 minutes,
Each even minute m lasts 4⌈log8/7 n⌉+ 2 rounds,

STACS 2025

25:14 Local Density and Its Distributed Approximation

Each odd minute m in hour h lasts ℓ− h + 1 seconds,
Each second s lasts ℓ + Blocking(ℓ, n) rounds.

Each vertex tracks the clock to know which actions of our algorithm it should execute (if
any). Our clock is special, in the sense that hours tick downwards. Minutes and seconds
tick upwards, starting from zero. Each vertex v in our graph keeps track of the current time,
measured in the current hour h, minute m and second s. We maintain the following:

▶ Invariant 1. During hour h, there are no violating out-edges from level k for all k > h + 1.
At the start of each even minute in hour h, there are no violating out-edges from level k

for all k > h.

This invariant implies that we compute an η-fair orientation when the clock reaches (0 : 0 : 0).
Going from hour h to hour h− 1 we maintain this invariant by flipping directed paths:

▶ Definition 25. For any edge uv with g(u→v) > 0, we say that our algorithm is flipping
uv whenever it decreases g(u→v) (increasing g(v→u)). Moreover, we say that uv is flipped
whenever our algorithm has decreased g(u→v) such that g(u→v) = 0.

Algorithm (see also Figure 2 and Algorithms 2 and 3 and 4 and 5). Each time frame has
a purpose:

Each hour h, the goal is to identify and “fix” all violating out-edges from vertices in Lh;
without introducing violating out-edges from vertices in a level Lk with k > h. We do
this iteratively, using two different steps:

Each even minute, we fix all violating out-edges from vertices in Lh, possibly creating
violating out-edges from vertices in Lh+1 to vetices in Lh−1.
Each odd minute, we fix all violating out-edges from vertices in Lh+1 to vertices in
Lh−1. We do this in such a manner, that we create no new violating out-edges from
vertices in Lk for k > h. However, we may create violating out-edges from level Lh.

Each even minute m′, we define the set Vm′ ⊂ Lh of vertices that have at least one
violating out-edge. Over 4⌈log8/7 n⌉+ 2 rounds, each u ∈ Vm′ flips violating out-edges
uv. Moreover:

The out-degree g(u) is decreased such that u drops at most one level, and
The out-degree g(v) such that v increases its level up to at most h− 1.

We prove that at the end of this minute m′, there exist no more u ∈ Vm′ with a violating
out-edge. Thus, for each vertex u ∈ Vm′ , either u decreased one level, or all uv that were
violating now have that g(u→v) = 0, or v ∈ Lh−1.
In each odd minute m, we inspect the vertices Tm := {u ∈ Vm−1 that dropped a level}.
For each u ∈ Tm, for each edge wu with w ∈ Lh+1 and g(w→ u) > 0 the edge (w, u)
has become a violating in the previous minute. We want to fix these edges, whilst
guaranteeing that we create no violating in-edges from vertices in level h + 2 and above.
We obtain this, by recording at the start of the minute for every vertex u its level lm(u).
We then invoke ℓ−h + 1 seconds. Each second s, we create a DAG Ds where the sinks
are Tm. We increase for all u ∈ Tm the out-degree g(u) by flipping a directed path from
a source in Ds to Tm. We construct our DAG in such a manner that this procedure does
not create new violating in-edges, and that for all seconds s, Ds+1 is a subgraph of Ds.
At the start of second s of each minute m, we fix for every edge uv the values gs(u→v),
and the levels ls(u) and ls(v) of u and v. We then define a graph Ds = (Vs, Es) as follows:

The edges Es are all violating in-edges to vertices in Tm plus all uv with:
ls(u) = lm(u) > h + 1, ls(u) > ls(v), and gs(u→v) > 0.
The vertices Vs include Tm plus all vertices in G with a directed path to Tm in Es.

A. B. Christiansen, I. van der Hoog, and E. Rotenberg 25:15

The vertices Ss ⊂ Vs are all sources in Ds (these are not in Tm).
For each v ∈ Tm we increase g(v) by flipping a directed path from a vertex in Ss to v.
We continue this until either g(v) = (1 + η

2)h+1, or, there exist no more edges (u, v) ∈ Es

with g(u→v) > 0. In both cases, v has no more violating in-edges. To find these directed
paths, we create a flow problem on a graph D∗

s where the maximal path has length ℓ + 2:
For each u ∈ Ss, we define σ(u) = g(u)− (1 + η

2)lm(u)−1 (the maximal amount we can
decrease g(u) such that is does not arrive in level lm(u)− 2). We connect every u ∈ Ss

to a unique source su where the edge suu has capacity σ(u).
For each v ∈ Tm, we define δ(v) = (1 + η

2)h+1 − g(v) (the maximal amount we can
increase g(v) such that it does not arrive in level h + 1). We connect every v ∈ Tm to
a unique sink tv where the edge vtv has capacity δ(v).
Each other edge uv ∈ Es has capacity g(u→v).

4 : 0 : 0 start 4 : 0 : 0 end

4 : 1 : 0 start 4 : 1 : 0 end 4 : 1 : 1 start

L1

L2

L3

L4

L5

L6

L7

L7
(h : m : 0) denotes our clock

We start with an orientation

Partition vertices into levels Li

An edge from Li to Lj is:

violating if i > j + 1

Figure 2 (4 : 0 : 0) – at the first minute start in hour 4, we consider all violating out-edges uv

from level 4 (red). Per definition, these edges point to level 2 or lower.
(4 : 0 : 0) – at the first minute end, either u has dropped a level (pink), v increased their level
to h − 1 (green) or the edge uv is flipped (blue). We consider violating in-edges to pink vertices
(orange)
(4 : 1 : 0) – at the first second start, we construct a DAG D0 where the edges are the orange edges
plus black edges. The vertex set are all u with a directed path to a pink vertex (v ∈ T1). The yellow
vertices are S0.
(4 : 1 : 0) – at the first second end, edges in the DAG may have flipped (blue), vertices in S0 may
have dropped a level or vertices in T1 may have increased a level (making some edges no longer
violating – purple).
(4 : 1 : 1) – at the second second start, we construct a DAG D1. Note that D1 is a subgraph of D0.

STACS 2025

25:16 Local Density and Its Distributed Approximation

7.2 Formal algorithm definition
We now formalise our algorithm top-down, starting with defining variables.

▶ Definition 26. At the start of (h, m′, 0), where m′ is even, we fix the set Vm′ := {v ∈ Lh |
v has at least one violating out-edge}. At the start of (h, m, 0) where m is odd, we fix:

Tm := {v ∈ Vm−1 | v decreased by one level in the previous minute and
v has at least one violating in-edge}.

Finally, we denote for any vertex u by lm(u) its level at the start of the minute m.

▶ Definition 27. At the start of (h : m : s), where m is odd, we fix the following:
For any vertex u, we denote by ls(u) its level at the start of the second.
For any edge uv denote by gs(u→v) the out-degree from u to v at the start of the second.
We define the edge set Es as all violating in-edges to vertices in Tm plus all uv with:
ls(u) = lm(u) > h + 1, ls(u) > ls(v), and gs(u→v) > 0.
Vs are all vertices with a directed path to a vertex in Tm.
Ds = (Vs, Es) is a DAG where Ss are all the sources (per definition Ss ∩ Tm = ∅).

▶ Definition 28. At the start of (h, m, s) where m is odd, given Tm, Ss and Ds, we define
the DAG D∗

s by connecting all u ∈ Ss to a unique sink su and all v ∈ Tm to a unique sink tv.
For u ∈ Ss, the edge suu has capacity σ(u) = gs(u)− (1 + η

2)lm(u)−1.
For v ∈ Tm, the edge vtv has capacity δ(v) = (1 + η

2)h+1 − gs(v).
Each other edge uv ∈ Es has capacity gs(u→v).

▶ Observation 29. At the start of (h : m : s) with m odd, if every vertex u is given lm(u),
whether u ∈ Tm, and h, then we may compute all elements of Definitions 27 and 28 in ℓ

rounds.

Algorithm 2 hour(h).

for m = 0 to 2⌈η−1⌉+ 2 do
if m is even then

evenminute(h, m)
else

oddminute(h, m)
if h > 0 then

hour(h− 1)

Algorithm 3 evenminute(int h, int m).

Vm := {v ∈ Lh | v has at least one violating out-edge }
for t = 0 to 2⌈log8/7 n⌉+ 1 do

Let At ⊂ Vm be the set of vertices at level h with at least one violating out-edge
Each a ∈ At determines the set Et(a) of violating out-edges.
Each a ∈ At computes δt(a) = g(a)− (1 + η)h−1 and reports δt(a)/|Et(a)| across Et(a).
/* next round: */
Let Bt be the set of vertices that receive at least one violating in-edge from At.
Each b ∈ Bt determines the set It(b) of vertices that reported a value to v.
Each b ∈ Bt sorts the a ∈ It(b) by δ(a).
Each b ∈ Bt greedily decreases g(a→b) by at most δt(a) for a ∈ It(b); until g(b) = (1 + η

2)h.

A. B. Christiansen, I. van der Hoog, and E. Rotenberg 25:17

Algorithm 4 oddminute(int h, int m).

Tm := {v ∈ Vm−1 | v has at least one violating in-edge }
for s = ℓ down to h do

second(h, m, s)

Algorithm 5 second(int h, int m, int s).

Compute the graph Ds in ℓ rounds.
Compute the graph D∗

s by adding a shared source to Ss and a shared sink to Tm.
f = ComputeBlockingFlow(D∗

s)
Flip all edges in Ds with the corresponding flow in f .

7.3 Proving our algorithm’s correctness
Per definition, our algorithm runs in O(η−1 log n · ℓ · (ℓ + Blocking(ℓ, n)) = O(ε−3 log4 n ·
(ε−2 log2 n + Blocking(ε−2 log2 n, n))) rounds. What remains is to show that we maintain
Invariant 1, which implies that we compute an η-fair orientation.
We note that by the choice of our algorithm’s variables, we have the following property:

▶ Observation 30. For all times (h : m : s) with m odd:
Vertices at level k > h only decrease their level and by at most one (because afterwards,
ls(u) < lm(u) and thus u has no out-edges in Es),
vertices at level h− 1 only increase their level (by at most 1), and
vertices at level k′ < h− 1 and level h do not change their level.

We use this observation in the full version to show that we maintain Invariant 1 by
induction. Trivially, Invariant 1 holds at the start of (ℓ : 0 : 0). We now assume that the
invariant holds at (h : 0 : 0), i.e. that there are no violating out-edges from level Lk with
k > h. We prove that our algorithm ensures that at the start of (h− 1 : 0 : 0) there are no
violating out-edges from level Lk with k ≥ h.

Moreover, we maintain the invariant that throughout hour (h− 1) there are no violating
out-edges from level Lk′ with k′ > h + 1. We prove this in the following way:

During (h : m : s) for m even, our algorithm eliminates all violating edges going from Lh.
We show that in each iteration, the number of violating edges from Lh drops by a factor
7/8. The graph has at most n2 edges. This implies that after the minute, there are no
more violating edges going from Lh. However, there may now be violating out-edges from
vertices in Lh+1 to vertices in Tm+1 ⊆ Lh−1.
During (h : m : s) for m odd, our algorithm eliminates all violating edges going from Lh+1
to Tm. We show that for all s, the DAG Ds is a subgraph of Ds−1 where the height is
one fewer. Since the height of Ds is at most ℓ− h + 1, this implies that after the minute
m, the graph Ds is empty and there are no more violating in-edges to Tm.
Each minute, our algorithm alternates between having violating edges from Lh and Lh+1.
We show that our algorithm can alternate at most η times before there are no violating
edges from both Lh and Lh+1, which implies Invariant 1 at the start of (h− 1 : 0 : 0).

Invariant 1 implies that we compute an η-fair orientation at time (0 : 0 : 0), thus:

▶ Theorem 16. Suppose one can compute a blocking flow in an n-node h-layered DAG in
Blocking(h, n) rounds. There exists an algorithm in CONGEST that given a unit-weight
graph G and ε > 0 computes in O(ε−3 log4 n · (ε−2 log2 n + Blocking(ε−2 log2 n, n))) rounds
an orientation −→G such that for all v ∈ V : g(v) ∈ [(1 + ε)−1ρ∗(v)), (1 + ε)ρ∗(v)ρ∗(v)].

STACS 2025

25:18 Local Density and Its Distributed Approximation

We plug in the runtime of Blocking(h, n) of Lemma 21 by Haeupler, Hershkowitz, and
Saranurak [21] to obtain the following runtime:

▶ Corollary 31. There is an algorithm in CONGEST that given a unit-weight graph G

and an ε > 0 computes an orientation −→G such that ∀v ∈ V , the out-degree g(v) ∈ [(1 +
ε)−1ρ∗(v), (1 + ε)ρ∗(v)] in:

Õ(ε−11 log12 n) rounds with high probability, or
Õ(ε−15 log16 n · 2O(

√
log n)) deterministic rounds.

Finally, we apply Corollary 10 which states that ρmax(G) = ∆min(G) = maxv g∗(v) to
conclude:

▶ Corollary 32. There is a deterministic algorithm in CONGEST that given a unit-weight
graph G and an ε > 0, that computes an orientation −→G such that:

max
v∈V

g(v) ∈ [(1 + ε)−1ρmax(G), (1 + ε)ρmax(G)],

in a number of rounds that is sublinear in n.

This is the first deterministic sublinear algorithm that solves Problem 2.2.

References
1 Bahman Bahmani, Ravi Kumar, and Sergei Vassilvitskii. Densest subgraph in streaming and

mapreduce. Proc. VLDB Endow., 5(5):454–465, 2012. doi:10.14778/2140436.2140442.
2 Soheil Behnezhad, Mahsa Derakhshan, Alireza Farhadi, MohammadTaghi Hajiaghayi, and

Nima Reyhani. Stochastic matching on uniformly sparse graphs. In Algorithmic Game
Theory: 12th International Symposium, SAGT 2019, Athens, Greece, September 30 – October
3, 2019, Proceedings, pages 357–373, Berlin, Heidelberg, 2019. Springer-Verlag. doi:10.1007/
978-3-030-30473-7_24.

3 Suman K. Bera, Sayan Bhattacharya, Jayesh Choudhari, and Prantar Ghosh. A new dynamic
algorithm for densest subhypergraphs. In Frédérique Laforest, Raphaël Troncy, Elena Simperl,
Deepak Agarwal, Aristides Gionis, Ivan Herman, and Lionel Médini, editors, WWW ’22:
The ACM Web Conference 2022, Virtual Event, Lyon, France, April 25 - 29, 2022, pages
1093–1103. ACM, 2022. doi:10.1145/3485447.3512158.

4 Sayan Bhattacharya, Monika Henzinger, Danupon Nanongkai, and Charalampos E. Tsouraka-
kis. Space- and time-efficient algorithm for maintaining dense subgraphs on one-pass dynamic
streams. In Rocco A. Servedio and Ronitt Rubinfeld, editors, Proceedings of the Forty-Seventh
Annual ACM on Symposium on Theory of Computing, STOC 2015, Portland, OR, USA, June
14-17, 2015, pages 173–182. ACM, 2015. doi:10.1145/2746539.2746592.

5 Digvijay Boob, Yu Gao, Richard Peng, Saurabh Sawlani, Charalampos Tsourakakis, Di Wang,
and Junxing Wang. Flowless: Extracting densest subgraphs without flow computations. In
Proceedings of The Web Conference 2020, 2020.

6 Glencora Borradaile, Jennifer Iglesias, Theresa Migler, Antonio Ochoa, Gordon Wilfong, and
Lisa Zhang. Egalitarian graph orientations. Journal of Graph Algorithms and Applications,
2017.

7 Glencora Borradaile, Theresa Migler, and Gordon Wilfong. Density decompositions of networks.
In Conference on Complex Networks (CompleNet). Springer, 2018.

8 Gerth Stølting Brodal and Rolf Fagerberg. Dynamic representations of sparse graphs. In In
Proc. 6th International Workshop on Algorithms and Data Structures (WADS), pages 342–351.
Springer-Verlag, 1999. doi:10.1007/3-540-48447-7_34.

9 Moses Charikar. Greedy approximation algorithms for finding dense components in a graph.
In Approximation Algorithms for Combinatorial Optimization (APPROX). Springer, 2003.

https://doi.org/10.14778/2140436.2140442
https://doi.org/10.1007/978-3-030-30473-7_24
https://doi.org/10.1007/978-3-030-30473-7_24
https://doi.org/10.1145/3485447.3512158
https://doi.org/10.1145/2746539.2746592
https://doi.org/10.1007/3-540-48447-7_34

A. B. Christiansen, I. van der Hoog, and E. Rotenberg 25:19

10 Chandra Chekuri, Aleksander Bjørn Christiansen, Jacob Holm, Ivor van der Hoog, Kent Quan-
rud, Eva Rotenberg, and Chris Schwiegelshohn. Adaptive out-orientations with applications.
In Proceedings of the 2024 Annual ACM-SIAM Symposium on Discrete Algorithms (SODA),
pages 3062–3088. SIAM, 2024.

11 Chandra Chekuri, Kent Quanrud, and Manuel R Torres. Densest subgraph: Supermodularity,
iterative peeling, and flow. In Proceedings of the 2022 Annual ACM-SIAM Symposium on
Discrete Algorithms (SODA). SIAM, 2022.

12 Aleksander Bjørn Grodt Christiansen, Krzysztof Nowicki, and Eva Rotenberg. Improved
dynamic colouring of sparse graphs. In Barna Saha and Rocco A. Servedio, editors, Proceedings
of the 55th Annual ACM Symposium on Theory of Computing, STOC 2023, Orlando, FL,
USA, June 20-23, 2023, pages 1201–1214. ACM, 2023. doi:10.1145/3564246.3585111.

13 Aleksander Bjørn Grodt Christiansen and Eva Rotenberg. Fully-Dynamic α + 2 Arboricity
Decompositions and Implicit Colouring. In Mikołaj Bojańczyk, Emanuela Merelli, and David P.
Woodruff, editors, 49th International Colloquium on Automata, Languages, and Programming
(ICALP 2022), volume 229 of Leibniz International Proceedings in Informatics (LIPIcs), pages
42:1–42:20, Dagstuhl, Germany, 2022. Schloss Dagstuhl – Leibniz-Zentrum für Informatik.
doi:10.4230/LIPIcs.ICALP.2022.42.

14 Maximilien Danisch, T.-H. Hubert Chan, and Mauro Sozio. Large scale density-friendly graph
decomposition via convex programming. In Proceedings of the 26th International Conference
on World Wide Web, WWW ’17, pages 233–242, Republic and Canton of Geneva, CHE,
2017. International World Wide Web Conferences Steering Committee. doi:10.1145/3038912.
3052619.

15 Atish Das Sarma, Ashwin Lall, Danupon Nanongkai, and Amitabh Trehan. Dense sub-
graphs on dynamic networks. In Marcos K. Aguilera, editor, Distributed Computing -
26th International Symposium, DISC 2012, Salvador, Brazil, October 16-18, 2012. Pro-
ceedings, volume 7611 of Lecture Notes in Computer Science, pages 151–165. Springer, 2012.
doi:10.1007/978-3-642-33651-5_11.

16 Manuela Fischer, Mohsen Ghaffari, and Fabian Kuhn. Deterministic distributed edge-coloring
via hypergraph maximal matching. In 2017 IEEE 58th Annual Symposium on Foundations of
Computer Science (FOCS), pages 180–191. IEEE, 2017. doi:10.1109/FOCS.2017.25.

17 András Frank and Kazuo Murota. Fair integral network flows. Mathematics of Operations
Research, 2023.

18 Satoru Fujishige. Lexicographically optimal base of a polymatroid with respect to a weight
vector. Mathematics of Operations Research, 5(2):186–196, 1980. doi:10.1287/MOOR.5.2.186.

19 Mohsen Ghaffari, David G Harris, and Fabian Kuhn. On derandomizing local distributed
algorithms. In 2018 IEEE 59th Annual Symposium on Foundations of Computer Science
(FOCS), pages 662–673. IEEE, 2018. doi:10.1109/FOCS.2018.00069.

20 Mohsen Ghaffari and Hsin-Hao Su. Distributed degree splitting, edge coloring, and orientations.
In Philip N. Klein, editor, Proceedings of the Twenty-Eighth Annual ACM-SIAM Symposium
on Discrete Algorithms, SODA 2017, Barcelona, Spain, Hotel Porta Fira, January 16-19,
pages 2505–2523. SIAM, 2017. doi:10.1137/1.9781611974782.166.

21 Bernhard Haeupler, D Ellis Hershkowitz, and Thatchaphol Saranurak. Maximum length-
constrained flows and disjoint paths: Distributed, deterministic, and fast. In Proceedings of
the 55th Annual ACM Symposium on Theory of Computing, pages 1371–1383, 2023. doi:
10.1145/3564246.3585202.

22 Elfarouk Harb, Kent Quanrud, and Chandra Chekuri. Faster and scalable algorithms for
densest subgraph and decomposition. Advances in Neural Information Processing Systems,
35:26966–26979, 2022.

23 Elfarouk Harb, Kent Quanrud, and Chandra Chekuri. Convergence to lexicographically optimal
base in a (contra) polymatroid and applications to densest subgraph and tree packing. In
European Symposium on Algorithms (ESA). Schloss Dagstuhl – Leibniz-Zentrum für Informatik,
2023. doi:10.4230/LIPICS.ESA.2023.56.

STACS 2025

https://doi.org/10.1145/3564246.3585111
https://doi.org/10.4230/LIPIcs.ICALP.2022.42
https://doi.org/10.1145/3038912.3052619
https://doi.org/10.1145/3038912.3052619
https://doi.org/10.1007/978-3-642-33651-5_11
https://doi.org/10.1109/FOCS.2017.25
https://doi.org/10.1287/MOOR.5.2.186
https://doi.org/10.1109/FOCS.2018.00069
https://doi.org/10.1137/1.9781611974782.166
https://doi.org/10.1145/3564246.3585202
https://doi.org/10.1145/3564246.3585202
https://doi.org/10.4230/LIPICS.ESA.2023.56

25:20 Local Density and Its Distributed Approximation

24 David G Harris. Distributed local approximation algorithms for maximum matching in graphs
and hypergraphs. In 2019 IEEE 60th Annual Symposium on Foundations of Computer Science
(FOCS), pages 700–724. IEEE, 2019. doi:10.1109/FOCS.2019.00048.

25 Krzysztof Onak, Baruch Schieber, Shay Solomon, and Nicole Wein. Fully dynamic mis in
uniformly sparse graphs. ACM Trans. Algorithms, 16(2), March 2020. doi:10.1145/3378025.

26 Lu Qin, Rong-Hua Li, Lijun Chang, and Chengqi Zhang. Locally densest subgraph discovery.
In Proceedings of the 21th ACM SIGKDD International Conference on Knowledge Discovery
and Data Mining, KDD ’15, pages 965–974, New York, NY, USA, 2015. Association for
Computing Machinery. doi:10.1145/2783258.2783299.

27 Saurabh Sawlani and Junxing Wang. Near-optimal fully dynamic densest subgraph. In
Proceedings of the 52nd Annual ACM SIGACT Symposium on Theory of Computing, pages
181–193, 2020. doi:10.1145/3357713.3384327.

28 Hsin-Hao Su and Hoa T. Vu. Distributed dense subgraph detection and low outdegree
orientation. In Hagit Attiya, editor, 34th International Symposium on Distributed Computing,
DISC 2020, October 12-16, 2020, Virtual Conference, volume 179 of LIPIcs, pages 15:1–15:18.
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, 2020. doi:10.4230/LIPIcs.DISC.2020.
15.

29 Nikolaj Tatti and Aristides Gionis. Density-friendly graph decomposition. In Proceedings of
the 24th International Conference on World Wide Web, WWW ’15, pages 1089–1099, Republic
and Canton of Geneva, CHE, 2015. International World Wide Web Conferences Steering
Committee. doi:10.1145/2736277.2741119.

30 Yalong Zhang, Rong-Hua Li, Qi Zhang, Hongchao Qin, and Guoren Wang. Efficient algorithms
for density decomposition on large static and dynamic graphs. Proceedings of the VLDB
Endowment, 2024.

https://doi.org/10.1109/FOCS.2019.00048
https://doi.org/10.1145/3378025
https://doi.org/10.1145/2783258.2783299
https://doi.org/10.1145/3357713.3384327
https://doi.org/10.4230/LIPIcs.DISC.2020.15
https://doi.org/10.4230/LIPIcs.DISC.2020.15
https://doi.org/10.1145/2736277.2741119

Toward Better Depth Lower Bounds: Strong
Composition of XOR and a Random Function
Nikolai Chukhin #

Neapolis University Pafos, Cyprus
JetBrains Research, Paphos, Cyprus

Alexander S. Kulikov # Ñ

JetBrains Research, Paphos, Cyprus

Ivan Mihajlin #

JetBrains Research, Paphos, Cyprus

Abstract
Proving formula depth lower bounds is a fundamental challenge in complexity theory, with the
strongest known bound of (3 − o(1)) log n established by Håstad over 25 years ago. The Karchmer–
Raz–Wigderson (KRW) conjecture offers a promising approach to advance these bounds and separate
P from NC1. It suggests that the depth complexity of a function composition f ⋄ g approximates the
sum of the depth complexities of f and g.

The Karchmer–Wigderson (KW) relation framework translates formula depth into communication
complexity, restating the KRW conjecture as CC(KWf ⋄ KWg) ≈ CC(KWf) + CC(KWg). Prior work
has confirmed the conjecture under various relaxations, often replacing one or both KW relations
with the universal relation or constraining the communication game through strong composition.

In this paper, we examine the strong composition KWXOR ⊛ KWf of the parity function and
a random Boolean function f . We prove that with probability 1 − o(1), any protocol solving
this composition requires at least n3−o(1) leaves. This result establishes a depth lower bound of
(3 − o(1)) log n, matching Håstad’s bound, but is applicable to a broader class of inner functions,
even when the outer function is simple. Though bounds for the strong composition do not translate
directly to formula depth bounds, they usually help to analyze the standard composition (of the
corresponding two functions) which is directly related to formula depth.

Our proof utilizes formal complexity measures. First, we apply Khrapchenko’s method to show
that numerous instances of f remain unsolved after several communication steps. Subsequently, we
transition to a different formal complexity measure to demonstrate that the remaining communication
problem is at least as hard as KWOR ⊛ KWf . This hybrid approach not only achieves the desired
lower bound, but also introduces a novel technique for analyzing formula depth, potentially informing
future research in complexity theory.

2012 ACM Subject Classification Theory of computation → Circuit complexity

Keywords and phrases complexity, formula complexity, lower bounds, Boolean functions, depth

Digital Object Identifier 10.4230/LIPIcs.STACS.2025.26

1 Introduction

Proving formula depth lower bounds is an important and difficult challenge in complexity
theory: the strongest known lower bound (3−o(1)) log n proved by Håstad [6] (following a line
of works starting from Subbotovskaya [17, 9, 16]) remains unbeaten for more than 25 years
already (in 2014, Tal [18] improved lower order terms in this lower bound). One of the
most actively studied approaches to this problem is the one suggested by Karchmer, Raz,
and Wigderson [11]. They conjectured that the naive approach of computing a composition
of two functions is close to optimal. Namely, for two Boolean functions f : {0, 1}m → {0, 1}
and g : {0, 1}n → {0, 1}, define their composition f ⋄ g : {0, 1}m×n → {0, 1} as a function
that first applies g to every row of the input matrix and then applies f to the resulting

© Nikolai Chukhin, Alexander S. Kulikov, and Ivan Mihajlin;
licensed under Creative Commons License CC-BY 4.0

42nd International Symposium on Theoretical Aspects of Computer Science (STACS 2025).
Editors: Olaf Beyersdorff, Michał Pilipczuk, Elaine Pimentel, and Nguyễn Kim Thắng;
Article No. 26; pp. 26:1–26:15

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:buyolitsez1951@gmail.com
mailto:alexander.s.kulikov@gmail.com
https://alexanderskulikov.github.io
https://orcid.org/0000-0002-5656-0336
mailto:ivmihajlin@gmail.com
https://doi.org/10.4230/LIPIcs.STACS.2025.26
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

26:2 Strong Composition of XOR and a Random Function

column vector. The KRW conjecture then states that D(f ⋄ g) is close to D(f) + D(g), where
D(·) denotes the minimum depth of a de Morgan formula computing the given function.
Karchmer, Raz, and Wigderson [11] proved that if the conjecture is true, then P ̸⊆ NC1,
that is, there are functions in P that cannot be computed in logarithmic parallel time.

A convenient way of studying the KRW conjecture is through the framework of Karchmer–
Wigderson relation [12]. It not only allows one to apply the tools from communication
complexity, but also suggests various important special cases of the conjecture. For a function
f : {0, 1}n → {0, 1}, the relation KWf is defined as follows:

KWf = {(a, b, i) : a ∈ f−1(1), b ∈ f−1(0), i ∈ [n], ai ̸= bi}.

The communication complexity CC(KWf) of this relation is the minimum number of bits
that Alice and Bob need to exchange to solve the following communication problem: Alice
is given a ∈ f−1(1), Bob is given b ∈ f−1(0), and their goal is to find an index i ∈ [n]
such that (a, b, i) ∈ KWf (i.e., ai ̸= bi). Karchmer and Wigderson [12] proved that, for
any function f , the communication complexity of KWf is equal to the depth complexity
of f : CC(KWf) = D(f). Within this framework, the KRW conjecture is restated as follows:
CC(KWf ⋄ KWg) is close to CC(KWf) + CC(KWg) (where KWf ⋄ KWg is another name for
KWf⋄g).

One natural way of relaxing the conjecture is to replace one or both of the two relations
KWf and KWg by the universal relation, defined as follows:

Un = {(a, b, i) : a, b ∈ {0, 1}n, a ̸= b, i ∈ [n], ai ̸= bi}.

Using a universal relation instead of the Karchmer–Wigderson relation makes the correspond-
ing communication game only harder, hence proving lower bounds for it is potentially easier
and could lead to the resolution of the original conjecture. For this reason, such relaxations
have been studied intensively.

Edmonds et al. [4] proved the KRW conjecture for the composition Um ⋄ Un of two
universal relations using communication complexity methods. Håstad and Wigderson [7]
improved it for a higher degree of composition using a different approach. Karchmer et al. [11]
extended this result to monotone functions. Håstad [6] demonstrated the conjecture for the
composition f ⋄ XORn of an arbitrary function f : {0, 1}m → {0, 1} with the parity function
XORn. This was later reaffirmed by Dinur and Meir [3] through a communication complexity
approach. Further advancements were made by Gavinsky et al. [5] who established the
conjecture for the composition f ⋄ Un of any non-constant function f : {0, 1}m → {0, 1}
with the universal relation Un. Mihajlin and Smal [15] proved the KRW conjecture for
the composition of a universal relation with certain hard functions using XOR-composition.
Subsequently, Wu [20] improved this result by extending it to the composition of a universal
relation with a wider range of functions (though still not with the majority of them).
de Rezende et al. [2] proved the conjecture in a semi-monotone setting for a wide range
of functions g.

Another natural way of relaxing the initial conjecture is to constrain the communication
game (instead of allowing for more inputs for the game). In the strong composition KWf⊛KWg,
Alice receives X ∈ (f ⋄ g)−1(1) and Bob receives Y ∈ (f ⋄ g)−1(0), and their objective
is to identify a pair of indices (i, j) such that Xi,j ̸= Yi,j , similar to the regular composition.
However, this time it must hold additionally that g(Xi) ̸= g(Yi).

This way of relaxing the conjecture was considered in a number of previous papers and
was formalized recently by Meir [14]. Håstad and Wigderson, in their proof of the lower
bound for two universal relations, initially establish the result for what they call the extended

N. Chukhin, A. S. Kulikov, and I. Mihajlin 26:3

universal relation, a concept closely related to strong composition. Similarly, Karchmer et
al. [11] demonstrate that, in the monotone setting, strong composition coincides with the
standard composition. de Rezende et al. [2] utilized this notion, although without explicitly
naming it. Meir [14] formalized the notion of strong composition in his proof of the relaxation
of the KRW conjecture.

▶ Theorem 1 (Meir, [14]). There exists a constant γ > 0.04 such that for every non-constant
function f : {0, 1}m → {0, 1} and for all n ∈ N, there exists a function g : {0, 1}n → {0, 1}
such that

CC(KWf ⊛ KWg) ≥ log CC(KWf) − (1 − γ)m+ n−O(log(mn)).

1.1 Our Result
Håstad [6] proved the KRW conjecture for KWf ⋄KWXOR. However it is still an open question
to prove the KRW conjecture for KWXOR⋄KWf . In this paper, we study the strong composition
KWXORm ⊛KWf of the parity function XORm with a random function f : {0, 1}log m → {0, 1}.
Since Alice and Bob receive an input of size m logm, we estimate the size of KWXORm

⊛KWf

in terms of n = m logm. It is not difficult to see that the communication complexity of the
corresponding game is at most 3 log n: KWf can be solved in logm bits of communication,
whereas KWXORm

can be solved in 2 logm bits of communication, using the standard divide-
and-conquer approach (Alice sends the parity of the first half, Bob then identifies the half
in which the parity differs, thus, by utilizing 2 bits of communication, the input size is reduced
by a factor of two). We prove that if the function f is well balanced and hard to approximate
(which happens with probability 1 − o(1)), then the bound 3 log n is essentially optimal.
Below, we state the result in terms of the protocol size (i.e., the number of leaves), rather
than depth, since this gives a more general lower bound. In particular, it immediately implies
a (3 − o(1)) log n depth lower bound.

▶ Corollary 2. With probability 1 − o(1), for a random function f : {0, 1}log m → {0, 1}, any
protocol solving KWXORm ⊛ KWf has at least n3−o(1) leaves, where n = m logm.

In turn, this result follows from the following general lower bound, given in terms of L 3
4

that stands for the smallest size of a formula that agrees with f on a 3
4 fraction of inputs.

▶ Theorem 3. For any 0.49-balanced function f : {0, 1}log m → {0, 1}, any protocol solving
KWXORm

⊛ KWf has at least n2−o(1) · L 3
4
(f) leaves, where n = m logm.

In contrast to many results mentioned above and similarly to the bound by de Rezende
at al. [2], our result works for a wide range of inner functions f , what brings us closer to
resolving KRW, which makes a claim about the complexity of composing any pair of functions.
Also, many of the previous techniques work well in the regime where the outer function
is hard and give no strong lower bounds when the outer function is easy (as it is the case
with the XOR function). For example, random restrictions (as one of the most successful
methods for proving lower bounds) does not seem to give meaningful lower bounds for
KWXORm

⊛KWf , as under a random restriction this composition turns into a XOR of a small
number of variables which is easy to compute. The lower bound by Meir (see Theorem 1)
also gives strong lower bounds in the regime where the outer function is hard (and only gives
a trivial lower bound of the form o(log n) for the function that we study).

To prove the lower bound, we exploit formal complexity measures. As in [4, 15], we consider
two stages of a protocol solving KWXORm

⊛KWf . During the first stage, we track the progress
using the classical measure by Khrapchenko [13] and ensure that even after many steps of the

STACS 2025

26:4 Strong Composition of XOR and a Random Function

protocol, there are still many instances of f that need to be solved. At the second stage,
we switch to another formal complexity measure and show that the remaining communication
problem is, roughly, not easier than KWOR ⊛ KWf . We believe that this proof technique
is interesting on its own, since it is not only easy to show that Khrapchenko’s measure cannot
give superquadratic size lower bounds, but it is also known that natural generalizations
of this measure are also unable to give stronger than quadratic lower bounds [8]. For more
details on Khrapchenko’s measure and its limitations, see Sections 2.1 and 2.5.

2 Notation, Known Facts, and Technical Lemmas

Throughout the paper, log denotes the binary logarithm whereas ln denotes the natural
logarithm. By n we usually denote the size of the input. All asymptotic estimates are given
under an implicit assumption that n goes to infinity. By [n], we denote the set {1, 2, . . . , n}.
By R+ we denote the set {x ∈ R : x > 0}. We utilize the following asymptotic estimates for
binomial coefficients. For any constant 0 < α < 1,

Ω(n−1/2)2h(α)n ≤
(
n

αn

)
≤ 2h(α)n, (1)

where h(x) = −x log x− (1 − x) log(1 − x) denotes the binary entropy function.
For a string x ∈ {0, 1}n, its i-th bit of x is denoted by xi. For a matrix X ∈ {0, 1}m×n,

by Xi we denote the i-th row of X and by Xi,j we denote the bit of X in the intersection
of the i-th row and the j-th column.

2.1 Graphs
For a rooted tree, the depth of its node is the number of edges on the path from the node
to the root; the depth of the tree is the maximum depth of its nodes.

Let G(V,E) be a graph and ∅ ̸= A ⊆ V be its nonempty subset of nodes. By G[A],
we denote a subgraph of G induced by A. By avgdeg(G,A), we denote the average degree
of A:

avgdeg(G,A) = 1
|A|

∑
v∈A

deg(v) . (2)

For a biparite graph G(A ⊔B,E) with nonempty parts, let

ψ(G) = avgdeg(G,A) · avgdeg(G,B) . (3)

Clearly, ψ(G) ≤ |A| · |B|. The lemma below shows that this graph measure is subadditive.

▶ Lemma 4. Let G(A ⊔ B,E) be a bipartite graph and A = AL ⊔ AR be a partition of A
into two parts. Let GL = G[AL ⊔B] and GR = G[AR ⊔B]. Then,

ψ(G) ≤ ψ(GL) + ψ(GR).

Proof. Let EL and ER be the set of edges of GL and GR, respectively. Clearly, E = EL ⊔ER.
Then,

ψ(G) ≤ ψ(GL) + ψ(GR) ⇐⇒ |E|2

(|AL| + |AR|)|B|
≤ |EL|2

|AL||B|
+ |ER|2

|AR||B|

⇐⇒ |EL|2 + |ER|2 + 2|EL||ER|
|AL| + |AR|

≤ |EL|2

|AL|
+ |ER|2

|AR|
⇐⇒ 2|EL||ER||AL||AR| ≤ |ER|2|AL|2 + |EL|2|AR|2

⇐⇒ 0 ≤ (|ER||AL| − |EL||AR|)2. ◀

N. Chukhin, A. S. Kulikov, and I. Mihajlin 26:5

The next lemma shows that if G contains a node of small enough degree, then deleting it
not only does not drop ψ, but also does not drop too much the average degree of the parts.

▶ Lemma 5. Let a node a ∈ A of a bipartite graph G(A ⊔ B,E) satisfy deg(G, a) ≤
avgdeg(G,A)/2 and let A′ = A \ {a} and G′(A′ ⊔B,E′) = G[A \ {a} ⊔B]. Then,

ψ(G′) ≥ ψ(G), (4)
avgdeg(G′, A′) ≥ avgdeg(G,A), (5)

Proof. The inequality avgdeg(G′, A′) ≥ avgdeg(G,A) holds since A′ results from A by re-
moving a node of degree less than the average degree.

To prove the inequality (4), let d = deg(G, a). Then, |E′| = |E| − d and

ψ(G′) ≥ ψ(G) ⇐⇒ (|E| − d)2

(|A| − 1)|B|
≥ |E|2

|A||B|

⇐⇒ |E|2 − 2|E|d+ d2

(|A| − 1)|B|
≥ |E|2

|A||B|

⇐= |E| − 2d
|A| − 1 ≥ |E|

|A|
⇐⇒ |E||A| − 2d|A| ≥ |E|(|A| − 1)

⇐⇒ d ≤ |E|
2|A|

= avgdeg(G,A)
2 . ◀

2.2 Boolean Functions
By Bn, we denote the set of all Boolean functions on n variables. For two disjoint sets
A,B ⊆ {0, 1}n, the set A × B is called a combinatorial rectangle, and it is called full if
A and B form a partition of {0, 1}n. Clearly, there is a bijection between Bn and full
combinatorial rectangles. For f ∈ Bn, by Rf = f−1(1)×f−1(0), we denote the corresponding
full rectangle. We say that a Boolean function f is balanced if |f−1(0)| = |f−1(1)|.

In this paper, it will prove convenient to apply a function g ∈ Bm not only to Boolean
vectors x ∈ {0, 1}m, but also to matrices X ∈ {0, 1}n×m:

g(X) = (g(X1), . . . , g(Xn)),

i.e., g(X) ∈ {0, 1}n results by applying g to every row of X. This allows to define a composi-
tion in a natural way. For f ∈ Bm and g ∈ Bn, their composition f ⋄ g : {0, 1}m×n → {0, 1}
treats the input as an m × n matrix and first applies g to all its rows and then applies f
to the resulting column-vector:

f ⋄ g(X) = f(g(X)) = f(g(X1), . . . , g(Xm)).

For a set of matrices X ⊆ {0, 1}m×n, by i-th projection proji X , we denote the set of all i-th
rows among the matrices of X :

proji X = {Xi : X ∈ X } = {t ∈ {0, 1}n : ∃X ∈ X : t = Xi}. (6)

In the proof of the main result, we will be dealing with Boolean matrices of dimension
n × log n. Let X ⊆ {0, 1}n×log n be a set of such matrices. We say that X is α-bounded if
| proji X | ≤ αn, for all i ∈ [n]. The i-th projection of X is called sparse if | proji X | < 3

8n,
and dense otherwise. The following lemma shows that if |X | is large and X is α-bounded,

STACS 2025

26:6 Strong Composition of XOR and a Random Function

then the number of sparse projections of X is low. Later on, we will be applying this lemma
for X which is almost 0.5-bounded and whose size gradually decreases to argue that the
number of sparse projections cannot grow too fast.

▶ Lemma 6. Let k ∈ N and α ∈
(3

8 ,
1
2
]
. If X ⊆ {0, 1}n×log n is α-bounded and |X | ≥ αn nn

2k ,
then the number of sparse projections of X does not exceed k log−1 8α

3 .

Proof. Let βi ∈ [0, 1] be such that | proji X | = βiαn. The i-th projection is sparse if and only
if βi <

3
8α . Let t be the number of sparse projections and assume, without loss of generality,

that the first t projections are sparse. Then,

αnn
n

2k
≤ |X | ≤

n∏
i=1

| proji X | = (αn)n
n∏

i=1
βi ⇐⇒

1
2k

≤
n∏

i=1
βi =

t∏
i=1

βi ·
n∏

i=t+1
βi <

(
3

8α

)t

=⇒ k log−1 8α
3 ≥ t. ◀

2.3 Boolean Formulas
The computational model studied in this paper is de Morgan formulas: it is a binary tree
whose leaves are labeled by variables x1, . . . , xn and their negations whereas internal nodes
(called gates) are labeled by ∨ and ∧ (binary disjunction and conjunction, respectively). Such
a formula computes a Boolean function f(x1, . . . , xn) ∈ Bn. We also say that a formula F
separates a rectangle A × B, if f(a) = 1 and f(b) = 0, for all (a, b) ∈ A × B. This way,
if a formula F computes a function f , then it separates Rf .

For a formula F , the size L(F) is defined as the number of leaves in F . This extends
to Boolean functions: for f ∈ Bn, by L(f) we denote the smallest size of a formula computing f .
Similarly, the depth D(F) is the depth of the tree whereas D(f) is the smallest depth of
a formula computing f .

By L 3
4
(f), we denote the smallest size of a formula F that agrees with f on a 3

4 fraction
of inputs, i.e.,

Pr
x∈{0,1}n

[F (x) = f(x)] ≥ 3
4 .

We say that F approximates f .
It is known that formulas can be balanced: D(f) = Θ(log L(f)) (see references in [10,

Section 6.1]): this is proved by showing that, for any formula F , there exists an equivalent
formula F ′ with L(F ′) ≤ L(F)O(1) and D(F ′) ≤ O(log L(F)). The following theorem further
refines this: by allowing a larger constant in the depth upper bound, one can control the size
of the resulting balanced formula.

▶ Theorem 7 ([1]). For any k ≥ 2 and any formula F , there exists an equivalent formula F ′

satisfying D(F ′) ≤ 3 ln 2 · k · log L(F) and L(F ′) ≤ L(F)γ , where γ = 1 + 1
1+log(k−1) .

Using a counting argument, one can show that, with probability 1 − o(1), for a random
Boolean function f ∈ Bn, L(f) = Ω(2n/ log n). To prove this, one compares the number
of small size formulas with the number of Boolean functions |Bn| = 22n , using the following
estimate (see [10, Lemma 1.23]). It ensures that the number of formulas of size at most

2n

100 log n is o(|Bn|):

(17n)
2n

100 log n = 2
log(17n)
100 log n 2n

.

N. Chukhin, A. S. Kulikov, and I. Mihajlin 26:7

▶ Lemma 8. For all large enough l, the number of Boolean formulas over n variables with
at most l leaves is at most

(17n)l. (7)

Proof. The number of binary trees with l leaves is at most 4l. For each such tree, there are
at most (4n)l ways to convert it into a de Morgan formula: there are 2n input literals for the
leaves and two operations for each internal gate. Consequently, the total number of formulas
with at most l leaves is at most

l · 4l · (4n)l = l · 16l · nl ≤ (17n)l,

which is true for l ≥ 71. ◀

We say that f ∈ Bn is α-balanced if

α · 2n ≤ |f−1(0)|, |f−1(1)| ≤ (1 − α) · 2n

i.e.,
∣∣|f−1(0)| − |f−1(1)|

∣∣ ≤ (1 − 2α)2n.

▶ Lemma 9. For all sufficiently large n and any constant 3
8 < α < 1

2 , a random function
f ∈ Bn is α-balanced and L 3

4
(f) = Ω(2n

log n), with probability 1 − o(1).

Proof. For a formula over n variables, the number of Boolean functions it approximates
is at most (by the estimate (1))

2n∑
d=3·2n/4

(
2n

d

)
=

2n/4∑
d=0

(
2n

d

)
≤ 2n

(
2n

2n/4

)
≤ 2n · 2h(1/4)2n

.

Combining this with (7), we get that the number of functions approximated by formulas
of size β 2n

log n is at most

(17n)β 2n

log n 2n2h(1/4)2n

= 22n
(

β
log(17n)

log n +h(1/4)
)

+n
.

For any constant 0 < β < 1 − h(1/4), this is a o(1) fraction of Bn.
Now, the probability that a random f ∈ Bn is not α-balanced (i.e., ||f−1(0)|− |f−1(1)|| >

(1 − 2α) · 2n) is at most

1
22n · 2 ·

α·2n−1∑
i=0

(
2n

i

)
≤ 1

22n · 2 · α · 2n ·
(

2n

α · 2n

)
≤ 22n(h(α)−1)+n+1 = o(1).

Thus, with probability 1−o(1), a random f ∈ Bn is α-balanced and hard to approximate. ◀

2.4 Karchmer–Wigderson Games
Karchmer and Wigderson [12] came up with the following characterization of Boolean
formulas. For a Boolean function f ∈ Bn, the Karchmer–Wigderson game KWf is the
following communication problem. Alice is given a ∈ f−1(1), whereas Bob is given b ∈ f−1(0),
and their goal is to find an index i ∈ [n] such that ai ̸= bi. A communication protocol for KWf

is a rooted binary tree whose leaves are labeled with indices from [n] and each internal node v
is labeled either by a function Av : f−1(1) → {0, 1} or by a function Bv : f−1(0) → {0, 1}.
For any pair (a, b) ∈ f−1(1) × f−1(0), one can reach a leaf of the protocol by traversing

STACS 2025

26:8 Strong Composition of XOR and a Random Function

a path from the root to a leaf to determine to which of the two children to proceed from
a node v, one computes either Av(a) or Bv(b). We say that a protocol solves KWf , if for any
(a, b) ∈ f−1(1) × f−1(0), one reaches a leaf i ∈ [n] such that ai ̸= bi. Similarly to formulas,
we say that a protocol separates a combinatorial rectangle A×B, if it works correctly for all
pairs (a, b) ∈ A×B.

Karchmer and Wigderson showed that formulas computing f and protocols solving KWf

can be transformed (even mechanically) into one another. In particular, the smallest number
of leaves in the protocol solving KWf is equal to L(f), whereas the smallest depth of a protocol
(also known as the communication complexity of KWf , denoted by CC(KWf)) is nothing
else but D(f). By L(A×B) for a combinatorial rectangle A×B, we denote the minimum
number of leaves in a protocol separating A and B.

With each node of a protocol solving KWf , one can associate a combinatorial rectangle
in a natural way. The root of the protocol corresponds to Rf . For the two children of Alice’s
node v with a rectangle A × B, one associates two rectangles A0 × B and A1 × B, where
Ai = {a ∈ A : Av(a) = i}. This way, Alice splits the current rectangle horizontally. Similarly,
when Bob speaks, he splits the current rectangle vertically. Each leaf of a protocol solving
KWf is associated with a monochromatic rectangle, i.e., a rectangle A×B such that there
exists i ∈ [n] for which ai ̸= bi for all (a, b) ∈ A×B.

For functions f ∈ Bm and g ∈ Bn, the strong composition of KWf and KWg, denoted
as KWf ⊛ KWg, is the following communication problem: Alice and Bob receive inputs
X ∈ (f ⋄ g)−1(1) and Y ∈ (f ⋄ g)−1(0), respectively, and need to find indices (i, j) such that
Xi,j ̸= Yi,j and g(Xi) ̸= g(Yi). We say that a protocol strongly separates sets X ⊆ (f ⋄g)−1(1)
and Y ⊆ (f ⋄ g)−1(0), if it solves the strong composition KWf ⊛ KWg on inputs X × Y .

2.5 Formal Complexity Measures
For f ∈ Bn, define a bipartite graph Gf (f−1(1) ⊔ f−1(0), Ef) as follows:

Ef = {{u, v} : u ∈ f−1(1), v ∈ f−1(0), dH(u, v) = 1},

where dH is the Hamming distance. Khrapchenko [13] proved that, for any f ∈ Bn, ψ(Gf) ≤
L(f) (recall (3) for the definition of ψ(G)). This immediately gives a lower bound L(XORn) ≥
n2. Note the two useful properties of ψ(Gf): on the one hand, it is a lower bound to L(f),
on the other hand, it is much easier to estimate than L(f).

Paterson [19, Section 8.8] noted that Khrapchenko’s approach can be cast as follows.
A function µ : Bn → R+ is called a formal complexity measure if it satisfies the following two
properties:
1. normalization: µ(xi), µ(xi) ≤ 1, for all i ∈ [n],
2. subadditivity: µ(f ∨ g) ≤ µ(f) + µ(g) and µ(f ∧ g) ≤ µ(f) + µ(g), for all f, g ∈ Bn.
Note that Khrapchenko’s measure can be defined in this notation as ϕ(f) = ψ(Gf). Its
subadditivity is shown in Lemma 4, whereas the normalization property can be easily seen.

It is not difficult to see that L itself is a formal complexity measure. Moreover, it turns
out that it is the largest formal complexity measure.

▶ Lemma 10 (Lemma 8.1 in [19]). For any formal complexity measure µ : Bn → R and any
f ∈ Bn, µ(f) ≤ L(f).

3 Proof of the Main Result

In this section, we prove the main result of the paper.

N. Chukhin, A. S. Kulikov, and I. Mihajlin 26:9

▶ Theorem 3. For any 0.49-balanced function f : {0, 1}log m → {0, 1}, any protocol solving
KWXORm

⊛ KWf has at least n2−o(1) · L 3
4
(f) leaves, where n = m logm.

▶ Corollary 2. With probability 1 − o(1), for a random function f : {0, 1}log m → {0, 1}, any
protocol solving KWXORm

⊛ KWf has at least n3−o(1) leaves, where n = m logm.

Proof. Lemma 9 guarantees that for a random function f : {0, 1}log m → {0, 1}, f is 0.49-
balanced and L 3

4
(f) = Ω(m/ log logm) with probability 1−o(1). Plugging this into Theorem 3

gives the required lower bound. ◀

3.1 Proof Overview
We start by proving a lower bound on the size of any protocol solving KWXORm ⊛ KWf and
having a logarithmic depth. Then, using balancing techniques (see Theorem 7), we generalize
the size lower bound to all protocols.

Fix a set Z ⊆ {0, 1}log m such that |Z| = 0.98m and f is balanced on Z: |X0| = |Y0| =
0.49m, where X0 = f−1(1) ∩ Z and Y0 = f−1(0) ∩ Z.

We prove a lower bound for any protocol that strongly separates KWXORm
⊛ KWf on

inputs XT × YT (which are defined later). To this end, we associate, with nodes of the
protocol, a graph similar to GXORm

and use Khrapchenko’s measure to track the progress
of the protocol. A node of the graph is associated with all inputs X having the same vector
f(X). The reasoning is that, in a natural scenario, the protocol will first solve XORm,
followed by solving f , implying that the protocol does not need to distinguish between X

and X ′ in the initial rounds, if f(X) = f(X ′). We connect two graph nodes by an edge
if their vectors differ in exactly one coordinate.

We aim to ensure that each edge in the graph has a large projection: for any two nodes
connected by an edge, the elements of blocks associated with them cover a substantial number
of inputs for the function f . There will be no small protocol capable of solving the problem
within these two blocks since f is hard to approximate. This is the rationale behind ensuring
that all edges in the graph have large projections on both sides. To achieve this, we enforce
that each block that is associated with a node shrinks by at most a factor of two at each
step of the protocol. This process ensures that a significant number of edges in the graph
will maintain large projections on both sides.

Once the Khrapchenko measure becomes sufficiently small, we can assert that XORm is
nearly solved, and the protocol, in a sense, must now solve an instance of ORd ⊛ f . Using
the fact that solving each edge independently is hard, we conclude that solving an ORd ⊛ f

over these edges should be as difficult as approximately d · L 3
4
(f).

3.2 Proof
Throughout this section, we assume that m is large enough and f ∈ Blog m is a fixed function
that is 0.49-balanced. Fix sets X0 ⊆ f−1(1),Y0 ⊆ f−1(0) of size 0.49m and let

XT = {X ∈ {0, 1}m×log m : (XORm ⋄ f)(X) = 1 ∧Xi ∈ X0 ⊔ Y0, ∀i ∈ [m]}, (8)
YT = {Y ∈ {0, 1}m×log m : (XORm ⋄ f)(Y) = 0 ∧ Yi ∈ X0 ⊔ Y0, ∀i ∈ [m]}. (9)

Let α > 0 be a constant and P be a protocol that strongly separates XT × YT and has
depth at most α logm. Recall that each node S of P is associated with a rectangle XS × YS .
We build a subtree D of P having the same root and associate a graph GN to every node N
of D. The graphs GN are built inductively from the graphs associated with the parents of N

STACS 2025

26:10 Strong Composition of XOR and a Random Function

as explained below, but all these graphs are subsets of the m-dimensional hypercube: the
set of nodes of each such graph is a subset of {0, 1}m and for each edge {u, v} it holds that
dH(u, v) = 1.

For the root T of the protocol P , the graph GT is simply GXORm (which is nothing
else but the m-dimensional hypercube): its set of nodes is {0, 1}m, two nodes are joined
by an edge with label i if they differ in the i-th coordinate.

For any node v of the graph GS , we associate the following set of inputs called block:

BS(v) = {X ∈ {0, 1}m×log m : X ∈ XS ⊔ YS and f(X) = v}.

We say that an edge {u, v} with label i of GS is heavy if the projection of both BS(u) and
BS(v) onto the ith coordinate is dense, i.e.,

| proji BS(u)|, | proji BS(v)| ≥ 3
8m,

and light otherwise.
Since the nodes of the graph GS form a subset of {0, 1}m, we can naturally divide them

into two parts, as their blocks correspond to subsets of either XS or YS .

AS = {v ∈ V (GS) | XORm(v) = 1}
BS = {v ∈ V (GS) | XORm(v) = 0}

For a graph GS , we define dA(GS) as the average degree of the part AS and dB(GS) as the
average degree of the part BS . We say that a graph GS is special if

min{dA(GS), dB(GS)} ≤ 12α log2 m.

We will construct the tree D inductively. For a node S in the tree D, we either stop
the process if GS is special, or construct the two children of S from the protocol P and
their graphs. We continue building D on these two children inductively. Hence, all graphs
corresponding to internal nodes of the tree D are not special, while all graphs associated
with leaves of D are special.

▶ Definition 11. A graph GS, associated with a node S in the tree D, is adjusted if all its
edges are heavy and

deg(v) > dA(GS)
2 , ∀v ∈ AS and deg(v) > dB(GS)

2 , ∀v ∈ BS . (10)

We will ensure that all graphs GS for any node S in the tree D are adjusted.

▶ Lemma 12. For each node v of the graph GT (associated with the root T of the protocol P),
1. the degree of v is m;
2. | proji BT (v)| = 0.49m, for all i ∈ [m];
3. |BT (v)| = (0.98m)m

2m .

Proof. Nodes of GT are m-dimensional binary vectors, hence deg(v) = m.
To prove the second property, recall that f is balanced on X0 ⊔ Y0. If vi = 1 (or vi = 0),

for some i ∈ [m], the i-th projection can take any value from X0 (Y0, respectively). Hence,
| proji BT (v)| = 0.49m.

Finally, to prove the third property, note the GT has 2m nodes and for each vertex v

the size of the block BT (v) is at most (0.49m)m. Therefore, since each input from XT ⊔ YT

belongs to exactly one block that is associated with a node from GT and |XT ⊔ YT | =
|X0 ⊔ Y0|m = (0.98m)m, |BT (v)| = (0.98m)m

2m . ◀

N. Chukhin, A. S. Kulikov, and I. Mihajlin 26:11

Lemma 12 ensures that the graph GT is adjusted and not special, thus the root T has
two children. Using the function B, we show how to construct an intermediate graph HN for
some child of a node S in the tree D and then we apply some cleanup procedures for the
graph HN to construct a graph GN . Recall that each step of P partitions the set of either
Alice’s or Bob’s inputs into two parts. Let GS be a graph for some node S of the protocol P
that is associated with a rectangle XS × YS and assume, without loss of generality, that it is
Alice’s turn. Therefore, graph GS is not special, otherwise we will stop the building process
of the subtree of S. Let SL be the left child of S in the protocol P and SR be the right child.
We add the same children of the node S in the tree D. Then, we put v from BS into both
HSL

and HSR
(since the block BS(v) has not changed). For each node v ∈ AS we decide in

which of the two graphs we will put it. The block BS(v) is also split into two: BSL
(v) and

BSR
(v), corresponding to the two ways of the protocol. We assign v to the left graph HSL

if
2 · |BSL

(v)| ≥ |BS(v)|, and to the right graph HSR
if 2 · |BSR

(v)| > |BS(v)|. An edge {u, v}
from the edges of GS goes to HSL

if and only if both u and v are assigned to HSL
. The

same rule applies for edges in HSR
. This approach ensures that the size of each block BS(v)

shrinks by at most a factor of two when transitioning from a parent to a child in the tree D.
Then, the graphs GSL

and GSR
will be built using graphs HSL

and HSR
, respectively.

The idea of the structure of the graph GS arises from Khrapchenko’s graph, so we will
use the same measure:

ψ(GS) = dA(GS) · dB(GS).

Lemma 4 states that ψ is subadditive.
After obtaining the graph HC for a node C of the tree D, we make our first cleanup

by deleting all light edges: let H ′
C be a graph resulting from HC by removing all its light

edges. The next lemma shows that this does not drop the measure ψ too much.

▶ Lemma 13.

ψ(H ′
C) ≥ ψ(HC)

(
1 − 1

logm

)
.

Proof. Let S be the parent of C in D. Since S is not a leaf, we have that
min{dA(GS), dB(GS)} > 12α log2 m and the degree of every node in GS is at least half
of the average degree of its part. Without loss of generality, assume that inputs were deleted
from XS , and therefore dA(HC) ≥ dA(GS)

2 > 6α log2 m.
An edge {u, v} can become light because of only one of its endpoints, because the blocks

on the other side remain unchanged. From Lemma 12, we know that the initial size of each
block is (0.49m)m, and after each step of the protocol, the size of a block shrinks by at most
a factor of two. Hence, for any node v, the size of its block BS(v) is at least (0.49m)m

2α log m , because
the protocol depth is bounded by α logm. Hence, we can bound the number of light edges
incident to v by 3α logm using Lemma 6 (since log−1(8 · 0.49/3) < 3). Therefore,

dA(H ′
C) ≥ dA(HC) − 3α logm.

Now, consider dB(H ′
C). Let EC be the set of edges in HC , whereas AC and BC be its

parts of nodes. Then,

dB(H ′
C) ≥ EC − |AC | · 3α logm

|BC |
= dB(HC) − 3α logm |AC |

|BC |
.

STACS 2025

26:12 Strong Composition of XOR and a Random Function

Hence,

ψ(H ′
C) = dA(H ′

C)dB(H ′
C) ≥ (dA(HC) − 3α logm)

(
dB(HC) − 3α logm |AC |

|BC |

)
≥ ψ(HC) − 3αdB(HC) logm− 3α|AC |dA(HC) logm

|BC |

= ψ(HC)
(

1 − 3α logm
dA(HC) − 3α|AC | logm

|EC |

)
= ψ(HC)

(
1 − 6α logm

dA(HC)

)
> ψ(HC)

(
1 − 6α logm

6α log2 m

)
= ψ(HC)

(
1 − 1

logm

)
. ◀

The next lemma shows how to construct an adjusted graph GC , from the intermediate
graph H ′

C .

▶ Lemma 14. There exists a subgraph GC of the graph H ′
C such that GC is adjusted and

ψ(GC) ≥ ψ(HC)
(

1 − 1
log m

)
.

Proof. To get GC , we keep removing nodes from H ′
C until it satisfies (10). If (10) is violated,

there exists, without loss of generality, a node v ∈ AC such that deg(v) ≤ dA(GC)
2 . Let

G′
C = GC \ {v}. Lemma 5 guarantees that this does not decrease the measure. This process

is clearly finite. ◀

This way, we construct the graph GC for the node C. If C is not special, we continue
expanding the subtree rooted at C. Recall also that, for each internal node S of the tree D,
whose children are SL and SR, the following holds:

ψ(GS) ≤ ψ(HSL
) + ψ(HSL

).

Hence, combining it with Lemma 14 we have:

ψ(GS)
(

1 − 1
logm

)
≤ ψ(GSL

) + ψ(GSR
). (11)

On the other hand, if S is special, we will use the following two lemmas to argue that strongly
separating XS × YS is still difficult.

▶ Lemma 15. Let S be a node of the tree D such that it has a node v ∈ GS having d adjacent
edges. Then, any protocol that strongly separates XS and YS has at least Ω

(
d · L 3

4
(f)
)

leaves.

Proof. Consider the subgraph of GS induced by v and its neighbors u1, . . . , ud connected
to v. Denote by li the label of the edge {v, ui}. Define a measure ξ on subrectangles of
XS × YS :

ξ(X × Y) =
d∑

i=1
L
(
projli

B × projli
Bi

)
,

where X ⊆ XS , Y ⊆ YS , B = X ∩ BS(v) and Bi = Y ∩ BS(ui), for all i ∈ [d]. By KW(A×B),
for any A∩B = ∅, we denote a Karchmer-Wigderson communication game where Alice gets
a ∈ A, Bob gets b ∈ B, and they need to find i : ai ≠ bi. We prove that any protocol strongly
separating XS × YS requires at least ξ(XS × YS) leaves.

N. Chukhin, A. S. Kulikov, and I. Mihajlin 26:13

It is easy to see that ξ is subadditive, being a sum of subadditive measures: if X = X ′⊔X ′′,
then ξ(X × Y) ≤ ξ(X ′ × Y) + ξ(X ′′ × Y) and the same applies when we split Y . Namely, let
Y = Y ′ ⊔ Y ′′, Bi = Y ′ ∩ BS(ui), and B′′

i = Y ′′ ∩ BS(ui). Then,

ξ(X × Y ′ ⊔ Y ′′) =
d∑

i=1
L
(
projli

B × projli
B′

i ⊔ B′′
i

)
≤

d∑
i=1

L
(
projli

B × projli
B′

i

)
+

d∑
i=1

L
(
projli

B × projli
B′′

i

)
= ξ(X × Y ′) + ξ(X × Y ′′).

Consider a protocol P ′ strongly separating XS × YS and its leaf L associated with
a rectangle of inputs X ′

L × Y ′
L. We show that ξ(X ′

L × Y ′
L) ≤ 1. Since L is a leaf, there

exists i, j such that for each X ∈ X ′
L and Y ∈ Y ′

L:

Xi,j ̸= Yi,j and f(Xi) ̸= f(Yi).

Let k be such that Bk ̸= ∅ (if all Bt are empty, then ξ = 0). Then, B(ut) = ∅, for all t ̸= k,
as otherwise there would be no i such that f(Xi) ̸= f(Yi) for all (X,Y) ∈ X ′

L × Y ′
L, since

uk differs from v in the position lk, and ut differs from v in the position lt and lk ̸= lt. Thus,
if ξ(X ′

L × Y ′
L) > 1, then L(projlk

B × projlk
Bk) > 1, which contradicts to the existence of

a pair (i, j).
Thus, ξ is normal (has the value at most 1 for any leaf of any protocol that strongly

separates XS × YS) and subadditive. Hence, its value for the whole protocol P ′ is a lower
bound on the size of P ′. Thus, it remains to estimate ξ for P ′.

Since all d edges are heavy, we have:

| projli
BS(v)| + | projli

BS(ui)| ≥ 3
4m, ∀i ∈ [d].

Hence,

L(projli
BS(v) × projli

BS(ui)) = Ω
(

L 3
4
(f)
)
,

for all i ∈ [d]. Summing over all i ∈ [d], gives the desired lower bound. ◀

▶ Lemma 16. For a special node S of the tree D, the number of leaves in any protocol
strongly separating XS × YS is

Ω
(
ψ(GS) · L 3

4
(f)

log2 m

)
.

Proof. Assume, without loss of generality, that

dA(GS) ≥ dB(GS) and dB(GS) ≤ 12α log2 m.

Applying Lemma 15 to a node of degree at least dA(GS), we get that the number of leaves is
at least

Ω
(
dA(GS) · L 3

4
(f)
)

= Ω
(
ψ(GS)
dB(GS) · L 3

4
(f)
)

= Ω
(
ψ(GS) · L 3

4
(f)

log2 m

)
. ◀

At this point, everything is ready to lower bound the size of any protocol of logarithmic
depth.

STACS 2025

26:14 Strong Composition of XOR and a Random Function

▶ Theorem 17. The size of the protocol P (strongly separating XT × YT) is

Ω
(
m2 · L 3

4
(f)

log2 m

(
1 − 1

logm

)α log m
)
.

Proof. Lemma 16 states that the number of leaves needed to resolve any leaf S of the tree
D is Ω

(
ψ(GS) · L 3

4
(f)/ log2 m

)
. Let S be the set of all leaves of the tree D. Using estimate

(11), we have:

ψ(GT) ·
(

1 − 1
logm

)α log m

≤
∑
S∈S

ψ(GS).

Since ψ(GT) = m2 (by Lemma 12), Then, the number of leaves in P is

Ω
(∑

S∈S

ψ(GS) · L 3
4
(f)

log2 m

)
≥ Ω

(
m2 · L 3

4
(f)

log2 m

(
1 − 1

logm

)α log m
)
. ◀

Recall that α is a constant. Assuming m ≥ 4, we have logm ≥ 2, and thus 1 − 1
log m ≥

e− 2
log m . Then,

m2 · L 3
4
(f)

log2 m

(
1 − 1

logm

)α log m

≥
m2 · L 3

4
(f)

log2 m
e− 2

log m ·α log m ≥ m2−ε · L 3
4
(f),

for any constant ε > 0 when m is sufficiently large. Hence, the number of leaves needed
for a protocol P is m2−o(1) · L 3

4
(f).

Finally, we get rid of the assumption that the depth of P is logarithmic and prove the
main result.

Proof of Theorem 3. Let P be a protocol with m2−ε · L 3
4
(f) leaves, for some ε > 0, solving

KWXORm
⊛ KWf . We transform it into a protocol P ′ with (m(2−ε) · L 3

4
)γ leaves and depth

bounded by 3(3−ε)k ln 2·logm, by applying Theorem 7, where γ = 1+ 1
1+log(k−1) . (Theorem 7

is stated in terms of formulas, but it is not difficult to see that it works also for protocols for
strong composition.)

Since ε > 0 and limk→∞ γ = 1, there exist k and ε′ > 0 such that(
m2−ε · L 3

4
(f)
)γ

≤ m2−ε′
· L 3

4
(f),

since L 3
4
(m) ≤ m. Hence, protocol P ′ has logarithmic depth and at most m2−ε′ ·L 3

4
(f) leaves,

which contradicts Theorem 17. Therefore, P has Ω
(
m2−o(1) · L 3

4
(f)
)

= Ω(n2−o(1) · L 3
4
(f))

leaves. ◀

References
1 Maria Luisa Bonet and Samuel R. Buss. Size-depth tradeoffs for boolean fomulae. Inf. Process.

Lett., 49(3):151–155, 1994. doi:10.1016/0020-0190(94)90093-0.
2 Susanna F. de Rezende, Or Meir, Jakob Nordström, Toniann Pitassi, and Robert Robere.

KRW composition theorems via lifting. Comput. Complex., 33(1):4, 2024. doi:10.1007/
s00037-024-00250-7.

3 Irit Dinur and Or Meir. Toward the KRW composition conjecture: Cubic formula lower
bounds via communication complexity. Comput. Complex., 27(3):375–462, 2018. doi:10.
1007/s00037-017-0159-x.

https://doi.org/10.1016/0020-0190(94)90093-0
https://doi.org/10.1007/s00037-024-00250-7
https://doi.org/10.1007/s00037-024-00250-7
https://doi.org/10.1007/s00037-017-0159-x
https://doi.org/10.1007/s00037-017-0159-x

N. Chukhin, A. S. Kulikov, and I. Mihajlin 26:15

4 Jeff Edmonds, Russell Impagliazzo, Steven Rudich, and Jirí Sgall. Communication complexity
towards lower bounds on circuit depth. Comput. Complex., 10(3):210–246, 2001. doi:
10.1007/s00037-001-8195-x.

5 Dmitry Gavinsky, Or Meir, Omri Weinstein, and Avi Wigderson. Toward better formula
lower bounds: The composition of a function and a universal relation. SIAM J. Comput.,
46(1):114–131, 2017. doi:10.1137/15M1018319.

6 Johan Håstad. The shrinkage exponent of de morgan formulas is 2. SIAM J. Comput.,
27(1):48–64, 1998. doi:10.1137/S0097539794261556.

7 Johan Håstad and Avi Wigderson. Composition of the universal relation. In Jin-Yi Cai, editor,
Advances In Computational Complexity Theory, Proceedings of a DIMACS Workshop, New
Jersey, USA, December 3-7, 1990, volume 13 of DIMACS Series in Discrete Mathematics and
Theoretical Computer Science, pages 119–134. DIMACS/AMS, 1990. doi:10.1090/dimacs/
013/07.

8 Pavel Hrubes, Stasys Jukna, Alexander S. Kulikov, and Pavel Pudlák. On convex complexity
measures. Theor. Comput. Sci., 411(16-18):1842–1854, 2010. doi:10.1016/j.tcs.2010.02.
004.

9 Russell Impagliazzo and Noam Nisan. The effect of random restrictions on formula size.
Random Struct. Algorithms, 4(2):121–134, 1993. doi:10.1002/rsa.3240040202.

10 Stasys Jukna. Boolean Function Complexity - Advances and Frontiers, volume 27 of Algorithms
and combinatorics. Springer, 2012. doi:10.1007/978-3-642-24508-4.

11 Mauricio Karchmer, Ran Raz, and Avi Wigderson. Super-logarithmic depth lower bounds
via the direct sum in communication complexity. Comput. Complex., 5(3/4):191–204, 1995.
doi:10.1007/BF01206317.

12 Mauricio Karchmer and Avi Wigderson. Monotone circuits for connectivity require super-
logarithmic depth. SIAM J. Discret. Math., 3(2):255–265, 1990. doi:10.1137/0403021.

13 V. M. Khrapchenko. Method of determining lower bounds for the complexity of p-schemes.
Mathematical notes of the Academy of Sciences of the USSR, 10(1):474–479, 1971. doi:
10.1007/BF01747074.

14 Or Meir. Toward better depth lower bounds: A krw-like theorem for strong composition. In
64th IEEE Annual Symposium on Foundations of Computer Science, FOCS 2023, Santa Cruz,
CA, USA, November 6-9, 2023, pages 1056–1081. IEEE, 2023. doi:10.1109/FOCS57990.2023.
00064.

15 Ivan Mihajlin and Alexander Smal. Toward better depth lower bounds: The XOR-KRW
conjecture. In Valentine Kabanets, editor, 36th Computational Complexity Conference, CCC
2021, July 20-23, 2021, Toronto, Ontario, Canada (Virtual Conference), volume 200 of
LIPIcs, pages 38:1–38:24. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, 2021. doi:
10.4230/LIPIcs.CCC.2021.38.

16 Mike Paterson and Uri Zwick. Shrinkage of de morgan formulae under restriction. Random
Struct. Algorithms, 4(2):135–150, 1993. doi:10.1002/rsa.3240040203.

17 B. A. Subbotovskaya. Realization of linear functions by formulas using ∨, &, −. Dokl. Akad.
Nauk SSSR, 136(3):553–555, 1961. URL: http://mi.mathnet.ru/dan24539.

18 Avishay Tal. Shrinkage of de morgan formulae by spectral techniques. In 55th IEEE Annual
Symposium on Foundations of Computer Science, FOCS 2014, Philadelphia, PA, USA, October
18-21, 2014, pages 551–560. IEEE Computer Society, 2014. doi:10.1109/FOCS.2014.65.

19 Ingo Wegener. The complexity of Boolean functions. Wiley-Teubner, 1987. URL: http:
//ls2-www.cs.uni-dortmund.de/monographs/bluebook/.

20 Hao Wu. An improved composition theorem of a universal relation and most functions via
effective restriction. CoRR, abs/2310.07422, 2023. doi:10.48550/arXiv.2310.07422.

STACS 2025

https://doi.org/10.1007/s00037-001-8195-x
https://doi.org/10.1007/s00037-001-8195-x
https://doi.org/10.1137/15M1018319
https://doi.org/10.1137/S0097539794261556
https://doi.org/10.1090/dimacs/013/07
https://doi.org/10.1090/dimacs/013/07
https://doi.org/10.1016/j.tcs.2010.02.004
https://doi.org/10.1016/j.tcs.2010.02.004
https://doi.org/10.1002/rsa.3240040202
https://doi.org/10.1007/978-3-642-24508-4
https://doi.org/10.1007/BF01206317
https://doi.org/10.1137/0403021
https://doi.org/10.1007/BF01747074
https://doi.org/10.1007/BF01747074
https://doi.org/10.1109/FOCS57990.2023.00064
https://doi.org/10.1109/FOCS57990.2023.00064
https://doi.org/10.4230/LIPIcs.CCC.2021.38
https://doi.org/10.4230/LIPIcs.CCC.2021.38
https://doi.org/10.1002/rsa.3240040203
http://mi.mathnet.ru/dan24539
https://doi.org/10.1109/FOCS.2014.65
http://ls2-www.cs.uni-dortmund.de/monographs/bluebook/
http://ls2-www.cs.uni-dortmund.de/monographs/bluebook/
https://doi.org/10.48550/arXiv.2310.07422

Local Equivalence of Stabilizer States: A Graphical
Characterisation
Nathan Claudet #

Inria Mocqua, LORIA, CNRS, Université de Lorraine, F-54000 Nancy, France

Simon Perdrix #

Inria Mocqua, LORIA, CNRS, Université de Lorraine, F-54000 Nancy, France

Abstract
Stabilizer states form a ubiquitous family of quantum states that can be graphically represented
through the graph state formalism. A fundamental property of graph states is that applying a
local complementation – a well-known and extensively studied graph transformation – results in a
graph that represents the same entanglement as the original. In other words, the corresponding
graph states are LU-equivalent. This property served as the cornerstone for capturing non-trivial
quantum properties in a simple graphical manner, in the study of quantum entanglement but also for
developing protocols and models based on graph states and stabilizer states, such as measurement-
based quantum computing, secret sharing, error correction, entanglement distribution... However,
local complementation fails short to fully characterise entanglement: there exist pairs of graph states
that are LU-equivalent but cannot be transformed one into the other using local complementations.
Only few is known about the equivalence of graph states beyond local complementation. We introduce
a generalisation of local complementation which graphically characterises the LU-equivalence of
graph states. We use this characterisation to show the existence of a strict infinite hierarchy of
equivalences of graph states. Our approach is based on minimal local sets, which are subsets of
vertices that are known to cover any graph, and to be invariant under local complementation and
even LU-equivalence. We use these structures to provide a type to each vertex of a graph, leading to
a natural standard form in which the LU-equivalence can be exhibited and captured by means of
generalised local complementation.

2012 ACM Subject Classification Theory of computation → Quantum information theory

Keywords and phrases Quantum computing, Graph theory, Entanglement, Local complementation

Digital Object Identifier 10.4230/LIPIcs.STACS.2025.27

Related Version Full Version: https://arxiv.org/abs/2409.20183 [9]

Funding This work is supported by the the Plan France 2030 through the PEPR integrated project
EPiQ ANR-22- PETQ-0007 and the HQI platform ANR-22-PNCQ-0002; and by the European
projects NEASQC and HPCQS.

Acknowledgements The authors want to thank David Cattaneo and Mehdi Mhalla for fruitful
discussions on previous versions of this paper.

1 Introduction

Stabilizer states, and in particular graph states, form a versatile family of entangled quantum
states, which allow for easy and compact representations. They are used as entangled resource
states in various quantum information applications, like measurement-based computation
[29, 30, 5], error corrections [35, 34, 10, 33], quantum communication network routing [19, 26,
4, 7], and quantum secret sharing [25, 17], to cite a few. In all these applications, stabilizer
states are used as multi-partite entangled resources, it is thus crucial to understand when
two such states have the same entanglement. According to standard quantum information
theory, two quantum states have the same entanglement if they can be transformed into each

© Nathan Claudet and Simon Perdrix;
licensed under Creative Commons License CC-BY 4.0

42nd International Symposium on Theoretical Aspects of Computer Science (STACS 2025).
Editors: Olaf Beyersdorff, Michał Pilipczuk, Elaine Pimentel, and Nguyễn Kim Thắng;
Article No. 27; pp. 27:1–27:18

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:nathan.claudet@inria.fr
https://orcid.org/0009-0000-0862-1264
mailto:simon.perdrix@loria.fr
https://orcid.org/0000-0002-1808-2409
https://doi.org/10.4230/LIPIcs.STACS.2025.27
https://arxiv.org/abs/2409.20183
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

27:2 Local Equivalence of Stabilizer States: A Graphical Characterisation

other using only local operations, where “local” refers to operations that can be applied to
at most one qubit at a time. Indeed, intuitively, such local operations can only decrease the
strength of the entanglement of a quantum state, thus if a state can be transformed into
another and back to the original one using only local operations, the two states do have the
same entanglement. Concretely, the most general case is the so-called SLOCC-equivalence
(stochastic local operations and classical communications) that encompass the use of local
unitaries and measurements. In the particular case of stabilizer states, it is enough to consider
LU-equivalence (local unitaries), as two stabilizer states are SLOCC-equivalent iff there exists
U = U1 ⊗ . . .⊗Un that transforms one state into the other, where each Ui is a 1-qubit unitary
transformation [21]. Therefore, in this paper, we refer to LU-equivalence when stating that
two stabilizer states possess the same entanglement.

Stabilizer states can be graphically represented through the graph state formalism, which
consists in representing quantum states using graphs where each vertex corresponds to a
qubit. Graph states form actually a sub-family of stabilizer states but any stabilizer state can
be transformed into a graph state using local Clifford unitaries in a straightforward way [21],
as a consequence it is sufficient to consider graph states when dealing with entanglement
equivalence of stabilizer states. Notice that understanding the entanglement structure of
graph states and how it can be characterised in a graphical way is the most fascinating
fundamental question of the graph state formalism [21, 13, 14, 18, 23, 36, 37, 11].

An interesting combinatorial property of entanglement has been proved in [21]: LU-
equivalent graph states have the same cut-rank function1. However, there exist pairs of
graph states that have the same cut-rank function but which are not LU-equivalent: a
counterexample involves two isomorphic Petersen graphs [16, 21].

A fundamental property of the graph state formalism is that a local complementation – a
graph transformation that consists in complementing the neighbourhood of a given vertex
– preserves entanglement: if a graph can be transformed into another by means of local
complementations then the two corresponding graph states are LU-equivalent. More precisely
the corresponding graph states are LC-equivalent (local Clifford). Van den Nest [13] proved
that two graph states are LC-equivalent if and only if the corresponding graphs are related
by a sequence of local complementations. LC-equivalence and LU-equivalence of graph
states were conjectured to coincide [24], as they coincide for several families of graph states
[14, 38]. However, a counterexample of order 27 has been discovered using computer assisted
methods [23]. Since then, the existence of a graphical characterisation of LU-equivalence has
remained an open question. Furthermore, families of graph states for which LC-equivalence
and LU-equivalence coincide have been a subject of interest [33, 37].

Contributions. We introduce the r-local complementation, a graphical transformation
parametrised by a positive integer r, which coincides with the usual local complementation
when r = 1. We show that an r-local complementation can be performed on the corresponding
graph states by means of local unitaries in LCr = ⟨H, Z (π/2r)⟩, the group generated by the
local Clifford group augmented with the Z (π/2r) gate. We additionally show that, conversely,
for any fixed r, the LCr-equivalence of graph states is captured by r-local complementations:
if two graph states are LCr-equivalent, then there is a sequence made of (usual) local
complementations and at most one r-local complementation, that transforms one graph into
the other. In particular, the known examples of graph states that are LU-equivalent but not

1 The cut-rank function over a graph G = (V, E) is the function that maps a set A ⊆ V to the rank (in
F2) of the cut-matrix ΓA = ((ΓA)ab : a ∈ A, b ∈ V \ A) where Γab = 1 if and only if (a, b) ∈ E.

N. Claudet and S. Perdrix 27:3

LC-equivalent [23, 36], are actually LC2-equivalent, thus they are captured graphically by
the 2-local complementation. This leads to the natural question of the existence of pairs
of graph states that are LC3-equivalent but not LC2-equivalent, and so on. To answer this
question, we show that the r-local complementations form a strict hierarchy: for any positive
r there exist pairs of LCr+1-equivalent graph states that are not LCr-equivalent. Finally,
we show that any LU-equivalent graph states are LCr-equivalent for some r, even if there
exist some local unitaries, like RZ(π/3), that are not contained in LCr, for any r. In other
words, two graph states are LU-equivalent if and only if the corresponding graphs can be
transformed into each other by a sequence of generalised local complementations, leading to
a full graphical description of LU-equivalence for graph states. As an application, we prove a
conjecture on a family of graph states for which LU-equivalence and LC-equivalence coincide.

Related work. Other graphical extensions of local complementation have been introduced
in particular for weighted hypergraph states [36], a wider family of quantum states. The
connection between generalised local complementation and local complementation of weighted
hypergraph states is discussed in section 3. In [18, 39], the authors proved that when
considering LU-equivalence of stabilizer states it suffices to consider semi-Clifford unitaries2.
Symmetries of stabilizers and graph states have been explored in [15], where a characterisation
of local operations that have graph states as fixed points, is provided; the characterisation of
the LU-equivalence of graph states was however left as an open question.

Structure of the paper. In Section 2, we recall some definitions and notations and provide
a handful of tools to manipulate graph states. In Section 3, we define the generalisation of
the local complementation and we show that r-local complementations can be implemented
on the corresponding graph states by means of local unitaries in LCr. Section 4 is dedicated
to the converse result: the graphs corresponding to any pair of LCr-equivalent graph states
can be transformed into each other by means of r-local complementations. To do so, we show
that any graph can be put in a standard form by means of (usual) local complementations.
This standard form is based on the so-called minimal local sets, which are subsets of vertices
known to be invariant under LU-equivalence. As any graph can be covered by minimal
local sets, we associate to any vertex of a graph a type on which is based the standard
form. We then prove that if two graph states in standard form are LCr-equivalent, there
exists an r-local complementation transforming one graph into the other. We also prove that
if two graph states on n qubits are LU-equivalent they are LCn/2-equivalent. Finally, in
Section 5, we introduce a family of variants of Kneser graphs, and show, using our graphical
characterisation of LCr-equivalence, that for any r > 1 there exists pairs of graph states that
are LCr-equivalent but not LCr−1-equivalent.

2 Preliminaries

Let us first give some notations and basic definitions. A graph3 G is a pair (V,E), where V
is a finite set of vertices, and E is a set of unordered pairs of distinct vertices called edges.
We assume the set of vertices to be totally ordered and use the notation V = {u1, . . . , un}
s.t. ui ≺ uj iff i < j. The number n = |V | of vertices is called the order of the graph and

2 A unitary U is semi-Clifford if there exists a Pauli operator P ∈ X, Y, Z such that UP U† is also a Pauli
operator.

3 We only consider simple (no selfloop) undirected graphs.

STACS 2025

27:4 Local Equivalence of Stabilizer States: A Graphical Characterisation

|G| := |E| its size. We use the notation u ∼G v when the vertices u and v are connected in
G, i.e. (u, v) ∈ E. Given a vertex u, NG(u) = {v ∈ V | (u, v) ∈ E} is the neighbourhood
of u. The odd and the common neighbourhoods are two natural generalisations of the
notion of neighbourhoods to sets of vertices: for any D ⊆ V , OddG(D) = ∆u∈DNG(u) =
{v ∈ V | |NG(v) ∩ D| = 1 mod 2} is the odd neighbourhood of D, where ∆ denotes the
symmetric difference on vertices. Informally, OddG(D) is the set of vertices that are the
neighbours of an odd number of vertices in D. The common neighbourhood of D is denoted
ΛD

G =
⋂

u∈D NG(u) = {v ∈ V | ∀u ∈ D, v ∈ NG(u)}. A local complementation with respect
to a given vertex u consists in complementing the subgraph induced by the neighbourhood
of u, leading to the graph G ⋆ u = G∆KNG(u) where ∆ denotes the symmetric difference
on edges and KA is the complete graph on the vertices of A. Local complementation is an
involution, i.e. G ⋆ u ⋆ u = G. A pivoting with respect to two connected vertices u and v

is the operation that maps G to G ∧ uv := G ⋆ u ⋆ v ⋆ u. Notice that pivoting is symmetric
(G ∧ uv = G ∧ vu) and is an involution (G ∧ uv ∧ uv = G). With a slight abuse of notation
we identify multisets of vertices with their multiplicity function V → N. 4 A (multi)set S of
vertices is independent if there is no two vertices of S that are connected.

Graph states form a standard family of quantum states that can be represented using
graphs (Ref. [20] is an excellent introduction to graph states). Given a graph G of order n,
the corresponding graph state |G⟩ is the n-qubit state:

|G⟩ = 1√
2n

∑
x∈{0,1}n

(−1)|G[x]||x⟩

where G[x] denotes the subgraph of G induced by {ui | xi = 1} ⊆ V .
The ith qubit of |G⟩ can be associated with the vertex ui of G, so, with a slight abuse

of notation, we refer to V as the set of qubits of |G⟩. Given a 1-qubit operation R, like
X : |a⟩ 7→ |1 − a⟩ or Z : |a⟩ 7→ (−1)a|a⟩, and a subset D ⊆ V of qubits, RD :=

⊗
u∈D Ru is

the local operation which consists in applying R on each qubit of D.
The graph state |G⟩ is the unique quantum state (up to a global phase) that, for every

vertex u ∈ V , is a fixed point of the Pauli operator XuZNG(u). More generally, |G⟩ is an
eigenvector of any Pauli operator XDZOdd(D) with D ⊆ V :

▶ Proposition 1. Let G = (V,E) be a graph. The corresponding graph state |G⟩ is a fixed
point of PG

D = (−1)|G[D]|XDZOdd(D) for any D ⊆ V , where |G[D]| is the number of edges of
the subgraph of G induced by D.

The proof of Proposition 1 can be found in the full version of this paper [9]. The fact
that a graph state can be defined as the common eigenvector of Pauli operators witnesses
that graph states form a subfamily of stabilizer states5. Conversely, any stabilizer state can
be turned into a graph state by means of local Clifford unitaries6 in a straightforward way
(see for instance [13]). Thus we will focus in the rest of this paper on graph states.

The action of measuring, in the standard basis, a qubit of a graph state leads, roughly
speaking, to the graph state where the corresponding vertex has been removed. A diagonal
measurement can also be used to remove a vertex when this vertex is isolated:

4 Hence we also identify sets of vertices with their indicator functions V → {0, 1}.
5 A n-qubit state is a stabilizer state if it is the fixpoint of n independent commuting Pauli operators (or

equivalently 2n distinct commuting Pauli operators).
6 Local Clifford unitaries are tensor products of single-qubit Clifford gates, which map the Pauli group

to itself under conjugation. Formally, a single-qubit gate U is Clifford if for any P ∈ P := {±1, ±i} ×
{I, X, Y, Z}, UP U† ∈ P.

N. Claudet and S. Perdrix 27:5

▶ Proposition 2. For any graph G and any vertex u, ⟨0|u |G⟩ = 1√
2 |G \ u⟩. Moreover, if u

is an isolated vertex (i.e. NG(u) = ∅), then ⟨+|u |G⟩ = |G \ u⟩ where ⟨+| = ⟨0|+⟨1|√
2 .

▶ Remark 3. A standard basis measurement consists in applying either ⟨0| or ⟨1| which
correspond the classical outcomes 0 and 1 respectively. Whereas the action in the 0 case
is directly described in Proposition 2, the action in the 1 case can be recovered thanks to
Proposition 1: ⟨1|u |G⟩ = ⟨0|u Xu|G⟩ = ⟨0|u ZNG(u)|G⟩ = 1√

2ZNG(u)|G \ u⟩. Thus it also
corresponds to a vertex deletion up to some Z corrections on the neighbourhood of the
measured qubit.

We are interested in the action of 1-qubit unitaries on graph states, in particular Hadamard
H : |a⟩ 7→ |0⟩+(−1)a|1⟩√

2 , and Z- and X-rotations respectively defined as follows:

Z(α) := ei α
2

(
cos

(
α

2

)
I − i sin

(
α

2

)
Z

)
X(α) := HZ(α)H = ei α

2

(
cos

(
α

2

)
I − i sin

(
α

2

)
X

)
In particular, local complementations can be implemented by π/2 X- and Z-rotations:

▶ Proposition 4 ([13]). For any graph G = (V,E) and any u ∈ V , |G ⋆ u⟩ = LG
u |G⟩ where

LG
u := Xu(π

2)
⊗

v∈NG(u) Zv(− π
2).

Similarly, pivoting can be implemented by means of Hadamard transformations (up to
Pauli transformations):

▶ Proposition 5 ([27, 12]). For any graph G = (V,E) and any (u, v) ∈ E, |G ∧ uv⟩ =
HuHvZΛ{u,v}

G

|G⟩

Beyond π
2 rotations, notice that any local unitary can be implemented using Hadamard

and Z-rotations with arbitrary angles. We consider for any r ∈ N the set LCr of local
unitaries generated by H and Z(π

2r). In particular LC1 is the set of local Clifford operators,
moreover, for any r, LCr ⊆ LCr+1. Notice that there exist local unitaries, e.g. Z(π

3), that
are not contained in LCr for any r. We say that two states are LU-equivalent, denoted
|ψ⟩ =LU |ψ′⟩ when there exists a local unitary transformation U such that |ψ⟩ = U |ψ′⟩.
Similarly two states are LCr-equivalent, denoted |ψ⟩ =LCr

|ψ′⟩ when there exists a local
unitary U ∈ LCr s.t. |ψ⟩ = U |ψ′⟩.

It is well-known that two graph states |G⟩ and |G′⟩ are LC1-equivalent if and only if there
exists a sequence of local complementations that transforms G into G′ [13]. We slightly refine
this result showing that there exists a reasonnably small sequence of local complementation
transforming G into G′, that corresponds to a particular Clifford operator:

▶ Proposition 6. If |G2⟩ = C|G1⟩ where C is a local Clifford operator up to a global
phase, then there exists a sequence of (possibly repeating) vertices a1, · · · , am such that
G2 = G1 ⋆ a1 ⋆ a2 ⋆ · · · ⋆ am with m ⩽ ⌊3n/2⌋, and the local Clifford operator that implements
these local complementations is C up to a Pauli operator.

The proof of Proposition 6 can be found in the full version of this paper [9]
▶ Remark 7. The induced Clifford operator is of the form PG

DC for some subset D of vertices.
As XuZNG(u) = (LG

u)2, there exists a sequence at most ⌊7n/2⌋ local complementations that
transforms G1 into G2 and induces exactly the local Clifford operator C.

Whereas it has been originally conjectured that if two graphs states are LU-equivalent
then there exists a sequence of local complementations transforming one in another [24], a
couple of counter examples of pairs of LC2- but not LC1-equivalent graph states have been
pointed out [23, 36]. To further understand the action of local unitaries on graph states, we
thus introduce in the next section a generalisation of local complementation to graphically
capture the equivalence of graph states that are LU- but not LC1-equivalent.

STACS 2025

27:6 Local Equivalence of Stabilizer States: A Graphical Characterisation

e f g h

a b c d

e f g h

a b c d

Figure 1 Example of non LU-equivalent graph states. With the notations of Section 5, the graph
on the left is a C4,3 graph, and the one on the right is a C′

4,3 graph. Notice that applying a local
complementation on the upper part of the bipartition (S = {a, b, c, d}) leaves the graphs invariant
as each pair of vertices on the other part (e.g. (e, f)), has two common neighbours in S. However a
2-local complementation over S is not valid in both graphs as S is not 2-incident. See Section 4.1
for a proof that these graph states are not LU-equivalent.

3 Generalising Local Complementation

3.1 Local complementation over independent sets

As a first step towards a generalisation of local complementation, we introduce a natural
shortcut G ⋆ S := G ⋆ a1 . . . ⋆ ak to denote the graph obtained after a series of local
complementations when S = {a1, . . . , ak} is an independent set in G. The independence
condition is important as local complementations do not commute in general when applied
on connected vertices.

Notice that the action of a local complementation over S can be described directly as
toggling edges which have an odd number of common neighbours in S:

u ∼G⋆S v ⇔ (u ∼G v ⊕ |S ∩NG(u) ∩NG(v)| = 1 mod 2) (1)

3.2 Towards a 2-local complementation

We introduce 2-local complementations as a refinement of idempotent local complementa-
tions, i.e. when G⋆S = G. According to Equation (1), an idempotent local complementation
occurs when each pair (u, v) of vertices has an even number of common neighbours in S, one
can then consider a new graph transformation which consists in toggling an edge (u, v) when
its number of common neighbours in S is equal to 2 modulo 4. However, such an action may
not be implementable using local operations in the graph state formalism (see Figure 1). To
guarantee an implementation by means of local unitary transformations on the corresponding
graph states, we add the condition, called 2-incidence, that any set of at most three vertices
has an even number of common neighbours in S.

For instance in the following example, a 2-local complementation over {a, b} performs
the following transformation:

a b

c d e

a b

c d e

2-local complementation

at {a, b}

N. Claudet and S. Perdrix 27:7

a b c

d e f

a b c

d e f

2-local complementation

at {a, a, b, c}

Figure 2 Illustration on a 2-local complementation on the multiset S = {a, a, b, c}. S is 2-incident:
indeed S • Λ{d,e,f}

G = 2, which is a multiple of 22−1−0 = 2. Similarly, S • Λ{d,e}
G = S • Λ{d,f}

G = 2
and S • Λ{e,f}

G = 4. Edges de and df are toggled as S • Λ{d,e}
G = S • Λ{d,f}

G = 2 mod 4, but not edge
ef as S • Λ{e,f}

G = 0 mod 4.

In the LHS graph G, S = {a, b} is an independent set. Moreover, a 1-local complementation
over S is idempotent: G ⋆ S = G, as a and b are twins. S is also 2-incident as any pairs and
triplets of vertices have an even number of neighbours in S. Thus, a 2-local complementation
over S is valid and consists in toggling the edges (c, d), (c, e), and (d, e) as each of them has
an number of common neighbours in S equal to 2 mod 4.

We also consider the case where S is actually a multiset, like in Figure 2 where a 2-local
complementation over the multiset {a, a, b, c} is performed. When S is a multiset, the number
of common neighbours in S should be counted with their multiplicity.

Notice that when a 2-local complementation is invariant one can similarly refine the
2-local complementation into a 3-local complementation, leading to the general definition of
generalised local complementation provided in the next section.

3.3 Defining generalised local complementation
We introduce a generalisation of local complementation, that we call r-local complementa-
tion for any positive integer r. This generalised local complementation denoted G ⋆r S is
parametrised by a (multi)set S, that has to be independent and also r-incident, which is the
following counting condition on the number of common neighbours in S of any set that does
not intersect supp(S), the support of S:

▶ Definition 8 (r-Incidence). Given a graph G, a multiset S of vertices is r-incident, if for
any k ∈ [0, r), and any K ⊆ V \ supp(S) of size k + 2, S • ΛK

G is a multiple of 2r−k−δ(k),
where δ is the Kronecker delta7 and S • ΛK

G is the number of vertices of S, counted with their
multiplicity, that are neighbours to all vertices of K.8

▶ Definition 9 (r-Local Complementation). Given a graph G and an r-incident independent
multiset S, let G ⋆r S be the graph defined as

u ∼G⋆rS v ⇔
(
u ∼G v ⊕ S • Λu,v

G = 2r−1 mod 2r
)

A detailed example of a 2-local complementation is given in Figure 2.
We will also use r-local complementation parametrised with a set (rather than a multiset),

in this case S • ΛK
G = |S ∩ ΛK

G |, and S • Λu,v
G = |S ∩NG(u) ∩NG(v)|. Note that we recover

the vanilla local complementation when r = 1.

7 δ(x) ∈ {0, 1} and δ(x) = 1 ⇔ x = 0.
8 . • . is the scalar product: A • B =

∑
u∈V

A(u).B(u), so S • ΛK
G =

∑
u∈ΛK

G

S(u).

STACS 2025

27:8 Local Equivalence of Stabilizer States: A Graphical Characterisation

We say that G⋆r S is valid when S is an r-incident independent multiset in G. Moreover,
generalising the notion of local equivalence on graphs, we say that two graphs G, G′ are
r-locally equivalent when there exists a sequence of r-local complementations transforming
G into G′. In the case of the usual local complementation, we simply say that the graphs are
locally equivalent.

Generalised local complementations satisfy a few basic properties (proven in the full
version of this paper [9]), in particular, it is easy to double check that they are self inverse:
(G ⋆r S) ⋆r S = G. Moreover, r-local complementations can be related to (r + 1) and
(r − 1)-local complementations:

▶ Proposition 10. If G ⋆r S is valid then:
G ⋆r+1 (2S) is valid and induces the same transformation: G ⋆r+1 (2S) = G ⋆r S, where
2S is the multiset obtained from S by doubling the multiplicity of each vertex,
G ⋆r−1 S is valid (when r > 1) and G ⋆r−1 S = G.

It implies in particular that two r-locally equivalent graphs are (r + 1)-locally equivalent.
An r-local complementation over S preserves the neighbourhood of the vertices in supp(S):

▶ Proposition 11. If G ⋆r S is valid, then for any u ∈ supp(S), NG⋆rS(u) = NG(u).

Notice that r-local complementations can be composed:

▶ Proposition 12. If G ⋆r S1 and G ⋆r S2 are valid and the disjoint union9 S1 ⊔ S2 is
independent in G, then G ⋆r (S1 ⊔ S2) = (G ⋆r S1) ⋆r S2.

Finally, it is easy to see that the multiplicity in S can be upperbounded by 2r: if G ⋆r S

is valid, then G ⋆r S = G ⋆r S′, where, for any vertex u, S′(u) = S(u) mod 2r.

3.4 Local Clifford operators and local complementation
It is well known that local complementations can be implemented on graph states by means
of local Clifford operations [21, 20], we extend this result to r-local complementations that
can be implemented using π

2r X- and Z-rotations:

▶ Proposition 13. Given a graph G = (V,E) and a r-incident independent multiset S of
vertices,

|G ⋆r S⟩ =
⊗
u∈V

X

(
S(u)π

2r

) ⊗
v∈V

Z

− π

2r

∑
u∈NG(v)

S(u)

 |G⟩

The proof of Proposition 13 can be found in the full version of this paper [9].
▶ Remark 14. The graph state formalism has been extended in various ways, notably through
the introduction of hypergraph states [31] and even weighted hypergraph states [36]. Notice that
the formalism of weighted hypergraph states provides a way to decompose a generalised local
complementation over a multiset S of size k into k elementary transformations on weighted
hypergraph states. Indeed, as shown in Proposition 13, a generalised local complementation
can be implemented by means of k X-rotations (along with some Z-rotations), moreover the
action of each X-rotation on weighted hypergraph states has been described in [36]. However,
in such a decomposition, the intermediate weighted hypergraph states are not necessarily
graph states.

9 for any vertex u, (S1 ⊔ S2)(u) = S1(u) + S2(u).

N. Claudet and S. Perdrix 27:9

In the next section, we prove the converse result: if a local unitary operation in LCr

transforms a graph state |G⟩ into a graph state |G′⟩ then there exists a sequence of r-local
complementations transforming G into G′. More so, we show that r-local complementation
actually captures completely the LU-equivalence of graph states. To prove these results, we
make use of graphical tools, namely the so-called minimal local sets and a standard form for
graphs.

4 Graphical characterisation of the action of local unitaries

4.1 Minimal local sets and Types
To characterise the action of local unitaries on graph states, we rely on properties that are
invariant under local unitaries. A local set [22, 8] is one of them.

▶ Definition 15. Given G = (V,E), a local set L is a non-empty subset of V of the form
L = D ∪OddG(D) for some D ⊆ V called a generator.

Local sets of G are precisely the supports of the Pauli operators PG
D =

(−1)|G[D]|XDZOdd(D), with D a non-empty subset of qubits, that stabilises |G⟩. Local
sets are invariant under local complementation - hence their name: if L is a local set in a
graph G, so is in G⋆u, but possibly with a distinct generator [22]. Local sets are the same for
graphs that have the same cut-rank function [8], thus graphs corresponding to LU-equivalent
graph states have the same local sets.

A minimal local set is a local set that is minimal by inclusion. Minimal local sets have
either 1 or 3 generators, and in the latter case, the minimal local sets are of even size. This
was proved originally in the stabilizer formalism in [14], but an alternative graph-theoretic
proof can be found in [8].

▶ Proposition 16. Given a minimal local set L, only two cases can occur:
L has exactly one generator,
L has exactly three (distinct) generators, of the form D0, D1, and D0∆D1. This can
only occur when |L| is even.

In the first case, the minimal local set L is said to be of dimension 1; in the second, of
dimension 2. The dimension of a minimal local set depends only on the cut-rank function,
thus it is invariant by LU-equivalence. Just like (minimal) local sets, the dimension can
be a useful tool to prove that two graph states are not LU-equivalent. For example, the
two graphs of Figure 1 have the same minimal local sets, but they do not have the same
dimension. Indeed, {a, b, c, h} is a minimal local set of dimension 2 in the first graph, while
it is a minimal local set of dimension 1 in the second one, proving that the two graph states
are not LU-equivalent.

Minimal local sets provide crucial informations on local unitaries acting on graph states:
it is known that if a local unitary U transforms |G⟩ into |G′⟩ and L is a minimal local set of
dimension 2, then for any v ∈ L, Uv must be a Clifford operator [14]. Minimal local sets of
dimension 1 are more permissive but also provide some constraints on U :

▶ Lemma 17. Given two graphs G, G′ and a local unitary U such that |G⟩ = U |G′⟩, if L is
a 1-dimensional minimal local set with generators respectively D in G and D′ in G′, then

PG
DU = UPG′

D′

STACS 2025

27:10 Local Equivalence of Stabilizer States: A Graphical Characterisation

Proof. Following [14, 39], we consider the density matrix ρL
G (resp. ρL

G′) obtained by tracing
out the qubits outside L. According to [20, 21]: ρL

G = 1
2 (I + PG

D) and ρL
G′ = 1

2 (I + PG′

D′). As
ρL

G = UρL
G′U†, we get I + PG

D = I + UPG′

D′U†, hence PG
DU = UPG′

D′ . ◀

So, intuitively, every minimal local set L induces some constraints on a local unitary
transformation U acting on the corresponding graph state, more precisely on the qubits of U
that are in L. It has been recently shown that minimal local sets cover every vertex of a
graph [8], which unlocks the use of minimal local sets in characterizing local unitaries acting
on graph states, as it guarantees that minimal local sets impose constraints on every qubit
of the local unitary:

▶ Theorem 18 ([8]). Each vertex of any graph is contained in at least one minimal local set.

We abstract away the set of minimal local sets, which can be exponentially many in a
graph (see [8]), as a simple labelling of the vertices that we call a type.

▶ Definition 19. Given a graph G, a vertex u is of type
X if for any generator D of a minimal local set containing u, u ∈ D \Odd(D),
Y if for any generator D of a minimal local set containing u, u ∈ D ∩Odd(D),
Z if for any generator D of a minimal local set containing u, u ∈ Odd(D) \D,
⊥ otherwise.

The names X, Y and Z are chosen to match the Pauli operator at vertex u in PG
D . Notice

that a vertex involved in a minimal local set of dimension 2 is necessarily of type ⊥10. We
define V G

X ⊆ V (resp. V G
Y , V G

Z , V G
⊥) as the set of vertices of type X (resp. Y, Z, ⊥) in G.

V G
X , V G

Y , V G
Z and V G

⊥ form a partition of V : indeed, thanks to Theorem 18, every vertex has
a type.

We show in the following a few properties of the vertex types. First notice that vertices
of type Z represent at most half the vertices of a graph:

▶ Lemma 20. For any graph G of order n, |V G
Z | ⩽ ⌊n/2⌋.

Proof. V G
Z contains no minimal local set. Indeed, as the generator of a local set is non-empty,

at least one vertex of a given minimal local set L is not of type Z . Conversely, any subset of
the vertices of size ⌊n/2⌋ + 1 contains at least one minimal local set [8]. ◀

Two LU-equivalent graph states share the same vertices of type ⊥.

▶ Lemma 21. Given two LU-equivalent graph states |G1⟩ and |G2⟩, V G1
⊥ = V G2

⊥ .

Proof. Let U be a local unitary s.t. |G1⟩ = U |G2⟩, and let v ∈ V a vertex of type ⊥ in G1.
If v is in a minimal local set of dimension 2 in G1, so is in G2 as the dimension of minimal
local sets is invariant under LU-equivalence. Otherwise, there exist two distinct minimal
local sets L, L′, generated respectively by D1 and by D′

1 in G1 such that PG1
D1

and PG1
D′

1

do not commute on qubit v.11 Let D2 (resp. D′
2) be the generator of L (resp. L′) in G2.

According to Lemma 17, PG1
D1

= UPG2
D2
U † and PG1

D′
1

= UPG2
D′

2
U †, as a consequence, PG2

D2
and

PG2
D′

2
do not commute on qubit v, so v must be of type ⊥ in G2. ◀

10 If a vertex v has the same type with respect to two distinct generators D, D′ of a minimal local set L,
then v would not be in the local set generated by D∆D′ which contradicts the minimality of L.

11 V =
⊗

u
Vu commutes with W =

⊗
u

Wu on qubit u0 if Vu0 and Wu0 commute.

N. Claudet and S. Perdrix 27:11

A vertex having the same type in two LU-equivalent graph states implies strong constraints
on the local unitaries that relate the two corresponding graph states.

▶ Lemma 22. If |G1⟩ =LU |G2⟩ i.e. |G2⟩ = U |G1⟩, then U = eiϕ
⊗

u∈V Uu where:
Uu is a Clifford operator if u is of type ⊥ in both G1 and G2,
Uu = X(θu)Zbu if u is of type X in both G1 and G2,
Uu = Z(θu)Xbu if u is of type Z in both G1 and G2.

with bu ∈ {0, 1}. Additionally, if |G1⟩ and |G2⟩ are LCr-equivalent, there exists such a
unitary U where every angle satisfies θu = 0 mod π/2r.

Proof. The first case, when u is of type ⊥, is a variant of the minimal support condition
[13] and was proved in [28] for the particular case of minimal local sets of dimension 2. If
u is of type X, let L be a minimal local set such that u ∈ L. According to Lemma 17,
UuXU

†
u = eiϕX. Uu|+⟩ and Uu|−⟩ are eigenvectors of UuXU

†
u of eigenvalues respectively

1 and -1, implying UuXU
†
u = ±X. If UuXU

†
u = X, then Uu = eiϕX(θ). If UuXU

†
u = −X,

define U ′ := UuZ. U ′XU ′† = X, so U ′ = eiϕX(θ), thus Uu = eiϕX(θ)Z. The proof is similar
when u is of type Z. If |G1⟩ and |G2⟩ are LCr-equivalent, there exists |G2⟩ = U |G1⟩ where
U = eiϕ

⊗
u∈V Uu, and each Uu is in LCr. ◀

To fully characterise the unitaries that relate two graph states using Lemma 22, the
type of every vertex needs to be the same. This is not the case in general, even for locally
equivalent graphs12. Thus, we introduce a standard form on graphs, such that two graphs in
standard form corresponding to LU-equivalent graph states have the same types.

4.2 Standard Form
We define a standard form of graphs up to local complementation. A graph in standard form
satisfies the following properties: all vertices are of type X, Z or ⊥; all the neighbours of a
vertex of type X are of type Z (so in particular the vertices of type X form an independent
set); and any vertex of type X is smaller than its neighbours according to the underlying
total order ≺ of the vertices. In other words:

▶ Definition 23. A graph G is in said in standard form if
V G

Y = ∅,
∀u ∈ V G

X , any neighbour v of u is of type Z and satisfies u ≺ v.

Note that standard form is not unique in general, in the sense that a class of local
equivalence of graphs may contain several graphs in standard form. For example, any graph
with only vertices of type ⊥ is in standard form, along with its entire orbit generated by
local complementation. Conversely, each class of local equivalence contains at least a graph
in standard form.

▶ Proposition 24. For any graph G, there exists a locally equivalent G′ in standard form.

The proof of Proposition 24 is an algorithm that puts a graph in standard form by means
of local complementation and can be found in the full version of this paper [9]. Standard
form implies a similar structure in terms of types assuming LU-equivalence.

12 A simple example involves the complete graph K3 on 3 vertices and the line graph L3 on three vertices.
K3 and L3 are related by a single local complementation, however every vertex of K3 is of type Y, while
L3 contains one vertex of type Z and two vertices of type X.

STACS 2025

27:12 Local Equivalence of Stabilizer States: A Graphical Characterisation

▶ Proposition 25. If G1 and G2 are both in standard form and |G1⟩ =LU |G2⟩, each vertex
has the same type in G1 and G2, and any vertex u of type X satisfies NG1(u) = NG2(u).

The proof of Proposition 25 can be found in the full version of this paper [9].

4.3 Graphical characterisation of local equivalence
Thanks to the standard form, one can accommodate the types of two LU-equivalent graph
states, to simplify the local unitaries mapping one to the other:

▶ Lemma 26. If G1 and G2 are both in standard form and |G1⟩ =LU |G2⟩,
there exists G′

1locally equivalent to G1 in standard form such that |G2⟩ =⊗
u∈V

G1
X

X(αu)
⊗

v∈V
G1

Z

Z(βv)|G′
1⟩.

The proof of Lemma 26 can be found in the full version of this paper [9]. Note that if
|G1⟩ and |G2⟩ are LCr-equivalent, we can choose the angles such that αu, βv = 0 mod π/2r.
Additionally, G1 and G′

1 are related by local complementation only on vertices of type ⊥.
They are strong constraints relating the angles of the X- and Z-rotations acting on different
qubits:

▶ Lemma 27. Given G1, G2 in standard form, if |G2⟩ =
⊗

u∈V
G1

X

X(αu)
⊗

v∈V
G1

Z

Z(βv)|G1⟩,

∀v ∈ V G1
Z , βv = −

∑
u∈NG1 (v)∩V

G1
X

αu mod 2π,

∀k ∈ N, ∀K ⊆ V G1
Z of size k + 2,

∑
u∈ΛK

G1
∩V

G1
X

αu = 0 mod π

2k+δ(k) .

The proof of Lemma 27 can be found in the full version of this paper [9]. The constraints
coincide with r-incidence, so, when angles are multiples of π/2r, this unitary transformation
implements a r-local complementation.

▶ Lemma 28. Given G1, G2 in standard form, if |G2⟩ =
⊗

u∈V
G1

X

X(αu)
⊗

v∈V
G1

Z

Z(βv)|G1⟩
and ∀u ∈ V G1

X , αu = 0 mod π/2r, then
⊗

u∈V
G1

X

X(αu)
⊗

v∈V
G1

Z

Z(βv) implements an r-local
complementation over the vertices of V G1

X .

Proof. Let us construct an r-incident independent multiset S such that G2 = G1 ⋆
r S. We

define S on the vertices of V G1
X such that ∀u ∈ V G1

X , αu = S(u)π
2r mod 2π with S(u) ∈ [1, 2r).

Note that
∑

u∈ΛK
G1

∩V
G1

X

αu = π
2r S • ΛK

G . Hence, by Lemma 27, For any k ∈ [0, r), and any

K ⊆ V \ S of size k+ 2, S • ΛK
G is a multiple of 2r−k−δ(k) meaning that S is r-incident. Also,

by Lemma 27, βv = − π
2r

∑
u∈NG1 (v) S(u) mod 2π. Thus,

⊗
u∈V

G1
X

X(αu)
⊗

v∈V
G1

Z

Z(βv)
implements an r-local complementation on S. ◀

We can now easily relate LCr-equivalence to r-local complementations for graphs in
standard form:

▶ Lemma 29. If G1 and G2 are both in standard form and |G1⟩ =LCr |G2⟩, then G1 and
G2 are related by a sequence of local complementations on the vertices of type ⊥ along with a
single r-local complementation over the vertices of type X.

▶ Remark 30. The sequence of local complementations commutes with the r-local comple-
mentation, as vertices of type X and vertices of type ⊥ do not share edges by definition of
the standard form.

N. Claudet and S. Perdrix 27:13

Proof. By Lemma 26, there exists G′
1 locally equivalent to G1 in standard form such that

|G2⟩ =
⊗

u∈VX
X(αu)

⊗
v∈VZ

Z(βv)|G′
1⟩ where VX (resp. VZ) denotes the set of vertices

of type X (resp. Z) in G′
1 and G2, and ∀u ∈ V of type X or Z, αu, βu = 0 mod π/2r. By

Lemma 28,
⊗

u∈VX
X(αu)

⊗
v∈VZ

Z(βv) implements an r-local complementation over the
vertices of type X. ◀

Notice in particular that when there is no vertex of type ⊥, a single r-local complementa-
tion is required.

▶ Corollary 31. If two ⊥-free r-locally equivalent graphs G1 and G2 are both in standard
form, they are related by a single r-local complementation on the vertices of type X.

We are ready to prove that r-local equivalence coincides with LCr-equivalence.

▶ Theorem 32. The following properties are equivalent:
1. |G1⟩ and |G2⟩ are LCr-equivalent.
2. G1 and G2 are r-locally equivalent.
3. G1 and G2 are related by a sequence of local complementations along with a single r-local

complementation.

Proof. We proceed by cyclic proof. (2 ⇒ 1): Follows from Proposition 13. (3 ⇒ 2): A
local complementation is, in particular, an r-local complementation. (1 ⇒ 3): Follows from
Proposition 24 along with Lemma 29. ◀

More than just LCr-equivalence, r-local complementations can actually characterise the
LU-equivalence of graph states.

▶ Theorem 33. If |G1⟩ and |G2⟩ are LU-equivalent then G1 and G2 are (⌊n/2⌋ − 1)-locally
equivalent, where n is the order of the graphs.

The proof of Theorem 33 can be found in the full version of this paper [9]. Remarkably, this
result implies that for graph states, LU-equivalence reduces to equivalence up to operators
in

⋃
r∈N LCr, and even – as it has been been hinted in [18] – to operators of the form

C1
⊗

u∈V Z(αu)C2 where C1, C2 are local Clifford operators and the angles are multiples of
π/2r for some integer r. Notice that these local operators are actually those of the well-known
Clifford hierarchy (see for example [1]).

4.4 Graph states whose class of LC and LU-equivalence coincide
Since the LU-LC conjecture was disproven in [38], classes of graph states whose class of
LC1- and LU-equivalence coincide has been a subject of interest. We say that LU ⇔ LC

holds for a graph G if |G⟩ =LU |G′⟩ ⇔ |G⟩ =LC1 |G′⟩ for any graph G′. It is known that
LU ⇔ LC holds for a graph G if either one of the following is true: (1) G is of order at
most 8 [20, 6]; (2) G is a complete graph [14]; (3) every vertex of G is of type ⊥ (this
is referred as the minimal support condition)[14]; (4) the graph obtained by removing all
leafs (i.e. vertices of degree 1) vertices of G has only vertices of type ⊥ [38]; (5) G has no
cycle of length 3 or 4 [38]; (6) the stabilizer of |G⟩ has rank less than 6 [23]. A review of
these necessary conditions, especially for (6), can be found in [37]. Our results imply a new
criterion for LU ⇔ LC based on the standard form introduced in the last section. This
criterion is actually a sufficient and necessary condition, meaning it can be used to prove
both that LU ⇔ LC holds for some graph, or the converse.

STACS 2025

27:14 Local Equivalence of Stabilizer States: A Graphical Characterisation

▶ Proposition 34. Given a graph G, the following are equivalent:
LU ⇔ LC holds for G.
For some graph locally equivalent to G that is in standard form, any r-local complement-
ation over the vertices of type X can be implemented by local complementations.
For any graph locally equivalent to G that is in standard form, any r-local complementation
over the vertices of type X can be implemented by local complementations.

The proof of Proposition 34 can be found in the full version of this paper [9]. Checking
that r-local complementations can be implemented by local complementations is not easy in
general, nonetheless it is convenient in many cases, for example when there is few vertices of
type X or that they have low degree. Namely, this criterion is stronger than the minimal
support condition, as graphs with only vertices of ⊥ have no vertex of type X. Furthermore,
it has been left as an open question in [37] whether LU ⇔ LC holds for some instances of
repeater graph states. We use our new criterion to easily prove that this is the case. For this
purpose, we prove that LU ⇔ LC holds for a broader class of graph.

▶ Proposition 35. LU ⇔ LC holds for graphs where each vertex is either a leaf i.e. a vertex
of degree 1, or is connected to a leaf.

Proof. It is easy to prove (see the full version of this paper [9]) that such a graph G is in
standard form (for some particular ordering of the vertices) and that the vertices of type X
are exactly the leafs. Thus, any r-local complementation over the vertices of type X has no
effect on G. According to Proposition 34, this implies that LU ⇔ LC holds for G. ◀

Such graphs include some instances of repeater graph states [2]. A complete-graph-based
repeater graph state is a graph state whose corresponding graph of order 2n is composed of a
complete graph of order n, along with n leafs appended to each vertex. A biclique-graph-based
repeater graph state is a graph state whose corresponding graph of order 4n is composed of
a symmetric biclique (i.e. a symmetric bipartite complete graph) graph of order 2n, along
with 2n leafs appended to each vertex. Complete-graph-based repeater graph states are
the all-photonic repeaters introduced in [3]. Biclique-graph-based repeater graph states
are a variant introduced in [32] which is more efficient in terms of number of edges. It
was left as an open question in [37] whether LU ⇔ LC holds for complete-graph-based or
biclique-graph-based repeater graph states (although it was proved for some variants). These
graph states satisfy the condition of Proposition 35, hence we can answer this question by
the positive:

▶ Corollary 36. LU ⇔ LC holds for complete-graph-based repeater graph states and biclique-
graph-based repeater graph states.

5 A hierarchy of generalised local equivalences

Two r-locally equivalent graphs are also (r+1)-locally equivalent. This can be seen graphically
as a direct consequence of Proposition 10, or using graph states through Theorem 32, as two
LCr-equivalent states are obviously LCr+1-equivalent. The known counter examples to the
LU-LC conjecture introduced in [23, 36] are actually LC2-equivalent graph states that are
not LC1-equivalent, thus the corresponding graphs are 2-locally equivalent but not 1-locally
equivalent. There was however no known examples of graph states that are LC3-equivalent
but not LC2-equivalent, and more generally no known examples of graph states that are
LCr-equivalent but not LCr−1-equivalent for r > 2. We introduce such examples in this
section, by showing that for any r there exist pairs of graphs that are (r+1)-locally equivalent

N. Claudet and S. Perdrix 27:15

but not r-locally equivalent leading to an infinite hierarchy of generalised local equivalences.
Our proof is constructive: for any r we exhibit pairs of graphs that are (r + 1)-locally
equivalent but not r-locally equivalent.

We introduce a family of bipartite graphs Ct,k parametrized by two integers t and k. This
family is a variant of the (bipartite) Kneser graphs and uniform subset graphs. The graph
Ct,k is bipartite: the first independent set of vertices corresponds to the integers from 1 to t,
and the second independent set is composed of all the subsets of [1, t] of size k. There is an
edge between an integer u ∈ [1, t] and a subset A ⊆ [1, t] of size k if and only if u ∈ A:

▶ Definition 37. For any k ⩾ 1 and t ⩾ k two integers, let Ct,k = (V,E) be a bipartite graph
defined as: V = [1, t] ∪

([1,t]
k

)
and E = {(u,A) ∈ [1, t] ×

([1,t]
k

)
| u ∈ A}.

We introduce a second family of graphs C ′
t,k, defined similarly to Ct,k, the independent set

[1, t] being replaced by a clique:

▶ Definition 38. For any k ⩾ 1 and t ⩾ k two integers, let C ′
t,k = (V,E) be a graph defined

as: V = [1, t]∪
([1,t]

k

)
and E = {(u,A) ∈ [1, t]×

([1,t]
k

)
| u ∈ A}∪{(u, v) ∈ [1, t]× [1, t] | u ≠ v}.

1 2 3 4

{1, 2} {1, 3} {1, 4} {2, 3} {2, 4} {3, 4}

1 2 3 4

{1, 2} {1, 3} {1, 4} {2, 3} {2, 4} {3, 4}

Figure 3 (Left) The graph C4,2. (Right) The graph C′
4,2.

Examples of such graphs with parameters t = 4 and k = 2 are given in Figure 3. For any
odd k ⩾ 3, t ⩾ k + 2, Ct,k and C ′

t,k are in standard form for any ordering such that, for any
u ∈

([1,t]
k

)
and for any v ∈ [1, t], u ≺ v. More precisely the vertices in

([1,t]
k

)
are of type X and

the vertices in [1, t] are of type Z. The proof can be found in the full version of this paper [9].
The following proposition gives a sufficient condition on t and k for the r-local equivalence

of Ct,k and C ′
t,k.

▶ Proposition 39. For any t ⩾ k ⩾ 1, Ct,k and C ′
t,k are r-locally equivalent if(

t− 2
k − 2

)
= 2r−1 mod 2r and ∀i ∈ [1, r − 1],

(
t− i− 2
k − i− 2

)
= 0 mod 2r−i

Proof. Ct,k and C ′
t,k are related by a r-local complementation on the set

([1,t]
k

)
(which can

be seen as the multiset where each vertex of
([1,t]

k

)
appears once). Let K ⊆ [1, t] of size k′ + 2.([1,t]

k

)
• ΛK

G =
∣∣∣{x ∈

([1,t]
k

)
| K ⊆ x

}∣∣∣ =
(

t−k′−2
k−k′−2

)
is a multiple of 2r−k′−δ(k′) by hypothesis.

Thus,
([1,t]

k

)
is r-incident. Besides, for any u, v ∈ [1, t],

([1,t]
k

)
• Λu,v

G =
(

t−2
k−2

)
= 2r−1 mod 2r

by hypothesis. Thus, Ct,k ⋆
r

([1,t]
k

)
= C ′

t,k. ◀

The following proposition provides a sufficient condition on t and k for the non r-local
equivalence of Ct,k and C ′

t,k.

▶ Proposition 40. For any odd k ⩾ 3, t ⩾ k + 2, Ct,k and C ′
t,k are not r-locally equivalent

if
(

t
2
)

is odd and
(

k
2
)

= 0 mod 2r.

STACS 2025

27:16 Local Equivalence of Stabilizer States: A Graphical Characterisation

Proof. Let us suppose by contradiction that Ct,k and C ′
t,k are r-locally equivalent. By

Corollary 31, they are related by a single r-local complementation on the vertices in
([1,t]

k

)
.

Let S be the multiset in
([1,t]

k

)
such that Ct,k ⋆

r S = C ′
t,k. For each u, v ∈ [1, t], S • Λu,v

Ct,k
=∑

x∈Λu,v
Ct,k

S(x) = 2r−1 mod 2r. Summing over all pairs u, v ∈ [1, t], and, as by hypothesis(
t
2
)

is odd,
∑

u,v∈[1,t] S • Λu,v
Ct,k

=
(

k
2
) ∑

x∈([1,t]
k) S(x) =

(
t
2
)
2r−1 mod 2r = 2r−1 mod 2r. The

first part of the equation is true because
∑

u,v∈[1,t] S • Λu,v
Ct,k

=
∑

u,v∈[1,t]
∑

x∈Λu,v
Ct,k

S(x) =∑
x∈([1,t]

k)
∑

u,v∈x S(x). This leads to a contradiction as
(

k
2
)

= 0 mod 2r by hypothesis. ◀

It remains to find, for any r, parameters t and k such that the corresponding graphs are
r-locally equivalent but not (r − 1)-locally equivalent. Fortunately, such parameters exist.

▶ Theorem 41. For any r ⩾ 2, Ct,k and C ′
t,k are r-locally equivalent but not (r − 1)-locally

equivalent when k = 2r + 1 and t = 2r + 2⌊log2(r)⌋+1 − 1. Thus, |Ct,k⟩ and |C ′
t,k⟩ are

LCr-equivalent but not LCr−1-equivalent.

The proof of Theorem 41 can be found in the full version of this paper [9].

▶ Remark 42. For the case r = 2, we obtain the pair (C7,5, C
′
7,5), which is the 28-vertex

counter-example to the LU-LC conjecture from [36]. In particular, this translates to an
example of a pair of graph states that are LC2-equivalent but not LC1-equivalent.

Thus, while Ji et al. proved that there exist pairs of graph states that are LU-equivalent
but not LC1-equivalent [23], we showed a finer result – the existence of a infinite strict
hierarchy of graph states equivalence between LC1- and LU-equivalence. There exist LC2-
equivalent graph states that are not LC1-equivalent, LC3-equivalent graph states that are
not LC2-equivalent... On the other end, for any integer r, there exist LU-equivalent graph
states that are not LCr-equivalent.

6 Conclusion

In this paper, we have introduced of a graphical characterisation of LU-equivalence for
graph states, and consequently for stabilizer states. To achieve this, we have introduced a
generalisation of the local complementation, and leveraged the structures of minimal local sets
in graphs. A key outcome of this characterisation is the establishment of a strict hierarchy
of equivalences for graph states, which significantly advances our understanding of the gap
between the LC- and LU-equivalence. Thanks to this graphical characterisation, we have
also proven a conjecture regarding families of graphs states where LC- and LU-equivalence
coincide.

This graphical characterisation has additional potential applications, such as the search
of minimal examples of graph states that are LU-equivalent but not LC-equivalent. The
smallest known examples are of order 27, and it is known there is no counter example of order
less than 8. More generally one can wonder whether there are smaller examples of graphs that
are LCr equivalent but not LCr−1 as the ones we have introduced are of order exponential
en r. In terms of complexity, determining whether two graph states are LC-equivalent can
be done in polynomial time. The graphical characterization of LU-equivalence also offers
new avenues for exploring the complexity of the LU-equivalence problem, as allows one to
study this computational problem from a purely graphical standpoint.

N. Claudet and S. Perdrix 27:17

References
1 Jonas T. Anderson. On groups in the qubit clifford hierarchy. Quantum, 8:1370, 2024.

doi:10.22331/q-2024-06-13-1370.
2 Koji Azuma, Sophia E. Economou, David Elkouss, Paul Hilaire, Liang Jiang, Hoi-Kwong

Lo, and Ilan Tzitrin. Quantum repeaters: From quantum networks to the quantum internet.
Reviews of Modern Physics, 95(4):045006, 2023. doi:10.1103/RevModPhys.95.045006.

3 Koji Azuma, Kiyoshi Tamaki, and Hoi-Kwong Lo. All-photonic quantum repeaters. Nature
communications, 6(1):1–7, 2015. doi:10.1038/ncomms7787.

4 Sergey Bravyi, Yash Sharma, Mario Szegedy, and Ronald de Wolf. Generating k epr-pairs
from an n-party resource state. Quantum, 8:1348, 2024. doi:10.22331/q-2024-05-14-1348.

5 Hans J. Briegel, David E. Browne, Wolfgang Dür, Robert Raussendorf, and Maarten Van
den Nest. Measurement-based quantum computation. Nature Physics, 5(1):19–26, 2009.
doi:10.1038/nphys1157.

6 Adán Cabello, Antonio J. López-Tarrida, Pilar Moreno, and José R. Portillo. Entanglement
in eight-qubit graph states. Physics Letters A, 373(26):2219–2225, 2009. doi:10.1016/j.
physleta.2009.04.055.

7 Maxime Cautrès, Nathan Claudet, Mehdi Mhalla, Simon Perdrix, Valentin Savin, and Stéphan
Thomassé. Vertex-Minor Universal Graphs for Generating Entangled Quantum Subsystems.
In 51st International Colloquium on Automata, Languages, and Programming (ICALP 2024),
volume 297 of Leibniz International Proceedings in Informatics (LIPIcs), pages 36:1–36:18,
2024. doi:10.4230/LIPIcs.ICALP.2024.36.

8 Nathan Claudet and Simon Perdrix. Covering a graph with minimal local sets. In Proceedings
of the 24th workshop on Graph Theory (WG 2024), 2024. doi:10.48550/arXiv.2402.10678.

9 Nathan Claudet and Simon Perdrix. Local equivalence of stabilizer states: a graphical
characterisation. (long version with proofs), 2024. doi:10.48550/arXiv.2409.20183.

10 Andrew Cross, Graeme Smith, John A. Smolin, and Bei Zeng. Codeword stabilized quantum
codes. In 2008 IEEE International Symposium on Information Theory, pages 364–368. IEEE,
2008. doi:10.1109/TIT.2008.2008136.

11 Axel Dahlberg and Stephanie Wehner. Transforming graph states using single-qubit operations.
Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering
Sciences, 376(2123):20170325, 2018. doi:10.1098/rsta.2017.0325.

12 Maarten Van den Nest and Bart De Moor. Edge-local equivalence of graphs, 2005. arXiv:
math/0510246.

13 Maarten Van den Nest, Jeroen Dehaene, and Bart De Moor. Graphical description of the
action of local clifford transformations on graph states. Physical Review A, 69(2), February
2004. doi:10.1103/physreva.69.022316.

14 Maarten Van den Nest, Jeroen Dehaene, and Bart De Moor. Local unitary versus local clifford
equivalence of stabilizer states. Physical Review A, 71(6), June 2005. doi:10.1103/physreva.
71.062323.

15 Matthias Englbrecht and Barbara Kraus. Symmetries and entanglement of stabilizer states.
Phys. Rev. A, 101:062302, June 2020. doi:10.1103/PhysRevA.101.062302.

16 Dmitrii Germanovich Fon-Der-Flaass. Local Complementations of Simple and Directed Graphs,
pages 15–34. Springer Netherlands, Dordrecht, 1996. doi:10.1007/978-94-009-1606-7_3.

17 Sylvain Gravier, Jérôme Javelle, Mehdi Mhalla, and Simon Perdrix. Quantum secret sharing
with graph states. In Mathematical and Engineering Methods in Computer Science: 8th Inter-
national Doctoral Workshop, MEMICS 2012, Znojmo, Czech Republic, October 25-28, 2012,
Revised Selected Papers 8, pages 15–31. Springer, 2013. doi:10.1007/978-3-642-36046-6_3.

18 David Gross and Maarten Van den Nest. The LU-LC conjecture, diagonal local operations
and quadratic forms over GF(2). Quantum Inf. Comput., 8(3):263–281, 2008. doi:10.26421/
QIC8.3-4-3.

19 Frederik Hahn, Anna Pappa, and Jens Eisert. Quantum network routing and local comple-
mentation. npj Quantum Information, 5(1):1–7, 2019. doi:10.1038/s41534-019-0191-6.

STACS 2025

https://doi.org/10.22331/q-2024-06-13-1370
https://doi.org/10.1103/RevModPhys.95.045006
https://doi.org/10.1038/ncomms7787
https://doi.org/10.22331/q-2024-05-14-1348
https://doi.org/10.1038/nphys1157
https://doi.org/10.1016/j.physleta.2009.04.055
https://doi.org/10.1016/j.physleta.2009.04.055
https://doi.org/10.4230/LIPIcs.ICALP.2024.36
https://doi.org/10.48550/arXiv.2402.10678
https://doi.org/10.48550/arXiv.2409.20183
https://doi.org/10.1109/TIT.2008.2008136
https://doi.org/10.1098/rsta.2017.0325
https://arxiv.org/abs/math/0510246
https://arxiv.org/abs/math/0510246
https://doi.org/10.1103/physreva.69.022316
https://doi.org/10.1103/physreva.71.062323
https://doi.org/10.1103/physreva.71.062323
https://doi.org/10.1103/PhysRevA.101.062302
https://doi.org/10.1007/978-94-009-1606-7_3
https://doi.org/10.1007/978-3-642-36046-6_3
https://doi.org/10.26421/QIC8.3-4-3
https://doi.org/10.26421/QIC8.3-4-3
https://doi.org/10.1038/s41534-019-0191-6

27:18 Local Equivalence of Stabilizer States: A Graphical Characterisation

20 Mayan Hein, Wolfgang Dür, Jens Eisert, Robert Raussendorf, Maarten Van den Nest, and
Hans J. Briegel. Entanglement in graph states and its applications. Quantum computers,
algorithms and chaos, 162, March 2006. doi:10.3254/978-1-61499-018-5-115.

21 Mayan Hein, Jens Eisert, and Hans J. Briegel. Multiparty entanglement in graph states.
Physical Review A, 69(6), June 2004. doi:10.1103/physreva.69.062311.

22 Peter Høyer, Mehdi Mhalla, and Simon Perdrix. Resources Required for Preparing Graph
States. In 17th International Symposium on Algorithms and Computation (ISAAC 2006),
volume 4288 of Lecture Notes in Computer Science, pages 638–649, December 2006. doi:
10.1007/11940128_64.

23 Zhengfeng Ji, Jianxin Chen, Zhaohui Wei, and Mingsheng Ying. The LU-LC conjecture is
false, 2007. arXiv:0709.1266.

24 Olaf Krueger and Reinhard F. Werner. Some open problems in quantum information theory,
2005. arXiv:quant-ph/0504166.

25 Damian Markham and Barry C. Sanders. Graph states for quantum secret sharing. Physical
Review A, 78(4):042309, 2008. doi:10.1103/PhysRevA.78.042309.

26 Clément Meignant, Damian Markham, and Frédéric Grosshans. Distributing graph states
over arbitrary quantum networks. Physical Review A, 100:052333, November 2019. doi:
10.1103/PhysRevA.100.052333.

27 Mehdi Mhalla and Simon Perdrix. Graph states, pivot minor, and universality of (X,Z)-
measurements. Int. J. Unconv. Comput., (1-2):153–171. URL: http://www.oldcity
publishing.com/journals/ijuc-home/ijuc-issue-contents/ijuc-volume-9-number-1-2-
2013/ijuc-9-1-2-p-153-171/.

28 Eric M. Rains. Quantum codes of minimum distance two. IEEE Trans. Inf. Theory, 45(1):266–
271, 1999. doi:10.1109/18.746807.

29 Robert Raussendorf and Hans J. Briegel. A one-way quantum computer. Physical review
letters, 86(22):5188, 2001. doi:10.1103/PhysRevLett.86.5188.

30 Robert Raussendorf, Daniel E. Browne, and Hans J. Briegel. Measurement-based quantum
computation on cluster states. Physical review A, 68(2):022312, 2003. doi:10.1103/PhysRevA.
68.022312.

31 Matteo Rossi, Marcus Huber, Dagmar Bruß, and Chiara Macchiavello. Quantum hypergraph
states. New Journal of Physics, 15(11):113022, 2013. doi:10.1088/1367-2630/15/11/113022.

32 Antonio Russo, Edwin Barnes, and Sophia E. Economou. Photonic graph state generation from
quantum dots and color centers for quantum communications. Physical Review B, 98(8):085303,
2018. doi:10.1103/PhysRevB.98.085303.

33 Pradeep Sarvepalli and Robert Raussendorf. Local equivalence of surface code states. In
Theory of Quantum Computation, Communication, and Cryptography: 5th Conference, TQC
2010, Leeds, UK, April 13-15, 2010, Revised Selected Papers 5, pages 47–62. Springer, 2011.

34 Dirk Schlingemann. Stabilizer codes can be realized as graph codes, 2001. arXiv:quant-ph/
0111080.

35 Dirk Schlingemann and Reinhard F. Werner. Quantum error-correcting codes associated with
graphs. Physical Review A, 65(1):012308, 2001. doi:10.1103/PhysRevA.65.012308.

36 Nikoloz Tsimakuridze and Otfried Gühne. Graph states and local unitary transforma-
tions beyond local clifford operations. Journal of Physics A: Mathematical and Theoretical,
50(19):195302, April 2017. doi:10.1088/1751-8121/aa67cd.

37 Ilan Tzitrin. Local equivalence of complete bipartite and repeater graph states. Physical
Review A, 98(3):032305, 2018. doi:10.1103/PhysRevA.98.032305.

38 Bei Zeng, Hyeyoun Chung, Andrew W. Cross, and Isaac L. Chuang. Local unitary versus
local clifford equivalence of stabilizer and graph states. Physical Review A, 75(3), March 2007.
doi:10.1103/physreva.75.032325.

39 Bei Zeng, Andrew Cross, and Isaac L. Chuang. Transversality versus universality for additive
quantum codes. IEEE Transactions on Information Theory, 57(9):6272–6284, 2011. doi:
10.1109/TIT.2011.2161917.

https://doi.org/10.3254/978-1-61499-018-5-115
https://doi.org/10.1103/physreva.69.062311
https://doi.org/10.1007/11940128_64
https://doi.org/10.1007/11940128_64
https://arxiv.org/abs/0709.1266
https://arxiv.org/abs/quant-ph/0504166
https://doi.org/10.1103/PhysRevA.78.042309
https://doi.org/10.1103/PhysRevA.100.052333
https://doi.org/10.1103/PhysRevA.100.052333
http://www.oldcitypublishing.com/journals/ijuc-home/ijuc-issue-contents/ijuc-volume-9-number-1-2-2013/ijuc-9-1-2-p-153-171/
http://www.oldcitypublishing.com/journals/ijuc-home/ijuc-issue-contents/ijuc-volume-9-number-1-2-2013/ijuc-9-1-2-p-153-171/
http://www.oldcitypublishing.com/journals/ijuc-home/ijuc-issue-contents/ijuc-volume-9-number-1-2-2013/ijuc-9-1-2-p-153-171/
https://doi.org/10.1109/18.746807
https://doi.org/10.1103/PhysRevLett.86.5188
https://doi.org/10.1103/PhysRevA.68.022312
https://doi.org/10.1103/PhysRevA.68.022312
https://doi.org/10.1088/1367-2630/15/11/113022
https://doi.org/10.1103/PhysRevB.98.085303
https://arxiv.org/abs/quant-ph/0111080
https://arxiv.org/abs/quant-ph/0111080
https://doi.org/10.1103/PhysRevA.65.012308
https://doi.org/10.1088/1751-8121/aa67cd
https://doi.org/10.1103/PhysRevA.98.032305
https://doi.org/10.1103/physreva.75.032325
https://doi.org/10.1109/TIT.2011.2161917
https://doi.org/10.1109/TIT.2011.2161917

Can You Link Up With Treewidth?
Radu Curticapean # Ñ

University of Regensburg, Germany
IT University of Copenhagen, Denmark

Simon Döring #

Max Planck Institute for Informatics, Saarbrücken, Germany
Saarland University (SIC), Saarbrücken, Germany

Daniel Neuen #

University of Regensburg, Germany
Max Planck Institute for Informatics, Saarbrücken, Germany

Jiaheng Wang # Ñ

University of Regensburg, Germany

Abstract
A central result by Marx [ToC ’10] constructs k-vertex graphs H of maximum degree 3 such that
no(k/ log k) time algorithms for detecting colorful H-subgraphs would refute the Exponential-Time
Hypothesis (ETH). This result is widely used to obtain almost-tight conditional lower bounds for
parameterized problems under ETH.

Our first contribution is a new and fully self-contained proof of this result that further simplifies
a recent work by Karthik et al. [SOSA 2024]. In our proof, we introduce a novel graph parameter of
independent interest, the linkage capacity γ(H), and show that detecting colorful H-subgraphs in
time no(γ(H)) refutes ETH. Then, we use a simple construction of communication networks credited
to Beneš to obtain k-vertex graphs of maximum degree 3 and linkage capacity Ω(k/ log k), avoiding
arguments involving expander graphs, which were required in previous papers. We also show that
every graph H of treewidth t has linkage capacity Ω(t/ log t), thus recovering a stronger result shown
by Marx [ToC ’10] with a simplified proof.

Additionally, we obtain new tight lower bounds on the complexity of subgraph detection for
certain types of patterns by analyzing their linkage capacity: We prove that almost all k-vertex
graphs of polynomial average degree Ω(kβ) for β > 0 have linkage capacity Θ(k), which implies tight
lower bounds for finding such patterns H. As an application of these results, we also obtain tight
lower bounds for counting small induced subgraphs having a fixed property Φ, improving bounds
from, e.g., [Roth et al., FOCS 2020].

2012 ACM Subject Classification Theory of computation → Parameterized complexity and exact
algorithms; Theory of computation → Problems, reductions and completeness; Mathematics of
computing → Graph theory

Keywords and phrases subgraph isomorphism, constraint satisfaction problems, linkage capacity,
exponential-time hypothesis, parameterized complexity, counting complexity

Digital Object Identifier 10.4230/LIPIcs.STACS.2025.28

Related Version Full Version: https://arxiv.org/abs/2410.02606

Funding The research is funded by the European Union (ERC, CountHom, 101077083). Views
and opinions expressed are those of the author(s) only and do not necessarily reflect those of the
European Union or the European Research Council Executive Agency. Neither the European Union
nor the granting authority can be held responsible for them.

Acknowledgements The title was found with the help of a popular LLM. We thank Cornelius Brand
for pointing out a connection to extension complexity.

© Radu Curticapean, Simon Döring, Daniel Neuen, and Jiaheng Wang;
licensed under Creative Commons License CC-BY 4.0

42nd International Symposium on Theoretical Aspects of Computer Science (STACS 2025).
Editors: Olaf Beyersdorff, Michał Pilipczuk, Elaine Pimentel, and Nguyễn Kim Thắng;
Article No. 28; pp. 28:1–28:24

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:radu.curticapean@ur.de
https://www.uni-regensburg.de/informatik-data-science/algorithmen-komplexitaetstheorie/team/prof-dr-radu-curticapean/index.html
https://orcid.org/0000-0001-7201-9905
mailto:sdoering@mpi-inf.mpg.de
https://orcid.org/0009-0002-6667-5257
mailto:dneuen@mpi-inf.mpg.de
https://orcid.org/0000-0002-4940-0318
mailto:pw384@hotmail.com
https://pw384.github.io/
https://orcid.org/0000-0002-5191-545X
https://doi.org/10.4230/LIPIcs.STACS.2025.28
https://arxiv.org/abs/2410.02606
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

28:2 Can You Link Up With Treewidth?

1 Introduction

Over the past two decades, it has been shown that complexity assumptions about exponential-
time problems imply far-reaching lower bounds for polynomial-time [13, 67, 68] and parameter-
ized [26, 56] problems. Among the first such results, it was shown that the Exponential-Time
Hypothesis (ETH) about the Boolean satisfiability problem SAT implies an nΩ(k)-time lower
bound for the seemingly unrelated parameterized problem Clique of detecting k-cliques in
n-vertex graphs [16, 17]. This lower bound solidifies the status of Clique as a canonical
hard problem in parameterized complexity.

Ideally, when reducing Clique to some target problem, we would like to transfer the
nΩ(k)-time lower bound under ETH to the target problem. However, reductions from Clique
often require k gadgets to encode the vertices of a k-clique and Θ(k2) additional gadgets to
verify the edges between all pairs of encoded vertices. As each gadget typically increases the
parameter by at least a constant amount, instances for Clique are transformed into target
instances with a parameter value of Θ(k2) (see, e.g., [26, Section 13.6.3]). This in turn means
that only no(

√
ℓ)-time algorithms can be ruled out for a target problem with parameter ℓ.

Tighter lower bounds could be obtained if we could reduce from a subgraph problem
similar to Clique, but involving k-vertex patterns H with only O(k) rather than Θ(k2)
edges. More specifically, for a fixed graph H, let ColSub(H) be the problem of detecting
H-subgraph copies in graphs G with vertex-colors from V (H) such that every v ∈ V (H)
is mapped to a vertex of color v in G. (This problem can equivalently be interpreted as
a constraint satisfaction problem with variables xv for v ∈ V (H) and arity-2 relations Re

for e ∈ E(H). The domain of xv is the set of v-colored vertices in G.) Many known
parameterized reductions from Clique can be modified to use ColSub(H) as the reduction
source, and a seminal result by Marx [59, Corollary 6.1] shows that ColSub(H) is indeed
hard under ETH for graphs H of maximum degree 3, albeit not with an entirely tight lower
bound:

▶ Theorem 1.1 ([50, 59]). Assuming ETH, there exists a universal constant α > 0 and an
infinite sequence of graphs H1, H2, . . . such that, for all k ∈ N, the graph Hk has k vertices
and maximum degree 3, and ColSub(H) does not admit an O(nα·k/ log k)-time algorithm.

This theorem has become a standard tool to prove almost-tight lower bounds along the
lines of the above reduction scheme, and it has been applied to numerous parameterized
problems from a diverse range of areas [1, 5, 8, 9, 10, 11, 12, 14, 18, 19, 20, 21, 22, 23, 25,
28, 34, 35, 36, 39, 42, 45, 49, 52, 57, 60, 62, 64].1

1.1 Main Concept: Linkage Capacity

In this paper, we provide a new perspective on the seminal Theorem 1.1, which allows us
to prove new results and to obtain a significantly simpler proof, even compared to a recent
simplified version [50]. Our new perspective hinges upon a new graph parameter, the linkage
capacity γ(H) of a graph H. Roughly speaking, this parameter measures how well vertices
of H can be connected by vertex-disjoint paths on specified endpoint pairs.

1 Theorem 1.1 is actually a corollary of a more general result proved by Marx [59]: Assuming ETH, there
exists a universal constant α > 0 such that, for every fixed graph H with treewidth t, the problem
ColSub(H) cannot be solved in time O(nα·t). We defer the discussion of this more general result to
Section 1.3. For most of the applications cited above, the corollary stated in Theorem 1.1 suffices.

R. Curticapean, S. Döring, D. Neuen, and J. Wang 28:3

Known Lower Bound for Cliques

To explain our ideas, let us first sketch the classical nΩ(k)-time lower bound for Clique under
ETH (see, e.g., [26, Theorem 14.21]). The proof is as follows: It is known that, assuming
ETH, the 3-Coloring problem in n-vertex graphs G with maximum degree 4 cannot be
solved in 2o(n) time. If G can be transformed into an equivalent instance X of Clique
with approximately 3n/k vertices, then an no(k)-time algorithm for Clique would imply a
2o(n)-time algorithm for the 3-Coloring problem, contradicting ETH.

To transform G into X, the vertex set V (G) is divided equitably into blocks V1, . . . , Vk.
The vertices of X correspond to the 3-colorings of these blocks, and two vertices in X are
connected by an edge if their colorings are compatible, meaning they come from different
blocks and together form a proper coloring. This way, the k-cliques K in this “compatiblity
graph” X correspond bijectively to valid 3-colorings of G: Indeed, the vertices of K provide a
valid coloring for each block, and the presence of edges between all u, v ∈ V (K) in X ensures
that the union of these partial colorings is a valid coloring of the entire graph G.

From Cliques to General Subgraphs

To show hardness of ColSub(H) with general k-vertex patterns H, we adapt the lower
bound for Clique. First, consider the favorable scenario that the vertices of an input graph
G for 3-Coloring can be split equitably into blocks V1, . . . , Vk, corresponding to the k

vertices of H , such that the edges of G “respect” H : Every edge of G is contained within one
block or between blocks Vi and Vj with ij ∈ E(H). In this scenario, not all pairs of partial
3-colorings need to be checked for compatibility. Indeed, it suffices to check this only between
blocks Vi and Vj with ij ∈ E(H), since no other edges could lead to an incompatibility.

In general however, we cannot assume that an n-vertex graph G of maximum degree
4 can be split equitably such that its edges respect H. To address this, we “re-route” the
edges in G along paths on new vertices (that are placed in the old blocks) and edges that
do respect H. While this eventually yields a graph G′ in which all edges indeed respect H,
it may be possible that most edges are routed on paths of length Ω(k), thus increasing the
block size from n/k back to n. Even if routing via short paths is possible, it may be possible
that a few blocks are hit disproportionally often, leading to the same problem. Both issues
would render a fast algorithm for ColSub(H) useless for the purpose of obtaining a (too)
fast algorithm for 3-Coloring.

Linkage Capacity

The crucial observation is that many patterns H enable a simultaneous “batch-rerouting”
of batches with Ω(k) edges in G; adding all paths for any such a batch to G increases each
block size only by 1. Moreover, as also observed in [50, Theorem 4.2], it is sufficient to
consider batches that are matchings, since G has maximum degree 4 and thus admits a
5-edge-coloring, i.e., a partition of its edges into 5 matchings.

The linkage capacity γ(H) allows us to precisely quantify how well H supports batch-
rerouting of matchings by vertex-disjoint paths. To define it, first let the blowup H ⃝⊗ Jt for
t ∈ N be H with every vertex copied to t clones that form a clique; this is essentially the
maximal graph with block size t whose edges respect H . See also Figure 1. Second, call a set
X in a graph H ′ matching-linked if, for every matching M with vertex-set X, there exist
disjoint u-v-paths in H ′ realizing the edges uv ∈M . Then the linkage capacity γ(H) of a
graph H is the largest c > 0 such that H ⃝⊗ Jt contains a matching-linked set X of size ⌊ct⌋;
this is finite, and we even have γ(H) ≤ k, since |X| ≤ |V (H ⃝⊗ Jt)| = kt.

STACS 2025

28:4 Can You Link Up With Treewidth?

Following the reduction sketch from 3-Coloring given above, and using large matching-
linked sets in blowups H ⃝⊗ Jt to accommodate the vertices of a 3-Coloring instance G,
we establish a conditional lower bound on the complexity of ColSub(H) based on γ(H).
For later use, we also prove a lower bound for the counting version #ColSub(H) under the
counting exponential-time hypothesis #ETH.

▶ Theorem 1.2. Assuming ETH, there exists a universal constant α > 0 such that no
fixed graph H admits an O(nα·γ(H))-time algorithm for ColSub(H). The same holds for
#ColSub(H) under #ETH.

It remains to determine when H has large linkage capacity. For example, if H itself
admits a large matching-linked set, then this translates to its blowups, thus establishing
large γ(H). This is however only a sufficient criterion, even though most of our lower bounds
are based on it. As we investigate in Section 6, the linkage capacity is related to certain
fractional multicommodity flow problems whose relevance in the context of lower bounds for
ColSub(H) under ETH was already identified before [50, 59]. Linkage capacity however
is a much more elementary and more applicable concept. In particular, the restriction to
matchings allows us to connect it to known results on routing with specified terminal pairs
in order to obtain lower bounds on γ(H). This in turn allows us to prove new results under
ETH without much technical effort.

1.2 Applications of Linkage Capacity
With Theorem 1.2 in hand, we show lower bounds on the complexity of the colorful H-
subgraph problem via the linkage capacity γ(H). For this, we enlist the help of communication
network theory [54, 6], random graph theory [15], linear programming [37, 55], and classical
results on connectivity via vertex-disjoint paths from graph theory [58, 66].

A Fully Self-Contained Proof of Theorem 1.1

Our first application of Theorem 1.2 is a significantly simplified and self-contained2 proof
of the seminal Theorem 1.1. The original proof of this theorem by Marx [59] uses highly
nontrivial arguments regarding multicommodity flows as a black box [37]. Even a very recent
simplification [50] still requires the construction of expander graphs and routing algorithms
for such graphs, both of which are highly nontrivial [2, 55].

By approaching the problem through linkage capacity, we observe that expansion is
not required to obtain Theorem 1.1. Instead, we can rely on a very simple construction
of telecommunication networks, credited to a 1964 paper by Beneš [6], then employed at
Bell Labs: A Beneš network contains s = 2ℓ input and output vertices, and k = O(s log s)
vertices in total. For every pairing of inputs to outputs, the network guarantees private data
streams (i.e., vertex-disjoint paths) connecting each input to its specified output. Both the
network construction and routing therein are elementary divide-and-conquer arguments that
feature in undergraduate introduction courses to discrete mathematics [54]. A minuscule
augmentation of this construction gives us k-vertex graphs of maximum degree 4 and linkage
capacity Ω(k/ log k). Combined with Theorem 1.2, this gives a novel proof of Theorem 1.1.

2 We give a self-contained proof starting from the known result that, under ETH, the 3-Coloring
problem requires 2Ω(n) time on 4-regular graphs with n vertices. This can be shown easily from ETH
together with the sparsification lemma.

R. Curticapean, S. Döring, D. Neuen, and J. Wang 28:5

We recently found that graphs with large matching-linked sets have been used in communi-
cation and extension complexity: A paper by Göös, Jain, and Watson [41, Section 3.3] briefly
mentions “bounded-degree butterfly graphs” from an unpublished manuscript on pebble
games by Nordström [61, Proposition 5.2] as an alternative to expanders; this alternative
construction turns out to be precisely that of Beneš.

Tight Lower Bounds for Dense Graphs

Alon and Marx [4, Theorem 1.4] argue that the logarithmic slack in Theorem 1.1 cannot be
overcome by current approaches – including ours. This holds even for patterns H of constant
average rather than maximum degree. More modestly, one can ask for “just slightly” dense
k-vertex patterns H such that ColSub(H) requires nΩ(k) time under ETH.

Indeed, Alon and Marx [4, Theorem 1.5(2)] showed that, for every δ > 0, certain specifically
constructed patterns S with average degree O(kδ) enjoy strong embeddability properties that
entail nΩ(k)-time lower bounds on the colorful S-subgraph problem [4, Theorem 1.8]. For
some problems of interest however, e.g., for counting induced k-vertex patterns [24, 32, 64],
one can only reduce from the colorful H-subgraph problem for some (say, adversarially
chosen) dense pattern H, which may not necessarily be a graph S constructed by Alon and
Marx. This imposes a bottleneck towards tight lower bounds for such problems.

One partial remedy lies in using large clique minors (see, e.g., [27, 64]). Kostochka [53]
showed that every graph H of average degree d contains a Kq-minor with q = Ω(d/

√
log d).

Given a Kq-minor in H , a straightforward reduction yields an nΩ(q)-time lower bound on the
colorful H-subgraph problem under ETH. This implies that every pattern H of linear average
degree Ω(k) requires an exponent of Ω(k/

√
log k) for the colorful H-subgraph problem (see,

e.g., [27, Corollary 2.1]). While this improves upon the lower bound from Theorem 1.1, a
slack of Ω(

√
log k) remains.

Using linkage capacity, we eliminate this slack and obtain a tight lower bound for dense
patterns: Combining two textbook results [30], we show that every pattern H of average
degree d has linkage capacity Ω(d).3 Theorem 1.2 then immediately yields:

▶ Theorem 1.3. Assuming ETH, there exists a universal constant α > 0 such that no fixed
graph H with average degree d admits an O(nα·d)-time algorithm for ColSub(H). The same
holds for #ColSub(H) under #ETH.

This theorem covers the “worst case”, i.e., patterns H of fixed average degree d that
are adversarially chosen so as to minimize γ(H). In particular, for linear average degree,
an nΩ(k) bound under ETH follows. This implies new tight lower bounds for very general
classes of induced pattern counting problems [24, 64] (see Section 7 for details).

In the “average case”, much lower density turns out to be sufficient for an nΩ(k) bound.
Indeed, known results on routing in random graphs [15] imply directly that almost all k-vertex
graphs H with average degree d ∈ Ω(kβ) for constant β > 0 have linkage capacity Θ(k).
Observe that the average degree is that of the specifically constructed patterns S by Alon
and Marx [4]; we show that not only specific patterns, but almost all patterns of polynomial
average degree have an nΩ(k) bound for ColSub(H).

3 This lower bound is asymptotically tight, since worst-case examples like Kd,s−d have linkage capacity
at most 2d + 1. Indeed, a linked set of 2d + 2 vertices would imply a linkage with d + 1 paths in Kd,s−d.
This would in particular imply a matching with d + 1 edges, which clearly does not exist in Kd,s−d.

STACS 2025

28:6 Can You Link Up With Treewidth?

More generally, we show that the linkage capacity of the Erdős-Rényi random graph
G(k, p) for non-degenerate probabilities p is Ω(k/ρ), where ρ = log(k)/ log(kp) is the typical
distance between vertices in G(k, p) [7, 51]. We obtain the following general lower bound:

▶ Theorem 1.4. Assuming ETH, there exists a universal constant α > 0 such that for every
constant ε > 0 and every p ≥ (1 + ϵ) log k/k, the following holds: With high probability,
for an Erdős-Rényi random graph H ∼ G(k, p), the problem ColSub(H) does not admit an
O(nα·k/ρ)-time algorithm. Here, ρ = log(k)/ log(kp) is the typical distance in G(k, p). The
same holds for #ColSub(H) under #ETH.

Note that ρ is the logarithm of k in the base of the average degree kp; this captures the
time needed to concurrently explore all k vertices in a process that branches into kp random
vertices from each vertex. It is intuitively clear that the linkage capacity should be at most
O(k/ρ): Almost all vertex pairs u, v in a random graph require u-v-paths of length ρ, so
we cannot connect more than k/ρ vertex pairs without exhausting k vertices. The bound
from [15] shows that, with high probability, Ω(k/ρ) vertex pairs can be connected.

1.3 Linkage Capacity and Treewidth
Theorems 1.3 and 1.4 are based on lower bounds on the linkage capacity of graphs H in
terms of the density of H. We show that the linkage capacity can also be lower-bounded
as a function of the treewidth of H. As already indicated above, Theorem 1.1 is actually a
corollary of a much more general theorem on large-treewidth graphs shown by Marx [59]:
Assuming ETH, he proved the existence of a universal constant α > 0 such that no fixed
graph H with treewidth t admits an O(nα·t/ log t)-time algorithm for ColSub(H). To obtain
Theorem 1.1 from this general theorem, it suffices to choose a k-vertex expander graph H of
maximum degree 3, since such graphs are known to have treewidth Ω(k).

We recover this theorem by showing that the linkage capacity of a graph H is lower-
bounded by its treewidth, up to the “same” logarithmic factor that is missing in the original
result by Marx [59]. That is, we show the lower bound γ(H) = Ω(t/ log t) for every graph
H of treewidth t. In this proof, we use the same approximate min-cut/max-flow theorem
for multicommodity flows [37, 55] that also appears in [59] as black box. Together with
Theorem 1.2, this indeed recovers the more general theorem of Marx [59] (also for the
counting version #ColSub(H)) with a more transparent proof. Complementing the lower
bound, we use a simple argument about balanced separations in low-treewidth graphs to
show an upper bound of γ(H) = O(t). We stress that both bounds are asymptotically tight.
In particular, it can be shown that k-vertex expander graphs H of maximum degree 3 have
linkage capacity γ(H) = Θ(k/ log k) and treewidth Θ(k).

It is a major open question in parameterized complexity whether the logarithmic loss in
Marx’s lower bound [59] can be avoided for all graphs H. Indeed, the following conjecture
seems to be known (e.g., communicated to us by Daniel Lokshtanov), although we are not
aware of an explicit reference.

▶ Conjecture 1.5 (You Cannot Beat Treewidth). Assuming ETH, there exists a universal
constant α > 0 such that no fixed graph H with treewidth t admits an O(nα·t)-time algorithm
for ColSub(H).

We note that even removing the 1/ log k factor from Theorem 1.1 would constitute a
significant breakthrough. Alon and Marx [4] showed that current approaches cannot be used
to achieve this; this is also true for our techniques. Still, with Theorems 1.3 and 1.4, we
extend the scope where tight bounds for ColSub(H) are known.

R. Curticapean, S. Döring, D. Neuen, and J. Wang 28:7

2 Preliminaries

We write N = {1, 2, 3, . . . } for the natural numbers. For n ∈ N, we write [n] := {1, 2, . . . , n}.
All logarithms are natural unless specified otherwise.

2.1 Basic Definitions
We use standard graph notation [30]. Graphs are finite and undirected, and we write uv for
edges between u and v. A path from u to v is a sequence P = (u = w0, w1, . . . , wℓ = v) of
distinct vertices such that consecutive vertices are adjacent. Slightly abusing notation, we
also interpret P as a path from v to u. For a graph G and X ⊆ V (G), we write G[X] for the
subgraph induced by X and G−X := G[V (G) \X] for the result of deleting X from G.

A colored graph is a triple G = (V, E, c) where c : V (G)→ C is a not necessarily proper
coloring of the vertices. We say G is canonically colored if c is the identity mapping and we
write Gcan for the canonically colored version of G.

Given a “pattern” graph H and “host” graph G, we write #Sub(H → G) for the number of
subgraphs of G that are isomorphic to H . If H and G are colored, only subgraphs preserving
the coloring are counted. For a fixed graph H, the problem #ColSub(H) takes as input a
colored graph G = (V, E, c) with c : V (G)→ V (H), and asks to compute #Sub(Hcan → G),
while its decision version ColSub(H) asks whether #Sub(Hcan → G) ≥ 1.

To analyze the complexity of ColSub(H), we rely on several tools.

▶ Definition 2.1 (Blowup). Given a graph H and an integer t ≥ 1, the blowup graph H ⃝⊗ Jt

contains the vertices v(i) for all v ∈ V (H) and i ∈ [t], and edges

{u(i)v(j) | uv ∈ E(H), i, j ∈ [t]} ∪ {u(i)u(j) | u ∈ V (H), i ̸= j ∈ [t]}.

▶ Remark 2.2. Marx [59] uses the notation H(t) instead of H ⃝⊗ Jt. We choose H ⃝⊗ Jt since
there is no exponential increase in size, but we are rather taking a tensor product of H and
the (t× t) all-ones matrix (usually denoted by Jt) and then turn cloned vertices into cliques.

A multigraph M is a graph that allows parallel edges with the same endpoints, but no
self-loops. The degree degM (v) of a vertex v ∈ V (M) is the number of edges incident to v,
taking multiplicities into account. The average degree of M is d(M) := 2|E(M)|/|V (M)|.

A matching in M is set M ′ ⊆ E(M) of pairwise vertex-disjoint edges. Slightly abusing
notation, we regularly interpret M ′ again as a graph with edge set M ′ and vertices for all
endpoints in M ′. A q-edge coloring of M is a partition of E(M) into q matchings. The
edge-chromatic number of M , denoted by χ′(M), is the minimum number q such that M

admits a q-edge coloring. A theorem by Shannon [65] provides an upper bound on the
edge-chromatic number in terms of the maximum degree, though a looser bound with factor
2 can be achieved by a straightforward greedy algorithm.

▶ Theorem 2.3 ([65]). Every multigraph M of maximum degree d has χ′(M) ≤ ⌊ 3
2 d⌋.

2.2 Linkages
Our hardness proofs for ColSub(H) crucially rely on linkages in graphs.

▶ Definition 2.4 (Linkage and congestion). Given a graph H and a multigraph M with vertex
set X ⊆ V (H), an M -linkage in H is a collection of paths Q = (Puv)uv∈E(M) such that Puv

has endpoints u and v. For r ∈ N, we say that Q is r-congested if, for all w ∈ V (H), at
most r paths Puv ∈ Q contain w. If r = 1, we call Q an uncongested M -linkage.

STACS 2025

28:8 Can You Link Up With Treewidth?

v1

v2

v3

v4

v5

v6

P →
2,5

P ↑
2,5

v
(1)
1

v
(1)
2

v
(1)
3

v
(1)
4

v
(1)
5

v
(1)
6

v
(2)
1

(a) (b)

Figure 1 (a) The grid graph ⊞6. Thick paths depict a 2-congested M -linkage, where M =
{v1v4, v2v5, v3v6} is a matching on the diagonal vertices. (b) The blowup graph ⊞6 ⃝⊗ J2, and an
uncongested M -linkage obtained from the 2-congested M -linkage in ⊞6.

Observe that, if Q is an uncongested M -linkage, then M is necessarily a matching. We
note that we commonly work with uncongested M -linkages. More precisely, we usually
require uncongested M -linkages in blowups of graphs H. Towards this end, it is often
convenient to “project” M back to the base graph H. Let H be a graph and let M be a
multigraph with V (M) ⊆ V (H ⃝⊗ Jq). We define the H-projection of M to be the multigraph
π(M) with vertex set V (π(M)) := {v | v(i) ∈ V (M)} and edge multiset E(π(M)) := {{vw |
v(i)w(j) ∈ E(M), v ̸= w}}.

▶ Lemma 2.5. Let H be a graph and let q ∈ N. Also let M be a matching with V (M) ⊆
V (H ⃝⊗ Jq). If there is a q-congested π(M)-linkage in H, then there is an uncongested
M -linkage in H ⃝⊗ J2q.

Note that a blowup of order 2q rather than q is needed. This is needed since we do not
allow self-loops in the projection, i.e., the projection of M ignores edges contained in the
same block {v(i) | i ∈ [q]}. For technical reasons, we decide to handle those edges separately
at the cost of losing a factor of two.

Proof. Let Q be a q-congested π(M)-linkage in H. We obtain an uncongested M -linkage
Q′ in H ⃝⊗ J2q as follows. For a vertex w ∈ V (H), let P1, . . . , Pt (if any exists) be all paths
in Q that contain w as an internal vertex. We have t ≤ q by definition. We replace w in Pi

with the vertex w(q+i) from the blowup graph H ⃝⊗ J2q. Also, all endpoints of the paths are
replaced in the natural way, i.e., if P has endpoints u and v, and uv is the “projection” of
u(i)v(j) in M , then P gets endpoints u(i) and v(j). Finally, for each edge v(i)v(j) ∈ E(M), we
add the path (v(i), v(j)) to Q′. By the definition of the blowup graph, the resulting collection
Q′ is an uncongested M -linkage in H ⃝⊗ J2q. ◀

The following example illustrates the notion of linkages and the interplay between
congestion and blowups; see Figure 1.

▶ Example 2.6 (Grid graph). Write ⊞ℓ for the grid graph on vertex set [ℓ]× [ℓ]. For every
matching M on the set of diagonal vertices vi = (i, i) for i ∈ [ℓ], we observe that ⊞ℓ

contains a 2-congested M -linkage Q(M) = {Puv}uv∈M . This 2-congested linkage induces an
uncongested M -linkage in ⊞ℓ ⃝⊗ J2 via Lemma 2.5. See also Figure 1.

R. Curticapean, S. Döring, D. Neuen, and J. Wang 28:9

More specifically, given an edge from u = (a, a) to v = (b, b) for a < b, we define Puv

as the concatenation of the path P →
uv on vertices u = (a, a), . . . , (b, a) and the path P ↑

uv

on vertices (b, a), . . . , (b, b) = v. The paths P →
uv for uv ∈M are vertex-disjoint (as distinct

paths have distinct y-coordinates), and so are the paths P ↑
uv for uv ∈ M (having distinct

x-coordinates), so Q(M) is indeed a 2-congested M -linkage.

3 Lower Bounds from Linkage Capacity

The Exponential-Time Hypothesis ETH [43] postulates the existence of a constant α > 0
such that no O(2αn) time algorithm can decide, on input a 3-CNF formula φ with n variables,
whether φ admits a satisfying assignment. Its a priori weaker counting version #ETH
postulates the same lower bound for counting the satisfying assignments of φ [29]. For
both hypotheses, the sparsification lemma [44, 29] rules out such algorithms even under
the additional condition that every variable in φ appears in at most C clauses, for some
constant C ∈ N. By a standard reduction, lower bounds follow for the problem 3-Coloring
of deciding whether an input graph G admits a proper vertex-coloring with 3 colors where
no adjacent vertices receive the same color; see for example [56, Theorem 3.2].

▶ Theorem 3.1. Assuming ETH, there is a constant β > 0 such that 3-Coloring cannot
be solved in time O(2β·n) for n-vertex input graphs G of maximum degree 4. The same holds
for #3-Coloring under #ETH.

This theorem is the foundation for the lower bounds shown in this paper.

3.1 Instances That Fit into Blowups
It is useful for us to generalize 3-Coloring slightly, by allowing edges to either enforce
equality or disequality of their endpoint colors. Since “equality edges” can be contracted
without changing the number of valid assignments, we obtain an immediate way to simulate
edges in a 3-Coloring instance by paths.

▶ Definition 3.2. Given a graph G = (V, E) with a partition E = E= ∪ E ̸=, a proper 3-
assignment is a function a : V → [3] such that a(u) = a(v) for all uv ∈ E=, while a(u) ̸= a(v)
for all uv ∈ E ̸=. The problem 3-Assignment asks to determine the existence of a proper
assignment on input (G, E=, E ̸=), while #3-Assignment asks to count them.

It is possible to convert instances G for 3-Assignment into instances X for ColSub(H).
Moreover, if G fits into a moderately small blowup of H, then X is only of moderately
exponential size. This can be shown by a simple “split-and-list” reduction that follows the
sketch given in the introduction for Clique.

▶ Lemma 3.3. Let H be a fixed k-vertex graph with canonical vertex-coloring. Given a
subgraph G of H ⃝⊗ Jt for t ∈ N, a colored graph X on k · 3t vertices can be computed in
9t · poly(k, t) time such that #Sub(H → X) equals the number of proper 3-assignments in G.

Proof. Suppose V (H) = [k] and consider the partition of V (G) into Vw = {w(1), . . . , w(t)}
for w ∈ [k]. Define Xw for w ∈ [k] as the set of all proper 3-assignments to G[Vw].

For w, w′ ∈ [k], we call two 3-assignments a ∈ Xw and a′ ∈ Xw′ compatible if their union
is a proper 3-assignment of G[Vw ∪ Vw′]. Let us define

AX := {(a1, . . . , ak) ∈ X1 × . . .×Xk | ∀ww′ ∈ E(H) : aw and aw′ are compatible}
AG := {a : V (G)→ [3] | a is proper 3-assignment of G}

STACS 2025

28:10 Can You Link Up With Treewidth?

We observe that the map a 7→ (a1, . . . , ak) from AG to AX , where aw is the restriction
of a to Vw, is a bijection. Indeed, in the image of a ∈ AG under this map, aw and aw′ are
compatible for all w, w′ ∈ E(H). Conversely, given (a1, . . . , ak) ∈ AX , recall that every
edge uv ∈ E(G) satisfies u ∈ Vw and v ∈ Vw′ for some w, w′ ∈ [k] with (a) w = w′, or (b)
ww′ ∈ E(H). In case (a), since aw is proper, the endpoints of uv receive a proper assignment
under a. In case (b), because the union of aw and aw′ is a proper 3-assignment of G[Vw∪Vw′],
the endpoints of uv receive a proper assignment under a. Thus a ∈ AG.

Finally, the graph X is defined on vertices
⋃

w∈[k] Xw, where each vertex in Xw is colored
by w ∈ [k]. An edge is present between a ∈ Xw and b ∈ Xw′ if and only if ww′ ∈ E(H) and a

and b are compatible. The (colored) subgraphs S of X isomorphic to H correspond to tuples
in AX . Indeed, V (S) corresponds to a tuple (a1, . . . , ak) ∈ X1 × . . .×Xk, and the presence
of edges of H in S implies that aw and aw′ are compatible for ww′ ∈ E(H). Since |Xw| ≤ 3t

for all w ∈ [k], the graph X can be computed by brute-force in 9t · poly(k, t) time. ◀

3.2 The Linkage Capacity of a Graph
First, we need to define a term for vertex sets X in graphs that can be paired up arbitrarily
via paths in H. This resembles Diestel’s [30] notion of linkedness, see Section 5.1, which
however requires this property for the entire graph H.

▶ Definition 3.4 (Matching-linked set). Given a graph H, we say that X ⊆ V (H) is matching-
linked if H contains an uncongested M -linkage for every matching M on vertex set X.

▶ Remark 3.5. We stress that the condition in the definition is crucially required even if the
edges of M are not contained in E(H): Only the endpoints of M need to be contained in X.

A simple edge-coloring argument, also used in Lemma 3.11, shows that large matching-
linked sets X in blowups H ⃝⊗ Jt suffice to embed graphs G of maximum degree ∆ into
H ⃝⊗ J2∆·t. Thus, large matching-linked sets X in blowups of H are a useful “resource”
attainable from H that allows us to use Lemma 3.3.

Not all such sets X however need to originate from matching-linked sets in H itself.
Consider a set X in H that just fails to be matching-linked, as in Example 2.6, in the
sense that X still admits M -linkages of congestion 2 in H. Such M -linkages then induce
uncongested M -linkages in H ⃝⊗ J2. As our goal is to embed a 3-Coloring instance G into a
moderately large blowup of H, such a constant-factor loss would be acceptable. This flexibility
is captured by the linkage capacity, which measures the maximum size of matching-linked
sets in blowups of H relative to the blowup order.

▶ Definition 3.6 (Linkage capacity). The linkage capacity γ(H) is the supremum over c > 0
such that H ⃝⊗ Jt contains a matching-linked set X with |X| = ⌊ct⌋ for all large enough t ∈ N.

Every graph H trivially satisfies 1 ≤ γ(H) ≤ |V (H)|. We show below that large matching-
linked sets in H lift into blowups, establishing high linkage capacity γ(H) – but as mentioned
above, even a matching-linked set in a small blowup of H suffices.

▶ Lemma 3.7. Let H be a graph and suppose H ⃝⊗ Jq for q ∈ N contains a matching-linked
set X. Then γ(H) ≥ 1

3 · |X|/q.

Proof. The proof rests on the following claim.

▷ Claim 3.8. Let H ′ be a graph and suppose X ′ ⊆ V (H ′) is a matching-linked set. Then
X ′

t := {v(i) | v ∈ X ′, 1 ≤ i ≤ t/3} is matching-linked in H ′ ⃝⊗ Jt for every t ∈ N.

R. Curticapean, S. Döring, D. Neuen, and J. Wang 28:11

Proof. Let M be a matching on X ′
t and let M ′ := π(M) be the H ′-projection of M . Observe

that M ′ has maximum degree at most t/3, so χ′(M ′) ≤ t/2 by Theorem 2.3. Hence, the
multigraph M can be partitioned into r ≤ t/2 matchings M1, . . . Mr on X ′. Since X ′ is
a matching-linked set, for every Mi, there is an uncongested Mi-linkage Qi in H ′. So
Q :=

⋃
i∈[r] Qi is a r-congested M ′-linkage in H ′, and there is an uncongested M -linkage in

H ′ ⃝⊗ Jt by Lemma 2.5. ◁

Let c < 1
3 · |X|/q. Then there is t0 ∈ N and c′ < 1

3 · |X| such that

c′ · ⌊t/q⌋ ≥ c · t (1)

for all t ≥ t0. Also, there is some ℓ0 ∈ N such that

|X| · ⌊ℓ/3⌋ ≥ ⌊c′ℓ⌋ (2)

for all ℓ ≥ ℓ0. Now let t ≥ max(t0, ℓ0 · q) and let ℓ := ⌊t/q⌋ ≥ ℓ0 and consider the graph
H ′ := H ⃝⊗ Jq. By Claim 3.8 the graph H ′ ⃝⊗ Jℓ contains a matching-linked set X ′

ℓ with

|X ′
ℓ| ≥ |X| · ⌊ℓ/3⌋

(1)
≥ ⌊c′ℓ⌋

(2)
≥ ⌊ct⌋.

Since (H⃝⊗Jq)⃝⊗Jℓ is a subgraph of H⃝⊗Jt, we conclude that H⃝⊗Jt contains a matching-linked
set of size ⌊ct⌋, thus proving the lemma. ◀

As a concrete example, let us use Example 2.6 to bound the linkage capacity of grids.

▶ Lemma 3.9. For the ℓ-by-ℓ grid graph ⊞ℓ, we have γ(⊞ℓ) ≥ ℓ/6.

Proof. Suppose V (⊞ℓ) = [ℓ]2. By Example 2.6, the set X := {(i, i)(1) | i ∈ [ℓ]} is matching-
linked in the blowup ⊞ℓ ⃝⊗ J2. The lemma follows by invoking Lemma 3.7. ◀

3.3 Fitting Instances into Blowups via Linkage Capacity
Having introduced linkage capacity and its key properties, we now use it to embed graphs
G into blowups H ⃝⊗ Jt with t = O(n/γ(H)). If we can show that γ(H) is large, then ETH
implies strong lower bounds for ColSub(H) via Theorem 3.1 and Lemma 3.3.

A minor constructivity issue arises: Some techniques for lower-bounding γ(H) do not
necessarily yield efficient algorithms for finding linkages in blowups of H. Thus, it could a
priori be possible for G to embed into H⃝⊗Jt, yet we cannot efficiently find an embedding. This
concern is resolved by known algorithms for graphs of bounded neighborhood diversity [40,
Theorem 3.7] (a self-contained argument is given in the full version):

▶ Theorem 3.10. Let f(k) = 3kk+2. Given a k-vertex graph H and t ≥ 2 as input, a
matching-linked set X of maximum size in H ⃝⊗ Jt can be found in O(tf(k)) time. Given
additionally a matching-linked set X in H ⃝⊗ Jt and a matching M with vertex set X, an
M -linkage in H ⃝⊗ Jt can be found in O(tf(k)) time.

We can now turn to our main lemma. In the following, given graphs G and G′ without
loops or multi-edges, a G-linkage Q = (Puv)uv∈E(G) in G′ is a topological G-minor model in
G′ if paths Puv and Pu′v′ for uv, u′v′ ∈ E(G) in Q intersect only at endpoints. In particular,
such intersections can occur only if uv and u′v′ share a common vertex. We refer to the
subgraph of G′ induced by Q as the image of Q.

STACS 2025

28:12 Can You Link Up With Treewidth?

(a) (b)

Figure 2 (a) A graph G that fails to be embedded into the blowup ⊞3 ⃝⊗ J2 due to the colored
edges, which are partitioned into three matchings. (b) An embedding of G into ⊞3 ⃝⊗ J3 as a
topological minor, where each colored edge gets routed via new vertices from the blowup.

▶ Lemma 3.11. Let H be a fixed k-vertex graph and let f(k) = 3kk+2. Then there is an
O(nf(k)) time algorithm that, given an instance G for 3-Coloring with n vertices and
maximum degree 4, outputs an instance for 3-Assignment with graph G′ such that
1. G′ is the image of a topological G-minor in H ⃝⊗ Jt for t = 8⌈n/γ(H)⌉, and
2. the proper 3-colorings of G correspond bijectively to the proper 3-assignments of G′.

Proof. Let t′ := ⌈n/γ(H) · 15/14⌉. Then 7t′ ≤ t whenever t′ ≥ 14. Definition 3.6 implies
that, if t′ is large enough then H ⃝⊗ Jt′ contains a matching-linked set X of size n.4 In
O(nf(k)) time, Theorem 3.10 finds such a set X. Fix V (G) = X in the following.

The straightforward greedy algorithm yields a 7-edge-coloring E(G) = M1 ∪ . . . ∪M7 in
time O(n). As X is matching-linked, the graph H ⃝⊗ Jt′ contains an uncongested Mi-linkage
Qi for every individual i ∈ [7]. Each linkage can be found O(nf(k)) time via Theorem 3.10.
These linkages together induce a topological G-minor model in H ⃝⊗ J7t′ (see Figure 2):
Consider V (H ⃝⊗ J7t′) to be partitioned into 7 layers such that layer i ∈ [7] contains the
vertices v(j) with v ∈ V (H) and j ∈ (t′ − 1)i + [t′]. By placing non-endpoint vertices from
the linkages Q1, . . . , Q7 into different layers and keeping all endpoints in the first layer, we
obtain a topological G-minor model Q in H ⃝⊗ J7t′ . Let us write G′ for the image of Q.

We finalize the construction of the 3-Assignment instance by specifying a partition
of E(G′) into E= and E ̸=: For each path Puv in Q, place one arbitrary edge into E ̸= and
all other edges into E=. Then the proper 3-assignments to G′ correspond to the proper
3-colorings of G, since contracting all equality edges in G′ (which does not change the number
of 3-assignments) yields an isomorphic copy of G on disequality edges. ◀

Combining the above, the proof of Theorem 1.2 is complete.

Proof of Theorem 1.2. By Theorem 3.1, ETH implies a constant β > 0 such that no
O(2β·n)-time algorithm solves 3-Coloring on n-vertex graphs G of maximum degree 4. We
set α = β/26 and derive a contradiction from an O(sα·γ)-time algorithm for ColSub(H) on
s-vertex input graphs, where H is any fixed graph with γ = γ(H). Moreover, we only need
to consider the case where γ ≥ 26/β, because otherwise the theorem is trivial.

4 If t′ is not large enough, then n is bounded by a function of H. We can then compute the number q of
3-colorings of G in constant time and output a dummy instance G′ with q proper 3-assignments.

R. Curticapean, S. Döring, D. Neuen, and J. Wang 28:13

v1 w1

v2 w2

v3 w3

v4 w4

v5 w5

v6 w6

v7 w7

v8 w8

v↑
1 w↑

1

v↓
1 w↓

1

v↑
2 w↑

2

v↓
2 w↓

2

v↑
3 w↑

3

v↓
3 w↓

3

v↑
4 w↑

4

v↓
4 w↓

4

B↓
2

B↑
2

v8 w8

v7 w7

v6 w6

v5 w5

v4 w4

v3 w3

v2 w2

v1 w1

(a) (b)

Figure 3 (a) Recursive construction of Beneš network B3 with 8 inputs and 8 outputs from
two copies of B2. (b) The augmented Beneš network B̌3 is obtained by adding a matching to the
outputs of B3, shown as curved edges. Thick paths indicate an M -linkage in B̌3 for the matching
M = {v1v7, v2v3, v4v6, v5v8} on the input vertices.

In the following, let G be an instance for 3-Coloring of maximum degree 4. In time
O(nf(k)), Lemma 3.11 computes from G an equivalent instance for 3-Assignment with a
graph G′ ⊆ H ⃝⊗ Jt for t = 8⌈n/γ⌉. In time 9t · poly(k, t), Lemma 3.3 then yields a graph
X with |V (X)| ≤ k · 3t such that 3-assignments in G′ correspond to colorful H-copies in X.
The overall running time to construct X is

O(nf(k)) + 98⌈n/γ⌉ · poly(k, t) = O(226n/γ) = O(2β·n). (3)

In the last step, we use the aforementioned assumption γ ≥ 26/β. Then use the assumed
O(sβ/26·γ)-time algorithm for ColSub(H) on s-vertex input graphs. Its running time on
the graph X constructed before, with s ≤ k · 3t vertices, is

O((k · 3t)β/26·γ) = O(38⌈n/γ⌉·β/26·γ) = O(3β/2·n) = O(2β·n). (4)

Combining Equations (3) and (4), we conclude that both constructing X and solving
ColSub(H) on X can be achieved in overall time O(2β·n). This contradicts Theorem 3.1.
The proof for the counting version is analogous. ◀

4 Switching Networks

In this section, we consider a construction by Beneš [6] that yields k-vertex graphs with
degree 4 and a linkage capacity of Ω(k/ log k). In particular, this allows us to complete the
fully self-contained proof of Theorem 1.1.

The Beneš network Bℓ for ℓ ∈ N has 2ℓ distinguished input and output vertices. In our
terms, for every matching M between the inputs and outputs, the network Bℓ admits an
uncongested M -linkage. By “short-circuiting” the outputs, we obtain an augmented Beneš
network B̌ℓ, which allows routing paths from inputs back to inputs. In our terms, the inputs
form a matching-linked set, since every matching M on the inputs admits an uncongested
M -linkage in B̌ℓ.

STACS 2025

28:14 Can You Link Up With Treewidth?

Algorithm 1 Construct plain Beneš networks.

procedure Benes(ℓ) returns Bℓ with s = 2ℓ in-/outputs
if ℓ = 1 then return K2,2 with in-/outputs vi, wi for i ∈ [2]
else

B↑ ← Benes(ℓ− 1) with in-/outputs v↑
i , w↑

i for i ∈ [s/2]
B↓ ← Benes(ℓ− 1) with in-/outputs v↓

i , w↓
i for i ∈ [s/2]

B ← vertex-disjoint union of B↑ and B↓

for i ∈ [s/2] do add to B

all four edges between {vi, vi+s/2} and {v↑
i , v↓

i },
all four edges between {wi, wi+s/2} and {w↑

i , w↓
i }

return B with in-/outputs vi, wi for i ∈ [s]

▶ Definition 4.1 (Beneš networks). The plain Beneš network Bℓ for ℓ ∈ N is the graph
with distinguished inputs vi and outputs wi, for i ∈ [s] with s = 2ℓ, returned by Benes(ℓ)
in Algorithm 1. The augmented Beneš network B̌ℓ is obtained from Bℓ by adding an edge
between outputs w2i−1 and w2i, for each i ∈ [s/2].

A visualization can be found in Figure 3. Both Bℓ and B̌ℓ clearly have maximum degree 4.
Let T (s) for s = 2ℓ count the vertices in the s-input Beneš network Bℓ or B̌ℓ. By construction,
we have T (s) = 2 · T (s/2) + 2s, and thus T (s) = 2s log2 s. Beneš networks are designed to
admit uncongested linkages between the inputs and outputs [6]:

▶ Theorem 4.2. For ℓ ∈ N, the set V of inputs in B̌ℓ is matching-linked, with |V | = s = 2ℓ.
Moreover, given as input ℓ ∈ N and a matching M on V , an uncongested M -linkage in B̌ℓ

can be computed in O(s log s) time.

With Lemma 3.7, we obtain:

▶ Corollary 4.3. For s = 2ℓ, we have γ(B̌ℓ) ≥ s/3.

By combining Theorem 1.2 and Corollary 4.3, we can give an elementary proof of
Theorem 1.1 (in a slightly modified form; see Remark 4.5).

▶ Theorem 4.4. Assuming ETH, there exists a universal constant α > 0 and an infinite
sequence of graphs H1, H2, . . . such that, for all k ∈ N, the graph Hk has k vertices and
maximum degree 4, and ColSub(Hk) does not admit an O(nα·k/ log k)-time algorithm.

Proof. For every k ∈ N, pick ℓ ∈ N maximal such that |V (B̌ℓ)| ≤ k. Let Hk be obtained
from B̌ℓ by adding isolated vertices until the number of vertices is k. Since |V (B̌ℓ)| = 2ℓ+1ℓ,
we conclude that 2ℓ+1ℓ ≤ k < 2ℓ+2(ℓ + 1) which implies that k/ log2 k < 2ℓ+2. So

γ(Hk) ≥ γ(B̌ℓ) ≥ 2ℓ/3 >
1
12 · k/ log2 k

by Corollary 4.3. Now the theorem follows from Theorem 1.2. ◀

▶ Remark 4.5. Observe that Theorem 1.1 provides a sequence of graphs of maximum degree 3
whereas Theorem 4.4 “only” guarantees maximum degree 4. However, the augmented Beneš
networks B̌ℓ can easily be modified to have maximum degree 3 by replacing each vertex with
an edge, so becomes , and all other relevant properties remain the same.

R. Curticapean, S. Döring, D. Neuen, and J. Wang 28:15

For readers familiar with expander graphs, let us also remark that the Beneš network
Bℓ with s = 2ℓ does not have constant expansion, as witnessed by its “upper half” U that
contains the vertices of B↑

ℓ−1 and all inputs and outputs with indices i ∈ [s/2]: We have
|U | = s log2 s, but the 2s neighbors of U are all contained in the first two and last two
columns of Bℓ. This also holds for the augmented B̌ℓ.

Universality of augmented Beneš networks
As an independent point of interest, let us remark that blowups of Beneš networks are universal
for bounded-degree graphs with respect to topological minor containment: Mimicking the
proof of Lemma 3.11, every n-vertex graph of maximum degree ∆ can be found as a topological
minor in the 2∆-blowup of an augmented Beneš network with n inputs.

For comparison, every graph that contains every n-vertex graph of maximum degree ∆
as a subgraph must necessarily have Ω(n2−2/∆) edges [3]. Under the more relaxed notion of
universality via topological minor containment, Beneš networks show that universal graphs
with only O(∆2 · n log n) vertices and edges are achievable.

▶ Theorem 4.6. For every n, ℓ ∈ N, every graph G of maximum degree ∆ and n ≤ 2ℓ vertices
is a topological minor of B̌ℓ ⃝⊗ J2∆−1. Moreover, on input G, a topological G-minor model in
B̌ℓ ⃝⊗ J2∆−1 can be computed in polynomial time.

Proof. By Theorem 4.2, the inputs in B̌ℓ form a matching-linked set X of size s = 2ℓ ≥ n.
We view V (G) ⊆ X and decompose E(G) into 2∆− 1 matchings via the greedy edge-coloring
algorithm. For each matching M , we use Theorem 4.2 to find an M -linkage Q in B̌ℓ and place
the internal vertices of Q in a private layer of B̌ℓ⃝⊗ J2∆−1, as in the proof of Lemma 3.11. The
union of the linkages constructed this way is a topological G-minor model in B̌ℓ⃝⊗ J2∆−1. ◀

5 Patterns of Superlinear Density

We turn our attention to dense patterns, i.e., k-vertex patterns H of average degree d(H) ∈
ω(1). Unlike the sparse setting discussed earlier, a linkage capacity of Θ(k) is achievable in
the dense case, which implies tight lower bounds for ColSub(H) under ETH.

5.1 Worst Case
We show that, for every graph H, the average degree d(H) = 2|E(H)|/|V (H)| is a lower
bound on the linkage capacity of H , up to a constant factor. First, we use Mader’s Theorem
[58, Corollary 1] to extract a highly connected subgraph from H. A graph H is ℓ-connected
if |V (H)| > ℓ and H −X is connected for every set X ⊆ V (H) with |X| < ℓ.

▶ Theorem 5.1 (see [30, Theorem 1.4.3]). Every graph H with d(H) ≥ 4ℓ contains a
(ℓ + 1)-connected subgraph H ′ with d(H ′) > d(H)− 2ℓ.

Second, within the scope of this subsection only, we say that a graph H is ℓ-globally linked
if |V (H)| ≥ 2ℓ and each set X ⊆ V (H) of size at most 2ℓ is matching-linked in H . (In graph
theory, this notion is usually just called ℓ-linked – see, e.g., [30]. In our paper, we refer to it as
ℓ-globally linked to distinguish it from our previous definitions of linkedness.) This definition
implies in particular that H contains a matching-linked set X with |X| ≥ 2ℓ. Thomas and
Wollan [66, Corollary 1.2] show that high connectivity implies high global linkedness.

▶ Theorem 5.2 (see [30, Theorem 3.5.3]). Let H be a graph and ℓ ∈ N. If H is 2ℓ-connected
and d(H) ≥ 16ℓ, then H is ℓ-globally linked.

STACS 2025

28:16 Can You Link Up With Treewidth?

Together, these two theorems imply a lower bound on the linkage capacity that is linear
in the average degree.

▶ Lemma 5.3. For every graph H, we have γ(H) ≥ d(H)/48.

Proof. Theorem 5.1 yields a ⌈d(H)/4⌉-connected subgraph H ′ of H with d(H ′) > d(H)/2.
Theorem 5.2 shows that H ′ is ⌈d(H)/32⌉-globally linked and thus contains a matching-linked
set X of size at least d(H)/16. Then Lemma 3.7 shows that γ(H) ≥ γ(H ′) ≥ d(H)/48,
where the first inequality uses that H ′ is subgraph of H. ◀

Now, Theorem 1.3 follows from Theorem 1.2 and Lemma 5.3.

5.2 Average Case
To show the hardness in the average case, we consider the linkage capacity of the Erdős-Rényi
random graph. Let G(k, p) denote the distribution over k-vertex graphs where each edge is
included independently with probability p. We need the following theorem adapted from
[15], where “with high probability” refers to a probability tending to 1 for k →∞.

▶ Theorem 5.4. Let ε > 0 be a constant. For all p ≥ (1 + ε) log(k)/k the following holds:
With high probability, for a random graph H ∼ G(k, p), every matching M on V (H) can
be partitioned into r = O(log k/ log kp) matchings M1, . . . , Mr such that H contains an
uncongested Mi-linkage for all i ∈ [r].

The original theorem statement and proof in [15, Corollary 1.1] are concerned with the
fixed-sized random graph model G(k, m), and only deals with even k. But on the other hand,
they give a stronger statement concerning the algorithmic efficiency of finding the desired
partition, that it can be obtained with high probability by a random partition. A proof of
the version stated here can be found in the full version.

The last theorem can be used to find large matching-linked sets inside a proper blowup
of a random graph, which implies a high linkage capacity by Lemma 3.7.

▶ Lemma 5.5. Let ε > 0 be a constant. For all p ≥ (1 + ε) log(k)/k, the linkage capacity of
H ∼ G(k, p) is at least Ω(k log(kp)

log k) with high probability.

Proof. Let r be the bound specified in Theorem 5.4 and consider the blowup graph H ⃝⊗ J2r.
Let X := {v(1) | v ∈ V (H)}. We show that X is matching-linked in H ⃝⊗ J2r with high
probability, and the lemma then follows using Lemma 3.7.

Let M ′ be a matching on X. By the definition of X, its H-projection, M := π(M ′),
is also a matching on V (H). We invoke Theorem 5.4 on the graph H with respect to
the matching M to obtain a partition M1, . . . , Mr, such that, for all i ∈ [r] there is an
uncongested Mi-linkage Qi in H . Then Q =

⋃
i∈[r] Qi is an r-congested M -linkage in H . So

there is an uncongested M ′-linkage in H ⃝⊗ J2r by Lemma 2.5. ◀

Now, Theorem 1.4 follows from Theorem 1.2 and Lemma 5.5.

6 Large-Treewidth Patterns and Concurrent Flows

In this section, we relate the linkage capacity of a graph to its treewidth. Towards this
end, we first connect the linkage capacity to certain (fractional) multicommodity flows, and
afterward rely on existing connections between such flows and treewidth [59, Section 3.1].

R. Curticapean, S. Döring, D. Neuen, and J. Wang 28:17

More specifically, given a graph H and W ⊆ V (H), we consider the following multicom-
modity flow problem. For every pair (u, v) ∈ W 2, there is a distinct commodity uv that
can be sent in arbitrary fractional amounts along different paths from u to v in H . The goal
is to determine whether all pairs (u, v) can concurrently send an ϵ amount of uv to each
other, while the total flow through every vertex w ∈ V (H) is at most some globally fixed
capacity C. Formally, this is captured by the following LP:

▶ Definition 6.1. Let H be a graph. For u, v ∈ V (H), write PH(uv) for the set of paths
from u to v in H; the set PH(uv) for u = v contains only the path (u). Given W ⊆ V (H),
the concurrent flow LP (for H and W) with vertex capacity C > 0 asks to

maximize ε

subject to
∑

p∈PH (uv)

xp ≥ ε ∀u, v ∈W

∑
u,v∈W

∑
p∈PH (uv) : w∈p

xp ≤ C ∀w ∈ V (G)

xp ≥ 0 ∀u, v ∈W, p ∈ PH(uv).

We write ε(H, W) to denote the optimal LP value for capacity C = 1.

While an optimal solution for C = 1 may assign fractional values to the variables xp,
every solution can be scaled to an integral solution, increasing the required capacity and the
optimal LP value by the same factor. This integral solution then induces a congested model
of the multigraph Kt,(q) in H, where t := |W | and q ∈ N is suitably chosen, and Kt,(q) has t

vertices and contains each possible (undirected) edge with multiplicity q.

▶ Lemma 6.2. Let H be a graph and W ⊆ V (H) be a set of size t. Then there is some
D ∈ N such that q := D · ε(H, W) is an integer and H contains a D-congested Kt,(q)-linkage,
where we set V (Kt,(q)) = W .

Proof. Let D be the common denominator of the values for all xp in a (rational) optimal
solution of the concurrent flow LP for H and W with capacity C = 1. Then the LP with
capacity D has an integral solution of value q := D · ε(H, W). Now, consider the multiset
Q which, for every distinct u, v ∈W , contains every path p ∈ PH(uv) with multiplicity xp.
Then Q is a D-congested Kt,(q)-linkage where V (Kt,(q)) = W . ◀

Using this congested Kt,(q)-linkage, we can establish lower bounds on the linkage capacity
of H. Here, the following lemma is useful, since it allows us to route arbitrary multigraphs
of bounded degree via short paths in this Kt,(q).

▶ Lemma 6.3. Let q ∈ N and let M be a multigraph with V (M) = [t] and maximum degree
at most qt. Then there is an M-linkage Q = (Puv)uv∈E(M) in Kt such that every edge
e ∈ E(Kt) appears in at most 18q paths in Q.

We can conclude that a large value of the concurrent flow LP implies large linkage
capacity.

▶ Theorem 6.4. Let H be a graph and W ⊆ V (H). Then γ(H) ≥ ε(H, W) · |W |2/108.

Proof. Let D ∈ N be the integer obtained from Lemma 6.2 and set D′ := 18 · D. Let
q := D · ε(H, W) which, by Lemma 6.2, is an integer. Observe that ε(H, W) ≤ 1/|W |, so
D ≥ q · |W |. Finally, let s := q · |W |.

STACS 2025

28:18 Can You Link Up With Treewidth?

Consider the graph H ⃝⊗ J2D′ and let X := {w(i) | w ∈ W, i ∈ [s]}. We show that X

is matching-linked in H ⃝⊗ J2D′ . Let M be a matching on X. Let M̂ := π(M) be the
H-projection of M . Observe that deg

M̂
(w) ≤ s = q · |W | for all w ∈W .

Lemma 6.3 finds an M̂ -linkage Q = (Puv)
uv∈E(M̂) in Kt,(q) (where V (Kt,(q)) = W) such

that every edge of Kt,(q) appears in at most 18 of those paths. Moreover, by Lemma 6.2,
the graph H contains a D-congested Kt,(q)-linkage Q′ = (P ′

uv)uv∈E(Kt,(q)). We construct
a D′-congested M̂ -linkage Q̂ = (P̂uv)

uv∈E(M̂) in H as follows. For every uv ∈ E(M̂) we
obtain P̂uv from Puv by substituting P ′

e for every edge e appearing on Puv. Clearly, Q̂ is
D′-congested since D′ = 18 ·D. So there is an uncongested M -linkage in H⃝⊗ J2D′ by Lemma
2.5.

Overall, we get that X is matching-linked in H ⃝⊗ J2D′ . So

γ(G) ≥ 1
3 ·
|X|

2 ·D′ = 1
3 ·

s · |W |
36 ·D = 1

108 ·
q · |W |2

D
= 1

108 · ε(H, W) · |W |2

by Lemma 3.7. ◀

To bound the linkage capacity by the treewidth, we combine Theorem 6.4 with the
following lemma that is (implicitly) shown by Marx [59].

▶ Lemma 6.5 ([59]). Let H be a graph of treewidth t. Then there is a set W ⊆ V (H) such
that |W | = t and ε(H, W) = Ω(1/(t log t)).

The basic idea to prove the lemma is to consider a set W ⊆ V (H) of size t that does
not admit balanced separators; large treewidth guarantees such a set (see [59, Lemma 3.2]).
Then, using results from [37, 55], we obtain a bound on the optimal value of the dual LP,
which gives ε(H, W) = Ω(1/(t log t)) (see [59, Proof of Lemma 3.6]).

▶ Corollary 6.6. Let H be a graph of treewidth t. Then γ(H) = Ω(t/ log t).

In particular, combining Theorem 1.2 and Corollary 6.6 allows us to recover the complexity
lower bounds on ColSub(H) proved in [59].

We note without a proof that the bound in Corollary 6.6 is asymptotically optimal, since
k-vertex 3-regular expander graphs have treewidth Θ(k) and linkage capacity Θ(k/ log k)
(see also [4]). We complement Corollary 6.6 with the following upper bound on the linkage
capacity.

▶ Lemma 6.7. Let H be a graph of treewidth t. Then γ(H) ≤ 3(t + 1).

Proof. We first observe that tw(H ⃝⊗ Jq) ≤ q(t + 1)− 1 for every q ∈ N. Indeed, given a tree
decomposition (T, β) of H, we can obtain a tree decomposition for H ⃝⊗ Jq by adding all
copies of v ∈ V (H) to all bags containing v.

Now, suppose towards a contradiction that γ(H) > 3(t + 1). Then there is some q ∈ N
such that H⃝⊗ Jq contains a matching-linked set X ⊆ V (H⃝⊗ Jq) such that |X| = 3q(t+1)+3.
By [26, Lemma 7.20] there is a balanced separation for X, i.e., there are sets A, B ⊆ V (H⃝⊗ Jq)
such that (1) A∪B = V (H ⃝⊗ Jq), (2) |A∩B| ≤ q(t + 1), (3) there is no edge between A \B

and B \A, and (4) |X ∩A| ≤ 2
3 |X| and |X ∩B| ≤ 2

3 |X|. Hence, |X \A| ≥ 1
3 |X| = q(t + 1) + 1

and |X \ B| ≥ 1
3 |X| = q(t + 1) + 1. Observe that the two sets X \ A and X \ B are

disjoint (since A ∪B = V (H ⃝⊗ Jq)). So there is a matching M on the vertex set X (but not
necessarily in H ⃝⊗ Jq) containing q(t + 1) + 1 edges M ′ ⊆ M with one endpoint in X \ A

and the other in X \B. Now consider an uncongested M -linkage in H ⃝⊗ Jq (which exists
since X is matching-linked). Then every edge e ∈ M ′ is realized by a path that needs to
visit a vertex from A ∩ B. However, this is a contradiction since |M ′| = q(t + 1) + 1 and
|A ∩B| ≤ q(t + 1). ◀

The upper bound is also asymptotically optimal by Lemma 3.9.

R. Curticapean, S. Döring, D. Neuen, and J. Wang 28:19

7 Implications for Counting Small Induced Subgraphs

We conclude with an application of our lower bounds for the complexity of counting induced
k-vertex subgraphs. A k-vertex graph invariant Φ is an isomorphism-invariant map from
k-vertex graphs H to the real numbers. We consider Φ to be fixed and wish to sum Φ(G[X])
over all k-vertex subsets X of an input graph G to count, e.g., the planar or Hamiltonian
induced k-vertex subgraphs of G. Formally, for a k-vertex graph invariant Φ, the problem
#IndSub(Φ) takes as input a graph G, and asks to compute

#IndSub(Φ→ G) :=
∑

X⊆V (G)

Φ(G[X]).

This problem was first studied in its parameterized version (where k is part of the input) by
Jerrum and Meeks [46, 47, 48] and received significant attention in recent years [23, 24, 31,
32, 33, 38, 63, 64].

To determine the complexity of #IndSub(Φ), recent works usually analyze the alternating
enumerator to build a generic reduction from #ColSub(H). Formally, the alternating
enumerator of a graph invariant Φ on a graph H is defined as5

Φ̂(H) = (−1)|E(H)|
∑

S⊆E(H)

(−1)|S| Φ(H[S]),

where H[S] has vertex set V (H) and edge set S. Now, suppose H is a k-vertex graph with
Φ̂(H) ̸= 0. Then the problem #ColSub(H) can be reduced to #IndSub(Φ) in polynomial
time (see, e.g., [24]). Hence, we also obtain new lower bounds for #IndSub(Φ) assuming
Φ̂(H) ̸= 0 for suitable graphs H . In particular, we obtain the following result via Theorem 1.3,
which improves over the corresponding lower bound in [24, Theorem 3.2(a)] (see also [31]
and [32, Lemma 2.2]).

▶ Theorem 7.1. There is a universal constant αind > 0 and an integer N0 ≥ 1 such that for
all numbers k, ℓ ≥ 1, the following holds: If Φ is a k-vertex graph invariant and there exists
a graph H with Φ̂(H) ̸= 0 and E(H) ≥ k · ℓ ≥ N0, then #IndSub(Φ) cannot be solved in
time O(nαind·ℓ) unless ETH fails.

As pointed out in Section 1.2, the weaker version, which only rules out an exponent of
αind · ℓ/

√
log ℓ, has been used to derive various lower bounds for specific types of invariants

in [24, 32, 64]. All these lower bounds are improved by our new results. Let us give one
concrete example, which improves over [24, Corollary 5.1]. For a k-vertex graph invariant Φ,
we write supp(Φ) for the set of all graphs H with V (H) = [k] and Φ(H) ̸= 0.

▶ Corollary 7.2. For every 0 < ε < 1 there are N0, δ > 0 such that the following holds. Let
k ≥ N0 and let Φ be a k-vertex graph invariant with 1 ≤ | supp(Φ)| ≤ (2− ε)(

k
2). Then no

algorithm solves #IndSub(Φ) in time O(nδ·k) unless ETH fails.

We stress that the exponent in the lower bound of Corollary 7.2 is asymptotically optimal.
For the other implications of Theorem 7.1, we refer the reader to the latest arXiv version

of [24]. Indeed, following the first publication of this work, the latest version of [24] contains
updated lower bounds for #IndSub(Φ) based on Theorem 7.1. However, let us stress that
these improved lower bounds should (at least in part) be attributed to this work.

5 The precise formula is not relevant here, but we still give it for completeness.

STACS 2025

28:20 Can You Link Up With Treewidth?

References

1 Akanksha Agrawal, Fahad Panolan, Saket Saurabh, and Meirav Zehavi. Simultaneous feedback
edge set: A parameterized perspective. Algorithmica, 83(2):753–774, 2021. doi:10.1007/
S00453-020-00773-9.

2 Noga Alon. Explicit expanders of every degree and size. Comb., 41(4):447–463, 2021. doi:
10.1007/S00493-020-4429-X.

3 Noga Alon, Michael R. Capalbo, Yoshiharu Kohayakawa, Vojtech Rödl, Andrzej Rucinski,
and Endre Szemerédi. Universality and tolerance. In 41st Annual Symposium on Foundations
of Computer Science, FOCS 2000, 12-14 November 2000, Redondo Beach, California, USA,
pages 14–21. IEEE Computer Society, 2000. doi:10.1109/SFCS.2000.892007.

4 Noga Alon and Dániel Marx. Sparse balanced partitions and the complexity of subgraph
problems. SIAM J. Discret. Math., 25(2):631–644, 2011. doi:10.1137/100812653.

5 Saeed A. Amiri, Stephan Kreutzer, Dániel Marx, and Roman Rabinovich. Routing with
congestion in acyclic digraphs. Inf. Process. Lett., 151, 2019. doi:10.1016/J.IPL.2019.
105836.

6 Václav E. Beneš. Permutation groups, complexes, and rearrangeable connecting networks.
Bell System Tech. J., 43(4):1619–1640, 1964. doi:10.1002/j.1538-7305.1964.tb04102.x.

7 Béla Bollobás. The diameter of random graphs. Trans. Amer. Math. Soc., 267(1):41–52, 1981.
doi:10.2307/1998567.

8 Édouard Bonnet, Sergio Cabello, Bojan Mohar, and Hebert Pérez-Rosés. The inverse
voronoi problem in graphs I: hardness. Algorithmica, 82(10):3018–3040, 2020. doi:
10.1007/S00453-020-00716-4.

9 Edouard Bonnet, Panos Giannopoulos, and Michael Lampis. On the parameterized complexity
of red-blue points separation. J. Comput. Geom., 10(1):181–206, 2019. doi:10.20382/JOCG.
V10I1A7.

10 Édouard Bonnet, Yoichi Iwata, Bart M. P. Jansen, and Lukasz Kowalik. Fine-grained
complexity of k-OPT in bounded-degree graphs for solving TSP. In Michael A. Bender, Ola
Svensson, and Grzegorz Herman, editors, 27th Annual European Symposium on Algorithms,
ESA 2019, September 9-11, 2019, Munich/Garching, Germany, volume 144 of LIPIcs, pages
23:1–23:14. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, 2019. doi:10.4230/LIPICS.
ESA.2019.23.

11 Édouard Bonnet and Tillmann Miltzow. Parameterized hardness of art gallery problems. ACM
Trans. Algorithms, 16(4):42:1–42:23, 2020. doi:10.1145/3398684.

12 Édouard Bonnet and Florian Sikora. The graph motif problem parameterized by the structure
of the input graph. Discret. Appl. Math., 231:78–94, 2017. doi:10.1016/J.DAM.2016.11.016.

13 Karl Bringmann. Fine-grained complexity theory (tutorial). In Rolf Niedermeier and Christophe
Paul, editors, 36th International Symposium on Theoretical Aspects of Computer Science,
STACS 2019, March 13-16, 2019, Berlin, Germany, volume 126 of LIPIcs, pages 4:1–4:7.
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, 2019. doi:10.4230/LIPICS.STACS.2019.
4.

14 Karl Bringmann, László Kozma, Shay Moran, and N. S. Narayanaswamy. Hitting set for
hypergraphs of low VC-dimension. In Piotr Sankowski and Christos D. Zaroliagis, editors,
24th Annual European Symposium on Algorithms, ESA 2016, August 22-24, 2016, Aarhus,
Denmark, volume 57 of LIPIcs, pages 23:1–23:18. Schloss Dagstuhl – Leibniz-Zentrum für
Informatik, 2016. doi:10.4230/LIPICS.ESA.2016.23.

15 Andrei Z. Broder, Alan M. Frieze, Stephen Suen, and Eli Upfal. An efficient algorithm for the
vertex-disjoint paths problem in random graphs. In Éva Tardos, editor, Proceedings of the
Seventh Annual ACM-SIAM Symposium on Discrete Algorithms, 28-30 January 1996, Atlanta,
Georgia, USA, pages 261–268. ACM/SIAM, 1996. URL: http://dl.acm.org/citation.cfm?
id=313852.314072.

https://doi.org/10.1007/S00453-020-00773-9
https://doi.org/10.1007/S00453-020-00773-9
https://doi.org/10.1007/S00493-020-4429-X
https://doi.org/10.1007/S00493-020-4429-X
https://doi.org/10.1109/SFCS.2000.892007
https://doi.org/10.1137/100812653
https://doi.org/10.1016/J.IPL.2019.105836
https://doi.org/10.1016/J.IPL.2019.105836
https://doi.org/10.1002/j.1538-7305.1964.tb04102.x
https://doi.org/10.2307/1998567
https://doi.org/10.1007/S00453-020-00716-4
https://doi.org/10.1007/S00453-020-00716-4
https://doi.org/10.20382/JOCG.V10I1A7
https://doi.org/10.20382/JOCG.V10I1A7
https://doi.org/10.4230/LIPICS.ESA.2019.23
https://doi.org/10.4230/LIPICS.ESA.2019.23
https://doi.org/10.1145/3398684
https://doi.org/10.1016/J.DAM.2016.11.016
https://doi.org/10.4230/LIPICS.STACS.2019.4
https://doi.org/10.4230/LIPICS.STACS.2019.4
https://doi.org/10.4230/LIPICS.ESA.2016.23
http://dl.acm.org/citation.cfm?id=313852.314072
http://dl.acm.org/citation.cfm?id=313852.314072

R. Curticapean, S. Döring, D. Neuen, and J. Wang 28:21

16 Jianer Chen, Benny Chor, Mike Fellows, Xiuzhen Huang, David W. Juedes, Iyad A. Kanj,
and Ge Xia. Tight lower bounds for certain parameterized NP-hard problems. Inf. Comput.,
201(2):216–231, 2005. doi:10.1016/J.IC.2005.05.001.

17 Jianer Chen, Xiuzhen Huang, Iyad A. Kanj, and Ge Xia. Strong computational lower
bounds via parameterized complexity. J. Comput. Syst. Sci., 72(8):1346–1367, 2006. doi:
10.1016/J.JCSS.2006.04.007.

18 Rajesh Chitnis, Andreas E. Feldmann, and Pasin Manurangsi. Parameterized approximation
algorithms for bidirected Steiner network problems. ACM Trans. Algorithms, 17(2):12:1–12:68,
2021. doi:10.1145/3447584.

19 Rajesh Hemant Chitnis, Andreas E. Feldmann, Mohammad T. Hajiaghayi, and Dániel Marx.
Tight bounds for planar strongly connected Steiner subgraph with fixed number of terminals
(and extensions). SIAM J. Comput., 49(2):318–364, 2020. doi:10.1137/18M122371X.

20 Vincent Cohen-Addad, Éric C. de Verdière, Dániel Marx, and Arnaud de Mesmay. Almost
tight lower bounds for hard cutting problems in embedded graphs. J. ACM, 68(4):30:1–30:26,
2021. doi:10.1145/3450704.

21 Jason Crampton, Robert Crowston, Gregory Z. Gutin, Mark Jones, and Maadapuzhi S.
Ramanujan. Fixed-parameter tractability of workflow satisfiability in the presence of se-
niority constraints. In Michael R. Fellows, Xuehou Tan, and Binhai Zhu, editors, Fron-
tiers in Algorithmics and Algorithmic Aspects in Information and Management, Third Joint
International Conference, FAW-AAIM 2013, Dalian, China, June 26-28, 2013. Proceed-
ings, volume 7924 of Lecture Notes in Computer Science, pages 198–209. Springer, 2013.
doi:10.1007/978-3-642-38756-2_21.

22 Radu Curticapean, Holger Dell, and Thore Husfeldt. Modular counting of subgraphs: Match-
ings, matching-splittable graphs, and paths. In Petra Mutzel, Rasmus Pagh, and Grzegorz
Herman, editors, 29th Annual European Symposium on Algorithms, ESA 2021, September 6-8,
2021, Lisbon, Portugal (Virtual Conference), volume 204 of LIPIcs, pages 34:1–34:17. Schloss
Dagstuhl – Leibniz-Zentrum für Informatik, 2021. doi:10.4230/LIPICS.ESA.2021.34.

23 Radu Curticapean, Holger Dell, and Dániel Marx. Homomorphisms are a good basis for
counting small subgraphs. In Hamed Hatami, Pierre McKenzie, and Valerie King, editors,
Proceedings of the 49th Annual ACM SIGACT Symposium on Theory of Computing, STOC
2017, Montreal, QC, Canada, June 19-23, 2017, pages 210–223. ACM, 2017. doi:10.1145/
3055399.3055502.

24 Radu Curticapean and Daniel Neuen. Counting small induced subgraphs: Hardness via Fourier
analysis. In Yossi Azar and Debmalya Panigrahi, editors, Proceedings of the 2025 ACM-SIAM
Symposium on Discrete Algorithms, SODA 2025, New Orleans, LA, USA, January 12-15,
2025, pages 3677–3695. SIAM, 2025. doi:10.1137/1.9781611978322.122.

25 Radu Curticapean and Mingji Xia. Parameterizing the permanent: Genus, apices, minors,
evaluation mod 2k. In Venkatesan Guruswami, editor, IEEE 56th Annual Symposium on
Foundations of Computer Science, FOCS 2015, Berkeley, CA, USA, 17-20 October, 2015,
pages 994–1009. IEEE Computer Society, 2015. doi:10.1109/FOCS.2015.65.

26 Marek Cygan, Fedor V. Fomin, Lukasz Kowalik, Daniel Lokshtanov, Dániel Marx, Marcin
Pilipczuk, Michal Pilipczuk, and Saket Saurabh. Parameterized Algorithms. Springer, 2015.
doi:10.1007/978-3-319-21275-3.

27 Mina Dalirrooyfard and Virginia Vassilevska Williams. Induced cycles and paths are harder
than you think. In 63rd IEEE Annual Symposium on Foundations of Computer Science,
FOCS 2022, Denver, CO, USA, October 31 - November 3, 2022, pages 531–542. IEEE, 2022.
doi:10.1109/FOCS54457.2022.00057.

28 Argyrios Deligkas, Eduard Eiben, and Tiger-Lily Goldsmith. Parameterized complexity of
hotelling-downs with party nominees. In Luc De Raedt, editor, Proceedings of the Thirty-First
International Joint Conference on Artificial Intelligence, IJCAI 2022, Vienna, Austria, 23-29
July 2022, pages 244–250. ijcai.org, 2022. doi:10.24963/IJCAI.2022/35.

STACS 2025

https://doi.org/10.1016/J.IC.2005.05.001
https://doi.org/10.1016/J.JCSS.2006.04.007
https://doi.org/10.1016/J.JCSS.2006.04.007
https://doi.org/10.1145/3447584
https://doi.org/10.1137/18M122371X
https://doi.org/10.1145/3450704
https://doi.org/10.1007/978-3-642-38756-2_21
https://doi.org/10.4230/LIPICS.ESA.2021.34
https://doi.org/10.1145/3055399.3055502
https://doi.org/10.1145/3055399.3055502
https://doi.org/10.1137/1.9781611978322.122
https://doi.org/10.1109/FOCS.2015.65
https://doi.org/10.1007/978-3-319-21275-3
https://doi.org/10.1109/FOCS54457.2022.00057
https://doi.org/10.24963/IJCAI.2022/35

28:22 Can You Link Up With Treewidth?

29 Holger Dell, Thore Husfeldt, Dániel Marx, Nina Taslaman, and Martin Wahlen. Exponential
time complexity of the permanent and the tutte polynomial. ACM Trans. Algorithms,
10(4):21:1–21:32, 2014. doi:10.1145/2635812.

30 Reinhard Diestel. Graph Theory. Springer Berlin, 5 edition, 2017. doi:10.1007/
978-3-662-53622-3.

31 Julian Dörfler, Marc Roth, Johannes Schmitt, and Philip Wellnitz. Counting induced subgraphs:
An algebraic approach to #W[1]-hardness. Algorithmica, 84(2):379–404, 2022. doi:10.1007/
S00453-021-00894-9.

32 Simon Döring, Dániel Marx, and Philip Wellnitz. Counting small induced subgraphs with edge-
monotone properties. In Bojan Mohar, Igor Shinkar, and Ryan O’Donnell, editors, Proceedings
of the 56th Annual ACM Symposium on Theory of Computing, STOC 2024, Vancouver, BC,
Canada, June 24-28, 2024, pages 1517–1525. ACM, 2024. doi:10.1145/3618260.3649644.

33 Simon Döring, Dániel Marx, and Philip Wellnitz. From graph properties to graph parameters:
Tight bounds for counting on small subgraphs. In Yossi Azar and Debmalya Panigrahi,
editors, Proceedings of the 2025 ACM-SIAM Symposium on Discrete Algorithms, SODA
2025, New Orleans, LA, USA, January 12-15, 2025, pages 3637–3676. SIAM, 2025. doi:
10.1137/1.9781611978322.121.

34 Eduard Eiben, Gregory Z. Gutin, Philip R. Neary, Clément Rambaud, Magnus Wahlström,
and Anders Yeo. Preference swaps for the stable matching problem. Theor. Comput. Sci.,
940(Part):222–230, 2023. doi:10.1016/J.TCS.2022.11.003.

35 Eduard Eiben, Dusan Knop, Fahad Panolan, and Ondrej Suchý. Complexity of the Steiner
network problem with respect to the number of terminals. In Rolf Niedermeier and Christophe
Paul, editors, 36th International Symposium on Theoretical Aspects of Computer Science,
STACS 2019, March 13-16, 2019, Berlin, Germany, volume 126 of LIPIcs, pages 25:1–25:17.
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, 2019. doi:10.4230/LIPICS.STACS.2019.
25.

36 David Eppstein and Daniel Lokshtanov. The parameterized complexity of finding point
sets with hereditary properties. In Christophe Paul and Michal Pilipczuk, editors, 13th
International Symposium on Parameterized and Exact Computation, IPEC 2018, August
20-24, 2018, Helsinki, Finland, volume 115 of LIPIcs, pages 11:1–11:14. Schloss Dagstuhl –
Leibniz-Zentrum für Informatik, 2018. doi:10.4230/LIPICS.IPEC.2018.11.

37 Uriel Feige, MohammadTaghi Hajiaghayi, and James R. Lee. Improved approximation
algorithms for minimum weight vertex separators. SIAM J. Comput., 38(2):629–657, 2008.
doi:10.1137/05064299X.

38 Jacob Focke and Marc Roth. Counting small induced subgraphs with hereditary properties.
SIAM J. Comput., 53(2):189–220, 2024. doi:10.1137/22M1512211.

39 Fedor V. Fomin, Fahad Panolan, Maadapuzhi S. Ramanujan, and Saket Saurabh. On
the optimality of pseudo-polynomial algorithms for integer programming. Math. Program.,
198(1):561–593, 2023. doi:10.1007/S10107-022-01783-X.

40 Robert Ganian. Using neighborhood diversity to solve hard problems. CoRR, abs/1201.3091,
2012. arXiv:1201.3091.

41 Mika Göös, Rahul Jain, and Thomas Watson. Extension complexity of independent set
polytopes. SIAM J. Comput., 47(1):241–269, 2018. doi:10.1137/16M109884X.

42 Jiong Guo, Sepp Hartung, Rolf Niedermeier, and Ondrej Suchý. The parameterized complexity
of local search for TSP, more refined. Algorithmica, 67(1):89–110, 2013. doi:10.1007/
S00453-012-9685-8.

43 Russell Impagliazzo and Ramamohan Paturi. On the complexity of k-SAT. J. Comput. Syst.
Sci., 62(2):367–375, 2001. doi:10.1006/JCSS.2000.1727.

44 Russell Impagliazzo, Ramamohan Paturi, and Francis Zane. Which problems have strongly
exponential complexity? J. Comput. Syst. Sci., 63(4):512–530, 2001. doi:10.1006/JCSS.2001.
1774.

https://doi.org/10.1145/2635812
https://doi.org/10.1007/978-3-662-53622-3
https://doi.org/10.1007/978-3-662-53622-3
https://doi.org/10.1007/S00453-021-00894-9
https://doi.org/10.1007/S00453-021-00894-9
https://doi.org/10.1145/3618260.3649644
https://doi.org/10.1137/1.9781611978322.121
https://doi.org/10.1137/1.9781611978322.121
https://doi.org/10.1016/J.TCS.2022.11.003
https://doi.org/10.4230/LIPICS.STACS.2019.25
https://doi.org/10.4230/LIPICS.STACS.2019.25
https://doi.org/10.4230/LIPICS.IPEC.2018.11
https://doi.org/10.1137/05064299X
https://doi.org/10.1137/22M1512211
https://doi.org/10.1007/S10107-022-01783-X
https://arxiv.org/abs/1201.3091
https://doi.org/10.1137/16M109884X
https://doi.org/10.1007/S00453-012-9685-8
https://doi.org/10.1007/S00453-012-9685-8
https://doi.org/10.1006/JCSS.2000.1727
https://doi.org/10.1006/JCSS.2001.1774
https://doi.org/10.1006/JCSS.2001.1774

R. Curticapean, S. Döring, D. Neuen, and J. Wang 28:23

45 Klaus Jansen, Stefan Kratsch, Dániel Marx, and Ildikó Schlotter. Bin packing with fixed number
of bins revisited. J. Comput. Syst. Sci., 79(1):39–49, 2013. doi:10.1016/J.JCSS.2012.04.004.

46 Mark Jerrum and Kitty Meeks. The parameterised complexity of counting connected subgraphs
and graph motifs. J. Comput. Syst. Sci., 81(4):702–716, 2015. doi:10.1016/J.JCSS.2014.11.
015.

47 Mark Jerrum and Kitty Meeks. Some hard families of parameterized counting problems. ACM
Trans. Comput. Theory, 7(3):11:1–11:18, 2015. doi:10.1145/2786017.

48 Mark Jerrum and Kitty Meeks. The parameterised complexity of counting even and odd
induced subgraphs. Comb., 37(5):965–990, 2017. doi:10.1007/S00493-016-3338-5.

49 Mark Jones, Daniel Lokshtanov, Maadapuzhi S. Ramanujan, Saket Saurabh, and Ondrej
Suchý. Parameterized complexity of directed Steiner tree on sparse graphs. SIAM J. Discret.
Math., 31(2):1294–1327, 2017. doi:10.1137/15M103618X.

50 Karthik C. Srikanta, Dániel Marx, Marcin Pilipczuk, and Uéverton S. Souza. Conditional
lower bounds for sparse parameterized 2-CSP: A streamlined proof. In Merav Parter and Seth
Pettie, editors, 2024 Symposium on Simplicity in Algorithms, SOSA 2024, Alexandria, VA,
USA, January 8-10, 2024, pages 383–395. SIAM, 2024. doi:10.1137/1.9781611977936.35.

51 Victor Klee and David Larman. Diameters of random graphs. Canadian J. Math., 33(3):618–
640, 1981. doi:10.4153/CJM-1981-050-1.

52 Dusan Knop, Simon Schierreich, and Ondrej Suchý. Balancing the spread of two opinions
in sparse social networks (student abstract). In Thirty-Sixth AAAI Conference on Artificial
Intelligence, AAAI 2022, Thirty-Fourth Conference on Innovative Applications of Artificial
Intelligence, IAAI 2022, The Twelveth Symposium on Educational Advances in Artificial
Intelligence, EAAI 2022 Virtual Event, February 22 - March 1, 2022, pages 12987–12988.
AAAI Press, 2022. doi:10.1609/AAAI.V36I11.21630.

53 Alexandr V. Kostochka. Lower bound of the hadwiger number of graphs by their average
degree. Comb., 4(4):307–316, 1984. doi:10.1007/BF02579141.

54 Eric Lehman, F. Thomson Leighton, and Albert R. Meyer. Beneš Network, june 30 2021.
[Online; accessed 2024-09-26]. URL: https://eng.libretexts.org/@go/page/48364.

55 Frank T. Leighton and Satish Rao. Multicommodity max-flow min-cut theorems and their use
in designing approximation algorithms. J. ACM, 46(6):787–832, 1999. doi:10.1145/331524.
331526.

56 Daniel Lokshtanov, Dániel Marx, and Saket Saurabh. Lower bounds based on the exponential
time hypothesis. Bull. EATCS, 105:41–72, 2011. URL: http://eatcs.org/beatcs/index.
php/beatcs/article/view/92.

57 Daniel Lokshtanov, Maadapuzhi S. Ramanujan, Saket Saurabh, and Meirav Zehavi. Pa-
rameterized complexity and approximability of directed odd cycle transversal. In Shuchi
Chawla, editor, Proceedings of the 2020 ACM-SIAM Symposium on Discrete Algorithms,
SODA 2020, Salt Lake City, UT, USA, January 5-8, 2020, pages 2181–2200. SIAM, 2020.
doi:10.1137/1.9781611975994.134.

58 Wolfgang Mader. Existenz n-fach zusammenhängender Teilgraphen in Graphen genügend
großer Kantendichte. Abhandlungen aus dem Mathematischen Seminar der Universität Ham-
burg, 37:86–97, 1972. doi:10.1007/BF02993903.

59 Dániel Marx. Can you beat treewidth? Theory Comput., 6(1):85–112, 2010. doi:10.4086/
toc.2010.v006a005.

60 Jesper Nederlof and Céline M. F. Swennenhuis. On the fine-grained parameterized complexity
of partial scheduling to minimize the makespan. Algorithmica, 84(8):2309–2334, 2022. doi:
10.1007/S00453-022-00970-8.

61 Jakob Nordström. New wine into old wineskins: A survey of some pebbling classics with
supplemental results. Technical report, KTH Royal Institute of Technology, 2015.

62 Marcin Pilipczuk and Magnus Wahlström. Directed multicut is W[1]-hard, even for four
terminal pairs. ACM Trans. Comput. Theory, 10(3):13:1–13:18, 2018. doi:10.1145/3201775.

STACS 2025

https://doi.org/10.1016/J.JCSS.2012.04.004
https://doi.org/10.1016/J.JCSS.2014.11.015
https://doi.org/10.1016/J.JCSS.2014.11.015
https://doi.org/10.1145/2786017
https://doi.org/10.1007/S00493-016-3338-5
https://doi.org/10.1137/15M103618X
https://doi.org/10.1137/1.9781611977936.35
https://doi.org/10.4153/CJM-1981-050-1
https://doi.org/10.1609/AAAI.V36I11.21630
https://doi.org/10.1007/BF02579141
https://eng.libretexts.org/@go/page/48364
https://doi.org/10.1145/331524.331526
https://doi.org/10.1145/331524.331526
http://eatcs.org/beatcs/index.php/beatcs/article/view/92
http://eatcs.org/beatcs/index.php/beatcs/article/view/92
https://doi.org/10.1137/1.9781611975994.134
https://doi.org/10.1007/BF02993903
https://doi.org/10.4086/toc.2010.v006a005
https://doi.org/10.4086/toc.2010.v006a005
https://doi.org/10.1007/S00453-022-00970-8
https://doi.org/10.1007/S00453-022-00970-8
https://doi.org/10.1145/3201775

28:24 Can You Link Up With Treewidth?

63 Marc Roth and Johannes Schmitt. Counting induced subgraphs: A topological approach to
#W[1]-hardness. Algorithmica, 82(8):2267–2291, 2020. doi:10.1007/S00453-020-00676-9.

64 Marc Roth, Johannes Schmitt, and Philip Wellnitz. Counting small induced subgraphs
satisfying monotone properties. In Sandy Irani, editor, 61st IEEE Annual Symposium on
Foundations of Computer Science, FOCS 2020, Durham, NC, USA, November 16-19, 2020,
pages 1356–1367. IEEE, 2020. doi:10.1109/FOCS46700.2020.00128.

65 Claude E. Shannon. A theorem on coloring the lines of a network. J. Math. Physics, 28(1-
4):148–152, 1949. doi:10.1002/sapm1949281148.

66 Robin Thomas and Paul Wollan. An improved linear edge bound for graph linkages. Eur. J.
Comb., 26(3-4):309–324, 2005. doi:10.1016/J.EJC.2004.02.013.

67 Virginia V. Williams. Hardness of easy problems: Basing hardness on popular conjectures such
as the strong exponential time hypothesis (invited talk). In Thore Husfeldt and Iyad A. Kanj,
editors, 10th International Symposium on Parameterized and Exact Computation, IPEC 2015,
September 16-18, 2015, Patras, Greece, volume 43 of LIPIcs, pages 17–29. Schloss Dagstuhl –
Leibniz-Zentrum für Informatik, 2015. doi:10.4230/LIPICS.IPEC.2015.17.

68 Virginia V. Williams. On some fine-grained questions in algorithms and complexity. In
Proceedings of the International Congress of Mathematicians – Rio de Janeiro 2018. Vol. IV.
Invited lectures, pages 3447–3487. World Sci. Publ., Hackensack, NJ, 2018. doi:10.1142/
9789813272880_0188.

https://doi.org/10.1007/S00453-020-00676-9
https://doi.org/10.1109/FOCS46700.2020.00128
https://doi.org/10.1002/sapm1949281148
https://doi.org/10.1016/J.EJC.2004.02.013
https://doi.org/10.4230/LIPICS.IPEC.2015.17
https://doi.org/10.1142/9789813272880_0188
https://doi.org/10.1142/9789813272880_0188

Noisy (Binary) Searching: Simple, Fast and Correct
Dariusz Dereniowski #

Faculty of Electronics, Telecommunications and Informatics,
Gdańsk University of Technology, Poland

Aleksander Łukasiewicz #

Institute of Computer Science, University of Wrocław, Poland
Computer Science Institute of Charles University, Prague, Czech Republic

Przemysław Uznański #

Institute of Computer Science, University of Wrocław, Poland

Abstract
This work considers the problem of the noisy binary search in a sorted array. The noise is modeled
by a parameter p that dictates that a comparison can be incorrect with probability p, independently
of other queries. We state two types of upper bounds on the number of queries: the worst-case
and expected query complexity scenarios. The bounds improve the ones known to date, i.e., our
algorithms require fewer queries. Additionally, they have simpler statements, and work for the full
range of parameters. All query complexities for the expected query scenarios are tight up to lower
order terms. For the problem where the target prior is uniform over all possible inputs, we provide
an algorithm with expected complexity upperbounded by (log2 n + log2 δ−1 + 3)/I(p), where n is
the domain size, 0 ≤ p < 1/2 is the noise ratio, and δ > 0 is the failure probability, and I(p) is
the information gain function. As a side-effect, we close some correctness issues regarding previous
work. Also, en route, we obtain new and improved query complexities for the search generalized to
arbitrary graphs. This paper continues and improves the lines of research of Burnashev–Zigangirov
[Prob. Per. Informatsii, 1974], Ben-Or and Hassidim [FOCS 2008], Gu and Xu [STOC 2023], and
Emamjomeh-Zadeh et al. [STOC 2016], Dereniowski et al. [SOSA@SODA 2019].

2012 ACM Subject Classification Theory of computation → Design and analysis of algorithms

Keywords and phrases Graph Algorithms, Noisy Binary Search, Query Complexity, Reliability

Digital Object Identifier 10.4230/LIPIcs.STACS.2025.29

Related Version Full Version: https://arxiv.org/abs/2107.05753

Funding Dariusz Dereniowski: Partially supported by National Science Centre (Poland) grant
number 2018/31/B/ST6/00820.
Aleksander Łukasiewicz : Partially supported by the ERC-CZ project LL2406 of the Ministry of
Education of Czech Republic.
Przemysław Uznański: Partially supported by National Science Centre (Poland) grant number
2018/31/B/ST6/00820.

1 Introduction

1.1 Problem statement
An adaptive search problem for a general search domain S and an arbitrary adversary can
be formulated as follows. The goal is to design an adaptive algorithm, also referred to as a
strategy, that finds a target initially unknown to the algorithm. Adaptivity means that the
subsequent actions of the algorithm depend on the answers already received. The process
is divided into steps: in each step the algorithm performs a query and receives an answer.
Each query-reply pair provides new information to the algorithm: it learns that some part of
the search space S ⊆ S does not contain the target while its complement does. From both

© Dariusz Dereniowski, Aleksander Łukasiewicz, and Przemysław Uznański;
licensed under Creative Commons License CC-BY 4.0

42nd International Symposium on Theoretical Aspects of Computer Science (STACS 2025).
Editors: Olaf Beyersdorff, Michał Pilipczuk, Elaine Pimentel, and Nguyễn Kim Thắng;
Article No. 29; pp. 29:1–29:18

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:deren@eti.pg.edu.pl
https://orcid.org/0000-0003-4000-4818
mailto:aleksander.lukasiewicz@cs.uni.wroc.pl
https://orcid.org/0000-0003-1808-8330
mailto:puznanski@cs.uni.wroc.pl
https://orcid.org/0000-0002-8652-0490
https://doi.org/10.4230/LIPIcs.STACS.2025.29
https://arxiv.org/abs/2107.05753
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

29:2 Noisy (Binary) Searching: Simple, Fast and Correct

theoretical and practical viewpoints, it is of interest to develop error-resilient algorithms for
such a search process. This can be modeled, for example, by the presence of a probabilistic
noise: each reply can be erroneous with some fixed probability 0 < p < 1

2 , independently.
The performance of a strategy is measured by the number of performed queries.

In this work, we focus on searching with probabilistic noise in two particular types of
search domains. The first is a sorted array (which, in the absence of noise, would lead to the
classical binary search problem). Formally, for a linear order v1 < · · · < vn with an unknown
position of the target v∗ = vj , each query selects an element vi, and the algorithm learns
from the reply whether v∗ < vi or v∗ ≥ vi.

The second search domain we consider is a simple, undirected graph. More precisely, for
an input graph G and an unknown target vertex v∗, each query selects some vertex v. The
answer either states that v is the target or provides a neighbor u of v, that lies on a shortest
path from v to v∗.

Searching through a graph can be viewed as a certain generalization of the former setting,
as searching a linear order resembles searching a graph that is a path. However, it is important
to note that the two models are not directly comparable, as in a graph search on a path
there are three possible replies to a query, whereas in a search through an array, the answers
are binary.

1.2 Overview of our results
To complete the search process, we need to learn roughly log2 n bits of information (the
identifier of the target). We can extract approximately I(p) = 1−H(p) bits of information
from each reply, where H(p) = −p log2 p− (1− p) log2(1− p) is the binary entropy function.
Therefore we expect the optimal algorithm to use around log2 n

I(p) queries. In an idealized
scenario where there always exists a query that perfectly bisects the search space, regardless
of the answer, one could achieve this bound. However, perfect bisection is typically not
possible due to the discrete nature of the search space, which causes algorithms to lose some
lower-order terms.

Our results are summarized in Table 1. We use the following naming convention: if we
are interested in the worst-case analysis of the query complexity, we refer to it as the worst
case setting throughout the paper. Conversely, if we analyze the expected number of queries
made by an algorithm, we call this the expected query complexity setting. We note that in
each setting the process is randomized due to answers of the adversary. Additionally, some
of our algorithms use random bits as well.

The binary search algorithms referenced in the theorems below are detailed in Section 3:
Algorithms 16 and 13 correspond to Theorems 1 and 3, respectively. Interestingly, both
algorithms are essentially the same and differ only by the stopping condition.

▶ Theorem 1. For any noise parameter 0 < p < 1
2 and a confidence threshold 0 < δ < 1,

there exists a binary search algorithm that after the expected number of
1

I(p)
(
log2 n + log2 δ−1 + 3

)
queries finds the target in any linear order correctly with probability at least 1− δ, given that
the target position is chosen uniformly at random.

Using a previously known reduction from adversarial target placement to the uniformly
random choice of a target ([3], see Lemma 10), we automatically obtain the following result
for the adversarial version of the problem.

D. Dereniowski, A. Łukasiewicz, and P. Uznański 29:3

▶ Corollary 2. For any noise parameter 0 < p < 1
2 and a confidence threshold 0 < δ < 1,

there exists a binary search algorithm that after the expected number of

1
I(p)

(
log2 n +O(log δ−1)

)
queries finds the target in any linear order correctly with probability at least 1− δ.

▶ Theorem 3. For any noise parameter 0 < p < 1
2 and a confidence threshold 0 < δ < 1,

there exists a binary search algorithm for any linear order that after

1
I(p)

(
log2 n +O(

√
log n log δ−1) +O(log δ−1)

)
queries returns the target correctly with probability at least 1− δ.

For graph searching we obtain two analogous results (detailed in Section 4): Algorithms 23
and 25 correspond to Theorems 5 and 4, respectively.

▶ Theorem 4. For an arbitrary connected graph G, a noise parameter 0 < p < 1
2 and a

confidence threshold 0 < δ < 1, there exists an graph searching algorithm that after the
expected number of at most

1
I(p)

(
log2 n +O(log log n) +O(log δ−1)

)
queries returns the target correctly with probability at least 1− δ.

▶ Theorem 5. For an arbitrary connected graph G, a noise parameter 0 < p < 1
2 and a

confidence threshold 0 < δ < 1, there exists an graph searching algorithm that after

1
I(p)

(
log2 n +O(

√
log n log δ−1) +O(log δ−1)

)
queries returns the target correctly with probability at least 1− δ.

Table 1 The summary of the results.

Setting Binary search Graph search

Worst case query
complexity:

1
I(p)

(
log2 n + O(

√
log n log δ−1) + O(log δ−1)

)
(Thm. 3) (Thm. 5)

Expected query
complexity:

1
I(p) (log2 n + O(log δ−1))

1
I(p) (log2 n + O(log log n) +

O(log δ−1))

(Cor. 2) (Thm. 4)

1.3 Comparison with previous works
1.3.1 Upper bounds for noisy binary search
Table 2 provides an overview of the known algorithms for noisy binary search that have
complexity close to the optimal log2 n

I(p) . We provide a detailed comparison with our results
below.

STACS 2025

29:4 Noisy (Binary) Searching: Simple, Fast and Correct

Burnashev and Zigangirov [7] studied this problem from an information-theoretic per-
spective as early as 19741, in a setting where the location of the target element is chosen
uniformly at random. We highlight that their query complexity is worse than ours by an
additive term of log2

1−p
p , which tends to infinity when p→ 0. This behavior is rather

unnatural, since when p = 0, the noise disappears, and the problem reduces to standard
binary search.
Feige et al. [15], in their seminal work, considered several problems in the noisy setting and,
in particular, developed an asymptotically optimal algorithm for noisy binary search (with
an adversarially placed target). However, their method intrinsically incurs a non-optimal
constant in front of log2 n

I(p) .
Later, Ben-Or and Hassidim [3], likely unaware of [7], developed algorithms with an
expected query complexity of 1

I(p) (O(log n) + O(log log n) + O(log δ−1)). However, we
claim that their proofs contain two serious issues.
Firstly, in the proof of Lemma 2.6 in [3], they consider all the queries made by the
algorithm throughout its execution and sort them by their positions. Then, the number
of ’<’ answers in a fixed interval of positions is claimed to follow a binomial distribution.
Notice, however, that while the answers to the particular queries are independent random
variables, the positions of the queries depend on the answers to the previous queries, and
the act of forgetting the order introduces correlation. To further illustrate this point, we
note the rightmost query in their algorithm is guaranteed to have a ’<’ answer, because
a ’≥’ answer would have changed the weights maintained by the algorithm, causing the
next query to be asked further to the right, which contradicts the assumption that this
query is the rightmost.
Secondly, the final expected number of steps is bounded by the ratio of total information
needed to identify the target and the expected information gain per step (without any
additional comments). However, the expected value does not work in this manner directly
– to make this approach effective, one needs to employ additional probabilistic tools.
Our paper uses Wald’s identity for this purpose, see [19] for an example of the usage of
martingales and the Optional Stopping Theorem. Moreover, the choice of a particular
probabilistic theorem and the way this tool is handled may incur additional lower-order
terms, making it unclear what the final complexity would be.

1.3.2 Reductions in complexity for expected length setting
Ben-Or and Hassidim in their work [3] showed a general technique that can transform any of
the aforementioned algorithms (regardless if they are in the worst case or expected complexity
setting) into an algorithm with the expected query complexity that is better by roughly a
multiplicative factor of (1− δ) at the cost of additive lower order term of order O(log log n)

I(p) .
Very recently Gu and Xu [19] showed how to improve that reduction in order to obtain a better
constant in front of log δ−1. They plug in our algorithm for noisy binary search (Corollary
2) as a black-box in order to get the (1 + o(1))((1− δ)(log2 n

I(p) + O(log log n)
I(p)) + log2 1/δ

(1−2p) log 1−p
p

)
expected query complexity.

1 Curiously, it appears that until recently, this work has been largely unknown to the algorithmic
community, despite the fact that the paper in question has over 100 citations. There is no mention of [7]
in the well-known survey by Pelc [27], nor in the subsequent works that we reference. We suspect that
the main reason for this oversight is that, until very recently, the work was only available in Russian.
For the English translation of the algorithm and the proof, see [34].

D. Dereniowski, A. Łukasiewicz, and P. Uznański 29:5

Table 2 Upper bounds for noisy binary search.

Setting Query complexity References and Notes

Expected,
uniform
prior

1
I(p) (log2 n + log2 δ−1 + log2

1−p
p) Burnashev and Zigangirov [7]

1
I(p) (log2 n +O(log log n) +O(log δ−1))

Ben-Or and Hassidim [3]
(Correctness issues, see

Sec.1.3.1).
1

I(p)
(
log2 n + log2 δ−1 + 3

)
This work, Thm. 1.

Expected,
adversarial
target

1
I(p) (O(log n) +O(log δ−1)) Feige et al. [15]

1
I(p) (log2 n +O(log log n) +O(log δ−1))

Ben-Or and Hassidim [3]
(Correctness issues, see

Sec.1.3.1).
1

I(p) (log2 n +O(log2 δ−1)) This work, Cor. 2.

Worst case
1

I(p) (log2 n +O(
√

log n log δ−1) +
O(log δ−1))

This work, Thm. 3.

1.3.3 Upper bounds for noisy graph search
Known algorithms for noisy graph search are summarized in Table 3. The problem for
arbitrary graphs was first considered by Emamjomeh-Zadeh et al.[14]. Later on Dereniowski
et al. [11] simplified that algorithm and obtained an improved dependence on log δ−1. We
make another progress in that direction: we further simplify the algorithms and the analysis
while simultaneously improving the dependence on log δ−1 even further.

Table 3 Upper bounds for noisy graph search.

Setting Query complexity References and Notes

Expected 1
I(p) (log2 n +O(log log n) +O(log δ−1)) This work, Thm. 4.

Worst case

1
I(p) (log2 n + o(log n) +O(log2 δ−1)) Emamjomeh-Zadeh et al., 2016

[14]
1

I(p) (log2 n +O(
√

log n log δ−1 ·
log log n

log δ−1) +O(log δ−1))
Dereniowski et al., 2019 [11]

1
I(p) (log2 n +O(

√
log n log δ−1) +

O(log δ−1))
This work, Thm. 5.

1.3.4 Lower bounds
For the expected complexity of noisy binary search, Ben-Or and Hassidim [3] established the
first lower bound of (1− δ) log2 n−10

I(p) . Recently Gu and Xu [19] improved the lower bound to
(1− o(1))((1− δ) log2 n

I(p) + log2 1/δ

(1−2p) log 1−p
p

). However it works only for constant noise parameter p.
They leave the question of improving the lower bound for an arbitrary p as an open problem.

STACS 2025

29:6 Noisy (Binary) Searching: Simple, Fast and Correct

Very recently, Gretta and Price [18] obtained a lower bound for the worst case setting of
a more general problem (known as Noisy Binary Search with Monotonic Probabilities, which
was introduced for the first time by [22]). For the worst case noisy binary search, their work
implies a lower bound of the natural log2 n

I(p) . We note that we are not aware of any lower
bounds for the lower order terms dependent on n in any of the considered settings.

1.4 Overview of the techniques
The core building block of our algorithms is Multiplicative Weights Update technique (MWU).
This method has been employed in the past for noisy binary search and related problems
[3, 5, 11, 22, 28]. The general outline of the method is as follows: we maintain weights that
denote the ”likelihood” of particular elements being the target and multiplicatively update
them according to the answers to subsequent queries. After a certain number of steps, the
algorithm returns the element with the highest weight, as it is the element we deem most
likely to be the target.

The typical problem with this approach is that, at some point, we may encounter a
situation where there is no good element to query, meaning that no query divides the search
space close to the bisection. This usually occurs when a particular element becomes heavy,
and subsequently querying this element yields less and less information. Previous works tried
to different ways to resolve this issue, e.g. by ensuring that a good approximation of the
target has been found and calling the algorithm recursively [3], introducing a phase with
majority voting [14], etc.

We take a different approach by using a specifically tailored measure of progress of our
algorithms, which differs from those used in previous works. For binary search, we define this
measure as the total weight minus the weight of the target element. In the context of graph
searching, the measure is slightly different – we use the total weight minus the weight of
the heaviest vertex. This contrasts with the approach taken in prior studies, such as in [11],
where the total weight itself was utilized. It is important to note that, in the case of graph
search, the identity of the heaviest vertex may change throughout the search process, and at
times, it may not even be the target vertex. However, our analysis guarantees the target will
become the heaviest vertex by the end of the search, within the desired probability threshold.

This subtle change proves to be powerful and plays a vital role in all our proofs. We
believe this is the key idea that enabled us to overcome the obstacles that the authors of the
previous works might have faced.

Furthermore, in the case of binary search, when selecting which vertex to query, we
employ a technique similar to that of [7]. Specifically, whenever we identify two elements that
are closest to bisecting the search space, we randomly choose one of them with appropriate
probability. Our analysis demonstrates that this effectively simulates the ideal subdivision of
the search space and ensures the desired progress of our algorithm.

1.5 Other related work
There are many variants of the interactive query games, depending on the structure of
queries and the way erroneous replies occur. The study of such games was initiated by
Rényi [29] and Ulam [31]. A substantial amount of literature deals with a fixed number of
errors for arbitrary membership queries or comparison queries; here we refer the reader to
surveys [10, 27]. Among the most successful tools for tackling binary search with errors, is the
idea of a volume [4, 28], which exploits the combinatorial structure of a possible distribution
of errors. A natural approach of analyzing decision trees has been also successfully applied,

D. Dereniowski, A. Łukasiewicz, and P. Uznański 29:7

see e.g. [15]. See [5, 14] for examples of partitioning strategies into stages, where in each
stage the majority of elements is eliminated and only few “problematic” ones remain. For a
different reformulation (and asymptotically optimal results) of the noisy search see [22].

Although the adversarial and noisy models are most widely studied, some other ones are
also considered. As an example, we mention the (linearly) bounded error model in which it
is guaranteed that the number of errors is a r-fraction, r < 1

2 , of (any initial prefix of) the
number of queries, see e.g. [1, 5, 12]. Interestingly, it might be the case that different models
are so strongly related that a good bound for one of them provides also tight bounds for
the other ones, see e.g. [11]. We refer the reader to distributional search where an arbitrary
target distribution is known to the algorithm a priori [8, 9, 30]. A closely related theory of
coding schemes for noisy communication is out of scope of this paper and we only point to
some recent works [6, 16, 17, 20, 25].

The first steps towards generalizing binary search to graph-theoretic setting are works
on searching in partially ordered data [2, 23, 24]. Specifically for the node search that we
consider in this work, the first results are due to Onak and Parys for trees [26], where an
optimal linear-time algorithm for error-less case was given.

2 Preliminaries

Whenever we refer to a search space, we mean either an (undirected and unweighted) graph
or a linear order. Consequently, by an element of a search space, we refer to a vertex or an
integer, respectively. In the following, let n denote the size of the search space, i.e., either
the number of vertices in a graph or the number of integers in a linear order.

Throughout the search process, the strategies will maintain the weights ω(v) for the
elements v of a search space V . For any 0 ≤ c ≤ 1, v is c-heavy if ω(v)/ω(V) ≥ c, where for
any subset U ⊆ V we write ω(U) =

∑
u∈U ω(u). 1

2 -heavy elements play a special role and
we call them heavy for brevity. The weight of an element v at the end of step t is denoted
by ωt(v), with ω0(v) being the initial value. The initial values are set uniformly by putting
ω0(v) = 1 for each v in our algorithms.

Noisy binary search definition and model specifics

In the noisy binary search problem, we operate on a linear order v1 < · · · < vn. We are
given an element v∗ and the values p ∈ [0, 1

2), δ ∈ (0, 1) as input. We are promised that there
exists some i ∈ [n] such that v∗ = vi. We call v∗ the target element. We can learn about
the search space by asking if v∗ < vj for any j ∈ [n], and receiving an answer that is correct
with probability 1− p, independently for each query. The goal is to design an algorithm that
finds the i ∈ [n] such that v∗ = vi, and returns this index correctly with probability at least
1− δ. We strive to minimize the number of queries performed in the process.

We adopt the following naming convention for query results. When we ask if v∗ ?
< vi and

receive an affirmative answer (i.e., v∗ is less than vi), we call it a yes-answer. If the reply
indicates v∗ is greater than or equal to vi (i.e., a negative answer), we call it a no-answer.
An element vj of a search space is considered compatible with the reply to a query v∗ ?

< vi if
and only if:

For a yes-answer (indicating v∗ < vi), j < i.
For a no-answer (indicating v∗ ≥ vi), j ≥ i.

STACS 2025

29:8 Noisy (Binary) Searching: Simple, Fast and Correct

Noisy graph searching definition and model specifics

In the noisy graph searching problem we are given an unweighted, undirected, simple graph
G and the values p ∈ [0, 1

2), δ ∈ (0, 1). We know that one vertex v∗ of G is marked as the
target, but we don’t know which one is it.

We can query the vertices of G, upon querying a vertex q we get one of two possible
answers:

v∗ = q, i.e. the queried vertex is the target. We call it a yes-answer.
v∗ ̸= q, but some neighbor u of q lies on a shortest path from q to v∗. We call it a
no-answer. If there are multiple such neighbors (and hence shortest paths), then we can
get an arbitrary one as an answer.

In fact, we assume for simplicity that each reply is given as a single vertex u. If u = q,
then we interpret it as a yes-answer. If u ̸= q, then u is a neighbor of q that lies on a shortest
path from q to v∗. Again, we are interested in the noisy setting, therefore every reply is
correct independently with probability 1− p. Observe that if the answer is incorrect then it
can come in different flavors:

if q = v∗, then an incorrect answer is any neighbor u of q,
if q ≠ v∗, then an incorrect answer may be either q or any neighbor of q that does not lie
on a shortest path from q to v∗.

Clearly, in both cases there might be several possible vertices that constitute an incorrect
answer. Here we assume the strongest possible model where every time the choice among
possible incorrect replies is made adversarially and independently for each query. The goal
is, similarly as in noisy binary search, to design an algorithm that finds a target correctly
with probability at least 1− δ and minimizes the number of queries. In fact, in this work we
operate in a slightly weaker model of replies (as compared to [11, 13, 14, 26]) in which an
algorithm receives less information in some cases. This is done in somewhat artificial way
for purely technical reasons, i.e., to simplify several arguments during analysis. The only
change to the model we have just described happens when we query a vertex that is heavy
at the moment and a no-answer has been received. More specifically, if a heavy q is queried
and a no-answer is given, the algorithm reads this reply as: the target is not q (ignoring the
direction the target might be). Observe that this only makes our algorithms stronger, since
they operate in a weaker replies model and any algorithmic guarantees for the above model
carry over to the generic noisy graph search model.

Similarly to the case of noisy binary search, we say that a vertex v is compatible with the
reply to the query q if and only if:

v = q in case of a yes-answer.
The neighbor u given as a no-answer lies on a shortest path from q to v and q was not
heavy.
v ̸= q in case of a no-answer when q was heavy.

Common mathematical tools and definitions

We adopt the notation from [11] and denote ε = 1
2 − p and Γ = 1−p

p . These quantities appear
frequently throughout the proofs, and this notation helps to make the presentation more
concise.

The information function, denoted by I(p), appears in all our running times. It is defined
as follows I(p) = 1−H(p) = 1+p log2 p+(1−p) log2(1−p). In the analysis of our algorithms
we frequently use the following quantitative fact about I(p) and log2 Γ.

D. Dereniowski, A. Łukasiewicz, and P. Uznański 29:9

▶ Proposition 6. We have I(p) = Ω(ε2) and (log2 Γ)2p(1− p) = O(ε2).

Proof. We first observe that by Taylor’s series expansion (which can be derived using
elementary calculus, see e.g. [32]):

I(p) = 1
2 ln 2

∞∑
n=1

(2ε)2n

n(2n− 1) ≥
4ε2

2 ln 2 .

To show the second bound we compute

p(1− p)(log2 Γ) = (1/2− ε)(1/2 + ε)
(

log2
1 + 2ε

1− 2ε

)2

= (1− 4ε2)
(
tanh−1 2ε

)2 1
(ln 2)2 ≤

4
(ln 2)2 ε2

where the last step follows by observing that under the substitution ε = 1/2 · tanh γ it
reduces to γ2 ≤ sinh2 γ and that inequality follows immediately from the Taylor expansion
of sinh2 γ. ◀

Let (Xm)m∈N be a sequence of i.i.d random variables. We say that a random variable T

is a stopping time (with respect to (Xm)m∈N) if 1{T ≤m} is a function of X1, X2, . . . , Xm for
every m.

We will use the following version of the Wald’s identity.

▶ Proposition 7 (Wald’s Identity [33]). Let (Xm)m∈N be i.i.d with finite mean, and T be a
stopping time with E[T] <∞. Then E[X1 + · · ·+ XT] = E[X1]E[T].

Let us also recall a basic version of a Hoeffding bound, which we use in our calculations
of query complexities in the worst case setting.

Multiplicative Weights Update Method

The core building block of our strategies for both binary and graph search is a standard
Multiplicative Weights Update (MWU) technique. Below we formally define the version of
MWU that we use in our algorithms (Algorithm 8).

▶ Algorithm 8. (MWU updates.)

In a step t + 1, for each element v of the search space do:
if v is compatible with the answer, then ωt+1(v)← ωt(v) · 2(1− p),
if v is not compatible with the answer, then ωt+1(v)← ωt(v) · 2p.

Directly from the statement of our MWU method we obtain the following bound on the
weight of the target. This bound applies to both binary and graph search, as the analysis
is based solely on the number of erroneous replies and the fact that the target is always
compatible with a correct answer.

▶ Lemma 9. If v∗ is the target, then after τ queries, with probability at least 1− δ it holds

ωτ (v∗) ≥ Γ−
√

2p(1−p)τ ln δ−12I(p)τ .

Proof. After τ queries with at most ℓ erroneous replies, the weight of the target satisfies:

ωτ (v∗) ≥ (2p)ℓ(2(1− p))τ−ℓ = Γpτ−ℓ2I(p)τ .

Denote a =
√

2p(1− p)τ ln δ−1. Then by Chernoff-Hoeffding bound [21], with probability at
most δ there is ℓ− pτ ≥ a. Thus, after τ queries, with probability at least 1− δ the weight
of the target satisfies ωτ (v∗) ≥ Γ−a2I(p)τ . ◀

STACS 2025

29:10 Noisy (Binary) Searching: Simple, Fast and Correct

Uniform prior for binary search

One can assume that the distribution of the target element in noisy binary search is a priori
uniform by using a shifting trick described by Ben-Or and Hassidim [3]. We formally state it
as a lemma below.

▶ Lemma 10 (c.f. [3]). Assume that the target element in noisy binary search problem was
chosen adversarially. One can reduce that problem to the setting where the target element is
chosen uniformly at random using O(log δ−1

I(p)) queries.

3 Binary Search Algorithm

Each query performs the MWU updates using Algorithm 8. The element to be queried
is selected as follows: let k be such that

∑k−1
i=1 ω(vi) ≤ ω(V)/2 and

∑k
i=1 ω(vi) ≥ ω(V)/2.

Since the queries vk and vk+1 are the closest possible to equi-division of the total weight, the
algorithm chooses one of those with appropriate probability (cf. Algorithm 11.)

▶ Algorithm 11. (Query selection procedure.)

In step τ : let k be such that
∑k−1

i=1 ωτ (vi) ≤ ωτ (V)
2 ≤

∑k
i=1 ωτ (vi).

Then, query vk with probability 1
2ωτ (vk) (

∑k
i=1 ωτ (vi) −

∑n
i=k+1 ωτ (vi)), and otherwise

query vk+1.

In order to turn Algorithm 11 into a particular strategy, we will provide a stopping condition
for each model. We start by determining the expected weight preservation during the search.

▶ Lemma 12. E[ωτ+1(V \ {v∗}) | ωτ (V \ {v∗})] ≤ ωτ (V \ {v∗}).

Proof. We consider three cases, and show that this bound holds in each of those independently.
Denote A =

∑k−1
i=1 ωτ (vi), B = ωτ (vk) and C =

∑n
i=k+1 ωτ (vi). Denote the probability of

querying vk as α = A+B−C
2B , and the probability of querying vk+1 as β = C+B−A

2B .
Case 1: v∗ = vk.

E[ωτ+1(V \{v∗}) | ωτ (V \ {v∗})] = α[2p2C + 2(1 − p)2C + 2p(1 − p)A + 2p(1 − p)A]
+β[2p2A + 2(1 − p)2A + 2p(1 − p)C + 2p(1 − p)C]

= α[(1 + 4ε2)C + (1 − 4ε2)A] + β[(1 + 4ε2)A + (1 − 4ε2)C].

Using the definition of α and β, we obtain

E[ωτ+1(V \ {v∗}) | ωτ (V \ {v∗})] = −4ε2 (A − C)2

B
+ (A + C)

= −4ε2 (A − C)2

B
+ ωτ (V \ {v∗}).

Case 2: v∗ < vk. In this case,
E[ωτ+1(V \ {v∗}) | ωτ (V \ {v∗})] = (2p2 + 2(1 − p)2)(A − ωτ (v∗))

+[α4p(1 − p) + β(2p2 + 2(1 − p)2)]B + 4p(1 − p)C.

Denote p1 = p2 + (1− p)2 and p2 = 2p(1− p). Observe p1 + p2 = 1 and p1 ≥ 1
2 ≥ p2. Then,

E[ωτ+1(V \ {v∗}) | ωτ (V \ {v∗})] = 2p1A + (C + B − A)p1 + (A + B − C)p2 + 2p2C − 2p1ωτ (v∗)
= A + B + C − 2p1ωτ (v∗)
≤ ωτ (V \ {v∗}).

Case 3: v∗ > vk+1 is symmetric to case 2. ◀

D. Dereniowski, A. Łukasiewicz, and P. Uznański 29:11

3.1 Proof of Theorem 1 (The expected strategy length)

▶ Algorithm 13. (The expected strategy length for binary search.)

Initialization: ω0(vi)← 1 for each vi ∈ V .
Execute Algorithm 11 until in some step τ it holds ωτ (vj)

ωτ (V) ≥ 1− δ for some vj.
Return vj.

To show correctness of Algorithm 13, we need to observe that in the case of binary search,
our MWU updates are, in fact Bayesian updates, that is, the normalized weights follow a
posterior distribution conditioned on the replies seen so far. We state this as a lemma below.

▶ Lemma 14. After any step τ of Algorithm 13 we have for every vi ∈ V

Pr[v∗ = vi | τ observed replies] = ωτ (vi)
ω(V) .

Proof. The proof is by induction on τ . The base case is trivial, because we assign the
weights uniformly in the initialization step. The inductive step follows immediately from our
definition of MWU updates (Algorithm 8) and the Bayes’ rule. ◀

The correctness of Algorithm 13 follows directly from Lemma 14 and the stopping
condition. To prove Theorem 1 it remains to analyze the expected length of the strategy.

▶ Lemma 15. Algorithm 13 terminates after the expected number of at most 1
I(p) (log2 n +

log2
1
δ + 3) steps.

Proof. We measure the progress at any given step by a random variable ζt = log2 ωt(v∗).
If the answer in step t + 1 is erroneous, then ζt+1 = ζt + 1 + log2 p and otherwise ζt+1 =
ζt + 1 + log2(1− p).

For the sake of bounding the number of steps of the algorithm, we consider it running
indefinitely. Let Q be the smallest integer such that ωQ(v∗)

ωQ(V \{v∗}) ≥
1−δ

δ , that is v∗ is (1− δ)-
heavy in round Q. Obviously Q upper bounds the strategy length. By the definition, Q is a
stopping time.

First, let us show that E[Q] is finite. To this end, let ξt = log2
ωt(v∗)

ωt(V \{v∗}) and Xt = ξt−ξt−1
for t ≥ 1. Observe that Xt’s are i.i.d and E[Xt] = p(− log2 Γ) + (1 − p) log2 Γ = (1 −
2p) log2 Γ > 0. Therefore, using Lemma 29 for sequence Xt, with ℓ = − log Γ, r = log Γ and
T = log2

1−δ
δ − log2

ω0(v∗)
ω0(V \{v∗}) , we indeed obtain E[Q] <∞.

Let Qi for any positive integer i be smallest value such that ωQi(v∗) ≥ n
δ · 2

i (for
completeness of notation, we define Q0 = 0). Consider an event {Q > Qi}. It means that
in round Qi the target v∗ is not yet (1− δ)-heavy. Hence, ωQi(V \ {v∗}) > δ

1−δ ωQi(v∗) ≥
δωQi

(v∗) ≥ n ·2i. But we know from Lemma 12 that E[ωQi
(V \{v∗})] ≤ E[ω0(V \{v∗})] ≤ n.

Using Markov’s inequality we conclude that Pr[Q > Qi] ≤ Pr[ωQi
(V \ {v∗}) > n · 2i] ≤ 2−i.

Additionally, since ωQi−1(v∗) < n
δ · 2

i, there is ωQi(v∗) < 2 n
δ · 2

i. We can then bound

E[ζQ] <
∞∑

i=1
Pr[Qi−1 < Q ≤ Qi] log2(2 · n

δ
2i)

= log2(2 · n

δ
) +

∞∑
i=1

Pr[Qi−1 < Q ≤ Qi] · i

= log2(2n

δ
) +

∞∑
i=1

Pr[Q > Qi−1]

STACS 2025

29:12 Noisy (Binary) Searching: Simple, Fast and Correct

≤ 1 + log2 n + log2
1
δ

+
∞∑

i=0
2−i

≤ log2 n + log2
1
δ

+ 3.

Let Yt = ζt − ζt−1. Obviously, Yi’s are independent. We have already established that
Q is a stopping time and that E[Q] < ∞. This means we can employ the Wald’s identity
(Proposition 7) to obtain (using ζ0 = 0) E[ζQ] = E[Y1 + · · ·+ YQ] = E[Q]I(p). Therefore,

log2 n + log2
1
δ

+ 3 ≥ E[ζQ] = E[Q]I(p). ◀

3.2 Proof of Theorem 3 (Worst-case strategy length)
Take Q to be the smallest positive integer for which

I(p)Q > log2 n + log2
2
δ

+
√

2p(1− p)Q ln 2
δ

log2 Γ. (1)

The Q gives our strategy length (see Algorithm 16). To prove Theorem 3 we bound the
strategy length and the failure probability (see Lemma 17 below). The algorithm essentially
remains the same except for the stop condition (cf. Algorithm 16).

▶ Algorithm 16. (Worst-case strategy length for binary search.)

Initialization: ω0(vi)← 1 for each element vi.
Execute Algorithm 11 for exactly Q steps with Q as in (1).
Return the heaviest element.

▶ Lemma 17. For any 0 < δ < 1, Algorithm 16 finds the target correctly with probability at
least 1− δ in 1

I(p)

(
log2 n +O(log δ−1) +O(

√
log n log δ−1)

)
steps.

Proof. Firstly, observe that solving (1) for Q using Lemma 28 with parameters a = I(p),
b = log2 n + log2

2
δ and c = 2p(1− p)(log2 Γ)2 ln 2

δ yields

Q = 1
I(p)

(
log2 n + log2

2
δ

+O
(

ln 2
δ

+
√

log2 n + log2
2
δ

√
ln 2

δ

))

where we have used, by Proposition 6, that p(1−p)(log2 Γ)2

I(p) = O(1). The above equation can
be simplified to

Q = 1
I(p)

(
log2 n +O(log δ−1) +O(

√
log δ−1 log n)

)
.

It remains to prove correctness. By Lemma 9, with probability at least 1− δ/2 we have

ωQ(v∗) ≥ Γ−
√

2p(1−p)Q ln 2/δ2I(p)Q. (2)

From Lemma 12 we also get E[ωQ(V \ {v∗})] ≤ E[ω0(V \ {v∗})] ≤ n. Therefore, by
Markov’s inequality with probability 1− δ/2 we have

ωQ(V \ {v∗}) ≤ 2n

δ
. (3)

D. Dereniowski, A. Łukasiewicz, and P. Uznański 29:13

It remains to observe that our definition of Q (Equation (1)) is equivalent to

Γ−
√

2p(1−p)Q ln 2/δ2I(p)Q >
2n

δ
.

Thus, by the union bound applied to (2) and (3), with probability at least 1− δ we get
ωQ(v∗) > ωQ(V \ {v∗}). Then, v∗ is the heaviest element and Algorithm 16 returns it. ◀

4 Graph Searching Algorithm

Denoting by d(u, v) the graph distance between u and v, i.e., the length of the shortest path
between these vertices, a median of the graph is a vertex

q = arg min
v∈V

∑
u∈V

d(u, v) · ω(u).

For a query v and a reply u, let C(v, u) = {x ∈ V |u lies on some shortest path from v to x}
for v ̸= u, and C(v, v) = {v}. We note a fundamental bisection property of a median:

▶ Lemma 18 (cf. [14] Lemma 4). If q is a median, then maxu∈N(q) ω(C(q, u)) ≤ ω(V)/2.

Proof. Denote for brevity Φ(x) =
∑

v∈V d(x, v) · ω(v) for any x ∈ V . Suppose towards
the contradiction that C(q, u) > ω(V)/2 for some u ∈ N(q). Observe that Φ(u) ≤ Φ(q)−
ω(C(q, u)) + ω(V \ C(q, u)) since by moving from q to u we get closer to all vertices in
C(q, u). But Φ(q)− ω(C(q, u)) + ω(V \C(q, u)) = Φ(q) + ω(V)− 2ω(C(q, u)) < Φ(q) by our
assumption, hence Φ(u) < Φ(v), which yields a contradiction. ◀

We now analyze how the weights behave when in each step a median is queried and the
MWU updates are made. This analysis is common for both graph searching algorithms
given later. Essentially we prove that, in an amortized way, the total weight (with the
heaviest vertex excluded) remains the same in each step. In absence of heavy vertices we use
Lemma 19. Lemmas 20 and 21 refer to an interval of queries to the same heavy vertex x. If
the interval ends (cf. Lemma 20), then the desired weight drop can be claimed at its end.
For this, informally speaking, the crucial fact is that x received many no-answers during this
interval. If a strategy is at a step that is within such interval, then Lemma 21 is used to
bound the total weight with the weight of x excluded. Hence, at any point of the strategy
the weight behaves appropriately, as summarized in Lemma 22.

▶ Lemma 19 (see also [11, 14]). If in a step t there is no heavy vertex, then ωt+1(V) ≤ ωt(V).

Proof. Let q be a query and u an answer in step t. Note that if there is no heavy vertex, then
C(q, u) is the set of vertices compatible with the reply. If q ̸= u then ωt(C(q, u)) ≤ ωt(V)/2
by Lemma 18 and in case q = u we have C(q, u) = {q} and thus the same bound holds. Then
in both cases, ωt+1(V) = 2(1− p) · ωt(C(q, u)) + 2p · ωt(V \ C(q, u)) ≤ ωt(V). ◀

▶ Lemma 20 (see also [11]). Consider an interval I = {τ, τ + 1, . . . , τ + k − 1} of k queries
such that some x is heavy in each query in I and is not heavy after the last query in the
sequence. Then ωτ+k(V) ≤ ωτ (V).

Proof. First note that in each query in the interval I the queried vertex is x. Consider any
two queries i and j in I such that they receive different replies. The contribution of these two
queries is that together they scale down each weight multiplicatively by 2p ·2(1−p) ≤ 1. Also,
for a single no-answer in a query i ∈ I we get ωi+1(V) = 2pωi(x)+2(1−p)ωi(V \{x}) ≤ ωi(V)

STACS 2025

29:14 Noisy (Binary) Searching: Simple, Fast and Correct

because ωi(x) ≥ ωi(V \{x}) for the heavy vertex x. By assumption, the number of no-answers
is at least the number of yes-answers in I. Thus, the overall weight drop is as claimed in the
lemma. ◀

▶ Lemma 21. Consider an interval I = {τ, τ + 1, . . . , τ + k− 1} of k queries such that some
x is heavy in each query in I, and x remains heavy after the last query in I. Then

ωτ+k(V \ {x}) ≤ ωτ (V).

Proof. Recall that in each query in the interval I, the queried vertex is x. Assume that there
were a yes-answers in I and b no-answers, with a + b = k. If a ≥ b, then ωτ+k(V \ {x}) =
(2p)a(2(1 − p))bωτ (V \ {x}) ≤ ωτ (V \ {x}) ≤ ωτ (V). If a < b, then we bound as follows:
ωτ+k(V \ {x}) ≤ ωτ+k(x) = (2p)b(2(1− p))aωτ (x) ≤ ωτ (x) ≤ ωτ (V). ◀

The bound in the next lemma immediately follows from Lemmas 19, 20 and 21. We say
that an element v is heaviest if ω(v) ≥ ω(u) for each u ∈ V . For each step i, we denote by xi

a heaviest vertex at this step, breaking ties arbitrarily.

▶ Lemma 22. ωτ (V \ {xτ}) ≤ ω0(V) = n.

Proof. We consider the first τ queries and observe that they can be partitioned into a disjoint
union of maximal intervals in which either there is a heavy vertex present (in the whole
interval) or there is no heavy vertex (in the whole interval). We apply Lemma 19 for intervals
with no heavy vertex and Lemmas 20, 21 otherwise (note that Lemma 21 can be applied
only to the last interval. The latter happens only when there exists a heavy vertex after we
perform all τ queries). ◀

4.1 Proof of Theorem 5 (Worst-case strategy length)
In this section we prove Theorem 5. Take Q to be the smallest positive integer for which

I(p)Q ≥ log2 n +
√

2p(1− p)Q ln δ−1 log2 Γ. (4)

The Q gives our strategy length (see Algorithm 23). To prove Theorem 5 we bound the
strategy length and the failure probability (see Lemma 24 below).

▶ Algorithm 23. (Worst-case strategy length for graph search.)

Initialization: ω0(v) = 1 for each v ∈ V .
In each step: query the median and perform the MWU updates (Algorithm 8).
Stop condition: do exactly Q queries with Q defined by (4) and return the heaviest
vertex.

▶ Lemma 24. For any 0 < δ < 1, Algorithm 23 finds the target correctly with probability at
least 1− δ in 1

I(p)

(
log2 n +O(log δ−1) +O(

√
log n log δ−1)

)
steps.

Proof. The proof is very similar to that of Lemma 17 (worst-case noisy binary search).
It is actually simpler, thanks to the fact that Lemma 22 gives even stronger bound than
Lemma 12.

Using Lemma 28 we solve (4) for Q. We bound the result further with Proposition 6:

Q = log2 n +O(
√

log n log δ−1) +O(log δ−1)
I(p) . (5)

D. Dereniowski, A. Łukasiewicz, and P. Uznański 29:15

By Lemma 9 and the definition of Q in (4) it holds with probability 1− δ

log2 ωQ(v∗) ≥ −
√

2p(1− p)Q ln δ−1 log2 Γ + I(p)Q ≥ log2 n ≥ log2 ωQ(V \ {xQ}),

where the last inequality is due to Lemma 22. Since the weights are non-negative at all
times, the only way for this to happen is to have v∗ = xQ, that is the target being found
correctly. ◀

4.2 Proof of Theorem 4 (The expected strategy length)

The solution for this case (given in Algorithm 25) paraphrases Algorithm 11 except for the
proper adjustement of the confidence threshold.

▶ Algorithm 25. (The expected strategy length for graph search.)

Let δ′ = c(δ2 · (log n + log 1/δ)−2) for small enough constant c > 0.
Initialization: ω0(v) = 1 for each v ∈ V .
In each step: query the median and perform the MWU updates (Algorithm 8).
Stop condition: if for any v in some step τ it holds ωτ (v)

ωτ (V) ≥ 1− δ′, then return v.

▶ Lemma 26. Algorithm 25 stops after the expected number of at most 1
I(p) (log2 n+log2

1
δ′ +1)

steps.

Proof. We argue that within the promised expected number of steps, target v∗ reaches the
threshold weight. This clearly upperbounds the runtime. We measure the progress at any
given moment by a random variable ζt = log2 ωt(v∗). Observe that if the reply is erroneous
in a step t + 1, then ζt+1 = ζt + 1 + log2 p, and if it is correct, then ζt+1 = ζt + 1 + log2(1− p).

For the sake of bounding the number of steps of the algorithm, we assume it is simulated
indefinitely. Let Q be the smallest integer such that ζQ ≥ log2 n + log2

1−δ′

δ′ .
By Lemma 22 we have that ζQ = log2 ωQ(v∗) ≤ log2

ωQ(v∗)
ω(V \{xQ})/n , thus ωQ(v∗)

ω(V \{xQ}) ≥
1−δ′

δ′ > 1 since w.l.o.g. δ′ < 1/2. But if for any t there is ωt(v∗)
ωt(V \{xt}) > 1, then xt = v∗, since

ωt(v∗) > ωt(V \ {xt}) implies v∗ ̸∈ V \ {xt}. Thus we deduce that xQ = v∗. Additionally,
from ωQ(v∗)

ω(V \{v∗}) ≥
1−δ′

δ′ we get that v∗ is (1− δ′)-heavy, hence Q bounds the strategy length.
From ζt+1 ∈ {ζt + 1 + log2 p, ζt + 1 + log2(1 − p)} and the minimality of Q we deduce

ζQ ≤ log2 n + log2
1−δ′

δ′ + 1 + log2(1− p) ≤ log2 n + log2
1
δ′ + 1. In particular

E[ζQ] ≤ log2 n + log2
1
δ′ + 1. (6)

Let Xt = ζt−ζt−1 and observe that E[Xt] = p(1+log2 p)+(1−p)(1+log2(1−p)) = I(p) > 0.
Also, Xi’s are independent and Q is a stopping time. Finally, we have E[Q] < ∞ from
Lemma 29 2. Therefore, we meet all conditions of the Wald’s identity (Proposition 7)
and we get (since ζ0 = 0) E[ζQ] = E[X1 + · · · + XQ] = E[Q]I(p). Thus, by (6) we have
1 + log2

1
δ′ + log2 n ≥ E[ζQ] = E[Q]I(p), from which the claim follows. ◀

▶ Lemma 27. Algorithm 25 finds the target correctly with probability at least 1− δ.

2 By plugging in ℓ = 1 + log2 p, r = 1 + log2(1 − p) and T = log2
1−δ′

δ′ + log2 n.

STACS 2025

29:16 Noisy (Binary) Searching: Simple, Fast and Correct

Proof. We first show correctness. Denote by A ≤ log 1−δ′
δ′

log 1−p
p

+ 1 the number of yes-answers
required to go from a vertex being 1/2-heavy to being (1− δ′)-heavy. For now assume that
A ≥ 2, we will deal with the other case later. For a non-target vertex u to be declared by
the algorithm as the target, it has to observe a suffix of the strategy being a random walk on
a 1-dimensional discrete grid [0, . . . , A] and transition probabilities p for i→ i + 1 and 1− p

for i→ i− 1. We consider a random walk starting at position A/2 and ending when reaching
either 0 or A and call it a subphase (w.l.o.g. assume that A is even). Any execution of the
algorithm can be partitioned into maximal in terms of containment, disjoint subphases. Each
subphase starts when one particular heavy vertex v receives A/2 more yes-answers than
no-answers within the interval in which v is heavy. Then, a subphase ends when either the
algorithm declares v to be the target or v stops being heavy. By the standard analysis of the
gamblers ruin problem, each subphase (where the heavy vertex is not the target) has failure
probability δ′′ = 1

1+(1−p
p)A/2 ≤ 1

1+
√

1−δ′
δ′

= O(
√

δ′). Let us denote by a random variable D

the number of subphases in the execution of the algorithm. Let Fi be the length of i-th
subphase. By the standard analysis of the gamblers ruin problem,

E[Fi] = A/2
1− 2p

− A

1− 2p

1
1 + (1−p

p)A/2
≥ A/2

1− 2p

1− 2

1 +
√

1−δ′

δ′

 = Ω
(

1
ε2

)
,

where the asymptotic holds since w.l.o.g. δ′ < 1/3, and also since if ε < 1/3, then A = Ω(1/ε),
and otherwise A ≥ 2 = Ω(1/ε). Let F = F1 + · · ·+ FD be the total length of all subphases.
Observe that D is a stopping time, hence we have E[F] = E[D] · Ω(1

ε2) by Proposition 7. By
Lemma 26, E[Q] = O(ε−2(log n + log δ′−1)) holds for the strategy length Q. Since F ≤ Q,
E[D] = O(log n + log 1/δ′) = O(log n + log 1/δ).

By application of the union bound, the error probability for the whole procedure is
bounded by δ′′E[D] ≤ δ for appropriately chosen constant in the definition of δ′.

We now deal with case of A ≤ 1. This requires p < δ′, and ε > 1/3 (since if ε < 1/3,
appropriate choice of constant in δ′ enforces A ≥ 2) and so the expected strategy length
is E[Q] = O(log n + log 1/δ). By the union bound, algorithm receives a single erroneous
response with probability at most pE[Q] ≤ δ′E[Q] = O(δ2/(log n + log 1/δ)) ≤ δ. ◀

References
1 Javed A. Aslam and Aditi Dhagat. Searching in the presence of linearly bounded errors

(extended abstract). In STOC, pages 486–493, 1991. doi:10.1145/103418.103469.
2 Yosi Ben-Asher, Eitan Farchi, and Ilan Newman. Optimal search in trees. SIAM J. Comput.,

28(6):2090–2102, 1999. doi:10.1137/S009753979731858X.
3 Michael Ben-Or and Avinatan Hassidim. The bayesian learner is optimal for noisy binary

search (and pretty good for quantum as well). In FOCS, pages 221–230, 2008. doi:10.1109/
FOCS.2008.58.

4 Elvyn R. Berlekamp. Block Coding For The Binary Symmetric Channel With Noiseless,
Delayless Feedback, pages 61–88. Wiley & Sons, New York, 1968.

5 Ryan S. Borgstrom and S. Rao Kosaraju. Comparison-based search in the presence of errors.
In STOC, pages 130–136, 1993. doi:10.1145/167088.167129.

6 Mark Braverman, Klim Efremenko, Ran Gelles, and Bernhard Haeupler. Constant-rate coding
for multiparty interactive communication is impossible. In STOC, pages 999–1010, 2016.
doi:10.1145/2897518.2897563.

7 Marat Valievich Burnashev and Kamil’Shamil’evich Zigangirov. An interval estimation problem
for controlled observations. Problemy Peredachi Informatsii, 10(3):51–61, 1974.

https://doi.org/10.1145/103418.103469
https://doi.org/10.1137/S009753979731858X
https://doi.org/10.1109/FOCS.2008.58
https://doi.org/10.1109/FOCS.2008.58
https://doi.org/10.1145/167088.167129
https://doi.org/10.1145/2897518.2897563

D. Dereniowski, A. Łukasiewicz, and P. Uznański 29:17

8 Yuval Dagan, Yuval Filmus, Ariel Gabizon, and Shay Moran. Twenty (simple) questions. In
STOC, pages 9–21, 2017. doi:10.1145/3055399.3055422.

9 Yuval Dagan, Yuval Filmus, Daniel Kane, and Shay Moran. The entropy of lies: Playing
twenty questions with a liar. In James R. Lee, editor, 12th Innovations in Theoretical
Computer Science Conference, ITCS 2021, volume 185 of LIPIcs, pages 1:1–1:16, 2021.
doi:10.4230/LIPICS.ITCS.2021.1.

10 Christian Deppe. Coding with Feedback and Searching with Lies, pages 27–70. Springer Berlin
Heidelberg, Berlin, Heidelberg, 2007. doi:10.1007/978-3-540-32777-6_2.

11 Dariusz Dereniowski, Stefan Tiegel, Przemysław Uznański, and Daniel Wolleb-Graf. A
framework for searching in graphs in the presence of errors. In SOSA@SODA, pages 4:1–4:17,
2019. doi:10.4230/OASIcs.SOSA.2019.4.

12 Aditi Dhagat, Péter Gács, and Peter Winkler. On playing “twenty questions” with a liar. In
SODA, pages 16–22, 1992. URL: http://dl.acm.org/citation.cfm?id=139404.139409.

13 Ehsan Emamjomeh-Zadeh and David Kempe. A general framework for robust interactive
learning. In NIPS, pages 7085–7094, 2017.

14 Ehsan Emamjomeh-Zadeh, David Kempe, and Vikrant Singhal. Deterministic and probabilistic
binary search in graphs. In STOC, pages 519–532, 2016. doi:10.1145/2897518.2897656.

15 Uriel Feige, Prabhakar Raghavan, David Peleg, and Eli Upfal. Computing with noisy informa-
tion. SIAM J. Comput., 23(5):1001–1018, 1994. doi:10.1137/S0097539791195877.

16 Ran Gelles, Bernhard Haeupler, Gillat Kol, Noga Ron-Zewi, and Avi Wigderson. Towards
optimal deterministic coding for interactive communication. In SODA, pages 1922–1936, 2016.
doi:10.1137/1.9781611974331.ch135.

17 Ran Gelles, Ankur Moitra, and Amit Sahai. Efficient coding for interactive communication.
IEEE Trans. Information Theory, 60(3):1899–1913, 2014. doi:10.1109/TIT.2013.2294186.

18 Lucas Gretta and Eric Price. Sharp Noisy Binary Search with Monotonic Probabilities. In
ICALP 2024. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, 2024. doi:10.4230/LIPIcs.
ICALP.2024.75.

19 Yuzhou Gu and Yinzhan Xu. Optimal bounds for noisy sorting. In STOC, pages 1502–1515,
2023. doi:10.1145/3564246.3585131.

20 Bernhard Haeupler. Interactive channel capacity revisited. In FOCS, pages 226–235, 2014.
doi:10.1109/FOCS.2014.32.

21 Wassily Hoeffding. Probability Inequalities for Sums of Bounded Random Variables. Journal
of the American Statistical Association, 58(301):13–30, 1963. doi:10.2307/2282952.

22 Richard M. Karp and Robert Kleinberg. Noisy binary search and its applications. In SODA,
pages 881–890, 2007. URL: http://dl.acm.org/citation.cfm?id=1283383.1283478.

23 Eduardo Sany Laber, Ruy Luiz Milidiú, and Artur Alves Pessoa. On binary search-
ing with nonuniform costs. SIAM J. Comput., 31(4):1022–1047, 2002. doi:10.1137/
S0097539700381991.

24 Tak Wah Lam and Fung Ling Yue. Optimal edge ranking of trees in linear time. Algorithmica,
30(1):12–33, 2001. doi:10.1007/s004530010076.

25 Debbie Leung, Ashwin Nayak, Ala Shayeghi, Dave Touchette, Penghui Yao, and Nengkun Yu.
Capacity approaching coding for low noise interactive quantum communication. In STOC,
pages 339–352, 2018. doi:10.1145/3188745.3188908.

26 Krzysztof Onak and Pawel Parys. Generalization of binary search: Searching in trees and
forest-like partial orders. In FOCS, pages 379–388, 2006. doi:10.1109/FOCS.2006.32.

27 Andrzej Pelc. Searching games with errors—fifty years of coping with liars. Theoretical
Computer Science, 270(1):71–109, 2002. doi:10.1016/S0304-3975(01)00303-6.

28 Ronald L. Rivest, Albert R. Meyer, Daniel J. Kleitman, Karl Winklmann, and Joel Spencer.
Coping with errors in binary search procedures. J. Comput. Syst. Sci., 20(3):396–404, 1980.
doi:10.1016/0022-0000(80)90014-8.

29 Alfréd Rényi. On a problem of information theory. MTA Mat. Kut. Int. Kozl., 6B:505–516,
1961.

STACS 2025

https://doi.org/10.1145/3055399.3055422
https://doi.org/10.4230/LIPICS.ITCS.2021.1
https://doi.org/10.1007/978-3-540-32777-6_2
https://doi.org/10.4230/OASIcs.SOSA.2019.4
http://dl.acm.org/citation.cfm?id=139404.139409
https://doi.org/10.1145/2897518.2897656
https://doi.org/10.1137/S0097539791195877
https://doi.org/10.1137/1.9781611974331.ch135
https://doi.org/10.1109/TIT.2013.2294186
https://doi.org/10.4230/LIPIcs.ICALP.2024.75
https://doi.org/10.4230/LIPIcs.ICALP.2024.75
https://doi.org/10.1145/3564246.3585131
https://doi.org/10.1109/FOCS.2014.32
https://doi.org/10.2307/2282952
http://dl.acm.org/citation.cfm?id=1283383.1283478
https://doi.org/10.1137/S0097539700381991
https://doi.org/10.1137/S0097539700381991
https://doi.org/10.1007/s004530010076
https://doi.org/10.1145/3188745.3188908
https://doi.org/10.1109/FOCS.2006.32
https://doi.org/10.1016/S0304-3975(01)00303-6
https://doi.org/10.1016/0022-0000(80)90014-8

29:18 Noisy (Binary) Searching: Simple, Fast and Correct

30 Claude Elwood Shannon. A mathematical theory of communication. The Bell System Technical
Journal, 27:379–423, 1948. doi:10.1002/J.1538-7305.1948.TB01338.X.

31 Stanislaw M. Ulam. Adventures of a Mathematician. Scribner, New York, 1976.
32 Claude Leibovici (https://math.stackexchange.com/users/82404/claude-leibovici).

The taylor expansion of the binary entropy. Mathematics Stack Exchange. URL: https://math.
stackexchange.com/q/4502235 (version: 2022-07-29).

33 A. Wald. Sequential Tests of Statistical Hypotheses. The Annals of Mathematical Statistics,
16(2):117–186, 1945. URL: https://www.jstor.org/stable/2235829.

34 Ziao Wang, Nadim Ghaddar, and Lele Wang. Noisy sorting capacity. In IEEE International
Symposium on Information Theory, ISIT 2022, pages 2541–2546. IEEE, 2022. doi:10.1109/
ISIT50566.2022.9834370.

A Delegated Proofs

▶ Lemma 28. The solution to ax = b +
√

cx is of the form x = 1
a

(
b +O

(
c
a +
√

b ·
√

c
a

))
.

Proof. Solving the quadratic equation a2x2 + b2 − 2abx− cx = 0, we get:

∆ = (2ab + c)2 − 4a2b2 = c(c + 4ab)

x = 2ab + c +
√

c2 + 4abc

2a2 = b

a
+O

(
c +
√

abc

a2

)
◀

▶ Lemma 29. Let (Xi)i∈N+ be a sequence of i.i.d random variables with Pr(Xi = ℓ) = p

and Pr(Xi = r) = (1 − p) for some ℓ, r ∈ R and 0 < p < 1
2 . Let us fix T > 0 and let

Q = inf{m :
m∑

i=1
Xi ≥ T}. If E[Xi] > 0, then E[Q] <∞.

Proof. Let ζm =
m∑

i=1
Xi. If Q > m, then in particular ζm ≤ T , hence

Pr(Q > m) ≤ Pr(ζm ≤ T) (7)

for any m ∈ N+.
Let µ = E[Xi]. Obviously, E[ζm] = mE[Xi] = mµ. Now, let us define N = ⌈T

µ ⌉. For any
m > N we have

ζm ≤ T ⇐⇒ ζm −mµ ≤ −(mµ− T) (8)

and mµ− T > 0. Using Hoeffding bound [21] we get

Pr(ζm−mµ ≤ −(mµ−T)) ≤ exp{−2(mµ− T)2

m(ℓ + r)2 } ≤ exp{−2mµ2

(ℓ + r)2 + 4µT

(ℓ + r)2 } = Cβm (9)

with C = e
4µT

(ℓ+r)2 and β = e
−2µ2

(ℓ+r)2 . Observe that 0 < β < 1.
Putting together equations (7), (8) and (9) we get

E[Q] =
∞∑

m=0
Pr(Q > m)

=
∑

m≤N

Pr(Q > m) +
∑

m>N

Pr(Q > m) ≤
∑

m≤N

Pr(Q > m) + C
∑

m>N

βm <∞. ◀

https://doi.org/10.1002/J.1538-7305.1948.TB01338.X
https://math.stackexchange.com/users/82404/claude-leibovici
https://math.stackexchange.com/q/4502235
https://math.stackexchange.com/q/4502235
https://www.jstor.org/stable/2235829
https://doi.org/10.1109/ISIT50566.2022.9834370
https://doi.org/10.1109/ISIT50566.2022.9834370

Being Efficient in Time, Space, and Workload:
a Self-Stabilizing Unison and Its Consequences
Stéphane Devismes #

Laboratoire MIS, Université de Picardie, 33 rue Saint Leu – 80039 Amiens cedex 1, France

David Ilcinkas #

Univ. Bordeaux, CNRS, Bordeaux INP, LaBRI, UMR 5800, F-33400 Talence, France

Colette Johnen #

Univ. Bordeaux, CNRS, Bordeaux INP, LaBRI, UMR 5800, F-33400 Talence, France

Frédéric Mazoit #

Univ. Bordeaux, CNRS, Bordeaux INP, LaBRI, UMR 5800, F-33400 Talence, France

Abstract
We present a self-stabilizing algorithm for the unison problem which is efficient in time, workload,
and space in a weak model. Precisely, our algorithm is defined in the atomic-state model and works
in anonymous asynchronous connected networks in which even local ports are unlabeled. It makes
no assumption on the daemon and thus stabilizes under the weakest one: the distributed unfair
daemon.

In an n-node network of diameter D and assuming the knowledge B ≥ 2D + 2, our algorithm
only requires Θ(log(B)) bits per node and is fully polynomial as it stabilizes in at most 2D + 2
rounds and O(min(n2B, n3)) moves. In particular, it is the first self-stabilizing unison for arbitrary
asynchronous anonymous networks achieving an asymptotically optimal stabilization time in rounds
using a bounded memory at each node.

Furthermore, we show that our solution can be used to efficiently simulate synchronous self-
stabilizing algorithms in asynchronous environments. For example, this simulation allows us to
design a new state-of-the-art algorithm solving both the leader election and the BFS (Breadth-First
Search) spanning tree construction in any identified connected network which, to the best of our
knowledge, beats all existing solutions in the literature.

2012 ACM Subject Classification Theory of computation → Distributed computing models; Theory
of computation → Distributed algorithms; Theory of computation → Design and analysis of
algorithms

Keywords and phrases Self-stabilization, unison, time complexity, synchronizer

Digital Object Identifier 10.4230/LIPIcs.STACS.2025.30

Funding David Ilcinkas, Colette Johnen, and Frédéric Mazoit : This work was supported by the
ANR project ENEDISC (ANR-24-CE48-7768). Colette Johnen and Stéphane Devismes: This work
was supported by the ANR project SkyData (ANR-22-CE25-0008).

1 Introduction

1.1 Context
Self-stabilization is a general non-masking and lightweight fault tolerance paradigm [25, 3].
Precisely, a distributed system achieving this property inherently tolerates any finite number
of transient faults.1 Indeed, starting from an arbitrary configuration, which may be the result
of such faults, a self-stabilizing system recovers within finite time, and without any external
intervention, a so-called legitimate configuration from which it satisfies its specification.

1 A transient fault occurs at an unpredictable time, but does not result in a permanent hardware damage.
Moreover, as opposed to intermittent faults, the frequency of transient faults is considered to be low.

© Stéphane Devismes, David Ilcinkas, Colette Johnen, and Frédéric Mazoit;
licensed under Creative Commons License CC-BY 4.0

42nd International Symposium on Theoretical Aspects of Computer Science (STACS 2025).
Editors: Olaf Beyersdorff, Michał Pilipczuk, Elaine Pimentel, and Nguyễn Kim Thắng;
Article No. 30; pp. 30:1–30:18

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:stephane.devismes@u-picardie.fr
https://orcid.org/0000-0002-8032-9732
mailto:david.ilcinkas@labri.fr
https://orcid.org/0000-0002-0094-4330
mailto:johnen@labri.fr
https://orcid.org/0000-0001-7170-4521
mailto:frederic.mazoit@labri.fr
https://orcid.org/0009-0000-7660-9275
https://doi.org/10.4230/LIPIcs.STACS.2025.30
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

30:2 Being Efficient in Time, Space, and Workload: A Self-Stabilizing Unison

In this paper, we consider the most commonly used model in the self-stabilizing area: the
atomic-state model [25, 3]. In this model, the state of each node is stored into registers and
these registers can be directly read by neighboring nodes. Furthermore, in one atomic step,
a node can read its state and that of its neighbors, perform some local computation, and
update its state accordingly. In the atomic-state model, asynchrony is materialized by an
adversary called daemon that can restrict the set of possible executions. We consider here
the weakest (i.e., the most general) daemon: the distributed unfair daemon.

Self-stabilizing algorithms are mainly compared according to their stabilization time, i.e.,
the worst-case time to reach a legitimate configuration starting from an arbitrary one. In
the atomic-state model, stabilization time can be evaluated in terms of rounds and moves.
Rounds [13] capture the execution time according to the speed of the slowest nodes. Moves
count the number of local state updates. So, the move complexity is rather a measure
of work than a measure of time. It turns out that obtaining efficient stabilization times
both in rounds and moves is a difficult task. Usually, techniques to design an algorithm
achieving a stabilization time polynomial in moves make its round complexity inherently
linear in n, the number of nodes (see, e.g., [2, 23, 19]). Conversely, achieving the asymptotic
optimality in rounds, usually O(D) where D is the network diameter, commonly makes the
stabilization time exponential in moves (see, e.g., [22, 31]). Surprisingly, Cournier, Rovedakis,
and Villain [14] manage to prove the first fully polynomial (i.e., with Poly(n) move and
Poly(D) round complexities) silent2 self-stabilizing algorithm. Their algorithm builds a BFS
(Breadth-First Search) spanning tree in any rooted connected network and they prove that it
stabilizes in O(n6) moves and O(D2) rounds using Θ(log B + log ∆) bits per node, where B

is an upper bound on D and ∆ is the maximum degree of the network.

Up to now, fully polynomial self-stabilizing algorithms have only been proposed (see [14,
21]) for so called static problems [34], such as spanning tree constructions and leader election,
which compute a fixed object in finite time. In this paper, we propose an algorithm for
a fundamental dynamic (i.e., non static) problem: the asynchronous unison (unison for
short). It consists in maintaining a local clock at each node. The domain of clocks can be
bounded (like everyday clocks) or infinite. The liveness property of the problem requests
each node to increment its own clock infinitely often. Furthermore, the safety property of
the unison requires the difference between the clocks of any two neighbors to always be at
most one increment. The usefulness of the unison comes from the fact that asynchrony often
makes fault tolerance very difficult in distributed systems. The impossibility of achieving
consensus in an asynchronous system in spite of at most one process crash [30] is a famous
example illustrating this fact. Thus, fault tolerance, and in particular self-stabilization, often
requires some kind of barrier synchronization, which the unison provides, to control the
asynchronism of the system by making processes progress roughly at the same speed. Unison
is thus a fundamental algorithmic tool that has numerous applications. Among others, it
can be used to simulate synchronous systems in asynchronous environments [17], to free an
asynchronous system from its fairness assumption (e.g., using the cross-over composition) [8],
to facilitate the termination detection [9], to locally share resources [11], or to achieve
infimum computations [10]. Thus, as expected, we also derive from our unison algorithm a
synchronizer allowing us to obtain several new state-of-the-art self-stabilizing algorithms for
various problems, including spanning tree problems and leader election.

2 In the atomic-state model, a self-stabilizing algorithm is silent if all its executions terminate.

S. Devismes, D. Ilcinkas, C. Johnen, and F. Mazoit 30:3

1.2 Related Work
Related Work on the Self-stabilizing Unison

The first self-stabilizing asynchronous unison for general graphs was proposed by Couvreur,
Francez, and Gouda [15] in the link-register model (a locally-shared memory model without
composite atomicity [27, 26]). However, no complexity analysis was given. Another solution,
which stabilizes in O(n) rounds, is proposed by Boulinier, Petit, and Villain [11] in the
atomic-state model assuming a distributed unfair daemon. Its move complexity is shown
in [24] to be in O(Dn3 + αn2), where α is a parameter of the algorithm that should satisfy
α ≥ L − 2, where L is the length of the longest hole in the network. In his PhD thesis,
Boulinier proposes a parametric solution that generalizes the solutions of both [15] and [11].
In particular, the time complexity analysis of this latter algorithm reveals an upper bound in
O(D · n) rounds on the stabilization time of the atomic-state model version of the algorithm
in [15]. Awerbuch, Kutten, Mansour, Patt-Shamir, and Varghese [4] propose a self-stabilizing
unison that stabilizes in O(D) rounds using an infinite state space. The move complexity of
their solution is not analyzed. An asynchronous self-stabilizing unison algorithm is given
in [23]. It stabilizes in O(n) rounds and O(∆ · n2) moves using unbounded local memories.
Emek and Keren [28] present in the stone age model a self-stabilizing unison that stabilizes
in O(B3) rounds, where B is an upper bound on D known by all nodes. Their solution
requires Θ(log B) bits per node. Moreover, since node activations are required to be fair, the
move complexity of their solution is unknown and may be unbounded.

Related Work on Simulations

Simulation is a useful tool to simplify the design of algorithms. In self-stabilization, simulation
has been mainly investigated to emulate schedulers or to port solutions from a strong
computational model to a weaker one. Awerbuch [7] introduced the concept of synchronizer
in a non-self-stabilizing context. A synchronizer simulates a synchronous execution of an input
algorithm into an asynchronous environment. The first two self-stabilizing synchronizers have
been proposed in [4] for message-passing systems. Both solutions achieve a stabilization time
in O(D) rounds. The first solution is based on the previously mentioned unison, also proposed
in the paper, that uses an infinite state space. To solve this latter issue, they then propose
to mix it with the reset algorithm of [5] applied on links of a BFS spanning tree computed
in O(D) rounds. This reset algorithm is devoted, and so limits the approach, to locally
checkable and locally correctable problems, and the BFS spanning tree construction uses a
finite yet unbounded number of states per node and requires the presence of a distinguished
node (a root). Again, the move complexity of their solutions is not analyzed. Awerbuch
and Varghese [6] propose, still in the message-passing model, two synchronizers: the rollback
compiler and the resynchronizer. The resynchronizer additionally requires the input algorithm
to be locally checkable and assumes the knowledge of a common upper bound D on the
network diameter. Using the rollback, resp. the resynchronizer, method, a synchronous
non-self-stabilizing algorithm can be turned into an asynchronous self-stabilizing algorithm
that stabilizes in O(T) rounds, resp. O(T + D) rounds, using Ω(T × S) space, resp. Θ(S)
space, per node where T , resp. S, is the execution time, resp. the space complexity, of the
input algorithm. Again, the move complexity of these synchronizers is not analyzed. Now,
the straightforward atomic-state model version of the rollback compiler is shown to achieve
exponential move complexities in [21]. Finally, the synchronizer proposed in [21] works in the
atomic-state model and achieves round and space complexities similar to those of the rollback

STACS 2025

30:4 Being Efficient in Time, Space, and Workload: A Self-Stabilizing Unison

compiler, but additionally offers polynomial move complexity. Hence, it allows to design
fully polynomial self-stabilizing solutions for static problems, but still with an important
memory requirement (using Ω(T × S) space).

Simulation has been also investigated in self-stabilization to emulate other schedulers. For
example, the conflict manager proposed in [32] allows to emulate an unfair locally central
scheduler in fully asynchronous settings. Another example is fairness that can be enforced
using a unison algorithm together with the cross-over composition [8].

Concerning now model simulations, Turau proposes in [35] a general procedure allowing
to simulate any algorithm for the distance-two atomic-state model in the (classical) distance-
one atomic-state model assuming that nodes have unique identifiers. Finally, simulation
from the atomic-state model to the link-register one and from the link-register model to the
message-passing one are discussed in [26].

1.3 Contributions
Fully Polynomial Self-stabilizing Unison

We propose a fully polynomial self-stabilizing bounded-memory unison in the atomic-state
model assuming a distributed unfair daemon. It works in any anonymous network of arbitrary
connected topology, and stabilizes in O(D) rounds and O(n3) moves using Θ(log B) bits per
node, where B ≥ 2D + 2 (see Table 1 below). To the best of our knowledge, our algorithm
vastly improves on the literature as other self-stabilizing algorithms have at least one of the
following drawbacks: an unbounded memory, an Ω(n) round complexity, a restriction on the
daemon (synchronous, fair, . . .). Note also that the computational model we use is at least
as general as the stone age model of Emek and Wattenhofer [29]: it does not require any
local port labeling at nodes, or knowing how many neighbors a node has.

Overall, our unison achieves outstanding performance in terms of time, workload, and
space, which also makes it the first fully polynomial self-stabilizing algorithm for a dynamic
problem.

Self-stabilizing Synchronizer

From our unison algorithm, we straightforwardly derive a self-stabilizing synchronizer that
efficiently simulates synchronous executions of an input self-stabilizing algorithm in an
asynchronous environment. More precisely, if the input algorithm AlgI is silent, then the
output algorithm Sync(AlgI) is silent as well and satisfies the same specification as AlgI .
The specification preservation property also holds for any algorithm, silent or not, solving
a static problem. We analyze the complexity of this synchronizer and show that it mostly
preserves the round and space complexities of the simulated algorithm (see Table 1 for
details). This synchronizer is thus a powerful tool to ease the design of efficient asynchronous
self-stabilizing algorithms. Indeed, for many tasks, the usual lower bound on the stabilization
time in rounds is Ω(D). Now, thanks to our unison, one just has to focus on the design
of a synchronous O(D)-round self-stabilizing algorithm to finally obtain an asynchronous
self-stabilizing solution asymptotically optimal in rounds, with a low overhead in space
(Θ(log B) bits per node) and a polynomial move complexity (i.e., a fully polynomial solution).

The transformer of [21] has similar round and move complexities. But this algorithm and
ours are incomparable as they make different trade-offs. This paper prioritizes memory over
generality, while the transformer of [21] makes the opposite choice by prioritizing generality
over memory. More precisely, the transformer of [21] can simulate any synchronous algorithm
(not necessarily self-stabilizing), by storing its whole execution. It thus has a much larger

S. Devismes, D. Ilcinkas, C. Johnen, and F. Mazoit 30:5

space complexity than ours, which only stores two states of the simulated input algorithm. It
turns out that the connections between our algorithm and the transformer of [21] are deeper
than their move and round complexities. We further explain their similarities as well as their
differences in Sections 3 and 4.5.

Implications of our Results

Using our synchronizer, one can easily obtain state-of-the-art (silent) self-stabilizing solutions
for several fundamental distributed computing problems, e.g., BFS tree constructions, leader
election, and clustering (see Table 1).

Table 1 Complexities of the Unison, the Synchronizer, and some consequences.

Moves Rounds Space

Unison O
(
min(n2B, n3)

)
2D + 2 ⌈log B⌉ + 2

Synchronizer O
(
min(n2B, n3) + nT

)
5D + 3T 2M + ⌈log B⌉ + 2

Problem Moves Rounds Space

BFS tree in rooted networks O(n3) O(D) Θ(log B + log ∆)

BFS tree in identified networks O(n3) O(D) Θ(log N)

Leader election O(n3) O(D) Θ(log N)

O(n
k

)-clustering O(n3) O(D) Θ(log k + log N)

T and M are the synchronous time and space complexities of the input algorithm,
and B and N are input parameters satisfying B ≥ 2D + 2 and N ≥ n.

First, we obtain a new state-of-the-art asynchronous self-stabilizing algorithm for the BFS
spanning tree construction in rooted and connected networks, by synchronizing the algorithm
in [22] (which is a bounded-memory variant of the algorithm in [27]). This new algorithm
converges in O(n3) moves and O(D) rounds with Θ(log B + log ∆) bits per node (the same
round and space complexities as in [22]), where B is an upper bound on D and ∆ is the
maximum node degree. It improves both on the algorithm in [14], which only converges in
O(n6) moves and O(D2) rounds, and on the algorithm in [21], which has similar complexities
but uses Θ(B · log ∆) bits per node.

In the following, we consider identified connected networks. In this setting, when nodes
store identifiers, they usually know a bound k on the size of these identifiers. They thus
know a bound N = 2k on n, and since N is a bound on D, we set B = 2N + 2.

In identified networks, a strategy to compute a BFS spanning tree is to compute a leader
together with a BFS tree rooted at this leader. This is what the self-stabilizing algorithm
in [33] actually does in a synchronous setting. Therefore, by synchronizing it, we obtain
a new state-of-the-art asynchronous self-stabilizing algorithm for both the leader election
and the BFS spanning tree construction in identified and connected networks. This new
algorithm converges in O(n3) moves and O(D) rounds with Θ(log N) bits per node (i.e.,
the same round and space complexities as in [33]). To the best of our knowledge, no such
efficient solutions exist until now in the literature. There are two incomparable asynchronous
self-stabilizing algorithms that achieve an O(D) round complexity [12, 1]. They operate in
weaker models (resp. message-passing and link-register). However, their move complexity is
not analyzed and the first one has a Θ(log B · log N) space requirement (B being a known
upper bound on D) while the second one uses an unbounded space.

STACS 2025

30:6 Being Efficient in Time, Space, and Workload: A Self-Stabilizing Unison

Other memory-efficient fully polynomial self-stabilizing solutions can be easily obtained
with our synchronizer, e.g., to compute the median or centers in anonymous trees by simulating
algorithms proposed in [18]. Another application of our synchronizer is to remove fairness
assumptions along with obtaining good complexities. For example, the silent self-stabilizing
algorithm proposed in [16] computes a clustering of O(n

k) clusters in any rooted identified
connected network. It assumes a distributed weakly fair daemon and its move complexity
is unknown. With our synchronizer,3 we achieve a fully polynomial silent solution that
stabilizes under the distributed unfair daemon and without the rooted network assumption,
in O(D) rounds, O(n3) moves, and using Θ(log k + log N) bits per node.

Note that, by using the compiler in [21], one can obtain similar time complexities for all
the previous problems, but with a drastically higher space usage.

1.4 Roadmap
The rest of the paper is organized as follows. Section 2 is dedicated to the computational
model and the basic definitions. We develop the links between the present paper and [21]
in Section 3, and we present our algorithm in Section 4. We sketch its correctness and its
time complexity in Section 5. In Section 6, the self-stabilizing synchronizer derived from our
unison algorithm is presented and its complexity is also sketched. We conclude in Section 7.

2 Preliminaries

2.1 Networks
We model distributed systems as simple graphs, that is, pairs G = (V, E) where V is a
set of nodes and E is a set of edges representing communication links. We assume that
communications are bidirectional. The set N(p) = {q | {p, q} ∈ E} is the set of neighbors
of p, with which p can communicate, and N [p] = N(p) ∪ {p} is the closed neighborhood of p.
A path (from p0 to pl) of length l is a sequence P = p0p1 · · · pl of nodes such that consecutive
nodes in P are neighbors. We assume that G is connected, meaning that any two nodes are
connected by a path. We can thus define the distance d(p, q) between two nodes p and q to
be the minimum length of a path from p to q. The diameter D of G is then the maximum
distance between nodes of G.

2.2 Computational Model: the Atomic-state Model
Our unison algorithm works in a variant of the atomic-state model in which each node holds
locally shared registers, called variables, whose values constitute its state. The vector of all
node states defines a configuration of the system.

An algorithm consists of a finite set of rules of the form label : guard → action. In
the variant that we consider, a guard is a boolean predicate on the state of the node and
on the set of states of its neighbors. The action changes the state of the node. To shorten
guards and increase readability, priorities between rules may be set. A rule whose guard is
true is enabled, and can be executed. By extension, a node with at least one enabled rule
is also enabled, and Enabled(γ) contains the enabled nodes in a configuration γ. Note that

3 Also replacing the spanning tree construction used in [16] by the new BFS tree construction of the
previous paragraph.

S. Devismes, D. Ilcinkas, C. Johnen, and F. Mazoit 30:7

this model is quite weak. Indeed, in other variants, nodes may have, for example, distinct
identifiers. In our case, the network is anonymous and since a node only accesses a set of
states, it cannot even count how many neighbors it has.

An execution in this model is a maximal sequence of configurations e = γ0γ1 · · · γi · · ·
such that for each transition (called step) γi 7→ γi+1, there is a nonempty subset X i of
Enabled(γi) whose nodes simultaneously and atomically execute one of their enabled rules,
leading from γi to γi+1. We say that each node of X i executes a move during γi 7→ γi+1.
Note that e is either infinite, or ends at a terminal configuration γf where Enabled(γf) = ∅.
An algorithm with no infinite executions is terminating or silent.

A daemon D is a predicate over executions. An execution which satisfies D is said to be
an execution under D. We consider the synchronous daemon, which is true if, at all steps,
X i := Enabled(γi), and the fully asynchronous daemon, also called distributed unfair daemon
in the literature, which is always true. Note that under the distributed unfair daemon, a
node may starve and may never be activated, unless it is the only enabled node.

In an execution, all the information in the states is not necessarily relevant for a problem.
We thus use a projection to extract information (e.g., just an output boolean for the boolean
consensus) from a node’s state, and we canonically extend this projection to configurations
and executions. A specification of a distributed problem is then a predicate over projected
executions. A problem is static if its specification requires the projected executions to be
constant, and it is dynamic otherwise.

An algorithm is self-stabilizing under a daemon D if, for every network and input
parameters, there exists a set of legitimate configurations such that (1) the algorithm
converges, i.e., every execution under D (starting from an arbitrary configuration) contains a
legitimate configuration, and (2) the algorithm is correct, i.e., every execution under D that
starts from a legitimate configuration satisfies the specification.

We consider three complexity measures: space, moves which model the total workload,
and rounds which model an analogous of the synchronous time by taking the speed of the
slowest nodes into account. As done in the literature on the atomic-state model, the space
complexity is the maximum space used by one node to store its own variables. As explained
before, a move is the execution of a rule by a node. To define the round complexity of an
execution e = γ0γ1 · · · , we first need to define the notion of neutralization: a node p is
neutralized in γi 7→ γi+1, if p is enabled in γi and not in γi+1, but it does not apply any rule
in γi 7→ γi+1. Then, the rounds are inductively defined as follows. The first round of an
execution e = γ0γ1 · · · is the minimal prefix e′ such that every node that is enabled in γ0

either executes a move or is neutralized during a step of e′. If e′ is finite, then let e′′ be
the suffix of e that starts from the last configuration of e′; the second round of e is the first
round of e′′, and so on. For every i > 0, we denote by γri the last configuration of the i-th
round of e, if it exists and is finite; we also conventionally let γr0 = γ0. Consequently, γri−1

is also the first configuration of the i-th round of e. The stabilization time of a self-stabilizing
algorithm is the maximum time (in moves or rounds) over every execution possible under
the considered daemon (starting from any initial configuration) to reach (for the first time) a
legitimate configuration.

3 A Glimpse of our Research Process

3.1 An Unbounded Unison Algorithm
We started this work on the bounded unison problem when we observed that an unbounded
solution can easily be derived from [21]. This can be seen as follows. The algorithm
given in [21] simulates a synchronous non self-stabilizing algorithm in an asynchronous

STACS 2025

30:8 Being Efficient in Time, Space, and Workload: A Self-Stabilizing Unison

self-stabilizing setting. To do so, it uses a very natural idea. It stores, at each node, the
whole execution of the algorithm so far as a list of states. Given its list and the lists of its
neighbors, a given node can check for inconsistencies in the simulation and correct them.

Now if we implement this idea in an asynchronous algorithm which is not self-stabilizing,
then the length of the lists satisfy the unison property. Indeed, to compute its (i + 1)-th
value, a node must wait for all its neighbors to have computed at least their i-th value.

Obviously, in a self-stabilizing setting, we cannot expect the length of the lists of the
nodes to initially satisfy the unison property. It turns out that the error recovery mechanism
in [21] not only solves the initial inconsistencies of the simulation, but also recovers the
unison property.

If we simulate an algorithm “that does nothing”, we can compress the lists by only storing
their lengths. We thus obtain a first (unbounded) unison algorithm, given below. Note that
although we describe the whole algorithm, the reader does not need to fully understand it.

Each node p has a status p.s ∈ {E, C} (Error/Correct) and a time p.t ∈ N. Given these
predicates,

root(p) :=
(
p.s = E ∧ ¬(∃q ∈ N(p), q.s = E ∧ q.t < p.t)

)
∨(

p.s = C ∧ ∃q ∈ N(p), (q.t ≥ p.t + 2)
)

activeRoot(p) := root(p) ∧ (p.t > 0 ∨ p.s = C)

errProp(p, i) := ∃q ∈ N(p), q.s = E ∧ q.t < i < p.t

canClearE(p) := p.s = E ∧ ∀q ∈ N(p),
(
|q.t − p.t| ≤ 1 ∧ (q.t ≤ p.t ∨ q.s = C)

)
updatable(p) := p.s = C ∧

(
∀q ∈ N(p), p.t ≤ q.t ≤ p.t + 1

)
the algorithm is defined by the following four rules

RR : activeRoot(p) −→ p.t := 0 ; p.s := E

RP (i) : errP rop(p, i) −→ p.t := i ; p.s := E

RC : canClearE(p) −→ p.s := C

RU : updatable(p) −→ p.t := p.t + 1

in which RR has the highest priority, and RP (i) has a higher priority than RP (i′) for i < i′.
The rules RR, RP (i) and RC are “error management” rules. Thus, once the algorithm has
stabilized, the status of all nodes is C and only RU is applicable.

This unbounded self-stabilizing unison algorithm is not really interesting by itself. Indeed,
it converges in 2D + 2 rounds in an asynchronous setting, but in this regard, the algorithm
in [4] converges twice as fast, is simpler and operates in the message-passing model, which is
more realistic. However, whereas nobody has been able to derive a bounded version of the
algorithm in [4], we hoped that this could be done with this new algorithm.

In the following subsections, we present a first very natural attempt, which ultimately
failed, and a more complex version, which we detail and prove in the next sections of the
paper.

3.2 A Failed Bounded Unison Algorithm

The most natural strategy to turn an unbounded unison into a bounded one is simply to
count modulo a large enough fixed bound B. To outline this change of paradigm from an
ever-increasing time to a circular clock, we rename the variable p.t into p.c for any node p.

S. Devismes, D. Ilcinkas, C. Johnen, and F. Mazoit 30:9

We thus modify the rule RU as follows:

updatable(p) := p.s = C ∧
(
∀q ∈ N(p), q.c ∈ {p.c, p.c + 1 mod B}

)
RU : updatable(p) −→ p.c := p.c + 1 mod B

At first glance, we do not need to modify the other rules as their purpose is only to
correct errors, but this intuition is wrong. Indeed, when two neighboring nodes p and q are
such that p.s = q.s = C, p.c = 0 and q.c = B − 1, they satisfy the unison property, but p

can apply the rule RR, although there are no errors to correct. The problem comes from
the term ∃q ∈ N(p), (q.c ≥ p.c + 2) in the root predicate which should detect out-of-sync
neighbors. Hence, we must at least modify this predicate as follows:

root(p) :=
(
p.s = E ∧ ¬(∃q ∈ N(p), q.s = E ∧ q.c < p.c)

)
∨(

p.s = C ∧ ∃q ∈ N(p), (q.c ≥ p.c + 2)∧¬(p.c = 0 ∧ q.c = B − 1). .
)
.

Therefore, transforming the algorithm to implement this simple modulo-B idea is already
not as straightforward as it may seem.

Moreover, even small modifications generally introduce new unforeseen behaviors, and
the modified algorithm has no particular reasons to be efficient, or even correct. As a matter
of fact, we failed to prove its correctness. To understand why, we must delve a bit into the
proof scheme of [21].

An important observation is that rootless configurations (i.e., those without nodes
satisfying the root predicate) satisfy the safety property of the unison. In [21], the correctness
and the move complexity then follow from the key property that roots cannot be created,
and that, in a “small” number of steps, at least one root disappears.

Sadly, this first attempt algorithm does not satisfy the “no root creations” property. To
see this, consider a path p − q − r and a configuration γa in which p.c = q.c = B − 1, r.c = 3,
p.s = q.s = C and r.s = E. In one step γa 7→ γb,

p applies the rule RU and thus, in γb, p.c = 0 and p.s = C

q applies the rule RP (4), and thus, in γb, q.c = 4.
Therefore, in γb, p.s = C and p has a neighbor q such that q.c ≥ p.c + 2 and q.c ̸= B − 1.
Thus, p is a root in γb, although it is not one in γa.

Note that the fact that roots can be created is not necessarily a problem. Indeed, if only
a finite number of them appears, we recover the correctness of the algorithm. We actually
believe that, for B large enough, any node can become a root only once per execution, and
this would most likely imply that the move complexity remains polynomial. But n roots may
appear sequentially, which would lead to an Ω(n) round complexity.

At this point, we cannot rule out that this algorithm is correct and has good properties.
However, because of these problems, we took another approach.

3.3 Our Solution
In the end, our solution is obtained by a rather limited modification of the previous algorithm:
we extend the range of the counters p.c to the interval [−B, B), but we restrict their range
to [−B, 0) when p.s = E.

Actually, this modification prevents all root creations. But, as with the previous attempt,
we must be extra careful even with the smallest change, as proofs can easily break. We thus
present the whole algorithm and its proofs in more details in the next sections, and further
highlight the differences with [21] in Section 4.5.

STACS 2025

30:10 Being Efficient in Time, Space, and Workload: A Self-Stabilizing Unison

4 A Unison Algorithm

4.1 Data Structures
Let B ≥ 2D + 2 be an integer. Each node p maintains a single variable p.v ∈ {(C, x) | x ∈
[−B, B)} ∪ {(E, x) | x ∈ [−B, 0)}. In the algorithm, p.s and p.c, the status and the clock
of p, respectively denote the left and right part of p.v. An assignment to p.s or p.c modifies
the corresponding field of p.v.

We define the unison increment a ⊕B 1 as (B − 1) ⊕B 1 = 0 and a ⊕B 1 = a + 1 if
a ∈ [−B, B − 2]. Two clocks are synchronized if they are at most one increment apart.
We then define a ⊕B b as the result of b iterations of ⊕B 1 over a. Note that, as hinted in
Section 3.2, we also use the usual addition and subtraction.

4.2 Some Predicates
Apart from its state, a node p has only access to the set {q.v | q ∈ N(p)} of its neighbors’
variables. A guard should thus not contain a direct reference to a neighbor q of p. This may
look like a problem for we have already used such references. Nevertheless, these uses are
legitimate as, for any predicate Pred, the semantics of ∃(s, c) ∈ {q.v | q ∈ N(p)}, Pred(s, c)
is precisely ∃q ∈ N(p), Pred(q.s, q.c). We can similarly encode universal statements.

As a matter of fact, we use the following shortcuts to increase readability:

Shortcut1 ∃q ∈ N(p), Pred(q.s, q.c) := ∃(s, c) ∈ {q.v | q ∈ N(p)}, Pred(s, c)
Shortcut2 ∀q ∈ N(p), Pred(q.s, q.c) := ∀(s, c) ∈ {q.v | q ∈ N(p)}, Pred(s, c)

Below, we define the predicates used by our algorithm.

root(p) :=
(
p.s = E ∧ ¬(∃q ∈ N(p), q.s = E ∧ q.c < p.c)

)
∨(

p.s = C ∧ ∃q ∈ N(p), (q.c ≥ p.c + 2) ∧ ¬(p.c = 0 ∧ q.c = B − 1)
)

activeRoot(p) := root(p) ∧ (p.c ̸= −B ∨ p.s = C)

errorPropag(p, i) := i < 0 ∧ ∃q ∈ N(p), q.s = E ∧ q.c < i < p.c

canClearE(p) := p.s = E ∧ ∀q ∈ N(p),
(
|q.c − p.c| ≤ 1 ∧ (q.c ≤ p.c ∨ q.s = C)

)
updatable(p) := p.s = C ∧ ∀q ∈ N(p), q.c ∈ {p.c, p.c ⊕B 1}

A node p is a root if root(p). An error rule is either the rule RR or a rule RP (i).

4.3 The Algorithm
A unison algorithm is rarely used alone. It is merely a tool to drive another algorithm. It
thus makes sense that our algorithm depends on some properties which are external to the
unison algorithm and its variables. Our algorithm uses a predicate Paux which is not yet
defined. As a matter of fact, its influence on the complexity analysis of the algorithm is very
limited. To prove the correctness of the unison, we set Paux = true, and we specialize Paux
differently in Section 6 when using our algorithm as a synchronizer.

RR : activeRoot(p) −→ p.c := −B ; p.s = E

RP (i) : errorP ropag(p, i) −→ p.c := i ; p.s = E

RC : canClearE(p) −→ p.s := C

RU : updatable(p) ∧ Paux(p) −→ p.c := p.c ⊕B 1
The rule RR has the highest priority, and RP (i) has a higher priority than RP (i′) for i < i′.

S. Devismes, D. Ilcinkas, C. Johnen, and F. Mazoit 30:11

4.4 An Overview of the Algorithm
Contrary to [4] which proceeds by only locally synchronizing out-of-sync clocks, i.e., the
clocks of two neighboring nodes that differ by at least two increments, we organize the
synchronizations in error broadcasts. Every node p involved in such a broadcast is in error
and its status is p.s = E. Otherwise, it is correct and p.s = C.

If p is correct, in sync with its neighbors, and if its clock p.c is a local minimum, then p

can apply the rule RU to increment its clock.
There is a cliff between r and one of its neighbors p if their clocks are out-of-sync and

p.c > r.c. If r is correct and has a cliff with a neighbor, then r is said to be a root and should
initiate an error broadcast by applying the rule RR, which respectively sets r.c to −B and
r.s to E.

If there is a cliff between r and p, r is in error, and r.c < −1, then p should propagate
the broadcast by applying the rule RP which sets p.c to r.c + 1 and p.s to E. If p has several
such neighbors r, it applies RP according to the one with the minimum clock.

As a consequence, any node p in error with p.c > −B should have at least one neighbor
in error with a smaller clock. This way, the structure of an error broadcast is a dag (directed
acyclic graph). We therefore extend the definition of root to include nodes in error with no
“parents” in the broadcast dag.

Note that a node may decrease its clock multiple times using RP , and in doing so may
consecutively join several error dags or several parts of them. This way, nodes reduce the
height of the error dags, which is a key element to achieve the O(D)-round complexity.
Furthermore, any node in error eventually has a clock smaller than −B + D and all cliffs are
eventually destroyed.

Finally, if p is in error, is not involved in any cliff (in which case an error must be
propagated), and if all its neighbors with larger clocks are correct, then the broadcast from p

is finished, and p can apply the rule RC to switch back p.s to C.
A key element to bound the move complexity is that a dag built during an error broadcast

is cleaned from the larger clocks to the smaller, but nodes previously in the dag resume the
“normal” increments (using the rule RU) in the reverse order (i.e., from the smaller clocks
to the larger). Indeed, a non-root node in an error broadcast is one increment ahead of its
parents in the dag and so has to wait for their increment before being able to perform one
itself. Hence, the first node in the dag that makes a RU move after an error broadcast is its
root.

4.5 Some Subtleties
Some statements and the corresponding proof arguments are very similar to the ones of [21]
(rather its arXiv version [20]). However, the fact that the algorithm and its data structures
are different imply that proofs are indeed different. As a matter of fact, we have tried but
failed to unify both algorithms into a natural more general one.

Below, we outline subtleties which are specific to our algorithm.
Since nodes in error are restricted to negative clocks, it is natural to expect that legitimate
configurations require all clocks to be non-negative. This would suggest a Θ(B) round
complexity, which is weaker than what we claim. But this intuition is false. For example,
the configuration where all nodes are correct and all clocks are set to −B is legitimate.
This is one of the reasons for our O(D) round complexity.
In the unbounded unison algorithm above which we derive from [21], whenever two
neighboring nodes p and q are such that q.s = E and p.c ≥ q.c + 2, the node p can always
apply a rule RP (i). In our algorithm, this is not the case when q.c = −1. This could

STACS 2025

30:12 Being Efficient in Time, Space, and Workload: A Self-Stabilizing Unison

introduce unexpected behaviors which could impact the complexities of our algorithm, or
in the worst case, lead to deadlocks. We thus have to deal with this slight difference in
the proofs.
In [21], the proofs heavily rely on the fact that the counters increase when applying the
rule RU while they decrease when applying the rules RR and RP (i). This monotony
property is however not true in our setting. More generally, having two addition operators
+ and ⊕B requires special care throughout the proofs.
Finally, to bound the memory, the maximum clock is B − 1, after which clocks go back
to 0. Notice that to ensure the liveness property of the unison, we must have B ≥ 2D + 2
(an example of deadlock is presented for B = 2D + 1 in Subsection 5.2).

5 Self-Stabilization and Complexity of the Unison Algorithm

As already mentioned, the unison algorithm corresponds to Paux = true. However, since
most proofs are valid regardless of the definition of Paux, we only specify it when needed.
We define the legitimate configurations as the configurations without roots. Let e = γ0γ1 · · ·
be an execution. We respectively denote by p.si and p.ci the value of p.s and p.c in γi.

5.1 Convergence and Move Complexity of the Unison Algorithm
Although it is tedious, it is straightforward to prove, by case analysis, that roots cannot be
created. Since roots are obstructions to legitimate configurations, it is natural to partition
the steps of e into segments such that each step in which at least one root disappears is the
last step of a segment. There are thus at most n segments with roots, which constitute the
stabilization phase, and at most one root-less segment. We now show that the stabilization
phase is finite by providing a (finite) bound on its move complexity.

In the following, s is any segment of the stabilization phase. The key fact is that in s, a
node p in error cannot apply the rule RU until the end of s. We prove this by induction on
p.c. If p.c = −B, then p is a root, and the only rule that p can apply is RC , which removes
its root status. The base case thus follows. Now let p be in error with p.c > −B. If p does
not move in s, then our claim holds. Otherwise let γa 7→ γb be the first step in which p

moves. If p applies the rule RR, then p.cb = −B, and for the remainder of s, the claim holds
by induction. Otherwise, p has a neighbor q such that q.sa = E and q.ca < p.ca < 0. By
induction, q.c cannot increase until the end of s. As long as p.c > q.c, p cannot apply the rule
RU and if, at some point, p.c ≤ q.c, then p must have applied an error rule, thus decreasing
its clock, at which point the claim holds by induction.

Since roots cannot be created, the number of RR-moves is at most n. Moreover, since
between two RC -moves, there has to be at least one error move (RR- or RP -move), we have
#RC-moves ≤ n + #RR-moves + #RP -moves ≤ 2n + #RP -moves. We thus only need to
bound the number of RU -moves and RP -moves.

We now bound the number of RU moves by a node in s. If a node q does not move
between γa and γb in s with a < b, then a neighbor p can apply the rule RU at most twice,
to go from q.ca − 1 to q.ca + 1. More generally, if p.cb ≥ p.ca + 2 + i (we really mean the
+ operator and not the ⊕B operator), then every neighbor q of p must increase its clock by
at least i between γa and γb. By induction on d, if p.cb = p.ca + 2d + i, then every node q

at distance d from p increases its clock by at least i between γa and γb. Since roots cannot
increase their clocks, this implies that p.cb ≤ p.ca + 2D.

From this “linear” bound, we now derive a “circular” bound which takes into account the
fact that the clock of a node may decrease while applying the rule RU (from B − 1 to 0).
In the worst case, p could apply the rule RU 2D times to reach p.c = B − 1, then apply

S. Devismes, D. Ilcinkas, C. Johnen, and F. Mazoit 30:13

RU once so that p.c = 0, then reapply RU 2D more times (recall that B ≥ 2D + 2). To
summarize, p may apply RU at most 4D + 1 times in s. This gives an O(n2D) bound on the
number of RU -moves done during the stabilization phase.

We now focus on the rule RP in s. If a node p0 applies a rule RP in a step γj1 7→ γj1+1 of
s, it does so to “connect” to a neighbor p1 which is already in error. Now p1 may be in error
in γj1 because it has applied a rule RP in another step γj2 7→ γj2+1 of s with j2 < j1, to
connect to a neighbor p2, and so on. This defines a causality chain p0 · · · pl for some l. Since,
according to the key fact, rules RP and RU do not alternate in s, a node cannot appear
twice in the causality chain, thus l < n. Moreover, when considering a maximal causality
chain, pl.c

jl is either the value of pl.c at the beginning of s, or −B if pl has applied the
rule RR. The clock p0.c can thus take at most n(n + 1) distinct values in s, which implies
that the rule RP is applied at most O(n2) times in s by a given node. This gives an overall
O(n4)-bound on the number of rules RP . Note that a more careful analysis gives an overall
bound of O(n3) on the total number of RP -moves.

We can also easily obtain a bound that involves B. Indeed, a node p has at most B

RP -moves and 4D + 1 = O(B) RU -moves in s. This gives an O(n2B)-bound on the number
of moves. To summarize, the stabilization phase terminates after at most O(min(n3, n2B))
moves.

Note that any configuration γ with at least one root contains at least one enabled node.
Indeed, if any two neighboring clocks are at most one increment apart, then any root is in
error, and the rule RC is enabled at any node p in error with p.c maximum. Otherwise, there
exist two neighbors p and q such that p.c and q.c are more than one increment apart. We
choose them with q.c < p.c and q.c minimum. q.c being minimum, we can show that either q

is a root that is enabled for RR, or p can apply the rule RP because q is in error and satisfies
q.c ≤ −B + D < −1. Thus, the last configuration of the stabilization phase is legitimate.

Also, note that since roots cannot be created, being legitimate is a closed property,
meaning that in a step γa 7→ γb, if γa is legitimate, then so is γb.

5.2 Correctness of the Unison Algorithm

We now show that any legitimate configuration γ satisfies the safety property of the unison.
First, γ cannot contain nodes in error, because any such node p with p.c minimum would be
a root. Moreover, if the clocks of two correct neighbors differ by more than one increment,
then the node with the smaller clock is a root.

To prove the liveness property of the unison, we set Paux = true in this paragraph. In
legitimate configurations, since neighboring clocks differ by at most one increment, any two
clocks differ by at most D increments. And since B ≥ 2D + 2, there exists c ∈ [0, B) which
is not the clock of any node. This implies that there exists at least one node p whose clock is
not the increment of any other clock. Thus, p satisfies updatable and can apply RU . This
proves that at least one node applies RU infinitely often, and thus so do all nodes. Observe
that B ≥ 2D + 2 is tight. Indeed, when B = 2D + 1, the configuration of the cycle p0,
p1, . . . p2D in which all nodes are correct and pi.c = i, is legitimate but is terminal.

5.3 Round Complexity of the Unison Algorithm

We claim that γr2D+2 contains no roots and so is legitimate. Recall that for all i ≥ 1, Round i

is γri−1 · · · γri . We suppose that all γri with i ≤ 2D + 1 contain roots otherwise our claim
directly holds.

STACS 2025

30:14 Being Efficient in Time, Space, and Workload: A Self-Stabilizing Unison

We now study the first D + 1 rounds. Let r be any root in γrD+1 . Since there are no
root creations, r is already a root in γ0. By the end of the first round (using the rule RR if
needed), r.c = −B and r.s = E. Now, since r is still a root in γrD+1 , it cannot make a move
in the meantime, and its state does not change until γrD+1 . Furthermore, every neighbor
p of r such that p.c > −B + 1 can apply the rule RP . So, by the end of Round 2, and as
long as r does not increment its clock, p.c ≤ −B + 1. By induction on the distance d(p, r)
between p and r, we can prove that p.crD+1 ≤ −B + d(p, r) for every node p and every root
r in γrD+1 .

We claim that γrD+1 does not contain any cliff, i.e., a pair (q, p) of neighboring nodes
whose clocks are out-of-sync and such that q.c < p.c. Suppose that (q, p) is a cliff in γrD+1 .
The node q is in error as otherwise it would be a root not in error, which, as already mentioned,
is impossible from γr1 . Moreover, we can prove by induction on q.c that there is a root r in
γrD+1 such that q.c ≥ −B + d(q, r). Since p.c ≥ q.c + 2, we have p.c > −B + d(p, r), which
contradicts the result of the previous paragraph.

We now consider the next D + 1 rounds. Since γrD+1 contains no nodes which can apply
RR, and no cliffs, nodes can only apply the rules RU or RC . Furthermore, among nodes in
error, those with the largest clock can apply the rule RC , which implies that roots no longer
exist by the end of Round 2D + 2, and thus γr2D+2 is legitimate.

6 A Synchronizer

Let us consider a variant of the atomic-state model which is at least as expressive as the
model of our unison algorithm. This means that, in this model, we should be able to encode
the shortcuts Shortcut1 and Shortcut2 (defined page 10).

In this model, let AlgI be any silent algorithm which is self-stabilizing with a projection
proj for a static specification SP under the synchronous daemon. Using folklore ideas (see,
e.g., [4] and [28]), we define in this section a synchronizer which uses our unison to transform
AlgI into an algorithm Sync(AlgI) which “simulates” synchronous executions of AlgI in an
asynchronous environment under a distributed unfair daemon.

6.1 The Synchronized Algorithm
On top of its unison variables, each node p stores two states of AlgI , in the variables p.old

and p.curr. These variables ought to contain the last two states of p in a synchronous
execution of AlgI . When p applies the rule RU , it also computes a next state of AlgI . It
does so by applying the function ÂlgI which selects p.curr and, for each neighbor q, the
variable q.curr if p.c = q.c, and q.old if q.c = p.c ⊕B 1, and applies AlgI on these values. We
thus modify the rule RU in the following way:

RU : updatable(p) ∧ Paux(p) −→ p.old := p.curr; p.curr := ÂlgI(p); p.c := p.c ⊕B 1.

The folklore algorithm corresponds to the case when Paux(p) is always true. In this case,
the clocks of the unison constantly change. Thus, even if AlgI is silent, its simulation is not.
To obtain a silent simulation, we devise another strategy by defining Paux(p) as follows.

Paux(p) = (ÂlgI(p) ̸= p.curr) ∨ (∃q ∈ N(p), q.c = p.c ⊕B 1).

We define the legitimate configurations of Sync(AlgI) to be its terminal configurations.
In the next sections, we sketch the proof that Sync(AlgI) is self-stabilizing for the same
specification as AlgI . As a matter of fact, our result is more general as the silent assumption
is not necessary (we need a different definition for the legitimate configurations though).

S. Devismes, D. Ilcinkas, C. Johnen, and F. Mazoit 30:15

6.2 Convergence and Move Complexity of the Synchronized Algorithm
In everyday life, we have a distinction between the value of a clock (modulo 24 hours) and
the time. Both are obviously linked. We would like to make a similar distinction here. Let
e = γ0γ1 · · · be an execution of legitimate configurations. Since γ0 is legitimate, every two
neighboring clocks differ by at most one increment.

Since B ≥ 2D + 2, as already mentioned, at least one element of [0, B) is the clock of no
nodes in γ0. This implies that there is a node x such that x.c0 ⊕B 1 is not the clock of any
node. We extend this local synchronization property by uniquely defining time(p)0 ∈ [−D, 0]
by (1) time(x)0 = 0, (2) if p.c0 = q.c0, then time(p)0 = time(q)0, and (3) if p.c ⊕B 1 = q.c,
then time(p)0 = time(q)0 −1. Moreover, we also define time(p)i+1 = time(p)i +1 if p applies
RU in γi 7→ γi+1, and time(p)i+1 = time(p)i otherwise.

For any i, j ≥ 0 such that time(p)j = i, we set sti
p := p.currj . When sti

p is defined for
all p, let λi be the configuration in which the state of each node p is sti

p. A careful analysis
shows that, by definition of Paux, λi exists as soon as some sti

p does, and Λ = λ0λ1 · · · is
precisely the synchronous execution of AlgI from λ0.

Suppose that T is a bound on the number of rounds that AlgI needs to reach silence.
Thus, Λ = λ0 · · · λH for some H ≤ T . In the simulation phase, a node makes at most D

moves to have a non-negative time, and then at most T moves to finish the simulation.
Together with the stabilization time of the unison, our simulated algorithm is also silent with
an O(min(n3, n2B) + nD + nT) = O(min(n3, n2B) + nT) move complexity.

6.3 Correctness of the Synchronized Algorithm
In Sync(AlgI), we define the restriction rest(s) of the state s of any node p to be p.curr,
and we canonically extend rest to configurations and executions. Let us consider a legitimate
configuration γ of Sync(AlgI). This configuration is terminal, and therefore there exists a
unique execution e of Sync(AlgI) starting at γ (the one restricted to γ alone). Besides, since
γ is terminal, its restriction is terminal too (for AlgI). Therefore rest(γ) is legitimate, and
proj(rest(e)) satisfies the specification SP . Hence, the algorithm Sync(AlgI) also satisfies
SP (for the projection proj ◦ rest).

6.4 Round Complexity of the Synchronized Algorithm
The round complexity is analyzed by considering two stages: a first stage to have all times
non-negative, and a second stage to have all times equal to H.

To give an intuition of our proof, as it is the more complex, we first consider the second
stage. Figure 1 is an illustration of the following explanation. Suppose that all times are 0
in γ0, and only s1 is such that st0

s1
̸= st1

s1
. In the first round of the synchronous execution,

s1 applies RU , and then, after each new round, nodes at distance 1 from s1, then 2, and so
on will increase their time to 1. Now suppose that only s2 ∈ N [s1] is such that st1

s2
̸= st2

s2
.

As soon as all nodes in N [s2] have a time of 1, s2 applies RU . This happens at Round 3 if
s2 = s1 and at Round 4 otherwise. After this, after each new round, nodes at distance 1
from s2, then 2, and so on will increase their time to 2. If we consider some s3 ∈ N [s2], and
so on, then si increases its time to i at Round at most 3i − 2, and all nodes do so at Round
at most 3i + D − 2. If nodes increase their time earlier, this only speed up the process.

Now, by definition of H, there is a node sH whose state changes between λH−1 and λH .
If the states of all nodes in N [p] were the same in λH−2 and λH−1, then sH would not have
changed its state between λH−1 and λH . There thus exists sH−1 ∈ N [sH] that changes its
state between λH−2 and λH−1. By repeating this process, we can prove that, unless H = 0,

STACS 2025

30:16 Being Efficient in Time, Space, and Workload: A Self-Stabilizing Unison

p0 s1 s2 s3 s4 s5 p6 p7 p8

0 0 0 0 0 0 0 0 0

1

round 1

0
1
2
3

ti
m
e(
p
)

p0 s1 s2 s3 s4 s5 p6 p7 p8

0 0 0 0 0 0 0 0 0

12 2 3 41

4

round 4

p0 s1 s2 s3 s4 s5 p6 p7 p8

0 0 0 0 0 0 0 0 0

12 2 3 41

4

5 6 7

6 5 5 6 7

1

4

7

round 7

p0 s1 s2 s3 s4 s5 p6 p7 p8

0 0 0 0 0 0 0 0 0

12 2 3 41

4

5 6 7

6 5 5 6 7

1

4

7

8

8 9 10

10 9 8 8 9 10 11 12

14 13 12 11 11 12 13 13

18 17 16 15 14 14 15 16

1

4

7

10

13

round 18

0
1
2
3
4
5

ti
m
e(
p
)

Figure 1 The intuition of the round complexity for the second stage.

Λ has a starting sequence that is a sequence s1 · · · sH verifying sti−1
si

̸= sti
si

for 1 ≤ i ≤ H,
and si−1 ∈ N [si] for 1 < i ≤ H . We can then prove that, if all nodes have a positive time at
Round X, then the algorithm becomes silent after at most X + 3H + D − 2 rounds.

Using similar ideas, we can prove that all times are non-negative after at most X = 2D

rounds. Taking into account the 3D + 2 rounds of the stabilization phase, we obtain an
overall 5D + 3T round complexity to reach the silence from any configuration.

7 Conclusion

We propose the first fully polynomial self-stabilizing unison algorithm for anonymous asyn-
chronous bidirectional networks of arbitrary connected topology, and use it to obtain new
state-of-the-art algorithms for various problems such as BFS constructions, leader election,
and clustering.

A challenging perspective would be to generalize our approach to weaker models such
as the message passing or the link-register models. We would also be curious to know the
properties of the algorithm proposed in Section 3.2. Thirdly, although we could not do it, it
would be nice to unify our result with that of [21] in a satisfactory manner. Finally, it would
be interesting to know whether or not constant memory can be achieved by an asynchronous
self-stabilizing unison for arbitrary topologies.

References
1 S. Aggarwal and S. Kutten. Time optimal self-stabilizing spanning tree algorithms. In 13th

Foundations of Software Technology and Theoretical Computer Science, (TSTTCS’93), volume
761, pages 400–410, 1993. doi:10.1007/3-540-57529-4_72.

2 K. Altisen, A. Cournier, S. Devismes, A. Durand, and F. Petit. Self-stabilizing leader
election in polynomial steps. Information and Computation, 254(3):330–366, 2017. doi:
10.1016/j.ic.2016.09.002.

3 K. Altisen, S. Devismes, S. Dubois, and F. Petit. Introduction to Distributed Self-Stabilizing
Algorithms. Synthesis Lectures on Distributed Computing Theory. Morgan & Claypool, 2019.
doi:10.2200/S00908ED1V01Y201903DCT015.

https://doi.org/10.1007/3-540-57529-4_72
https://doi.org/10.1016/j.ic.2016.09.002
https://doi.org/10.1016/j.ic.2016.09.002
https://doi.org/10.2200/S00908ED1V01Y201903DCT015

S. Devismes, D. Ilcinkas, C. Johnen, and F. Mazoit 30:17

4 B. Awerbuch, S. Kutten, Y. Mansour, B. Patt-Shamir, and G. Varghese. Time optimal self-
stabilizing synchronization. In 25th Annual Symposium on Theory of Computing, (STOC’93),
pages 652–661, 1993. doi:10.1145/167088.167256.

5 B. Awerbuch, B. Patt-Shamir, and G. Varghese. Self-stabilization by local checking and
correction. In 32nd Annual Symposium of Foundations of Computer, Science (FOCS’91),
pages 268–277, 1991. doi:10.1109/SFCS.1991.185378.

6 B. Awerbuch and G. Varghese. Distributed program checking: a paradigm for building self-
stabilizing distributed protocols. In 32nd Annual Symposium on Foundations of Computer
Science, (FOCS’91), pages 258–267, 1991. doi:10.1109/SFCS.1991.185377.

7 Baruch Awerbuch. Complexity of network synchronization. J. ACM, 32(4):804–823, 1985.
doi:10.1145/4221.4227.

8 J. Beauquier, M. Gradinariu, and C. Johnen. Cross-over composition - enforcement of fairness
under unfair adversary. In 5th International Workshop on Self-Stabilizing Systems, (WSS’01),
pages 19–34, 2001. doi:10.1007/3-540-45438-1_2.

9 L. Blin, C. Johnen, G. Le Bouder, and F. Petit. Silent anonymous snap-stabilizing termination
detection. In 41st International Symposium on Reliable Distributed Systems, (SRDS’22), pages
156–165, 2022. doi:10.1109/SRDS55811.2022.00023.

10 C. Boulinier and F. Petit. Self-stabilizing wavelets and rho-hops coordination. In 22nd IEEE
International Symposium on Parallel and Distributed Processing, (IPDPS’08), pages 1–8, 2008.
doi:10.1109/IPDPS.2008.4536130.

11 C. Boulinier, F. Petit, and V. Villain. When graph theory helps self-stabilization. In 23rd
Annual Symposium on Principles of Distributed Computing, (PODC’04), pages 150–159, 2004.
doi:10.1145/1011767.1011790.

12 J. Burman and S. Kutten. Time optimal asynchronous self-stabilizing spanning tree. In 21st
International Symposium on Distributed Computing, (DISC’07), volume 4731, pages 92–107,
2007. doi:10.1007/978-3-540-75142-7_10.

13 A. Cournier, A. K. Datta, F. Petit, and V. Villain. Snap-stabilizing PIF algorithm in arbitrary
networks. In 22nd International Conference on Distributed Computing Systems (ICDCS’02),
pages 199–206, 2002. doi:10.1109/ICDCS.2002.1022257.

14 A. Cournier, S. Rovedakis, and V. Villain. The first fully polynomial stabilizing algorithm for
BFS tree construction. Information and Computation, 265:26–56, 2019. doi:10.1016/j.ic.
2019.01.005.

15 J.-M. Couvreur, N. Francez, and M. G. Gouda. Asynchronous unison (extended abstract). In
12th International Conference on Distributed Computing Systems, (ICDCS’92), pages 486–493,
1992. doi:10.1109/ICDCS.1992.235005.

16 A. K. Datta, S. Devismes, K. Heurtefeux, L. L. Larmore, and Y. Rivierre. Competitive
self-stabilizing k-clustering. Theoretical Computer Science, 626:110–133, 2016. doi:10.1016/
j.tcs.2016.02.010.

17 A. K. Datta, S. Devismes, and L. L. Larmore. A silent self-stabilizing algorithm for the
generalized minimal k-dominating set problem. Theoretical Computer Science, 753:35–63,
2019. doi:10.1016/j.tcs.2018.06.040.

18 A. K. Datta and L. L. Larmore. Leader election and centers and medians in tree networks. In
15th International Symposium on Stabilization, Safety, and Security of Distributed Systems,
(SSS’13), pages 113–132, 2013. doi:10.1007/978-3-319-03089-0_9.

19 S. Devismes, D. Ilcinkas, and C. Johnen. Optimized silent self-stabilizing scheme for tree-based
constructions. Algorithmica, 84(1):85–123, 2022. doi:10.1007/s00453-021-00878-9.

20 S. Devismes, D. Ilcinkas, C. Johnen, and F. Mazoit. Making local algorithms efficiently
self-stabilizing in arbitrary asynchronous environments. CoRR, abs/2307.06635, 2023. doi:
10.48550/arXiv.2307.06635.

21 S. Devismes, D Ilcinkas, C. Johnen, and F. Mazoit. Asynchronous self-stabilization made
fast, simple, and energy-efficient. In 43rd Symposium on Principles of Distributed Computing,
(PODC’24), pages 538–548, 2024. doi:10.1145/3662158.3662803.

STACS 2025

https://doi.org/10.1145/167088.167256
https://doi.org/10.1109/SFCS.1991.185378
https://doi.org/10.1109/SFCS.1991.185377
https://doi.org/10.1145/4221.4227
https://doi.org/10.1007/3-540-45438-1_2
https://doi.org/10.1109/SRDS55811.2022.00023
https://doi.org/10.1109/IPDPS.2008.4536130
https://doi.org/10.1145/1011767.1011790
https://doi.org/10.1007/978-3-540-75142-7_10
https://doi.org/10.1109/ICDCS.2002.1022257
https://doi.org/10.1016/j.ic.2019.01.005
https://doi.org/10.1016/j.ic.2019.01.005
https://doi.org/10.1109/ICDCS.1992.235005
https://doi.org/10.1016/j.tcs.2016.02.010
https://doi.org/10.1016/j.tcs.2016.02.010
https://doi.org/10.1016/j.tcs.2018.06.040
https://doi.org/10.1007/978-3-319-03089-0_9
https://doi.org/10.1007/s00453-021-00878-9
https://doi.org/10.48550/arXiv.2307.06635
https://doi.org/10.48550/arXiv.2307.06635
https://doi.org/10.1145/3662158.3662803

30:18 Being Efficient in Time, Space, and Workload: A Self-Stabilizing Unison

22 S. Devismes and C. Johnen. Silent self-stabilizing BFS tree algorithms revisited. Journal on
Parallel Distributed Computing, 97:11–23, 2016. doi:10.1016/j.jpdc.2016.06.003.

23 S. Devismes and C. Johnen. Self-stabilizing distributed cooperative reset. In 39th International
Conference on Distributed Computing Systems, (ICDCS’19), pages 379–389, 2019. doi:
10.1109/ICDCS.2019.00045.

24 S. Devismes and F. Petit. On efficiency of unison. In 4th Workshop on Theoretical Aspects
of Dynamic Distributed Systems, (TADDS’12), pages 20–25, 2012. doi:10.1145/2414815.
2414820.

25 E. W. Dijkstra. Self-stabilization in spite of distributed control. Communications of the ACM,
17(11):643–644, 1974. doi:10.1145/361179.361202.

26 S. Dolev. Self-Stabilization. MIT Press, 2000.
27 S. Dolev, A. Israeli, and S. Moran. Self-stabilization of dynamic systems assuming only

read/write atomicity. Distributed Computing, 7(1):3–16, 1993. doi:10.1007/BF02278851.
28 Y. Emek and E. Keren. A thin self-stabilizing asynchronous unison algorithm with applica-

tions to fault tolerant biological networks. In 40nd Symposium on Principles of Distributed
Computing, (PODC’21), pages 93–102, 2021. doi:10.1145/3465084.3467922.

29 Y. Emek and R. Wattenhofer. Stone age distributed computing. In 32nd Symposium on
Principles of Distributed Computing, (PODC’13), pages 137–146, 2013. doi:10.1145/2484239.
2484244.

30 M. J. Fischer, N. A. Lynch, and M. S. Paterson. Impossibility of distributed consensus with
one faulty process. Journal of the ACM, 32(2):374–382, 1985. doi:10.1145/3149.214121.

31 C. Glacet, N. Hanusse, D. Ilcinkas, and C. Johnen. Disconnected components detection
and rooted shortest-path tree maintenance in networks. Journal of Parallel and Distributed
Computing, 132:299–309, 2019. doi:10.1016/j.jpdc.2019.05.006.

32 Maria Gradinariu and Sébastien Tixeuil. Conflict managers for self-stabilization without
fairness assumption. In 27th IEEE International Conference on Distributed Computing Systems
(ICDCS 2007), June 25-29, 2007, Toronto, Ontario, Canada, page 46. IEEE Computer Society,
2007. doi:10.1109/ICDCS.2007.95.

33 A. Kravchik and S. Kutten. Time optimal synchronous self stabilizing spanning tree. In
27th International Symposium on Distributed Computing, (DISC’13), pages 91–105, 2013.
doi:10.1007/978-3-642-41527-2_7.

34 S. Tixeuil. Vers l’auto-stabilisation des systèmes à grande échelle. Habilitation à diriger des
recherches, Université Paris Sud - Paris XI, 2006. URL: https://tel.archives-ouvertes.
fr/tel-00124848/file/hdr_final.pdf.

35 V. Turau. Efficient transformation of distance-2 self-stabilizing algorithms. Journal of Parallel
and Distributed Computing, 72(4):603–612, 2012. doi:10.1016/j.jpdc.2011.12.008.

https://doi.org/10.1016/j.jpdc.2016.06.003
https://doi.org/10.1109/ICDCS.2019.00045
https://doi.org/10.1109/ICDCS.2019.00045
https://doi.org/10.1145/2414815.2414820
https://doi.org/10.1145/2414815.2414820
https://doi.org/10.1145/361179.361202
https://doi.org/10.1007/BF02278851
https://doi.org/10.1145/3465084.3467922
https://doi.org/10.1145/2484239.2484244
https://doi.org/10.1145/2484239.2484244
https://doi.org/10.1145/3149.214121
https://doi.org/10.1016/j.jpdc.2019.05.006
https://doi.org/10.1109/ICDCS.2007.95
https://doi.org/10.1007/978-3-642-41527-2_7
https://tel.archives-ouvertes.fr/tel-00124848/file/hdr_final.pdf
https://tel.archives-ouvertes.fr/tel-00124848/file/hdr_final.pdf
https://doi.org/10.1016/j.jpdc.2011.12.008

Efficient Approximation Schemes for Scheduling on
a Stochastic Number of Machines
Leah Epstein #

Department of Mathematics, University of Haifa, Israel

Asaf Levin #

Faculty of Data and Decisions Science, The Technion, Haifa, Israel

Abstract
We study three two-stage optimization problems with a similar structure and different objectives.
In the first stage of each problem, the goal is to assign input jobs of positive sizes to unsplittable
bags. After this assignment is decided, the realization of the number of identical machines that
will be available is revealed. Then, in the second stage, the bags are assigned to machines. The
probability vector of the number of machines in the second stage is known to the algorithm as part
of the input before making the decisions of the first stage. Thus, the vector of machine completion
times is a random variable. The goal of the first problem is to minimize the expected value of the
makespan of the second stage schedule, while the goal of the second problem is to maximize the
expected value of the minimum completion time of the machines in the second stage solution. The
goal of the third problem is to minimize the ℓp norm for a fixed p > 1, where the norm is applied on
machines’ completion times vectors. Each one of the first two problems admits a PTAS as Buchem
et al. showed recently. Here we significantly improve all their results by designing an EPTAS for
each one of these problems. We also design an EPTAS for ℓp norm minimization for any p > 1.

2012 ACM Subject Classification Theory of computation → Scheduling algorithms

Keywords and phrases Approximation algorithms, Approximation schemes, Two-stage stochastic
optimization problems, Multiprocessor scheduling

Digital Object Identifier 10.4230/LIPIcs.STACS.2025.31

Related Version Full Version: https://arxiv.org/abs/2409.10155

Funding Asaf Levin: Partially supported by ISF – Israel Science Foundation grant number 1467/22.

1 Introduction

We consider scheduling problems where the goal is to assign jobs non-preemptively to a set
of identical machines. Unlike traditional scheduling problems [22], the number of identical
machines available to the scheduler, denoted as k, is not a part of the input, but it is drawn
from a known probability distribution on the set of integers {1, 2, . . . , m} for an integer
m ≥ 2 that is a part of the input, and it is given together with the probabilities. As a first
stage, the decision maker completes an initial set of decisions, namely it assigns the jobs to
m bags, forming a partition of all input jobs. Later, once the realization of the number of
machines becomes known, it packs the bags to the machines, where the packing of a bag to a
machine means that all its jobs are scheduled together to this machine. That is, in this later
step, every pair of jobs that were assigned to a common bag will be assigned to a common
machine, and the decision of the first stage (that is, the partition of input jobs into m bags)
is irrecoverable. This two-stage stochastic scheduling problem was recently introduced by
Buchem et al. [9].

Formally, the input consists of a set of jobs J = {1, 2, . . . , n} where each job j ∈ J
has a positive rational size pj associated with it. We are given an integer m ≥ 2 and let
B = {1, 2, . . . , m} denote the set of bags. We are also given a probability measure q over
B, where qk is a rational non-negative number denoting the probability that the number of

© Leah Epstein and Asaf Levin;
licensed under Creative Commons License CC-BY 4.0

42nd International Symposium on Theoretical Aspects of Computer Science (STACS 2025).
Editors: Olaf Beyersdorff, Michał Pilipczuk, Elaine Pimentel, and Nguyễn Kim Thắng;
Article No. 31; pp. 31:1–31:18

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:lea@math.haifa.ac.il
https://orcid.org/0000-0002-6761-8521
mailto:levinas@technion.ac.il
https://orcid.org/0000-0001-7935-6218
https://doi.org/10.4230/LIPIcs.STACS.2025.31
https://arxiv.org/abs/2409.10155
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

31:2 EPTAS’s for Scheduling on a Stochastic Number of Machines

identical machines in the resulting second stage instance is k. Here, we will use the property
that

∑m
k=1 qk = 1. In the first stage of our problem, the jobs are split into m bags by an

algorithm. Namely, a feasible solution of the first stage is a function σ1 : J → B. In the
second stage, after the value of k has been revealed, the bags are assigned to machines,
such that all jobs of each bag are assigned together. Namely, the algorithm also computes
assignment functions σk

2 defined for every realization k in the support of q of the bags to the
set of integers {1, 2, . . . , k} denoting the indexes of machines in the instance of the second
stage problem (corresponding to the realization of q that is equal to k). So if the realization
of q is k, a job j ∈ J will be assigned to the machine of index σ

(k)
2 (σ1(j)). The first function

σ1 maps jobs to bags, and the second function which is based on the value of k, σk
2 , maps

bags to machines. The number of bags is m (and σ1 is independent of k, so the partition
into bags does not depend on k which is not known yet at the time of assignment into bags),
and the number of machines is k, so for every realization of k the schedule of the jobs to the
k machines is a feasible (non-preemptive) schedule for k identical machines.

We use the terminology of such scheduling problems and let Wi be the work (also called
load) of machine i which is the total size of jobs assigned to machine i in a schedule. This
is also the completion time of a unit speed machine processing continuously the set of jobs
assigned to machine i starting at time 0 (in some order). The makespan of the schedule in
realization k is the maximum work of a machine in the second stage solution in the realization
k of q, and the Santa Claus value of the schedule of realization k is the minimum work of a
machine (among the k machines) in the second stage solution in the realization k of q.

The expected value of the makespan is the expected value of the random variable of the
makespan of the schedule in realization k. The expectation is computed based on all possible
values of k. The first problem that we consider is the problem of minimizing the expected
value of this random variable. We denote it as Pr-makespan and refer to it as the makespan
minimization problem. The expected value of the Santa Claus value is the expected value of
the random variable of the Santa Claus value of the schedule in realization k. The second
problem we consider is the problem of maximizing the expected value of this random variable.
We denote it as Pr-SantaClaus and refer to it as the Santa Claus maximization problem.
While the term makespan is used in the scheduling literature in this meaning the term Santa
Claus is not traditional, and it is usually referred to as the minimum work of a machine in
the schedule. Given the length of the resulting terminology for our settings, we prefer to use
the non-traditional terminology of Santa Claus value. The expected value of the random
variable is called cost or value for minimization problems, and it is called profit or value for
maximization problems. In the ℓp norm minimization problem, the objective for k machines
is (

∑k
i=1 W

p
i)1/p. The cost of a solution of the third problem is the expected cost based on

the random variable. This last problem is denoted by Pr-norm.
Since the stochastic nature of the problem results only from the different options for k

(and once k is known, the problem is deterministic), we say that if the realization of q is k,
then this is the scenario of index k or simply scenario k. We let optk denote the objective
function value of the second stage problem in scenario k for an optimal solution for the
studied problem, and let opt =

∑m
k=1 qk · optk denote the value of an optimal solution to

our problem. An optimal solution needs to balance all scenarios, and we denote this optimal
solution by opt as well (that is, we use the same notation as the cost or the value). We
stress that optk is not necessarily the optimal objective function value for the input jobs
and k machines, since the solution with a fixed set of bags may be inferior. We will assume
that 1

ε
is a positive integer such that 1

ε
> 100 (this can be done without loss of generality

as one can first decrease ε to the minimum between its original value and 1
100 , and then it

L. Epstein and A. Levin 31:3

is always possible to decrease the value of ε by a factor below 2 to satisfy the integrality
condition on 1

ε
). The assumptions on ε will be used for all schemes (and in particular we

will use ε < 1
100). Let pmax = maxj∈J pj .

An overview of our results. Here, we study both minimization problems and a maximization
problem. All types of algorithms defined here are required to have polynomial running times
(and our algorithms will in fact have strongly polynomial running times). For a minimization
problem, an R-approximation algorithm is an algorithm that always finds a solution that is
feasible and has a cost at most R times the cost of an optimal solution. For a maximization
problem, an R-approximation algorithm is an algorithm that always finds a feasible solution
of value at least 1

R times the value of an optimal solution. The approximation ratio of a
given algorithm is the infimum value of the parameter R such that this algorithm is an
R-approximation algorithm.

A PTAS is a class of approximation algorithms such that for any ε > 0 the class has a
(1+ε)-approximation algorithm. An efficient polynomial time approximation scheme (EPTAS)
is a stronger concept. This is a PTAS whose running time is of the form h(ε) · poly(N)
where h is some (computable but not necessarily polynomial) function and poly(N) is a
polynomial function of the length N of the (binary) encoding of the input. We will justify the
assumption m ≤ n later, and therefore the running time can be rewritten in this form when
the polynomial is on m and n. A fully polynomial time approximation scheme (FPTAS) is
an even stronger concept, defined like an EPTAS, but the function h must be a polynomial
in 1

ε
. In this paper, we are interested in EPTAS’s.

A PTAS may have time complexity of the form ng(ε), where g can be any function of 1
ε

and even a power tower function. However, an EPTAS cannot have such a running time,
which makes it more efficient. The concept of an EPTAS is related to fixed parameter
tractable (FPT) algorithms [16].

In this paper, we focus on finding EPTAS’s for the three objectives. We develop an
EPTAS for the makespan minimization problem in Section 2. Then, in Section 3 we establish
an EPTAS for the Santa Claus maximization problem Pr-SantaClaus. Last, in the full
version of this work we modify our scheme for Pr-makespan in order to obtain an EPTAS
for Pr-norm. Due to space limitations, some of the proofs of the first two results are given
in the full version, and the last EPTAS for Pr-norm is presented in the full version as
well. In the recent work [9], a PTAS was designed for Pr-makespan, and another PTAS
was designed for Pr-SantaClaus. Those PTAS’s are of forms that do not allow a simple
modification of the PTAS into an EPTAS, and in particular for Pr-SantaClaus a dynamic
program over a state space whose size is exponential is used (a function of ε appears in the
exponent of the input size), and for both schemes enumeration steps of such sizes are applied.

For all objectives, we assume that n > m holds. If n ≤ m, this means that every job
can be assigned to its own bag. For each scenario, it is possible to apply an EPTAS for
the corresponding problem (see for example [2], the details for previous work are discussed
further below) and thereby get an EPTAS for the required problem.

The problems studied here generalize strongly NP-hard problems, and therefore one
cannot expect to obtain an FPTAS (unless P = NP), and thus our results are the best
possible. Specifically, the special case of each one of the three problems where the number of
machines is known, i.e., the probability function has a single value qm that is equal to 1, and
other probabilities are equal to zero, is known to be NP-hard in the strong sense. The three
objectives studied here are the three main objectives previously studied for scheduling on
identical machines.

STACS 2025

31:4 EPTAS’s for Scheduling on a Stochastic Number of Machines

Related work. Stein and Zhong [33] introduced the scheduling problem with an unknown
number of machines but in their model the number of machines is selected later by an
adversary. The problem was mostly studied with respect to makespan minimization. In
the deterministic variant [33], the goal is to assign a set of jobs with known properties to
identical machines. However, only an upper bound m on the number of machines is given.
Jobs have to be partitioned into m subsets, such that every subset will act as an inseparable
bag. Then, the number of machines k (where 2 ≤ k ≤ m) becomes known, and the schedule
is created using the bags, without unpacking them, as in the problem that we study here,
and after the number of machines is revealed, the bags are assigned to the machines, as in
the problem that we study. Thus, this problem also has two steps or levels of computation,
but the worst case out of all possible values of k is analyzed, where the comparison for each
value of m is to an optimal offline solution for k identical machines and arbitrary bags. It is
not hard to see that a constant approximation ratio (of at most 2) can be obtained using a
round-robin approach even for jobs of arbitrary sizes (via pre-sorting). An improved upper
bound of 5

3 + ε was shown using a much more careful assignment to bags [33].
A variant where machines have speeds (similar to uniformly related machines) was defined

and studied by [18] with respect to makespan. In that version, the number of machines
m is known, but not their speeds. The number of required bags is equal to the number of
machines, but some machines may have speed zero, so the case of identical machines and the
makespan objective is seen as binary speeds in this work. There are several input types of
interest, which are arbitrary jobs, unit size jobs, sand (one large job that can be cut into any
required parts), and pebbles (jobs that have arbitrary sizes, but they are relatively small)
[18, 30]. Tight bounds were proved for the case of sand and makespan with and without
speeds [33, 18], and for the Santa Claus objective without speeds [33]. All these values are
strictly smaller than 1.6. For sand, since any partition of the input jobs is allowed, linear
programming can be used to find the best partition. In the case with speeds for arbitrary
sizes of jobs the algorithm of [18] has an approximation ratio of at most 2 − 1

m , while special
cases allow smaller ratios [18, 30].

In [5], Balkanski et al. relate the problem of scheduling with an unknown number of
machines and an unknown set of speeds to online algorithms with predictions. In online
problems with predictions [31], the algorithm receives information on the input, where such
information could have been computed via machine learning. This model takes into account
both the situation where the input matches the prediction exactly and the case where it
does not. It is required for the algorithm to have a relatively good performance for every
input, but the performance has to be better if the input was predicted correctly. In many
algorithms the performance improves as the input gets closer to the predicted input. The
work of [5] provides results of this flavor.

Optimizing the worst scenario is pessimistic and does not allow one to take information
learned from previous data into account, while the study of the expected value as in our
stochastic problem allows us to prefer the typical scenarios in the bag assignment algorithm.
See also [4, 8, 32, 17] for related work.

As we mentioned, the most relevant work to our work on the stochastic problem is [9],
where two PTAS’s are provided. It is also mentioned in that work that FPTAS’s for the
case where m is seen as a constant can be designed using standard methods. The problem
is called stochastic due to the probability distribution on scenarios. However, since this
distribution is simply a convex combination of the costs for different scenarios, the methods
are related to those often used for deterministic algorithms and worst case analysis. The
convex combination complicates the problem and it requires carefully tailored methods for

L. Epstein and A. Levin 31:5

the algorithmic design. We follow the standard worst case studies of two-stage stochastic
optimization problems, and we study the optimization problems of optimizing the expected
value of the random variable.

All three objectives were studied initially for known numbers of identical machines, for
which simple greedy approximation algorithms were presented first. Some time later PTAS’s
were designed. Finally EPTAS’s were designed or it was observed that one of the known
PTAS’s is an EPTAS or can be converted into an EPTAS, which is the best possible result
for each one of the three cases unless P = NP . We provide additional details for each
one of the objectives. The makespan objective was introduced by Graham [22, 23], where
greedy algorithms were studied (see also [13, 20]). Twenty years later a PTAS was designed
[25]. Hochbaum [24] mentions that one of the approaches of assigning large jobs of rounded
sizes (namely, solving an integer linear program in fixed dimension) gives an EPTAS, and
attributes this approach to D. Shmoys (see [26, 11] for recent results). The Santa Claus
objective (where the name was introduced much later [7]) was studied with respect to greedy
heuristics [21, 15, 14]. A PTAS which is actually an EPTAS was designed by Woeginger [34].
The ℓp norm objective function was studied with respect to greedy heuristics [10, 12, 29],
and a PTAS and an EPTAS were designed [1]. The same authors generalized their results
for other objectives that satisfy natural conditions [2]. The ℓp norm of a vector is seen as a
more suitable measure of fairness of a schedule compared to bottleneck measures [3, 6], and
therefore we study this objective additionally to those studied in [9].

Our methods. We develop new techniques to address the uncertainty in the problems. We
expect these techniques to be used in later work on approximating related variants.

We use rounding and discretization as in other work on scheduling, though we apply it
not only on job sizes but also on bag sizes. The difficulty in relating new sizes to optimal
solutions lies in the difference in objectives, since here the optimal value is not defined by a
single schedule. However, we are still able to find such a relation using enumeration of sets
of values, that is, via guessing. Since jobs are assigned to bags, we introduce configuration
integer programs (IP’s) on collections of bags, which can be seen as a generalization of
previously known approaches. Our configuration IP’s are based on the use of templates,
where a template defines the contents of a bag, and configurations, where a configuration is
an allocation of bags to one machine in a given scenario. We solve this IP using an algorithm
for solving an IP in fixed dimension. All earlier steps of our schemes are highly motivated
given the goal of creating such an IP and ensuring that it has a fixed dimension.

Machine numbers are split to intervals such that the most difficult interval for each guessed
information is solved using an IP, while the others are solved using greedy approaches. The
number of intervals for scenarios differs based on the specific problem.

While the sketched approach allows us to design an EPTAS for makespan minimization,
the other objectives are harder to approximate. In order to tackle them, we develop an
important tool called approximated histograms. Those are histograms of solution costs or
values, and we use them in order to reduce the number of relevant scenarios to a constant.
The condition for using the approximated histogram is a monotonicity assumption regarding
the feasibility of solutions for different scenarios and the monotonicity of the costs for a given
solution among scenarios in which it is feasible.

2 An EPTAS for the makespan minimization problem

We start with the makespan minimization problem, and continue to the other objectives in
other sections. The first step will be to apply a discretization on bag sizes, and bound (from
above) the set of relevant bag sizes as a function of opt, where we enumerate possible values

STACS 2025

31:6 EPTAS’s for Scheduling on a Stochastic Number of Machines

of opt and use rounding for this value as well. Our second step is to round the instance of
jobs (which will be assigned to bags). We use standard guessing steps and rounding methods
for these steps. Then, we are going to approximate the rounded instance by using templates
of the assignment of jobs to bags, and configurations of assigning templates to machines in
every realization of q. This will allow us to formulate an integer linear program that has a
special structure, namely, it is a two-stage stochastic integer linear program. This special
structure, as well as trivial bounds on the parameters of this formulation, provides us with
an FPT algorithm to solve the problem. This algorithm has a running time dominated by a
function of 1

ε
times a polynomial in n, and therefore it is an EPTAS.

We will be able to reduce the number of variables such that we can apply Lenstra’s
algorithm [28, 27] on the integer linear program, and the running time for solving this
program will be smaller than that of solving a two-stage stochastic integer linear program.
This is the case also for the other two EPTAS’s that we show, that is, we will apply Lenstra’s
algorithm for all objectives. The most difficult step in the current section is to reduce
the number of different values of makespan for different scenarios. Without this step, the
running time will not satisfy the requirements of an EPTAS. The reduction is based on linear
grouping, which is typically used for bin packing [19] and not for scheduling. The other
EPTAS’s that we design require additional non-trivial steps, and we will discuss them later.

The optimal solution of this integer program is transformed into a set of decisions defining
the functions σ1 and σ

(k)
2 ∀k. Next, we present the details of the scheme together with its

analysis. In what follows we will present steps where in each of those steps the resulting
approximation ratio of the scheme increases by at most a multiplicative factor of 1 + Θ(ε).
By scaling ε prior to applying the scheme, we get that the approximation ratio of the entire
scheme will be at most 1 + ε. We will use the next lemma for our proof.

▶ Lemma 1. It holds that optk ∈ [pmax, n·pmax] for any k ≤ m. Thus, opt ∈ [pmax, n·pmax].

Guessing opt. Our first step is to guess the value of opt within a multiplicative factor of
1 + ε. That is, we would like to enumerate a polynomial number of candidate values, where
the enumerated set will contain (at least one) value that is in the interval [opt, (1 + ε) · opt).
We will show that for a guess in this interval we indeed find a solution of cost (1 + Θ(ε)) · opt.
The next lemma shows that it is possible to enumerate such a set of candidate values since
log1+ε n ≤ n

ε
. Our algorithm performs this enumeration.

▶ Lemma 2. There is a set consisting of O(log1+ε n) values such that this set of values has
at least one value in the interval [opt, (1 + ε)opt).

In what follows, with a slight abuse of notation, we let opt be the value of this guessed
candidate value (which is not smaller than opt and it is larger by at most a factor of 1 + ε

if the guess is correct). We will show that if there is a feasible solution to Pr-makespan
whose expected value of the cost is at most opt, then we will construct a feasible solution
with expected value of the cost being at most (1 + Θ(ε)) · opt. By the above lemma, this
means that the problem admits an EPTAS as desired.

Rounding bag sizes. Now, we provide a method to gain structure on the set of feasible
solutions that we need to consider for finding a near optimal solution. Given a feasible
solution, the size of bag i denoted as P (i) is the total size of jobs assigned to this bag, that
is, P (i) =

∑
j:σ1(j)=i pj .

▶ Lemma 3. There exists a solution of cost at most (1 + 3ε) · opt in which the size of every
non-empty bag is in the interval [ε · opt, (1 + ε) · opt].

L. Epstein and A. Levin 31:7

In what follows, we will increase the size of a bag to be the next value of the form
(ε + rε2) · opt for a non-negative integer r (except for empty bags for which the allowed size
remains zero). Thus, we will not use precise sizes for bags but upper bounds on sizes, and
we call them allowed sizes. We let P ′(i) be this increased (allowed) size of bag i, that is,
P ′(i) = minr:(ε+rε2)opt≥P (i)(ε + rε2)opt. Since for every subset of bags, the total allowed
size of the bags in the set is at most 1 + ε times the total size of the bags in the subset,
we conclude that this rounding of the bag sizes will increase the cost of any solution by a
multiplicative factor of at most 1 + ε (and therefore the expected value also increases by at
most this factor). Thus, in what follows, we will consider only bag sizes that belong to the
set B = {(ε + rε2)opt : r = 0, 1, . . . , 1

ε2 } ∪ {0}. We use this set by Lemma 3. We conclude
that the following holds.

▶ Corollary 4. If the guessed value (opt) is at least the optimal expected value of the makespan,
then there is a solution of expected value of the makespan of at most (1 + ε)(1 + 3ε) · opt
that uses only bags with allowed sizes in B.

Note that the allowed size of a bag may be slightly larger than the actual total size of
jobs assigned to the bag. Later, the allowed size acts as an upper bound (without a lower
bound), and we take the allowed size into account in the calculation of machine completion
times in some cases (instead of the size).

Rounding job sizes. We apply a similar rounding method for job sizes. Recall that by
our guess, every job j has size at most opt (see Lemma 1). Next, we apply the following
modification to the jobs of sizes at most ε2opt. Whenever there is a pair of jobs, each of
which has size at most ε2opt, we unite the two jobs (i.e., we delete the two jobs, adding a
new job whose size is the sum of the two sizes of the two deleted jobs). This is equivalent to
restricting our attention to solutions of the first stage where we add the constraint that the
two (deleted) jobs must be assigned to a common bag. We repeat this process as long as
there is such a pair. If there is an additional job of size at most ε2opt, we delete it from
the instance, and in the resulting solution (after applying the steps below on the resulting
instance) we add the deleted job to bag 1. This is done after the entire algorithm completes
running, so it may increase the makespan of every scenario and therefore the expected value
of the makespan, but we do not take it into account in the algorithm or in calculating allowed
sizes of bags. This addition of the deleted job increases the makespan of every scenario
by at most ε2opt, so the resulting expected value of the makespan will be increased by a
multiplicative factor of at most 1 + ε2. We consider the instance without this possible deleted
job, and we prove the following.

▶ Lemma 5. The optimal expected value of the makespan of the instance resulting from the
above modification of the job sizes among all solutions with allowed bag sizes in the following
modified set B′ = {(ε + rε2)opt : r = 0, 1, . . . , 1

ε2 + 2} ∪ {0} is at most (1 + 2ε)(1 + ε)(1 +
3ε) · opt.

We next round up the size of every job j to be the next value that is of the form
(1 + ε)r · opt for an integer r. The size of every job cannot decrease and it may increase by
a multiplicative factor of at most 1 + ε. Job sizes are still larger ε2 · opt and the sizes do
not exceed (1 + ε) · opt. Thus, the number of different job sizes is O(log1+ε

1+ε
ε2) ≤ 2

ε3 − 1.
We increase the allowed size of each non-empty bag by another multiplicative factor of 1 + ε,
and round it up again to the next value of the form ε + rε2. Thus, the expected value of the
makespan of a feasible solution increases by a multiplicative factor of at most (1 + ε)2, where

STACS 2025

31:8 EPTAS’s for Scheduling on a Stochastic Number of Machines

one factor of 1 + ε is due to the rounding of jobs, and the second one is due to bringing
allowed sizes back to the form ε + rε2. So by our guessing step, there is a feasible solution
with expected value of the makespan of at most (1 + ε)3(1 + 2ε)(1 + 3ε)opt that uses only
bags with allowed size in B′′ = {(ε + rε2)opt : r = 0, 1, . . . , 1+2ε

ε2 + 2} ∪ {0}.
A bag is called tight if the set of jobs of this bag cannot use a bag of a smaller allowed

size. Note that any solution where some bags are not tight can be converted into one where
all bags are tight without increasing the cost. Note that the allowed size of a non-zero bag of
allowed size (ε+ rε2)opt can be written in the form (r + 1

ε
) · ε2 · opt, and since 1

ε
is integral,

the allowed size of each bag is an integer multiple of ε2 · opt.

▶ Lemma 6. For any tight bag it holds that the allowed size of the bag is at most 1
ε

times its
actual size (the total size of jobs assigned to the bag, where their rounded sizes are considered).

Computing the maximum number of machines for which the assignment to bags does
not matter. In our algorithm, we would like to focus on values of k for which the structure
of bags is crucial. Now, we will detect values of k for which there always exists a good
assignment of bags to machines (for reasonable sets of bags). Let P be the total size of all
jobs (after the transformation applied on jobs for a fixed value of opt). The total size (not
the allowed size) of all bags is P , and we can compute the makespan based on the actual
sizes of bags which are total sizes of jobs (after merging and rounding) assigned to the bags.
The motivation is that for very small values of k the maximum bag size is so small compared
to P

k that bags can be seen as very small jobs, and one can apply a greedy algorithm [22] for
assigning the bags, and still obtain a solution with a small makespan (based on bag sizes).

▶ Lemma 7. If k ≤ ε·P
2·opt , then any set of bags (such that every job is assigned to a bag)

where every bag has an allowed size (and size) not exceeding 2opt, leads to at least one
schedule for k machines with makespan in [P

k , (1+ε) · P
k). For other values of k, the makespan

of an optimal schedule using tight bags (based on their allowed sizes) is at most (3/ε2) · opt.

We use the property that no bag has an allowed size above 2 · opt. Our algorithm
computes the maximum value of k for which 2opt ≤ ε · P

k holds, and afterwards it excludes
values of k for which 2opt ≤ ε · P

k holds. We will have that the cost of the solution obtained
for the scenario is at most (1 + ε) · P

k , since bag sizes satisfy the condition for bags in the
statement of Lemma 7, and therefore we can use the first part of this lemma. This is a valid
approach as adding a scenario where 2opt ≤ ε · P

k to the calculation of the approximation
ratio will not increase the approximation ratio beyond the value 1 + ε, and the running time
for computing a good solution for such a value of k is polynomial in m, n. Thus, we assume
that 2opt > ε · P

k holds for every k.
We consider the remaining scenarios. In what follows, we consider the assignment of

jobs to bags and the assignment of the bags to machines in each scenario k subject to the
condition that 2opt > ε · P

k and the optimal makespan of the scenario is at most (3/ε2) · opt.
In particular, it means that the number of bags of positive allowed sizes assigned to a machine
in such a scenario is at most 3/ε3, since we consider allowed bag sizes not smaller than ε ·opt
(if we exclude bags of allowed size zero).

Guessing an approximated histogram of the optimal makespan on all scenarios. Our
next guessing step is motivated by linear grouping of the optk values. To illustrate this step,
consider a histogram corresponding to the costs of a fixed optimal solution satisfying all
above structural claims, where the width of the bar corresponding to scenario k is qk and its
height is the value of the makespan in this scenario (that is, optk). Observe that when k

L. Epstein and A. Levin 31:9

is increased, the optimal makespan does not increase (without loss of generality, since the
same assignment of bags can be used), so by plotting the bars in increasing order of k we
get a monotone non-decreasing histogram, where the total area of the bars is the expected
value of the makespan of the optimal solution and the total width of all the bars is 1 (since
we assume that all scenarios are included in the histogram and every scenario κ satisfies
the condition 2opt > ε · P

κ by scaling the probabilities of the remaining scenarios such that
the total probability becomes 1). We sort the indexes of scenarios with (strictly) positive
probabilities (qk values) and we denote by K the resulting sorted list. For every k ∈ K,
we compute the total width of the bars with indexes at most k (using the ordering in K,
i.e., in increasing indexes), and denote this sum by Qk. We also let Q′

k = Qk − qk. Thus,
Qk is the total probability of scenarios in {1, 2, . . . , k}, and Q′

k is the total probability of
scenarios in {1, 2, . . . , k − 1}. The set K does not contain scenarios with probability zero,
but if qk−1, qk > 0, it holds that Qk−1 = Q′

k. According to the definitions, it holds that
Qk − Q′

k = qk for k ∈ K, and the interval [Q′
k, Qk) on the horizontal axis corresponds to

scenario k.
The idea of the next parts is to get an overestimator for the histogram by extending the

value of k to the right, and an underestimator by extending it to the left. The two areas
below them will differ only by at most O(ε · opt), so the overestimator can also differ from
the original histogram area by at most this amount.

Next, we compute an upper bound histogram W as follows. We start with selecting a
sublist K ′ of K. The motivation is that schedules will be computed later only for scenarios
in K ′, and they will be copied to scenarios of some of the larger indexes. The set K ′ acts as
a representative set, and we show that it is possible to restrict ourselves to such a set. Since
we increase upper bounds on the makespan for some scenarios, the feasibility is not harmed.

An index k ∈ K belongs to K ′ if there exists an integer ℓ such that Q′
k ≤ ε3ℓ < Qk. The

motivation is that we would like to consider points which are integral multiples of ε3 and
the set K ′ contains all values of k ∈ K for which such special values belong to the interval
[Q′

k, Qk). Values of makespan will be increased such that the makespan function will still be
piecewise linear, but it will have a smaller number of image values.

For every k ∈ K ′, the new upper bound histogram is defined as optk for all points with
horizontal value between Q′

k and up to Q′
k′ where k′ > k is the index just after k in the

sublist K ′ or up to the last point where the histogram is defined (Qt for the maximum
value t ∈ K) if k is the largest element of K ′. Since the original histogram was monotone
non-increasing, the new histogram is pointwise not smaller than the original histogram. The
possible modification is in the interval [Qk, Q′

k′) if k is not the maximum value of K ′, and in
this case there may be a change for k + 1, . . . , k′ − 1 (that is, if k′ ≥ k + 2). If k is the largest
element of K ′ but not of K, there may be a change for all t ∈ K such that t ≥ k + 1. Thus,
an upper bound on the total area below the histogram W is not smaller than the expected
value of the makespan of the optimal solution.

We use the modified histogram W to obtain another bound. For that we see W as a step
function whose values are the corresponding points in the upper edge of the histogram. We
define a new histogram by letting it be W (x + ε3) for all x ∈ [0, 1] (and zero for cases that
W is undefined due to an argument above 1). In this way we delete a segment of length
ε3 from W and we shift the resulting histogram to the left. Since the makespan for every
scenario never exceeds (3/ε2) · opt, every point in W has a height of at most 3opt

ε2 and
we deleted a segment of width of ε3, the total area that we delete is at most 3εopt. The
resulting histogram is pointwise at most the original histogram (and thus also not larger than
W). This property holds since every value optk was extended to the right for an interval
not longer than ε3. Thus, if we consider W instead of the original histogram, we increase
the cost of the solution by a multiplicative factor not larger than (1 + 3ε).

STACS 2025

31:10 EPTAS’s for Scheduling on a Stochastic Number of Machines

The guessing step that we use is motivated by this function W . We let Wk be the height
of the histogram W in the bar corresponding to the scenario k. The relevant values of k are
those in K ′, and the histogram W only has values of the form optk for k ∈ K ′. We guess
the histogram W . This means to guess the optimal makespan of O(1

ε3) scenarios, where
makespans can be one of at most 3

ε4 different values. This holds since all allowed bag sizes
are integer multiples of ε2 · opt, so makespans are also integer multiples of ε2 · opt, and
the makespan of each scenario is at most 3opt

ε2 . Thus, the number of possibilities of this
guessing step is upper bounded by a function of 1

ε
which is O((1

ε
)O(1/ε3)).

In what follows, we consider the iteration of the algorithm defined below when we use
the value of the guess corresponding to the optimal solution. Algorithmically, we will try
all possibilities, check the subset of those for which we can provide a feasible solution, and
output the best feasible solution obtained in this exhaustive enumeration. The running time
of the next algorithm is multiplied by the number of possibilities.

The template-configuration integer program. A template of a bag is a multiset of job sizes
assigned to a common bag. We consider only multisets for which the total size of jobs is at
most (1 + 6ε) · opt since the largest allowed size of any bag is smaller. Since the number of
distinct job sizes (in the rounded instance) is upper bounded by 2

ε3 − 1 and there are at most
2
ε2 jobs assigned to a common bag (since the rounded size of each job is above ε2 · opt), we
conclude that the number of templates is at most (2

ε3)(2/ε2), which is a constant depending
only on 1

ε
. The reason is that each bag has 2

ε2 slots for jobs, such that each one may be
empty or contain a job of one of the sizes. This calculation proves an upper bound on the
number of possible templates, and we use a single template for every multiset of job sizes
even when one multiset can be found in more than one way in the last calculation.

We are going to have a non-negative counter decision variable yt for every template t,
where this variable stands for the number of bags with template t. Let τ be the set of
templates, and assume that a template is represented by a vector. The length of such a vector
is the number of different (rounded) job sizes, and for every index ℓ, the ℓ-th component of
the vector of the template (denoted by tℓ) is the number of jobs with size equal to the ℓ-th
job size that are packed into a bag with this template. In order for such an assignment of
the first stage to be feasible, we have the following constraints where nℓ denotes the number
of jobs in the rounded instance whose size is the ℓ-th job size of the (rounded) instance.∑

t∈τ

yt ≤ m ,
∑
t∈τ

tℓ · yt = nℓ , ∀ℓ.

The first constraint states that the number of bags is at most m. If this number is
strictly smaller than m, then the remaining bags have allowed sizes of zero and they will not
contain jobs. The second constraint, which is a family of constraints, states that the correct
numbers of jobs of each size are assigned to templates, according to the number of copies
of each template. Observe that the number of constraints in this family of constraints is a
constant depending on ε (it is at most 2

ε3), and all coefficients in the constraint matrix are
(non-negative) integers not larger than 2

ε2 .
We augment K ′ with the minimum index in K if this index does not already belong to

K ′, in order to satisfy the condition that for every index of K there is some index of K ′ that
is not larger. Consider a scenario κ ∈ K ′ (satisfying the condition that 2opt > ε · P

κ), and
the optimal makespan of scenario κ, which is at most 3opt

ε2 . Recall that in scenario κ the
number of non-empty bags assigned to each machine is at most 3

ε3 . Define a configuration of
a machine in scenario κ to be a multiset of templates such that the multiset has at most 3

ε3

L. Epstein and A. Levin 31:11

templates (counting multiple copies of templates according to their multiplicities) and the
total size of the templates encoded in the multiset is at most Wκ, which is the guess of a
value of the histogram W . The number of configurations is at most ((2

ε3)(2/ε2))
3
ε3 , and this

is also an upper bound on the number of suitable configurations (whose total allowed size of
bags does not exceed Wκ). Since our mathematical program will not limit the makespan
of any scenario, we use an upper bound for it by not allowing configurations whose total
allowed sizes exceed the planned makespan for the scenario. We let C(κ) denote the set of
configurations for scenario κ, where c ∈ C(κ) is a vector of |τ | components where component
ct for t ∈ τ is the number of copies of template t assigned to configuration c. Components
are non-negative integers not larger than 3

ε3 . For scenario κ ∈ K ′, we will have a family of
non-negative decision variables xc,κ (for all c ∈ C(κ)) counting the number of machines with
this configuration.

For each such scenario κ, we have a set of constraints each of which involves only the
template counters (acting as a family of global decision variables) and the family of the κ-th
local family of decision variables, namely the ones corresponding to this scenario. The family
of constraints for the scenario κ ∈ K ′ are as follows.∑

c∈C(κ)

xc,κ = κ ,
∑

c∈C(κ)

ct · xc,κ − yt = 0 , ∀t ∈ τ .

Observe that the number of constraints in such a family of constraints is upper bounded
by a constant depending only on ε (which is the number of possible templates plus 1) and
the coefficients in the constraint matrix are again all integers of absolute value at most a
constant depending only on ε (at most 3

ε3 .).
All decision variables are forced to be non-negative integers and we would like to solve

the feasibility integer program defined above (with all constraints and decision variables).
The right hand side vector consists of integers that are at most n (using m ≤ n). Such an
integer linear program is a two-stage stochastic IP. Using the property that the number of
scenarios in K ′ is upper bounded by a function of 1

ε
, we conclude that the integer linear

program has a fixed dimension. Thus, we use Lenstra’s algorithm to solve it instead of an
algorithm for two-stage stochastic IP.

We obtain a feasible solution (x, y) if such a solution exists. Based on such a feasible
solution, we assign jobs to bags using the y variables. That is, for every t ∈ τ , we schedule
yt bags using template t. By the constraint

∑
t∈τ yt ≤ m there are at most m bags, and

the other bags will be empty. Next, for every bag and every size p of jobs in the rounded
instance, if the template assigned to the bag has α jobs of this size, we will assign α jobs
of this size to this bag. Doing this for all sizes and all bags is possible by the constraints∑

t∈τ tℓ · yt = nℓ , ∀ℓ, and these constraints ensure that all jobs are assigned to bags. Note
that the modification for jobs consisted of merging small jobs. When such a merged job is
assigned, this means that a subset of jobs is assigned. Reverting jobs to their original sizes
does not increase any of the costs, since no rounding steps decreased any sizes. Next consider
the assignment of bags to machines in each scenario. Consider a scenario κ′ ∈ K, and let κ

be the largest index in K ′ such that κ ≤ κ′. Assign xc,κ machines to configuration c (for all
c ∈ C(κ)). It is possible by the constraint

∑
c∈C(κ) xc,κ = κ ≤ κ′. If a configuration c assigned

to machine i is supposed to pack ct copies of template t, we pick a subset of ct bags whose
assigned template is t and assign these bags to machine i. We do this for all templates and all
machines. In this way we assign all bags by the constraints

∑
c∈C(κ) ct · xc,κ − yt = 0 , ∀t ∈ τ .

If κ′ > κ, at least one machine will not receive any configuration and therefore it will not
receive any bags or jobs, and we refer to such a machine as empty. Since the configurations
we used in scenario κ have a total size of jobs of at most Wκ, we conclude the following.

STACS 2025

31:12 EPTAS’s for Scheduling on a Stochastic Number of Machines

▶ Corollary 8. For every value of the guessed information for which the integer program has
a feasible solution, there is a linear time algorithm that transform the feasible solution to the
integer program into a solution to the rounded instance of Pr-makespan of cost at most∑

κ qκ · Wκ.

Our scheme is established by noting that an optimal solution satisfying the assumptions
of the guessed information provides us a multiset of templates all of which are considered in
τ and a multiset of configurations (and all of them have total size of templates not larger
than W) for which the corresponding counters satisfy the constraints of the integer program.
Thus, we conclude our first main result.

▶ Theorem 9. Problem Pr-makespan admits an EPTAS.

3 An EPTAS for the Santa Claus problem

In this section we apply additional ideas to obtain an EPTAS for the second problem. We
present the details of the scheme together with its analysis. In what follows, and similarly to
the scheme to Pr-makespan, we will present steps, and in each of those steps the resulting
approximation ratio of the scheme increases by at most a multiplicative factor of 1 + Θ(ε).

Preprocessing steps. We consider an optimal solution opt, and analyze the information
that one can guess in order to be able to approximate it. We assume without loss of generality
that optk ≤ optk′ for all k > k′, since a solution for scenario k can be used for scenario k′

(by assigning the bags of k − k′ machines in an arbitrary way). Recall that we can assume
that for every value of k in the support of q the instance has at least k non-zero sized jobs,
since we assume n > m. We will use the next lemma for our proof.

▶ Lemma 10. For any scenario k (such that 1 ≤ k ≤ m) and an assignment of jobs to bags
according to the solution opt, there exists a job jk for which it holds that pjk ≤ optk ≤ n·pjk .

We would like to split the sequence of scenarios into four parts (where some of the parts
may be empty). The suffix (with the largest numbers of machines) will contain scenarios
for which the assignment of bags is unimportant since the gain from them in the objective
function value opt is small either because the probability is zero or because the number of
machines is large. This suffix may be empty. There will also be a prefix (which could be
empty) of machines for which the specific assignment to bags is unimportant because the
number of machines is small and any reasonable assignment into bags allows a good schedule.
For this prefix we will use different arguments from the ones we used for Pr-makespan. For
the remaining scenarios, the prefix will consist of scenarios for which the gain is also small,
and a suffix of the most important scenarios.

The first step is to guess the maximum scenario kmax for which optkmax ≥ ε · opt holds,
out of scenarios with strictly positive probabilities, that is, such that qkmax > 0 holds. This
index is well-defined since there exists an index k for which qk > 0 and optk ≥ opt. There
are at most m possible values for this guess. While opt still denotes an optimal solution,
we do not guess or use its value as a part of the algorithm. Let LB be equal to optkmax

rounded down to the next integer power of 1 + ε. For a fixed job jkmax (see Lemma 10),
the number of possible values for LB is O(n

ε
). Since the index jkmax is also not known, the

number of possible values for LB is O(n2

ε
).

The proof of the next lemma is obtained by selecting a set of consecutive scenarios
minimizing the total weighted profit out of 1

ε
disjoint sequences of scenarios of similar forms.

The proof of the lemma requires the knowledge not only of opt but of all values of the form

L. Epstein and A. Levin 31:13

opti. However, we use the lemma to obtain the information that given the correct value LB

(this is a rounded value, so we will be able to guess it), there is a pair of values k, k′ and a
value ρ that specify the only properties of opt that we use for our algorithm.

▶ Lemma 11. There is a value of ρ which is an integer power of 1
ε

that satisfies 1
ε2 ≤

ρ ≤ (1
ε
)1/ε+1 and there exist two indexes k, k′ such that 0 ≤ k′ < k ≤ kmax, where every

non-zero index has to be a scenario in the support of q, such that the following conditions
hold. optk ≤ ρ · LB, if k′ ≥ 1, then optk′ ≥ ρ

ε
· LB,

∑k−1
κ=k′+1 qκ · optκ ≤ ε · opt.

The next guessing step. In this step we guess several additional values. As mentioned
above, we guess the value of LB (which is a power of 1 + ε and it is equal to optkmax

within a multiplicative factor of 1 + ε since optkmax ∈ [LB, LB · (1 + ε))), the value of ρ (by
guessing r′ from the proof of Lemma 11, that is, we guess the power of 1

ε
), and two indexes

k′ < k ≤ kmax. That is, we would like to enumerate a set of polynomial number of candidate
values of four components vectors that contains at least one vector with first component
value that is LB, with a second component whose value is ρ, and the two indexes k′ < k in
the third and fourth components of that vector. The next lemma shows that it is possible to
enumerate such a set of candidate values. Our algorithm performs this enumeration.

▶ Lemma 12. There is a set consisting of O((m·n
ε

)2) vectors such that this set of vectors
contains at least one vector with the required properties. Thus, the number of guesses including
the guess of kmax is at most O((n

ε
)2 · m3).

In what follows, we let LB be the first component value of the guessed information, ρ

be the second component value of the guessed information, and k, k′ be the two guessed
scenarios (where it is possible that k′ = 0 is not an actual scenario). We will show that if
there is a feasible solution to Pr-SantaClaus for which the guessed information describes
the solution and its expected value of the objective is opt, then we will construct a feasible
solution with expected value of the objective being at least (1 − Θ(ε)) · opt. This means
that the problem admits an EPTAS as desired.

We let UB = LB · ρ. Furthermore, for every scenario κ with k′ < κ < k, we set qκ = 0.
From now on we drop the assumption that the sum of all q values is 1 and instead of that
we use the assumption that these are non-negative numbers with sum at most 1. This
modification of the vector (q) decreases the expected value of the Santa Claus value of the
optimal solution by at most ε · opt (and it does not increase the objective function value of
any feasible solution to our problem). The justification for this is as follows. From Lemma
11 it follows that there is a quadruple of integers k, k′, ρ, log1+ε LB (where each integer
belongs to the set that we test for this integer) for which there is a solution of profit at least
opt
1+ε

− ε · opt ≥ (1 − ε)3 · opt with the first two properties stated in the lemma, and for
every scenario κ such that k′ < κ < k the profit is at least zero.

Partitioning the input into two independent problems. Next, we use the above guessing
step in order to partition the input into two independent inputs. First, a job j ∈ J is called
huge if its size is strictly larger than UB, that is, if pj > UB (and otherwise it is non-huge).

We pack every huge job into its own bag and we let h denote the number of huge jobs
(where we will show that h ≤ m − 1 holds). Every huge job can cover one machine in every
scenario κ ≥ k regardless of its exact size (because for all these scenarios we consider solutions
for which optκ is not larger than ρ · LB = UB). On the other hand, the non-huge jobs (i.e.,
jobs of sizes at most UB) will be packed into bags of size at most 3 · UB. The packing of
the non-huge jobs into bags will be optimized according to the scenarios of indexes at least k

STACS 2025

31:14 EPTAS’s for Scheduling on a Stochastic Number of Machines

(and at most kmax), and we will ignore the scenarios of indexes smaller than k when we pack
the non-huge jobs into bags. The resulting bags of the non-huge jobs together with the set of
the huge jobs (which are bags consisting of a single job) will be packed into κ ≤ k′ machines
(in the corresponding scenario κ) based on existing EPTAS for the Santa Claus problem on
identical machines (seeing bags as jobs). We will show that if indeed we use bags of sizes at
most 3 · UB when we pack the non-huge jobs into bags, then the scenarios of indexes at most
k′ can be ignored. We show that this holds for any collection of bags of this form, that is,
where every huge job has its own bag and other bags have total sizes of jobs not exceeding
3 · UB. Thus, even though the bags are defined based on scenarios where the number of
machines is at least k, still the scenarios with at most k′ machines have good solutions. We
will also show that it is possible to restrict ourselves to these types of collections of bags.

▶ Lemma 13. If all guesses are correct, any partition into bags has at least one bag with a
total size of jobs no larger than UB. In particular, there are at most m − 1 huge jobs.

▶ Lemma 14. An EPTAS for κ machines where κ ≤ k′ which is applied on bags (instead of
jobs) such that every huge job has its own bag and any additional bag has total size of jobs
not exceeding 3 · UB finds a solution of profit at least optκ

(1−3ε)·(1−ε) .

Proof. Consider an optimal solution for κ machines and the original jobs. We show that
this schedule can be modified into a schedule of the bags, such that the profit of the schedule
is smaller by a factor not exceeding 1 − 3ε. Thus, an optimal schedule of the bags is not
worse, and by using an EPTAS the profit may decrease by another factor of 1 − ε. The
adaptation of the schedule is as follows. The huge jobs are assigned as before, since each of
them has its own bag. All non-huge jobs are removed, and each machine receives bags until
it is not possible to add another bag without exceeding the previous load or no unassigned
bags remain. Given the property that the total size of bags is equal to the total size of jobs,
it is either the case that the loads are equal to previous loads (in which case the value is
unchanged) or there is at least one unassigned bag. In the latter case, no machine load
decreased by more than an additive term of 3 · UB, and therefore the value is at least the
previous one minus 3 · UB. To complete the assignment, all remaining bags are assigned
arbitrarily. Since optκ ≥ ρ·LB

ε
= UB

ε
and the resulting value is at least optκ − 3 · UB, we

find by 3 · UB ≤ 3ε · optκ that optκ − 3 · UB ≥ (1 − 3ε) · optκ. ◀

▶ Lemma 15. Consider the instance of our problem when we let qκ = 0 for all κ < k and
for κ > kmax. There exists a partition into bags where a profit at least optκ can be obtained
for any κ ∈ [k, kmax], the set of bags satisfies that every huge job is packed into its own bag,
and each other bag consists of non-huge jobs of total size at most 2 · UB.

Proof. The number of partitions into bags is finite for fixed m, n (it does not exceed mn).
Consider the set of partitions for which a solution of profit at least optκ can be obtained
for any κ ∈ [k, kmax]. There is at least one such partition for the correct guess. For every
partition it is possible to define a vector of m components, such that total sizes of bags
appear in a non-increasing order. Consider the partition among the considered partitions
for which the number of huge jobs that have their own bags is maximum, and out such
partitions, one where the vector is lexicographically minimal. We claim that this partition
satisfies the requirements.

Assume by contradiction that the number of huge jobs that do not have their own bags is
not h. Consider a bag with a huge job that contains at least one additional job. This will be
named the first bag. Consider a bag whose total size is at most UB, which must exist due
to Lemma 13. This last bag does not have a huge job since the size of a huge job is above

L. Epstein and A. Levin 31:15

UB, and we call it the second bag. Move all contents of the first bag into the second bag
excluding one huge job. For any κ ∈ [k, kmax], since optκ ≤ UB, the assignment of bags to
machines does not reduce the objective function value below optκ. This holds because there
is at most one machine whose total size was reduced (for every κ ∈ [k, kmax]), but if such a
machine exists, it still has a huge job whose size is above UB. Thus, the new partition is
also one of the considered partitions. The new partition has a larger number of huge jobs
assigned into their own bags, because the second bag was not such a bag and the first bag
became such a bag. This contradicts the choice of assignment to bags. Thus, the partition
into bags consists of h bags with huge jobs and m − h ≥ 1 bags with non-huge jobs.

Next, consider only the components of the vector which do not correspond to bags of
huge jobs. This vector is also minimal lexicographically out of vectors for partitions of the
non-huge jobs into m − h bags. Assume by contradiction that the first component is above
2 · UB. Consider the bag of the first component (called the first bag now) and a bag with a
total size at most UB (called the second bag now). Move one job from the first bag to the
second bag. The second bag now has a total size of at most 2 · UB (since a non-huge job was
moved). The first bag now has a smaller total size, but still larger than UB. The sorted
vector is now smaller lexicographically, and it is still possible to obtain a solution of profit at
least optκ for any κ ∈ [k, kmax], similarly to the proof given here for huge jobs, which is a
contradiction. ◀

In summary, we can focus on the scenarios interval [k, kmax], assume that huge jobs have
their own bags, and remaining bags have total sizes not exceeding 2 · UB.

Modifying the input of scenarios with indexes at least k and at most kmax. Motivated
by the last partitioning of the original input into four parts, and the fact that only scenarios
with indexes at least k and at most kmax need to be considered, we apply the following
transformation. First, for every κ < k we let qκ = 0, in the sense we can augment every
solution to the remaining instance (with only a subset of scenarios) into an EPTAS for the
original instance before this change to q. Furthermore, for every κ > kmax we let qκ = 0
in the sense we can ignore the profit of such scenarios. Then, every huge job is packed
into a separate bag. Such a bag suffices to cover one machine in every remaining scenario.
Therefore, our second step in the transformation is the following one. We delete the huge
jobs from J , we decrease the index of each remaining scenario by h (in particular the new
indexes in the support of q will be in the interval [k − h, kmax − h]), and we enforce the
condition that every bag size is at most 2 · UB.

As one can see, the transformations here are more complicated compared to those used
in the previous section, and they have to be carefully designed and analyzed. However,
now we are ready to apply methods that resemble the previous section. Using the fact that
for every remaining scenario we have that optκ is between LB and UB, and the fact that
UB
LB = ρ ≤ (1

ε
)1/ε+1 we are able to apply the methods we have developed for the makespan

minimization problem to obtain an EPTAS for Pr-SantaClaus, as we do next.

Rounding bag sizes. We next provide a method to gain structure on the set of feasible
solutions that we need to consider for finding a near optimal solution. Given a feasible
solution, the size of bag i denoted as P (i) is the total size of jobs assigned to this bag, that
is, P (i) =

∑
j:σ1(j)=i pj .

▶ Lemma 16. There exists a solution of value at least (1 − 3ε) · opt in which the size of
every non-empty bag is in the interval [ε · LB, 2.5 · UB].

STACS 2025

31:16 EPTAS’s for Scheduling on a Stochastic Number of Machines

In what follows, we will decrease the size of a bag to be the next value of the form
(ε + rε2) · LB for an integer r ≥ 0 (except for empty bags for which the allowed size remains
zero). Thus, we will not use precise sizes for bags but lower bounds on sizes, and we call
them “allowed sizes” in what follows. For bags of allowed size zero the meaning remains
that such a bag is empty. We let P ′(i) be this decreased (allowed) size of bag i, that is,
P ′(i) = maxr:(ε+rε2)·LB≤P (i)(ε + rε2) · LB. The allowed size is not smaller than ε · LB and
it is smaller than the size by an additive term of at most ε2 · LB. Thus, for every subset
of bags, the total allowed size of the bags in the set is at least 1

1+ε
times the total size of

the bags in the subset, we conclude that this rounding of the bag sizes will decrease the
value of any solution by a multiplicative factor of at most 1 + ε (and therefore the expected
value also decreases by at most this factor), and it will not increase the value of a solution
for any scenario. Thus, in what follows, we will consider only bag sizes that belong to the
set B = {(ε + rε2) · LB : r ∈ Z, r ≥ 0, (ε + rε2) · LB ≤ 2.5 · UB} ∪ {0}. We use this set by
Lemma 16. We conclude that the following holds.

▶ Corollary 17. If the guessed information vector is satisfied by an optimal solution, then
there is a solution of expected value of the Santa Claus value of at least 1−3ε

1+ε
· opt that uses

only bags with allowed sizes in B.

Note that the allowed size of a bag may be slightly smaller than the actual total size of
jobs assigned to the bag. Later, the allowed size acts as a lower bound (without an upper
bound), and we sometimes take the allowed size into account in the calculation of machine
completion times.

Rounding job sizes. We apply a similar rounding method for job sizes. Recall that by our
transformation, every job j has size at most UB (since huge jobs were removed from the
input). Next, we apply the following modification to the jobs of sizes at most ε2 · LB. While
there is a pair of jobs of sizes at most ε2 · LB, we unite such a pair of jobs. If there is an
additional job of size at most ε2 · LB, we delete it from the instance, and in the resulting
solution (after applying the algorithm below on the resulting instance) we add the deleted
job to an arbitrary bag. This deletion of the deleted job decreases the Santa Claus value of
every scenario by at most ε2 · LB, so the resulting expected value of the Santa Claus value
will be decreased by at most ε2 · LB. Adding the job back does not decrease the value. We
consider the instance without this possibly deleted job, and we prove the following.

▶ Lemma 18. The optimal expected value of the Santa Claus value of the instance resulting
from the above modification of the job sizes among all solutions with allowed bag sizes in the
following modified set B′ = {(ε + rε2) · LB : r ∈ Z, r ≥ −2, (ε + rε2) · LB ≤ 3 · UB} ∪ {0} is
at least (1 − 2ε) · 1−3ε

1+ε
· opt.

Next, we round down the size of every job j to be the next value that is of the form
(1 + ε)r for an integer r. The size of every job cannot increase and it may decrease by a
multiplicative factor of at most 1 + ε. Job sizes are still larger than ε3 · LB and not larger
than UB ≤ (1

ε
)1/ε+1 · LB. Thus, the number of different job sizes is O(log1+ε(1

ε
)1/ε+4) ≤

2
ε3 − 1. We decrease the allowed size of each bag by another multiplicative factor of 1 + ε.
Bags sizes are rounded down again to the next value of the form ε + rε2, and since the
smallest allowed size was (ε − 2ε2) · LB and ε−2ε2

1+ε
≥ ε − 3ε2, the allowed bag sizes become

B′′ = {(ε + rε2) · LB : r ∈ Z, r ≥ −3, (ε + rε2) · LB ≤ 3 · UB} ∪ {0}, and the expected value
of the Santa Claus value of a feasible solution decreases by a multiplicative factor of at most
1−2ε
1−3ε . By our guessing step and our transformation, there is a feasible solution with expected
value of the Santa Claus value of at least (1 − ε)(1 − 3ε)2 · opt.

L. Epstein and A. Levin 31:17

A bag is called tight if the set of jobs of this bag cannot use a bag of a larger allowed size.
Note that any solution where some bags are not tight can be converted into one where all
bags are tight without decreasing the expected value of the objective.

▶ Lemma 19. For any tight bag it holds that the allowed size of the bag is at least ε2 times
its actual size (the total size of jobs assigned to the bag, such that their rounded sizes are
considered).

The final steps of the EPTAS for Pr-SantaClaus. Our next step is to guess an approximated
histogram of the optimal Santa Claus value in all scenarios. This step and the next step
of formulating a template-configuration integer program of fixed dimension are similar to
the ones we have established for Pr-makespan. Using these additional steps we manage to
prove our second main result.

▶ Theorem 20. Problem Pr-SantaClaus admits an EPTAS.

References
1 N. Alon, Y. Azar, G. J. Woeginger, and T. Yadid. Approximation schemes for scheduling. In

Proceedings of the 8th Annual ACM-SIAM Symposium on Discrete Algorithms (SODA’97),
pages 493–500, 1997.

2 N. Alon, Y. Azar, G. J. Woeginger, and T. Yadid. Approximation schemes for scheduling on
parallel machines. Journal of Scheduling, 1(1):55–66, 1998.

3 B. Awerbuch, Y. Azar, E. F. Grove, M.-Y. Kao, P. Krishnan, and J. S. Vitter. Load balancing
in the lp norm. In Proc. of the 36th Annual Symposium on Foundations of Computer Science
(FOCS’95), pages 383–391, 1995.

4 Y. Azar, L. Epstein, and R. van Stee. Resource augmentation in load balancing. Journal of
Scheduling, 3(5):249–258, 2000.

5 E. Balkanski, T. Ou, C. Stein, and H.-T. Wei. Scheduling with speed predictions. In Proc. of
the 21st International Workshop on Approximation and Online Algorithms (WAOA’23), pages
74–89, 2023.

6 N. Bansal and K. R. Pruhs. Server scheduling to balance priorities, fairness, and average quality
of service. SIAM Journal on Computing, 39(7):3311–3335, 2010. doi:10.1137/090772228.

7 N. Bansal and M. Sviridenko. The Santa Claus problem. In Proc. of the 38th Annual ACM
Symposium on Theory of Computing (STOC’06), pages 31–40, 2006.

8 M. Brehob, E. Torng, and P. Uthaisombut. Applying extra-resource analysis to load balancing.
Journal of Scheduling, 3(5):273–288, 2000.

9 M. Buchem, F. Eberle, H. K. Kasuya Rosado, K. Schewior, and A. Wiese. Scheduling on a
stochastic number of machines. In Proc. of the 27th International Workshop on Approximation
Algorithms for Combinatorial Optimization Problems (APPROX’24), pages 14:1–14:15, 2024.

10 A. K. Chandra and C. K. Wong. Worst-case analysis of a placement algorithm related to
storage allocation. SIAM Journal on Computing, 4(3):249–263, 1975. doi:10.1137/0204021.

11 L. Chen, K. Jansen, and G. Zhang. On the optimality of exact and approximation algorithms
for scheduling problems. Journal of Computer and System Sciences, 96:1–32, 2018. doi:
10.1016/J.JCSS.2018.03.005.

12 R. A. Cody and E. G. Coffman Jr. Record allocation for minimizing expected retrieval costs
on drum-like storage devices. Journal of the ACM, 23(1):103–115, 1976. doi:10.1145/321921.
321933.

13 E. G. Coffman Jr., M. R. Garey, and D. S. Johnson. An application of bin-packing to
multiprocessor scheduling. SIAM Journal on Computing, 7(1):1–17, 1978. doi:10.1137/
0207001.

STACS 2025

https://doi.org/10.1137/090772228
https://doi.org/10.1137/0204021
https://doi.org/10.1016/J.JCSS.2018.03.005
https://doi.org/10.1016/J.JCSS.2018.03.005
https://doi.org/10.1145/321921.321933
https://doi.org/10.1145/321921.321933
https://doi.org/10.1137/0207001
https://doi.org/10.1137/0207001

31:18 EPTAS’s for Scheduling on a Stochastic Number of Machines

14 J. Csirik, H. Kellerer, and G. Woeginger. The exact LPT-bound for maximizing the min-
imum completion time. Operations Research Letters, 11(5):281–287, 1992. doi:10.1016/
0167-6377(92)90004-M.

15 B. L. Deuermeyer, D. K. Friesen, and M. A. Langston. Scheduling to maximize the minimum
processor finish time in a multiprocessor system. SIAM Journal on Discrete Mathematics,
3(2):190–196, 1982.

16 R. G. Downey and M. R. Fellows. Parameterized Complexity. Springer-Verlag, Berlin, 1999.
17 S. Dye, L. Stougie, and A. Tomasgard. The stochastic single resource service-provision problem.

Naval Research Logistics, 50(8):869–887, 2003.
18 F. Eberle, R. Hoeksma, N. Megow, L. Nölke, K. Schewior, and B. Simon. Speed-robust

scheduling: sand, bricks, and rocks. Mathematical Programming, 197(2):1009–1048, 2023.
doi:10.1007/S10107-022-01829-0.

19 W. Fernandez de la Vega and G. S. Lueker. Bin packing can be solved within 1 + ε in linear
time. Combinatorica, 1(4):349–355, 1981.

20 D. K. Friesen. Tighter bounds for the multifit processor scheduling algorithm. SIAM Journal
on Computing, 13(1):170–181, 1984. doi:10.1137/0213013.

21 D. K. Friesen and B. L. Deuermeyer. Analysis of greedy solutions for a replacement part
sequencing problem. Mathematics of Operations Research, 6(1):74–87, 1981. doi:10.1287/
MOOR.6.1.74.

22 R. L. Graham. Bounds for certain multiprocessing anomalies. Bell System Technical Journal,
45(9):1563–1581, 1966.

23 R. L. Graham. Bounds on multiprocessing timing anomalies. SIAM Journal of Applied
Mathematics, 17(2):416–429, 1969.

24 D. S. Hochbaum. Various notions of approximations: Good, better, best and more. In D. S.
Hochbaum, editor, Approximation algorithms. PWS Publishing Company, 1997.

25 D. S. Hochbaum and D. B. Shmoys. Using dual approximation algorithms for scheduling
problems: theoretical and practical results. Journal of the ACM, 34(1):144–162, 1987. doi:
10.1145/7531.7535.

26 K. Jansen, K.-M. Klein, and J. Verschae. Closing the gap for makespan scheduling via
sparsification techniques. Mathematics of Operations Research, 45(4):1371–1392, 2020. doi:
10.1287/MOOR.2019.1036.

27 R. Kannan. Improved algorithms for integer programming and related lattice problems. In
Proc. of the 15th annual ACM Symposium on Theory of Computing (STOC’83), pages 193–206,
1983.

28 H. W. Lenstra Jr. Integer programming with a fixed number of variables. Mathematics of
Operations Research, 8(4):538–548, 1983. doi:10.1287/MOOR.8.4.538.

29 J. Y.-T. Leung and W.-D. Wei. Tighter bounds on a heuristic for a partition problem.
Information Processing Letters, 56(1):51–57, 1995. doi:10.1016/0020-0190(95)00099-X.

30 J. Minařík and J. Sgall. Speed-robust scheduling revisited. In Proc. of the 27th Interna-
tional Workshop on Approximation Algorithms for Combinatorial Optimization Problems
(APPROX’24), pages 8:1–8:20, 2024. doi:10.4230/LIPIcs.APPROX/RANDOM.2024.8.

31 M. Mitzenmacher and S. Vassilvitskii. Algorithms with predictions. Communications of the
ACM, 65(7):33–35, 2022. doi:10.1145/3528087.

32 K. Rustogi and V. A. Strusevich. Parallel machine scheduling: Impact of adding extra machines.
Operations Research, 61(5):1243–1257, 2013. doi:10.1287/OPRE.2013.1208.

33 C. Stein and M. Zhong. Scheduling when you do not know the number of machines. ACM
Transactions on Algorithms, 16(1):9:1–9:20, 2020. doi:10.1145/3340320.

34 G. J. Woeginger. A polynomial time approximation scheme for maximizing the minimum
machine completion time. Operations Research Letters, 20(4):149–154, 1997. doi:10.1016/
S0167-6377(96)00055-7.

https://doi.org/10.1016/0167-6377(92)90004-M
https://doi.org/10.1016/0167-6377(92)90004-M
https://doi.org/10.1007/S10107-022-01829-0
https://doi.org/10.1137/0213013
https://doi.org/10.1287/MOOR.6.1.74
https://doi.org/10.1287/MOOR.6.1.74
https://doi.org/10.1145/7531.7535
https://doi.org/10.1145/7531.7535
https://doi.org/10.1287/MOOR.2019.1036
https://doi.org/10.1287/MOOR.2019.1036
https://doi.org/10.1287/MOOR.8.4.538
https://doi.org/10.1016/0020-0190(95)00099-X
https://doi.org/10.4230/LIPIcs.APPROX/RANDOM.2024.8
https://doi.org/10.1145/3528087
https://doi.org/10.1287/OPRE.2013.1208
https://doi.org/10.1145/3340320
https://doi.org/10.1016/S0167-6377(96)00055-7
https://doi.org/10.1016/S0167-6377(96)00055-7

A Faster Algorithm for Constrained Correlation
Clustering
Nick Fischer #

INSAIT, Sofia University “St. Kliment Ohridski”, Bulgaria

Evangelos Kipouridis #

Max Planck Institute for Informatics, Saarland Informatics Campus, Saarbrücken, Germany

Jonas Klausen #

BARC, University of Copenhagen, Denmark

Mikkel Thorup #

BARC, University of Copenhagen, Denmark

Abstract
In the Correlation Clustering problem we are given n nodes, and a preference for each pair of nodes
indicating whether we prefer the two endpoints to be in the same cluster or not. The output is a
clustering inducing the minimum number of violated preferences. In certain cases, however, the
preference between some pairs may be too important to be violated. The constrained version of
this problem specifies pairs of nodes that must be in the same cluster as well as pairs that must not
be in the same cluster (hard constraints). The output clustering has to satisfy all hard constraints
while minimizing the number of violated preferences.

Constrained Correlation Clustering is APX-Hard and has been approximated within a factor 3 by
van Zuylen et al. [SODA ’07]. Their algorithm is based on rounding an LP with Θ(n3) constraints,
resulting in an Ω(n3ω) running time. In this work, using a more combinatorial approach, we show
how to approximate this problem significantly faster at the cost of a slightly weaker approximation
factor. In particular, our algorithm runs in Õ(n3) time (notice that the input size is Θ(n2)) and
approximates Constrained Correlation Clustering within a factor 16.

To achieve our result we need properties guaranteed by a particular influential algorithm for
(unconstrained) Correlation Clustering, the CC-PIVOT algorithm. This algorithm chooses a pivot
node u, creates a cluster containing u and all its preferred nodes, and recursively solves the rest of
the problem. It is known that selecting pivots at random gives a 3-approximation. As a byproduct
of our work, we provide a derandomization of the CC-PIVOT algorithm that still achieves the
3-approximation; furthermore, we show that there exist instances where no ordering of the pivots
can give a (3 − ε)-approximation, for any constant ε.

Finally, we introduce a node-weighted version of Correlation Clustering, which can be approx-
imated within factor 3 using our insights on Constrained Correlation Clustering. As the general
weighted version of Correlation Clustering would require a major breakthrough to approximate
within a factor o(log n), Node-Weighted Correlation Clustering may be a practical alternative.

2012 ACM Subject Classification Theory of computation → Facility location and clustering

Keywords and phrases Clustering, Constrained Correlation Clustering, Approximation

Digital Object Identifier 10.4230/LIPIcs.STACS.2025.32

Related Version Full Version: https://arxiv.org/abs/2501.03154 [26]

Funding Jonas Klausen and Mikkel Thorup are part of BARC, Basic Algorithms Research Copen-
hagen, supported by VILLUM Foundation grants 16582 and 54451. This work is part of the project
TIPEA that has received funding from the European Research Council (ERC) under the European
Unions Horizon 2020 research and innovation programme (grant agreement No. 850979).
Nick Fischer : Partially funded by the Ministry of Education and Science of Bulgaria’s support for
INSAIT, Sofia University “St. Kliment Ohridski” as part of the Bulgarian National Roadmap for
Research Infrastructure. Parts of this work were done while the author was at Saarland University.

Acknowledgements We thank Lorenzo Beretta for his valuable suggestions on weighted sampling.

© Nick Fischer, Evangelos Kipouridis, Jonas Klausen, and Mikkel Thorup;
licensed under Creative Commons License CC-BY 4.0

42nd International Symposium on Theoretical Aspects of Computer Science (STACS 2025).
Editors: Olaf Beyersdorff, Michał Pilipczuk, Elaine Pimentel, and Nguyễn Kim Thắng;
Article No. 32; pp. 32:1–32:18

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:nickrobinfischer@gmail.com
https://orcid.org/0009-0001-0909-3296
mailto:kipouridis@mpi-inf.mpg.de
https://orcid.org/0000-0002-5830-5830
mailto:jokl@di.ku.dk
https://orcid.org/0000-0002-7403-417X
mailto:mikkel2thorup@gmail.com
https://orcid.org/0000-0001-5237-1709
https://doi.org/10.4230/LIPIcs.STACS.2025.32
https://arxiv.org/abs/2501.03154
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

32:2 A Faster Algorithm for Constrained Correlation Clustering

1 Introduction

Clustering is a fundamental task related to unsupervised learning, with many applications
in machine learning and data mining. The goal of clustering is to partition a set of nodes
into disjoint clusters, such that (ideally) all nodes within a cluster are similar, and nodes in
different clusters are dissimilar. As no single definition best captures this abstract goal, a lot
of different clustering objectives have been suggested.

Correlation Clustering is one of the most well studied such formulations for a multitude
of reasons: Its definition is simple and natural, it does not need the number of clusters to
be part of the input, and it has found success in many applications. Some few examples
include automated labeling [1, 15], clustering ensembles [10], community detection [19, 36],
disambiguation tasks [30], duplicate detection [5] and image segmentation [31, 40].

In Correlation Clustering we are given a graph G = (V, E), and the output is a partition
(clustering) C = {C1, . . . , Ck} of the vertex set V . We refer to the sets Ci of C as clusters.
The goal is to minimize the number of edges between different clusters plus the number of
non-edges inside of clusters. More formally, the goal is to minimize |E△EC |, the cardinality
of the symmetric difference between E and EC , where we define EC =

⋃k
i=1

(
Ci

2
)
. In other

words, the goal is to transform the input graph into a collection of cliques with the minimal
number of edge insertions and deletions. An alternative description used by some authors is
that we are given a complete graph where the edges are labeled either “+” (corresponding to
the edges in our graph G) or “−” (corresponding to the non-edges in our graph G).

The problem is typically motivated as follows: Suppose that the input graph models the
relationships between different entities which shall be grouped. An edge describes that we
prefer its two endpoints to be clustered together, whereas a non-edge describes that we prefer
them to be separated. In this formulation the cost of a correlation clustering is the number
of violated preferences.

1.1 Previous Results
Correlation Clustering was initially introduced by Bansal, Blum, and Chawla [7], who
proved that it is NP-Hard, and provided a deterministic constant-factor approximation, the
constant being larger than 15,000. Subsequent improvements were based on rounding the
natural LP: Charikar, Guruswami and Wirt gave a deterministic 4-approximation [17], Ailon,
Charikar and Newman gave a randomized 2.5-approximation and proved that the problem is
APX-Hard [3], while a deterministic 2.06-approximation was given by Chawla, Makarychev,
Schramm and Yaroslavtsev [18]. The last result is near-optimal among algorithms rounding
the natural LP, as its integrality gap is at least 2. In a breakthrough result by Cohen-Addad,
Lee and Newman [23] a (1.994 + ϵ)-approximation using the Sherali-Adams relaxation broke
the 2 barrier. It was later improved to 1.73 + ϵ [22] by Cohen-Addad, Lee, Li and Newman,
and even to 1.437 by Cao et al. [13]. There is also a combinatorial 1.847-approximation
(Cohen-Addad et al. [24]).

Given the importance of Correlation Clustering, research does not only focus on improving
its approximation factor. Another important goal is efficient running times without big
sacrifices on the approximation factor. As the natural LP has Θ(n3) constraints, using a
state-of-the-art LP solver requires time Ω(n3ω) = Ω(n7.113).

In order to achieve efficient running times, an algorithm thus has to avoid solving the LP
using an all-purpose LP-solver, or the even more expensive Sherali-Adams relaxation; such
algorithms are usually called combinatorial algorithms1. Examples of such a direction can

1 On a more informal note, combinatorial algorithms are often not only faster, but also provide deeper
insights on a problem, compared to LP-based ones.

N. Fischer, E. Kipouridis, J. Klausen, and M. Thorup 32:3

be seen in [3] where, along with their LP-based 2.5-approximation, the authors also design a
combinatorial 3-approximation (the CC-PIVOT algorithm); despite its worse approximation,
it enjoys the benefit of being faster. Similarly, much later than the 2.06-approximation [18],
Veldt devised a faster combinatorial 6-approximation and a 4-approximation solving a less
expensive LP [35].

Another important direction is the design of deterministic algorithms. For example, [3]
posed as an open question the derandomization of CC-PIVOT. The question was (partially)
answered affirmatively by [34]. Deterministic algorithms were also explicitly pursued in [35],
and are a significant part of the technical contribution of [18].

Correlation Clustering has also been studied in different settings such as parameterized
algorithms [28], sublinear and streaming algorithms [6, 12, 8, 9, 12, 16], massively parallel
computation (MPC) algorithms [21, 14], and differentially private algorithms [11].

PIVOT. The CC-PIVOT algorithm [3] is a very influential algorithm for Correlation
Clustering. It provides a 3-approximation and is arguably the simplest constant factor
approximation algorithm for Correlation Clustering. It simply selects a node uniformly
at random, and creates a cluster C with this node and its neighbors in the (remaining)
input graph. It then removes C’s nodes and recurses on the remaining graph. Due to
its simplicity, CC-PIVOT has inspired several other algorithms, such as algorithms for
Correlation Clustering in the streaming model [6, 12, 8, 9, 12, 16] and algorithms for the
more general Fitting Utrametrics problem [2, 20].

One can define a meta-algorithm based on the above, where we do not necessarily pick
the pivots uniformly at random. Throughout this paper, we use the term PIVOT algorithm
to refer to an instantiation of the (Meta-)Algorithm 12. Obviously CC-PIVOT is an
instantiation of PIVOT, where the pivots are selected uniformly at random.

Algorithm 1 The PIVOT meta-algorithm. CC-PIVOT is an instantiation of PIVOT
where pivots are selected uniformly at random.

procedure Pivot(G = (V, E))
1 C ← ∅
2 while V ̸= ∅ do
3 Pick a pivot node u

/* an instantiation of Pivot() only needs to specify how the
pivot is selected in each iteration */

4 Add a cluster containing u and all its neighbors to C

5 Remove u, its neighbors and all their incident edges from G

6 return C

The paper that introduced CC-PIVOT [3] posed as an open question the derandomization
of the algorithm. The question was partially answered in the affirmative by [34]. Unfortunately
there are two drawbacks with this algorithm. First, it requires solving the natural LP, which
makes its running time equal to the pre-existing (better) 2.5-approximation. Second, this

2 This is not to be confused with the more general pivoting paradigm for Correlation Clustering algorithms.
In that design paradigm, the cluster we create for each pivot is not necessarily the full set of remaining
nodes with which the pivot prefers to be clustered, but can be decided in any other way (e.g. randomly,
based on a probability distribution related to an LP or more general hierarchies such as the Sherali-Adams
hierarchy).

STACS 2025

32:4 A Faster Algorithm for Constrained Correlation Clustering

algorithm does not only derandomize the order in which pivots are selected, but also decides
the cluster of each pivot based on an auxiliary graph (dictated by the LP) rather than based
on the original graph. Therefore it is not an instantiation of PIVOT.

Weighted Correlation Clustering. In the weighted version of Correlation Clustering, we
are also given a weight for each preference. The final cost is then the sum of weights of
the violated preferences. An O(log n)-approximation for weighted Correlation Clustering is
known by Demaine, Emanuel, Fiat and Immorlica [25]. In the same paper they show that
the problem is equivalent to the Multicut problem, meaning that an o(log n)-approximation
would require a major breakthrough. As efficiently approximating the general weighted
version seems out of reach, research has focused on special cases for which constant-factor
approximations are possible [32, 33].

Constrained Correlation Clustering. Constrained Correlation Clustering is an interesting
variant of Correlation Clustering capturing the idea of critical pairs of nodes. To address
these situations, Constrained Correlation Clustering introduces hard constraints in addition
to the pairwise preferences. A clustering is valid if it satisfies all hard constraints, and the
goal is to find a valid clustering of minimal cost. We can phrase Constrained Correlation
Clustering as a weighted instance of Correlation Clustering: Simply give infinite weight to
pairs associated with a hard constraint and weight 1 to all other pairs.

To the best of our knowledge, the only known solution to Constrained Correlation
Clustering is given in the work of van Zuylen and Williamson who designed a deterministic
3-approximation [34]. The running time of this algorithm is O(n3ω), where ω < 2.3719 is the
matrix-multiplication exponent. Using the current best bound for ω, this is Ω(n7.113).

1.2 Our Contribution
Our main result is the following theorem. It improves the Ω(n7.113) running time of the
state-of-the-art algorithm for Constrained Correlation Clustering while still providing a
constant (but larger than 3) approximation factor3.

▶ Theorem 1 (Constrained Correlation Clustering). There is a deterministic algorithm for
Constrained Correlation Clustering computing a 16-approximation in time Õ(n3).

We first show how to obtain this result, but with a randomized algorithm that holds with
high probability, instead of a deterministic one. In order to do so, we perform a (deterministic)
preprocessing step and then use the CC-PIVOT algorithm. Of course CC-PIVOT alone,
without the preprocessing step, would not output a clustering respecting the hard constraints.
Its properties however (and more generally the properties of PIVOT algorithms) are crucial;
we are not aware of any other algorithm that we could use instead and still satisfy all the
hard constraints of Constrained Correlation Clustering after our preprocessing step.

To obtain our deterministic algorithm we derandomize the CC-PIVOT algorithm.

▶ Theorem 2 (Deterministic PIVOT). There are the following deterministic PIVOT algo-
rithms for Correlation Clustering:

A combinatorial (3 + ϵ)-approximation, for any constant ϵ > 0, in time Õ(n3).
A non-combinatorial 3-approximation in time Õ(n5).

3 We write Õ(T) to suppress polylogarithmic factors, i.e., Õ(T) = T (log T)O(1).

N. Fischer, E. Kipouridis, J. Klausen, and M. Thorup 32:5

We note that the final approximation of our algorithm for Constrained Correlation
Clustering depends on the approximation of the applied PIVOT algorithm. If it was possible
to select the order of the pivots in a way that guarantees a better approximation, this would
immediately improve the approximation of our Constrained Correlation Clustering algorithm.
For this reason, we study lower bounds for PIVOT; currently, we know of instances for which
selecting the pivots at random doesn’t give a better-than-3-approximation in expectation [3];
however, for these particular instances there does exist a way to choose the pivots that
gives better approximations. Ideally, we want a lower bound applying for any order of the
pivots (such as the lower bound for the generalized PIVOT solving the Ultrametric Violation
Distance problem in [20]). We show that our algorithm is optimal, as there exist instances
where no ordering of the pivots will yield a better-than-3-approximation.

▶ Theorem 3 (PIVOT Lower Bound). There is no constant ϵ > 0 for which there exists a
PIVOT algorithm for Correlation Clustering with approximation factor 3− ϵ.

We also introduce the Node-Weighted Correlation Clustering problem, which is related
to (but incomparable, due to their asymmetric assignment of weights) a family of problems
introduced in [36]. As weighted Correlation Clustering is equivalent to Multicut, improving
over the current Θ(log n)-approximation seems out of reach. The advantage of our alternative
type of weighted Correlation Clustering is that it is natural and approximable within a
constant factor.

In Node-Weighted Correlation Clustering we assign weights to the nodes, rather than
to pairs of nodes. Violating the preference between nodes u, v with weights ωu and ωv

incurs cost ωu · ωv. We provide three algorithms computing (almost-)3-approximations for
Node-Weighted Correlation Clustering:

▶ Theorem 4 (Node-Weighted Correlation Clustering, Deterministic). There are the following
deterministic algorithms for Node-Weighted Correlation Clustering:

A combinatorial (3 + ϵ)-approximation, for any constant ϵ > 0, in time Õ(n3).
A non-combinatorial 3-approximation in time O(n7.116).

▶ Theorem 5 (Node-Weighted Correlation Clustering, Randomized). There is a randomized
combinatorial algorithm for Node-Weighted Correlation Clustering computing an expected
3-approximation in time O(n + m) with high probability 1− 1/ poly(n).

1.3 Overview of Our Techniques
Constrained Correlation Clustering. We obtain a faster algorithm for Constrained Correla-
tion Clustering by
1. modifying the input graph using a subroutine aware of the hard-constraints, and
2. applying a PIVOT algorithm on this modified graph.
In fact, no matter what PIVOT algorithm is used, the output clustering respects all hard
constraints when the algorithm is applied on the modified graph.

To motivate this two-step procedure, we note that inputs exist where no PIVOT algorithm,
if applied to the unmodified graph, would respect the hard constraints. One such example is
the cycle on four vertices, with two vertex-disjoint edges made into hard constraints.

The solution of [34] is similar to ours, as it also modifies the graph before applying a
Correlation Clustering algorithm. However, both their initial modification and the follow-
ing Correlation Clustering algorithm require solving the standard LP, which is expensive
(Ω(n7.113) time). In our case both steps are implemented with deterministic and combinatorial
algorithms which brings the running time down to Õ(n3).

STACS 2025

32:6 A Faster Algorithm for Constrained Correlation Clustering

For the first step, our algorithm carefully modifies the input graph so that on one hand
the optimal cost is not significantly changed, and on the other hand any PIVOT algorithm
on the transformed graph returns a clustering that respects all hard constraints. For the
second step, we use a deterministic combinatorial PIVOT algorithm.

Concerning the effect of modifying the graph, roughly speaking we get that the final
approximation factor is (2 +

√
5) · α + 3, where α is the approximation factor of the PIVOT

algorithm we use. Plugging in α = 3 + ϵ from Theorem 2 we get the first combinatorial
constant-factor approximation for Constrained Correlation Clustering in Õ(n3) time.

Node-Weighted Correlation Clustering. We generalize the deterministic combinatorial
techniques from before to the Node-Weighted Correlation Clustering problem. In addition,
we also provide a very efficient randomized algorithm for the problem. It relies on a weighted
random sampling technique.

One way to view the algorithm is to reduce Node-Weighted Correlation Clustering to an
instance of Constrained Correlation Clustering, with the caveat that the new instance’s size
depends on the weights (and can thus even be exponential). Each node u is replaced by a
set of nodes of size related to u’s weight and these nodes have constraints forcing them to be
in the same cluster.

We show that we can simulate a simple randomized PIVOT algorithm on that instance,
where instead of sampling uniformly at random, we sample with probabilities proportional
to the weights. Assuming polynomial weights, we can achieve this in linear time. To do so,
we design an efficient data structure supporting such sampling and removal of elements.

It is easy to implement such a data structure using any balanced binary search tree,
but the time for constructing it and applying all operations would be O(n log n). Using a
non-trivial combination of the Alias Method [38, 37] and Rejection Sampling, we achieve a
linear bound.

Due to space constraints the presentation of our algorithms for Node-Weighted Correlation
Clustering is deferred to the full version of the paper [26].

Deterministic PIVOT algorithms. Our algorithms are based on a simple framework by
van Zuylen and Williamson [34]. In this framework we assign a nonnegative “charge” to
each pair of nodes. Using these charges, a PIVOT algorithm decides which pivot to choose
next. The approximation factor depends on the total charge (as compared with the cost of
an optimal clustering), and the minimum charge assigned to any bad triplet (an induced
subgraph K1,2).

The reason why these bad triplets play an important role is that for any bad triplet, any
clustering needs to pay at least 1. To see this, let uvw be a bad triplet with uv being the
only missing edge. For a clustering to pay 0, it must be the case that both uw and vw are
together. However, this would imply that uv are also together although they prefer not to.

Our combinatorial (3 + ϵ)-approximation uses the multiplicative weights update method,
which can be intuitively described as follows: We start with a tiny charge on all pairs. Then
we repeatedly find a bad triplet uvw with currently minimal charge (more precisely: for
which the sum of the charges of uv, vw, wu is minimal), and scale the involved charges by
1 + ϵ. One can prove that this eventually results in an almost-optimal distribution of charges,
up to rescaling.

For this purpose it suffices to show that the total assigned charge is not large compared
to the cost of the optimal correlation clustering. We do so by observing that our algorithm
(1 + ϵ)-approximates the covering LP of Figure 1, which we refer to as the charging LP.

N. Fischer, E. Kipouridis, J. Klausen, and M. Thorup 32:7

Our faster deterministic non-combinatorial algorithm solves the charging LP using an LP
solver tailored to covering LPs [4, 39]. An improved solver for covering LPs would directly
improve the running time of this algorithm.

Figure 1 The primal and dual LP relaxations for Correlation Clustering, which we refer to as
the charging LP. T (G) is the set of all bad triplets in G.

min
∑

uv∈(V
2)

xuv

s.t. xuv + xvw + xwu ≥ 1 ∀uvw ∈ T (G),
xuv ≥ 0 ∀uv ∈

(
V
2
)

max
∑

uvw∈T (G)

yuvw

s.t.
∑

w:uvw∈T (G)

yuvw ≤ 1 ∀uv ∈
(

V
2
)
,

yuvw ≥ 0 ∀uvw ∈ T (G)

Lower Bound. Our lower bound is obtained by taking a complete graph Kn for some even
number of vertices n, and removing a perfect matching. Each vertex in the resulting graph is
adjacent to all but one other vertex and so any PIVOT algorithm will partition the vertices
into a large cluster of n − 1 vertices and a singleton cluster. A non PIVOT algorithm,
however, is free to create just a single cluster of size n, at much lower cost. The ratio between
these solutions tends to 3 with increasing n.

We note that in [3] the authors proved that CC-PIVOT’s analysis is tight. That is, its
expected approximation factor is not better than 3. However, their lower bound construction
(a complete graph Kn minus one edge) only works for CC-PIVOT, not for PIVOT algorithms
in general.

1.4 Open Problems

We finally raise some open questions.
1. Can we improve the approximation factor of Constrained Correlation Clustering from 16

to 3 while keeping the running time at Õ(n3)?
2. We measure the performance of a PIVOT algorithm by comparing it to the best correlation

clustering obtained by any algorithm. But as Theorem 3 proves, there is no PIVOT
algorithm with an approximation factor better than 3. If we instead compare the output
to the best correlation clustering obtained by a PIVOT algorithm, can we get better
guarantees (perhaps even an exact algorithm in polynomial time)?

3. In the Node-Weighted Correlation Clustering problem, we studied the natural objective
of minimizing the total cost ωv · ωu of all violated preferences uv. Are there specific
applications of this problem? Can we achieve similar for other cost functions such
as ωv + ωu?

STACS 2025

32:8 A Faster Algorithm for Constrained Correlation Clustering

2 Preliminaries

We denote the set {1, . . . , n} by [n]. We denote all subsets of size k of a set A by
(

A
k

)
. The

symmetric difference between two sets A, B is denoted by A△B. We write poly(n) = nO(1)

and Õ(n) = n(log n)O(1).
In this paper all graphs G = (V, E) are undirected and unweighted. We typically

set n = |V | and m = |E|. For two disjoint subsets U1, U2 ⊆ V , we denote the set of edges
with one endpoint in U1 and the other in U2 by E(U1, U2). The subgraph of G induced by
vertex-set U1 is denoted by G[U1]. For vertices u, v, w we often abbreviate the (unordered)
set {u, v } by uv and similarly write uvw for {u, v, w }. We say that uvw is a bad triplet
in G if the induced subgraph G[uvw] contains exactly two edges (i.e., is isomorphic to K1,2).
Let T (G) denote the set of bad triplets in G. We say that the edge set EC of a clustering
C = {C1, . . . , Ck } of V is the set of pairs with both endpoints in the same set in C. More
formally, EC =

⋃k
i=1

(
Ci

2
)
.

We now formally define the problems of interest.

▶ Definition 6 (Correlation Clustering). Given a graph G = (V, E), output a clustering
C = {C1, . . . , Ck } of V with edge set EC minimizing |E △ EC |.

An algorithm for Correlation Clustering is said to be a PIVOT algorithm if it is an
instantiation of Algorithm 1 (Page 3). That is, an algorithm which, based on some criterion,
picks an unclustered node u (the pivot), creates a cluster containing u and its unclustered
neighbors in (V, E), and repeats the process until all nodes are clustered. In particular, the
algorithm may not modify the graph in other ways before choosing a pivot.

The constrained version of Correlation Clustering is defined as follows.

▶ Definition 7 (Constrained Correlation Clustering). Given a graph G = (V, E), a set of friendly
pairs F ⊆

(
V
2
)

and a set of hostile pairs H ⊆
(

V
2
)
, compute a clustering C = {C1, . . . , Ck }

of V with edge set EC such that no pair uv ∈ F has u, v in different clusters and no
pair uv ∈ H has u, v in the same cluster. The clustering C shall minimize |E △ EC |.

We also introduce Node-Weighted Correlation Clustering, a new related problem that
may be of independent interest.

▶ Definition 8 (Node-Weighted Correlation Clustering). Given a graph G = (V, E) and positive
weights {ωu }u∈V on the nodes, compute a clustering C = {C1, . . . , Ck } of V with edge
set EC minimizing∑

uv∈E△EC

ωu · ωv .

For simplicity, we assume that the weights are bounded by poly(n), and thereby fit into
a constant number of word RAM cells of size w = Θ(log n). We remark that our randomized
algorithm would be a polynomial (but not linear) time one if we allowed the weights to be of
exponential size.

The Node-Weighted Correlation Clustering problem clearly generalizes Correlation Clus-
tering since we pay w(u) · w(v) (instead of 1) for each pair uv violating a preference.

N. Fischer, E. Kipouridis, J. Klausen, and M. Thorup 32:9

3 Combinatorial Algorithms for Constrained Correlation Clustering

Let us fix the following notation: A connected component in (V, F) is a supernode. The set
of supernodes partitions V and is denoted by SN . Given a node u, we let s(u) be the unique
supernode containing u. Two supernodes U, W are hostile if there exists a hostile pair uw

with u ∈ U, w ∈W . Two supernodes U, W are connected if |E(U, W)| ≥ 1. Two supernodes
U, W are β-connected if |E(U, W)| ≥ β · |U | · |W |.

The first step of our combinatorial approach is to transform the graph G into a more
manageable form G′, see procedure Transform of Algorithm 2. The high-level idea is that
in G′:

1. If uv is a friendly pair, then u and v are connected and have the same neighborhood.
2. If uv is a hostile pair, then u and v are not connected and have no common neighbor.
3. An O(1)-approximation of the G′ instance is also an O(1)-approximation of the G instance.

As was already noticed in [34], Properties 1 and 2 imply that a PIVOT algorithm on G′ gives
a clustering satisfying the hard constraints. Along with Property 3 and our deterministic
combinatorial PIVOT algorithm for Correlation Clustering in Theorem 2, we prove Theorem 1.
Properties 1 and 2 (related to correctness) and the running time (Õ(n3)) of our algorithm
are relatively straightforward to prove. Due to space constraints, their proofs can be found
in the full version of the paper [26]. In this section we instead focus on the most technically
challenging part, the approximation guarantee.

Our algorithm works as follows (see also Figure 2): If some supernode is hostile to
itself, then it outputs that no clustering satisfies the hard constraints. Else, starting from
the edge set E, it adds all edges within each supernode. Then it drops all edges between
hostile supernodes. Subsequently, it repeatedly detects hostile supernodes that are connected
with the same supernode, and drops one edge from each such connection. Finally, for each
β-connected pair of supernodes, it connects all their nodes if β > 3−

√
5

2 , and disconnects
them otherwise4.

From a high-level view, the first two modifications are directly related to the hard
constraints: If u1, u2 are friendly and u2, u3 are friendly, then any valid clustering has u1, u3
in the same cluster, even if a preference discourages it. Similarly, if u1, u2 are friendly, u3, u4
are friendly, but u1, u3 are hostile, then any valid clustering has u2, u4 in different clusters,
even if a preference discourages it. Our first two modifications simply make the preferences
consistent with the hard constraints.

The third modification guarantees that hostile supernodes share no common neighbor.
A PIVOT algorithm will thus never put their nodes in the same cluster, as the hostility
constraints require. Concerning the cost, notice that if hostile supernodes U1, U2 are connected
with supernode U3, then no valid clustering can put all three of them in the same cluster.
Therefore we always need to pay either for the connections between U1 and U3, or for the
connections between U2 and U3.

Finally, after the rounding step, for each pair of supernodes U1, U2, the edge set E(U1, U2)
is either empty or the full set of size |U1| · |U2|. This ensures that a PIVOT algorithm
always puts all nodes of a supernode in the same cluster, thus also obeying the friendliness
constraints. Concerning the cost of the rounded instance, a case analysis shows that it is
always within a constant factor of the cost of the instance before rounding.

4 The constant 3−
√

5
2 optimizes the approximation factor. The natural choice of 0.5 would still give a

constant approximation factor, albeit slightly worse.

STACS 2025

32:10 A Faster Algorithm for Constrained Correlation Clustering

3

1

4

7 6

2
5

(a) The original graph. The set of friendly
pairs is F = {{1, 2}, {2, 3}, {4, 5}, {6, 7}},
and the only hostile pair in H is {2, 5}.

2

3

1

4

5

7 6

(b) Line 3 introduces edge {1, 3}, and
Line 4 disconnects the supernodes contain-
ing 2 and 5.

2

3

1

4

5

7 6

(c) Line 6 removes the pair of edges {1, 7}
and {4, 6} because 1, 4 are in hostile supern-
odes while 6, 7 are in the same supernode.

2

3

1

4

5

7 6

(d) Line 9 introduces all edges connecting
supernodes {4, 5} and {6, 7} because there
were enough edges between them already.

Figure 2 Illustrates an application of TRANSFORM(G,F,H) (Algorithm 2). In the transformed
graph, for any two supernodes U1, U2, either all pairs with an endpoint in U1 and an endpoint in U2

share an edge, or none of them do. Furthermore, all pairs within a supernode are connected and no
hostile supernodes are connected.

Formally, let E′ be the edge set of the transformed graph G′, let E3 be the edge set at
Line 8 of Algorithm 2 (exactly before the rounding step), OPT be the edge set of an optimal
clustering for E satisfying the hard constraints described by F and H, OPT′ be the edge
set of an optimal clustering for the preferences defined by E′, and EC be the edge set of
the clustering returned by our algorithm. Finally, let α be the approximation factor of the
PIVOT algorithm used.

▶ Lemma 9. Given an instance (V, E, F, H) of Constrained Correlation Clustering, if two
nodes u1, u2 are in the same supernode, then they must be in the same cluster.

Proof. The proof follows by “in the same cluster” being a transitive property.
More formally, u1, u2 are in the same connected component in (V, F), as s(u1) = s(u2).

Thus, there exists a path from u1 to u2. We claim that all nodes in a path must be in the
same cluster. This is trivial if the path is of length 0 (u1 = u2) or of length 1 (u1u2 ∈ F). Else,
the path is u1, w1, . . . , wk, u2 for some k ≥ 1. We inductively have that all of w1, . . . , wk, u2
must be in the same cluster, and u1 must be in the same cluster with w1 because u1w1 ∈ F .
Therefore, all nodes in the path must be in the same cluster with w1. ◀

We now show that it is enough to bound the symmetric difference between E and E′.

N. Fischer, E. Kipouridis, J. Klausen, and M. Thorup 32:11

Algorithm 2 The procedure ConstrainedCluster is given a graph G = (V, E) describ-
ing the preferences, a set of friendly pairs F and a set of hostile pairs H. It creates a new
graph G′ using the procedure Transform and uses any PIVOT algorithm on G′ to return
a clustering.

procedure Transform(G = (V, E), F, H)
1 Compute the connected components of (V, F)

// Impossible iff some pair must both be and not be in the same
cluster.

2 if ∃U ∈ SN hostile to itself then return G′ = (∅, ∅)

// Connect nodes in the same supernode.
3 E1 ← E ∪ {uv ∈

(
V
2
)
| s(u) = s(v) }

// Disconnect pairs in hostile supernodes.
4 E2 ← E1 \ {uv ∈

(
V
2
)
| s(u) and s(v) are hostile }

// While hostile supernodes U1, U2 are both connected with super-
// node U3, drop an edge between U1, U3 and an edge between U2, U3

5 E3 ← E2

6 while ∃U1, U2, U3 ∈
(

SN
3

)
such that U1, U2 are hostile and

∃u1 ∈ U1, u2 ∈ U2, u3 ∈ U3, u′
3 ∈ U3 such that u1u3 ∈ E3, u2u′

3 ∈ E3 do
7 E3 ← E3 \ {u1u3, u2u′

3 }

// Round connections between pairs of supernodes
8 E4 ← E3

9 foreach {U1, U2} ∈
(

SN
2

)
do

10 EU1,U2 ← {u1u2 | u1 ∈ U1, u2 ∈ U2}
11 if |EU1,U2 ∩ E4| > 3−

√
5

2 |U1| · |U2| then E4 ← E4 ∪ EU1,U2

12 else E4 ← E4 \ EU1,U2

13 return G′ = (V, E4)

procedure ConstrainedCluster(G = (V, E), F, H)
14 G′ ← Transform(G=(V,E), F, H)
15 if G′ = (∅, ∅) then return “Impossible”
16 return PIVOT(G′)

▶ Lemma 10. The cost of our clustering C is |E △ EC | ≤ (α + 1)|E △ E′|+ α|E △OPT|.

Proof. The symmetric difference of sets satisfies the triangle inequality; we therefore have

|E △ EC | ≤ |E △ E′|+ |E′ △ EC |.

C is an α-approximation for G′ = (V, E′) and thus |E′△EC | ≤ α|E′△OPT′ | ≤ α|E′△OPT |.
Therefore:

|E △ EC | ≤ |E △ E′|+ α|E′ △OPT| ≤ |E △ E′|+ α|E′ △ E|+ α|E △OPT|.

with the second inequality following by applying the triangle inequality again. ◀

In order to upper bound |E △ E′| by the cost of the optimal clustering |E △OPT|, we
first need to lower bound the cost of the optimal clustering.

STACS 2025

32:12 A Faster Algorithm for Constrained Correlation Clustering

▶ Lemma 11. Let S be the set of all pairs of distinct supernodes U, W that are in the same
cluster in OPT. Then |E △OPT| ≥

∑
{U,W }∈S |E(U, W)△ E3(U, W)|.

Proof. The high-level idea is that when a node is connected to two hostile nodes, then any
valid clustering needs to pay for at least one of these edges. Extending this fact to supernodes,
we construct an edge set of size

∑
{U,W }∈S |E(U, W) △ E3(U, W)| such that the optimal

clustering needs to pay for each edge in this set.
First, for any {U, W} ∈ S it holds that E(U, W) △ E3(U, W) = E(U, W) \ E3(U, W)

because Line 3 (Algorithm 2) does not modify edges between pairs of distinct supernodes,
and Lines 4 and 6 only remove edges.

Each edge of E(U, W) \E3(U, W) is the result of applying Line 6, seeing as Line 4 only
removes edges from hostile pairs of supernodes. Thus each edge uw ∈ E(U, W) \ E3(U, W)
can be paired up with a unique edge xy ∈ E which is removed together with uw. Without
loss of generality it holds that x ∈ U, y ∈ Z for some supernode Z different from U and W .
Due to the way Line 6 chooses edges it must be the case that Z and W are hostile, hence
xy ∈ E △OPT.

Summing over all pairs of clustered supernodes gives the result stated in the lemma. ◀

We are now ready to bound |E △ E′|.

▶ Lemma 12. |E △ E′| ≤ (1 +
√

5)|E △OPT|

Proof. To prove this, we first charge each pair of nodes in a way such that the total charge
is at most 2|E △OPT|. Then we partition the pairs of nodes into 5 different sets, and show
that the size of the intersection between E△E′ and each of the 5 sets is at most 1+

√
5

2 times
the total charge given to the pairs in the given set.

The first three sets contain the pairs across non-hostile supernodes; out of them the first
one is the most technically challenging, requiring a combination of Lemma 11 (related to
Line 6 of Algorithm 2) and a direct analysis on E △OPT, as neither of them would suffice
on their own. The analysis of the second and third sets relate to the rounding in Line 9. The
fourth set contains pairs across hostile supernodes, while the fifth set contains pairs within
supernodes. Their analysis is directly based on the hard constraints.

Let us define our charging scheme: first, each pair of nodes is charged if the optimal
clustering pays for it, i.e. if this pair is in E △OPT. We further put a charge on the pairs
uw ∈ E△E3 which connect supernodes that are clustered together in OPT. Notice that the
number of such edges is a lower bound on |E △OPT | by Lemma 11. Therefore the total
charge over all pairs of nodes is at most 2|E △OPT | and no pair is charged twice.
Case 1. Consider two distinct supernodes U, W that are not hostile, which have more
than 3−

√
5

2 |U |·|W | edges between them in E, and have at most 3−
√

5
2 |U |·|W | edges in E3. Then

the rounding of Line 9 removes all edges between them. Therefore |E(U, W)△ E′(U, W)| =
|E(U, W)| ≤ |U | · |W |. If OPT separates U and W , then the pairs are charged |E(U, W)|;
else they are charged |U | · |W | − |E(U, W)| due to the part of the charging scheme related
to E △ OPT. In the latter case, they are also charged |E(U, W)| − |E3(U, W)| due to the
part of the charging scheme related to Lemma 11. Therefore they are charged at least

|U | · |W | − |E(U, W)|+ |E(U, W)| − |E3(U, W)| = |U | · |W | − |E3(U, W)|

≥ |U | · |W | − 3−
√

5
2 |U | · |W |.

Thus, in the worst case, these pairs contribute

max
{
|E(U, W)|
|E(U, W)| ,

|E(U, W)|
|U | · |W | − 3−

√
5

2 |U | · |W |

}
≤ 1

1− 3−
√

5
2

= 1 +
√

5
2

times more in |E △ E′| compared to their charge.

N. Fischer, E. Kipouridis, J. Klausen, and M. Thorup 32:13

Case 2. Consider two distinct supernodes U, W that are not hostile, which have more
than 3−

√
5

2 |U | · |W | edges between them in E, and more than 3−
√

5
2 |U | · |W | edges in E3.

Then the rounding of Line 9 will include all |U | · |W | edges between them. Thus we have
|E(U, W)△ E′(U, W)| = |U | · |W | − |E(U, W)| < (1− 3−

√
5

2)|U | · |W |. If OPT separates U

and W it pays for |E(U, W)| > 3−
√

5
2 |U | · |W | pairs. Otherwise it pays |U | · |W | − |E(U, W)|.

Thus, in the worst case, these pairs contribute 1− 3−
√

5
2

3−
√

5
2

= 1+
√

5
2 times more in |E △ E′|

compared to their charge.

Case 3. If two distinct supernodes U, W are not hostile and have at most 3−
√

5
2 |U | · |W |

edges between them in E, then they also have at most that many edges in E3 as we
only remove edges between such supernodes. There are thus no edges between them in
E′, meaning that |E(U, W)△ E′(U, W)| = |E(U, W)| ≤ 3−

√
5

2 |U | · |W |. If OPT separates
U, W it pays for |E(U, W)| pairs related to the connection between U, W ; else it pays for
|U | · |W | − |E(U, W)| ≥ (1− 3−

√
5

2)|U | · |W | > 3−
√

5
2 |U | · |W |. Thus these pairs’ contribution

in |E △ E′| is at most as much as their charge.

Case 4. Pairs uv with s(u) ̸= s(v) and s(u) hostile with s(v) are not present in E′. That is
because by Line 4 no pair of hostile supernodes is connected; then Line 6 only removes edges,
and Line 9 does not add any edge between s(u) and s(v) as they had 0 ≤ 3−

√
5

2 |s(u)| · |s(v)|
edges between them. The edge uv is also not present in OPT as s(u) and s(v) are not in the
same cluster because they are hostile. These pairs’ contribution in |E △ E′| is exactly equal
to their charge.

Case 5. Pairs uv with s(u) = s(v) are present in E′ by Line 3 and the fact that all
subsequent steps only modify edges whose endpoints are in different supernodes. The pair
uv is also present in OPT, by Lemma 9. Therefore these pairs’ contribution in |E △ E′| is
exactly equal to their charge.

In the worst case, the pairs of each of the five sets contribute at most 1+
√

5
2 times more

in |E △ E′| compared to their charge, which proves our lemma. ◀

We are now ready to prove the main theorem.

Proof of Theorem 1. In Theorem 2 we established that there is a deterministic combinatorial
PIVOT algorithm computing a Correlation Clustering with approximation factor α = 3 + ϵ

in time Õ(n3), for any constant ϵ > 0. Using this algorithm in Algorithm 2 gives a valid
clustering. By Lemmas 10 and 12, its approximation factor is bounded by (α+1)·(1+

√
5)+α.

This is less than 16 for ϵ = 0.01. ◀

4 PIVOT Algorithms for Correlation Clustering

4.1 Lower Bound
First we prove Theorem 3 which states that there is no PIVOT algorithm for Correlation
Clustering with approximation factor better than 3.

Proof of Theorem 3. Let G = ([2n], E) for some integer n, where the edge set E contains
all pairs of nodes except for pairs of the form (2k + 1, 2k + 2). In other words, the edge set
of G contains all edges except for a perfect matching.

Note that if we create a single cluster containing all nodes, then the cost is exactly n.
On the other hand, let u be the first choice that a PIVOT algorithm makes. If u is even,
let v = u− 1, otherwise let v = u + 1. By definition of G, v is the only node not adjacent

STACS 2025

32:14 A Faster Algorithm for Constrained Correlation Clustering

to u. Therefore, the algorithm creates two clusters – one containing all nodes except for v,
and one containing only v. There are 2n− 2 edges across the two clusters, and n− 1 missing
edges in the big cluster, meaning that the cost is 3n− 3.

Therefore, the approximation factor of any PIVOT algorithm is at least (3n−3)/n = 3− 3
n .

This proves the theorem, as for any constant less than 3, there exists a sufficiently large n

such that 3− 3
n is larger than that constant. ◀

4.2 Optimal Deterministic PIVOT: 3-Approximation
A covering LP is a linear program of the form minx{ cx | Ax ≥ b } where A, b, c, and x

are restricted to vectors and matrices of non-negative entries. Covering LPs can be solved
more efficiently than LPs in general and we rely on the following known machinery to prove
Theorem 2:

▶ Theorem 13 (Covering LPs, Combinatorial [29, 27]). Any covering LP with at most N

nonzero entries in the constraint matrix can be (1 + ϵ)-approximated by a combinatorial
algorithm in time Õ(Nϵ−3).5

▶ Theorem 14 (Covering LPs, Non-Combinatorial [4, 39]). Any covering LP with at most N

nonzero entries in the constraint matrix can be (1 + ϵ)-approximated in time Õ(Nϵ−1).

Of the two theorems, the time complexity of the algorithm promised by Theorem 14 is
obviously better. However, the algorithm of Theorem 13 is remarkably simple in our setting
and could thus prove to be faster in practice. Note that either theorem suffices to obtain a
(3 + ϵ)-approximation for Correlation Clustering in Õ(n3) time, for constant ϵ > 0.

For completeness, and in order to demonstrate how simple the algorithm from Theorem 13
is in our setting, we include the pseudocode as Algorithm 3. In [26] we formally prove that
Algorithm 3 indeed has the properties promised by Theorem 13.

Algorithm 3 The combinatorial algorithm to (1 + O(ϵ))-approximate the LP in Figure 1
(Page 7) using the multiplicative weights update method. The general method was given
by Garg and Könemann [29] and later refined by Fleischer [27]. We here use the notation
m(x) = minuvw∈T (G) xuv + xvw + xwu.

procedure Charge(G = (V, E))
1 Initialize xuv, x∗

uv ← 1 for all uv ∈
(

V
2
)

2 while
∑

uv xuv < B := (
(

n
2
)
(1 + ϵ))1/ϵ / (1 + ϵ) do

3 Find a bad triplet uvw minimizing xuv + xvw + xwu

4 xuv ← (1 + ϵ) · xuv

5 xvw ← (1 + ϵ) · xvw

6 xwu ← (1 + ϵ) · xwu

7 if (
∑

uv xuv) / m(x) < (
∑

uv x∗
uv) / m(x∗) then

8 foreach uv ∈
(

V
2
)

do x∗
uv ← xuv

9 return {x∗
uv / m(x∗) }uv

5 The running time we state seems worse by a factor of ϵ−1 as compared to the theorems in [29, 27].
This is because the authors assume access to a machine model with exact arithmetic of numbers of
size exponential in ϵ−1. We can simulate this model using fixed-point arithmetic with a running time
overhead of Õ(ϵ−1).

N. Fischer, E. Kipouridis, J. Klausen, and M. Thorup 32:15

The solution found by Algorithm 3 is used together with the framework by van Zuylen
and Williamson [34], see Cluster in Algorithm 4. Cluster is discussed further in the full
version [26], where the following lemmas are proven.

Algorithm 4 The PIVOT algorithm by van Zuylen and Williamson [34]. Given a
graph G and a good charging { xuv }uv (in the sense of Lemma 15), it computes a correlation
clustering.

procedure Cluster(G = (V, E), x = {xuv }uv∈(V
2))

1 C ← ∅
2 while V ̸= ∅ do
3 Pick a pivot node u ∈ V minimizing∑

vw:uvw∈T (G)

1

∑
vw:uvw∈T (G)

xvw

4 Add a cluster containing u and all its neighbors to C

5 Remove u, its neighbors and all their incident edges from G

6 return C

▶ Lemma 15 (Correctness of Cluster). Assume that x = {xuv }uv is a feasible solution to the
LP in Figure 1. Then Cluster(G, x) computes a correlation clustering of cost 3

∑
uv xuv. In

particular, if x is an α-approximate solution to the LP (for some α ≥ 1), then Cluster(G, x)
returns a 3α-approximate correlation clustering.

▶ Lemma 16 (Running Time of Cluster, [34]). Cluster(G, x) runs in time O(n3).

Given Theorems 13 and 14 we quickly prove Theorem 2.

Proof of Theorem 2. We compute a (1 + ϵ/3)-approximate solution x of the charging LP
using Theorem 13 (that is, using the procedure Charge(G)). Plugging this solution x into
Cluster(G, x) returns a (3 + ϵ)-approximate correlation clustering by Lemma 15. The
total running time is bounded by O(n3) by Lemma 16 plus Õ(n3ϵ−3) by Theorem 13 (note
that there are n3 constraints, each affecting only a constant number of variables, hence the
number of nonzeros in the constraint matrix is N ≤ O(n3)). For constant ϵ > 0, this becomes
Õ(n3).

To obtain a 3-approximation, we observe that any correlation clustering has cost less
than

(
n
2
)
. Hence, we can run the previous algorithm with ϵ = 1/

(
n
2
)

and the (3 + ϵ)-
approximate solution is guaranteed to also be 3-approximate. The running time would be
bounded by Õ(n9). To improve upon this, we use the covering LP solver in Theorem 14 which
runs in time Õ(n3ϵ−1). By again setting ϵ = 1/

(
n
2
)
, the running time becomes Õ(n5). ◀

References
1 Rakesh Agrawal, Alan Halverson, Krishnaram Kenthapadi, Nina Mishra, and Panayiotis

Tsaparas. Generating labels from clicks. In Ricardo Baeza-Yates, Paolo Boldi, Berthier A.
Ribeiro-Neto, and Berkant Barla Cambazoglu, editors, Proceedings of the Second International
Conference on Web Search and Web Data Mining, WSDM 2009, Barcelona, Spain, February
9-11, 2009, pages 172–181. ACM, 2009. doi:10.1145/1498759.1498824.

STACS 2025

https://doi.org/10.1145/1498759.1498824

32:16 A Faster Algorithm for Constrained Correlation Clustering

2 Nir Ailon and Moses Charikar. Fitting tree metrics: Hierarchical clustering and phylogeny.
SIAM J. Comput., 40(5):1275–1291, 2011. Announced at FOCS’05. doi:10.1137/100806886.

3 Nir Ailon, Moses Charikar, and Alantha Newman. Aggregating inconsistent information:
Ranking and clustering. J. ACM, 55(5):23:1–23:27, 2008. Announced in STOC 2005. doi:
10.1145/1411509.1411513.

4 Zeyuan Allen-Zhu and Lorenzo Orecchia. Nearly linear-time packing and covering LP solvers
– achieving width-independence and -convergence. Math. Program., 175(1-2):307–353, 2019.
doi:10.1007/s10107-018-1244-x.

5 Arvind Arasu, Christopher Ré, and Dan Suciu. Large-scale deduplication with constraints using
dedupalog. In Yannis E. Ioannidis, Dik Lun Lee, and Raymond T. Ng, editors, Proceedings of the
25th International Conference on Data Engineering, ICDE 2009, March 29 2009 - April 2 2009,
Shanghai, China, pages 952–963. IEEE Computer Society, 2009. doi:10.1109/ICDE.2009.43.

6 Sepehr Assadi and Chen Wang. Sublinear time and space algorithms for correlation clustering
via sparse-dense decompositions. CoRR, abs/2109.14528, 2021. arXiv:2109.14528.

7 Nikhil Bansal, Avrim Blum, and Shuchi Chawla. Correlation clustering. Mach. Learn.,
56(1-3):89–113, 2004. doi:10.1023/B:MACH.0000033116.57574.95.

8 Soheil Behnezhad, Moses Charikar, Weiyun Ma, and Li-Yang Tan. Almost 3-approximate
correlation clustering in constant rounds. In 63rd IEEE Annual Symposium on Foundations
of Computer Science, FOCS 2022, Denver, CO, USA, October 31 - November 3, 2022, pages
720–731. IEEE, 2022. doi:10.1109/FOCS54457.2022.00074.

9 Soheil Behnezhad, Moses Charikar, Weiyun Ma, and Li-Yang Tan. Single-pass streaming
algorithms for correlation clustering. In Nikhil Bansal and Viswanath Nagarajan, editors,
Proceedings of the 2023 ACM-SIAM Symposium on Discrete Algorithms, SODA 2023, Florence,
Italy, January 22-25, 2023, pages 819–849. SIAM, 2023. doi:10.1137/1.9781611977554.CH33.

10 Francesco Bonchi, Aristides Gionis, and Antti Ukkonen. Overlapping correlation clustering.
Knowl. Inf. Syst., 35(1):1–32, 2013. doi:10.1007/s10115-012-0522-9.

11 Mark Bun, Marek Eliás, and Janardhan Kulkarni. Differentially private correlation clustering.
In Marina Meila and Tong Zhang, editors, Proceedings of the 38th International Conference
on Machine Learning, ICML 2021, 18-24 July 2021, Virtual Event, volume 139 of Proceedings
of Machine Learning Research, pages 1136–1146. PMLR, 2021. URL: http://proceedings.
mlr.press/v139/bun21a.html.

12 Melanie Cambus, Fabian Kuhn, Etna Lindy, Shreyas Pai, and Jara Uitto. A (3+ε)-Approximate
Correlation Clustering Algorithm in Dynamic Streams, pages 2861–2880. SIAM, 2024. doi:
10.1137/1.9781611977912.101.

13 Nairen Cao, Vincent Cohen-Addad, Euiwoong Lee, Shi Li, Alantha Newman, and Lukas
Vogl. Understanding the cluster linear program for correlation clustering. In Bojan Mohar,
Igor Shinkar, and Ryan O’Donnell, editors, Proceedings of the 56th Annual ACM Symposium
on Theory of Computing, STOC 2024, Vancouver, BC, Canada, June 24-28, 2024, pages
1605–1616. ACM, 2024. doi:10.1145/3618260.3649749.

14 Nairen Cao, Shang-En Huang, and Hsin-Hao SU. Breaking 3-Factor Approximation for
Correlation Clustering in Polylogarithmic Rounds, pages 4124–4154. SIAM, 2024. doi:
10.1137/1.9781611977912.143.

15 Deepayan Chakrabarti, Ravi Kumar, and Kunal Punera. A graph-theoretic approach to
webpage segmentation. In Jinpeng Huai, Robin Chen, Hsiao-Wuen Hon, Yunhao Liu, Wei-
Ying Ma, Andrew Tomkins, and Xiaodong Zhang, editors, Proceedings of the 17th International
Conference on World Wide Web, WWW 2008, Beijing, China, April 21-25, 2008, pages 377–386.
ACM, 2008. doi:10.1145/1367497.1367549.

16 Sayak Chakrabarty and Konstantin Makarychev. Single-pass pivot algorithm for correlation
clustering. keep it simple! CoRR, abs/2305.13560, 2023. doi:10.48550/arXiv.2305.13560.

17 Moses Charikar, Venkatesan Guruswami, and Anthony Wirth. Clustering with qualitative
information. J. Comput. Syst. Sci., 71(3):360–383, 2005. Announced in FOCS 2003. doi:
10.1016/j.jcss.2004.10.012.

https://doi.org/10.1137/100806886
https://doi.org/10.1145/1411509.1411513
https://doi.org/10.1145/1411509.1411513
https://doi.org/10.1007/s10107-018-1244-x
https://doi.org/10.1109/ICDE.2009.43
https://arxiv.org/abs/2109.14528
https://doi.org/10.1023/B:MACH.0000033116.57574.95
https://doi.org/10.1109/FOCS54457.2022.00074
https://doi.org/10.1137/1.9781611977554.CH33
https://doi.org/10.1007/s10115-012-0522-9
http://proceedings.mlr.press/v139/bun21a.html
http://proceedings.mlr.press/v139/bun21a.html
https://doi.org/10.1137/1.9781611977912.101
https://doi.org/10.1137/1.9781611977912.101
https://doi.org/10.1145/3618260.3649749
https://doi.org/10.1137/1.9781611977912.143
https://doi.org/10.1137/1.9781611977912.143
https://doi.org/10.1145/1367497.1367549
https://doi.org/10.48550/arXiv.2305.13560
https://doi.org/10.1016/j.jcss.2004.10.012
https://doi.org/10.1016/j.jcss.2004.10.012

N. Fischer, E. Kipouridis, J. Klausen, and M. Thorup 32:17

18 Shuchi Chawla, Konstantin Makarychev, Tselil Schramm, and Grigory Yaroslavtsev. Near
optimal LP rounding algorithm for correlation clustering on complete and complete k-partite
graphs. In Rocco A. Servedio and Ronitt Rubinfeld, editors, Proceedings of the Forty-Seventh
Annual ACM on Symposium on Theory of Computing, STOC 2015, Portland, OR, USA, June
14-17, 2015, pages 219–228. ACM, 2015. doi:10.1145/2746539.2746604.

19 Yudong Chen, Sujay Sanghavi, and Huan Xu. Clustering sparse graphs. In Peter L. Bartlett,
Fernando C. N. Pereira, Christopher J. C. Burges, Léon Bottou, and Kilian Q. Weinberger,
editors, Advances in Neural Information Processing Systems 25: 26th Annual Conference on
Neural Information Processing Systems 2012. Proceedings of a meeting held December 3-6,
2012, Lake Tahoe, Nevada, United States, pages 2213–2221, 2012. URL: https://proceedings.
neurips.cc/paper/2012/hash/1e6e0a04d20f50967c64dac2d639a577-Abstract.html.

20 Vincent Cohen-Addad, Chenglin Fan, Euiwoong Lee, and Arnaud de Mesmay. Fitting
metrics and ultrametrics with minimum disagreements. In 63rd IEEE Annual Symposium on
Foundations of Computer Science, FOCS 2022, Denver, CO, USA, October 31 - November 3,
2022, pages 301–311. IEEE, 2022. doi:10.1109/FOCS54457.2022.00035.

21 Vincent Cohen-Addad, Silvio Lattanzi, Slobodan Mitrovic, Ashkan Norouzi-Fard, Nikos
Parotsidis, and Jakub Tarnawski. Correlation clustering in constant many parallel rounds. In
Marina Meila and Tong Zhang, editors, Proceedings of the 38th International Conference on
Machine Learning, ICML 2021, 18-24 July 2021, Virtual Event, volume 139 of Proceedings of
Machine Learning Research, pages 2069–2078. PMLR, 2021. URL: http://proceedings.mlr.
press/v139/cohen-addad21b.html.

22 Vincent Cohen-Addad, Euiwoong Lee, Shi Li, and Alantha Newman. Handling correlated
rounding error via preclustering: A 1.73-approximation for correlation clustering. In 64th IEEE
Annual Symposium on Foundations of Computer Science, FOCS 2023, Santa Cruz, CA, USA,
November 6-9, 2023, pages 1082–1104. IEEE, 2023. doi:10.1109/FOCS57990.2023.00065.

23 Vincent Cohen-Addad, Euiwoong Lee, and Alantha Newman. Correlation clustering with
sherali-adams. CoRR, abs/2207.10889, 2022. doi:10.48550/arXiv.2207.10889.

24 Vincent Cohen-Addad, David Rasmussen Lolck, Marcin Pilipczuk, Mikkel Thorup, Shuyi Yan,
and Hanwen Zhang. Combinatorial correlation clustering. In Bojan Mohar, Igor Shinkar,
and Ryan O’Donnell, editors, Proceedings of the 56th Annual ACM Symposium on Theory of
Computing, STOC 2024, Vancouver, BC, Canada, June 24-28, 2024, pages 1617–1628. ACM,
2024. doi:10.1145/3618260.3649712.

25 Erik D. Demaine, Dotan Emanuel, Amos Fiat, and Nicole Immorlica. Correlation clustering in
general weighted graphs. Theor. Comput. Sci., 361(2-3):172–187, 2006. doi:10.1016/j.tcs.
2006.05.008.

26 Nick Fischer, Evangelos Kipouridis, Jonas Klausen, and Mikkel Thorup. A faster algorithm
for constrained correlation clustering, 2025. arXiv:2501.03154.

27 Lisa Fleischer. A fast approximation scheme for fractional covering problems with variable
upper bounds. In Proceedings of the Fifteenth Annual ACM-SIAM Symposium on Discrete
Algorithms, SODA 2004, New Orleans, Louisiana, USA, January 11-14, 2004, pages 1001–1010.
SIAM, 2004. URL: http://dl.acm.org/citation.cfm?id=982792.982942.

28 Fedor V. Fomin, Stefan Kratsch, Marcin Pilipczuk, Michal Pilipczuk, and Yngve Villanger.
Tight bounds for parameterized complexity of cluster editing with a small number of clusters.
J. Comput. Syst. Sci., 80(7):1430–1447, 2014. doi:10.1016/j.jcss.2014.04.015.

29 Naveen Garg and Jochen Koenemann. Faster and simpler algorithms for multicommodity
flow and other fractional packing problems. In Proceedings of the 39th Annual Symposium on
Foundations of Computer Science, FOCS ’98, page 300, USA, 1998. IEEE Computer Society.

30 Dmitri V. Kalashnikov, Zhaoqi Chen, Sharad Mehrotra, and Rabia Nuray-Turan. Web people
search via connection analysis. IEEE Trans. Knowl. Data Eng., 20(11):1550–1565, 2008.
doi:10.1109/TKDE.2008.78.

STACS 2025

https://doi.org/10.1145/2746539.2746604
https://proceedings.neurips.cc/paper/2012/hash/1e6e0a04d20f50967c64dac2d639a577-Abstract.html
https://proceedings.neurips.cc/paper/2012/hash/1e6e0a04d20f50967c64dac2d639a577-Abstract.html
https://doi.org/10.1109/FOCS54457.2022.00035
http://proceedings.mlr.press/v139/cohen-addad21b.html
http://proceedings.mlr.press/v139/cohen-addad21b.html
https://doi.org/10.1109/FOCS57990.2023.00065
https://doi.org/10.48550/arXiv.2207.10889
https://doi.org/10.1145/3618260.3649712
https://doi.org/10.1016/j.tcs.2006.05.008
https://doi.org/10.1016/j.tcs.2006.05.008
https://arxiv.org/abs/2501.03154
http://dl.acm.org/citation.cfm?id=982792.982942
https://doi.org/10.1016/j.jcss.2014.04.015
https://doi.org/10.1109/TKDE.2008.78

32:18 A Faster Algorithm for Constrained Correlation Clustering

31 Sungwoong Kim, Sebastian Nowozin, Pushmeet Kohli, and Chang Dong Yoo. Higher-order
correlation clustering for image segmentation. In John Shawe-Taylor, Richard S. Zemel,
Peter L. Bartlett, Fernando C. N. Pereira, and Kilian Q. Weinberger, editors, Advances in
Neural Information Processing Systems 24: 25th Annual Conference on Neural Information
Processing Systems 2011. Proceedings of a meeting held 12-14 December 2011, Granada,
Spain, pages 1530–1538, 2011. URL: https://proceedings.neurips.cc/paper/2011/hash/
98d6f58ab0dafbb86b083a001561bb34-Abstract.html.

32 Domenico Mandaglio, Andrea Tagarelli, and Francesco Gullo. Correlation clustering with
global weight bounds. In Nuria Oliver, Fernando Pérez-Cruz, Stefan Kramer, Jesse Read,
and José Antonio Lozano, editors, Machine Learning and Knowledge Discovery in Databases.
Research Track - European Conference, ECML PKDD 2021, Bilbao, Spain, September 13-17,
2021, Proceedings, Part II, volume 12976 of Lecture Notes in Computer Science, pages 499–515.
Springer, 2021. doi:10.1007/978-3-030-86520-7_31.

33 Gregory J. Puleo and Olgica Milenkovic. Correlation clustering with constrained cluster
sizes and extended weights bounds. SIAM J. Optim., 25(3):1857–1872, 2015. doi:10.1137/
140994198.

34 Anke van Zuylen and David P. Williamson. Deterministic pivoting algorithms for constrained
ranking and clustering problems. Math. Oper. Res., 34(3):594–620, 2009. Announced in SODA
2007. doi:10.1287/moor.1090.0385.

35 Nate Veldt. Correlation clustering via strong triadic closure labeling: Fast approximation
algorithms and practical lower bounds. In Kamalika Chaudhuri, Stefanie Jegelka, Le Song,
Csaba Szepesvári, Gang Niu, and Sivan Sabato, editors, International Conference on Machine
Learning, ICML 2022, 17-23 July 2022, Baltimore, Maryland, USA, volume 162 of Proceedings
of Machine Learning Research, pages 22060–22083. PMLR, 2022. URL: https://proceedings.
mlr.press/v162/veldt22a.html.

36 Nate Veldt, David F. Gleich, and Anthony Wirth. A correlation clustering framework for
community detection. In Pierre-Antoine Champin, Fabien Gandon, Mounia Lalmas, and
Panagiotis G. Ipeirotis, editors, Proceedings of the 2018 World Wide Web Conference on
World Wide Web, WWW 2018, Lyon, France, April 23-27, 2018, pages 439–448. ACM, 2018.
doi:10.1145/3178876.3186110.

37 Michael D. Vose. A linear algorithm for generating random numbers with a given distribution.
IEEE Trans. Software Eng., 17(9):972–975, 1991. doi:10.1109/32.92917.

38 Alastair J. Walker. New fast method for generating discrete random numbers with arbitrary
frequency distributions. Electronics Letters, 10:127–128(1), April 1974.

39 Di Wang, Satish Rao, and Michael W. Mahoney. Unified acceleration method for packing and
covering problems via diameter reduction. In 43rd International Colloquium on Automata,
Languages, and Programming, ICALP 2016, July 11-15, 2016, Rome, Italy, volume 55 of
LIPIcs, pages 50:1–50:13. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, 2016. doi:
10.4230/LIPIcs.ICALP.2016.50.

40 Julian Yarkony, Alexander T. Ihler, and Charless C. Fowlkes. Fast planar correlation clustering
for image segmentation. In Andrew W. Fitzgibbon, Svetlana Lazebnik, Pietro Perona,
Yoichi Sato, and Cordelia Schmid, editors, Computer Vision – ECCV 2012 – 12th European
Conference on Computer Vision, Florence, Italy, October 7-13, 2012, Proceedings, Part VI,
volume 7577 of Lecture Notes in Computer Science, pages 568–581. Springer, 2012. doi:
10.1007/978-3-642-33783-3_41.

https://proceedings.neurips.cc/paper/2011/hash/98d6f58ab0dafbb86b083a001561bb34-Abstract.html
https://proceedings.neurips.cc/paper/2011/hash/98d6f58ab0dafbb86b083a001561bb34-Abstract.html
https://doi.org/10.1007/978-3-030-86520-7_31
https://doi.org/10.1137/140994198
https://doi.org/10.1137/140994198
https://doi.org/10.1287/moor.1090.0385
https://proceedings.mlr.press/v162/veldt22a.html
https://proceedings.mlr.press/v162/veldt22a.html
https://doi.org/10.1145/3178876.3186110
https://doi.org/10.1109/32.92917
https://doi.org/10.4230/LIPIcs.ICALP.2016.50
https://doi.org/10.4230/LIPIcs.ICALP.2016.50
https://doi.org/10.1007/978-3-642-33783-3_41
https://doi.org/10.1007/978-3-642-33783-3_41

Metric Dimension and Geodetic Set Parameterized
by Vertex Cover
Florent Foucaud # Ñ

Université Clermont Auvergne, CNRS,
Mines Saint-Étienne, Clermont Auvergne INP,
LIMOS, 63000 Clermont-Ferrand, France

Esther Galby #

Department of Computer Science and Engineer-
ing, Chalmers University of Technology and Uni-
versity of Gothenburg, Sweden

Liana Khazaliya # Ñ

Technische Universität Wien, Austria
Shaohua Li #

School of Computer Science and Engineering,
Central South University, Changsha, China

Fionn Mc Inerney # Ñ

Telefónica Scientific Research, Barcelona, Spain
Roohani Sharma #

University of Bergen, Norway

Prafullkumar Tale # Ñ

Indian Institute of Science Education and Re-
search Pune, India

Abstract
For a graph G, a subset S ⊆ V (G) is called a resolving set of G if, for any two vertices u, v ∈ V (G),
there exists a vertex w ∈ S such that d(w, u) ̸= d(w, v). The Metric Dimension problem takes as
input a graph G on n vertices and a positive integer k, and asks whether there exists a resolving set
of size at most k. In another metric-based graph problem, Geodetic Set, the input is a graph G

and an integer k, and the objective is to determine whether there exists a subset S ⊆ V (G) of size
at most k such that, for any vertex u ∈ V (G), there are two vertices s1, s2 ∈ S such that u lies on a
shortest path from s1 to s2.

These two classical problems are known to be intractable with respect to the natural parameter,
i.e., the solution size, as well as most structural parameters, including the feedback vertex set number
and pathwidth. We observe that both problems admit an FPT algorithm running in 2O(vc2) · nO(1)

time, and a kernelization algorithm that outputs a kernel with 2O(vc) vertices, where vc is the
vertex cover number. We prove that unless the Exponential Time Hypothesis (ETH) fails, Metric
Dimension and Geodetic Set, even on graphs of bounded diameter, do not admit

an FPT algorithm running in 2o(vc2) · nO(1) time, nor
a kernelization algorithm that does not increase the solution size and outputs a kernel with 2o(vc)

vertices.
We only know of one other problem in the literature that admits such a tight algorithmic lower
bound with respect to vc. Similarly, the list of known problems with exponential lower bounds on
the number of vertices in kernelized instances is very short.

2012 ACM Subject Classification Theory of computation → Parameterized complexity and exact
algorithms

Keywords and phrases Parameterized Complexity, ETH-based Lower Bounds, Kernelization, Vertex
Cover, Metric Dimension, Geodetic Set

Digital Object Identifier 10.4230/LIPIcs.STACS.2025.33

Related Version Full Version: https://arxiv.org/abs/2405.01344 [19]

Funding Florent Foucaud: ANR project GRALMECO (ANR-21-CE48-0004), French government
IDEX-ISITE initiative 16-IDEX-0001 (CAP 20-25), International Research Center “Innovation
Transportation and Production Systems” of the I-SITE CAP 20-25.
Liana Khazaliya: Vienna Science and Technology Fund (WWTF) [10.47379/ICT22029]; Austrian
Science Fund (FWF) [10.55776/Y1329]; European Union’s Horizon 2020 COFUND programme
[LogiCS@TUWien, grant agreement No. 101034440].

© Florent Foucaud, Esther Galby, Liana Khazaliya, Shaohua Li, Fionn Mc Inerney,
Roohani Sharma, and Prafullkumar Tale;
licensed under Creative Commons License CC-BY 4.0

42nd International Symposium on Theoretical Aspects of Computer Science (STACS 2025).
Editors: Olaf Beyersdorff, Michał Pilipczuk, Elaine Pimentel, and Nguyễn Kim Thắng;
Article No. 33; pp. 33:1–33:20

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:florent.foucaud@uca.fr
https://perso.limos.fr/ffoucaud
https://orcid.org/0000-0001-8198-693X
mailto:galby@chalmers.se
https://orcid.org/0009-0004-5398-2770
mailto:lkhazaliya@ac.tuwien.ac.at
https://www.ac.tuwien.ac.at/people/lkhazaliya/
https://orcid.org/0009-0002-3012-7240
mailto:shaohua.li@csu.edu.cn
https://orcid.org/0000-0001-8079-6405
mailto:fmcinern@gmail.com
https://sites.google.com/view/fionn-mc-inerney/home?pli=1
https://orcid.org/0000-0002-5634-9506
mailto:r.sharma@uib.no
https://orcid.org/0000-0003-2212-1359
mailto:prafullkumar@iiserpune.ac.in
https://pptale.github.io/
https://orcid.org/0000-0001-9753-0523
https://doi.org/10.4230/LIPIcs.STACS.2025.33
https://arxiv.org/abs/2405.01344
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

33:2 Metric Dimension and Geodetic Set Parameterized by Vertex Cover

Shaohua Li: National Natural Science Foundation of China under Grant 62472449.
Fionn Mc Inerney: Smart Networks and Services Joint Undertaking (SNS JU) under the EU’s
Horizon Europe and innovation programme under Grant Agreement No. 101139067 (ELASTIC).

1 Introduction

In this article, we study two metric-based graph problems, one of which is defined through
distances, while the other relies on shortest paths. Metric-based graph problems are ubi-
quitous in computer science; for example, the classical (Single-Source) Shortest Path,
(Graphic) Traveling Salesperson or Steiner Tree problems fall into this category.
Those are fundamental problems, often stemming from applications in network design, for
which a considerable amount of algorithmic research has been done. Metric-based graph
packing and covering problems, like Distance Domination [29] or Scattered Set [30],
have recently gained a lot of attention. Their non-local nature leads to non-trivial algorithmic
properties that differ from most graph problems with a more local nature. We focus here on
the Metric Dimension and Geodetic Set problems, which arise from network monitoring
and network design, respectively. These two problems have far-reaching applications, as
exemplified by, e.g., the recent work [3] where it was shown that enumerating minimal
solution sets for Metric Dimension and Geodetic Set in (general) graphs and split
graphs, respectively, is equivalent to the enumeration of minimal transversals in hypergraphs,
whose solvability in total-polynomial time is arguably the most important open problem in
algorithmic enumeration. Formally, these two problems are defined as follows.

Metric Dimension
Input: A graph G on n vertices and a positive integer k.
Question: Does there exist S ⊆ V (G) such that |S| ≤ k and, for any pair of vertices
u, v ∈ V (G), there exists a vertex w ∈ S with d(w, u) ̸= d(w, v)?

Geodetic Set
Input: A graph G on n vertices and a positive integer k.
Question: Does there exist S ⊆ V (G) such that |S| ≤ k and, for any vertex u ∈ V (G),
there are two vertices s1, s2 ∈ S such that u lies on a shortest path from s1 to s2?

Metric Dimension dates back to the 1970s [26, 38], whereas Geodetic Set was
introduced in 1993 [25]. The non-local nature of these problems has since posed interesting
algorithmic challenges. Metric Dimension was first shown to be NP-complete in general
graphs in Garey and Johnson’s book [22], and this was later extended to many restricted
graph classes (see “Related work” below). Geodetic Set was proven to be NP-complete
in [25], and later shown to be NP-hard on restricted graph classes as well.

As these two problems are NP-hard even in very restricted cases, it is natural to ask for
ways to confront this hardness. In this direction, the parameterized complexity paradigm
allows for a more refined analysis of a problem’s complexity. In this setting, we associate
each instance I of a problem with a parameter ℓ, and are interested in algorithms running
in f(ℓ) · |I|O(1) time for some computable function f . Parameterized problems that admit
such an algorithm are called fixed-parameter tractable (FPT for short) with respect to the
considered parameter. Under standard complexity assumptions, parameterized problems
that are hard for the complexity class W[1] or W[2] do not admit such algorithms.

F. Foucaud, E. Galby, L. Khazaliya, S. Li, F. Mc Inerney, R. Sharma, and P. Tale 33:3

This approach, however, had limited success for these two problems. In the seminal
paper [28], Metric Dimension was proven to be W[2]-hard parameterized by the solution
size k, even on subcubic bipartite graphs. Similarly, Geodetic Set is W[2]-hard parameter-
ized by the solution size [15, 31], even on chordal bipartite graphs. These initial hardness
results drove the ensuing meticulous study of the problems under structural parameterizations:
we present an overview in the “Related work” below. In this article, we focus on the vertex
cover number, denoted by vc, of the input graph and prove the following positive results.

▶ Theorem 1. Metric Dimension and Geodetic Set admit
FPT algorithms running in 2O(vc2) · nO(1) time, and
kernelization algorithms that output kernels with 2O(vc) vertices.

The second set of results follows from simple reduction rules, and was also observed in [28]
for Metric Dimension. The first set of results builds on the second set by using a simple,
but critical observation. For Metric Dimension, this also improves upon the 22O(vc) · nO(1)

algorithm mentioned in [28]. However, our main technical contribution is in proving that
these results are optimal assuming the Exponential Time Hypothesis (ETH).

▶ Theorem 2. Unless the ETH fails, Metric Dimension and Geodetic Set do not admit
FPT algorithms running in 2o(vc2) · nO(1) time, nor
kernelization algorithms that do not increase the solution size and output kernels with
2o(vc) vertices,

even on graphs of bounded diameter.

Both these statements constitute a rare set of results. Indeed, we know of only one other
problem that admits a lower bound of the form 2o(vc2) ·nO(1) and a matching upper bound [1],
whereas such results parameterized by pathwidth are mentioned in [36, 37]. Very recently,
the authors in [7] also proved a similar result with respect to solution size. Similarly, the list
of known problems with exponential lower bounds on the number of vertices in kernelized
instances is very short. To the best of our knowledge, the only known results of this kind (i.e.,
ETH-based lower bounds on the number of vertices in a kernel) are for Edge Clique
Cover [13], Biclique Cover [9], Steiner Tree [35], Strong Metric Dimension [20],
B-NCTD+ [8], Locating Dominating Set [7], and Telephone Broadcasting [39]. For
Metric Dimension, the above also improves a result of [24], which states that Metric
Dimension parameterized by k+vc does not admit a polynomial kernel unless the polynomial
hierarchy collapses to its third level. Indeed, the result of [24] does not rule out a kernel of
super-polynomial or sub-exponential size.

Recently, Foucaud et al. [20] proved that, unless the ETH fails, Metric Dimension and
Geodetic Set on graphs of bounded diameter do not admit 22o(tw) · nO(1)-time algorithms,
thereby establishing one of the first such results for NP-complete problems. Note that
n ≻ vc ≻ fvs ≻ tw and n ≻ vc ≻ td ≻ pw ≻ tw in the parameter hierarchy, where n is the
order, fvs is the feedback vertex set number, td is the treedepth, pw is the pathwidth, and tw
is the treewidth of the graph. They further proved that their lower bound also holds for fvs
and td in the case of Metric Dimension, and for td in the case of Geodetic Set [20]. A
simple brute-force algorithm enumerating all possible candidates runs in 2O(n) time for both
of these problems. Thus, the next natural question is whether such a lower bound for Metric
Dimension and Geodetic Set can be extended to larger parameters, in particular vc.
Our first results answer this question in the negative. Together with the lower bounds with
respect to vc, this establishes the boundary between parameters yielding single-exponential
and double-exponential running times for Metric Dimension and Geodetic Set.

STACS 2025

33:4 Metric Dimension and Geodetic Set Parameterized by Vertex Cover

Before moving forward, we highlight the parallels and differences between Foucaud et
al. [20] and our work. Their aim was to establish double-exponential lower bounds for
NP-complete problems, and to do so they focused on the restriction of the problems to graphs
of bounded treewidth and diameter. Our objective is to closely examine one of the very few
tractable results for Metric Dimension and Geodetic Set on general graphs by focusing
on the vertex cover parameter. While we use some gadgets from [20], overall our reductions
significantly differ from the corresponding reductions in that article. Note that we need to
“control” the vertex cover number of the reduced graph, whereas the corresponding reductions
by Foucaud et al. [20] only need to “control” the treewidth.

Related Work. We mention here results concerning structural parameterizations of Metric
Dimension and Geodetic Set, and refer the reader to the full version of [20] for a more
comprehensive overview of applications and related work regarding these two problems.

As previously mentioned, Metric Dimension is W[2]-hard parameterized by the solution
size k, even in subcubic bipartite graphs [28]. Several other parameterizations have been
studied for this problem, on which we elaborate next (see also [21, Figure 1]). It was proven
that there is an XP algorithm parameterized by the feedback edge set number [18], and
FPT algorithms parameterized by the max leaf number [17], the modular-width and the
treelength plus the maximum degree [2], the treedepth and the clique-width plus the diameter
[23], and the distance to cluster (co-cluster, respectively) [21]. Recently, an FPT algorithm
parameterized by the treewidth in chordal graphs was given in [5]. On the negative side,
Metric Dimension is W[1]-hard parameterized by the pathwidth even on graphs of constant
degree [4], para-NP-hard parameterized by the pathwidth [33], and W[1]-hard parameterized
by the combined parameter feedback vertex set number plus pathwidth [21].

The parameterized complexity of Geodetic Set was first addressed in [31], in which it
was observed that the reduction from [15] implies that the problem is W[2]-hard parameterized
by the solution size (even for chordal bipartite graphs). This motivated the authors of [31]
to investigate structural parameterizations of Geodetic Set. They proved the problem
to be W[1]-hard for the combined parameters solution size, feedback vertex set number,
and pathwidth, and FPT for the parameters treedepth, modular-width (more generally,
clique-width plus diameter), and feedback edge set number [31]. The problem was also shown
to be FPT on chordal graphs when parameterized by the treewidth [6].

2 Preliminaries

For an integer a, we let [a] = {1, . . . , a}.

Graph theory. We use standard graph-theoretic notation and refer the reader to [14] for
any undefined notation. For an undirected graph G, the sets V (G) and E(G) denote its set
of vertices and edges, respectively. Two vertices u, v ∈ V (G) are adjacent or neighbors if
(u, v) ∈ E(G). The open neighborhood of a vertex u ∈ V (G), denoted by N(u) := NG(u), is the
set of vertices that are neighbors of u. The closed neighborhood of a vertex u ∈ V (G) is denoted
by N [u] := NG[u] := NG(u) ∪ {u}. For any X ⊆ V (G) and u ∈ V (G), NX(u) = NG(u) ∩X.
Any two vertices u, v ∈ V (G) are true twins if N [u] = N [v], and are false twins if N(u) = N(v).
For a subset S of V (G), we say that the vertices in S are true (false, respectively) twins
if, for any u, v ∈ S, u and v are true (false, respectively) twins. The distance between two
vertices u, v ∈ V (G) in G, denoted by d(u, v) := dG(u, v), is the length of a (u, v)-shortest
path in G. For a subset S of V (G), we define N [S] =

⋃
v∈S N [v] and N(S) = N [S] \ S. For

F. Foucaud, E. Galby, L. Khazaliya, S. Li, F. Mc Inerney, R. Sharma, and P. Tale 33:5

a graph G, a set X ⊆ V (G) is said to be a vertex cover if V (G) \X is an independent set.
We denote by vc(G) the size of a minimum vertex cover in G. When G is clear from the
context, we simply say vc. A vertex is simplicial if its neighborhood forms a clique. Observe
that any simplicial vertex v does not belong to any shortest path between any pair x, y of
vertices (both distinct from v). Hence, the following holds.

▶ Observation 3 ([10]). If a graph G contains a simplicial vertex v, then v belongs to any
geodetic set of G. Specifically, every degree-1 vertex belongs to any geodetic set of G.

Metric Dimension. A subset of vertices S′ ⊆ V (G) resolves a pair of vertices u, v ∈ V (G) if
there exists a vertex w ∈ S′ such that d(w, u) ̸= d(w, v). A vertex u ∈ V (G) is distinguished
by a subset of vertices S′ ⊆ V (G) if, for any v ∈ V (G) \ {u}, there exists a vertex w ∈ S′

such that d(w, u) ̸= d(w, v).

Parameterized Complexity. An instance of a parameterized problem Π comprises an input
I, which is an input of the classical instance of the problem, and an integer ℓ, which is called
the parameter. A problem Π is said to be fixed-parameter tractable or in FPT if given an
instance (I, ℓ) of Π, we can decide whether or not (I, ℓ) is a Yes-instance of Π in f(ℓ) · |I|O(1)

time, for some computable function f whose value depends only on ℓ.
A kernelization algorithm for Π is a polynomial-time algorithm that takes as input an

instance (I, ℓ) of Π and returns an equivalent instance (I ′, ℓ′) of Π, where |I ′|, ℓ′ ≤ f(ℓ),
where f is a function that depends only on ℓ. If such an algorithm exists for Π, we say that
Π admits a kernel of size f(ℓ). If f is a polynomial or exponential function of ℓ, we say that
Π admits a polynomial or exponential kernel, respectively. If Π is a graph problem, then I

contains a graph, say G, and I ′ contains a graph, say G′. In this case, we say that Π admits
a kernel with f(ℓ) vertices if the number of vertices of G′ is at most f(ℓ).

It is typical to describe a kernelization algorithm as a series of reduction rules. A reduction
rule is a polynomial-time algorithm that takes as an input an instance of a problem and
outputs another (usually reduced) instance. A reduction rule said to be applicable on an
instance if the output instance is different from the input instance. A reduction rule is safe
if the input instance is a Yes-instance if and only if the output instance is a Yes-instance.

The Exponential Time Hypothesis (ETH) roughly states that n-variable 3-SAT cannot
be solved in 2o(n) time. For more on parameterized complexity and related terminologies, we
refer the reader to the recent book by Cygan et al. [12].

3-Partitioned-3-SAT. Our lower bound proofs consist of reductions from the 3-Partitio-
ned-3-SAT problem. This version of 3-SAT was introduced in [32] and is defined as
follows.

3-Partitioned-3-SAT
Input: A formula ψ in 3-CNF form, together with a partition of the set of its variables
into three disjoint sets Xα, Xβ , Xγ , with |Xα| = |Xβ | = |Xγ | = N , and such that no
clause contains more than one variable from each of Xα, Xβ , and Xγ .
Question: Determine whether ψ is satisfiable.

Organization of the paper. We start with the results for Metric Dimension, which are
then followed by those for Geodetic Set. For each, we first present the algorithms and
then the reductions. Since space requirements prohibit us from presenting our reductions in

STACS 2025

33:6 Metric Dimension and Geodetic Set Parameterized by Vertex Cover

detail, we give an outline that discusses the main technical ideas behind our reductions for
getting the lower-bound results for both Metric Dimension and Geodetic Set. For the
complete formal proofs, we refer the reader to the full version of this paper [19].

3 Metric Dimension: Algorithms for Vertex Cover Parameterization

In this section, we prove Theorem 1 for Metric Dimension. The kernelization algorithm
exhaustively applies the following reduction rule.

▷ Reduction Rule 1. If there exist three vertices u, v, x ∈ I such that u, v, x are false twins,
then delete x and decrease k by one.

Proof that Reduction Rule 1 is safe. Since u, v, x are false twins, N(u) = N(v) = N(x).
This implies that, for any vertex w ∈ V (G) \ {u, v, x}, d(w, v) = d(w, u) = d(w, x). Hence,
any resolving set that excludes at least two vertices in {u, v, x} cannot resolve all three pairs
{u, v}, {u, x}, and {v, x}. As the vertices in {u, v, x} are distance-wise indistinguishable
from the remaining vertices, we can assume, without loss of generality, that any resolving set
contains both u and x. Hence, any pair of vertices in V (G) \ {u, x} that is resolved by x is
also resolved by u. In other words, if S is a resolving set of G, then S \ {x} is a resolving
set of G − {x}. This implies the correctness of the forward direction. The correctness of
the reverse direction trivially follows from the fact that we can add x into a resolving set of
G− {x} to obtain a resolving set of G. ◀

▶ Lemma 4. Metric Dimension, parameterized by the vertex cover number vc, admits a
polynomial-time kernelization algorithm that returns an instance with 2O(vc) vertices.

Proof. Given a graph G, let X ⊆ V (G) be a minimum vertex cover of G. If such a vertex
cover is not given, then we can find a 2-factor approximate vertex cover in polynomial
time. Let I := V (G) \X. By the definition of a vertex cover, the vertices of I are pairwise
non-adjacent.

The kernelization algorithm exhaustively applies Reduction Rule 1. Now, consider an
instance on which Reduction Rule 1 is not applicable. If the budget is negative, then the
algorithm returns a trivial No-instance of constant size. Otherwise, for any Y ⊆ X, there
are at most two vertices u, v ∈ I such that N(u) = N(v) = Y . This implies that the number
of vertices in the reduced instance is at most |X| + 2 · 2|X| = 2vc+1 + vc. ◀

Next, we present an XP-algorithm parameterized by the vertex cover number. This
algorithm, along with the kernelization algorithm above, imply1 that Metric Dimension
admits an algorithm running in 2O(vc2) · nO(1) time.

▶ Lemma 5. Metric Dimension admits an algorithm running in nO(vc) time.

Proof. The algorithm starts by computing a minimum vertex cover X of G in 2O(vc) · nO(1)

time using an FPT algorithm for the Vertex Cover problem, for example the one in [11]
or [27]. Let I := V (G) \X. Then, in polynomial time, it computes a largest subset F of I
such that, for every vertex u in F , I \ F contains a false twin of u. By the arguments in the
previous proof, if there are false twins in I, say u, v, then any resolving set contains at least
one of them. Hence, it is safe to assume that any resolving set contains F . If k − |F | < 0,

1 Note that the application of Reduction Rule 1 does not increase the vertex cover number.

F. Foucaud, E. Galby, L. Khazaliya, S. Li, F. Mc Inerney, R. Sharma, and P. Tale 33:7

then the algorithm returns No. Otherwise, it enumerates every subset of vertices of size
at most |X| in X ∪ (I \ F). If there exists a subset A ⊆ X ∪ (I \ F) such that A ∪ F is a
resolving set of G of size at most k, then it returns A ∪ F . Otherwise, it returns No.

In order to prove that the algorithm is correct, we prove that X ∪F is a resolving set of G.
It is easy to see that, for a pair of distinct vertices u, v, if u ∈ X ∪F and v ∈ V (G), then the
pair is resolved by u. It remains to argue that every pair of distinct vertices in (I \F)× (I \F)
is resolved by X∪F . Note that, for any two vertices u, v ∈ I \F , N(u) ̸= N(v) as otherwise u
can be moved to F , contradicting the maximality of F . Hence, there is a vertex in X that is
adjacent to u, but not adjacent to v, resolving the pair ⟨u, v⟩. This implies the correctness of
the algorithm. The running time of the algorithm easily follows from its description. ◀

4 Metric Dimension: Lower Bounds Regarding Vertex Cover

In this section, we prove Theorem 2 for Metric Dimension. The first integral part of our
technique is to reduce from a variant of 3-SAT known as 3-Partitioned-3-SAT [32]. In
this problem, the input is a 3-CNF formula ψ, together with a partition of the set of its
variables into three disjoint sets Xα, Xβ , Xγ , with |Xα| = |Xβ | = |Xγ | = N , and such that
no clause contains more than one variable from each of Xα, Xβ , and Xγ . The objective is
to determine whether ψ is satisfiable. Unless the ETH fails, 3-Partitioned-3-SAT does not
admit an algorithm running in 2o(N) time [32, Theorem 3]. Our key result is the following.

▶ Theorem 6. There is an algorithm that, given an instance ψ of 3-Partitioned-3-SAT
on N variables, runs in 2O(

√
N) time, and constructs an equivalent instance (G, k) of Metric

Dimension such that vc(G) + k = O(
√
N) (and |V (G)| = 2O(

√
N)).

The above theorem, along with the arguments that are standard to prove the ETH-based
lower bounds, immediately imply the following results.

▶ Corollary 7. Unless the ETH fails, Metric Dimension does not admit an algorithm
running in 2o(vc2) · nO(1) time.

▶ Corollary 8. Unless the ETH fails, Metric Dimension does not admit a kernelization
algorithm that does not increase the solution size k and outputs a kernel with 2o(k+vc) vertices.

Proof. Toward a contradiction, assume that such a kernelization algorithm exists. Consider
the following algorithm for 3-Partitioned-3-SAT. Given a 3-Partitioned-3-SAT formula
on N variables, it uses Theorem 6 to obtain an equivalent instance of (G, k) such that
vc(G) + k = O(

√
N) and |V (G)| = 2O(

√
N). Then, it uses the assumed kernelization

algorithm to construct an equivalent instance (H, k′) such that H has 2o(vc(G)+k) vertices
and k′ ≤ k. Finally, it uses a brute-force algorithm, running in |V (H)|O(k′) time, to determine
whether the reduced instance, or equivalently the input instance of 3-Partitioned-3-SAT,
is a Yes-instance. The correctness of the algorithm follows from the correctness of the
respective algorithms and our assumption. The total running time of the algorithm is
2O(

√
N) + (|V (G)| + k)O(1) + |V (H)|O(k′) = 2O(

√
N) + (2O(

√
N))O(1) + (2o(

√
N))O(

√
N) = 2o(N).

But this contradicts the ETH. ◀

The reduction, presented in Section 4.2, uses tools introduced in the next subsection.

STACS 2025

33:8 Metric Dimension and Geodetic Set Parameterized by Vertex Cover

bit-rep(X)

bits(X)

nullifier(X)

X

xi

y*

according to bin(i)

G'

N(X)

bi°

bi*

bj°

bj*

Ai

Ajbit-rep(B) bit-rep(A)

nullifier(B) nullifier(A)

AB

Figure 1 Set Identifying Gadget (left). The blue box represents bit-rep(X). The yellow
lines represent that all possible edges exist between bit-rep(X) \ bits(X) and nullifier(X), nullifier(X)
and N(X), and y⋆ and X. Note that G′ is not necessarily restricted to the graph induced by the
vertices in X ∪N(X). Vertex Selector Gadget (right). For X ∈ {B,A}, the blue box represents
bit-rep(X), the blue link represents the connection with respect to the binary representation, and
the yellow line represents that nullifier(X) is adjacent to each vertex in bit-rep(X) \ bits(X). Dotted
lines highlight absent edges.

4.1 Preliminary Tools
4.1.1 Set Identifying Gadget
We redefine a gadget introduced in [20]. Suppose we are given a graph G′ and a subset
X ⊆ V (G′) of its vertices. Further, suppose that we want to add a vertex set X+ to G′ in
order to obtain a new graph G such that (1) each vertex in X ∪X+ will be distinguished
by vertices in X+ that must be in any resolving set S of G, and (2) no vertex in X+ can
resolve any pair of vertices in V (G) \ (X ∪ X+) that are in the same distance class with
respect to X.

The graph induced by the vertices of X+, along with the edges connecting X+ to G′, is
the Set Identifying Gadget for X [20]. Given a graph G′ and a non-empty subset X ⊆ V (G′)
of its vertices, to construct such a graph G, we add vertices and edges to G′ as follows:

The vertex set X+ that we are aiming to add is the union of a set bit-rep and a special
vertex denoted by nullifier(X).
Let X = {xi | i ∈ [|X|]} and set q := ⌈log(|X| + 2)⌉ + 1. We select this value for q to
(1) uniquely represent each integer in [|X|] by its bit-representation in binary (note that
we start from 1 and not 0), (2) ensure that the only vertex whose bit-representation
contains all 1’s is nullifier(X), and (3) reserve one spot for an additional vertex y⋆.
For every i ∈ [q], add three vertices ya

i , yi, y
b
i , and add the path (ya

i , yi, y
b
i).

Add three vertices ya
⋆ , y⋆, y

b
⋆, and add the path (ya

⋆ , y⋆, y
b
⋆). Add all the edges to make

{yi | i ∈ [q]} ∪ {y⋆} a clique. Make y⋆ adjacent to each vertex v ∈ X. Let bit-rep(X) :=
{yi, y

a
i , y

b
i | i ∈ [q]} ∪ {y⋆, y

a
⋆ , y

b
⋆} and bits(X) := {ya

i , y
b
i | i ∈ [q]} ∪ {ya

⋆ , y
b
⋆}.

For every integer j ∈ [|X|], let bin(j) denote the binary representation of j using q bits.
Connect xj with yi if the ith bit (going from left to right) in bin(j) is 1.
Add a vertex, denoted by nullifier(X), and make it adjacent to every vertex in {yi | i ∈
[q]} ∪ {y⋆}. One can think of nullifier(X) as the only vertex whose bit-representation
contains all 1’s.
For every vertex u ∈ V (G) \ (X ∪ X+) such that u is adjacent to some vertex in X,
add an edge between u and nullifier(X). We add this vertex to ensure that vertices in
bit-rep(X) do not resolve any pairs of vertices in V (G) \ (X ∪X+) that are in the same
distance class with respect to X.

This completes the construction of G. See Figure 1 for an illustration.

F. Foucaud, E. Galby, L. Khazaliya, S. Li, F. Mc Inerney, R. Sharma, and P. Tale 33:9

4.1.2 Gadget to Add Critical Pairs
Any resolving set needs to resolve all pairs of vertices in the input graph. As we will see,
some pairs are harder to resolve than others.

Suppose that we need to have m ∈ N such “hard” pairs in a graph G. So, for each i ∈ [m],
we make a pair of vertices ⟨c◦

i , c
⋆
i ⟩ critical as follows. Define C := {c◦

i , c
⋆
i | i ∈ [m]}. We

then add bit-rep(C) and nullifier(C) as mentioned above (taking C as the set X), with the
edges between {c◦

i , c
⋆
i } and bit-rep(C) defined by bin(i), i.e., connect both c◦

i and c⋆
i with

the j-th vertex of bit-rep(C) if the jth bit (going from left to right) in bin(i) is 1. Hence,
bit-rep(C) can resolve any pair of the form ⟨c◦

i , c
⋆
ℓ ⟩, ⟨c◦

i , c
◦
ℓ ⟩, or ⟨c⋆

i , c
⋆
ℓ ⟩ as long as i ̸= ℓ. As

before, bit-rep(C) can also resolve all pairs with one vertex in C ∪ bit-rep(C) ∪ {nullifier(C)},
but no critical pair of vertices.

4.1.3 Vertex Selector Gadgets
Suppose that we are given a collection of sets A1, A2, . . . , Aq of vertices in a graph G, and
we want to ensure that any resolving set of G includes at least one vertex from Ai for every
i ∈ [q]. In the following, we construct a gadget that achieves a slightly weaker objective.

Let A =
⋃

i∈[q] Ai. Add a set identifying gadget for A as mentioned in Subsection 4.1.1.
For every i ∈ [q], add two vertices b◦

i and b⋆
i . Use the gadget mentioned in Subsection 4.1.2

to make all the pairs of the form ⟨b◦
i , b

⋆
i ⟩ critical pairs (in the way it was introduced for

⟨c◦
i , c

⋆
i ⟩).

For every a ∈ Ai, add an edge (a, b◦
i). We highlight that we do not make a adjacent

to b⋆
i by a dotted line in Figure 1. Also, add the edges (a, nullifier(B)), (b◦

i , nullifier(A)),
(b⋆

i , nullifier(A)), and (nullifier(A), nullifier(B)).
This completes the construction. Note that the only vertices that can resolve a critical pair
⟨b◦

i , b
⋆
i ⟩, apart from b◦

i and b⋆
i , are the vertices in Ai (see Figure 1, all other vertices are

equidistant from both vertices of the pair). Hence, every resolving set contains at least one
vertex in {b◦

i , b
⋆
i } ∪Ai.

4.2 Reduction
Consider an instance ψ of 3-Partitioned-3-SAT with Xα, Xβ , Xγ the partition of the
variable set, where each part contains N variables. By adding dummy variables in each of
these sets, we can assume that

√
N is an integer. From ψ, we construct the graph G as

follows. We describe the construction of the part of the graph G that corresponds to Xα,
with the parts corresponding to Xβ and Xγ being analogous. Rename the variables in Xα

to xα
i,j for i, j ∈ [

√
N].

We partition the variables of Xα into buckets Xα
1 , X

α
2 , . . . , X

α√
N

such that each bucket
contains

√
N variables. Let Xα

i = {xα
i,j | j ∈ [

√
N]} for all i ∈ [

√
N].

For every Xα
i , we construct a set Aα

i of 2
√

N new vertices, Aα
i = {aα

i,ℓ | ℓ ∈ [2
√

N]}. Each
vertex in Aα

i corresponds to a certain possible assignment of variables in Xα
i . Let Aα be

the collection of all the vertices added in the above step, that is, Aα = {aα
i,ℓ ∈ Ai| i ∈

[
√
N] and ℓ ∈ [2

√
N]}. We add a set identifying gadget as mentioned in Subsection 4.1.1

in order to resolve every pair of vertices in Aα.
For every Xα

i , we construct a pair ⟨bα,◦
i , bα,⋆

i ⟩ of vertices. Then, we add a gadget to
make the pairs {⟨bα,◦

i , bα,⋆
i ⟩ | i ∈ [

√
N]} critical as mentioned in Subsection 4.1.2. Let

Bα = {bα,◦
i , bα,⋆

i | i ∈ [
√
N]} be the collection of vertices in the critical pairs. We add

edges in Bα to make it a clique.

STACS 2025

33:10 Metric Dimension and Geodetic Set Parameterized by Vertex Cover

We would like that any resolving set contains at least one vertex in Aα
i for every i ∈ [

√
N],

but instead we add the construction from Subsection 4.1.3 that achieves the slightly
weaker objective as mentioned there. However, for every Aα

i , instead of adding two new
vertices, we use ⟨bα,◦

i , bα,⋆
i ⟩ as the necessary critical pair. Formally, for every i ∈ [

√
N], we

make bα,◦
i adjacent to every vertex in Aα

i . We add edges to make nullifier(Bα) adjacent
to every vertex in Aα, and nullifier(Aα) adjacent to every vertex in Bα. Recall that there
is also the edge (nullifier(Bα), nullifier(Aα)).
For every clause Cq in ψ, we have a pair of vertices ⟨c◦

q , c
⋆
q⟩. Let C be the collection

of vertices in such pairs. We add portals that transmit information from vertices cor-
responding to assignments, i.e., vertices in Aα, to pairs corresponding to clauses. A
portal is a clique on

√
N vertices in the graph G. We add three portals, the truth

portal (denoted by Tα), false portal (denoted by Fα), and validation portal (denoted by
V α). Let Tα = {tα1 , tα2 , . . . , tα√N

}, Fα = {fα
1 , f

α
2 , . . . , f

α√
N

}, and V α = {vα
1 , v

α
2 , . . . , v

α√
N

}.
Moreover, let Pα = V α ∪ Tα ∪ Fα.
We add a set identifying gadget for Pα as mentioned in Subsection 4.1.1. We add an edge
between nullifier(Aα) and every vertex of Pα; and the edge (nullifier(Pα), nullifier(Aα)).
However, we note that we do not add edges between nullifier(Pα) and Aα, as can be seen
in Figure 2. Lastly, we add edges in Pα to make it a clique.
We add edges between Aα and the portals as follows. For i ∈ [

√
N] and ℓ ∈ [2

√
N],

consider a vertex aα
i,ℓ in Aα

i . Recall that this vertex corresponds to an assignment
π : Xα

i 7→ {True, False}, where Xα
i is the collection of variables {xα

i,j | j ∈ [
√
N]}. If

π(xα
i,j) = True, then we add the edge (aα

i,ℓ, t
α
j). Otherwise, π(xα

i,j) = False, and we add
the edge (aα

i,ℓ, f
α
j). We add the edge (aα

i,ℓ, v
α
i) for every ℓ ∈ [2

√
N].

Then, we repeat the above steps to construct Bβ , Aβ , P β , Bγ , Aγ , P γ . Now, we are ready
to proceed through the final steps to complete the construction.

For every clause Cq in ψ, as it has been already introduced above, we have a pair of
vertices ⟨c◦

q , c
⋆
q⟩ and C is the collection of vertices in such pairs. Then, we add a gadget

as was described in Subsection 4.1.2 to make each pair ⟨c◦
q , c

⋆
q⟩ a critical one.

For each δ ∈ {α, β, γ}, we add an edge between nullifier(P δ) and every vertex of C, and
we add the edge (nullifier(P δ), nullifier(C)). Now, we add edges between C and the portals
as follows for each δ ∈ {α, β, γ}. Consider a clause Cq in ψ and the corresponding critical
pair ⟨c◦

q , c
⋆
q⟩ in C. As ψ is an instance of 3-Partitioned-3-SAT, there is at most one

variable in Xδ that appears in Cq. If Cq does not contain a variable in Xδ, then we make
c◦

q and c⋆
q adjacent to every vertex in V δ, and they are not adjacent to any vertex in

T δ ∪F δ. Otherwise, suppose that Cq contains the variable xδ
i,j for some i, j ∈ [

√
N]. The

first subscript decides the edges between ⟨c◦
q , c

⋆
q⟩ and the validation portal, whereas the

second subscript decides the edges between ⟨c◦
q , c

⋆
q⟩ and either the truth portal or false

portal in the following sense. We add all edges of the form (vδ
i′ , c◦

q) and (vδ
i′ , c⋆

q) for every
i′ ∈ [

√
N] such that i′ ̸= i. If xδ

i,j appears as a positive literal in Cq, then we add the edge
(tδj , c◦

q). Otherwise, xδ
i,j appears as a negative literal in Cq, and we add the edge (fδ

j , c
◦
q).

This concludes the construction of G. The reduction returns (G, k) as an instance of
Metric Dimension where

k = 3 ·
(√

N + (⌈log(|Bα|/2 + 2)⌉ + 1) + (⌈log(|Aα| + 2)⌉ + 1) + (⌈log(|Pα| + 2)⌉ + 1)
)

+

⌈log(|C|/2 + 2)⌉ + 1.

F. Foucaud, E. Galby, L. Khazaliya, S. Li, F. Mc Inerney, R. Sharma, and P. Tale 33:11

bi°bi*

b1°b1*

b√N°b√N*

Tα

Pα

Fα

Aα

A1
α

A√N
α

Ai
α

Bα

nullifier(Bα)

nullifier(Aα) nullifier(Pα)

nullifier(С)

bit-rep(С)

bit-rep(Pα)bit-rep(Aα)

bit-rep(Bα)

Vα

C

cq°

cq*

Figure 2 Overview of the reduction. Sets in ellipses are independent sets and sets in rectangles
are cliques. For X ∈ {Bα, Aα, Pα, C}, the blue rectangle attached to it via the blue edge represents
bit-rep(X), and the yellow line between a vertex and bit-rep(X) indicates that vertex is connected
to every vertex in bit-rep(X) \ bits(X). The remainder of the yellow lines represent that vertex is
connected to every vertex in the set the edge goes to. Note the exception of nullifier(Pα) which is
not adjacent to any vertex in Aα. Purple lines between two sets denote adjacencies with respect to
indexing, i.e., bα,◦

i is adjacent only with all the vertices in Aα
i , and all the vertices in Aα

i are adjacent
with vα

i in validation portal V α. Gray lines also indicate adjacencies with respect to indexing, but in
a complementary way. If Cq contains a variable in Bα

i , then c◦
q and c⋆

q are adjacent with all vertices
vα

j ∈ V α such that j ̸= i. Green and red lines between the Aα and Tα and Fα roughly transfer, for
each aα

i,ℓ ∈ Aα, the underlying assignment structure. If the jth variable by aα
i,ℓ is assigned to True,

then we add the green edge (aα
i,ℓ, t

α
j), and otherwise the red edge (aα

i,ℓ, f
α
j). Similarly, we add edges

for each c◦
i ∈ C depending on the assignment satisfying the variable from the part Xδ of a clause ci,

and in which block Bδ
j it lies, putting either an edge (c◦

i , t
δ
j) or (c◦

i , f
δ
j) accordingly (δ ∈ {α, β, γ}).

We give an informal description of the proof of correctness here. See Figure 3. Suppose√
N = 3 and the vertices in the sets are indexed from top to bottom. For legibility, we omit

some edges and only show 4 out of 8 vertices in each Aα
i for i ∈ [3]. We also omit bit-rep and

nullifier for these sets. The vertex selection gadget and the budget k ensure that exactly one
vertex in {bα,◦

i , bα,⋆
i }∪Aα

i is selected for every i ∈ [3]. If a resolving set contains a vertex from
Aα

i , then it corresponds to selecting an assignment of variables in Xα
i . For example, the vertex

aα
2,2 corresponds to the assignment π : Xα

2 7→ {True, False}. Suppose Xα
2 = {xα

2,1, x
α
2,2, x

α
2,3},

π(xα
2,1) = π(xα

2,3) = True, and π(xα
2,2) = False. Hence, aα

2,2 is adjacent to the first and third
vertex in the truth portal Tα, whereas it is adjacent with the second vertex in the false portal
Fα. Suppose the clause Cq contains the variable xα

2,1 as a positive literal. Note that c◦
q and

c⋆
q are at distance 2 and 3, respectively, from aα

2,2. Hence, the vertex aα
2,2, corresponding to

the assignment π that satisfies clause Cq, resolves the critical pair ⟨c◦
q , c

⋆
q⟩. Now, suppose

there is another assignment σ : Xα
3 7→ {True, False} such that σ(xα

3,1) = σ(xα
3,3) = True and

σ(xα
3,2) = False. As ψ is an instance of 3-Partitioned-3-SAT and Cq contains a variable

in Xα
2 (⊆ Xα), Cq does not contain a variable in Xα

3 (⊆ Xα). Hence, σ does not satisfy Cq.
Let aα

3,2 be the vertex in Xα
3 corresponding to σ. The connections via the validation portal

V α ensure that both c◦
q and c⋆

q are at distance 2 from aα
3,2, and hence, aα

3,2 cannot resolve the
critical pair ⟨c◦

q , c
⋆
q⟩. Hence, finding a resolving set in G corresponds to finding a satisfying

assignment for ψ. These intuitions are formalized in the following subsection.

STACS 2025

33:12 Metric Dimension and Geodetic Set Parameterized by Vertex Cover

C

cq°

cq*

b2°b2*

Vα

Tα

Fα

Aα

A1
α

A3
α

A2
α

Bα
π

σ

Figure 3 An example to illustrate the reduction (bit-rep and nullifier are omitted for the sets).

4.3 Correctness of the Reduction
Suppose, given an instance ψ of 3-Partitioned-3-SAT, that the reduction of this subsection
returns (G, k) as an instance of Metric Dimension. We first prove the following lemma
which will be helpful in proving the correctness of the reduction.

▶ Lemma 9. For any resolving set S of G and for all X ∈ {C}∪{Bδ, Aδ, P δ | δ ∈ {α, β, γ}},
1. S contains at least one vertex from each pair of false twins in bits(X).
2. Vertices in bits(X) ∩ S resolve any non-critical pair of vertices ⟨u, v⟩ when u ∈ X ∪X+

and v ∈ V (G).
3. Vertices in X+ ∩ S cannot resolve any critical pair of vertices ⟨bδ′,◦

i , bδ′,⋆
i ⟩ nor ⟨c◦

q , c
⋆
q⟩ for

all i ∈ [
√
N], δ′ ∈ {α, β, γ}, and q ∈ [m].

Proof.
1. Let G be a graph. For any false twins u, v ∈ V (G) and any w ∈ V (G) \ {u, v}, d(u,w) =

d(v, w), and so, for any resolving set S of G, S ∩ {u, v} ≠ ∅. Hence, the statement follows
for all X ∈ {C} ∪ {Bδ, Aδ, P δ | δ ∈ {α, β, γ}}.

2. For all X ∈ {C} ∪ {Bδ, Aδ, P δ | δ ∈ {α, β, γ}}, nullifier(X) is distinguished by bits(X) ∩S
as it is the only vertex in G at distance 2 from each vertex in bits(X). We do a case analysis
for the remaining non-critical pairs of vertices ⟨u, v⟩ assuming that nullifier(X) /∈ {u, v}
(also, suppose that neither u nor v is in S, as otherwise, they are obviously distinguished):
Case i: u, v ∈ X ∪ X+.

Case i(a): u, v ∈ X or u, v ∈ bit-rep(X) \ bits(X). In the first case, let j be the
bit in the binary representation of the subscript of u that is not equal to the jth bit
in the binary representation of the subscript of v (such a j exists since ⟨u, v⟩ is not
a critical pair). In the second case, without loss of generality, let u = yi and v = yj .
By the first item of the statement of the lemma (1.), without loss of generality,
ya

j ∈ S ∩ bits(X). Then, in both cases, d(ya
j , u) ̸= d(ya

j , v).
Case i(b): u ∈ X and v ∈ bit-rep(X). Without loss of generality, ya

⋆ ∈ S ∩ bits(X)
(by 1.). Then, d(ya

⋆ , u) = 2 and, for all v ∈ bits(X) \ {yb
⋆}, d(ya

⋆ , v) = 3. Without
loss of generality, let yi be adjacent to u and let ya

i ∈ S ∩ bits(X) (by 1.). Then, for
v = yb

⋆, 3 = d(ya
i , v) ̸= d(ya

i , u) = 2. If v ∈ bit-rep(X) \ bits(X), then, without loss
of generality, v = yj and ya

j ∈ S ∩ bits(X) (by 1.), and 1 = d(ya
j , v) < d(ya

j , u).
Case i(c): u, v ∈ bits(X). Without loss of generality, u = yb

i and ya
i ∈ S (by 1.).

Then, 2 = d(ya
i , u) ̸= d(ya

i , v) = 3.

F. Foucaud, E. Galby, L. Khazaliya, S. Li, F. Mc Inerney, R. Sharma, and P. Tale 33:13

Case i(d): u ∈ bits(X) and v ∈ bit-rep(X) \ bits(X). Without loss of generality,
v = yi and ya

i ∈ S (by 1.). Then, 1 = d(ya
i , v) < d(ya

i , u).
Case ii: u ∈ X ∪ X+ and v ∈ V (G) \ (X ∪ X+). For each u ∈ X∪X+, there exists
w ∈ bits(X) ∩ S such that d(u,w) ≤ 2, while, for each v ∈ V (G) \ (X ∪ X+) and
w ∈ bits(X) ∩ S, we have d(v, w) ≥ 3.

3. For all X ∈ {Bδ, Aδ, P δ | δ ∈ {α, β, γ}}, u ∈ X+, v ∈ {c◦
q , c

⋆
q}, and q ∈ [m], we have

that d(u, v) = d(u, nullifier(P δ)) + 1. Further, for X = C and all u ∈ X+ and q ∈ [m],
either d(u, c◦

q) = d(u, c⋆
q) = 1, d(u, c◦

q) = d(u, c⋆
q) = 2, or d(u, c◦

q) = d(u, c⋆
q) = 3 by the

construction in Subsection 4.1.2 and since bit-rep(X) \ bits(X) is a clique. Hence, for
all X ∈ {C} ∪ {Bδ, Aδ, P δ | δ ∈ {α, β, γ}}, vertices in X+ ∩ S cannot resolve a pair of
vertices ⟨c◦

q , c
⋆
q⟩ for any q ∈ [m].

For all δ ∈ {α, β, γ}, if v ∈ Bδ, then, for all X ∈ {C} ∪ {Bδ′
, Aδ′

, P δ′ | δ′ ∈ {α, β, γ}}
such that δ ̸= δ′, and u ∈ X+, we have that d(u, v) = d(u, nullifier(Aδ)) + 1. Similarly,
for all δ ∈ {α, β, γ}, if v ∈ Bδ, then, for all X ∈ {Aδ, P δ} and u ∈ X+, we have
that d(u, v) = d(u, nullifier(Aδ)) + 1. Lastly, for each ⟨bδ,◦

i , bδ,⋆
i ⟩, δ ∈ {α, β, γ}, and

i ∈ [
√
N], if X = Bδ, then, for all u ∈ X+, either d(u, bδ,◦

i) = d(u, bδ,⋆
i) = 1, d(u, bδ,◦

i) =
d(u, bδ,⋆

i) = 2, or d(u, bδ,◦
i) = d(u, bδ,⋆

i) = 3 by the construction in Subsection 4.1.2 and
since bit-rep(X) \ bits(X) is a clique. ◀

▶ Lemma 10. If ψ is a satisfiable 3-Partitioned-3-SAT formula, then G admits a resolving
set of size k.

▶ Lemma 11. If G admits a resolving set of size k, then ψ is a satisfiable 3-Partitioned-
3-SAT formula.

Proof of Theorem 6. In Subsection 4.2, we presented a reduction that takes an instance ψ
of 3-Partitioned-3-SAT and returns an equivalent instance (G, k) of Metric Dimension
(by Lemmas 10 and 11) in 2O(

√
N) time, where

k = 3 ·
(√

N + (⌈log(|Bα|/2 + 2)⌉ + 1) + (⌈log(|Aα| + 2)⌉ + 1) + (⌈log(|Pα| + 2)⌉ + 1)
)

+

(⌈log(|C|/2 + 2)⌉ + 1) = O(
√
N).

Note that V (G) = 2O(
√

N). Further, note that taking all the vertices in Bδ and P δ for all
δ ∈ {α, β, γ}, and X+ \ bits(X) for all X ∈ {C} ∪ {Bδ, Aδ, P δ | δ ∈ {α, β, γ}}, results in a
vertex cover of G. Hence,

vc(G) ≤ 3 · ((⌈log(|Bα|/2 + 2)⌉ + 2) + (⌈log(|Aα| + 2)⌉ + 2) + (⌈log(|Pα| + 2)⌉ + 2)) +

3 · (|Bα| + |Pα|) + (⌈log(|C|/2 + 2)⌉ + 2) = O(
√
N).

Thus, vc(G) + k = O(
√
N). ◀

5 Geodetic Set: Algorithms for Vertex Cover Parameterization

To prove Theorem 1 for Geodetic Set, we start with the following fact about false twins.

▶ Lemma 12. If a graph G contains a set T of false twins that are not true twins and not
simplicial, then any minimum-size geodetic set contains at most four vertices of T .

Proof. Let T = {t1, . . . , th} be a set of false twins in a graph G, that are not true twins and
not simplicial. Thus, T forms an independent set, and there are two non-adjacent vertices
x, y in the neighborhood of the vertices in T . Toward a contradiction, assume that h ≥ 5

STACS 2025

33:14 Metric Dimension and Geodetic Set Parameterized by Vertex Cover

and G has a minimum-size geodetic set S that contains at least five vertices of T ; without
loss of generality, assume {t1, . . . , t5} ⊆ S. We claim that S′ = (S \ {t1, t2, t3}) ∪ {x, y} is
still a geodetic set, contradicting the choice of S as a minimum-size geodetic set of G.

To see this, notice that any vertex from V (G) \ T that is covered by some pair of vertices
in T ∩ S is also covered by t4 and t5. Similarly, any vertex from V (G) \ T covered by some
pair ⟨ti, z⟩ in (S ∩ T) × (S \ T), is still covered by t4 and z. Moreover, x and y cover all
vertices of T , since they are at distance 2 from each other and all vertices in T are their
common neighbors. Thus, S′ is a geodetic set, as claimed. ◀

▶ Lemma 13. Geodetic Set, parameterized by the vertex cover number vc, admits a
polynomial-time kernelization algorithm that returns an instance with 2O(vc) vertices.

Proof. Given a graph G, let X ⊆ V (G) be a minimum-size vertex cover of G. If this vertex
cover is not given, then we can find a 2-factor approximate vertex cover in polynomial time.
Let I := V (G) \X; I forms an independent set. The kernelization algorithm exhaustively
applies the following reduction rules in a sequential manner.

▷ Reduction Rule 2. If there exist three simplicial vertices in G that are false twins or true
twins, then delete one of them from G and decrease k by one.

▷ Reduction Rule 3. If there exist six vertices in G that are false twins but are not true
twins nor simplicial, then delete one of them from G.

To see that Reduction Rule 2 is correct, assume that G contains three simplicial vertices
u, v, w that are twins (false or true). We show that G has a geodetic set of size k if and only
if the reduced graph G′, obtained from G by deleting u, has a geodetic set of size k − 1. For
the forward direction, let S be a geodetic set of G of size k. By Observation 3, S contains
each of u, v, w. Now, let S′ = S \ {u}. This set of size k − 1 is a geodetic set of G′. Indeed,
any vertex of G′ that was covered in G by u and some other vertex z of S, is also covered
by v and z in G′. Conversely, if G′ has a geodetic set S′′ of size k − 1, then it is clear that
S′′ ∪ {u} is a geodetic set of size k in G.

For Reduction Rule 3, assume that G contains six false twins (that are not true twins nor
simplicial) as the set T = {t1, . . . , t6}, and let G′ be the reduced graph obtained from G by
deleting t1. We show that G has a geodetic set of size k if and only if G′ has a geodetic set
of size k. For the forward direction, let S be a minimum-size geodetic set of size (at most)
k of G. By Lemma 12, S contains at most four vertices from T ; without loss of generality,
t1 and t2 do not belong to S. Since the distances among all pairs of vertices in G′ are the
same as in G, S is still a geodetic set of G′. Conversely, let S′ be a minimum-size geodetic
set of G′ of size (at most) k. Again, by Lemma 12, we may assume that one vertex among
t2, . . . , t6 is not in S′, say, without loss of generality, that it is t2. Note that S′ covers (in G)
all vertices of G′. Thus, t2 is covered by two vertices x, y of S′. But then, t1 is also covered
by x and y, since we can replace t2 by t1 in any shortest path between x and y. Hence, S′ is
also a geodetic set of G.

Now, consider an instance on which the reduction rules cannot be applied. If k < 0,
then we return a trivial No-instance (for example, a single-vertex graph). Otherwise, notice
that any set of false twins in I contains at most five vertices. Hence, G has at most
|X| + 5 · 2|X| = 2O(vc) vertices. ◀

Next, we present an XP-algorithm parameterized by the vertex cover number. Together
with Lemma 13, they imply Theorem 1 for Geodetic Set.

▶ Lemma 14. Geodetic Set admits an algorithm running in nO(vc) time.

F. Foucaud, E. Galby, L. Khazaliya, S. Li, F. Mc Inerney, R. Sharma, and P. Tale 33:15

Proof. The algorithm starts by computing a minimum vertex cover X of G in 2O(vc) · nO(1)

time using an FPT algorithm for the Vertex Cover problem, for example the one in [11]
or [27]. Let I := V (G) \X.

In polynomial time, we compute the set S of simplicial vertices of G. By Observation 3,
any geodetic set of G contains all simplicial vertices of G. Note that X ∪ S is a geodetic set
of G. Indeed, any vertex v from I that is not simplicial has two non-adjacent neighbors x, y
in X, and thus, v is covered by x and y (which are at distance 2 from each other).

Hence, to enumerate all possible minimum-size geodetic sets, it suffices to enumerate
all subsets S′ of vertices of size at most |X| in (X ∪ I) \ S, and check whether S ∪ S′ is a
geodetic set. If one such set is indeed a geodetic set and has size at most k, we return Yes.
Otherwise, we return No. The statement follows. ◀

6 Geodetic Set: Lower Bounds Regarding Vertex Cover

In this section, we follow the same template as in Section 4 and first prove the following
theorem.

▶ Theorem 15. There is an algorithm that, given an instance ψ of 3-Partitioned-3-SAT on
N variables, runs in 2O(

√
N) time, and constructs an equivalent instance (G, k) of Geodetic

Set such that vc(G) + k = O(
√
N) (and |V (G)| = 2O(

√
N)).

The proofs of the following two corollaries are analogous to those for Metric Dimension.

▶ Corollary 16. Unless the ETH fails, Geodetic Set does not admit an algorithm running
in 2o(vc2) · nO(1) time.

▶ Corollary 17. Unless the ETH fails, Geodetic Set does not admit a kernelization algorithm
that does not increase the solution size k and outputs a kernel with 2o(k+vc) vertices.

6.1 Reduction
Consider an instance ψ of 3-Partitioned-3-SAT with Xα, Xβ , Xγ the partition of the
variable set, where |Xα| = |Xβ | = |Xγ | = N . By adding dummy variables in each of these
sets, we can assume that

√
N is an integer. Further, let C = {C1, . . . , Cm} be the set of all

the clauses of ψ. From ψ, we construct the graph G as follows. We describe the construction
for the part of the graph G corresponding to Xα, with the parts corresponding to Xβ and
Xγ being analogous. We rename the variables in Xα to xα

i,j for i, j ∈ [
√
N].

We partition the variables of Xα into buckets Xα
1 , X

α
2 , . . . , X

α√
N

such that each bucket
contains

√
N many variables. Let Xα

i = {xα
i,j | j ∈ [

√
N]} for all i ∈ [

√
N].

For every bucket Xα
i , we add an independent set Aα

i of 2
√

N new vertices, and we add
two isolated edges (aα

i,1, b
α
i,1) and (aα

i,2, b
α
i,2). Let Bα = {aα

i,j , b
α
i,j | i ∈ [

√
N], j ∈ {1, 2}}.

For all i ∈ [
√
N] and u ∈ Aα

i , we make both aα
i,1 and aα

i,2 adjacent to u (see Figure 4).
Each vertex in Aα

i corresponds to a certain possible assignment of variables in Xα
i .

Then, we add three independent sets Tα, Fα, and V α on
√
N vertices each: Tα = {tαi |

i ∈ [
√
N]}, Fα = {fα

i | i ∈ [
√
N]}, and V α = {vα

i | i ∈ [
√
N]}.

For each i ∈ [
√
N], we connect vα

i with all the vertices in Aα
i .

For each i ∈ [
√
N], we add edges between Aα

i and Tα and between Aα
i and Fα as

follows. Consider a vertex w ∈ Aα
i . Recall that this vertex corresponds to an assignment

π : Xα
i 7→ {True, False}, where Xα

i is the collection of variables {xα
i,j | j ∈ [

√
N]}. If

π(xα
i,j) = True, then we add the edge (w, tαj), and otherwise, we add the edge (w, fα

j).

STACS 2025

33:16 Metric Dimension and Geodetic Set Parameterized by Vertex Cover

Vα

b1,2
α

b1,1
α

Tα

Fα

A1
α

U

cq

a1,2
α

a1,1
α

u1
ui
u√N

u'1
u'i
u'√N

bi,2
α

bi,1
α

ai,2
α

ai,1
α

Ai
α

b√N,2
α

b√N,1
α

a√N,2
α

a√N,1
α

A√N
α

g1
α

gi
α

g√N
α

Figure 4 Overview of the reduction. Sets in ellipses are independent sets, and sets in rectangles
are cliques. For each δ ∈ {α, β, γ}, the sets V δ and U almost form a complete bipartite graph,
except for the matching (marked by dotted edges) that is excluded. Yellow lines from a vertex to
a set denote that this vertex is connected to all the vertices in that set. The green and red lines
between the Aα

i and Tα ∪ Fα transfer, in some sense, for each w ∈ Aα
i , the underlying assignment

structure. If an underlying assignment w sets the jth variable to True, then we add the green edge
(w, tαj), and otherwise, we add the red edge (w, fα

j). For all q ∈ [m] and δ ∈ {α, β, γ}, let xδ
i,j be the

variable in Xδ that is contained in the clause Cq in ψ. So, for all q ∈ [m], if assigning True (False,
respectively) to xδ

i,j satisfies Cq, then we add the edge (cq, t
δ
j) ((cq, f

δ
j), respectively).

For each i ∈ [
√
N], we add a special vertex gα

i (also referred to as a g-vertex later on)
that is adjacent to each vertex in Tα ∪ Fα. Further, gα

i is also adjacent to both aα
i,1 and

aα
i,2 (see Figure 4).

This finishes the first part of the construction. The second step is to connect the three
previously constructed parts for Xα, Xβ , and Xγ .

We introduce a vertex set U = {ui | i ∈ [
√
N]} that forms a clique. Then, for each ui,

we add an edge to a new vertex u′
i. Thus, we have a matching {(ui, u

′
i) | i ∈ [

√
N]}. Let

U ′ = {u′
i | i ∈ [

√
N]}.

For each δ ∈ {α, β, γ}, we add edges so that the vertices of U ∪V δ almost form a complete
bipartite graph, i.e., E(G) contains edges between all pairs ⟨v, w⟩ where v ∈ U and
w ∈ V δ, except for the matching {(vδ

i , ui) | i ∈ [
√
N]}.

For each δ ∈ {α, β, γ} and i ∈ [
√
N], we make gδ

i adjacent to each vertex in U .
For each Cq ∈ C, we add a new vertex cq. Let C = {cq | q ∈ [m]}. Since we are
considering an instance of 3-Partitioned-3-SAT, for each δ ∈ {α, β, γ}, there is at
most one variable in Cq that lies in Xδ. If there is one, then without loss of generality, let
it be xδ

i,j and do the following. Make cq adjacent to ui and if xδ
i,j = True (xδ

i,j = False,
respectively) satisfies Cq, then (cq, t

δ
j) ∈ E(G) ((cq, f

δ
j) ∈ E(G), respectively).

This concludes the construction of G. The reduction returns (G, k) as an instance of
Geodetic Set where k = 10

√
N .

F. Foucaud, E. Galby, L. Khazaliya, S. Li, F. Mc Inerney, R. Sharma, and P. Tale 33:17

6.2 Correctness of the Reduction

Suppose, given an instance ψ of 3-Partitioned-3-SAT, that the reduction above returns
(G, k) as an instance of Geodetic Set. We first prove the following lemmas which will be
helpful in proving the correctness of the reduction, and note that we use distances between
vertices to prove that certain vertices are not contained in shortest paths.

▶ Lemma 18. For all δ, δ′ ∈ {α, β, γ}, the shortest paths between any two vertices in
Bδ ∪ U ∪ U ′ do not cover any vertices in C nor V δ′ .

▶ Lemma 19. For all i ∈ [
√
N] and δ ∈ {α, β, γ}, vδ

i can only be covered by a shortest path
from a vertex in Aδ

i ∪ {vδ
i } to another vertex in G.

▶ Lemma 20. If G admits a geodetic set of size k, then ψ is a satisfiable 3-Partitioned-3-
SAT formula.

▶ Lemma 21. If ψ is a satisfiable 3-Partitioned-3-SAT formula, then G admits a geodetic
set of size k.

Proof of Theorem 15. In Section 6.1, we presented a reduction that takes an instance ψ
of 3-Partitioned-3-SAT and returns an equivalent instance (G, k) of Geodetic Set (by
Lemmas 20 and 21) in 2O(

√
N) time, where k = 10

√
N . Note that V (G) = 2O(

√
N). Further,

note that taking all the vertices in Bδ, V δ, T δ, F δ, U , C, and gδ
i for all i ∈ [

√
N] and

δ ∈ {α, β, γ}, results in a vertex cover of G. Hence,

vc(G) ≤ 3 · (|Bα| + |V α| + |Tα| + |Fα| +
√
N) + |U | + |C| = O(

√
N).

Thus, vc(G) + k = O(
√
N). ◀

7 Conclusion

We have seen that both Metric Dimension and Geodetic Set have a non-trivial 2Θ(vc2)

running-time dependency (unless the ETH fails) in the vertex cover number parameterization.
Both problems are FPT for related parameters, such as vertex integrity, treedepth, distance
to (co-)cluster, distance to cograph, etc., as more generally, they are FPT for cliquewidth plus
diameter [23, 31]. For both problems, it was proved that the correct dependency in treedepth
(and treewidth plus diameter) is in fact double-exponential [20], a fact that is also true for
feedback vertex set plus diameter for Metric Dimension [20]. For distance to (co-)cluster,
algorithms with double-exponential dependency were given for Metric Dimension in [21].
For the parameter max leaf number ℓ, the algorithm for Metric Dimension from [17] uses
ILPs, with a dependency of the form 2O(ℓ6 log ℓ) (a similar algorithm for Geodetic Set with
dependency 2O(f log f) exists for the feedback edge set number f [31]), which is unknown
to be tight. What is the correct dependency for all these parameters? In particular, it
seems interesting to determine for which parameter(s) the jump from double-exponential to
single-exponential dependency occurs.

For the related problem Strong Metric Dimension, the correct dependency in the
vertex cover number is known to be double-exponential [20]. It would be nice to determine
whether similarly intriguing behaviors can be exhibited for related metric-based problems,
such as Strong Geodetic Set, whose parameterized complexity was recently adressed
in [16, 34]. Perhaps our techniques are applicable to such related problems.

STACS 2025

33:18 Metric Dimension and Geodetic Set Parameterized by Vertex Cover

References
1 A. Agrawal, D. Lokshtanov, S. Saurabh, and M. Zehavi. Split contraction: The untold story.

ACM Trans. Comput. Theory, 11(3):18:1–18:22, 2019. doi:10.1145/3319909.
2 R. Belmonte, F. V. Fomin, P. A. Golovach, and M. S. Ramanujan. Metric dimension of bounded

tree-length graphs. SIAM J. Discrete Math., 31(2):1217–1243, 2017. doi:10.1137/16M1057383.
3 B. Bergougnoux, O. Defrain, and F. Mc Inerney. Enumerating minimal solution sets for metric

graph problems. In Proc. of the 50th International Workshop on Graph-Theoretic Concepts in
Computer Science (WG 2024), volume 14760 of Lecture Notes in Computer Science, pages
50–64. Springer, 2024.

4 E. Bonnet and N. Purohit. Metric dimension parameterized by treewidth. Algorithmica,
83:2606–2633, 2021. doi:10.1007/S00453-021-00808-9.

5 N. Bousquet, Q. Deschamps, and A. Parreau. Metric dimension parameterized by treewidth
in chordal graphs. In Proc. of the 49th International Workshop on Graph-Theoretic Concepts
in Computer Science (WG 2023), volume 14093 of Lecture Notes in Computer Science, pages
130–142. Springer, 2023. doi:10.1007/978-3-031-43380-1_10.

6 D. Chakraborty, S. Das, F. Foucaud, H. Gahlawat, D. Lajou, and B. Roy. Algorithms and
complexity for geodetic sets on planar and chordal graphs. In Proc. of the 31st International
Symposium on Algorithms and Computation (ISAAC 2020), volume 181 of LIPIcs, pages
7:1–7:15. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, 2020. doi:10.4230/LIPICS.
ISAAC.2020.7.

7 D. Chakraborty, F. Foucaud, D. Majumdar, and P. Tale. Tight (double) exponential bounds
for identification problems: Locating-dominating set and test cover. In Proc. of the 35th
International Symposium on Algorithms and Computation (ISAAC 2024), volume 322 of
LIPIcs, pages 19:1–19:18. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, 2024. doi:
10.4230/LIPICS.ISAAC.2024.19.

8 J. Chalopin, V. Chepoi, F. Mc Inerney, and S. Ratel. Non-clashing teaching maps for
balls in graphs. In Proc. of the 37th Annual Conference on Learning Theory (COLT 2024),
volume 247 of Proceedings of Machine Learning Research, pages 840–875. PMLR, 2024. URL:
https://proceedings.mlr.press/v247/chalopin24a.html.

9 L. S. Chandran, D. Issac, and A. Karrenbauer. On the parameterized complexity of biclique
cover and partition. In Proc. of the 11th International Symposium on Parameterized and
Exact Computation (IPEC 2016), volume 63 of LIPIcs, pages 11:1–11:13. Schloss Dagstuhl –
Leibniz-Zentrum für Informatik, 2016. doi:10.4230/LIPICS.IPEC.2016.11.

10 G. Chartrand, F. Harary, and P. Zhang. On the geodetic number of a graph. Networks,
39(1):1–6, 2002. doi:10.1002/NET.10007.

11 J. Chen, I. A. Kanj, and W. Jia. Vertex cover: Further observations and further improvements.
J. Algorithms, 41(2):280–301, 2001. doi:10.1006/JAGM.2001.1186.

12 M. Cygan, F. V. Fomin, L. Kowalik, D. Lokshtanov, D. Marx, M. Pilipczuk, M. Pilipczuk,
and S. Saurabh. Parameterized Algorithms. Springer, 2015.

13 M. Cygan, M. Pilipczuk, and M. Pilipczuk. Known algorithms for edge clique cover are
probably optimal. SIAM J. Comput., 45(1):67–83, 2016. doi:10.1137/130947076.

14 R. Diestel. Graph Theory, 6th Edition, volume 173 of Graduate texts in mathematics. Springer,
2024.

15 M. C. Dourado, F. Protti, D. Rautenbach, and J. L. Szwarcfiter. Some remarks on the geodetic
number of a graph. Discrete Mathematics, 310(4):832–837, 2010. doi:10.1016/J.DISC.2009.
09.018.

16 M. Dumas, F. Foucaud, A. Perez, and I. Todinca. On graphs coverable by k shortest paths.
SIAM J. Discrete Math., 38(2):1840–1862, 2024. doi:10.1137/23M1564511.

17 D. Eppstein. Metric dimension parameterized by max leaf number. Journal of Graph Algorithms
and Applications, 19(1):313–323, 2015. doi:10.7155/JGAA.00360.

18 L. Epstein, A. Levin, and G. J. Woeginger. The (weighted) metric dimension of graphs: Hard
and easy cases. Algorithmica, 72(4):1130–1171, 2015. doi:10.1007/S00453-014-9896-2.

https://doi.org/10.1145/3319909
https://doi.org/10.1137/16M1057383
https://doi.org/10.1007/S00453-021-00808-9
https://doi.org/10.1007/978-3-031-43380-1_10
https://doi.org/10.4230/LIPICS.ISAAC.2020.7
https://doi.org/10.4230/LIPICS.ISAAC.2020.7
https://doi.org/10.4230/LIPICS.ISAAC.2024.19
https://doi.org/10.4230/LIPICS.ISAAC.2024.19
https://proceedings.mlr.press/v247/chalopin24a.html
https://doi.org/10.4230/LIPICS.IPEC.2016.11
https://doi.org/10.1002/NET.10007
https://doi.org/10.1006/JAGM.2001.1186
https://doi.org/10.1137/130947076
https://doi.org/10.1016/J.DISC.2009.09.018
https://doi.org/10.1016/J.DISC.2009.09.018
https://doi.org/10.1137/23M1564511
https://doi.org/10.7155/JGAA.00360
https://doi.org/10.1007/S00453-014-9896-2

F. Foucaud, E. Galby, L. Khazaliya, S. Li, F. Mc Inerney, R. Sharma, and P. Tale 33:19

19 F. Foucaud, E. Galby, L. Khazaliya, S. Li, F. Mc Inerney, R. Sharma, and P. Tale. Metric
dimension and geodetic set parameterized by vertex cover. CoRR, abs/2405.01344, 2024.
doi:10.48550/arXiv.2405.01344.

20 F. Foucaud, E. Galby, L. Khazaliya, S. Li, F. Mc Inerney, R. Sharma, and P. Tale. Problems
in NP can admit double-exponential lower bounds when parameterized by treewidth or
vertex cover. In Proc. of the 51st International Colloquium on Automata, Languages, and
Programming (ICALP 2024), volume 297 of LIPIcs, pages 66:1–66:19. Schloss Dagstuhl –
Leibniz-Zentrum für Informatik, 2024. doi:10.4230/LIPICS.ICALP.2024.66.

21 E. Galby, L. Khazaliya, F. Mc Inerney, R. Sharma, and P. Tale. Metric dimension parameterized
by feedback vertex set and other structural parameters. SIAM J. Discrete Math., 37(4):2241–
2264, 2023. doi:10.1137/22M1510911.

22 M. R. Garey and D. S. Johnson. Computers and Intractability - A guide to NP-completeness.
W.H. Freeman and Company, 1979.

23 T. Gima, T. Hanaka, M. Kiyomi, Y. Kobayashi, and Y. Otachi. Exploring the gap between
treedepth and vertex cover through vertex integrity. Theoretical Comp. Sci., 918:60–76, 2022.
doi:10.1016/J.TCS.2022.03.021.

24 G. Z. Gutin, M. S. Ramanujan, F. Reidl, and M. Wahlström. Alternative parameterizations of
metric dimension. Theoretical Comp. Sci., 806:133–143, 2020. doi:10.1016/J.TCS.2019.01.
028.

25 F. Harary, E. Loukakis, and C. Tsouros. The geodetic number of a graph. Mathematical and
Computer Modelling, 17(11):89–95, 1993.

26 F. Harary and R. A. Melter. On the metric dimension of a graph. Ars Comb., 2:191–195, 1976.
27 D. G. Harris and N. S. Narayanaswamy. A faster algorithm for vertex cover parameterized

by solution size. In Proc. of the 41st International Symposium on Theoretical Aspects of
Computer Science (STACS 2024), volume 289 of LIPIcs, pages 40:1–40:18. Schloss Dagstuhl –
Leibniz-Zentrum für Informatik, 2024. doi:10.4230/LIPICS.STACS.2024.40.

28 S. Hartung and A. Nichterlein. On the parameterized and approximation hardness of metric
dimension. In Proc. of the 28th Conference on Computational Complexity, CCC 2013, pages
266–276. IEEE Computer Society, 2013. doi:10.1109/CCC.2013.36.

29 L. Jaffke, O.-J. Kwon, T. J. F. Strømme, and J. A. Telle. Mim-width III. Graph powers
and generalized distance domination problems. Theoretical Comp. Sci., 796:216–236, 2019.
doi:10.1016/J.TCS.2019.09.012.

30 I. Katsikarelis, M. Lampis, and V. Th. Paschos. Structurally parameterized d-scattered set.
Discrete Applied Mathematics, 308:168–186, 2022. doi:10.1016/J.DAM.2020.03.052.

31 L. Kellerhals and T. Koana. Parameterized complexity of geodetic set. Journal of Graph
Algorithms and Applications, 26(4):401–419, 2022. doi:10.7155/JGAA.00601.

32 M. Lampis, N. Melissinos, and M. Vasilakis. Parameterized max min feedback vertex set. In
Proc. of the 48th International Symposium on Mathematical Foundations of Computer Science
(MFCS 2023), volume 272 of LIPIcs, pages 62:1–62:15. Schloss Dagstuhl – Leibniz-Zentrum
für Informatik, 2023. doi:10.4230/LIPICS.MFCS.2023.62.

33 S. Li and M. Pilipczuk. Hardness of metric dimension in graphs of constant treewidth.
Algorithmica, 84(11):3110–3155, 2022. doi:10.1007/S00453-022-01005-Y.

34 C. V. G. C. Lima, V. F. dos Santos, J. H. G. Sousa, and S. A. Urrutia. On the computational
complexity of the strong geodetic recognition problem. RAIRO Oper. Res., 58(5):3755–3770,
2024. doi:10.1051/RO/2024120.

35 D. Marx, M. Pilipczuk, and M. Pilipczuk. On subexponential parameterized algorithms for
steiner tree and directed subset TSP on planar graphs. In Proc. of the 59th IEEE Annual
Symposium on Foundations of Computer Science (FOCS 2018), pages 474–484, 2018.

36 M. Pilipczuk. Problems parameterized by treewidth tractable in single exponential time: A
logical approach. In Proc. of the 36th International Symposium on Mathematical Foundations
of Computer Science (MFCS 2011), volume 6907 of Lecture Notes in Computer Science, pages
520–531. Springer, 2011. doi:10.1007/978-3-642-22993-0_47.

STACS 2025

https://doi.org/10.48550/arXiv.2405.01344
https://doi.org/10.4230/LIPICS.ICALP.2024.66
https://doi.org/10.1137/22M1510911
https://doi.org/10.1016/J.TCS.2022.03.021
https://doi.org/10.1016/J.TCS.2019.01.028
https://doi.org/10.1016/J.TCS.2019.01.028
https://doi.org/10.4230/LIPICS.STACS.2024.40
https://doi.org/10.1109/CCC.2013.36
https://doi.org/10.1016/J.TCS.2019.09.012
https://doi.org/10.1016/J.DAM.2020.03.052
https://doi.org/10.7155/JGAA.00601
https://doi.org/10.4230/LIPICS.MFCS.2023.62
https://doi.org/10.1007/S00453-022-01005-Y
https://doi.org/10.1051/RO/2024120
https://doi.org/10.1007/978-3-642-22993-0_47

33:20 Metric Dimension and Geodetic Set Parameterized by Vertex Cover

37 I. Sau and U. dos Santos Souza. Hitting forbidden induced subgraphs on bounded treewidth
graphs. Inf. Comput., 281:104812, 2021. doi:10.1016/J.IC.2021.104812.

38 P. J. Slater. Leaves of trees. In Proc. of the 6th Southeastern Conf. on Combinatorics, Graph
Theory, and Computing, pages 549–559. Congressus Numerantium, No. XIV. Util. Math., 1975.

39 P. Tale. Double exponential lower bound for telephone broadcast. CoRR, abs/2403.03501,
2024. doi:10.48550/arXiv.2403.03501.

https://doi.org/10.1016/J.IC.2021.104812
https://doi.org/10.48550/arXiv.2403.03501

Agreement Tasks in Fault-Prone Synchronous
Networks of Arbitrary Structure
Pierre Fraigniaud # Ñ

Institut de Recherche en Informatique Fondamentale (IRIF), CNRS, Université Paris Cité, France

Minh Hang Nguyen # Ñ

Institut de Recherche en Informatique Fondamentale (IRIF), CNRS, Université Paris Cité, France

Ami Paz # Ñ

Laboratoire Interdisciplinaire des Sciences du Numérique (LISN), CNRS, Université Paris-Saclay,
France

Abstract
Consensus is arguably the most studied problem in distributed computing as a whole, and particularly
in the distributed message-passing setting. In this latter framework, research on consensus has
considered various hypotheses regarding the failure types, the memory constraints, the algorithmic
performances (e.g., early stopping and obliviousness), etc. Surprisingly, almost all of this work
assumes that messages are passed in a complete network, i.e., each process has a direct link to
every other process. A noticeable exception is the recent work of Castañeda et al. (Inf. Comput.
2023) who designed a generic oblivious algorithm for consensus running in radius(G, t) rounds in
every graph G, when up to t nodes can crash by irrevocably stopping, where t is smaller than
the node-connectivity κ of G. Here, radius(G, t) denotes a graph parameter called the radius of G

whenever up to t nodes can crash. For t = 0, this parameter coincides with radius(G), the standard
radius of a graph, and, for G = Kn, the running time radius(Kn, t) = t + 1 of the algorithm exactly
matches the known round-complexity of consensus in the clique Kn.

Our main result is a proof that radius(G, t) rounds are necessary for oblivious algorithms solving
consensus in G when up to t nodes can crash, thus validating a conjecture of Castañeda et al., and
demonstrating that their consensus algorithm is optimal for any graph G. We also extend the result
of Castañeda et al. to two different settings: First, to the case where the number t of failures is not
necessarily smaller than the connectivity κ of the considered graph; Second, to the k-set agreement
problem for which agreement is not restricted to be on a single value as in consensus, but on up to
k different values.

2012 ACM Subject Classification Theory of computation → Distributed algorithms

Keywords and phrases Consensus, set-agreement, fault tolerance, crash failures

Digital Object Identifier 10.4230/LIPIcs.STACS.2025.34

Related Version Full Version: https://arxiv.org/pdf/2410.21538 [16]

Funding Pierre Fraigniaud: Additional support from ANR projects DUCAT (ANR-20-CE48-0006),
ENEDISC, and QuDATA (ANR-18-CE47-0010).
Minh Hang Nguyen: Additional support from ANR projects DUCAT (ANR-20-CE48-0006), TEM-
PORAL (ANR-22-CE48-0001), and ENEDISC, and by the European Union’s Horizon 2020 program
H2020-MSCA -COFUND-2019 Grant agreement n° 945332.

Acknowledgements The authors thank Stephan Felber, Mikaël Rabie, Hugo Rincon Galeana, and
Ulrich Schmid for fruitful discussions on this paper.

1 Introduction

For t ≥ 0, the standard synchronous t-resilient message-passing model assumes n ≥ 2 nodes
labeled from 1 to n, and connected as a clique, i.e., as a complete graph Kn. Computation
proceeds as a sequence of synchronous rounds, during which every node can send a message

© Pierre Fraigniaud, Minh Hang Nguyen, and Ami Paz;
licensed under Creative Commons License CC-BY 4.0

42nd International Symposium on Theoretical Aspects of Computer Science (STACS 2025).
Editors: Olaf Beyersdorff, Michał Pilipczuk, Elaine Pimentel, and Nguyễn Kim Thắng;
Article No. 34; pp. 34:1–34:21

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:pierre.fraigniaud@irif.fr
https://www.irif.fr/~pierref
https://orcid.org/0000-0003-4534-4803
mailto:mhnguyen@irif.fr
https://www.irif.fr/~mhnguyen/
https://orcid.org/0009-0008-2391-029X
mailto:ami.paz@lisn.fr
https://sites.google.com/view/amipaz/
https://orcid.org/0000-0002-6629-8335
https://doi.org/10.4230/LIPIcs.STACS.2025.34
https://arxiv.org/pdf/2410.21538
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

34:2 Agreement Tasks in Fault-Prone Synchronous Networks of Arbitrary Structure

to each other node, receive the message sent by each other node, and perform some local
computation. Up to t nodes may crash during the execution of an algorithm. When a node v
crashes at some round r ≥ 1, it stops functioning after round r and never recovers. Moreover,
some (possibly all) of the messages sent by v at round r may be lost, that is, when v crashes,
messages sent by v at round r may reach some neighbors, while other neighbors of v may
not hear from v at round r. This model has been extensively studied in the literature (see,
e.g., [2, 18, 23, 27]). In particular, it is known that consensus can be solved in t+ 1 rounds
in the t-resilient model [13], and this is optimal for every t < n− 1 as far as the worst-case
complexity is concerned [1, 13].

It is only very recently that the synchronous t-resilient message-passing model has been
extended to the setting in which the complete communication graph Kn is replaced by an
arbitrary communication graph G (see [4, 8]). Specifically, the graph G is fixed, but arbitrary,
and the concern is to design algorithms for G. It was proved in [4] that if the number of
failures is smaller than the connectivity of the graph, i.e., if t < κ(G), then consensus in G

can be solved in radius(G, t) rounds in the t-resilient model, where radius(G, t) generalizes
the standard notion of graph radius to the scenarios in which up to t nodes may fail by
crashing. For t = 0, radius(G, 0) is the standard radius of the graph G. For the complete
graph Kn, the radius(Kn, t) upper bound from [4] coincides with the seminal t + 1 upper
bound for consensus in Kn.

To get an intuition of radius(G, t), let us consider the case of the n-node cycle Cn, for n ≥ 3.
We have κ(Cn) = 2, so we assume t ≤ 1. The radius of Cn is ⌊ n

2 ⌋, i.e., radius(Cn, 0) = ⌊ n
2 ⌋.

For t = 1, let v be the node that crashes. We have radius(Cn, 1) ≥ n−2, which is the distance
between the two neighbors of v in Cn if v crashes “cleanly” at the first round, preventing
them to communicate directly through v. However, we actually have radius(Cn, 1) = n− 1.
Indeed, v may crash at the first round, yet be capable to send a message to one of its
neighbors, and this message needs n− 2 additional rounds to reach the other neighbor of v.
That is, computing radius(G, t) requires to take into account not only which nodes crash,
but when and how they are crashing – by “how”, it is meant that, for a node v crashing at
some round r, to which neighbors they still succeed to communicate at this round, and to
which they fail to communicate.

Importantly, the algorithm of [4] is oblivious, that is, the output of a node after radius(G, t)
rounds is solely based on the set of pairs (node-identifier, input-value) collected by that node
during radius(G, t) rounds (and not, e.g., from whom, when, and how many times it received
each of these pairs). There are many reasons why to restrict the study to oblivious algorithms.
Among them, oblivious algorithms are simple by design, which is desirable for their potential
implementation. Moreover, they are known to be efficient, as illustrated by the case of the
complete graphs in which optimal solutions can be obtained thanks to oblivious algorithms.
As far as this paper is concerned (and maybe also as far as [4] is concerned) obliviousness
is highly desirable for the design of generic solutions, that is “meta-algorithms” that apply
to each and every graph G. In such algorithms, every node forwards pairs (node-identifier,
input-value) during a prescribed number of rounds (e.g., during radius(G, t) rounds in the
generic algorithm from [4]), and then decides on an output value according to a simple
function of the set of input values received during these rounds, without having to track of
the sequence of rounds at which each pair was received, and from which neighbor(s). Last
but not least, intermediate nodes do not need to send complex information about the history
of each piece of information transmitted during the execution, hence reducing the bandwidth
requirement of the algorithms.

P. Fraigniaud, M. H. Nguyen, and A. Paz 34:3

1.1 Objective
The question of the optimality of the consensus algorithm performing in radius(G, t) rounds
in any fixed graph G for every number t ≤ κ(G) of failures was however left open in [4]. It
was conjectured in [4] that, for every graph G, and for every 0 ≤ t < κ(G), no oblivious
algorithms can solve consensus in G in less than radius(G, t) rounds, but this was only
proved for the specific case of symmetric (a.k.a. vertex-transitive) graphs1. Although the
class of symmetric graphs includes, e.g., the complete graphs Kn, the cycles Cn, and the
d-dimensional hypercubes Qd, a lower bound radius(G, t) for every graph G in this class
does not come entirely as a surprise since all nodes of a symmetric graph have the same
eccentricity (i.e., maximum distance to any other node, generalized to include crash failures).
The fact that all nodes have the same eccentricity implies that they can merely be ordered
according to their identifiers for selecting the output value from the received pairs (node-
identifier, input-value). Instead, if the graph is not symmetric, a node that received a pair
(node-identifier, input-value) after radius(G, t) rounds does not necessarily know whether
all the nodes have received this pair, and thus the choice of the output value from the set
of received pairs is more subtle. Not only the design of an upper bound is made harder,
but it also makes the determination of a strong lower bound more involved. The main
question addressed in this paper is therefore the following: For every graph G, and every
non-negative integer t < κ(G), is there an oblivious algorithm solving consensus in G in less
than radius(G, t) rounds under the t-resilient model (i.e., when up to t nodes may fail by
crashing)?

Moreover, the study in [4] let aside the design of a generic (oblivious) algorithm for
solving the standard important relaxation of consensus, namely k-set agreement. (Recall
that, in k-set agreement, the set of all values outputted by the nodes must be of cardinality
at most k.) In fact, several tools developed in [4] do not extend to k-set agreement. Our
next step is therefore to question the ability to design a generic algorithm for solving k-set
agreement in arbitrary graphs G, for every k > 1.

Last but not least, the study in [4] assumed that the number t of failures is smaller that
the connectivity κ(G) of the graph G at hand. We question what can be said about the case
where the number of failures may be larger, that is when t ≥ κ(G), for both consensus and
k-set agreement?

1.2 Our Results
We extend the investigation of the t-resilient model in arbitrary graphs, in various comple-
mentary directions.

Lower Bounds for Consensus. We affirmatively prove the conjecture from [4] that their
consensus algorithm is indeed optimal (among oblivious algorithms) for every graph G, and
not only for symmetric graphs. That is, we show that, for every graph G, no oblivious
algorithms can solve consensus in G in less than radius(G, t) rounds under the t-resilient
model. This result is achieved by revisiting the notion of information flow graph defined
in [4] for fixing some inaccuracies in the original definition. We present a more robust (an
accurate) definition of information flow graph, and we provide a characterization of the
number of rounds required to solve consensus as a function of some structural property of

1 A graph G = (V, E) is vertex-transitive if, for every two nodes u ≠ v, there exists an automorphism f
of G (i.e., a permutation f : V → V preserving the edges and the non-edges of G) such that f(u) = v.

STACS 2025

34:4 Agreement Tasks in Fault-Prone Synchronous Networks of Arbitrary Structure

that graph. With this characterization at hand, we establish the optimality of the algorithm
in [4] by showing that radius(G, t) rounds are necessary for the information flow graph to
satisfy the desired property required for consensus solvability.

Beyond the Connectivity Threshold. Inspired by [8], we extend the study of consensus in
the t-resilient model in arbitrary graphs to the case where the number t of crash failures is
arbitrary, i.e., not necessarily lower than the connectivity κ(G) of the considered graph G.
We show that the generic algorithm from [4] can be extended to this framework, at the mere
cost of relaxing consensus to impose agreement to hold within each connected component of
the graph resulting from removing the faulty nodes from G. Under this somehow unavoidable
relaxation, we present extension of the consensus algorithm from [4] to t-resilient models for
t ≥ κ(G), and express the round complexities of these algorithms in term of a non-trivial
extension of the radius notion to disconnected graphs.

Extension to Set Agreement. Finally, we extend the study of consensus under the t-resilient
model in arbitrary graphs to k-set agreement, for an arbitrary fixed k ≥ 1. We show that, for
every integer k ≥ 1, and every graph G, there exists an oblivious k-set agreement algorithm
performing in radius(G, t, k) rounds, where radius(G, t, k) denotes a parameter extending
radius(G, t) to the case where k nodes broadcast instead of just one, with the objective that
each (non faulty) node receives a pair (node-identifier, input-value) from at least one of these
k nodes. This extension holds for every t. For t ≥ κ(G) the k-set agreement tasks must
however be relaxed similarly to consensus, so that agreement hold within each connected
component of the graph separately. Due to lack of space, our results on k-set agreement are
not included in this extended abstract, but they can be found in the full version of the paper
(see [16]).

1.3 Related Work
Distributed computing in synchronous networks has a long tradition, including the early
studies of the message complexity and round complexity of various tasks such as leader
election, spanning tree constructions, BFS and DFS traversals, etc. (see, e.g., [2, 23]). The
topic has then flourished in the 2000s under the umbrella of the so-called LOCAL and
CONGEST models [19, 25], with the study of numerous graph problems such as coloring,
maximal independent set, minimum-weight spanning tree, etc.

Distributed computing in synchronous fault-prone networks has also a long history, but it
remained for a long time mostly confined to the special case of the message-passing model in
the complete networks. That is, n nodes subject to crash or malicious (a.k.a. Byzantine)
failures are connected as a complete graph Kn in which every pair of nodes has a private
reliable link allowing them to exchange messages. In this setting, a significant amount of
effort has been dedicated to narrowing down the complexity of solving agreement tasks such
as consensus and, more generally, k-set agreement for k ≥ 1. This includes in particular
the issue of early stopping algorithms whose performances depend on the actual number of
failures f experienced during the execution of the algorithm, and not on the upper bound t

on the number of failures. We refer to a sequence of surveys on the matter [5, 26, 28].
In the Byzantine case, general communication graphs were studied early on [12], and are

still being investigated [20]. In the stop-fault case, on the other hand, it is only recently that
this approach has been extended to arbitrary networks, beyond the case of the complete
graph Kn [4, 8]. Our paper is carrying on the preliminary investigations in [4], by extending
them from consensus to k-set agreement, establishing various lower bounds including one

P. Fraigniaud, M. H. Nguyen, and A. Paz 34:5

demonstrating the optimality of the consensus algorithm in [4], and extending the analysis
to the case where the number of crashes may exceed the connectivity threshold. The original
work in [4] has been extended to solving consensus when links are subject to crash failures [8].
Several consensus algorithms were proposed in [8], but their round complexities are expressed
as a function of the so-called stretch, defined as the number of connected components of
the graph after removing the faulty links, plus the sum of the diameters of the connected
components. Instead, the round-complexity of the algorithm in [4] is expressed in term of
the radius, which is a more refined measure. Indeed, we show that the upper bound in [4] is
tight (no multiplicative constants, nor even additive constants). The consensus algorithms
in [8] however extend to the case where failures may disconnect the graph, and the task is
then referred to as “disconnected agreement”. Again, the complexities of the algorithms are
expressed in term of the stretch, while we shall express the complexity of our local consensus
algorithm as a function of the more refined radius parameter. We actually conjecture that our
local consensus algorithm is optimal (with no multiplicative nor additive constants) for all t,
no matter whether t < κ(G) or t ≥ κ(G). On the other hand, some consensus algorithms
proposed in [8] are early stopping, but the one with round-complexity close to the stretch of
the actual failure pattern is not oblivious, and it uses messages with size significantly larger
than the size of the messages in oblivious algorithms.

The case of omission failures has also attracted a lot of attention. In this context, nodes
are reliable but messages may be lost. This is modeled as a sequence S = (Gi)i≥1 of directed
graphs, where Gi captures the connections that are functioning at round i. The oblivious
message adversary model allows an adversary to choose each communication graph Gi from
a set G and independently of its choices for the other graphs. The nodes know the set G
a priori, but not the actual graph picked by the adversary at each round). We refer to
[9, 24, 29] for recent advances in this domain, including solving consensus. We also refer
to the heard-of model [6, 7], which bears similarities with the oblivious message adversary
model.

The case of transient failures is addressed in the context of self-stabilizing algorithms [14].
As opposed to most distributed algorithms for networks, which start from a given specific
initial configuration, self-stabilizing algorithms must be able to start from any initial configu-
ration (which may result from a corruption of the internal variables of the nodes). Under the
synchronous scheduler, a self-stabilizing algorithm performs in a sequence of synchronous
rounds, just that it must be able to cope with an arbitrary initial state of the system.

Last but not least, we underline the recent trend related to modeling communication
between nodes (under the full-information paradigm) as a topological deformation of the
input simplicial complex, and the computation (i.e., the decision of each node regarding its
output value) as a simplicial map from the deformed input complex to the output simplicial
complex [18]. The KNOW-ALL model [3] has been designed as a first attempt to understand
the LOCAL model through the lens of algebraic topology. In particular, it was shown that
k-set agreement in a graph G known to all the nodes a priori requires r rounds, where r is the
smallest integer such that there exists a k-node dominating set in the r-th transitive closure
of G. A follow-up work [17] minimized the involved simplicial complexes, and extended the
framework to handle graph problems such as finding a proper coloring.

The study of anonymous networks, in which nodes may not be provided with distinct
identifiers, and of asynchronous communication and computing, is beyond the scope of this
paper, and we merely refer the reader to [10, 11, 15, 21, 22] for recent advances in these
domains, as far as computing in (non-necessarily complete) networks is concerned.

STACS 2025

34:6 Agreement Tasks in Fault-Prone Synchronous Networks of Arbitrary Structure

2 Model and definitions

In this section, we recall the definition of the (synchronous) t-resilient model for networks,
and the graph theoretical notions related to this model, all taken from [4], as well as the
consensus algorithm presented there.

2.1 The Model
Let G = (V,E) be an n-node undirected graph, which is also connected and simple (i.e., no
multiple edges, nor self-loops). Each node v ∈ V is a computing entity modeled as an infinite
state machine. The nodes of G have distinct identifiers, which are positive integers. For the
sake of simplifying the notations, we shall not distinguish a node v from its identifier; for
instance, by “the smallest node” we mean “the node with the smallest identifier”. Initially,
every node knows the graph G, that is, it knows the identifiers of all nodes, and how the
nodes are connected. The uncertainty is thus not related to the initial structure of the
connections, but is only due to the presence of potential failures, in addition to the fact that,
of course, every node is not a priori aware of the inputs of the other nodes.

Computation in G proceeds as a sequence of synchronous rounds. All nodes start
simultaneously, at round 1. At each round, each node sends a message to each of its neighbors
in G, receives the messages sent by its neighbors, and performs some local computation.
Each node may however fail by crashing – when a node crashes, it stops functioning and
never recover. However, if a node v crashes at round r, it may still send a message to a
non-empty subset of its set N(v) of neighbors during round r. For every positive integer
t ≥ 0, the t-resilient model assumes that at most t nodes may crash. A failure pattern is
defined as a set

φ = {(v, Fv, fv) | v ∈ F}

where F ⊂ V is the set of faulty nodes in φ, with 0 ≤ |F | ≤ t, and, for each node v ∈ F , we
use fv to specify the round at which v crashes, and Fv ⊆ N(v) to specify the non-empty set
of neighbors to which v fails to send messages at round fv.

A node v ∈ F such that Fv = N(v) is said to crash cleanly in φ (at round fv). All the
nodes in V ∖ F are the correct nodes in φ. The failure pattern in which no nodes fail is
denoted by φ∅. The set of all failure patterns in which at most t nodes fail is denoted by Φ(t)

all .
In any execution of an algorithm in graph G under the t-resilient model, the nodes know t

and G, but they do not know in advance to which failure pattern they may be exposed. This
absence of knowledge is the source of uncertainty in the t-resilient model.

2.2 Eccentricity, connectivity, and radius
The eccentricity of a node v in G with respect to a failure pattern φ, denoted by ecc(v, φ), is
defined as the minimum number of rounds required for broadcasting a message from v to
all correct nodes in φ. The broadcast protocol is by flooding, i.e., when a node receives a
message at round r, it forwards it to all its neighbors at round r + 1. That is ecc(v, φ) is
the maximum, taken over all correct nodes v′, of the length of a shortest causal path from v

to v′, where a causal path with respect to a failure pattern φ from a node v to a node v′

is a sequence of nodes u1, . . . , uq with u1 = v, uq = v′, and, for every i ∈ {1, . . . , q − 1},
ui+1 ∈ N(ui), ui has not crashed in φ during rounds 1, . . . , i− 1, and if ui crashes in φ at
round i, i.e., if (ui, Fi, i) ∈ φ for some non-empty set Fi ⊆ N(ui), then ui+1 /∈ Fi.

P. Fraigniaud, M. H. Nguyen, and A. Paz 34:7

Note that ecc(v, φ) might be infinite, in case v cannot broadcast to all correct nodes in G
under φ. A typical example is when v crashes cleanly at the first round in φ, before sending
any message to any of its neighbors. A more elaborate failure pattern φ in which v fails to
broadcast is φ = {(v,N(v) ∖ {w}, 1), (w,N(w), 2)} where v crashes at round 1, and sends
the message only to its neighbor w, which crashes cleanly at round 2.

The node-connectivity of G, denoted κ(G), is the smallest integer q such that removing q
nodes disconnects the graph G (or reduces it to a single node whenever G is the complete
graph Kn). The following was established in [4].

▶ Proposition 1 (Lemma 1 in [4]). For every graph G, every t < κ(G), every node v, and
every failure pattern φ in the t-resilient model, ecc(v, φ) < ∞ if and only if there exists at
least one correct node that becomes aware of the message broadcast from v.

Note that, in particular, thanks to proposition 1, if v is correct then ecc(v, φ) < ∞. Let

Φ⋆
v = {φ ∈ Φ(t)

all | ecc(v, φ) < ∞}

denote the set of failure patterns in the t-resilient model in which v eventually manages to
broadcast to all correct nodes. The t-resilient radius is a key parameter defined in [4]:

▶ Definition 2. The t-resilient radius of G is radius(G, t) = minv∈V maxφ∈Φ⋆
v

ecc(v, φ).

2.3 Consensus, oblivious algorithms, and the information flow graph
This section defines consensus, and survey the results in [4] regarding the round-complexity
of oblivious consensus algorithms, which uses the notion of information flow graph. Note
that this latter notion will be revisited, later in our paper.

2.3.1 Oblivious consensus algorithms
In the consensus problem, every node v ∈ V receives an input value xv from a set I of
cardinality at least 2, and every correct node must decide on an output value yv ∈ I such
that (1) yu = yv for every pair {u, v} of correct nodes, and (2) for every correct node v ∈ V ,
there exists u ∈ V (not necessarily correct) such that yv = xu.

Assuming that every node u ∈ V starts broadcasting the pair (u, xu) at round 1, we let
view(v, φ, r) be the view of node v after r ≥ 0 rounds in failure pattern φ, that is, the set
of pairs (u, xu) received by v after r rounds. An algorithm solving consensus is said to be
oblivious if the output yv of every correct node v depends only on the set of values received
by v during the execution of the algorithm. That is, in an r-round oblivious algorithm
executed under failure pattern φ, every node v outputs a value based solely on the set of
pairs (u, xu) ∈ view(v, φ, r) (and not, say, on when each value was first received, or from
which neighbor it was received). The following result was proved in [4].

▶ Proposition 3 (Theorem 2 in [4]). For every graph G and every t < κ(G), consensus in G

can be solved by an oblivious algorithm running in radius(G, t) rounds under the t-resilient
model.

That is, consensus can be solved in the minimal time it takes for a fixed node to broadcast in
all failure patterns (in which it manages to broadcast). Note that radius(G, t) might be much
larger than max

φ∈Φ(t)
all

minv∈V ecc(v, φ). For instance, the radius of the clique Kn is t + 1:
consider a path (v1, ..., vt+1) in which v1 = v, and, for every i ∈ {1, ..., t}, vi crashes at round
i while sending only to vi+1. On the other hand, max

φ∈Φ(t)
all

minv∈V ecc(v, φ) = 1 because,

STACS 2025

34:8 Agreement Tasks in Fault-Prone Synchronous Networks of Arbitrary Structure

for every failure pattern φ, there is a (correct) node v that broadcasts to all correct nodes in
a single round. Similarly, the cycle Cn has radius n− 1, whereas max

φ∈Φ(t)
all

minv∈V ecc(v, φ)
is roughly n/2.

The consensus algorithm in [4] works as follows. It selects an ordered set of t+ 1 nodes
s1, . . . , st+1 according to the following rules. Node s1 is a node with smallest eccentricity,
i.e., a node that broadcasts the fastest among all nodes. However, there are failure patterns
for which s1 fails to broadcast (e.g., if s1 crashes cleanly at round 1). Node s2 is a node that
broadcasts the fastest for all failure patterns in which s1 fails to broadcast, that is node s2
is a node that broadcasts the fastest for all failure patterns in Φ(t)

all ∖ Φ⋆
s1

. Similarly, node
s3 is a node that broadcasts the fastest for all failure patterns in which s1 and s2 fail to
broadcast, that is node s3 is a node that broadcasts the fastest for all failure patterns in
Φ(t)

all ∖ (Φ⋆
s1

∪ Φ⋆
s2

). And so on, for every 1 < i ≤ t+ 1, si is a node that broadcasts the fastest
for all failure patterns in

Φ(t)
all ∖ ∪j=1,...,i−1Φ⋆

sj
.

A key property of the sequence s1, . . . , st+1 defined as above is that, for all 1 < i ≤ t+ 1, the
worst-case broadcast time of si over all failure patterns in

Φ(t)
all ∖ ∪j=1,...,i−1Φ⋆

sj

is at most the worst-case broadcast time of si−1 over all failure patterns in

Φ(t)
all ∖ ∪j=1,...,i−2Φ⋆

sj
.

As a consequence, for every i ∈ {1, . . . , t+ 1}, the worst-case broadcast time of si over all
failure patterns in Φ(t)

all ∖ ∪j=1,...,i−1Φ⋆
sj

is at most radius(G, t) rounds.
The algorithm in [4] merely consists of letting all nodes s1, . . . , st+1 broadcast the pairs

(si, xsi
) by flooding during radius(G, t) rounds. Every node u then selects as output the

input xsi of the node si with smallest index i such that the pair (si, xsi) was received by
node u. It was shown that this choice guarantees agreement.

2.4 Information flow graph
The lower bound from [4] on the number of rounds for achieving consensus in vertex-
transitive graphs used the core notion of information flow digraph. The (directed) graph
IF(G, r) captures the state of mutual knowledge of the nodes at the end of round r ≥ 1,
assuming every node u broadcasts the pair (u, xu) by flooding throughout the graph G,
starting at round 1.

The vertices of IF(G, r) are all pairs (v, view(v, r, φ)) for v ∈ V and φ ∈ Φ(t)
all in which

v does not crash in φ during the first r rounds. Note that a same vertex of IF(G, r)
can represent both (v, view(v, r, φ)) and (v, view(v, r, ψ)) if v has the same view after r
rounds in φ and ψ.
There is an arc from (u, view(u, r, φ)) to (v, view(v, r, φ)) whenever (u, xu) ∈ view(v, r, φ),
where xu is the input of u.

The connected components of IF(G, r) play an important role, where by connected
component we actually refer to the vertices of a connected component of the undirected
graph resulting from IF(G, r) by ignoring the directions of the arcs. A node v ∈ V of the
communication graph G = (V,E) is said to dominate a connected component C of IF(G, r) if,

P. Fraigniaud, M. H. Nguyen, and A. Paz 34:9

for every vertex (u, view(u, r, φ)) ∈ C with u ̸= v there is a vertex (v, view(v, r, φ)) ∈ C with
an arc from (v, view(v, r, φ)) to (u, view(u, r, φ)) in IF(G, r). The following result characterizes
the round-complexity of consensus in G.

▶ Proposition 4 (Theorem 3 in [4]). For every graph G = (V,E) and every t < κ(G),
consensus in G can be solved by an oblivious algorithm running in r rounds under the t-
resilient model if and only if every connected component of IF(G, r) has a dominating node
in V .

It was proved in [4] that, if G is a symmetric graph then no node in V dominates
IF(G, radius(G, t) − 1). Property 4 immediately implies that consensus in G cannot be solved
by an oblivious algorithm running in less than radius(G, t) rounds under the t-resilient model.
Their proof, however, holds only for symmetric graphs, and does not extend to general
graphs.

Remark. The definition of the information flow digraph in [4] actually suffers from incon-
sistencies, and Theorem 3 there is formally incorrect. Roughly, it overlooks the possibility
of deciding on an input of a process that already stopped. The “spirit” of the definition
and the theorem is nevertheless plausible, and the specific consequences mentioned there are
correct. For establishing our lower bound, we had to fix the inaccuracy in the definition of
the information flow digraph, and the bugs in the proof of Theorem 3 of [4]. Concretely, we
introduce a new information flow graph instead of the digraph of [4], and establish a correct
version of Theorem 3 using that definition (cf. Theorem 9). See Section 4 for more details.

3 Detailed description of our results

In this section, we survey our results on consensus in detail, and, as already mentioned before,
we refer to the full version [16] for our results on k-set agreement.

3.1 Lower bounds for consensus
We show that the consensus algorithm in [4] is optimal for every graph G, and not only for
symmetric graphs. Specifically, we establish the following in Section 4.

▶ Theorem 5. For every graph G and every t < κ(G), consensus in G cannot be solved in
less than radius(G, t) rounds by an oblivious algorithm in the t-resilient model.

This result was conjectured in [4], but only proved to be true for symmetric graphs.
The class of symmetric graphs includes cliques, cycles and hypercubes, but remains limited.
Moreover, in symmetric graphs, for every two nodes u and v,

ecc(u,Φ(t)
all) = ecc(v,Φ(t)

all) = radius(G, t),

which implies that a naive algorithm for consensus in which every node outputs the input
received from the node with smallest identifier performs in radius(G, t) rounds. The fact
that radius(G, t) is a tight upper bound for consensus is thus not surprising for the family of
symmetric graphs because, essentially, the choice of the t+ 1 nodes s1, . . . , st+1 defined in
Section 2.3.1 does not matter.

Instead, for an arbitrary graph G, two different nodes may have different eccentricities,
which may differ by a multiplicative factor 2 at least. As a consequence, the choice of the
source nodes s1, . . . , st+1 whose input can be adopted as output by the other nodes matters,
as well as the ordering of these nodes (in case a node receives the input of two different
source nodes).

STACS 2025

34:10 Agreement Tasks in Fault-Prone Synchronous Networks of Arbitrary Structure

3.1.1 A naive lower bound
A naive lower bound for the round-complexity of consensus is the maximum, over all failure
patterns, of the time it takes some node to broadcast in the given pattern, obtained by
switching the min and max operator in the definition of radius(G, t), i.e.,

max
φ∈Φ(t)

all

min
v∈V

ecc(v, φ). (1)

Indeed, for every failure pattern φ, even binary consensus under failure pattern φ cannot be
solved in less than R(φ) = minv∈V ecc(v, φ) rounds. The proof of this claim is by a standard
indistinguishability argument. Specifically, let us assume, for the purpose of contradiction,
that there is an algorithm ALG solving consensus in G = (V,E) under failure pattern φ in
R(φ) − 1 rounds. Let us order the nodes of G as v1, . . . , vn arbitrarily. Let us consider the
input configuration I0 in which all nodes have input 0. For every i = 1, . . . , n, we gradually
change the input configuration as follows (see Figure 1).

000..0 100..0 110..0 . . . 1..100 1..110 1..111
I0 I1 I2 In−2 In−1 In

w1 w2 wn−1 wn

Figure 1 Input configurations I0, . . . , In of a graph G = (V, E), where V = {v1, . . . , vn}.

Since ecc(vi, φ) > R(φ), there exists a node wi that does not receive the input of vi in
ALG. Let us then switch the input of vi from 0 to 1, and denote by Ii the resulting input
configuration. Note that In is the input configuration in which all nodes have input 1. Note
also that, for every i ∈ {1, . . . , n}, node wi does not distinguish Ii−1 from Ii, and therefore
ALG must output the same at wi in both input configurations. Since, for every i ∈ {1, . . . , n},
all nodes must output the same value for input configuration Ii, we get that the consensus
value returned by ALG for I0 is the same as for In, which contradicts the validity condition.

It was conjectured in [4] that, in the t-resilient model, consensus needs longer time than
max

φ∈Φ(t)
all

minv∈V ecc(v, φ), and cannot be solved by an oblivious algorithm in less than
radius(G, t) rounds, i.e., the time it takes a fixed node to broadcast. As said before, this
conjecture was however proved only for vertex-transitive graphs.

3.1.2 Sketch of proof of Theorem 5
To show that the consensus algorithm in [4] is optimal, i.e., to establish Theorem 5, we use
the characterization of Proposition 4. In fact, we first fix the aforementioned bugs in [4] by
defining the information flow graph, and then establish Proposition 4, a correct version of
their theorem, using this new definition. With this new definition and new proposition at
hand, we show that for every graph G = (V,E) and every t < κ(G), there exists a connected
component of IF(G, radius(G, t) − 1) that has no dominating node in V . To achieve this fact,
we show that for every node v ∈ V there exists a failure pattern φv such that

ecc(v, φv) ≥ radius(G, t),

with some additional desirable properties. Then, we define a notion of successor of any
failure pattern satisfying these desirable properties, which satisfies two key features.

First, a failure pattern and its successor are in the same connected component of
IF(G, radius(G, t) − 1). Here we abuse terminology since the vertices of the informa-
tion flow graph are not failure patterns, but pairs (node, view). What we formally mean
is that the two subgraphs of IF(G, radius(G, t) − 1) induced by all the views in the two
failures patterns are both in the same connected component of IF(G, radius(G, t) − 1).

P. Fraigniaud, M. H. Nguyen, and A. Paz 34:11

Second, for every node v ∈ V , there exists a sequence of failure patterns φ0, φ1, . . . , φℓ

such that φ0 = φv, φℓ = φ∅ (the failure pattern in which no failures occur), and for every
i ∈ {0, . . . , ℓ− 1}, φi+1 is the successor of φi.

It follows from these two features that, for every node v ∈ V , φv and φ∅ are in the
same connected component of IF(G, radius(G, t) − 1), namely the connected component of
IF(G, radius(G, t) − 1) containing φ∅. Let C be this connected component. For every node
v ∈ V , since ecc(v, φv) ≥ radius(G, t), we have that v does not dominate C. Therefore, no
nodes dominate C, and our new Proposition 4 thus implies that no oblivious algorithm can
solve consensus in less than radius(G, t) rounds.

3.2 Beyond the connectivity threshold
The algorithm from [4] for consensus in the t-resilient model is under the assumption that
t < κ(G) in graph G, that is, the number of failing nodes is (strictly) smaller than the
connectivity of the graph. This assumption is motivated by the mere observation that a set
of κ(G) nodes that, e.g., fails cleanly at the very first round, might disconnect the graph G,
preventing tasks such as consensus to be solved. We show that, by slightly relaxing consensus
and set-agreement, one can still consider the case where t ≥ κ(G), in a meaningful way, in
the sense that if the t failing nodes do not disconnect the graph, then the standard consensus
and set agreement tasks are solved.

3.2.1 Local consensus
For any given failure pattern φ, let comp(G,φ) be the set of connected components of G
resulting by removing from G all nodes that fail in φ. If t ≥ κ(G), then the nodes in a
connected component C ∈ comp(G,φ) of G may never hear from the nodes in a connected
component C ′ ̸= C, and vice versa, regardless of the number of rounds. To study consensus
and k-set agreement for t ≥ κ(G), we merely relax the agreement condition: Agreement must
hold component-wise, i.e., for each connected component separately, in the spirit of [8].

In other words, under φ, for any connected components C and C ′ of comp(G,φ) all nodes
in C must agree (on a single value for consensus, or on at most k values for k-set agreement),
and all nodes in C ′ must agree, but no conditions are imposed the two sets of agreement
values corresponding to C and C ′. In particular, for consensus, the nodes in C may agree
on x, but the nodes in C ′ may agree on x′ ̸= x.

The validity condition remains unchanged, that is, every output value must be the input
value of some node. Note however that a node can return an output value which was the
input value of a node from a different connected component.

We refer to these variants of consensus and k-set agreement as local, because agreement
must hold “locally”, i.e., inside each connected component.

Remark. When t < κ(G), consensus and local consensus are the same tasks, and, for
every k ≥ 1, k-set agreement and local k-set agreement are the same tasks. More generally,
for every graph G, and for every failure pattern φ ∈ Φ(t)

all , if the nodes failing in φ do not
disconnect G, and an algorithm solving local consensus (resp., local k-set agreement) does
solve standard consensus (resp., standard k-set agreement).

3.2.2 Consensus beyond the connectivity threshold
We design a local consensus algorithm for an arbitrary graph G in the t-resilient model, for
every given t, which does not need to be less than the connectivity κ(G) of G. This algorithm
satisfied the following property (see proof in the full version [16]).

STACS 2025

34:12 Agreement Tasks in Fault-Prone Synchronous Networks of Arbitrary Structure

▶ Theorem 6. For every connected graph G = (V,E), and every t ≥ 0, local consensus in G

can be solved by an oblivious algorithm running in radius(G, t) rounds under the t-resilient
model.

In the statement above, radius(G, t) denotes an extension of the notion of t-resilient
radius to the case where t ≥ κ(G), which coincide to the aforementioned notion of radius
whenever t < κ(G). For the purpose of extending the notion of radius beyond the connectivity
threshold, we revisit the notion of eccentricity entirely. Indeed, given a failure pattern φ,
a node v may succeed to broadcast in some connected components but not in all of them.
The control of the way information flow through the graph G with respect to the connected
components is complex, as the connected components for one failure pattern are typically
different from the connected components for another failure pattern.

Despite these difficulties, we are able to design and analyse an oblivious (and hence
generic) local consensus algorithm. Given a graph G = (V,E), our algorithm performs in
radius(G, t) = minv∈V ecc(v,Φ⋆

v) rounds, where the notion of eccentricity has been redefined
and extended for allowing an arbitrary number t of failures. Again, for t < κ(G), the extended
notion of eccentricity coincides with the notion of eccentricity defined for consensus in [4],
which itself coincide with the graph-theoretical notions of eccentricity for t = 0. We also note
that our extended notion of radius, for all t ≥ 0, provides a fine grain analysis of our local
consensus algorithm, more refined than the notion of stretch defined in [8].

4 Lower Bound for Consensus

This section is entirely devoted to the proof of Theorem 5, that is, we show that, for every
graph G and every t < κ(G), consensus in G cannot be solved in less than radius(G, t) rounds
by an oblivious algorithm in the t-resilient model. We first establish a consistent notion of
information flow graph, which can then be used to characterize consensus solvability, and we
fix the bugs in the proof of Theorem 3 in [4] (see Proposition 4) resulting from inconsistencies
in the original definition of the information flow digraph. Using our new characterization, we
establish our lower bound.

4.1 Information flow graph revisited
The main issue with the notion of information flow digraph IF(G, r) as defined in [4] comes
from the fact that this directed graph includes only vertices (v, view(v, r, φ)) where v has not
crashed in φ during rounds 1, . . . , r. The main issue is related to the concept of domination,
as defined in [4]. A vertex v dominates a connected component C of IF(G, r) if the set
{(v, view(v, r, φ)) | φ ∈ Φ(t)

all } dominates C. This is too restrictive, as the correct nodes may
agree on the input value of a node v that has already crashed. It follows that, for some
failure pattern φ, the vertex (v, view(v, r, φ)) may not be present in IF(G, r) (and therefore
cannot dominate any other vertices of IF(G, r)), whereas the nodes that are correct in φ may
agree on the input value of v. The characterization of Theorem 3 in [4] is therefore incorrect,
even if the “spirit” of the characterization remains conceptually valid, as we shall show in
this section.

To provide an illustration of the problems resulting from the original definition of
information flow digraph in [4], let us clarify that this definition was aiming for capturing
any subset Φ ⊆ Φ(t)

all of failure patterns (for instance the subset Φ of failure patterns in which
nodes crash cleanly), in which case only the failure patterns φ ∈ Φ are considered. Let us

P. Fraigniaud, M. H. Nguyen, and A. Paz 34:13

v

u1 u3u2 u4 u6u5

G = (V,E)

(v, {u1,…, u6})

(u1, {v, u1, u2})

(u3, {v, u2, u3, u4})
(u2, {v, u1, u2, u3})

(u4, {v, u3, u4, u5})
(u5, {v, u4, u5, u6})

(u6, {v, u5, u6})

𝖨𝖥(G,1,{φ})

(u3, {v, u1, u2, u3, u4, u5}) (u6, {v, u4, u5, u6})

𝖨𝖥(G,2,{φ})

Figure 2 The information flow graph IF(G, r, {φ}) as defined in [4] for r = 1 and r = 2, where φ is
the failure pattern in which v crashes cleanly at the second round. No node dominates IF(G, 2, {φ})
(right), even though consensus is solvable in G under φ in 2 rounds.

then consider the scenario displayed on Fig. 2. The graph G is a 6-node path plus a universal
node v. The set Φ = {φ} contains a single failure pattern φ in which v crashes cleanly at
the second round.

Fig. 2 displays IF(G, 1, {φ}) and IF(G, 2, {φ}) as defined in [4] (the direction of the arcs
are omitted, each edge corresponding to two symmetric arcs). A vertex (v, view(v, r, φ))
is present in the former but not in the latter, and thus, as opposed to what one might
expect since nodes acquire more and more information as time passes, IF(G, 2, {φ}) is not a
denser super graph of IF(G, 1, {φ}) nor it includes more vertices (with larger views), as some
vertices present in IF(G, 1, {φ}) may disappear in IF(G, 2, {φ}). In fact, node v dominates
IF(G, 1, {φ}), but it does not dominate IF(G, 2, {φ}). Therefore, when analyzing G with the
set {φ} of failure patterns using the characterization theorem in [4], consensus should be
solvable in 1 round but not in 2 rounds!

We propose below a more robust notion of information flow graph (which is not directed
anymore). The reader familiar with the algebraic topology interpretation of distributed
computing [18] will recognize the mere 1-skeleton of the protocol complex after r rounds. For
the purpose of fixing the issues in [4], we introduce IF(G, r,Φ) for an arbitrary set of failure
patterns Φ ⊆ Φ(t)

all .

▶ Definition 7. The information flow graph of a communication graph G = (V,E) after
r ≥ 0 rounds for a set Φ ⊆ Φ(t)

all , t ≥ 0, of failure patterns is the graph IF(G, r,Φ) defined as
follows.

The vertices of IF(G, r,Φ) are all pairs (v, view(v, r, φ)) for v ∈ V and φ ∈ Φ, where v is
correct in φ.
There is an edge between (v1, w1) and (v2, w2) in IF(G, r,Φ) whenever there exists φ ∈ Φ
such that w1 = view(v1, r, φ) and w2 = view(v2, r, φ)

Remark. Unlike the definition of [4], this new notion of information-flow graph is not limit
limited to t ≤ κ(G).

Note that a same vertex (v, ω) of IF(G,Φ, r) can represent both (v, view(v, r, φ)) and
(v, view(v, r, ψ)) if v has the same view after r rounds in φ ∈ Φ and ψ ∈ Φ. Note also that,
for every φ ∈ Φ, the set

config(G, r, φ) = {(v, view(v, r, φ)) ∈ IF(G, r,Φ) | v ∈ V }

is a clique in IF(G, r,Φ). The connected components of IF(G, r,Φ) play an important role,
w.r.t. the following concept of domination.

STACS 2025

34:14 Agreement Tasks in Fault-Prone Synchronous Networks of Arbitrary Structure

▶ Definition 8. A node v ∈ V of the communication graph G = (V,E) is said to dominate a
connected component C of IF(G, r,Φ) if, for every φ ∈ Φ and every u ∈ V ,

(u, view(u, r, φ)) ∈ C =⇒ (v, xv) ∈ view(u, r, φ).

Note that only correct nodes need to be dominated, as

(u, view(u, r, φ)) ∈ C ⊆ IF(G, r,Φ)

implies that u is correct at round r. On the other hand, any node may be dominating.
The following result characterizes the round-complexity of consensus in G by fixing the
aforementioned inaccuracies in the definition of the information flow graph in [4], with impact
on the proof of their characterization theorem (Theorem 3 in [4]).

▶ Theorem 9. For every graph G = (V,E), every t ≥ 0, and every set of failure patterns
Φ ⊆ Φ(t)

all , consensus in G can be solved by an oblivious algorithm running in r rounds under
the t-resilient model with failure patterns in Φ if and only if every connected component of
IF(G, r,Φ) has a dominating node in V .

Proof. Let us first show that if every connected component of IF(G, r,Φ) has a dominating
node in V then consensus in G can be solved by an oblivious algorithm running in r rounds.
For every connected component C of IF(G, r,Φ), let vC ∈ V be a node of G that dominates C.
The algorithm proceeds as follows. Every node vC broadcasts by flooding during r rounds.
After r rounds, every correct node u considers its view, denoted by view(u). A crucial point
is that view(u) may not be sufficient for u to determine what is the actual failure pattern
φ ∈ Φ experienced during the execution, merely because one may have

view(u) = view(u, r, φ) = view(u, r, ψ)

for two different failure patterns φ,ψ in Φ. However, view(u) is sufficient to determine the
connected component C of IF(G, r,Φ) to which (u, view(u)) belongs. Node u outputs the
input xvC

of node vC .
To establish correctness of this algorithm, observe first that (vC , xvC

) belongs to the
view of node u. To see why, let φ ∈ Φ, and let us consider the execution of the algorithm
under φ. Let C be the connected component of (u, view(u, r, φ)). Since vC dominates C,
the mere definition of domination implies that (vC , xvC

) ∈ view(u, r, φ). As a consequence,
the algorithm is well defined. To show agreement, let u′ ̸= u be another correct node in φ.
By definition of the information flow graph, there is an edge between (u, view(u, r, φ)) and
(u′, view(u′, r, φ)), and thus these two vertices belong to the same connected component C,
and both output the same value xvC

.

For the other direction, we show the contrapositive. That is, we let C be a connected
component of IF(G, r,Φ) that is not dominated, and we aim at showing that there are no
oblivious consensus algorithms in G running in r rounds. Let us assume, for the purpose
of contradiction, that there exists an oblivious consensus algorithm ALG in G running in r

rounds.

▷ Claim 10. Let (u, view(u, r, φ)) and (u′, view(u′, r, φ′)) be two vertices of C, where u and
u′ need not be different, nor do φ and φ′. For the same input configuration, node u outputs
the same value in ALG under φ as node u′ under φ′.

To see why this claim holds, observe that, since (u, view(u, r, φ)) and (u′, view(u′, r, φ′))
belong to the same connected component C, there is a sequence

(v0, view(v0, r, ψ0)), . . . , (vk, view(vk, r, ψk))

P. Fraigniaud, M. H. Nguyen, and A. Paz 34:15

of vertices of C such that

(v0, view(v0, r, ψ0)) = (u, view(u, r, φ)), (vk, view(vk, r, ψk)) = (u′, view(u′, r, φ′)),

and, for every i ∈ {0, . . . , k− 1}, there is an edge between the two vertices (vi, view(vi, r, ψi))
and (vi+1, view(vi+1, r, ψi+1)) in IF(G, r,Φ). Note that, for every i ∈ {0, . . . , k}, node
vi is correct in ψi since (vi, view(vi, r, ψi)) belongs to the information flow graph. For
every i ∈ {0, . . . , k − 1}, the presence of an edge between (vi, view(vi, r, ψi)) and
(vi+1, view(vi+1, r, ψi+1)) implies that there exists χ ∈ Φ such that

(vi, view(vi, r, ψi)) = (vi, view(vi, r, χ)),

and

(vi+1, view(vi+1, r, ψi+1)) = (vi+1, view(vi+1, r, χ)).

As a consequence, since ALG is a consensus algorithm, ALG outputs the same value at vi+1
under ψi+1 as it outputs at vi under ψi, which is the value outputted by ALG under χ. Since
this holds for every i ∈ {0, . . . , k − 1}, we get that, in particular, u outputs the same value
in φ as u′ in φ′, as claimed.

For establishing a contradiction, let us enumerate the n nodes of G as u0, . . . , un−1 in
arbitrary order. Since C is not dominated, for every node ui, i ∈ {0, . . . , n− 1}, there exists
a vertex (vi, view(vi, r, φi)) of C such that (ui, xui

) /∈ view(vi, r, φi), where vi is correct in
φi. For i ∈ {0, . . . , n}, let us denote by Ii the input configuration in which the n− i nodes
u0, . . . , un−(i+1) have input 0, and all the other nodes have input 1. Thus, in particular, I0
is the configuration in which all nodes have input 0, and In is the configuration in which
all nodes have input 1. Since, for every i ∈ {0, . . . , n− 1}, (ui, xui

) /∈ view(vi, r, φi), node ui

does not distinguish Ii from Ii+1 under φi, and thus ALG must output the same at ui for
both configurations.

Since consensus imposes that all (correct) nodes output the same value, this means that,
for every i ∈ {0, . . . , n− 1}, all nodes output the same in ALG for Ii and Ii+1 under φi. By
Claim 10, all nodes output the same for Ii under φi as they do for Ii+1 under φi+1. It follows
that all nodes output the same for I0 under φ0 as for In under φn. This is a contradiction
as all nodes must output 0 for I0, whereas all nodes must output 1 for In. ◀

Notation. For a fixed upper bound t on the number of failures, for every graph G, and for
every integer r ≥ 0, we denote by IF(G, r) the information flow graph for the set of all failure
patterns in the t-resilient model, that is, IF(G, r) = IF(G, r,Φ(t)

all).

4.2 Proof of Theorem 5
To prove Theorem 5, we define the notion of successor of a failure pattern. Given φ ∈ Φ(t)

all ,
we say that a node u is crashing last in φ if there exists a triple (u, Fu, fu) ∈ φ (i.e., u crashes
in φ), and, for every (v, Fv, fv) ∈ φ, fu ≥ fv.

▶ Definition 11. Let φ ∈ Φ(t)
all , let (u, Fu, fu) ∈ φ, and assume that u is crashing last in φ.

A successor of φ with respect to u is a failure pattern

succ(φ, u) =
(
φ∖ {(u, Fu, fu)}

)
∪ {(u, F ′

u, f
′
u)}

where F ′
u and f ′

u are defined as follows (see Fig. 3):

STACS 2025

34:16 Agreement Tasks in Fault-Prone Synchronous Networks of Arbitrary Structure

φ

φ′

Case 1: f ′
u = fu + 1

w

u

Fu

w

u

F ′
u

Case 2: f ′
u = fu + 1

w
u

Fu

w
u

F ′
u

Case 3: f ′
u = fu

w
u

Fu

w
u

F ′
u

Figure 3 A successor φ′ of a failure pattern φ with respect to node u. Red nodes are faulty in φ

and white nodes are correct in it.

1. If Fu contains only faulty nodes in φ, then f ′
u = fu + 1, and F ′

u = N(u) ∖ {w} for some
arbitrary correct neighbor w of u.

2. If Fu contains exactly one correct node w in φ, then f ′
u = fu + 1, and F ′

u = N(u).
3. If Fu contains at least two correct nodes in φ, then f ′

u = fu, and F ′
u = Fu ∖ {w} for some

arbitrary correct node w ∈ Fu.

Note that the correct node w in Definition 11 is well defined as the number of failures
satisfies t < κ(G) ≤ δ(G) ≤ deg(u), where δ(G) is the minimum degree of the nodes in G.
Intuitively, succ(φ, u) is identical to φ, except that u fails at round fu + 1, or it still fails at
round fu but sends its message to one more correct neighbor before crashing.

Note also that a failure pattern may have different successors, which depends on the
choice of the node u that crashes last, and on the choice of the correct neighbor w of u in
the first and third cases of Definition 11. A correct neighbor w of u in Definition 11 is called
a witness of the pair (φ,φ′).

Still using the notations of Definition 11, let us set f ′′
u = f ′

u in case 1, and f ′′
u = fu in

cases 2 and 3. At the end of round f ′′
u , there is at most one correct node with different views

in φ and succ(φ, u). The only correct node may have different views in φ and φ′ = succ(φ, u)
at the end of round f ′′

u is the witness of the pair (φ,φ′). Before applying the notion of
successor to derive our lower bound, let us observe the following.

▶ Lemma 12. For every node v, there exists a failure pattern φ ∈ Φ⋆
v such that no node

u ̸= v fails at round 1 in φ, and ecc(v, φ) ≥ radius(G, t).

P. Fraigniaud, M. H. Nguyen, and A. Paz 34:17

Proof. By definition of the radius, for every v ∈ V , there exists ψ ∈ Φ⋆
v such that ecc(v, ψ) ≥

radius(G, t). The failure pattern φ is identical to ψ, except that, for every node u ̸= v that
crashes at round 1 in ψ, u crashes cleanly at round 2 in φ. We have ecc(v, φ) = ecc(v, ψ)
because every node that crashes later in φ than in ψ does not send any message to their
neighbors after round 1 which may contain information received from v. Thus ecc(v, φ) ≥
radius(G, t). ◀

The premises of the following lemma are justified by Lemma 12.

▶ Lemma 13. Let φ ∈ Φ(t)
all such that (1) at most one node crashes at round 1, and (2) if

there exists a node v that crashes at round 1 in φ, then φ ∈ Φ⋆
v (i.e., v broadcasts despite the

fact that it crashes at round 1). For every successor φ′ of φ, the following holds:
at most one node crashes at round 1 in φ′;
if there is a node v that crashes at round 1 in φ′, then v crashes at round 1 in φ as well;
there exists a correct node with the same view in φ and φ′ at the end of round
radius(G, t) − 1.

Proof. Let φ′ be a successor of φ, such that the entry (u, Fu, fu) of φ is replaced by the
entry (u, F ′

u, f
′
u) in φ′. Let w be a witness for the pair (φ,φ′) with respect to u. Using the

notations from Definition 11, let f ′′
u = f ′

u in Case 1, and f ′′
u = fu in Cases 2 and 3.

After f ′′
u rounds, the only correct node that may have different views in φ and φ′ is w.

Since u is a node crashing last in φ, we get that, after round f ′′
u , w needs the same number

of rounds in φ and φ′ for broadcasting to all correct nodes. Indeed, all nodes that have not
crashed in φ nor in φ′ up to round f ′′

u included satisfy: (1) they are correct nodes in both φ

and φ′, (2) they have the same view in both φ and φ′, and (3) the subgraph of G induced by
the correct nodes in φ is identical to the subgraph of G induced by the correct nodes in φ′.

Let R = radius(G, t). We consider two cases, depending on whether w broadcasts or not.
Let us first consider the case where, assuming that w starts broadcasting at round f ′′

u + 1,
w cannot broadcast to all correct nodes during rounds f ′′

u + 1, . . . , R − 1 under the failure
patterns φ′ and φ. That is, under φ′, some node s does not receive view(w, f ′′

u , φ
′) during

rounds f ′′
u + 1, . . . , R − 1. As a consequence, this node s does not detect any difference

between view(w, f ′′
u , φ) and view(w, f ′′

u , φ
′). It follows that s has the same view in φ and φ′

at the end of R− 1 rounds.
Consider now the case where, assuming that w starts broadcasting at round f ′′

u + 1,
w does succeed to broadcast to all correct nodes during rounds f ′′

u + 1, . . . , R − 1 under the
failure patterns φ′ and φ. Since no node fails after round f ′′

u in both φ and φ′, a causal path
from w to a node s in rounds f ′′

u + 1, . . . , R − 1 is also a causal path from s to w in rounds
f ′′

u + 1, . . . , R − 1. At the end of round R − 1, every correct node can thus send to w its
view at the end of round f ′′

u . Since no node s ̸= v fails at round 1, every node s ̸= v does
send its input to some correct neighbor during round 1. Therefore, s ∈ view(w,R − 1, φ)
and s ∈ view(w,R − 1, φ′). Since φ ∈ Φ⋆

v, we get that, at the end of round f ′′
u , there

exists a correct node x that heard from v, i.e., such that v ∈ view(x, f ′′
u , φ). At the end of

round R− 1, this node x will send view(x, f ′′
u , φ) to w, so v ∈ view(w,R− 1, φ). Similarly,

v ∈ view(w,R− 1, φ′). As a consequence, view(w,R− 1, φ) = view(w,R− 1, φ′), and w has
a same view in both failure patterns after R− 1 rounds, as claimed.

Furthermore, at most one node v crashes at round 1 in φ′, and φ′ ∈ Φ⋆
v, as desired. ◀

Using the characterization of Theorem 9 of consensus solvability based on the information-
flow graph, it is sufficient to prove the following result for establishing our lower bound.

STACS 2025

34:18 Agreement Tasks in Fault-Prone Synchronous Networks of Arbitrary Structure

▶ Lemma 14. The information-flow graph IF(G, radius(G, t) − 1) has a connected component
that is not dominated by any node of V .

Proof. Let R = radius(G, t). For every node v ∈ V , we denote by φv a failure pattern in
Φ⋆

v such that φv contains no node u ̸= v that fails at round 1, and ecc(v, φv) ≥ R. The
existence of φv is guaranteed by Lemma 12. Borrowing the notation from [4], for every
failure pattern φ, and every r ≥ 1, let

config(φ, r) = {(v, view(v, φ, r)) ∈ V (IF(G, r)) | v ∈ V is active in φ at round r},

where by v is active in φ at round r, we mean that v has not crashed in φ during rounds
1, . . . , r. It was proved in [4] (see Lemma 4 in there) that, for every failure pattern φ, and
every r ≥ 1, the subgraph of IF(G, r) induced by the vertices of config(φ, r) is connected.

We now show that, for every v ∈ V , config(φv, R− 1) and config(φ∅, R− 1) are contained
in the same connected component of IF(G,R− 1). Roughly, we shall construct a sequence
of intermediate failure patterns from φv to φ∅ such that, for every two consecutive failure
patterns ψ and ψ′ in the sequence, there is a correct node with the same view in ψ and ψ′.
Note that the existence of this node implies that the subgraph of IF(G,R− 1) induced by
config(ψ,R− 1), and the subgraph of IF(G,R− 1) induced by config(ψ′, R− 1) are included
in the same connected component of IF(G,R− 1).

Let us order the crashing nodes in φv in a decreasing order of the rounds at which they
crash where ties are broken arbitrarily, and let u1, . . . , utv

be the resulting sequence. We
have tv ≤ t and, for every i ∈ {1, . . . , tv − 1}, fui

≥ fui+1 . Let us construct a sequence
S = ψ0, . . . , ψℓ of failure patterns, where ψ0 = φv, and ψℓ = φ∅. This sequence is itself
the concatenation of sub-sequences Si for i = 1, . . . , tv such that S1 = ψ0, . . . , ψℓ1 , and, for
every i ∈ {2, . . . , tv}, Si = ψℓi−1+1, . . . , ψℓi with 0 ≤ ℓ1 ≤ ℓ2 ≤ · · · ≤ ℓtv = ℓ. For every
sub-sequence Si, i ∈ {1, . . . , tv}, and for every j ∈ {ℓi−1 + 1, . . . , ℓi − 1}, we set

ψj+1 = succ(ψj , ui).

Moreover, the first failure pattern ψℓi−1+1 in the sequence Si is obtained from φv by removing
the crashing nodes u1, . . . , ui−1, i.e., these nodes are correct in ψℓi−1+1. The last failure
pattern ψℓi

of the sequence Si is when the node ui that crashes last in ψℓi
fails at round R.

▷ Claim 15. For any two consecutive failure patterns ψj and ψj+1 in S, there exists a
correct node wj with the same view in both patterns after R− 1 rounds, that is,

view(wj , ψj , R− 1) = view(wj , ψj+1, R− 1).

To see why the claim holds, let us first assume that ψj and ψj+1 belong to a same sub-
sequence Si. In this case, the claim directly follows from Lemma 13. If ψj and ψj+1 do not
belong to a same sub-sequence Si, then ψj is the last element of a sub-sequence Si, and ψj+1
is the first element of sub-sequence Si+1, then the claim follows from the fact that the sets
of nodes crashing in ψj and ψj+1 during round r are the same, for every r ∈ {1, . . . , R − 1}.
This completes the proof of Claim 15.

From Claim 15, for any two consecutive failure patterns ψj and ψj+1 in S, config(ψj) and
config(ψj+1) belong to the same connected component of IF(G,R− 1). To wrap up, we have
shown that, for every v ∈ V , there exists a connected component of IF(G,R− 1) containing
both config(φ∅) and config(φv). Recall that φv is a failure pattern in Φ⋆

v satisfying that it
contains no node different from v that fails at round 1, and ecc(v, φv) ≥ R. At the end of
round R− 1, no node dominates the component that contains config(φ∅) because, for every
node v ∈ V , v cannot dominates config(φv, R− 1). ◀

P. Fraigniaud, M. H. Nguyen, and A. Paz 34:19

5 Conclusion

In this paper, we have completed the picture for consensus in the t-resilient model for
arbitrary graphs. That is, we have proved that the consensus algorithm in [4] is optimal,
i.e., for every graph G and t < κ(G), consensus can be solved by an oblivious algorithm
performing in radius(G, t) rounds under the t-resilient model, and no oblivious algorithms can
solve consensus in G in less than radius(G, t) rounds under the t-resilient model. Moreover,
we have extended the study of consensus beyond the connectivity threshold. Specifically, we
defined the local consensus task, a generalization of consensus. We designed and analyzed a
generic algorithm for this task, which we believe to be optimal among oblivious algorithms.
The technical difficulty of establishing optimality of our algorithm for the local variant of
consensus yields from the fact that we miss an analog of our characterization theorem (cf.
Theorem 9 in Section 4) for local consensus. Finally, we have generalized the algorithm in [4]
for consensus, as well as our algorithm for local consensus, to k-set agreement.

Our results open a vast domain for further investigations. In particular, what could
be said for sets of failure patterns Φ distinct from Φ(t)

all ? The case Φclean of clean failures,
for which there are no known generic consensus algorithms applying to arbitrary graphs,
is particularly intriguing. Another intriguing and potentially challenging area for further
research is exploring scenarios where no upper bounds on the number of failing nodes are
assumed, by concentrating solely on the set Φconnect of failure patterns that do not result in
disconnecting the graph. The main difficulties is that basic results such as Lemma 1 in [4]
(cf. Proposition 1) do not hold anymore in this framework. Indeed, some ill behaviors that
do not occur when the number of failures is bounded from above by the connectivity of the
graph, or when the problems are considered in each connected component separately, pop
up when the number of failures is arbitrarily large yet preserving connectivity. Finally, the
design of early-stopping algorithms in the t-resilient model for arbitrary graphs is also highly
desirable. The early-stopping algorithms in [8] are very promising, but their analysis must
be refined to a grain finer than the stretches of the failure patterns, by focusing on, e.g.,
eccentricities and radii.

References
1 Marcos Kawazoe Aguilera and Sam Toueg. A simple bivalency proof that t-resilient consensus

requires t+ 1 rounds. Information Processing Letters, 71(3-4):155–158, 1999. doi:10.1016/
S0020-0190(99)00100-3.

2 Hagit Attiya and Jennifer Welch. Distributed computing: fundamentals, simulations, and
advanced topics, volume 19. John Wiley & Sons, 2004.

3 Armando Castañeda, Pierre Fraigniaud, Ami Paz, Sergio Rajsbaum, Matthieu Roy, and
Corentin Travers. A topological perspective on distributed network algorithms. Theoretical
Computer Science, 849:121–137, 2021. doi:10.1016/J.TCS.2020.10.012.

4 Armando Castañeda, Pierre Fraigniaud, Ami Paz, Sergio Rajsbaum, Matthieu Roy, and
Corentin Travers. Synchronous t-resilient consensus in arbitrary graphs. Inf. Comput.,
292:105035, 2023. doi:10.1016/J.IC.2023.105035.

5 Armando Castañeda, Yoram Moses, Michel Raynal, and Matthieu Roy. Early decision and
stopping in synchronous consensus: A predicate-based guided tour. In 5th International
Conference on Networked Systems – (NETYS), volume 10299 of LNCS, pages 206–221, 2017.
doi:10.1007/978-3-319-59647-1_16.

6 Bernadette Charron-Bost and Stephan Merz. Formal verification of a consensus algorithm in
the heard-of model. Int. J. Softw. Informatics, 3(2-3):273–303, 2009. URL: http://www.ijsi.
org/ch/reader/view_abstract.aspx?file_no=273&flag=1.

STACS 2025

https://doi.org/10.1016/S0020-0190(99)00100-3
https://doi.org/10.1016/S0020-0190(99)00100-3
https://doi.org/10.1016/J.TCS.2020.10.012
https://doi.org/10.1016/J.IC.2023.105035
https://doi.org/10.1007/978-3-319-59647-1_16
http://www.ijsi.org/ch/reader/view_abstract.aspx?file_no=273&flag=1
http://www.ijsi.org/ch/reader/view_abstract.aspx?file_no=273&flag=1

34:20 Agreement Tasks in Fault-Prone Synchronous Networks of Arbitrary Structure

7 Bernadette Charron-Bost and André Schiper. The heard-of model: computing in dis-
tributed systems with benign faults. Distributed Comput., 22(1):49–71, 2009. doi:10.1007/
S00446-009-0084-6.

8 Bogdan S. Chlebus, Dariusz R. Kowalski, Jan Olkowski, and Jedrzej Olkowski. Disconnected
agreement in networks prone to link failures. In 25th International Symposium on Stabilization,
Safety, and Security of Distributed Systems (SSS), volume 14310 of LNCS, pages 207–222.
Springer, 2023. doi:10.1007/978-3-031-44274-2_16.

9 Étienne Coulouma and Emmanuel Godard. A characterization of dynamic networks where con-
sensus is solvable. In International Colloquium on Structural Information and Communication
Complexity, pages 24–35. Springer, 2013. doi:10.1007/978-3-319-03578-9_3.

10 Carole Delporte-Gallet, Hugues Fauconnier, Sergio Rajsbaum, and Nayuta Yanagisawa. A
characterization of t-resilient colorless task anonymous solvability. In 25th International
Colloquium on Structural Information and Communication Complexity (SIROCCO), volume
11085 of LNCS, pages 178–192. Springer, 2018. doi:10.1007/978-3-030-01325-7_18.

11 Carole Delporte-Gallet, Hugues Fauconnier, and Andreas Tielmann. Fault-tolerant consensus
in unknown and anonymous networks. In 29th IEEE International Conference on Distributed
Computing Systems (ICDCS), pages 368–375, 2009. doi:10.1109/ICDCS.2009.36.

12 Danny Dolev. The byzantine generals strike again. J. Algorithms, 3(1):14–30, 1982. doi:
10.1016/0196-6774(82)90004-9.

13 Danny Dolev and H. Raymond Strong. Authenticated algorithms for byzantine agreement.
SIAM Journal on Computing, 12(4):656–666, 1983. doi:10.1137/0212045.

14 Shlomi Dolev. Self-Stabilization. MIT Press, 2000.
15 Pierre Fraigniaud, Patrick Lambein-Monette, and Mikaël Rabie. Fault tolerant coloring of

the asynchronous cycle. In 36th International Symposium on Distributed Computing (DISC),
volume 246 of LIPIcs, pages 23:1–23:22. Schloss Dagstuhl – Leibniz-Zentrum für Informatik,
2022. doi:10.4230/LIPICS.DISC.2022.23.

16 Pierre Fraigniaud, Minh Hang Nguyen, and Ami Paz. Agreement tasks in fault-prone
synchronous networks of arbitrary structure. CoRR arXiv, abs/2410.21538, 2024. doi:
10.48550/arXiv.2410.21538.

17 Pierre Fraigniaud and Ami Paz. The topology of local computing in networks. In 47th
International Colloquium on Automata, Languages, and Programming (ICALP), volume 168
of LIPIcs, pages 128:1–128:18. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, 2020.
doi:10.4230/LIPICS.ICALP.2020.128.

18 Maurice Herlihy, Dmitry N. Kozlov, and Sergio Rajsbaum. Distributed Computing Through
Combinatorial Topology. Morgan Kaufmann, 2013.

19 Juho Hirvonen and Jukka Suomela. Distributed Algorithms. Aalto University, Finland, 2023.
20 Muhammad Samir Khan, Syed Shalan Naqvi, and Nitin H. Vaidya. Exact byzantine consensus

on undirected graphs under local broadcast model. In PODC, pages 327–336. ACM, 2019.
doi:10.1145/3293611.3331619.

21 Giuseppe Antonio Di Luna and Giovanni Viglietta. Computing in anonymous dynamic
networks is linear. In 63rd IEEE Annual Symposium on Foundations of Computer Science
(FOCS), pages 1122–1133, 2022. doi:10.1109/FOCS54457.2022.00108.

22 Giuseppe Antonio Di Luna and Giovanni Viglietta. Optimal computation in leaderless and
multi-leader disconnected anonymous dynamic networks. In 37th International Symposium on
Distributed Computing (DISC), volume 281 of LIPIcs, pages 18:1–18:20. Schloss Dagstuhl –
Leibniz-Zentrum für Informatik, 2023. doi:10.4230/LIPICS.DISC.2023.18.

23 Nancy A. Lynch. Distributed Algorithms. Morgan Kaufmann, 1996.
24 Thomas Nowak, Ulrich Schmid, and Kyrill Winkler. Topological characterization of consensus

under general message adversaries. In Proceedings of the 2019 ACM symposium on principles
of distributed computing, pages 218–227, 2019. doi:10.1145/3293611.3331624.

25 David Peleg. Distributed Computing: A Locality-sensitive Approach. SIAM, 2000.

https://doi.org/10.1007/S00446-009-0084-6
https://doi.org/10.1007/S00446-009-0084-6
https://doi.org/10.1007/978-3-031-44274-2_16
https://doi.org/10.1007/978-3-319-03578-9_3
https://doi.org/10.1007/978-3-030-01325-7_18
https://doi.org/10.1109/ICDCS.2009.36
https://doi.org/10.1016/0196-6774(82)90004-9
https://doi.org/10.1016/0196-6774(82)90004-9
https://doi.org/10.1137/0212045
https://doi.org/10.4230/LIPICS.DISC.2022.23
https://doi.org/10.48550/arXiv.2410.21538
https://doi.org/10.48550/arXiv.2410.21538
https://doi.org/10.4230/LIPICS.ICALP.2020.128
https://doi.org/10.1145/3293611.3331619
https://doi.org/10.1109/FOCS54457.2022.00108
https://doi.org/10.4230/LIPICS.DISC.2023.18
https://doi.org/10.1145/3293611.3331624

P. Fraigniaud, M. H. Nguyen, and A. Paz 34:21

26 Michel Raynal. Consensus in synchronous systems: A concise guided tour. In 9th Pacific
Rim International Symposium on Dependable Computing (PRDC), pages 221–228. IEEE, 2002.
doi:10.1109/PRDC.2002.1185641.

27 Michel Raynal. Fault-tolerant Agreement in Synchronous Message-passing Systems. Synthesis
Lectures on Distributed Computing Theory. Morgan & Claypool Publishers, 2010. doi:
10.2200/S00294ED1V01Y201009DCT003.

28 Michel Raynal and Corentin Travers. Synchronous set agreement: A concise guided tour. In
12th IEEE Pacific Rim International Symposium on Dependable Computing (PRDC), pages
267–274, 2006.

29 Kyrill Winkler, Ami Paz, Hugo Rincon Galeana, Stefan Schmid, and Ulrich Schmid. The time
complexity of consensus under oblivious message adversaries. Algorithmica, pages 1–32, 2024.

STACS 2025

https://doi.org/10.1109/PRDC.2002.1185641
https://doi.org/10.2200/S00294ED1V01Y201009DCT003
https://doi.org/10.2200/S00294ED1V01Y201009DCT003

Dimension-Free Parameterized Approximation
Schemes for Hybrid Clustering
Ameet Gadekar #

CISPA Helmholtz Center for Information Security, Saarbrücken, Germany

Tanmay Inamdar #

Indian Institute of Technology Jodhpur, India

Abstract
Hybrid k-Clustering is a model of clustering that generalizes two of the most widely studied
clustering objectives: k-Center and k-Median. In this model, given a set of n points P , the
goal is to find k centers such that the sum of the r-distances of each point to its nearest center is
minimized. The r-distance between two points p and q is defined as max{dist(p, q) − r, 0} – this
represents the distance of p to the boundary of the r-radius ball around q if p is outside the ball, and
0 otherwise. This problem was recently introduced by Fomin et al. [APPROX 2024], who designed a
(1 + ε, 1 + ε)-bicrtieria approximation that runs in time 2(kd/ε)O(1)

· nO(1) for inputs in Rd; such a
bicriteria solution uses balls of radius (1 + ε)r instead of r, and has a cost at most 1 + ε times the
cost of an optimal solution using balls of radius r.

In this paper we significantly improve upon this result by designing an approximation algorithm
with the same bicriteria guarantee, but with running time that is FPT only in k and ε – crucially,
removing the exponential dependence on the dimension d. This resolves an open question posed in
their paper. Our results extend further in several directions. First, our approximation scheme works
in a broader class of metric spaces, including doubling spaces, minor-free, and bounded treewidth
metrics. Secondly, our techniques yield a similar bicriteria FPT-approximation schemes for other
variants of Hybrid k-Clustering, e.g., when the objective features the sum of z-th power of
the r-distances. Finally, we also design a coreset for Hybrid k-Clustering in doubling spaces,
answering another open question from the work of Fomin et al.

2012 ACM Subject Classification Theory of computation → Facility location and clustering; Theory
of computation → Fixed parameter tractability

Keywords and phrases Clustering, Parameterized algorithms, FPT approximation, k-Median, k-
Center

Digital Object Identifier 10.4230/LIPIcs.STACS.2025.35

Related Version Full Version: https://arxiv.org/abs/2501.03663

Funding Ameet Gadekar : Partially supported by the Israel Science Foundation (grant No. 1042/22).
Tanmay Inamdar : Supported by IITJ Research Initiation Grant (grant number I/RIG/T-
NI/20240072).

Acknowledgements Tanmay would like to thank his co-authors from [23] – specifically Fedor
V. Fomin – for formulating Hybrid k-Clustering problem and introducing him to it. This work was
partially carried out while Ameet was at Bar-Ilan University, Israel.

1 Introduction

k-Center, k-Median, and k-Means are among the most popular clustering problems both
in theory and practice, with numerous applications in areas such as machine learning [36,
28, 6, 11, 4, 9, 38, 25], facility location problems [32, 41, 30, 29, 35, 16], and computational

© Ameet Gadekar and Tanmay Inamdar;
licensed under Creative Commons License CC-BY 4.0

42nd International Symposium on Theoretical Aspects of Computer Science (STACS 2025).
Editors: Olaf Beyersdorff, Michał Pilipczuk, Elaine Pimentel, and Nguyễn Kim Thắng;
Article No. 35; pp. 35:1–35:20

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:ameet.gadekar@cispa.de
https://orcid.org/0009-0004-8040-9881
mailto:taninamdar@gmail.com
https://orcid.org/0000-0002-0184-5932
https://doi.org/10.4230/LIPIcs.STACS.2025.35
https://arxiv.org/abs/2501.03663
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

35:2 Dimension-Free Parameterized Approximation Schemes for Hybrid Clustering

geometry [7, 34], among others.1 All of these problems have long been known to be NP-hard,
even in the plane [22, 40, 37]. To cope with these intractability results, there has been several
decades of research on designing approximation algorithms for these problems, that have
lead to polynomial-time constant-factor approximation algorithms for all of them in general
metric spaces [27, 20]. Moreover, for more “structured” inputs – such as when the points
belong to Euclidean spaces, or planar graph metrics – one can find near-optimal solutions
using approximation schemes [24, 17, 19, 5, 34, 7, 2].2 Furthermore, given the simplicity and
ubiquity of these vanilla clustering objectives, the techniques used for obtaining these results
are subsequently used to find clustering with additional constraints, such as capacities [18],
fairness [8], and outliers [31, 3].1 One recurring theme in the literature has been to define a
unified clustering objective that also captures classical clustering problems like k-Median,
k-Center as special cases [42, 12, 15].

Along this line of research, Fomin et al. [23] recently introduced Hybrid k-Clustering.
In this problem, we are given an instance I = (M = (P,F, dist), k, r), where M = (P,F, dist) is
a metric space3 on the set of clients P and a set of facilities F with distance function dist. Here,
k is a positive integer denoting the number of clusters, and r is a non-negative real denoting the
radius. The goal is to find a set X ⊆ F of k centers, such that, costr(P, X) :=

∑
p∈P distr(p, X)

is minimized – here, for any point p, any set Q ⊆ P ∪ F, and a real α, distα(p, Q) is defined
as distα(p, Q) := max{dist(p, Q)− α, 0}, and dist(p, Q) := minq∈Q dist(p, q). Fomin et al. [23]
proposed several motivations for studying this cost function. Indeed, Hybrid k-Clustering
can be seen as a shape fitting problem, where one wants to find the “best” set of k balls of
radius r that fit the given set of points, where the quality of the solution is determined by
the sum of distances of each point to the nearest point on the boundary of the ball – this is
analogous to the classical regression, where one wants to find the “best” linear function fitting
the given set of points. Projective Clustering is a well-studied generalization of linear
regression, where the aim is to find k affine spaces that minimizes the sum of distances from
the points to these spaces (see e.g., [43]), which is also closely related to the model considered
in Hybrid k-Clustering. Furthermore, [23] gave another motivation for studying Hybrid
k-Clustering– namely, placing k WiFi routers with identical circular coverage, where the
clients that lie outside the coverage area need to travel to the boundary of the nearest ball
in order to receive coverage. Finally, the name of the problem is motivated from the fact
that the objective is a kind of “hybrid” between the k-Center and k-Median costs, and
generalizes both of them. Indeed, as observed in [23], Hybrid k-Clustering with r = 0
is equivalent to k-Median, while, when r is set to be the optimal radius for k-Center,
Hybrid k-Clustering reduces to k-Center. These observations immediately rule out
uni-criteria polynomial-time approximation schemes that violate only the cost, or only the
radius by any arbitrary factor α > 1 (as formalized in Proposition 1 of [23]). Indeed, such
approximation algorithms – even with running times FPT in k – would imply exact FPT
algorithms for k-Center and k-Median in low-dimensional continuous Euclidean spaces.
To our knowledge, such an algorithm for k-Median is not known (nor is admittedly a lower
bound), whereas [39] shows W[1]-hardness of k-Center even in R2. Therefore, given the
current state of the art, a bicriteria approximation scheme for Hybrid k-Clustering is
essentially the best outcome, even if one allows a running time that is FPT in k.

1 These citations are supposed not to be comprehensive, but representative–an interested reader may use
them as a starting point for the relevant literature.

2 This includes polynomial-time as well as FPT approximation schemes.
3 Fomin et al. [23] only considered the special case of Euclidean inputs, i.e., when P ⊂ F = Rd; however,

the underlying problem can be defined for arbitrary metric spaces.

A. Gadekar and T. Inamdar 35:3

For α, β ≥ 1, an (α, β)-bicrteria approximation for Hybrid k-Clustering is an algorithm
that returns a solution X ⊆ F of size at most k satisfying costβr(P, X) ≤ α · OPTr. Note
that the bicriteria solution X is allowed to consider distβr(p, X) = max{dist(p, X)− βr, 0}
instead of distr(p, X) and is also allowed to find a solution of cost αOPTr, where OPTr is
the cost of an optimal solution w.r.t. radius r, i.e., without any violation of the radius. The
main result of Fomin et al. [23] was an (1 + ε, 1 + ε)-bicriteria approximation for inputs in
Rd in time 2(kd/ε)O(1) · nO(1), where n = |P |. An exponential dependence on the dimension d

appears inevitable using their approach, although it was not clear whether such a dependence
is required. Indeed, for Euclidean k-Median and k-Center, one can obtain dimension-free
approximation schemes with FPT dependence only on k and ε [7, 33, 1]. This naturally
motivates the following question, which was explicitly asked as an open question in [23].

Question 1. “An immediate question is whether improving or removing the FPT
dependence on the dimension d is possible[...]”

In this work, we answer this question in the affirmative by designing a (randomized) bicriteria
FPT Approximation Scheme (FPT-AS) parameterized by k and ε4 for the (continuous)
Euclidean instances of Hybrid k-Clustering, stated formally in the following theorem.

▶ Theorem 1 (Bicriteria FPT-AS for Euclidean Spaces). There exists a randomized algorithm,
that, given an instance of Hybrid k-Clustering in Rd for any dimension d, runs in time
2O(k log k·(1/ε5) log2(1/ε)) · nO(1), and returns a (1 + ε, 1 + ε)-bicrtieria approximation with high
probability.

The algorithm of [23] involves a pre-processing step that separately handles “k-Median-
like”, “k-Center-like” instances, using the techniques specific to these respective problems.
Then, the main algorithm handles the remaining instances that cannot be directly reduced to
the respective problems. This approach somewhat undermines the goal of defining a unified
problem that captures both of these problems as special cases. In contrast, our algorithm
adopts a uniform approach by exploiting the intrinsic structure of the hybrid problem, without
the need to separately handle some instances. In fact, our algorithm works for a broader class
of metric spaces, called metric spaces of bounded algorithmic scatter dimension – a notion
recently introduced by Abbasi et al. [1], and further studied by Bourneuf and Pilipczuk [10].
These metric spaces capture several interesting and well-studied metric spaces, see below. We
give a formal definition of the notion of algorithmic scatter dimension in Section 2; however,
a good mental picture to keep is to think of them as essentially doubling spaces, i.e., metric
spaces with good “packing-covering” properties.5 Our general result is stated below.

▶ Theorem 2 (Informal version of Theorem 9). Hybrid k-Clustering admits a randomized
bicriteria FPT-AS in metrics of bounded algorithmic ε-scatter dimension, parameterized
by k and ε. In particular, Hybrid k-Clustering admits randomized bicriteria FPT-AS
parameterized by k and ε, in continuous Euclidean spaces of any dimension, metrics of
bounded doubling dimension, bounded treewidth metrics, and by graphs from any fixed proper
minor-closed graph class.

4 Such algorithms run in time f(k, ε)nO(1) and output a (1 + ε, 1 + ε)-bicriteria solution. Another term
for FPT-AS is EPAS, which stands for Efficient Parameterized Approximation Schemes.

5 Although this is a good mental picture, it is ultimately inaccurate since the class of metric spaces of
bounded algorithmic scatter dimension is strictly larger than that of doubling spaces. Indeed, continuous
Euclidean space of high (ω(log n)) dimension does not have bounded doubling dimension, yet it does
have bounded algorithmic scatter dimension.

STACS 2025

35:4 Dimension-Free Parameterized Approximation Schemes for Hybrid Clustering

We give a technical overview of this result in Section 1.1, and describe the approximation
algorithm and its analysis in Section 3.

In their work, [23] also defined Hybrid (k, z)-Clustering problem, which features the z-
th power of r-distances, i.e., the objective is to minimize costr(P, X, z) :=

∑
p∈P (distr(p, X))z,

where z ≥ 1. They designed a bicriteria FPT-AS with similar running time for Hybrid (k, 2)-
Clustering, i.e., a hybrid of k-Means and k-Center; but left the possibility of obtaining a
similar result for the general case of z ≥ 1 conditional on the existence of a certain sampling-
based approximation algorithm for the (k, z)-clustering problem for Euclidean inputs. Using
our approach, we can obtain a bicriteria FPT-AS for any fixed z ≥ 1 in a unified way, whose
running time is independent of the dimension d. In fact, our approach works for a much more
general problem of Hybrid Norm k-Clustering. We discuss these extensions in Section 4.

Next, we turn to another open direction mentioned in the work of Fomin et al. [23].

Question 2. “Another intriguing question is the design of coresets for Hybrid k-
Clustering, which could also have some implications for [Question 1].”

In this paper, we also answer this question affirmatively by designing coresets for Hybrid
k-Clustering in metric spaces of bounded doubling dimension. Specifically, we prove the
following result.

▶ Theorem 3 (Coreset for Hybrid k-Clustering). There exists an algorithm that takes
as input an instance I = ((P,F, dist), k, r) of Hybrid k-Clustering in doubling metric
of dimension d and a parameter ε ∈ (0, 1), and in time 2O(d log(1/ε))|I|O(1) returns a pair
(P ′, w), where P ′ ⊆ P has size 2O(d log(1/ε)k log |P |, and w : P ′ → N, such that the following
property is satisfied for any X ⊆ F of size at most k:

|wcostr(P ′, X)− costr(P, X)| ≤ εcostr(P, X)

Here, wcostr(P, X) :=
∑

p∈P ′ w(p) · distr(p, X).

1.1 Technical Overview

In this section, we highlight our technical and conceptual contributions of our main result
(Theorem 2).

A natural direction to design dimension-free parameterized approximation algorithm for
Hybrid k-Clustering is to leverage insights from the framework of Abbasi et al. [1], who
designed dimension-free parameterized approximations for wide range of clustering problems.
However, in Hybrid k-Clustering, the objective is a function of r-distances, instead of true
distances, as in [1]. This introduces several technical challenges. For instance, a most obvious
roadblock is that the r-distances do not satisfy triangle inequality. Moreover, many of the
“nice” properties that are enjoyed by the true distances in “structured” metric spaces (e.g.,
covering-packing property in doubling spaces, or properties of shortest paths in sparse graphs)
do not extend readily to the r-distances. Therefore, we have to overcome several technical
and conceptual challenges in order to leverage the ideas presented in the framework of [1].
Let us first recall the key notion from this paper that is crucially used in this framework.6

6 In fact, the algorithm of our paper and [1] works for a weaker notion called algorithmic scatter dimension.
But, for ease of exposition, we work with scatter dimension in this section.

A. Gadekar and T. Inamdar 35:5

Scatter Dimension. Informally, an ε-scattering sequence in a metric space M = (P,F, dist)
is a sequence of center-point pairs (x1, p1), . . . , (xℓ, pℓ), where ℓ is some positive integer
and for j ∈ [ℓ], xj ∈ F, pj ∈ P such that dist(pj , xi) ≤ 1, for all 1 ≤ j < i ≤ [ℓ] and
dist(pi, xi) > (1 + ε), for all i ∈ [ℓ]. The ε-scatter dimension of M is the maximum length of
ε-scattering sequence contained in M .

Now, consider a natural extension of the framework [1] for Hybrid k-Clustering in a
metric space M as follows. Let OPTr be the optimal cost of the Hybrid k-Clustering
instance corresponding to an optimal solution O. The algorithm maintains cluster constraint
Qi for each cluster i ∈ [k]. Each Qi consists of a collection of requests of the form (p, δ), where
p is a point and δ is a distance, representing the demand that p requires a center within distance
δ. The algorithm always maintains a solution X such that xi ∈ X satisfy Qi cluster constraint,
for all i ∈ [k]. Now consider the sequence of triples Si = (x(1)

i , p
(1)
i , δ

(1)
i), . . . , (x(ℓ)

i , p
(ℓ)
i , δ

(ℓ)
i)

corresponding to requests in Qi, where x
(j)
i is the ith center maintained by the algorithm

just before adding request (p(j)
i , δ

(j)
i) to Qi. If X is a near-optimal solution, then the

algorithm terminates successfully and returns X. Otherwise, it identifies a point p ∈ P

whose r-distance to X is much larger than its r-distance to O. Such a point is called a
witness to X. A simple averaging argument shows that such a witness can be sampled with
high probability. The algorithm then guesses the optimal cluster i ∈ [k] of p and add a
new request (p, δp = dist(p, X)/(1 + ε′)) to Qi, for some suitable but fixed ε′ depending
on ε. The center xi is recomputed to satisfy the updated cluster constraint Qi, if possible.
Otherwise the algorithm reports failure.7 The key observation is that the sequence of pairs
(x(j1)

i , p
(j1)
i), . . . , (x(jℓ)

i , p
(jℓ)
i) for a fixed radius δ

(j)
i forms an ε-scattering sequence in M .

Thus, if the ε-scatter dimension of M is bounded then the length of these sequences are also
bounded. Furthermore, it can be shown that if the aspect ratio of the radii of requests in Qi

for all i ∈ [k] is bounded, then the number of iterations of the algorithm can be bounded,
yielding an FPT-AS.

Working with the inflated radius. A major challenge that arises when the witness is defined
in terms of r-distances, but the requests added to the cluster constraints are based on the
true distances. Specifically, we need to ensure that a witness whose r-distance to X is
significantly larger than its r-distance to O also has a larger true distance to X than to O.
This ensures that the request (p, dist(p, X)/(1 + ε′)) is feasible and the algorithm does not
fail. However, this condition may not hold, especially when the true distances are close to r.
In fact, the issue is related to a fundamental barrier identified by [23], assuming standard
conjectures.8 To overcome this fundamental barrier and maintain a sufficient gap between
the true distances, we consider the cost of X with respect to (1 + ε)r radius. In other words,
we look for a solution X whose (1 + ε)r-cost is close to OPTr. In this case, we redefine a
witness as a point in P whose (1 + ε)r-distance to X is much larger than its r-distance to O.
These insights allow us to establish a gap between the true distance of a witness to X and
its true distance to O, thereby justifying the requests added by the algorithm.

Bounding the aspect ratio of the radii. Abbasi et al. [1] bound the aspect ratio of the radii
by (i) initializing the solution using “good” upper bounds, and (ii) sampling witness from the
points that have comparable distance to X with respect to the corresponding upper bounds.

7 E.g., if the algorithm failed to sample a witness.
8 Such a framework could potentially yield a near-optimal solution that does not violate the radius,

contradicting Proposition 1 in [23].

STACS 2025

35:6 Dimension-Free Parameterized Approximation Schemes for Hybrid Clustering

The first step guarantees that the solution X maintained by the algorithm always satisfies the
upper bounds within constant factor. This together with the second step allows one to bound
the aspect ratio of radii in each Qi. They show that such witnesses have a good probability
mass if the points are sampled proportional to their true distances, and hence the algorithm
successfully finds a witness for X with probability that is a function of k and ε. Although,
devising feasible and “good” upper bounds for Hybrid k-Clustering can be done with
some efforts, the main challenge arises in the second step, which only guarantees to sample
a point whose (1 + ε)r-distance to X is comparable with its upper bound. As mentioned
before, these (1 + ε)r-distances can be much smaller than the corresponding true distances,
and hence there is no guarantee that true distance of a witness p to current solution X is
comparable to its upper bound. Towards this, we introduce a novel idea of dividing witnesses
into two sets – “nearby witness” set, i.e., the set of points within distance O(r/ε) from X, and
“faraway witness” set, which are beyond this distance from X. The observation is that, since
the total probability mass on the witness set, now defined using (1 + ε)r-distances, is still
high, it must be that either the nearby or the faraway witnesses have sufficient probability
mass. However, since we do not know which of the two sets has enough mass, we perform a
randomized branching (i.e., make a guess) – which will be “correct” with probability 1/2.
Then, when a point is sampled proportional to its (1 + ε)r-distance from either the “nearby”
or “faraway” set, it will be a witness with good probability. Now consider each of two cases
separately. Since for a nearby witness p, its true distance to X is at least (1 + ε)r and at
most O(r/ε), the aspect ratio of the radii of requests corresponding to nearby witness set is
bounded by O(1/ε). On the other hand, for requests corresponding to faraway witness set,
we show that their radii lie in bounded interval, using ideas similar to [1]. Note that, these
two arguments imply that the radii of the requests lie in two (possibly disjoint) intervals that
themselves are bounded. However, it is not clear if the length of these requests is bounded,
unlike [1], where the radii belonged to a single interval of bounded aspect ratio. Nevertheless,
we observe that, using the techniques of [1], the length of requests can be bounded, even
when the radii lie in constantly many (here, two) intervals, each with a bounded aspect ratio.

2 Background on Algorithmic Scatter Dimension

In this paper, we consider metric (clustering) space M = (P,F, dist), where P is a finite set
of n points, F is a (possible infinite) set of potential cluster centers, and dist is a metric on
(P ∪ F). A class M of metric spaces is a (possibly infinite) set of metric spaces.

In this paper, we work with a notion that is weaker (and hence more general) than
ε-scatter dimension that was defined in the overview, called algorithmic ε-scatter dimension,
which we explain next. To this end, we first need the following search problem.

▶ Definition 4 (Ball Intersection Problem). Let M be a class of metric spaces with
possibly infinite set of centers. Given M = (P,F, dist) ∈ M, a finite set Q ⊊ P × R+ of
distance constraints, and an error parameter η > 0, the Ball Intersection problem asks to
find a center x ∈ F that satisfy all distance constraints within η multiplicative error, i.e.,
dist(x, p) ≤ (1 + η)δ, for every (p, δ) ∈ Q, if such a center exists, and report failure otherwise.

We say M admits a Ball Intersection algorithm if it correctly solves the ball inter-
section problem for every metric space in M and runs in polynomial time in the size of M

and 1/η.

Now, we are ready to define algorithmic scatter dimension.

A. Gadekar and T. Inamdar 35:7

▶ Definition 5 (Algorithmic ε-Scatter Dimension). Given a class M of metric spaces with
Ball Intersection algorithm CM, a space M ∈ M, and ε ∈ (0, 1), a (CM, ε)-scattering
sequence is a sequence (x1, p1, δ1), . . . , (xℓ, pℓ, δℓ), where ℓ is some positive integer, and for
i ∈ [ℓ], xi ∈ F, pi ∈ P and δi ∈ R+ such that

(Covering by CM) xi = CM(M, {(p1, δ1), . . . , (pi−1, δi−1)}, ε/2) ∀2 ≤ i ≤ ℓ

(ε-refutation) dist(xi, pi) > (1 + ε)δi ∀i ∈ [ℓ]
The algorithmic (ε, CM)-scatter dimension of M is λM(ε) if any (CM, ε)-scattering sequence
contains at most λM(ε) many triples per radius value. The algorithmic ε-scatter dimension
of M is the minimum algorithmic (ε, CM)-scatter dimension over any Ball Intersection
algorithm CM for M.

Although, algorithmic scatter dimension restricts the number of triples in the sequence
with same radius value, we can use the proof technique from [1] to prove the following
stronger guarantee. Results marked with ♠ can be found in the full version of the paper.

▶ Lemma 6 (♠). Let M be a class of metric spaces of algorithmic ε-scatter dimension λ(ε).
Then there exists a Ball Intersection algorithm CM with the following property. Given
ε ∈ (0, 1), a constant t ≥ 1, and ai > 0, τi ≥ 2 for i ∈ [t], any (CM, ε)-scattering contains
O(

∑
i∈[t] λ(ε/2)(log τi)/ε) many triples whose radii lie in the interval ∪i∈[t][ai, τiai].

3 Bicriteria FPT Approximation Scheme

3.1 Algorithm
Our bicrteria FPT-AS for Hybrid k-Clustering is formally stated in Algorithm 1. As an
input, we are given an instance I = ((P,F, dist), k, r) of Hybrid k-Clustering, an accuracy
parameter ε, access to an algorithm C for the so-called “Ball Intersection” problem
(discussed later), and a guess G for the optimal cost OPTr. By a standard exponential search,
we will assume that OPTr ≤ G ≤ (1 + ε/3) · OPTr. At a high level, this algorithm can be
divided into two steps: initialization phase and the iterative cost-improvement phase. The
initialization phase spans from line 1 to 7.

At a high level, the goal of this phase to compute for each point p ∈ P , an upper bound
u(p), such that p must have an optimal center within distance u(p). Once we find such upper
bounds, we use a subset of them to initialize for each i ∈ [k], a set of requests Qi, where each
request (p, δp) demands that the ith center in the solution must be within distance at most
δp from p in every subsequent solution found by the algorithm.

Now, the algorithm moves to the iterative cost-improvement phase in lines 8 to 20,
consisting of a while loop that runs as long as the current solution has not become the bicriteria
approximation that we are looking for. Thus, in each iteration of the while loop, we are given
a solution X that satisfies all the requests Qi, and yet satisfies costr′(P, X) > (1 + ε) · G.
Then, our algorithm makes a random choice whether there is enough cost-contribution of
nearby witnesses, or of faraway witnesses – here a witness is a point p whose distance to X

is sufficiently larger than that in the (unknown) optimal solution O. In each of the cases,
we sample points from carefully defined sets (cf. N in line 11 and A in 14), proportional
to their contribution to the cost to the respective sets (in the analysis, we will argue that
with good probability, we will in fact sample witness points). Having sampled such a point p,
we guess the index i of the optimal cluster of p in line 17. Finally, assuming p is indeed a
witness, we add a request (p, dist(p,X)

1+ε/12) to the ith request set Qi, and in line 19 we recompute
xi using C. This algorithm either returns a center xi ∈ F that satisfies all the requests (with
an error of up to a factor of ε/40), or correctly outputs that there is no point in F satisfying

STACS 2025

35:8 Dimension-Free Parameterized Approximation Schemes for Hybrid Clustering

Algorithm 1 Approximation Scheme for Hybrid k-Clustering.

Input: Instance I = ((P,F, dist), k, r) of Hybrid k-Clustering, ε ∈ (0, 1), and Ball
Intersection algorithm C, and a guess G for OPTr

Output: A solution X ⊆ F such that cost(1+ε)r(P, X) ≤ (1 + ε)G, assuming OPTr ≤
G ≤ (1 + ε/3) · OPTr.

1: For each p ∈ P , compute u(p) = 3 ·min{α > r : |ball(p, α)| ≥ G/α}
2: Process P in non-decreasing order of u(p) and mark pi ∈ P if ball(pi, u(pi)) is disjoint

from ball(pj , u(pj)) for every marked pj such that j < i

3: Let p(1), . . . , p(k′) be the marked points
4: for each i ∈ [k′], let Qi :=

{
(p(i), u(p(i)))

}
5: For k ≥ i > k′, let Qi = ∅
6: Let X := (x1, . . . , xk), where ∀i ∈ [k], xi ∈ F is any center satisfying requests in Qi.
7: Let r′ := r(1 + ε/3).
8: while costr′(P, X) > (1 + ε) · G do
9: Toss a fair coin to guess whether we are in “nearby witness” or “faraway witness” case

10: if we guess “nearby witness” case then
11: N =

{
p ∈ P : dist(p, X) ≤ 8r

ε

}
12: Sample a point p ∈ N , where Pr(p = a) = distr′ (a,Xi)∑

b∈N
distr′ (b,Xi)

for each a ∈ P

13: else we guess “faraway witness case then
14: Let A :=

{
p ∈ P : distr′(p, X) > ε

1000k · u(p)
}

15: Sample a point p ∈ A, where Pr(p = a) = distr′ (a,Xi)∑
b∈P

distr′ (b,Xi)
for each a ∈ A

16: end if
17: Sample an integer i ∈ [k] u.a.r.
18: Add (p, δp) to Qi, where δp = dist(p,X)

1+ε/12

19: xi ← C(Qi,F, ε/40) if no xi was found then fail
20: end while

all the requests. Note that in discrete metric spaces, C can be simulated by simply scanning
each x ∈ F and checking whether it satisfies all the requests in Qi. On the other hand, for
continuous Euclidean spaces, such an algorithm was designed in [1]. If the algorithm does not
fail at this step, then we update our set X and continue to the next iteration. In the rest of
the section, we will prove that the algorithm returns a (1 + ε, 1 + ε)-bicriteria approximation
with good probability.

3.2 Analysis
Throughout the analysis, we assume that we are given a guess G, such that OPTr ≤ G ≤
(1 + ε/3) ·OPTr. We divide the analysis in two parts. In the first part, we bound the running
time of the algorithm using the following lemma. The proof of this lemma is present in
Section 3.2.1.

▶ Lemma 7. Algorithm 1 terminates in O(k
ε log(k

ε)λ(ε
40)) iterations – with or without failure.

In the second part, we show the following lemma, which says that the probability that the
algorithm terminates without failure is high. The proof the lemma is present in Section 3.2.2.

▶ Lemma 8. With probability at least exp
(
−O

(
k
ε log(k

ε)λ(ε
40)

))
, Algorithm 1 terminates

without failure, i.e., returns a solution X satisfying cost(1+ε/3)r(P, X) ≤ (1 + ε)OPTr.

A. Gadekar and T. Inamdar 35:9

Using these two lemmas and repeating the algorithm exp
(
O

(
k
ε log(k

ε)λ(ε
40)

))
times, we

have our main result.

▶ Theorem 9 (Main Theorem). Let M be a class of metric spaces closed under scaling
distances by a positive constant. There is a randomized algorithm that takes as input an
instance I = ((P,F, dist), k, r) of Hybrid k-Clustering such that (P,F, dist) ∈ M and
ε ∈ (0, 1), and outputs a (1 + ε, 1 + ε)-bicriteria solution for I when, for all ε′ > 0, the
algorithmic ε′-scatter dimension of M is bounded by λ(ε′), for some function λ. The running
time of the algorithm is 2O(k

ε ·log(k/ε)·λ(ε/40)) · |I|O(1).

3.2.1 Bounding runtime using Algorithmic Scatter Dimension
First, we show some properties of the initial upper bounds (line 4), that we need later in the
proof of Lemma 7.

▶ Lemma 10 (Feasible upper bounds). Consider Qi = {(p(i), u(p(i)))} initialized in Line 4 of
Algorithm 1. Then, dist(p(i), O) ≤ u(p(i)).

Proof. Suppose dist(p(i), O) > u(p(i)). Letting α = u(p(i))/3, we have that |ball(p, α)| ≥ G/α.
Since, dist(p(i), O) > 3α, we have dist(p, O) > 2α for p ∈ ball(p(i), α). Using α > r, this
means distr(p, O) > α for p ∈ ball(p, α). Therefore,

costr(P, O) ≥
∑

p∈ball(p(i),α)

distr(p′, O) =
∑

p∈ball(p(i),α)

(dist(p, O)− r) >
G
α
· α = G,

contradicting the the cost of O. ◀

Next, we have the following lemma, whose proof is identical to [1], that says that the
initialization of X at line 6 is successful and the solution maintained by the algorithm always
satisfies the upper bounds within a factor of 3.1.

▶ Lemma 11 (Lemma V.5 of [1]). The number of marked points in line 3 is at most k, i.e.,
k′ ≤ k. Hence, the initialization of X at line 6 is successful. Furthermore, at any iteration,
the solution X maintained by the algorithm satisfies that dist(p, X) ≤ 3.1u(p), for every
p ∈ P .

Bounding aspect ratio of radii

Towards proving Lemma 7, we bound the aspect ratio of the radii in the requests.

▶ Lemma 12. Consider a request set Qi = {(p(1)
i , δ

(1)
i), . . . , (p(ℓ)

i , δ
(ℓ)
i)}, for i ∈ [k]. Let

X(j), j ∈ [ℓ], be the center maintained by the algorithm just before adding the request
(p(j)

i , δ
(j)
i) to Qi. Further, let x

(j)
i ∈ X(j) be the center corresponding to cluster i ∈ [k]. Then,

the sequence Si = (x(1)
i , p

(1)
i , δ

(1)
i), . . . , (x(ℓ)

i , p
(ℓ)
i , δ

(ℓ)
i) is an algorithmic (C, ε/20)-scattering.

Furthermore, the radii of requests in Si lie in the interval [r, 8r/ε] ∪ [rmin, 105k
ε2 rmin], where

rmin is the smallest radii in Si that is larger than 8r/ε.

Proof. The proof of the first part is similar to [1].
First note that δ

(j)
i = dist(p

(j)
i

,X(j))
1+ε/12

≤ dist(p
(j)
i

,x
(j)
i

)
1+ε/12

. Finally, since x
(j)
i is computed by C on

{(p(1)
i , δ

(1)
i), . . . , (p(j−1)

i , δ
(j−1)
i)} and error parameter ε/40, we have that dist(p(j′)

i , x
(j)
i) ≤

(1 + ε/40)δ(j′)
i , for j′ < j. Hence, Si is (C, ε/20)-algorithmic scattering.

STACS 2025

35:10 Dimension-Free Parameterized Approximation Schemes for Hybrid Clustering

Now we bound that the radii of sequence Si, i ∈ [k]. Towards this, we partition Si into
Sn

i and Sf
i , based on a partitioning of Qi, as follows. We say a request (p(j)

i , δ
(j)
i) ∈ Qi

belongs to Qn
i if p

(j)
i was sampled when the If condition was satisfied (in Line 12), otherwise

it belongs to Qf
i , which corresponds to the Else condition (in Line 15). Correspondingly,

(x(j)
i , p

(j)
i , δ

(j)
i) ∈ Sn

i if (p(j)
i , δ

(j)
i) ∈ Qn

i and (x(j)
i , p

(j)
i , δ

(j)
i) ∈ Sf

i if (p(j)
i , δ

(j)
i) ∈ Qf

i . We
bound the aspect ratio of each part, Sn

i and Sf
i , separately. For (x(j)

i , p
(j)
i , δ

(j)
i) ∈ Sn

i , we
have r ≤ δ

(j)
i ≤ 8r/ε and hence, the radii of triples in Sn

i lie in interval [r, 8r/ε]. Now consider
(x(j)

i , p
(j)
i , δ

(j)
i) ∈ Sf

i . Recall that X(j) is the solution maintained by the algorithm when
(p(j)

i , δ
(j)
i) is added to Qi. Then, note that distr′(p(j)

i , X(j)) > εu(p)/1000k (see Line 14), and
hence, we have dist(p(j)

i , X(j)) > εu(p)/1000k. The following claim, whose proof is similar
to [1], shows that the radii of requests in Sf

i are also bounded, finishing the proof of the
lemma.

▷ Claim 13. Consider requests (p, δp), (p′, δp′) added (in any order) to Qi in Line 18 of
Algorithm 1 such that (p, δp), (p′, δp′) ∈ Qf

i . If δp′ < ε2δp/105k, then the algorithm fails in
Line 19 upon making second of the two requests.

Proof. Suppose, for the sake of contradiction, the algorithm does not fail and finds a center
xi such that dist(p, xi) ≤ (1 + ε/40)δp and dist(p′, xi) ≤ (1 + ε/40)δp′ . Thus, dist(p, p′) ≤
dist(p, xi) + dist(p′, xi) ≤ (1 + ε/40)(δp + δp′).

Therefore, we have

dist(p, X) ≤ dist(p, p′) + dist(p′, X) ≤ (1 + ε/40)(δp + δp′) + 3.1u(p′),

using Observation 11. Let X be the center maintained by the algorithm when the request
(p, δp) is added to Qi. Then, we have

δp = dist(p, X)
(1 + ε/12) , (1)

due to Line 18. Similarly, let X ′ be the center maintained by the algorithm when request
(p′, δp′) is added to Qi. Then, since (p′, δp′) ∈ Qf

i , we have that u(p′) ≤ 900dist(p′, X ′)/ε =
1000kδp′/ε, using δp′ = dist(p′,X′)

(1+ε/12) . Therefore, using δp′ < ε2δp/105k,

dist(p, X) ≤ (1 + ε/40)(δp + δp′) + 3000kδp′/ε ≤ (1 + ε/40)δp + 3200kδp′/ε

≤ (1 + ε/40 + ε/25)δp < (1 + ε/12)δp

This means δp > dist(p,X)
1+ε/12 , contradicting (1). ◁

◀

Now we are ready to finish the proof of Lemma 7.

Proof of Lemma 7. We apply Corollary 6 to Si and note that the radii in Si lie in [r, 8r/ε]∪
[rmin, 105k

ε2 rmin], where rmin is the smallest radii in Si that is larger than 8r/ε, due to
Lemma 12. This implies that the length of sequence Si is bounded by O(λ(ε/40) (log(k/ε))

ε).
Since in each iteration the algorithm adds one request to some Qi, the total number of
iterations is bounded by O(k

ε λ(ε/40)(log(k/ε)). ◀

A. Gadekar and T. Inamdar 35:11

3.2.2 Bounding success probability
The goal of this subsection is to prove Lemma 8, i.e., give a lower bound on the success
probability of the algorithm. To this end, we first introduce the following notion.

▶ Definition 14 (Consistency). Consider a fixed hypothetical optimal solution O = (o1, · · · , ok).
We say that the current state of execution (specified by (X, Q1, · · · , Qk)) of Algorithm 1 is
consistent with O if for any request (p, δ) ∈ Qi, i ∈ [k], we have dist(p, oi) ≤ δ.

Note that, Lemma 11 implies that the initial set of requests (line 4) are feasible. Since
the balls ball(p(i), u(p(i))), i ∈ [k′] are disjoint, we can relabel the optimum centers O =
{o1, . . . , ok} so that dist(p(i), oi) ≤ u(p(i)). Thus, Lemma 11 implies that the initial state
of the algorithm as computed in lines 1 to 6 is consistent with a fixed optimal solution O

which is fixed henceforth. To prove Lemma 8, we will inductively argue that the state of the
algorithm remains consistent with O – note that the base case is already shown. Most of
this subsection is devoted to show the inductive step, i.e., to show that, given a consistent
state at the start of an iteration, there is a good probability that the state of the algorithm
at the end of the iteration is also consistent (cf. Lemma 22).

To this end, we introduce the following definitions w.r.t. the current solution X.

▶ Definition 15 (Contribution and Witness). For any set S ⊆ P , we use CS :=∑
p∈S distr′(p, X) to denote the contribution of the set S to the cost of the current solution.
We say that a point p ∈ P is an ε/3-witness (or simply, a witness) w.r.t. the solution X

if it satisfies dist(1+ε/3)r(p, X) > (1 + ε/3) · distr(p, O).

The following claim can be proved by a simple averaging argument.

▷ Claim 16 (♠). CW ≥ εCP

10 .

Next, we introduce several different classifications of witnesses.

▶ Definition 17 (Different subsets of witnesses). For each xj ∈ X, let Wj denote the set of
witnesses for which xj is a nearest center in X (breaking ties arbitrarily). Then, Wj,near :=
{p ∈Wj : dist(p, xj) ≤ 8r/ε}, and Wj,far := Wj \Wj,near. Further, let Wnear :=

⋃
j∈[k] Wj,near,

and Wfar :=
⋃

j∈[k] Wj,far. We will refer to a witness in Wnear as a nearby witness and a
witness in Wfar as a faraway witness.

Now, we consider two different cases regarding the behavior of the algorithm.

Case 1: CWnear ≥ ε
100 CP . In this case, when we sample a point from N := {p ∈ P :

dist(p, X) ≤ 8r/ε} proportional to their distr′(·, X) values, the probability of sampling a
nearby witness is at ε

100 . This will correspond to the “good event”. We prove this formally
in the following lemma.

▶ Lemma 18 (Nearby witness lemma). Suppose the current solution X at the start of an
iteration satisfies costr′(P, X) > (1 + ε) · G. Further, suppose CWnear ≥ ε

100 CP . Then, with
probability at least ε

200k , the point p ∈ P , the index i ∈ [k], and value δp defined in the
iteration satisfy the following properties.
1. oi ∈ O is the closest center to p ∈ P , i.e., dist(p, oi) = dist(p, O),
2. p ∈Wnear, i.e., (i) distr′(p,X) > (1 + ε/3)distr(p, oi), and (ii) dist(p, X) ≤ 8r

ε .
3. dist(p, oi) < dist(p,X)

1+ε/12
=: δp ≤ 8r

ε .

STACS 2025

35:12 Dimension-Free Parameterized Approximation Schemes for Hybrid Clustering

Proof. First, in line 10 with probability 1/2, we correctly move to the “nearby witness”
(if) case of line 10. We condition on this event. Next, note that Wnear ⊆ N , and CWnear ≥

ε
100 CP ≥ ε

100 CN , where the first inequality is due to the case assumption. Therefore, in
line 12, the point p sampled from N , will belong to Wnear with probability at least ε

100 . Let
i ∈ [k] denote the index such that oi ∈ O is the closest center in the optimal solution O, and
we correctly guess the index i in line 17. Note that the probability of the algorithm making
the “correct” random choices is at least 1

2 ·
ε

100 ·
1
k = ε

200k .
We condition on the said events. Since p is a witness, we know that distr′(p, X) >

(1 + ε/3) · distr(p, oi). We first observe that distr′(p, X) must be positive, which implies that
dist(p, X) > r′ = (1 + ε/3)r. Now, we consider two cases based on the value of dist(p, O).

If dist(p, oi) < r, then distr(p, oi) = 0, in which case,

dist(p, oi) < r ≤ r′

1 + ε/12
≤ dist(p, X)

1 + ε/12
(2)

Otherwise, dist(p, oi) ≥ r, in which case distr(p, oi) = dist(p, oi)− r. Then, consider

dist(p, X)− (1 + ε
3)r = distr′(p, X) > (1 + ε

3) · distr(p, oi) = (1 + ε
3)(dist(p, oi)− r)

=⇒ dist(p, X)− (1 + ε
3)r > (1 + ε

3) · dist(p, oi)− (1 + ε
3)r

=⇒ dist(p, oi) <
dist(p, X)

1 + ε/3
≤ dist(p, X)

1 + ε/12
(3)

Thus, regardless of the value of dist(p, oi), we have established the third item, hence completing
the proof of the lemma. ◀

Case 2: CWnear < ε
100 CP . In this case, most of contribution of witnesses is coming from

“faraway witnesses”. In this case, the “correct choice” corresponds to the case when we sample
points from the set A =

{
p ∈ P : distr′(p, X) > ε

1000k · u(p)
}

as defined in line 14. In this
case, we will show that with good probability, the sampled point is a “faraway witness”.
Specifically, we show the following lemma.

▶ Lemma 19 (Faraway witness lemma). Suppose the current solution X at the start of an
iteration satisfies costr′(P, X) > (1 + ε) · G. Further, suppose CWnear < ε

100 CP . Then, with
probability at least ε

16k , the point p ∈ P , the index i ∈ [k], and value δp defined in the iteration
satisfy the following properties.
1. oi ∈ O is the closest center to p, i.e., dist(p, oi) = dist(p, O),
2. p ∈Wfar, i.e., (i) distr′(p,X) > (1 + ε/3)distr(p, oi), and (ii) dist(p, X) > 8r

ε ,
3. distr′(p, X) > ε

1000k u(p), and
4. dist(p, oi) < dist(p,X)

1+ε/12
=: δp ≤ 8r

ε .

Proof. First, in line 10 with probability 1/2, we correctly move to the “faraway witness”
(else) case of line 13. We condition on this event. Now, by combining Claim 16 and the case
assumption we obtain,

CWfar = CW − CWnear ≥ CP ·
(

ε
10 −

ε
100

)
= ε

9 CP . (4)

Next, let H :=
{

j ∈ [k] : CWj,far ≥ εCP

100k

}
. It follows that,∑

j∈[k]\H

CWj,far ≤ k · εCP

100k

=⇒
∑
j∈H

CWj,far ≥ CWfar −
∑

j∈[k]\H

CWj,far ≥
εCP

9 − εCP

100 ≥
εCP

8 (5)

A. Gadekar and T. Inamdar 35:13

Fix a j ∈ H, and let us index the points in Wj,far = {z1, z2, . . . , zℓ} in the non-decreasing
order of their distances dist(z, xj) (and equivalently, distr(z, xj)). First, we state the following
simple consequences of various definitions for future reference.

▶ Observation 20 (♠). For each z ∈Wj,far, the following bounds hold.
1. dist(z, xj) ≥ 8r

ε ,
2. dist(z, O) > (1 + ε

3) · dist(z, xj)
3. distr′(z, xj) ≥ 6r

ε , and
4. distr(z, xj) ≤ dist(z, xj) ≤ (1 + ε

5) · distr′(z, xj) ≤ (1 + ε
5) · distr(z, xj).

Let us return to the points in Wj,far = {z1, z2, . . . , zℓ}. Let q ∈ [ℓ] denote the minimum index
such that, the contribution of the set W −

j,far = {z1, z2, . . . , zq}, is at least CWj,far
2 . Note that

by a simple argument, this implies that the contribution of the set W +
j,far = Wj,far \W −

j,far

is also at least CWj,far
3 (see, e.g., Lemma 7.20 in [21]). Hence, we have the following lower

bounds on the contribution of both the sets, by recalling that j ∈ H.

CW −
j,far
≥ ε CP

200k
, CW +

j,far
≥ ε CP

300k
(6)

Next, we first prove the following technical claim.

▷ Claim 21. Let j ∈ H. For all p ∈ W +
j,far, it holds that u(p) ≤ 900kdist(p,xj)

ε . Therefore,
W +

j,far ⊆ A.

Proof. For this proof, we use the following shorthand: W + := W +
j,far, and W − := W −

j,far. Now,
fix an arbitrary point p ∈W +. For any q ∈W −, dist(p, xj) ≥ dist(q, xj), which implies that

dist(p, q) ≤ dist(p, xj)+dist(q, xj) ≤ 2·dist(p, xj) ≤ 2(1+ ε
5)·distr′(p, xj) ≤ 4·distr′(p, xj) (7)

Here, we use the property 4 from Observation 20 in the third inequality in the above. On
the other hand, note that,

ε OPTr

200k
≤ ε CP

200k
≤ CW − =

∑
q∈W −

distr′(q, xj) ≤ distr′(p, xj) · |W −| (8)

Then, if we set α = 12distr′(p, xj), from (7), we obtain that W − ⊆ ball(p, α/3). Now,
combining this with (8), we obtain that,

|ball(p, α/3)| ≥ |W −| ≥ ε OPTr

300k · distr′(p, xj) ≥
ε OPTr

25kα
= ε OPTr

75k(α/3) (9)

Hence, we have that |ball(p, 75kα/3ε)| ≥ ε OPTr

75k(α/3) . Using dist(p, xj) ≥ 8r/ε from Observation 20
and the fact distr(p, xj) ≥ 5dist(p, xj)/6, we have 75kα

3ε = 300k distr′ (p,xj)
ε > r. Therefore,

u(p) ≤ 900k distr′ (p,xj)
ε ≤ 900k dist(p,xj)

ε , as desired. ◁

Recall from (5) that CWfar∩A ≥
∑

j∈H CW +
j,far
≥ ε CP

8 ≥ ε CA

8 , therefore, when we sample
a point from A, the probability that the sampled point p belongs to

⋃
j∈H W +

j,far is at least
ε
8 . Now, we condition on this event. Let oi ∈ O be the nearest center to p, and in line 17,
the probability that we sample the correct index is 1

k . Thus, the total probability of the
algorithm making the “correct choices” in this case is at least 1

2 ·
ε
8 ·

1
k = ε

16k . We condition
on these choices. Note that, item 1 is thus satisfied due to the correct sampling of i, item 2 is
satisfied due p ∈

⋃
j∈H W +

j,far ⊆Wfar ⊆W , and item 3 is satisfied since p ∈ A by construction.
Thus, we are only left with showing item 4, to which end, we consider different cases for the
distance between p and its closest optimal center, oi.

STACS 2025

35:14 Dimension-Free Parameterized Approximation Schemes for Hybrid Clustering

If dist(p, oi) < 6r
ε , then since dist(p, X) ≥ 8r

ε , it easily follows that,

dist(p, oi) < 3
4 · dist(p, X) ≤ dist(p, X)

1 + ε/12
(10)

Otherwise, if dist(p, oi) ≥ 6r
ε , then similar item 4 of Observation 20, we can show that,

distr(p, oi) < dist(p, oi) ≤ (1 + ε
3) · distr(p, oi) (11)

However, since p is an ε/3-witness, it follows that, distr′(p, X) > (1+ ε
3)·distr(p, O). Therefore,

we obtain that,

dist(p, xj) ≥ distr′ (p, xj) > (1 + ε
3) · distr(p, oi) ≥ 1 + ε/3

1 + ε/5
· dist(p, oi) ≥ (1 + ε

12) · dist(p, oi) (12)

Thus, in each of the sub-cases, in (10) and (12), we have shown that dist(p, oi) < dist(p,X)
1+ε/12

,
thus completing the proof of the lemma. ◀

Lemma 18 and Lemma 19 can be combined in a straightforward way to obtain the
following lemma completing the inductive step.

▶ Lemma 22. Consider an iteration of the algorithm such that the state of execution
(X, Q1, . . . , Qk) at the start of the iteration is consistent with a fixed optimal solution O,
and further costr′(P, X) > (1 + ε) · G. Then, with probability at least ε

200k , the state of the
algorithm at the end of the iteration (X ′, Q′

1, Q′
2, . . . , Q′

k) is also consistent with O.

Proof. Consider the scenario described in the premise of the lemma. Then, the solution X

at the start of the iteration either satisfies that CWnear ≥ ε
100 CP (nearby witness case), or

CWnear ≥ ε
100 CP (faraway witness case). Then, Lemmas 18 and 19; along with the correctness

of C, together imply that, conditioned on the respective case assumption, the probability
that the state of the algorithm is consistent with O is at least ε

200k . 9 ◀

Armed with Lemma 22, it is easy to conclude the proof of Lemma 8.

Proof of Lemma 8. As argued initially, the state of the algorithm at line 6 is consistent with
the optimal solution O. Then, Lemma 22 implies that, for any ℓ ≥ 1, if the algorithm runs
for ℓ iterations, then with probability at least

(
ε

200k

)ℓ, the state of the algorithm remains
consistent. Further, note that as long as the state of the algorithm remains consistent with
O, then the algorithm cannot fail. Finally, Lemma 7 implies that the algorithm terminates
within O(k

ε λ(ε
40) log(k

40)) iterations. Therefore, the probability that the algorithm terminates
without failure – i.e., by successfully breaking the while loop by finding a solution X satisfying
costr′(P, X) ≤ (1 + ε)OPTr, is at least

(
ε
k

)O(k
ε λ(ε

40) log(k
40)) = exp

(
−O

(
k
ε log(k

ε)λ(ε
40)

))
. ◀

4 Extensions of the Bicriteria FPT-AS

Fomin et al. [23] defined a generalization of Hybrid k-Clustering, which they call Hybrid
(k, z)-clustering, wherein the objective is

∑
p∈P (distr(p, X))z, for fixed z ≥ 1, which sim-

ultaneously generalizes (k, z)-Clustering and k-Center. They generalized their algorithm
for z = 2, i.e., Hybrid k-Means, but left the possibility of extending to an arbitrary value
of z conditional on the existence of a certain kind of sampling algorithm. In this paper, we
consider a much more general Hybrid Norm k-Clustering problem that captures all

9 Note that this probability also accounts for the result of the coin toss in line 10.

A. Gadekar and T. Inamdar 35:15

(k, z)-Clustering problems, and much more. Here, the objective is to find a set X ⊆ F that
minimizes f(dr(P, X)), where dr(P, X) = (distr(p1, X), distr(p2, X), . . . , distr(pn, X)) is the
vector of r-distances to the solution X, and f : Rn → R is a monotone norm10 – we refer
the reader to [1] for a detailed background on norms and related notions.

Algorithm 1 and its analysis can be extended to the general norm objective following the
approach of [1]. Here, we only sketch the modifications required to the algorithm and its
proof, since this is not the main focus of this work.

The initial upper bounds u(p) can be found in a similar manner. The while loop runs
as long as the solution X in hand satisfies that f(dr′(P, X)) > (1 + ε/3) · OPTr, where dr′

denotes the vector of distances (distr′(p, X))p∈X , and r′ = (1 + ε/3)r. If this is the case, then
the first step is to compute11 a subgradient of f at dr′ , which is, loosely speaking, a weight
function w : P → R≥0, such that it suffices to focus the attention in the current iteration
on wcostr′(P, X) :=

∑
p∈P w(p)distr(p, X) that satisfies wcostr′(P, X) = f(dr′(P, X)) >

(1 + ε/3) · OPTr. Our algorithm proceeds in a similar fashion, except that whenever points
are sampled from the set N (in line 12) or set A (in line 15), the probability of sampling a
point p is proportional to w(p) · distr(p, X). The rest of the algorithm remains unchanged.

There are a few minor modifications required in the analysis – mainly in Section 3.2.2.
First, while the definition of an (ε/3)-witness (or simply a witness) remains unchanged, we
redefine the contribution of a subset S ⊆ P to be CS :=

∑
p∈S w(p) · distr(p, X). The nearby

and faraway witness cases are then considered exactly as in Section 3.2.2. The proof of
the analogue of Lemma 18 goes through without any modifications; whereas we need to be
slightly more careful in the proof of the analogue of Lemma 19. Here, in inequalities (8 and
9) we need to take the weighted distances into account and relate CP to f(dr′(P, X)), which
requires a slight worsening of constants. With these minor changes in place, we can conclude
that the state of the algorithm after ℓ iterations is consistent with a fixed optimal solution
O with probability at least Ω(

(
ε
k

)
)ℓ. The analysis for bounding the number of iterations

remains unchanged, and hence we obtain an FPT-AS with a similar running time, modulo
the constants hidden in the big-Oh notation. We omit the details.

5 Coreset

In this section, we design a coreset for Hybrid k-Clustering in doubling metric of bounded
dimension. More specifically, we prove the following (restated for convenience).

▶ Theorem 3 (Coreset for Hybrid k-Clustering). There exists an algorithm that takes
as input an instance I = ((P,F, dist), k, r) of Hybrid k-Clustering in doubling metric
of dimension d and a parameter ε ∈ (0, 1), and in time 2O(d log(1/ε))|I|O(1) returns a pair
(P ′, w), where P ′ ⊆ P has size 2O(d log(1/ε)k log |P |, and w : P ′ → N, such that the following
property is satisfied for any X ⊆ F of size at most k:

|wcostr(P ′, X)− costr(P, X)| ≤ εcostr(P, X)

Here, wcostr(P, X) :=
∑

p∈P ′ w(p) · distr(p, X).

Proof. A formal description of our algorithm can be found in the full version of the paper.
Here, we provide an overview of the overview, which is based on grid construction approach
of [26, 2]. Let T ⊆ P ∪ F be an approximate solution that satisfies the following properties:

10 f : Rn → R is a norm if it satisfies following properties for any x, y ∈ Rn and any λ ∈ R, (i) f(x) = 0
iff x = 0, (ii) f(x + y) ≤ f(x) + f(y), (iii) f(λx) = |λ|f(x); furthermore, f is monotone if f(x) ≤ f(y)
whenever x ≤ y, where ≤ denotes point-wise inequality.

11 Actually, it is sufficient to compute an approximate subgradient, as done in [1].

STACS 2025

35:16 Dimension-Free Parameterized Approximation Schemes for Hybrid Clustering

(i) |T | ≤ 2O(d)k, and (ii) costr(P, T) ≤ 36 ·OPTr
12. For each ti ∈ T , consider the balls Bj

i =
ball(ti, 2jR), for j ∈ {0, 1, . . . , 2 log⌈αn⌉}. Note that, since dist(p, T) ≤ cost(P, T) = αn ·R,
we have that p lies in some ball Bj

i , for i ∈ [γk] and j ∈ {0, 1, . . . , 2 log⌈αn⌉}.
The idea is to decompose each Bj

i into smaller balls each of radius ε2jR
4α , and associate

each point p ∈ P to a unique smallest ball containing p, breaking ties arbitrary. We say a
small ball b is non-empty if there is a point in P associated with b. Next, for each non-empty
ball b, pick an arbitrary point p associated with b and add p to P ′ with weight w(p) equal to
the total number of points associated with b; we call such a point p as the representative of
points associated with b.

To bound the size of P ′, note that, in doubling metric of dimension d, a unit
ball can be covered by 2O(d log(1/ε)) balls, each of radius ε. Hence, we have |P ′| =
O(2O(d log(1/ε))γk log(αn)).

Recall that, for X ⊆ F, |X| ≤ k, we define the weighted cost of X with respect to
(P ′, {w(p′)}p′∈P ′) as wcostr(P ′, X) =

∑
p′∈P w(p′)dr(p′, X). Now we show that the cost of

X with respect to (P ′, {w(p′)}p′∈P ′) approximately preserves the cost of X with respect to P .
Consider a point p ∈ P and let p′ ∈ P ′ be its representative in P ′. Now, the contribution of p

towards costr(P, X) is distr(p, X). On the other hand, its contribution towards wcostr(P ′, X)
is distr(p′, X). Hence,

|wcostr(P ′, X)− costr(P, X)| ≤
∑
p∈P

|distr(p, X)− distr(p′, X)|.

Now if p ∈
⋃

i∈γk B0
i , then dist(p, X)− εR

4α ≤ dist(p′, X) ≤ dist(p, X) + εR
4α . Hence,

max{dist(p, X)− εR/4α− r, 0} ≤ distr(p′, X) ≤ max{dist(p, X) + εR/4α− r, 0}

Therefore, distr(p, X)− εR/4α ≤ distr(p′, X) ≤ distr(p, X) + εR/4α. Hence, we have∑
p∈P0

|distr(p, X)− distr(p′, X)| ≤ εRn

4α
≤ εOPTr

2 ≤ εcostr(P, X)
2 .

Now, suppose p ∈ P \
⋃

i∈γk B0
i , then dist(p, T) > R. Let j ≥ 1 be such that 2j−1R ≤

dist(p, T) ≤ 2jR. Hence, we have that 2jR ≤ 2dist(p, T). Therefore, using dist(p, X) −
εd(p,T)

2α ≤ dist(p′, X) ≤ dist(p, X) + εd(p,T)
2α , we have

max{dist(p, X)− εd(p,T)/2α− r, 0} ≤ distr(p′, X) ≤ max{dist(p, X) + εd(p,T)/2α− r, 0}

This implies,distr(p, X)− εd(p,T)/2α ≤ distr(p′, X) ≤ distr(p, X) + εd(p,T)/2α. Thus, we have∑
p∈P \P0

|distr(p, X)− distr(p′, X)| ≤
∑

p∈P \P0

ε

2α
dist(p, T) ≤ OPTr

2 ≤ εcostr(P, X)
2 .

Finally, we have |wcostr(P ′, X)− costr(P, X)| ≤ εcostr(P, X), as desired.
To finish the proof, we invoke the coreset construction algorithm using the approximate

set T obtained from the following lemma. At a high level, to obtain this lemma, we start
from an (18, 6)-bicriteria approximation for Hybrid k-Clustering from [23, 13], and use
the fact that, a ball of radius O(r) can be decomposed into 2O(d) balls of radius r, converting
the guarantee from dist6r(·, ·) to distr(·, ·).

12 Note the set T is a bicriteria solution, but in a different sense, since it approximates the size and the
cost while using r-distances.

A. Gadekar and T. Inamdar 35:17

▶ Lemma 23 (Approximate solution T for coreset construction). There is a polynomial-time
algorithm that, given an instance I = (P,F, dist, r) of Hybrid k-Clustering in doubling
metric of dimension d, computes T ⊆ P ∪ F, |T | ≤ 2O(d)k such that costr(P, T) ≤ 36 · OPTr,
where OPTr is the optimal cost for I. ◀

Proof. Let A be (18, 6)-bicriteria solution for I obtained from [14], as mentioned in [23].That
is cost6r(P, A) ≤ 18OPTr. Consider Ba := ball(a, 12r) for a ∈ A, and decompose Ba into
2O(d) smaller balls, each of radius r/2 – note that this follows from the fact that the metric
space has doubling dimension d. For each smaller ball b such that b ∩ (P ∪ F) ̸= ∅, add an
arbitrary t ∈ b ∩ (P ∪ F) to T . Finally, add A to T . Hence, |T | = |A|+ 2O(d)|A| = k2O(d).

It is easy to see that, for every p ∈
⋃

c∈A ball(c, 12r), there is some q ∈ T , such that
dist(p, q) ≤ r. Now, consider some p′ ̸∈

⋃
c∈A ball(c, 12r). Note that dist6r(p, A) ≥ 6r, which

implies that dist(p, A) ≤ 2 · dist6r(p, A). Therefore, distr(p, T) ≤ distr(p, A) ≤ dist(p, A) ≤
2dist6r(p, A). Therefore, it follows that for all p ∈ P , distr(p, T) ≤ 2 · dist6r(p, A). Which
implies that,

costr(p, T) ≤ 2 · costr(p, A) ≤ 36 · OPTr.

This concludes the proof of the lemma. ◀

6 Conclusion

In this paper, we revisit Hybrid k-Clustering, which was introduced and studied recently
by Fomin et al. [23]. We resolve two open questions explicitly asked in their work, namely, for
continuous Euclidean instances from Rd, (1) we obtain an FPT-AS for Hybrid k-Clustering
that does not have an FPT dependence on the dimension d (and in fact, the dependence on k

is 2O(k log k) instead 2poly(k) as in [23]), and (2) we design coresets for the same. Indeed, our
technique also generalizes to the (k, z)-clustering variant of the problem, which was implicitly
considered in [23], but was not completely resolved. To obtain our algorithmic result, we
build upon insights from the recent framework of Abbasi et al. [1] for clustering in metric
spaces of bounded algorithmic scatter dimension that encapsulates a broad class of metric
spaces. Thus, our result shows that the potential of the framework introduced in [1] extends
to clustering problems beyond that captured by the monotone norm setting, thus paving
the way for obtaining FPT-ASes for other clustering problems using the similar technique.
However, several interesting questions remain.

Firstly, the framework of [1] is inherently randomized due to key sampling steps, and its
derandomization remains an intriguing open question. In particular, derandomizing the step
that samples a witness in our algorithm is an interesting challenge. In another direction,
now that the approximation landscape of the vanilla version of Hybrid k-Clustering is
beginning to be well-understood, it is natural to explore constrained variants of the problem
such as those involving fairness or capacity constraints.

References
1 Fateme Abbasi, Sandip Banerjee, Jaroslaw Byrka, Parinya Chalermsook, Ameet Gadekar,

Kamyar Khodamoradi, Dániel Marx, Roohani Sharma, and Joachim Spoerhase. Paramet-
erized approximation schemes for clustering with general norm objectives. In 64th IEEE
Annual Symposium on Foundations of Computer Science, FOCS 2023, Santa Cruz, CA, USA,
November 6-9, 2023, pages 1377–1399. IEEE, 2023. doi:10.1109/FOCS57990.2023.00085.

STACS 2025

https://doi.org/10.1109/FOCS57990.2023.00085

35:18 Dimension-Free Parameterized Approximation Schemes for Hybrid Clustering

2 Fateme Abbasi, Sandip Banerjee, Jaroslaw Byrka, Parinya Chalermsook, Ameet Gadekar,
Kamyar Khodamoradi, Dániel Marx, Roohani Sharma, and Joachim Spoerhase. Parameterized
approximation for robust clustering in discrete geometric spaces. In Karl Bringmann, Martin
Grohe, Gabriele Puppis, and Ola Svensson, editors, 51st International Colloquium on Automata,
Languages, and Programming, ICALP 2024, July 8-12, 2024, Tallinn, Estonia, volume
297 of LIPIcs, pages 6:1–6:19. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, 2024.
doi:10.4230/LIPICS.ICALP.2024.6.

3 Akanksha Agrawal, Tanmay Inamdar, Saket Saurabh, and Jie Xue. Clustering what matters:
Optimal approximation for clustering with outliers. J. Artif. Intell. Res., 78:143–166, 2023.
doi:10.1613/JAIR.1.14883.

4 Barbara Anthony, Vineet Goyal, Anupam Gupta, and Viswanath Nagarajan. A plant location
guide for the unsure: Approximation algorithms for min-max location problems. Mathematics
of Operations Research, 35(1):pages 79–101, 2010.

5 Sanjeev Arora, Prabhakar Raghavan, and Satish Rao. Approximation schemes for euclidean
k-medians and related problems. In Proceedings of the Thirtieth Annual ACM Symposium
on Theory of Computing, STOC ’98, pages 106–113, New York, NY, USA, 1998. ACM.
doi:10.1145/276698.276718.

6 Vijay Arya, Naveen Garg, Rohit Khandekar, Adam Meyerson, Kamesh Munagala, and
Vinayaka Pandit. Local search heuristics for k-median and facility location problems. SIAM
J. Comput., 33(3):544–562, 2004. doi:10.1137/S0097539702416402.

7 Mihai Badoiu, Sariel Har-Peled, and Piotr Indyk. Approximate clustering via core-sets.
In Proceedings on 34th Annual ACM Symposium on Theory of Computing, (STOC), pages
250–257. ACM, 2002. doi:10.1145/509907.509947.

8 Sayan Bandyapadhyay, Fedor V. Fomin, and Kirill Simonov. On coresets for fair clustering in
metric and euclidean spaces and their applications. J. Comput. Syst. Sci., 142:103506, 2024.
doi:10.1016/J.JCSS.2024.103506.

9 Sayan Bhattacharya, Parinya Chalermsook, Kurt Mehlhorn, and Adrian Neumann. New ap-
proximability results for the robust k-median problem. In Scandinavian Workshop on Algorithm
Theory (SWAT’14), pages 50–61. Springer, 2014. doi:10.1007/978-3-319-08404-6_5.

10 Romain Bourneuf and Marcin Pilipczuk. Bounding ε-scatter dimension via metric sparsity. In
Proceedings of the 2025 Annual ACM-SIAM Symposium on Discrete Algorithms (SODA) (to
appear), 2025.

11 Vladimir Braverman, Shaofeng H-C Jiang, Robert Krauthgamer, and Xuan Wu. Coresets for
ordered weighted clustering. In International Conference on Machine Learning (ICML’19),
pages 744–753. PMLR, 2019. URL: http://proceedings.mlr.press/v97/braverman19a.
html.

12 Jaroslaw Byrka, Krzysztof Sornat, and Joachim Spoerhase. Constant-factor approximation for
ordered k-median. In Proceedings of the 50th Annual ACM SIGACT Symposium on Theory of
Computing (STOC), pages 620–631. ACM, 2018. doi:10.1145/3188745.3188930.

13 Deeparnab Chakrabarty, Prachi Goyal, and Ravishankar Krishnaswamy. The non-uniform k-
center problem. In Ioannis Chatzigiannakis, Michael Mitzenmacher, Yuval Rabani, and Davide
Sangiorgi, editors, 43rd International Colloquium on Automata, Languages, and Programming,
ICALP 2016, July 11-15, 2016, Rome, Italy, volume 55 of LIPIcs, pages 67:1–67:15. Schloss
Dagstuhl – Leibniz-Zentrum für Informatik, 2016. doi:10.4230/LIPICS.ICALP.2016.67.

14 Deeparnab Chakrabarty and Chaitanya Swamy. Interpolating between k-median and k-center:
Approximation algorithms for ordered k-median. In Proceedings of the 45th International
Colloquium on Automata, Languages, and Programming (ICALP), volume 107 of LIPIcs, pages
29:1–29:14. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, 2018. doi:10.4230/LIPICS.
ICALP.2018.29.

15 Deeparnab Chakrabarty and Chaitanya Swamy. Approximation algorithms for minimum norm
and ordered optimization problems. In Moses Charikar and Edith Cohen, editors, Proceedings
of the 51st Annual ACM SIGACT Symposium on Theory of Computing (STOC), pages 126–137.
ACM, 2019. doi:10.1145/3313276.3316322.

https://doi.org/10.4230/LIPICS.ICALP.2024.6
https://doi.org/10.1613/JAIR.1.14883
https://doi.org/10.1145/276698.276718
https://doi.org/10.1137/S0097539702416402
https://doi.org/10.1145/509907.509947
https://doi.org/10.1016/J.JCSS.2024.103506
https://doi.org/10.1007/978-3-319-08404-6_5
http://proceedings.mlr.press/v97/braverman19a.html
http://proceedings.mlr.press/v97/braverman19a.html
https://doi.org/10.1145/3188745.3188930
https://doi.org/10.4230/LIPICS.ICALP.2016.67
https://doi.org/10.4230/LIPICS.ICALP.2018.29
https://doi.org/10.4230/LIPICS.ICALP.2018.29
https://doi.org/10.1145/3313276.3316322

A. Gadekar and T. Inamdar 35:19

16 Vincent Cohen-Addad, Fabrizio Grandoni, Euiwoong Lee, and Chris Schwiegelshohn. Breaching
the 2 LMP approximation barrier for facility location with applications to k-median. In Nikhil
Bansal and Viswanath Nagarajan, editors, Proceedings of the 2023 ACM-SIAM Symposium on
Discrete Algorithms, SODA 2023, Florence, Italy, January 22-25, 2023, pages 940–986. SIAM,
2023. doi:10.1137/1.9781611977554.CH37.

17 Vincent Cohen-Addad, Philip N. Klein, and Claire Mathieu. Local search yields approximation
schemes for k-means and k-median in euclidean and minor-free metrics. SIAM J. Comput.,
48(2):644–667, 2019. doi:10.1137/17M112717X.

18 Vincent Cohen-Addad and Jason Li. On the fixed-parameter tractability of capacitated
clustering. In Christel Baier, Ioannis Chatzigiannakis, Paola Flocchini, and Stefano Leonardi,
editors, 46th International Colloquium on Automata, Languages, and Programming, ICALP
2019, July 9-12, 2019, Patras, Greece, volume 132 of LIPIcs, pages 41:1–41:14. Schloss Dagstuhl
– Leibniz-Zentrum für Informatik, 2019. doi:10.4230/LIPICS.ICALP.2019.41.

19 Vincent Cohen-Addad, Michał Pilipczuk, and Marcin Pilipczuk. A polynomial-time approxim-
ation scheme for facility location on planar graphs. In 2019 IEEE 60th Annual Symposium on
Foundations of Computer Science (FOCS), pages 560–581. IEEE, 2019.

20 Vincent Cohen-Addad, David Saulpic, and Chris Schwiegelshohn. A new coreset framework
for clustering. In Proceddings of the 53rd Annual ACM SIGACT Symposium on Theory of
Computing (STOC), pages 169–182. ACM, 2021. doi:10.1145/3406325.3451022.

21 Marek Cygan, Fedor V. Fomin, Lukasz Kowalik, Daniel Lokshtanov, Dániel Marx, Marcin
Pilipczuk, Michal Pilipczuk, and Saket Saurabh. Parameterized Algorithms. Springer, 2015.
doi:10.1007/978-3-319-21275-3.

22 Tomás Feder and Daniel H. Greene. Optimal algorithms for approximate clustering. In Janos
Simon, editor, Proceedings of the 20th Annual ACM Symposium on Theory of Computing, May
2-4, 1988, Chicago, Illinois, USA, pages 434–444. ACM, 1988. doi:10.1145/62212.62255.

23 Fedor V. Fomin, Petr A. Golovach, Tanmay Inamdar, Saket Saurabh, and Meirav Zehavi.
Hybrid k-clustering: Blending k-median and k-center. In Amit Kumar and Noga Ron-Zewi,
editors, Approximation, Randomization, and Combinatorial Optimization. Algorithms and
Techniques, APPROX/RANDOM 2024, August 28-30, 2024, London School of Economics,
London, UK, volume 317 of LIPIcs, pages 4:1–4:19. Schloss Dagstuhl – Leibniz-Zentrum für
Informatik, 2024. doi:10.4230/LIPICS.APPROX/RANDOM.2024.4.

24 Zachary Friggstad, Mohsen Rezapour, and Mohammad R. Salavatipour. Local search yields
a PTAS for k-means in doubling metrics. SIAM J. Comput., 48(2):452–480, 2019. doi:
10.1137/17M1127181.

25 Mehrdad Ghadiri, Samira Samadi, and Santosh Vempala. Socially fair k-means clustering.
In Proceedings of the 2021 ACM Conference on Fairness, Accountability, and Transparency,
pages 438–448, 2021. doi:10.1145/3442188.3445906.

26 Sariel Har-Peled and Soham Mazumdar. On coresets for k-means and k-median clustering.
In László Babai, editor, Proceedings of the 36th Annual ACM Symposium on Theory of
Computing, Chicago, IL, USA, June 13-16, 2004, pages 291–300. ACM, 2004. doi:10.1145/
1007352.1007400.

27 Dorit S. Hochbaum and Wolfgang Maass. Approximation schemes for covering and packing
problems in image processing and VLSI. J. ACM, 32(1):130–136, 1985. doi:10.1145/2455.
214106.

28 Dorit S. Hochbaum and David B. Shmoys. A best possible heuristic for the k-center problem.
Mathematics of Operations Research, 10(2):180–184, 1985. URL: http://www.jstor.org/
stable/3689371, doi:10.1287/MOOR.10.2.180.

29 Kamal Jain, Mohammad Mahdian, and Amin Saberi. A new greedy approach for facility
location problems. In John H. Reif, editor, Proceedings on 34th Annual ACM Symposium on
Theory of Computing, May 19-21, 2002, Montréal, Québec, Canada, pages 731–740. ACM,
2002. doi:10.1145/509907.510012.

STACS 2025

https://doi.org/10.1137/1.9781611977554.CH37
https://doi.org/10.1137/17M112717X
https://doi.org/10.4230/LIPICS.ICALP.2019.41
https://doi.org/10.1145/3406325.3451022
https://doi.org/10.1007/978-3-319-21275-3
https://doi.org/10.1145/62212.62255
https://doi.org/10.4230/LIPICS.APPROX/RANDOM.2024.4
https://doi.org/10.1137/17M1127181
https://doi.org/10.1137/17M1127181
https://doi.org/10.1145/3442188.3445906
https://doi.org/10.1145/1007352.1007400
https://doi.org/10.1145/1007352.1007400
https://doi.org/10.1145/2455.214106
https://doi.org/10.1145/2455.214106
http://www.jstor.org/stable/3689371
http://www.jstor.org/stable/3689371
https://doi.org/10.1287/MOOR.10.2.180
https://doi.org/10.1145/509907.510012

35:20 Dimension-Free Parameterized Approximation Schemes for Hybrid Clustering

30 Kamal Jain and Vijay V. Vazirani. Approximation algorithms for metric facility location
and k-median problems using the primal-dual schema and lagrangian relaxation. J. ACM,
48(2):274–296, 2001. doi:10.1145/375827.375845.

31 Ravishankar Krishnaswamy, Shi Li, and Sai Sandeep. Constant approximation for k-median
and k-means with outliers via iterative rounding. In Ilias Diakonikolas, David Kempe, and
Monika Henzinger, editors, Proceedings of the 50th Annual ACM SIGACT Symposium on
Theory of Computing, STOC 2018, Los Angeles, CA, USA, June 25-29, 2018, pages 646–659.
ACM, 2018. doi:10.1145/3188745.3188882.

32 Alfred A Kuehn and Michael J Hamburger. A heuristic program for locating warehouses.
Management science, 9(4):643–666, 1963.

33 Amit Kumar, Yogish Sabharwal, and Sandeep Sen. Linear time algorithms for clustering
problems in any dimensions. In 32nd International Colloquium on Automata, Languages and
Programming (ICALP), volume 3580 of Lecture Notes in Computer Science, pages 1374–1385.
Springer, 2005. doi:10.1007/11523468_111.

34 Amit Kumar, Yogish Sabharwal, and Sandeep Sen. Linear-time approximation schemes for
clustering problems in any dimensions. J. ACM, 57(2):5:1–5:32, 2010. doi:10.1145/1667053.
1667054.

35 Shi Li. A 1.488 approximation algorithm for the uncapacitated facility location problem. Inf.
Comput., 222:45–58, 2013. doi:10.1016/J.IC.2012.01.007.

36 S. Lloyd. Least squares quantization in pcm. IEEE Transactions on Information Theory,
28(2):129–137, March 1982. doi:10.1109/TIT.1982.1056489.

37 Meena Mahajan, Prajakta Nimbhorkar, and Kasturi R. Varadarajan. The planar k-means
problem is np-hard. Theor. Comput. Sci., 442:13–21, 2012. doi:10.1016/J.TCS.2010.05.034.

38 Yury Makarychev and Ali Vakilian. Approximation algorithms for socially fair clustering.
In Conference on Learning Theory (COLT’21), pages 3246–3264. PMLR, 2021. URL: http:
//proceedings.mlr.press/v134/makarychev21a.html.

39 Dániel Marx. Parameterized complexity of independence and domination on geometric
graphs. In Hans L. Bodlaender and Michael A. Langston, editors, Parameterized and Exact
Computation, Second International Workshop, IWPEC 2006, Zürich, Switzerland, September
13-15, 2006, Proceedings, volume 4169 of Lecture Notes in Computer Science, pages 154–165.
Springer, 2006. doi:10.1007/11847250_14.

40 Nimrod Megiddo and Kenneth J Supowit. On the complexity of some common geometric
location problems. SIAM journal on computing, 13(1):182–196, 1984. doi:10.1137/0213014.

41 John F. Stollsteimer. A working model for plant numbers and locations. Journal of Farm
Economics, 45(3):631–645, 1963. URL: http://www.jstor.org/stable/1235442.

42 Arie Tamir. The k-centrum multi-facility location problem. Discret. Appl. Math., 109(3):293–
307, 2001. doi:10.1016/S0166-218X(00)00253-5.

43 Murad Tukan, Xuan Wu, Samson Zhou, Vladimir Braverman, and Dan Feldman. New coresets
for projective clustering and applications. In Gustau Camps-Valls, Francisco J. R. Ruiz,
and Isabel Valera, editors, International Conference on Artificial Intelligence and Statistics,
AISTATS 2022, 28-30 March 2022, Virtual Event, volume 151 of Proceedings of Machine
Learning Research, pages 5391–5415. PMLR, 2022. URL: https://proceedings.mlr.press/
v151/tukan22a.html.

https://doi.org/10.1145/375827.375845
https://doi.org/10.1145/3188745.3188882
https://doi.org/10.1007/11523468_111
https://doi.org/10.1145/1667053.1667054
https://doi.org/10.1145/1667053.1667054
https://doi.org/10.1016/J.IC.2012.01.007
https://doi.org/10.1109/TIT.1982.1056489
https://doi.org/10.1016/J.TCS.2010.05.034
http://proceedings.mlr.press/v134/makarychev21a.html
http://proceedings.mlr.press/v134/makarychev21a.html
https://doi.org/10.1007/11847250_14
https://doi.org/10.1137/0213014
http://www.jstor.org/stable/1235442
https://doi.org/10.1016/S0166-218X(00)00253-5
https://proceedings.mlr.press/v151/tukan22a.html
https://proceedings.mlr.press/v151/tukan22a.html

MaxMin Separation Problems: FPT Algorithms for
st-Separator and Odd Cycle Transversal
Ajinkya Gaikwad #

Indian Institute of Science Education and Research, Pune, India

Hitendra Kumar #

Indian Institute of Science Education and Research, Pune, India

Soumen Maity #

Indian Institute of Science Education and Research, Pune, India

Saket Saurabh #

The Institute of Mathematical Sciences, Chennai, India
University of Bergen, Norway

Roohani Sharma #

University of Bergen, Norway

Abstract
In this paper, we study the parameterized complexity of the MaxMin versions of two fundamental
separation problems: Maximum Minimal st-Separator and Maximum Minimal Odd Cycle
Transversal (OCT), both parameterized by the solution size. In the Maximum Minimal st-
Separator problem, given a graph G, two distinct vertices s and t and a positive integer k, the
goal is to determine whether there exists a minimal st-separator in G of size at least k. Similarly,
the Maximum Minimal OCT problem seeks to determine if there exists a minimal set of vertices
whose deletion results in a bipartite graph, and whose size is at least k. We demonstrate that both
problems are fixed-parameter tractable parameterized by k. Our FPT algorithm for Maximum
Minimal st-Separator answers the open question by Hanaka, Bodlaender, van der Zanden & Ono
[TCS 2019].

One unique insight from this work is the following. We use the meta-result of Lokshtanov,
Ramanujan, Saurabh & Zehavi [ICALP 2018] that enables us to reduce our problems to highly
unbreakable graphs. This is interesting, as an explicit use of the recursive understanding and random-
ized contractions framework of Chitnis, Cygan, Hajiaghayi, Pilipczuk & Pilipczuk [SICOMP 2016]
to reduce to the highly unbreakable graphs setting (which is the result that Lokshtanov et al. tries
to abstract out in their meta-theorem) does not seem obvious because certain “extension” variants
of our problems are W[1]-hard.

2012 ACM Subject Classification Theory of computation → Fixed parameter tractability

Keywords and phrases Parameterized Complexity, FPT, MaxMin problems, Maximum Minimal
st-separator, Maximum Minimal Odd Cycle Transversal, Unbreakable Graphs, CMSO, Long Induced
Odd Cycles, Sunflower Lemma

Digital Object Identifier 10.4230/LIPIcs.STACS.2025.36

Funding Ajinkya Gaikwad: The author is supported by the Ministry of Human Resource Develop-
ment, Government of India, under Prime Minister’s Research Fellowship Scheme (No. MRF-192002-
211).
Saket Saurabh: The author is supported by the European Research Council (ERC) under the
European Union’s Horizon 2020 research and innovation programme (grant agreement No. 819416);
and he also acknowledges the support of Swarnajayanti Fellowship grant DST/SJF/MSA-01/2017-18.

© Ajinkya Gaikwad, Hitendra Kumar, Soumen Maity, Saket Saurabh, and
Roohani Sharma;
licensed under Creative Commons License CC-BY 4.0

42nd International Symposium on Theoretical Aspects of Computer Science (STACS 2025).
Editors: Olaf Beyersdorff, Michał Pilipczuk, Elaine Pimentel, and Nguyễn Kim Thắng;
Article No. 36; pp. 36:1–36:21

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:ajinkya.gaikwad@students.iiserpune.ac.in
https://orcid.org/0000-0002-7514-0708
mailto:hitendra.kumar@students.iiserpune.ac.in
mailto:soumen@iiserpune.ac.in
mailto:saket@imsc.res.in
https://orcid.org/0000-0001-7847-6402
mailto:r.sharma@uib.no
https://orcid.org/0000-0003-2212-1359
https://doi.org/10.4230/LIPIcs.STACS.2025.36
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

36:2 MaxMin Separation Problems

1 Introduction

In this work we study fixed-parameter tractability of two fundamental MaxMin separation
problems: Maximum Minimum st-Separator (MaxMin st-Sep) and Maximum Minimum
Odd Cycle Transversal (MaxMin OCT). In the MaxMin st-Sep problem, the input
is an undirected graph G, two distinct vertices s, t of G and a positive integer k. The goal is
to determine if there exists a subset of vertices Z, of size at least k, such that Z is a minimal
st-separator in G. That is, the deletion of Z disconnects s and t and the deletion of any
proper subset of Z results in a graph where s and t are connected. Similarly, in the MaxMin
OCT problem, given G, k, the goal is to determine if there exists a set of vertices Z, of size
at least k, such that Z intersects all odd length cycles in G and Z is minimal, that is no
proper subset of Z intersects all odd length cycles in G.

In contrast to the classical polynomial-time solvable st-Separator problem, where the
goal is to find an st-separator of size at most k, the MaxMin st-Sep problem is NP-hard [20].
The MaxMin OCT problem can also be shown to be NP-hard by giving a reduction from
the MaxMin st-Sep problem (see Section 2.1).

In this work we show that both MaxMin st-Sep and MaxMin OCT are fixed-parameter
tractable with respect to the parameter k. The first result, in fact, resolves an open problem
which was explicitly posed by Hanaka, Bodlaender, van der Zanden & Ono [20].

MaxMin versions of several classical vertex/edge deletion minimization problems have
been studied in the literature. The original motivation behind studying such versions is
that the size of the solution of the MaxMin versions reflects on the worst-case guarantees
of a greedy heuristic. In addition to this, the MaxMin problems have received a lot of
attention also because of their deep combinatorial structure which makes them stubborn
even towards basic algorithmic ideas. As we will highlight later, neither greedy, nor an
exhaustive-search strategy like branching, works for the MaxMin versions of even the
“simplest” problems without significant effort. The MaxMin versions are even harder to
approximate. For example, the classic Vertex Cover and Feedback Vertex Set
problems admit 2-approximation algorithms [4], which are tight under the Unique Games
Conjecture [21]. But the MaxMin Vertex Cover admits a n1/2-approximation, which
is tight unless P = NP [8, 31], and the MaxMin Feedback Vertex Set admits a tight
n2/3-approximation [13].

We note here that the study of MaxMin versions of classical deletion problems is not the
only proposed way of understanding worst-case heursitics guarantees (though in this work
we only focus on such versions). Several variations of different problems have been defined
whose core is similar. This includes problems like b-Coloring, Grundy Coloring etc,
which are analogs for the classic Chromatic Number problem.

Parameterized Complexity of MaxMin problems in literature. Given the extensive study
of the Vertex Cover problem in parameterized complexity, the parameterized complexity
MaxMin Vertex Cover has naturally garnered significant attention [30, 8, 31, 2]. More
recently, MaxMin Feedback Vertex Set problem has also been explored in [13, 24],
where several faster FPT algorithms are proposed. The MaxMin Upper Dominating Set
problem has been studied in [1, 3, 5, 14], and its edge variant, the MaxMin Upper Edge
Dominating Set, is addressed in [28, 17]. Additionally, MaxMin and MinMax formulations
have been investigated for a range of other problems, including cut and separation problems
[23, 12], knapsack problems [18, 16], matching problems [9], and coloring problems [6]. We
elaborate more on the literature around MaxMin versions of cut and separation problems in
the later paragraph.

A. Gaikwad, H. Kumar, S. Maity, S. Saurabh, and R. Sharma 36:3

We remark that for most problems mentioned in the paragraph above, showing that they
are FPT parameterized by the solution size is not very difficult (though designing faster
FPT algorithms could be much challenging and require deep problem-specific combinatorial
insights). The reason is that it is easy to bound the treewidth of the input graph: find a
greedy packing of obstructions (edges for MaxMin Vertex Cover and cycles for MaxMin
Feedback Vertex Set); if the packing size is at least k, then the instance is a yes-instance,
otherwise there exists a vertex cover (resp. feedback vertex set) of the input graph, of size at
most 2k (resp. O(k log k) from the Erdös-Pósa theorem). In both case, the treewidth of the
graph is bounded by a function of k. Since these problems are expressible in Monadic Second
Order (MSO) Logic, from Courcelle’s theorem a linear-time FPT in k algorithm follows.

Parameterized Complexity of MaxMin cut and separation problems in literature. The
key challenge in the study of cut and separation problems, in contrast to the vertex/edge-
deletion problems mentioned in the paragraph above, is that it is not always easy to bound
the treewidth of the instances. Having said that the existing work on MaxMin versions of
cut and separation problems are still based on treewidth win-win approaches as explained
below.

Hanaka et al. [20] studied the parameterized complexity of the MaxMin Separator
problem. Here the input is only a connected graph G and a positive integer k, and the goal
is to find a minimal vertex set of size at least k whose deletion disconnects the graph. This
problem has an easy FPT algorithm parameterized by k based on a win-win approach: if the
input graph has large treewidth, then it has a large grid-minor which implies the existence
of a large solution; otherwise the treewidth is bounded and since the problem is expressible
in MSO, one can solve the problem in linear time on bounded treewidth graphs. Note that
this approach completely fails when we are looking for an st-separator (which is the problem
we attack in the present work) for fixed vertices s and t. In particular, a large grid minor
does not necessarily imply a large st-separator.

In the same work Hanaka et al. designed an explicit FPT algorithm parameterized by
treewidth for the MaxMin st-Sep problem and left open the question of determining the
parameterized complexity of MaxMin st-Sep parameterized by the solution size k.

Common techniques like flow augmentation [22] and treewidth reduction [27] are not
suitable for solving the Maximum Minimal st-Separator problem. This is because the
size of the solution in this problem can be arbitrarily large, rather than being bounded by
a function of k. When the solution size is unbounded, these methods fail to simplify the
problem or give meaningful reductions. We also considered the idea to reduce the problem
to a scenario where the solution size is bounded by some function of k using some win-win
approach, and then use techniques like treewidth-reduction, unbreakable tree decompositions
or even flow-augmentation. But showing the first part seemed tricky and even if one shows
that the solution size is bounded, it is still not straightforward to use these classical cut-based
techniques as maintaining certificates of minimality of a partial solution is hard in general.

Later Duarte et al. [12] studied the edge-deletion variant of the MaxMin st-Sep problem.
They termed it the Largest st-Bond problem and showed, amongst other results, that
it is FPT parameterized by the solution size k. At the core of this algorithm is another
treewidth-based win-win approach, which seems hard to generalize to the vertex-deletion
case.

Problem 1: MaxMin st-Sep. In this work, for the first time, we use the power of highly
unbreakable instances to show fixed-parameter tractability of some MaxMin separation
problems. For two positive integers q, k, a graph G is called (q, k)-unbreakable if no vertex

STACS 2025

36:4 MaxMin Separation Problems

set of size at most k can disconnect two (large) sets of size at least q each. For the purposes
of an informal discussion, we say a graph is unbreakable if it is (q, k)-unbreakable for some
values of q and k.

Chitnis et al. [10] developed a win-win approach based on this unbreakable structure of the
graph. The approach has two parts: recursive understanding and randomized contractions.
In the first part, a large enough part of the input graph is detected that is unbreakable and
has small boundary to the rest of the graph. In the second part, a family of “partial solutions”
are computed for this unbreakable part of the graph depending on how the solution for the
whole graph interacts with its boundary. If the unbreakable part is large enough, then there
exists an irrelevant edge/vertex that does not participate in the computed partial solutions,
which helps in reducing the size of the graph.

Unfortunately, at the first glance it looks impossible to use this approach for solving
any of the two problems MaxMin st-Sep and MaxMin OCT. The problem is that in the
above approach one needs to find partial solutions on unbreakable graphs for a more general
“extension-kind” of problem. In particular, the family of partial solutions should be such
that if there exists a solution for the whole graph, then one should be able to replace the
part of this solution that intersects with the unbreakable part, with one of the computed
partial solutions. To do so, for example, it seems necessary to, in some implicit way at least,
guess how an optimum solution of the whole graph intersects with the boundary of this
unbreakable part and the partial solution should at least try to be “compatible” with this
guess. The bottleneck here is that given a vertex v, finding whether the graph G has any
minimal st-separator containing v is NP-hard (see Lemmas 1 and 2). Thus, the problem of
determining, given a subset of vertices X, whether G has a minimal st-separator of size at
least k, that contains X, is W[1]-hard (it is in fact para-NP-hard).

▶ Lemma 1. Let G be a graph containing vertices s and t. A vertex v ∈ V (G) is in some
minimal st-separator Z if and only if there is an induced path between s and t containing v.

Proof. For the first part, assume there exists a minimal st-separator Z that contains v. By
the minimality of Z, there must be a path P between s and t in the graph G− (Z \ {v}),
which passes through v. In other words, path P is such that no vertex in Z other than
v appears on it. However, since there is no induced path between s and t through v, two
vertices, say a and b, on P must be adjacent, with a lying between s and v, and b lying
between v and t. This creates a new path between s and t that does not include any vertex
from Z, contradicting the assumption that Z is an st-separator.

For the second part, if there exists an induced path between s and t passing through v,
we can construct a minimal st-separator Z that includes v. According to Definition 13, let S
be the set of all vertices on the induced path from s to a, and T the set of all vertices on the
induced path from b to t, where a is a predecessor of v and b a successor of v. These sets, S
and T , serve as a certificate for the st-separator minimality for v. By Lemma 14, we can
then construct a minimal st-separator that contains v. ◀

▶ Lemma 2 ([19]). Given a graph G and any three arbitrary vertices s, t and v, determining
if there exist an induced path between s and t through v is NP-hard.

Therefore, a first glance suggests that computing “partial solutions” may be W[1]-hard
in general. One can ask if the hardness holds even when the graph is unbreakable (which
is our scenario). It turns out yes, because a result by Lokshtanov et al. [26], shows that
the FPT algorithm for unbreakable graphs can be lifted to an FPT algorithm on general
graphs for problems definable in Counting Monadic Second Order (CMSO) Logic. Since
the extension version is also CMSO definable, there shouldn’t be an FPT algorithm for the
extension version even on unbreakable graphs.

A. Gaikwad, H. Kumar, S. Maity, S. Saurabh, and R. Sharma 36:5

Despite this issue, we show that the core lies in solving the problem on unbreakable
graphs, and in fact the problem on unbreakable graphs is FPT using non-trivial insights. In
fact the result of Lokshtanov et al. [26] comes to rescue. In [26] Lokshtanov et al. show that,
in order to show fixed-parameter tractability of CMSO definable problems parameterized
by the solution size (say k), it is enough to design FPT algorithms for such problems when
the input graph is (q, k)-unbreakable, for some large enough q that depends only on k and
the problem. The highlight of this result, compared to explicitly doing the above-mentioned
approach of recursive understanding and randomized contractions is that, this results says
that it is enough to solve the same problem on unbreakable graphs. This allows us to skip
taking the provably hard route of dealing with extension-kind problems.

After overcoming the above issues, we can safely say that the core lies in designing an
FPT algorithm for the unbreakable case, which itself is far from obvious. We give a technical
overview of this phase in Section 1.1.

Problem 2: MaxMin OCT. The challenges continue for the MaxMin OCT problem. In
parameterized complexity, the first FPT algorithm for the classical Odd Cycle Trans-
versal (OCT) problem parameterized by the solution size, introduced the technique of
Iterative Compression [29]. Using this, it was shown that OCT reduces to solving at most
3k ·n instances of the polynomial-time st-Separator problem. Most algorithms for different
variants of the OCT problem, like Independent OCT, use the same framework and reduce
to essentially solving the variant of st-Separator, like Independent st-Separator [25].

For the MaxMin variant, unfortunately this is not the case. In fact our FPT algorithm
for MaxMin OCT is independent of our FPT algorithm for MaxMin st-Sep. The reason
is again that finding a minimal odd cycle transversal set (oct) that extends a given vertex is
NP-hard (see Observation 3 and Lemma 4).

▶ Observation 3. A vertex v ∈ V (G) does not participate in any induced odd cycle of G if
and only if v is not in any minimal OCT.

Proof. For the forward direction, let Z be a minimal oct of G of size at least k. Then G−Z

is bipartite. Additionally, for any z ∈ Z, the graph G − (Z \ {z}) contains an odd cycle
through z, implying the existence of an induced odd cycle Cz containing z. As the cycle is an
induced odd cycle, we know that the vertex v does not lie on this cycle. We will show that
Z is also a minimal oct in G− v. Clearly, G− (Z ∪ {v}) is a bipartite graph. Therefore, Z
is an oct of G− v. For any vertex z ∈ Z, there is an induced odd cycle Cz in G− (Z ∪ {v}).
Therefore, Z is also a minimal odd cycle traversal of G− v.

For the other direction, let Z be a minimal oct of G−v with |Z| ≥ k. Then, G− (Z∪{v})
is bipartite. For each z ∈ Z, the graph G− ((Z \ {z}) ∪ {v}) contains an induced odd cycle
Cz. Since v is not part of any induced odd cycle, G−Z is bipartite, and Z remains a minimal
odd cycle transversal in G. ◀

▶ Lemma 4. Given a graph G and a vertex v ∈ V (G), determining whether there is an
induced odd cycle containing a given vertex is NP-complete.

Proof. We know that given two vertices a and b, determining if a graph contains an induced
path of odd length between a and b is NP-complete [7]. Construct a graph G′ by adding a
new vertex x to G and making it adjacent to vertices a and b. It is clear that there exists
an induced odd cycle through x in G′ if and only if there is an induced path of odd length
between a and b in G. This finishes the proof. ◀

STACS 2025

36:6 MaxMin Separation Problems

At the core of the Iterative Compression based approach for OCT, a subset of vertices
X is guessed to be in the solution, and after deleting X, the problem reduces to finding an
st-separator, for some s, t. In particular, the final solution is this set X union a minimum
st-separator. For the MaxMin case, this amounts to finding a minimal st-separator that
together with X forms a minimal oct. Since the extension version of both the MaxMin
st-Separator and MaxMin OCT are para-NP-hard, this leaves little hope to use the same
approach for MaxMin versions.

Having eliminated this approach, we again go back to the approach via unbreakable
graphs. This time again the core lies in designing an FPT algorithm when the graph is highly
unbreakable and this algorithm require lot more insights than that of the MaxMin st-Sep.
We give a technical overview of this stage in Section 1.1.

1.1 Our results and technical overview
Below we state two main theorems of this work.

▶ Theorem 5. Maximum Minimal st-Separator parameterized by k is FPT.

▶ Theorem 6. Maximum Minimal OCT parameterized by k is FPT.

As discussed earlier, to prove both our theorems we first show that both MaxMin st-Sep
and MaxMin OCT are CMSO definable. We then use Proposition 7, to reduce to solving
the problem on unbreakable graphs.

▶ Proposition 7 (Theorem 1, [26]). Let ψ be a CMSO formula. For all c ∈ N, there exists
s ∈ N such that if there exists an algorithm that solves CMSO[ψ] on (s, c)-unbreakable
structures in time O(nd) for some d > 4, then there exists an algorithm that solves CMSO[ψ]
on general structures in time O(nd).

In particular, to prove Theorems 5 and 6, it is enough to prove Theorems 8 and 9.

▶ Theorem 8. For positive integers q, k ≥ 1, Maximum Minimal st-Separator on
(q, k)-unbreakable graphs on n vertices can be solved in time (k − 1)2q · nO(1).

▶ Theorem 9. For any positive integers q, k ≥ 1, Maximum Minimal OCT on (q, k)-
unbreakable graphs on n vertices can be solved in time 2(qk)O(q) · nO(1).

MaxMin st-Sep on (q, k)-unbreakable graphs. To prove Theorem 8, we develop a branch-
ing algorithm which exploits the unbreakability of the input graph. The key observation
behind the algorithm is that for any two vertex sets S and T such that s ∈ S, t ∈ T and G[S]
and G[T] are connected, every minimal ST -separator is also a minimal st-separator. As we
are working on (q, k)-unbreakable graphs, if we manage to find such sets where |S| > q and
|T | > q, then every minimal ST -separator has size at least k. In this case, we can construct a
minimal ST -separator greedily in polynomial time, which can then be returned as a solution.
Therefore, the goal of our branching algorithm is to construct such sets S and T .

The algorithm begins with S = {s} and T = {t}. We use a reduction rule which ensures
that at any point N(S) and N(T) (the neighborhoods of S and T) are minimal ST -separators
in G. Clearly, we can assume that |N(S)| < k and |N(T)| < k; otherwise, we have already
found a solution. A crucial observation is that if there exists a minimal ST -separator Z of
size at least k, then there exists a vertex u ∈ N(S) \ N(T) (resp. u ∈ N(T) \ N(S)) such
that u /∈ Z. This implies that such a vertex u remains reachable from S even after removing

A. Gaikwad, H. Kumar, S. Maity, S. Saurabh, and R. Sharma 36:7

the solution Z. This observation allows us to grow the set S to S ∪ {u} (resp. T to T ∪ {u}).
Since |N(S)| < k (resp. |N(T)| < k), one can branch on all possible vertices u ∈ N(S)
(resp. u ∈ N(T)) and in each branch grow S (resp. T). Based on whether min(|S|, |T |) is |S|
or |T |, we branch on the vertices in N(S) \N(T) or N(T) \N(S), respectively, to increase
the size of these sets. Once both S and T have sizes of at least q, we can greedily construct
and output a minimal ST -separator (which is also a minimal st-separator) of size at least k.

MaxMin OCT on (q, k)-unbreakable graphs. The algorithm for this case uses two key
lemmas, both of which provide sufficient conditions for a yes instance. Here the input is a
(q, 2k)-unbreakable graph.

Our first key lemma (Lemma 26) says that if there exists an induced odd cycle of length
at least 2q + 2 in G, then there always exist a minimal oct in G of size at least k. The proof
of this result is based on a branching algorithm, which works similarly to the branching
algorithm for the MaxMin st-Separator problem on (q, k)-unbreakable graphs, by carefully
selecting the sets S and T at the beginning of the algorithm. Note that we cannot use this
lemma, on its own as a a stopping criterion, because one does not know how to find a long
induced odd length cycle efficiently. Nevertheless, as we see later it becomes useful together
with our second sufficient condition.

Our second key lemma (Lemma 28), which states a second sufficient condition, says that
if there exists a large enough family of distinct (and not necessarily disjoint) induced odd
cycles in G of lengths at most 2q + 1, then there always exists a minimal oct in G of size
at least k. The proof of this result relies on the Sunflower Lemma [15, 11], along with the
observation that the subgraph induced by the core of the sunflower must be bipartite. Such a
large sunflower then serves as a certificate that any oct which is disjoint from the core of the
sunflower is large. Also since the core is bipartite, there exists an oct that is disjoint from it.

Another simple, yet important observation is that, if a vertex is not part of any induced
odd cycle, then deleting this vertex from the graph does not affect the solution. Again, the
problem here is that determining whether a vertex passes through an induced odd cycle is
NP-hard (see Lemma 4), therefore we cannot use it as a reduction rule.

Finally, using these two sufficient conditions and the observation above, we provide an
FPT algorithm that, given a vertex x, either outputs an induced odd cycle containing x if it
exists, or concludes correctly that one of the two scenarios mentioned above occurs. In the
later situation we are done. Also if the induced odd cycle containing x, which is returned, is
long, then also we are done because of the first sufficient condition. If the algorithm outputs,
that there is no induced odd cycle through x, then we can safely delete x from the graph
and reduce its size. Because of deleting such vertices, the new graph may no longer be
unbreakable, in which case we start solving the problem on the reduced graph completely
from scratch.

By running this algorithm for each x ∈ V (G), we reduce the graph to one where each
vertex is contained in some small induced odd cycle. If such a graph contains a sufficiently
large number of vertices, it guarantees the existence of a large family of distinct small induced
odd cycles in G, each of length at most 2q + 2, in which case we can return a yes instance
because of the second sufficient condition. This result finally allows us to bound the number
of vertices in the graph by (qk)O(q). We can then solve the problem using a brute-force
algorithm on this graph.

STACS 2025

36:8 MaxMin Separation Problems

2 Preliminaries

Throughout this article, G = (V,E) denotes a finite, simple and undirected graph of order
|V | = n. The (open) neighbourhood NG(v) of a vertex v ∈ V (G) is the set {u | (u, v) ∈ E(G)}.
The closed neighbourhood NG[v] of a vertex v ∈ V (G) is the set {v} ∪ NG(v). The degree
of v ∈ V (G) is |NG(v)| and is denoted by dG(v). The subgraph induced by D ⊆ V (G) is
denoted by G[D]. For X,Y ⊆ V (G) such that X ∩ Y = ∅, EG(X,Y) denote the edges of
G with one endpoint in X and the other in Y . We will drop the subscripts in the above
notation, whenever it is clear from the context. For s, t ∈ V (G), by an st-path in G we mean
a path from s to t in G. For S, T ⊆ V (G), by an ST -path we mean a path between a vertex
of S to a vertex of T . For i ∈ N, [i] denotes the set {1, ..., i}.

Let G be a graph. A pair (X,Y), where X ∪ Y = V (G), is called a separation if
E(X \ Y, Y \X) = ∅. The order of (X,Y) is |X ∩ Y |. If there exists a separation (X,Y) of
order at most k such that |X \ Y | ≥ q and |Y \X| ≥ q, then G is (q, k)-breakable and the
separation (X,Y) is called a witnessing separation for the (q, k)-breakability of G. Otherwise,
G is (q, k)-unbreakable.

We refer to [11] for the formal definition of Counting Monadic Second Order (CMSO)
logic. We will crucially use the following result of Lokshtanov et al. [26] that allows one to
show that a CMSO-expressible graph problem is FPT by designing an FPT algorithm for
the problem on (q, k)-unbreakable graphs, for any k and a sufficiently large q that depends
only on k.

▶ Proposition 7 (Theorem 1, [26]). Let ψ be a CMSO formula. For all c ∈ N, there exists
s ∈ N such that if there exists an algorithm that solves CMSO[ψ] on (s, c)-unbreakable
structures in time O(nd) for some d > 4, then there exists an algorithm that solves CMSO[ψ]
on general structures in time O(nd).

Next, we state the Sunflower Lemma which is used in this paper. We first define the
terminology used in the statement of the next lemma. Given a set system (U,F), where U is
a set and F is a family containing distinct subsets of U , a sunflower with k petals and a
core Y is a collection of sets S1, S2, . . . , Sk ∈ F such that Si ∩ Sj = Y for all i ̸= j. The sets
Si \ Y are called the petals of this sunflower. If the sets in F are distinct and k ≥ 2, then
none of the petals of the sunflower are empty. Note that a family of pairwise disjoint sets is
a sunflower (with an empty core).

▶ Theorem 10 (Sunflower Lemma, [15, 11]). Let F be a family of distinct sets over a universe
U , such that each set in F has cardinality exactly d. If |F| > d!(k − 1)d, then F contains a
sunflower with k petals and such a sunflower can be computed in time polynomial in |F|, |U |,
and k.

2.1 NP-hardness of Maximum Minimal OCT
▶ Lemma 11. Maximum Minimal OCT is NP-hard.

Proof. It was shown in [20] that Maximum Weight Minimal st-Separator is NP-hard
on bipartite graphs, even when all vertex weights are identical. This implies that Maximum
Minimal st-Separator is NP-hard on bipartite graphs. We provide a polynomial-time
reduction from the Maximum Minimal st-Separator to the Maximum Minimal OCT.
Given an instance I = (G, s, t, k) of the Maximum Minimal st-Separator, we construct
an instance I ′ = (G′, k′ = k) of the Maximum Minimal OCT as follows. We assume that
k > 1. We consider two cases based on the bipartition of G:

A. Gaikwad, H. Kumar, S. Maity, S. Saurabh, and R. Sharma 36:9

Case 1. If s and t are on the same side of the bipartition, we add an edge between s and t,
and subdivide it by adding two vertices u and v, creating a new graph G′.
Case 2. If s and t are on opposite sides of the bipartition, we add a subdivided edge between
s and t with one new vertex u′, resulting in G′.

In both cases, the newly added path between s and t in G′ is denoted by P ′.
We now prove that the instances I and I ′ are equivalent.
In the forward direction, let Z be a minimal st-separator in G of size at least k. We claim

that Z is a minimal oct in G′. Since G is bipartite, any odd cycle in G′ must involve s and t.
Removing Z from G separates s and t, meaning G′ − Z contains only the newly added path
P ′, ensuring no odd cycles in G′. Thus, Z is an oct in G′.

Next, we show that Z is minimal. For every z ∈ Z, the graph G− (Z \ {z}) contains a
path between s and t. Lets call it P . In Case 1, this path is even-length, and in Case 2, it is
odd-length. In both cases, the graph G′ − (Z \ {z}) contains two vertex-disjoint paths P
nad P ′ between s and t of different parities, forming an odd cycle. Therefore, Z is a minimal
oct in G′.

In the backward direction, let Z ′ be a minimal oct in G′ of size at least k. Since k > 1,
Z ′ does not include the newly added vertices u, v (in Case 1) or u′ (in Case 2). We claim
that Z ′ is a minimal st-separator in G.

If Z ′ were not an st-separator in G, then there would exist a path between s and t in
G− Z ′, implying the presence of an odd cycle in G′ − Z ′ involving the path P ′. Since Z ′

is a minimal oct in G′, for every z ∈ Z ′, the graph G′ − (Z ′ \ {z}) contains an odd cycle.
Therefore, G′ − (Z ′ \ {z}) must contain a path P which is a vertex-disjoint st-path from
P ′. This implies that G − (Z ′ \ {z}) contains an st-path, proving that Z ′ is a minimal
st-separator in G. Thus, I and I ′ are equivalent, completing the proof. ◀

3 Maximum Minimal st-Separator parameterized by the solution size

The goal of this section is to prove Theorem 5.

▶ Theorem 5. Maximum Minimal st-Separator parameterized by k is FPT.

Let (G, k) be an instance of MaxMin st-separator. The goal is to reduce the task
to designing an algorithm for (q, k)-unbreakable graphs. For this we first show that the
problem can be expressed in CMSO (in fact in MSO). Since MaxMin st-Separator is
a maximization problem, the size of the solution can potentially be as large as O(n). To
formulate a CMSO sentence that is bounded by a function of k, we focus on a k-sized subset
of the solution and encode the minimality of each of its vertices in a way that allows for its
extension to a “full-blown” minimal solution.

▶ Lemma 12. Maximum Minimal st-Separator is CMSO-definable with a formula of
length O(k).

Proof. The instance (G, k) is a yes instance of MaxMin st-Sep if there exists Z ⊆ V (G) of
size at least k such that G−Z has no st-path (equivalently s and t are in different connected
components of G−Z), and for each v ∈ Z, G− (Z \ {v}) has an st-path (that is s and t are
in the same connected component of G− (Z \ {v})).

Alternately, suppose Z ⊆ V (G) (of arbitrarily large size) such that G−Z has no st-path,
and Z contains k distinct vertices v1, . . . , vk such that for each i ∈ [k], G− (Z \{vi}) contains
an st-path. Then Z may not be a minimal st-separator but it always contains a minimal
st-separator of size at least k. In fact, (G, k) is a yes instance if and only if such a set Z

STACS 2025

36:10 MaxMin Separation Problems

exists. These properties of Z can be incorporated as a CMSO formula ψ as follows, where
conn(U) is a CMSO sentence that checks whether a vertex set U induces a connected graph.
The CMSO description of CMSO can be, for example, found in [11].

ψ =∃Z ⊆ V (G)
(

∃v1, v2, . . . , vk ∈ Z

 ∧
1≤i<j≤k

vi ̸= vj

∧ ∃U ⊆ V (G) \ Z

(
(s ∈ U) ∧ (t ∈ U) ∧ conn(U)

)
k∧

i=1
¬∃U ∈ V (G) \ (Z \ {vi})

(
(s ∈ U) ∧ (t ∈ U) ∧ conn(U)

))
It is clear that the size of the above formula ψ depends linearly on k. ◀

From Lemma 12 and Proposition 7, to prove Theorem 5, it is enough to prove Theorem 8.

▶ Theorem 8. For positive integers q, k ≥ 1, Maximum Minimal st-Separator on
(q, k)-unbreakable graphs on n vertices can be solved in time (k − 1)2q · nO(1).

We prove Theorem 8 in Section 3.1. As mentioned earlier, given a vertex set V ′, it may
not always be possible to extend it to a minimal st-separator. Below, we give a definition
for a certificate for the st-separator minimality of a set V ′ ⊆ V (G), which guarantees the
existence of a minimal st-separator that contains (extends) the set V ′.

▶ Definition 13. Let G be a graph, s, t ∈ V (G) and V ′ ⊆ V (G). We say that two sets of
vertices S and T serve as a certificate for the st-separator minimality for V ′ if the following
conditions hold: s ∈ S and t ∈ T , S ∩ T = ∅, G[S] and G[T] are connected subgraphs,
EG(S, T) = ∅, and for every v ∈ V ′, the subgraph G[S ∪ T ∪ {v}] is connected. Note that
V ′ ∩ (S ∪ T) = ∅.

▶ Lemma 14. Let G be a graph, and let s, t ∈ V (G). If there exists a certificate for the
st-separator minimality of V ′ ⊆ V (G), then there exists a minimal st-separator in G that
includes all the vertices of V ′.

Proof. Let S and T serve as a certificate for the st-separator minimality of V ′. We will
construct a set V ′ ⊆ Z ⊆ V (G) \ (S ∪ T) which is a minimal st-separator in G. The set Z is
constructed iteratively. Initialize Z := ∅ and G′ := G[S ∪ T]. Fix an arbitrary ordering of
the vertices in V (G) \ (S ∪ T).

For each vertex v in the prescribed order: (i) if G[S ∪ T ∪ {v}] is connected, then update
Z := Z∪{v}, otherwise (ii) if G[S∪T∪{v}] is not connected, then update G′ := G[V (G′)∪{v}],
update S to be the vertices reachable from old S in G′, and update T to be the vertices
reachable from old T in G′.

The process continues until all vertices in V (G) \ V (G′) have been processed. The final
set Z is then returned as a minimal st-separator of G. Note that if the initial sets S and T

served as a certificate for the minimality of the st-separator V ′, then V ′ ⊆ Z, as the subgraph
G[S ∪ T ∪ {v}] will always be connected for each v ∈ V ′ during every stage of the above
process. ◀

3.1 Maximum Minimal st-Separator on (q, k)-unbreakable graphs
In this section, we prove Theorem 8. To prove Theorem 8 we design a branching algorithm
that maintains a tuple (G,S, T, k, q) where G is a (q, k)-unbreakable graph, S, T ⊆ V (G)
and q, k are positive integers. Additionally the sets S, T satisfy the following properties.

A. Gaikwad, H. Kumar, S. Maity, S. Saurabh, and R. Sharma 36:11

1. s ∈ S and t ∈ T ,
2. S ∩ T = ∅,
3. both G[S] and G[T] are connected and
4. E(S, T) = ∅.

An instance (G,S, T, k, q) satisfying the above properties is called a valid instance. Given
a valid instance, we design a branching algorithm that outputs a minimal ST -separator of G,
which is disjoint from S ∪ T , and has size at least k, if it exists. The algorithm initializes
S := {s} and T := {t}. Note that the above-mentioned properties of the sets S, T ensure that
at each stage of the algorithm, every minimal ST -separator is also a minimal st-separator.

The algorithm has one reduction rule (Reduction Rule 3), four stopping criteria (Reduction
Rules 1, 2, 4 and 5) and one branching rule (Branching Rule 1). The branching rule is applied
when neither the reduction rule nor the three stopping criterion can be applied. The overall
idea is the following. Observe that N(S) ∩ N(T) is a part of any minimal ST -separator.
Therefore, if |N(S) ∩ N(T)| ≥ k, then we can correctly report that G has a minimal ST -
separator of size at least k. Reduction Rule 3 ensures that N(S) (resp. N(T)) is a minimal
ST -separator. Therefore when Reduction Rule 3 is no longer applicable, if |N(S)| ≥ k

(resp. |N(T)| ≥ k), then we can correctly report that G has a minimal ST -separator of size at
least k. In fact, |N(S)| (resp. |N(T)|) is a minimal ST -separator of size at least k. Otherwise,
we have that both |N(S)| < k and |N(T)| < k. In this case, we use the branching rule. Say,
without loss of generality that |S| ≤ |T |. Since N(S) is a minimal ST -separator, but its size
is strictly less than k and every minimal ST -separator contains N(S) ∩N(T), there exists a
vertex in N(S) \N(T) that does not belong to the solution (if there exists a solution of size
at least k). In this case we branch on the vertices of N(S) \N(T). If we guess that a vertex
v ∈ N(S) does not belong to the solution, since v ∈ N(S), v remains reachable from S after
removing the solution. In this case, we update S := S ∪ {v}. Therefore, each application
of the branching rule increases the size of the smaller of the two sets S or T . When both
|S| ≥ q and |T | ≥ q, from the (q, k)-unbreakability of G, we know that every ST -separator
of G has size at least k. And hence there is a minimal st-separator of size at least k.

Below we formalize the above arguments. Given I = (G,S, T, k, q), we define its measure
µ(I) = q − min(|S|, |T |). We state the reduction rules and a branching rule below. We apply
the reduction rules in order exhaustively before applying the branching rule.

▶ Lemma 15. Let I = (G,S, T, k, q) where G is (q, k)-unbreakable. If µ(I) ≤ 0, then every
minimal ST -separator, which is disjoint from S ∪ T , is of size at least k.

Proof. If µ(I) ≤ 0, then q ≤ min(|S|, |T |). For the sake of contradiction, let us assume
that there exists a minimal ST -separator Z in G, which is disjoint from S ∪ T , and has size
strictly less than k. Note that G \ Z contains two connected components of size at least
q each: one containing S, say CS , and the other containing T . Consider the separation
(CS ∪ Z, V (G) \ CS) of G. This is a witnessing separation that G is (q, k)-breakable, which
is a contradiction. ◀

The safeness of Reduction Rule 1 is immediate from Lemma 15.

▶ Reduction Rule 1. If µ(I) ≤ 0, then report a yes instance.

▶ Reduction Rule 2. If |N(S) ∩N(T)| ≥ k, then report a yes instance.

▶ Lemma 16. Reduction Rule 2 is safe.

STACS 2025

36:12 MaxMin Separation Problems

Proof. The above reduction rule is safe because the sets S and T serve as a certificate for
the st-separator minimality of the vertex set N(S) ∩N(T). From Lemma 14, there exists a
minimal st-separator in G that contains N(S)∩N(T). Since |N(S)∩N(T)| ≥ k, we conclude
that G contains a minimal st-separator of size at least k. ◀

▶ Lemma 17. If there exists v ∈ N(S) (resp. v ∈ N(T)), such that every path from v to
any vertex of T (resp. S) intersects N(S) \ {v} (resp. N(T) \ {v}), or there is no path from
v to any vertex of T (resp. S), then there is no minimal ST -separator which is disjoint from
S ∪ T and that contains v.

Proof. When v has no path to any vertex of T , then such a vertex cannot lie on any ST -path
and hence, is not a part of any minimal ST -separator.

Suppose now that v ∈ N(S) and every path from v to any vertex of T intersects N(S)\{v}.
The other case when v ∈ N(T) is symmetric. For the sake of contradiction, say there exists
a minimal ST -separator Z such that v ∈ Z and Z ∩ (S ∪ T) = ∅. This implies that in the
graph G − Z, there is no path from any vertex in S to any vertex in T , but in the graph
G − (Z \ {v}), such a path, say P , exists. Let P be a path from s′ to t′ in G − (Z \ {v}),
where s′ ∈ S and t′ ∈ T .

Since v cannot reach any vertex of T (in particular t′) in G, without traversing another
vertex, say u, in N(S), consider the u to t′ subpath of P (which does not contain v). Since
u ∈ N(S), let s′′ ∈ N(u) ∩ S. Since Z ∩ (S ∪ T) = ∅, there exists a path P ′ from s′′ to t′ in
G− (Z \ {v}) that does not contain v (take the edge (s′′, u), followed by the u to t′ subpath
of P). This contradicts that Z is an ST -separator. ◀

The following reduction rule ensures that both N(S) and N(T) are minimal ST -separators.

▶ Reduction Rule 3. If there exists v ∈ N(S) (resp. v ∈ N(T)), such that every path from
v to any vertex of T (resp. S) intersects N(S) (resp. N(T)), or there is no path from v to
any vertex of T (resp. S), then update S := S ∪ {v} (resp. T := T ∪ {v}).

▶ Lemma 18. Reduction Rule 3 is safe.

Proof. From Lemma 17, no minimal ST -separator, that is disjoint from S ∪ T , contains v.
Since v ∈ N(S) (resp. v ∈ N(T)), for any minimal ST -separator Z, v is reachable from S

in G− Z, since Z ∩ S = ∅ (resp. Z ∩ T = ∅). Thus, Z is also a minimal separator between
S ∪ {v} and T . ◀

▶ Lemma 19. When Reduction Rule 3 is no longer applicable, N(S) (resp. N(T)) is a
minimal ST -separator.

Proof. First note that N(S) (resp. N(T)) is an ST -separator in G which is disjoint from
S ∪ T , since N(S) ∩ T = ∅ because E(S, T) = ∅.

For the sake of contradiction, say N(S) is not a minimal ST -separator in G. In particular,
there exists v ∈ N(S) such that N(S) \ {v} is also an ST -separator. Since Reduction Rule 3
is no longer applicable, there exists a path from v to a vertex of T , say t′, which has no
other vertex of N(S). Such a path together with an edge from v to a vertex of S, gives an
ST -path, which intersects N(S) only at v. ◀

From Lemma 19, the safeness of Reduction Rule 4 is immediate.

▶ Reduction Rule 4. If |N(S)| ≥ k or |N(T)| ≥ k then report a yes instance.

▶ Reduction Rule 5. If N(S) \N(T) = ∅ or N(T) \N(S) = ∅, then report a no instance.

A. Gaikwad, H. Kumar, S. Maity, S. Saurabh, and R. Sharma 36:13

▶ Lemma 20. Reduction Rule 5 is safe.

Proof. Suppose N(S) \ N(T) = ∅. The other case is symmetric. Then any ST -path uses
only the vertices of S ∪ T ∪ (N(S) ∩N(T)). In this case there is a unique ST -separator in G
which is disjoint from S ∪ T . This separator is N(S) ∩N(T). Since Reduction Rule 2 is no
longer applicable, |N(S) ∩N(T)| < k. Thus G has no ST -separator of size at least k. ◀

▶ Branching Rule 1. If |S| ≤ |T | (resp. |T | < |S|) and N(S)\N(T) ̸= ∅ (resp. N(T)\N(S) ̸=
∅), then for each vertex x ∈ N(S) \N(T) (resp. x ∈ N(T) \N(S)), we recursively solve the
instance (G,S ∪ {x}, T, k, q) (resp. (G,S, T ∪ {x}, k, q)).

First observe that the new instances created in this branching rule are all valid, that is,
the sets S ∪ {x}, T (respectively S, T ∪ {x}) satisfy the desired properties: the two sets
S ∪ {x} and T (resp. S and T ∪ {x}) are disjoint, G[S ∪ {x}] (resp. G[T ∪ {x}]) is connected
and EG(S ∪ {x}, T) = ∅ (resp. EG(S, T ∪ {x})) because x ∈ N(S) \N(T).

▶ Lemma 21. Branching Rule 1 is exhaustive, that is, G has a minimal ST -separator of
size at least k which is disjoint from S ∪ T if and only if there exists x ∈ N(S) \ N(T)
(resp. x ∈ N(T) \ N(S)) such that G has a minimal separator of size at least k between
S ∪ {x} and T (resp. S and T ∪ {x}), which is disjoint from S ∪ T ∪ {x}.

Proof. Assume that |S| ≤ |T |. The other case is symmetric. Since Reduction Rule 4 is no
longer applicable, |N(S)| < k. Since Reduction Rule 3 is no longer applicable and because of
Lemma 19, N(S) is a minimal ST -separator. Also because N(S)∩N(T) is contained in every
minimal ST -separator in G (from the proof of Lemma 16), for any minimal ST -separator in
G of size at least k, say Z, which is disjoint from S∪T , there exists a vertex x ∈ N(S)\N(T)
such that x ̸∈ Z. Since x ∈ N(S), x remains reachable from S in G− Z. In particular, Z is
also a minimal separator between S ∪ {x} and T .

In the other direction say the instance (G,S ∪ {x}, T, k, q) reports a minimal separator,
say Z, between S ∪ {x} and T of size at least k. Since S ∪ {x} and T satisfy the desired
properties of a valid instance, Z is also a minimal ST -separator in G. ◀

Proof of Theorem 8. Initialize an instance I = (G,S, T, k, q) where S = {s} and T = {t}.
Note that µ(I) = q − 1. Apply Reduction Rules 1-5 exhaustively in-order. Without loss of
generality, say |S| ≤ |T |, the other case is analogous. Since none of the reduction rules are
applicable, 1 ≤ |N(S) \N(T)| < k. Now apply Branching Rule 1. After every application of
the Branching Rule 1, µ(I ′), where I ′ is the new instance, strictly decreases if |S| ̸= |T |. If
|S| = |T |, then after every two applications of the Branching Rule 1, the measure µ decreases
by 1. From Reduction Rule 1, if µ of an instance is at most 0, then we stop and report a
yes instance. The correctness of this algorithm follows from the safeness of the Reduction
Rules 1-5 and Branching Rule 1. We now argue about the running time.

Note that all reduction rules can be applied in polynomial time. Also all reduction
rules, except Reduction Rule 3, is applied only once throughout the algorithm. Reduction
Rule 3 is applied at most 2q times (or until both S and T grow to a size of q each). Thus
only polynomial time is spent on all applications of all reduction rules. The branching rule
branches in at most k − 1 instances and has depth bounded by 2q. Therefore the overall
running time is (k − 1)2q · nO(1). ◀

4 MAXIMUM MINIMAL OCT parameterized by solution size

In this section, we prove Theorem 6.

▶ Theorem 6. Maximum Minimal OCT parameterized by k is FPT.

STACS 2025

36:14 MaxMin Separation Problems

Throughout this section, we call a set of vertices of G whose deletion results in a
bipartite graph, an oct of G. To prove Theorem 6, we first show that the problem is CMSO
definable (Lemma 22). Using Proposition 7, one can reduce to solving this problem on
(q, 2k)-unbreakable graphs. On (q, 2k)-unbreakable graphs, we then list and prove two
sufficient conditions (Lemmas 28 and 26) which always imply a yes instance (in fact the
first one implies a yes instance even when the input graph is not (q, 2k)-unbreakable). We
also make an observation about irrelevant vertices that can be deleted without changing the
solution of the instance (Observation 3). Even though checking whether any one of these
sufficient conditions hold or finding these irrelevant vertices, may not be efficient, nonetheless
we design an FPT algorithm that correctly concludes that at least one of the sufficient
conditions is met, or outputs an irrelevant vertex, whenever the number of vertices in the
graph is strictly more than a number with is a function of q and k (Theorem 25). In the case
when an irrelevant vertex is outputted, deleting them reduces the size of the graph but the
resulting graph may not be (q, 2k)-unbreakable. In this case, we start from the beginning
and solve the problem from scratch (on general graphs). If none of the above hold, then the
number of vertices in the graph is bounded, and we can solve the problem using brute-force.

▶ Lemma 22. Maximum Minimal OCT is CMSO-definable by a formula of length O(k).

Proof. Let (G, k) be an instance of Maximum Minimal OCT. Then (G, k) is a yes instance
if there exists Z ⊆ V (G) of size at least k such that G− Z is bipartite and for each v ∈ Z,
G− (Z \ {v}) is not bipartite.

Alternately, let Z ⊆ V (G) such that Z contains k distinct vertices v1, . . . , vk, such that
G− Z is bipartite and for each i ∈ [k], G− (Z \ {v}) is not bipartite. Observe that if such a
set Z exists, it may not be a minimal oct of G, but it definitely contains a minimal oct of
size at least k. In fact, (G, k) is a yes instance if and only if such a set Z exists. We phrase
this description of Z as the CMSO formula ψ as defined below.

φ ≡ ∃Z ⊆ V (G)
(

∃v1, v2, . . . , vk ∈ Z

(∧
1≤i<j≤k

vi ̸= vj

)
∧ bipartite(V (G) \ Z)

∧

(
k∧

i=1
¬bipartite(V (G) \ (Z \ {vi})

))

where bipartite(W) is a CMSO sentence given below, which checks whether the graph
induced by the vertices in W is bipartite.

bipartite(W) ≡∃X ⊆ W, ∃Y ⊆ W(
(X ∩ Y = ∅) ∧ (X ∪ Y = W)

∧ ∀u, v ∈ W (E(u, v) =⇒ (u ∈ X ⇐⇒ v ∈ Y))
)
.

It is clear that the size of the above formula φ depends linearly on k. ◀

Proof of Observation 3. For the forward direction, let Z be a minimal oct of G of size at
least k. Then G−Z is bipartite. Additionally, for any z ∈ Z, the graph G−(Z \{z}) contains
an odd cycle through z, implying the existence of an induced odd cycle Cz containing z. As

A. Gaikwad, H. Kumar, S. Maity, S. Saurabh, and R. Sharma 36:15

the cycle is an induced odd cycle, we know that the vertex v does not lie on this cycle. We
will show that Z is also a minimal oct in G− v. Clearly, G− (Z ∪ {v}) is a bipartite graph.
Therefore, Z is an oct of G− v. For any vertex z ∈ Z, there is an induced odd cycle Cz in
G− (Z ∪ {v}). Therefore, Z is also a minimal odd cycle traversal of G− v.

For the other direction, let Z be a minimal oct of G−v with |Z| ≥ k. Then, G− (Z∪{v})
is bipartite. For each z ∈ Z, the graph G− ((Z \ {z}) ∪ {v}) contains an induced odd cycle
Cz. Since v is not part of any induced odd cycle, G−Z is bipartite, and Z remains a minimal
odd cycle transversal in G. ◀

Because of Lemma 22 we can invoke Proposition 7. We invoke Proposition 7 with c = 2k.
Let q be the s from this proposition that corresponds to this choice of c. We conclude that
to prove Theorem 6 it is enough to prove Theorem 9.

▶ Theorem 9. For any positive integers q, k ≥ 1, Maximum Minimal OCT on (q, k)-
unbreakable graphs on n vertices can be solved in time 2(qk)O(q) · nO(1).

We prove Theorem 9 in Section 4.1. Next we define a certificate for minimality of oct for
a vertex set V ′. The existence of such certificates guarantees the existence of a minimal oct
which contains V ′.

▶ Definition 23. Given a graph G and a set of vertices V ′ ⊆ V (G), we say that an induced
subgraph G′ of G is a certificate for the oct-minimality of V ′, if G′ is bipartite and for every
v ∈ V ′, G[V (G′) ∪ {v}] contains an odd cycle.

▶ Lemma 24. Given a graph G and a set of vertices V ′, if there is a certificate for the
oct-minimality of V ′ then there exists a minimal oct of G that contains all the vertices in V ′.

Proof. Let G′ be a certificate for minimality of V ′. First observe that V ′ ∩ V (G′) = ∅
because G′ is bipartite, but G[V (G′) ∪ {v}], for any v ∈ V ′, contains an odd cycle. We now
construct a minimal oct of G, say Z, iteratively as follows. Initialize Z = ∅. Fix an arbitrary
ordering of the vertices in V (G)\V (G′) (note that V ′ ⊆ V (G)\V (G′)). Traverse the vertices
of V (G) \ V (G′) in this order. For any vertex v ∈ V (G) \ V (G′) in the chosen order:

if G[V (G′) ∪ {v}] is bipartite, update G′ := G[V (G′) ∪ {v}], that is add v to G′, otherwise
G[V (G′) ∪ {v}] contains an odd cycle, in which case add v to the set Z.

When all the vertices in V (G) \ V (G′) have been processed as stated above, then the set Z
is a minimal oct of G. Moreover, one can observe that if we start with G′ which a certificate
for minimality of V ′ then V ′ ⊆ Z. ◀

4.1 Maximum Minimal OCT on (q, 2k)-unbreakable graphs
The goal of this section is to prove Theorem 9. Let (G, k) be an instance of MaxMin OCT.
A vertex v ∈ V (G) is called irrelevant if (G, k) is equivalent to (G−v, k). To prove Theorem 9
it is enough to prove Theorem 25.

▶ Theorem 25. For positive integers q, k ≥ 1, given as input a graph G which is (q, 2k)-
unbreakable on at least (2q + 2)2(2q + 2)!(k − 1)2q+2 + 1 vertices, there exists an algorithm
that runs in time (qk)O(q) · nO(1), and either returns a minimal oct of G of size at least k or,
outputs an irrelevant vertex v.

To see the proof of Theorem 9 assuming Theorem 25, observe that if the number of
vertices is at most (2q + 2)2(2q + 2)!(k − 1)2q+2, then the problem can be solved using
brute-force. Otherwise, the algorithm of Theorem 25 either reports a yes instance, or finds

STACS 2025

36:16 MaxMin Separation Problems

an irrelevant vertex v, in which case, delete v from the graph and solve the problem on G− v

(which is not necessarily (q, 2k)-unbreakable). The rest of the section is devoted to the proof
of Theorem 25.

Irrelevant vertices. Recall Observation 3 from Section 1.

▶ Observation 3. A vertex v ∈ V (G) does not participate in any induced odd cycle of G if
and only if v is not in any minimal OCT.

Note that we cannot explicitly design a (polynomial-time) reduction rule based on the
above observation, because determining whether there is an induced odd cycle containing a
given vertex is NP-complete (see Lemma 4).

Sufficient condition 1 [Long induced odd cycle in G].

▶ Lemma 26. For any positive integers q, k, if G is (q, 2k)-unbreakable and there exists an
induced odd cycle in G of length at least 2q + 2, then G has a minimal oct of size at least k.

Proof. Let C be an induced odd cycle of length at least 2q + 2 in G. Let x, y ∈ V (C) be
arbitrarily chosen vertices such that C \ {x, y} contains exactly two paths S and T each of
length at least q each. Moreover since C is an odd cycle one of these two paths is odd and
the other is even. Without loss of generality, we can assume that S is a path of even length
and T is a path of odd length. Let Zx := {x} and Zy := {y}.

Below we define a procedure that iteratively grows the sets in (S, T, Zx, Zy) while main-
taining the following invaraints.

The sets S, T and Zx ∪ Zy are pairwise disjoint.
G[S] is connected, bipartite and |S| ≥ q.
G[T] is connected, bipartite and |T | ≥ q.
G[S∪T∪{y}] is a certificate for the oct-minimality for Zx (and in particular, G[S∪T∪{y}]
is bipartite).
G[S∪T∪{x}] is a certificate for the oct-minimality for Zy (and in particular, G[S∪T∪{x}]
is bipartite).
N(x) ∩ S ̸= ∅, N(x) ∩ T ̸= ∅, N(y) ∩ S ̸= ∅ and N(y) ∩ T ̸= ∅.

Observe that the starting sets (S, T, Zx, Zy) defined earlier satisfy these invariant. Note
that in invariants 4 and 5, the sets G[S ∪ T ∪ {y}] and G[S ∪ T ∪ {x}], which serve as a
certificate of minimality for Zx and Zy respectively, rely on the fact that C is an induced
odd cycle. Since the iterative procedure grows these sets, the last property always hold. Also
G[S ∪ T ∪ {x} ∪ {y}] contains the odd cycle C. The idea is to grow these sets until Zx or Zy

has size at least k. If this happens then we can use Lemma 24, to conclude that G has a
minimal oct of size at least k.

Since G is (q, 2k)-unbreakable and |S|, |T | ≥ q, we have that every ST -separator in G

has size at least 2k + 1. In particular, |N(S) ∪N(T)| ≥ 2k + 1. Thus, if we guarantee that
(N(S) ∪N(T)) ⊆ (Zx ∪ Zy), then |Zx ∪ Zy| ≥ 2k + 1. Hence either |Zx| ≥ k or |Zy| ≥ k.

Towards this we grow the sets in (S, T, Zx, Zy) as follows. Let us call the vertices in
S ∪ T ∪ Zx ∪ Zy as marked.

▷ Claim 27. Let v ∈ N(S) ∩ N(T) be an unmarked vertex. Either G[S ∪ T ∪ {y, v}] or
G[S ∪ T ∪ {x, v}] contains an odd cycle.

A. Gaikwad, H. Kumar, S. Maity, S. Saurabh, and R. Sharma 36:17

Proof. Since both G[S] and G[T] are connected bipartite graphs, there exists a unique
bipartition, say S = AS ∪BS and T = AT ∪BT of S and T respectively. Recall that x has
neighbours in both the sets S and T . Since the graph G[S ∪ {x}] is bipartite, without loss of
generality, assume that (N(x) ∩ S) ⊆ BS . Since G[T ∪ {x}] is also bipartite, without loss
of generality assume that N(x) ∩ T ⊆ BT . Since the graph G[S ∪ T ∪ {x}] is connected
and bipartite, we know that there is an unique bipartition of G[S ∪ T ∪ {x}] which is
G[S ∪ T ∪ {x}] = ((AS ∪AT ∪ {x}) ∪ (BS ∪BT)).

Now, let us focus on the connected graph G[S ∪T ∪ {y}]. Because G[S ∪ {y}] is bipartite,
without loss of generality, we can assume that (N(y) ∩ S) ⊆ BS . We now show that
(N(y)∩T) ⊆ AT . For the sake of contradiction, assume that this is not the case. This implies
that there are two possibilities. If y has neighbours in both the sets AT and BT then it leads
to a contradiction as G[T ∪ {y}] is bipartite. If the neighbours of y are contained in the set
BT then it leads to a contradiction as it would imply that G[S ∪ T ∪ {x, y}] is bipartite.

Therefore, we get an unique bipartition G[S ∪ T ∪ {y}] = ((AS ∪BT ∪ {y}) ∪ (BS ∪AT))
of G[S ∪ T ∪ {y}]. As the vertex v has neighbours in both the sets S and T , there are four
possibilities: (i) if v has a neighbour in AS and AT then G[S ∪ T ∪ {y, v} contains an odd
cycle, (ii) if v has a neighbour in AS and BT then G[S ∪ T ∪ {x, v} contains an odd cycle,
(iii) if v has a neighbour in AT and BS then G[S ∪T ∪ {x, v} contains an odd cycle, or (iv) if
v has a neighbour in AT and BT then G[S ∪ T ∪ {y, v} contains an odd cycle. This finishes
the proof of the claim. ◁

Let v be an arbitrarily chosen unmarked vertex.
Case 1: v ∈ N(S) ∩ N(T). From Lemma 27, either G[S ∪T ∪ {x, v}] or G[S ∪T ∪ {y, v}]

or both contain an odd cycle. If G[S ∪ T ∪ {x, v}] contain an odd cycle, then update
Zy := Zy ∪ {v}. If G[S ∪ T ∪ {y, v}] contain an odd cycle, then update Zx := Zx ∪ {v}.
If both are true then update Zx := Zx ∪ {v} and Zy := Zy ∪ {v}. The sets S, T remain
the same. Observe that in either case, the updated sets satisfy all the invariants.

Case 2: v ∈ N(S) \ N(T). In this case, if G[S∪{v}] is bipartite, then update S := S∪{v}.
The other sets T, Zx, Zy remain the same. Note that the updated sets (in particular S)
maintains the invariant. Otherwise G[S ∪ {v}] contain an odd cycle. In this case update
Zx := Zx ∪ {v} and Zy := Zy ∪ {v}.

Case 3: v ∈ N(T) \ N(S). This case is symmetric to Case 2.

We repeat the above process until we have sets (S, T, Zx, Zy) such that all vertices in
N(S) ∪N(T) are marked. In particular, in this case (N(S) ∪N(T)) ⊆ (Zx ∪Zy). As argued
earlier, this implies either |Zx| ≥ k or |Zy| ≥ k. In both cases, we report that G has a
minimal oct of size at least k from Lemma 24. ◀

Sufficient condition 2 [Large family of short induced odd cycles].

▶ Lemma 28. Let (G, k) be an instance of Maximum Minimal OCT. Let d be any positive
integer. If F is a family containing distinct induced odd cycles of G of length at most d and
|F| > d(d!)(k − 1)d then G has a minimal oct of size at least k.

Proof. From the Sunflower Lemma (Theorem 10), we can conclude that there exist at least
k induced odd cycles {F1, F2, . . . , Fk} ⊆ F such that V (Fi) ∩ V (Fj) = Y for all i, j ∈ [k]. As
the cycles in F are induced odd cycles, the graph induced by the set of vertices in Y must
be bipartite. Note that Y could possibly be empty. We claim that G has a minimal odd
cycle transversal of size at least k. Such a minimal odd cycle transversal can be obtained
by the greedy algorithm described in the proof of Lemma 24. We start with the induced

STACS 2025

36:18 MaxMin Separation Problems

subgraph G[Y]. Clearly, any minimal odd cycle transversal obtained by this algorithm will
contain at least one vertex from V (Fi) \ Y for each i ∈ [k]. Since the sets V (Fi) \ Y for each
i ∈ [k] are disjoint, a minimal odd cycle transversal must have a size of at least k. ◀

The combination lemma.

▶ Lemma 29. Given a graph G, a vertex x ∈ V (G) and positive integers d, k, there is an
algorithm that runs in (kd)O(d) · nO(1) time, and correctly outputs one of the following:
1. an induced odd cycle containing x,
2. an induced odd cycle of length at least d,
3. a family F of distinct induced odd cycles, each of length at most d − 1, such that

|F| ≥ d · d! · (k − 1)d,
4. a determination that there is no induced odd cycle containing x in G.

Proof. Suppose G contains an induced odd cycle containing x. Let Cx be one such cycle. We
design an iterative algorithm that maintains a pair (G′,F), where G′ is an induced subgraph
of G and F is a family of induced odd cycles of length at most d− 1 in G, with the following
additional properties. The graph G′ is guaranteed to contain the cycle Cx, if Cx existed
in the first place in G, and every induced odd cycle in G′ is distinct from any cycle in the
family F .

Initialize G′ := G and F = ∅. In each iteration, the algorithm finds an arbitrary induced
odd cycle of G, say F , in polynomial time, if it exists. The following cases can now arise.
1. The algorithm fails to find the cycle F . That is G′ has no induced odd cycle. In this case,

report that G has no induced odd cycle passing through x.
This is correct because if G had such an induced odd cycle passing through x, then
Cx exists in G and by the invariants of the algorithm Cx also exists in G′, which is a
candidate for the cycle F .

2. If F contains x, then return F as the induced odd cycle containing x.
3. If the length of F is at least d, then return F as an induced odd cycle of length at least d

in G.
4. Otherwise, F exists but does not contain x and has a length of at most d− 1.

By the invariants of the pair (G′,F), F is distinct from all the cycles in F . Update F by
adding F to it. Then the updated F satisfies the required invariants.
To update G′ proceed as follows. Guess the intersection of V (F) with V (Cx) (in G′).
Let this be F ′. The number of guesses is bounded by 2|F | ≤ 2d−1. Since F does not
contain x, F is not equal to Cx. Hence, F \F ′ is non-empty. Update G′ := G′ − (F \F ′).
Observe that the updated G′ contains Cx if the old Gx contained it. Also every induced
odd cycle in the updated G′ is distinct from F (that has been newly added to F) because
a non-empty subset of V (F) (that is V (F) \ V (F ′)) has been deleted in the updated G′.

If the first, second or third condition mentioned above does not apply in each of the first
d · d! · (k − 1)d iterations, then at the end of the i-th iteration where i = d · d! · (k − 1)d,
|F| = d · d! · (k − 1)d. In this case, we return F as a large family of induced odd cycles of
length at most d− 1 of G.

This finishes the description and correctness of the algorithm. For the running time
observe that in each iteration, the algorithm runs in polynomial time to find F and check
the first three conditions. The fourth condition in each iteration makes 2d−1 guesses and
the number of iterations is at most d · d! · (k − 1)d. Therefore the overall running time is
(kd)O(d) · nO(1). ◀

A. Gaikwad, H. Kumar, S. Maity, S. Saurabh, and R. Sharma 36:19

Proof of Theorem 25. The algorithm for Theorem 25 proceeds as follows. Recall that G is
a (q, k)-unbreakable graph. For each x ∈ V (G), run the algorithm of Lemma 29 on input
(G, x, 2q + 2, k).

If for some x ∈ V (G), the algorithm returns an induced odd cycle of length at least
2q + 2 or a family F of distinct induced odd cycles of length at most 2q + 1 such that
|F| ≥ (2q + 2)(2q + 2)!(k − 1)2q+2 then we return a yes instance due to Lemma 26 or 28,
respectively. If the algorithm returns that there is no induced odd cycle containing x in
G then we can delete x from G and solve the problem on the reduced graph. This is safe
because of Observation 3. Finally, if the algorithm returns an induced odd cycle containing
x of length at least 2q + 2, then again report that it is a yes instance because of Lemma 26.

If none of the above conditions hold, then for each x ∈ V (G), the algorithm of Lemma 29
returns an induced odd cycle containing x, say Cx, of length at most 2q + 1. Note that the
cycles returned for each x ∈ V (G) in this case may not be distinct.

The following claim shows that if the number of vertices in G is large (and there is an
induced odd cycle of small length for each vertex of the graph), then there exists a large
family containing distinct induced odd cycles of small length in G, in which case we can
report a yes instance by Lemma 28.

▷ Claim 30. If the number of vertices in G is at least (2q+ 2)2(2q+ 2)!(k− 1)2q+2 + 1, then
G contains a minimal oct of size at least k.

Proof. We will construct a F of distinct induced odd cycles in G of length at most 2q+1. For
every vertex x ∈ V (G), we take a cycle Cx. Unless the cycle Cx is already in F , we will update
F = F ∪ {Cx}. As the length of cycles in Cx returned by the above algorithm is bounded by
2q + 1, if the number of vertices in G is more than (2q + 1)(2q + 2)(2q + 2)!(k − 1)2q+2 then
|F| ≥ (2q + 2)(2q + 2)!(k − 1)2q+2. Due to Lemma 28, we return a yes instance. ◁

This finishes the proof of Theorem 25. ◀

5 Conclusion

In this paper, we established that both Maximum Minimal st-Separator and Maximum
Minimal Odd Cycle Transversal (OCT) are fixed-parameter tractable parameterized
by the solution size. Instead of using treewidth-based win-win approaches, we design
FPT algorithms for highly unbreakable graphs for both these problems. While we have
demonstrated the FPT nature of these problems, the challenge of developing efficient FPT
algorithms remains open. Additionally, the edge-deletion version of the Maximum Minimal
OCT can be shown to be FPT using similar techniques, but with much simpler ideas. But
designing an faster/explicit FPT algorithm even for this version remains an interesting
direction for future research. Finally, the parameterized complexity of the weighted version
of Maximum Minimal st-Separator and Maximum Minimal Weight OCT remain
open as very large weights cause problems while formulating the problem in CMSO, in order
to reduce it to the unbreakable case.

References
1 Hassan AbouEisha, Shahid Hussain, Vadim V. Lozin, Jérôme Monnot, Bernard Ries, and

Viktor Zamaraev. Upper domination: Towards a dichotomy through boundary properties.
Algorithmica, 80(10):2799–2817, 2018. doi:10.1007/S00453-017-0346-9.

STACS 2025

https://doi.org/10.1007/S00453-017-0346-9

36:20 MaxMin Separation Problems

2 Júlio Araújo, Marin Bougeret, Victor Campos, and Ignasi Sau. Introducing lop-kernels: A
framework for kernelization lower bounds. Algorithmica, 84(11):3365–3406, November 2022.
doi:10.1007/s00453-022-00979-z.

3 Júlio Araújo, Marin Bougeret, Victor A. Campos, and Ignasi Sau. Parameterized complexity
of computing maximum minimal blocking and hitting sets. Algorithmica, 85(2):444–491,
September 2022. doi:10.1007/s00453-022-01036-5.

4 Vineet Bafna, Piotr Berman, and Toshihiro Fujito. A 2-approximation algorithm for the
undirected feedback vertex set problem. SIAM Journal on Discrete Mathematics, 12(3):289–297,
1999. doi:10.1137/S0895480196305124.

5 Cristina Bazgan, Ljiljana Brankovic, Katrin Casel, Henning Fernau, Klaus Jansen, Kim-Manuel
Klein, Michael Lampis, Mathieu Liedloff, Jérôme Monnot, and Vangelis Th. Paschos. The
many facets of upper domination. Theor. Comput. Sci., 717:2–25, 2018. doi:10.1016/J.TCS.
2017.05.042.

6 Rémy Belmonte, Eun Jung Kim, Michael Lampis, Valia Mitsou, and Yota Otachi. Grundy
distinguishes treewidth from pathwidth. SIAM J. Discret. Math., 36(3):1761–1787, 2022.
doi:10.1137/20M1385779.

7 Dan Bienstock. On the complexity of testing for odd holes and induced odd paths. Discrete
Mathematics, 90(1):85–92, 1991. doi:10.1016/0012-365X(91)90098-M.

8 Nicolas Boria, Federico Della Croce, and Vangelis Th. Paschos. On the max min vertex
cover problem. Discrete Applied Mathematics, 196:62–71, 2015. Advances in Combinatorial
Optimization. doi:10.1016/j.dam.2014.06.001.

9 Juhi Chaudhary, Sounaka Mishra, and B. S. Panda. Minimum maximal acyclic matching
in proper interval graphs. In Amitabha Bagchi and Rahul Muthu, editors, Algorithms and
Discrete Applied Mathematics - 9th International Conference, CALDAM 2023, Gandhinagar,
India, February 9-11, 2023, Proceedings, volume 13947 of Lecture Notes in Computer Science,
pages 377–388. Springer, 2023. doi:10.1007/978-3-031-25211-2_29.

10 Rajesh Chitnis, Marek Cygan, MohammadTaghi Hajiaghayi, Marcin Pilipczuk, and Michał
Pilipczuk. Designing fpt algorithms for cut problems using randomized contractions. SIAM
Journal on Computing, 45(4):1171–1229, 2016. doi:10.1137/15M1032077.

11 Marek Cygan, Fedor V. Fomin, Lukasz Kowalik, Daniel Lokshtanov, Dániel Marx, Marcin
Pilipczuk, Michal Pilipczuk, and Saket Saurabh. Parameterized Algorithms. Springer, 2015.
doi:10.1007/978-3-319-21275-3.

12 Gabriel L. Duarte, Hiroshi Eto, Tesshu Hanaka, Yasuaki Kobayashi, Yusuke Kobayashi, Daniel
Lokshtanov, Lehilton L. C. Pedrosa, Rafael C. S. Schouery, and Uéverton S. Souza. Computing
the largest bond and the maximum connected cut of a graph. Algorithmica, 83(5):1421–1458,
2021. doi:10.1007/S00453-020-00789-1.

13 Louis Dublois, Tesshu Hanaka, Mehdi Khosravian Ghadikolaei, Michael Lampis, and Nikolaos
Melissinos. (in)approximability of maximum minimal fvs. Journal of Computer and System
Sciences, 124:26–40, 2022. doi:10.1016/j.jcss.2021.09.001.

14 Louis Dublois, Michael Lampis, and Vangelis Th. Paschos. Upper dominating set: Tight
algorithms for pathwidth and sub-exponential approximation. Theor. Comput. Sci., 923:271–
291, 2022. doi:10.1016/J.TCS.2022.05.013.

15 Paul Erdös and Richard Rado. Intersection theorems for systems of sets. Journal of the
London Mathematical Society, 1(1):85–90, 1960.

16 Fabio Furini, Ivana Ljubić, and Markus Sinnl. An effective dynamic programming algorithm
for the minimum-cost maximal knapsack packing problem. European Journal of Operational
Research, 262(2):438–448, 2017. doi:10.1016/j.ejor.2017.03.061.

17 Ajinkya Gaikwad and Soumen Maity. Parameterized complexity of upper edge domination.
CoRR, abs/2208.02522, 2022. doi:10.48550/arXiv.2208.02522.

18 Laurent Gourvès, Jérôme Monnot, and Aris T. Pagourtzis. The lazy bureaucrat problem with
common arrivals and deadlines: Approximation and mechanism design. In Leszek Gąsieniec
and Frank Wolter, editors, Fundamentals of Computation Theory, pages 171–182, Berlin,
Heidelberg, 2013. Springer Berlin Heidelberg. doi:10.1007/978-3-642-40164-0_18.

https://doi.org/10.1007/s00453-022-00979-z
https://doi.org/10.1007/s00453-022-01036-5
https://doi.org/10.1137/S0895480196305124
https://doi.org/10.1016/J.TCS.2017.05.042
https://doi.org/10.1016/J.TCS.2017.05.042
https://doi.org/10.1137/20M1385779
https://doi.org/10.1016/0012-365X(91)90098-M
https://doi.org/10.1016/j.dam.2014.06.001
https://doi.org/10.1007/978-3-031-25211-2_29
https://doi.org/10.1137/15M1032077
https://doi.org/10.1007/978-3-319-21275-3
https://doi.org/10.1007/S00453-020-00789-1
https://doi.org/10.1016/j.jcss.2021.09.001
https://doi.org/10.1016/J.TCS.2022.05.013
https://doi.org/10.1016/j.ejor.2017.03.061
https://doi.org/10.48550/arXiv.2208.02522
https://doi.org/10.1007/978-3-642-40164-0_18

A. Gaikwad, H. Kumar, S. Maity, S. Saurabh, and R. Sharma 36:21

19 Robert Haas and Michael Hoffmann. Chordless paths through three vertices. Theoretical
Computer Science, 351(3):360–371, 2006. Parameterized and Exact Computation. doi:
10.1016/j.tcs.2005.10.021.

20 Tesshu Hanaka, Hans L. Bodlaender, Tom C. van der Zanden, and Hirotaka Ono. On
the maximum weight minimal separator. Theoretical Computer Science, 796:294–308, 2019.
doi:10.1016/j.tcs.2019.09.025.

21 Subhash Khot and Oded Regev. Vertex cover might be hard to approximate to within 2-epsilon.
J. Comput. Syst. Sci., 74(3):335–349, 2008. doi:10.1016/J.JCSS.2007.06.019.

22 Eun Jung Kim, Stefan Kratsch, Marcin Pilipczuk, and Magnus Wahlström. Flow-augmentation
ii: Undirected graphs. ACM Trans. Algorithms, 20(2), March 2024. doi:10.1145/3641105.

23 Michael Lampis. Minimum stable cut and treewidth. In Nikhil Bansal, Emanuela Merelli,
and James Worrell, editors, 48th International Colloquium on Automata, Languages, and
Programming, ICALP 2021, July 12-16, 2021, Glasgow, Scotland (Virtual Conference), volume
198 of LIPIcs, pages 92:1–92:16. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, 2021.
doi:10.4230/LIPICS.ICALP.2021.92.

24 Michael Lampis, Nikolaos Melissinos, and Manolis Vasilakis. Parameterized Max Min Feedback
Vertex Set. In Jérôme Leroux, Sylvain Lombardy, and David Peleg, editors, 48th International
Symposium on Mathematical Foundations of Computer Science (MFCS 2023), volume 272
of Leibniz International Proceedings in Informatics (LIPIcs), pages 62:1–62:15, Dagstuhl,
Germany, 2023. Schloss Dagstuhl – Leibniz-Zentrum für Informatik. doi:10.4230/LIPIcs.
MFCS.2023.62.

25 Daniel Lokshtanov, Fahad Panolan, Saket Saurabh, Roohani Sharma, and Meirav Zehavi.
Covering small independent sets and separators with applications to parameterized algorithms.
ACM Trans. Algorithms, 16(3):32:1–32:31, 2020. doi:10.1145/3379698.

26 Daniel Lokshtanov, M. S. Ramanujan, Saket Saurabh, and Meirav Zehavi. Reducing CMSO
model checking to highly connected graphs. In Ioannis Chatzigiannakis, Christos Kaklamanis,
Dániel Marx, and Donald Sannella, editors, 45th International Colloquium on Automata,
Languages, and Programming, ICALP 2018, July 9-13, 2018, Prague, Czech Republic, volume
107 of LIPIcs, pages 135:1–135:14. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, 2018.
doi:10.4230/LIPICS.ICALP.2018.135.

27 Dáaniel Marx, Barry O’sullivan, and Igor Razgon. Finding small separators in linear time via
treewidth reduction. ACM Trans. Algorithms, 9(4), October 2013. doi:10.1145/2500119.

28 Jérôme Monnot, Henning Fernau, and David F. Manlove. Algorithmic aspects of upper edge
domination. Theor. Comput. Sci., 877:46–57, 2021. doi:10.1016/J.TCS.2021.03.038.

29 Bruce A. Reed, Kaleigh Smith, and Adrian Vetta. Finding odd cycle transversals. Oper. Res.
Lett., 32(4):299–301, 2004. doi:10.1016/J.ORL.2003.10.009.

30 Meirav Zehavi. Maximum minimal vertex cover parameterized by vertex cover. SIAM Journal
on Discrete Mathematics, 31(4):2440–2456, 2017. doi:10.1137/16M109017X.

31 Édouard Bonnet, Michael Lampis, and Vangelis Th. Paschos. Time-approximation trade-offs
for inapproximable problems. Journal of Computer and System Sciences, 92:171–180, 2018.
doi:10.1016/j.jcss.2017.09.009.

STACS 2025

https://doi.org/10.1016/j.tcs.2005.10.021
https://doi.org/10.1016/j.tcs.2005.10.021
https://doi.org/10.1016/j.tcs.2019.09.025
https://doi.org/10.1016/J.JCSS.2007.06.019
https://doi.org/10.1145/3641105
https://doi.org/10.4230/LIPICS.ICALP.2021.92
https://doi.org/10.4230/LIPIcs.MFCS.2023.62
https://doi.org/10.4230/LIPIcs.MFCS.2023.62
https://doi.org/10.1145/3379698
https://doi.org/10.4230/LIPICS.ICALP.2018.135
https://doi.org/10.1145/2500119
https://doi.org/10.1016/J.TCS.2021.03.038
https://doi.org/10.1016/J.ORL.2003.10.009
https://doi.org/10.1137/16M109017X
https://doi.org/10.1016/j.jcss.2017.09.009

On the Existential Theory of the Reals Enriched
with Integer Powers of a Computable Number
Jorge Gallego-Hernández #

IMDEA Software Institute, Madrid, Spain
Universidad Politécnica de Madrid, Spain

Alessio Mansutti #

IMDEA Software Institute, Madrid, Spain

Abstract
This paper investigates ∃R(ξZ), that is the extension of the existential theory of the reals by an
additional unary predicate ξZ for the integer powers of a fixed computable real number ξ > 0. If all
we have access to is a Turing machine computing ξ, it is not possible to decide whether an input
formula from this theory is satisfiable. However, we show an algorithm to decide this problem when

ξ is known to be transcendental, or
ξ is a root of some given integer polynomial (that is, ξ is algebraic).

In other words, knowing the algebraicity of ξ suffices to circumvent undecidability. Furthermore, we
establish complexity results under the proviso that ξ enjoys what we call a polynomial root barrier.
Using this notion, we show that the satisfiability problem of ∃R(ξZ) is

in ExpSpace if ξ is an algebraic number, and
in 3Exp if ξ is a logarithm of an algebraic number, Euler’s e, or the number π, among others.

To establish our results, we first observe that the satisfiability problem of ∃R(ξZ) reduces in
exponential time to the problem of solving quantifier-free instances of the theory of the reals where
variables range over ξZ. We then prove that these instances have a small witness property: only finitely
many integer powers of ξ must be considered to find whether a formula is satisfiable. Our complexity
results are shown by relying on well-established machinery from Diophantine approximation and
transcendental number theory, such as bounds for the transcendence measure of numbers.

As a by-product of our results, we are able to remove the appeal to Schanuel’s conjecture from
the proof of decidability of the entropic risk threshold problem for stochastic games with rational
probabilities, rewards and threshold [Baier et al., MFCS, 2023]: when the base of the entropic risk is
e and the aversion factor is a fixed algebraic number, the problem is (unconditionally) in Exp.

2012 ACM Subject Classification Computing methodologies → Symbolic and algebraic algorithms

Keywords and phrases Theory of the reals with exponentiation, decision procedures, computability

Digital Object Identifier 10.4230/LIPIcs.STACS.2025.37

Related Version Extended Version: https://arxiv.org/abs/2502.02220

Funding This work is part of a project that is partially funded by the Madrid Regional Government
(César Nombela grant 2023-T1/COM-29001), and by MCIN/AEI/10.13039/501100011033/FEDER,
EU (grant PID2022-138072OB-I00).

Acknowledgements We would like to thank Michael Benedikt and Dmitry Chistikov for the insightful
discussions on the paper [Avigad and Yin, Theor. Comput. Sci., 2007], and Andrew Scoones and
James Worrell for providing guidance through the number theory literature. We are also grateful to
the anonymous referees for comments and corrections.

1 Introduction

Tarski’s exponential function problem asks to determine the decidability of the validity
problem from the first-order (FO) theory of the structure (R; 0, 1,+, ·, ex, <,=). This theory,
hereinafter denoted R(ex), extends the FO theory of the reals (a.k.a. Tarski arithmetic) with

© Jorge Gallego-Hernández and Alessio Mansutti;
licensed under Creative Commons License CC-BY 4.0

42nd International Symposium on Theoretical Aspects of Computer Science (STACS 2025).
Editors: Olaf Beyersdorff, Michał Pilipczuk, Elaine Pimentel, and Nguyễn Kim Thắng;
Article No. 37; pp. 37:1–37:18

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:jorge.gallego@imdea.org
https://orcid.org/0009-0002-2240-1107
mailto:alessio.mansutti@imdea.org
https://orcid.org/0000-0002-1104-7299
https://doi.org/10.4230/LIPIcs.STACS.2025.37
https://arxiv.org/abs/2502.02220
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

37:2 On the Existential Theory of the Reals with Integer Powers of a Computable Number

the exponential function x 7→ ex. A celebrated result by Macintyre and Wilkie establishes an
affirmative answer to Tarski’s problem conditionally to the truth of Schanuel’s conjecture, a
profound conjecture from transcendental number theory [24]. Recent years have seen this
result being used as a black-box to establish conditional decidability results for numerous
problems stemming from dynamical systems [14, 2] automata theory [15, 13], neural networks
verification [19, 21], the theory of stochastic games [5], and differential privacy [7].

As it is often the case when appealing to a result as a black-box, some of the computa-
tional tasks resolved by relying on the work in [24] do not require the full power of R(ex).
Consequently, it is natural to ask whether some of these tasks can be tackled without relying
on unproven conjectures, perhaps by reduction to tame fragments or variants of R(ex).
A few results align with this question:

In the papers [3, 1, 28], Achatz, Anai, McCallum and Weispfenning introduce a procedure
to decide sentences of the form ∃x∃y : y = trans(x) ∧ φ(x, y), where φ is a formula from
Tarski arithmetic, and x 7→ trans(x) is any analytic and strongly transcendental function
(see [28, Section 2] for the precise definition). Since x 7→ ex enjoys such properties,
this result shows a non-trivial fragment of R(ex) that is unconditionally decidable. The
procedure is implemented in the tool Redlog [16]. No complexity bound is known.
In [17], van den Dries proves decidability of the extension of Tarski arithmetic with
the unary predicate 2Z interpreted as the set {2i : i ∈ Z}, i.e., the set of all integer
powers of 2. While this result is achieved by model-theoretic arguments, an effective
quantifier elimination procedure was later given by Avigad and Yin [4]. Their procedure
runs in Tower, and in fact it requires non-elementary time already for the elimination
of a single quantified variable. The choice of the base 2 for the integer powers is
somewhat arbitrary: in [18], the decidability is extended to any fixed algebraic number
(i.e., a number that is root of some polynomial equation; see Section 3 for background
knowledge on computable, algebraic and transcendental numbers), and in fact Avigad
and Yin’s procedure is also effective for any such number. Considering any two α, β ∈ R
satisfying αZ ∩ βZ = {1} yields undecidability, as shown by Hieronymi in [20].

When comparing the two lines of work discussed above, it becomes apparent that there is
a balance to be struck between reasoning about transcendental numbers, the path followed
by the first set of works, and developing algorithms that are well-behaved from a complexity
standpoint, the path taken in particular in [4]. Our aim with this paper is to somewhat
bridge this gap: we add to the second line of work by studying predicates for integer powers
of bases that may be transcendental, all the while maintaining complexity upper bounds.

From now on, we write ∃R(ξZ) to denote the existential fragment of the FO theory of
the structure (R; 0, 1, ξ,+, ·, ξZ, <,=), where ξ > 0 is a fixed real number. In this paper, we
examine the complexity of deciding the satisfiability problem of ∃R(ξZ) for different choices
of the number ξ. The following theorem summarises our results.

▶ Theorem 1. Fix a real number ξ > 0. The satisfiability problem for ∃R(ξZ) is
1. in ExpSpace whenever ξ is an algebraic number;
2. in 3Exp if ξ ∈ {π, eπ, eη, αη, ln(α), ln(α)

ln(β) : α, β, η algebraic with α > 0 and 1 ̸= β > 0};
3. decidable whenever ξ is a computable transcendental number.

Theorem 1 has a catch, however. To be effective, the algorithm for deciding ∃R(ξZ) requires:
For Theorem 1.1, to have access to a canonical representation (see Section 3) of ξ.
In the cases covered by Theorem 1.2, to have access to representations of α, β, and η.

J. Gallego-Hernández and A. Mansutti 37:3

In the case of ξ computable transcendental number (Theorem 1.3), to have access to a
Turing machine T that computes ξ (that is, given an input n ∈ N written in unary, T
returns a rational number Tn such that |ξ − Tn| ≤ 2−n).

In summary, Theorem 1 shows that ∃R(ξZ) is decidable for every fixed computable number
ξ > 0, as long as it is known whether ξ is algebraic or transcendental, and in the former case
having access to a canonical representation of ξ.

The results in Theorem 1 are obtained by (i) reducing the satisfiability problem for ∃R(ξZ)
to the problem of solving instances of ∃R(ξZ) where all variables range over ξZ, and (ii) show-
ing that a solution over ξZ can be found by only looking at a “small” set of integer powers
of ξ (a small witness property). In proving Step (ii), we also obtain a quantifier elimination
procedure for sentences of ∃R(ξZ), that is formulae where no variable occurs free. This
procedure provides a partial answer to the question raised in [4] regarding the complexity of
removing a single existential variable in Tarski arithmetic extended with 2Z: within sentences
of the existential fragment, such an elimination step can be performed in elementary time.

Coming back to our initial question on identifying computational tasks that might not
need the full power of R(ex), as a by-product of our results we show that the entropic risk
threshold problem for stochastic games studied by Baier, Chatterjee, Meggendorfer and
Piribauer [5] is unconditionally decidable in Exp even when the base of the entropic risk is e
(or algebraic) and the aversion factor is any (fixed) algebraic number.

2 Approaching complexity bounds with root barriers

Theorems 1.1 and 1.2 are instances of a more general result concerning classes of computable
real numbers. To properly introduce this result, it is beneficial to go back to Macintyre and
Wilkie’s work on R(ex). The exact statement made in [24] is that R(ex) is decidable as soon
as the following computational problem, implied by Schanuel’s conjecture, is established:

▶ Conjecture 2. There is a procedure that for input f1, . . . , fn, g ∈ Z[x1, . . . , xn, e
x1 , . . . , exn],

with n ≥ 1, returns a positive integer t with the following property: for every non-singular1

solution α ∈ Rn of the system of equalities
∧n
i=1 fi(x) = 0, either g(α) = 0 or |g(α)| > t−1.

Above, Z[x1, . . . , xn, e
x1 , . . . , exn] is the set of all n-variate exponential-polynomials with

integer coefficients. As remarked in [24], t is guaranteed to exist by Khovanskii’s theorem [22],
hence the crux of the problem concerns how to effectively compute such a number starting
from f1, . . . , fn and g. The purpose of the dichotomy “either g(α) = 0 or |g(α)| > t−1”
is in part to resolve what is a fundamental problem when working with computable real
numbers. Let α to be a vector of computable numbers. Consider the problem of establishing,
given in input a polynomial p with integer coefficients, whether p(α) is positive, negative, or
zero. This polynomial sign evaluation task is a well-known undecidable problem. Intuitively,
the undecidability arises from the possibility that any approximation α∗ of α might yield
p(α∗) ̸= 0, even though p(α) = 0. However, when working under the hypothesis that
either p(α) = 0 or |p(α)| > t−1, the problem becomes decidable: it suffices to compute an
approximation α∗ enjoying |p(α)−p(α∗)| < (2t)−1, and then check whether |p(α∗)| ≤ (2t)−1.
If the answer is positive, then p(α) = 0, otherwise p(α) and p(α∗) have the same sign.

1 A solution α of
∧n

i=1 fi(x) = 0 is said to be non-singular whenever the determinant of the n×n Jacobian
matrix ∂(f1,...,fn)

∂(x1,...,xn) is, once evaluated at α, non-zero. We give this definition only for completeness of
the discussion on Conjecture 2. It is not used in this paper.

STACS 2025

37:4 On the Existential Theory of the Reals with Integer Powers of a Computable Number

The same issue occurs in ∃R(ξZ): under the sole hypothesis that ξ is computable, we
cannot even check if ξ = 2 holds. However, what we can do is to draw some inspiration
from Conjecture 2, and introduce as a further assumption the existence of what we call a
root barrier of ξ. Below, N≥1 = {1, 2, 3, . . . }, and given a polynomial p we write deg(p) for
its degree and h(p) for its height (i.e., the maximum absolute value of a coefficient of p).

▶ Definition 3. A function σ : (N≥1)2 → N is a root barrier of ξ ∈ R if for every non-constant
polynomial p(x) with integer coefficients, either p(ξ) = 0 or ln |p(ξ)| ≥ −σ(deg(p), h(p)).

To avoid non-elementary bounds on the runtime of our algorithms, we focus on com-
putable numbers having root barriers σ(d, h) that are polynomial expressions of the form
c · (d+ ⌈ln h⌉)k, where c, k ∈ N are some positive constants and ⌈·⌉ is the ceiling function.
We call such functions polynomial root barriers, highlighting the fact that then σ(deg(p), h(p))
in Definition 3 is bounded by a polynomial in the bit size of p. The aforestated Theorem 1.2
is obtained by instantiating the following Theorem 4.2 to natural choices of ξ.

▶ Theorem 4. Let ξ > 0 be a real number computable by a polynomial-time Turing machine,
and let σ(d, h) := c · (d+ ⌈ln h⌉)k be a root barrier of ξ, for some c, k ∈ N≥1.
1. If k = 1, then the satisfiability problem for ∃R(ξZ) is in 2Exp.
2. If k > 1, then the satisfiability problem for ∃R(ξZ) is in 3Exp.

As we will see in Section 6, whenever algebraic, the base ξ has a root barrier with expo-
nent k = 1, and the related satisfiability problem for ∃(ξZ) thus lie in 2Exp. However, a small
trick will allow us to further improve this result to ExpSpace, establishing Theorem 1.1.

3 Preliminaries

In this section, we fix our notation, introduce background knowledge on computable, algebraic
and transcendental numbers, and define the existential theory ∃R(ξZ).

Sets, vectors, and basic functions. Given a finite set S, we write |S| for its cardinality.
Given a, b ∈ R, we write [a, b] for the closed interval {c ∈ R : a ≤ c ≤ b}. We use parenthesis
(and) for open intervals, hence writing, e.g., [a, b) for the set {c ∈ R : a ≤ c < b}. We write
[a..b] for the set of integers [a, b] ∩ Z. Given A ⊆ R, c ∈ R, and a binary relation ∼ (e.g., ≥),
we define A∼c := {a ∈ A : a ∼ c}. The endpoints of A are its supremum and infimum, if they
exist. For instance, the endpoints of the interval [a, b) are the numbers a and b, while the
endpoints of [a..b] are the numbers ⌈a⌉ and ⌊b⌋, where ⌊·⌋ stands for the floor function.

Given a positive real number b with b ̸= 1, we write logb(·) for the logarithm function of
base b. We abbreviate log2(·) and loge(·) as log(·) and ln(·), respectively.

Unless stated explicitly, all integers encountered by our algorithms are encoded in binary;
note that n ∈ Z can be represented using 1 + ⌈log(n+ 1)⌉ bits. Similarly, each rational is
encoded as a ratio n

d of two coprime integers n and d encoded in binary, with d ≥ 1.

Integer polynomials. An integer polynomial in variables x = (x1, . . . , xn) is an expression
p(x) :=

∑m
j=1(aj ·

∏n
i=1 x

dj,i

i), where aj ∈ Z and dj,i ∈ N for every j ∈ [1..m] and i ∈ [1..n].
In the context of algorithms, we assume the coefficients aj to be given in binary encoding,
and the exponents di,j to be given in unary encoding. We rely on the following notions:

The height of p, denoted h(p), is defined as max{|aj | : j ∈ [1..m]}.
The degree of p, denoted deg(p), is defined as max{

∑n
i=1 dj,i : j ∈ [1..m]}.

Given i ∈ [1..n], the partial degree of p in xi, denoted deg(xi, p), is max{dj,i : j ∈ [1..m]}.
The bit size of p, denoted size(p), is defined as m · (⌈log(h(p) + 1)⌉+ n · deg(p)).

J. Gallego-Hernández and A. Mansutti 37:5

Computable numbers, and algebraic and transcendental numbers. A real number ξ ∈ R
is said to be computable whenever there is a (deterministic) Turing machine T : N → Q
that given in input n ∈ N written in unary (e.g., over the alphabet {1}∗) returns a rational
number Tn (represented as described above) such that |ξ − Tn| ≤ 2−n. We thus have
ξ = limn→∞ Tn, and for this reason ξ is said to be computed by T (or T computes ξ).
The computable numbers form a field [31]; we will later need the following two statements
regarding their closure under product and reciprocal.

▶ Lemma 5. Given Turing machines T and T ′ computing reals a and b, one can construct
a Turing machine T ′′ computing a · b. If T and T ′ run in polynomial time, then so does T ′′.

▶ Lemma 6. Given a Turing machine T computing a non-zero real number r, one can
construct a Turing machine T ′ computing 1

r . If T runs in polynomial time, then so does T ′.

A real number ξ is algebraic if it is a root of some univariate non-zero integer polynomial.
Otherwise, ξ is transcendental. We often denote algebraic numbers by α, β, η, Throughout
the paper, we consider the following canonical representation: an algebraic number α

is represented by a triple (q, ℓ, u) where q is a non-zero integer polynomial and ℓ, u are
(representations of) rational numbers such that α is the only root of q belonging to [ℓ, u].

The existential theory ∃R(ξZ). Let ξ > 0 be a computable real number. We consider
the structure (R; 0, 1, ξ,+, ·, ξZ, <,=) extending the signature of the FO theory of the reals
with the constant ξ and the unary integer power predicate ξZ interpreted as {ξi : i ∈ Z}.
Formulae from the existential theory of this structure, denoted ∃R(ξZ), are built from the
grammar

φ,ψ ::= p(ξ,x) ∼ 0 | ξZ(x) | ⊤ | ⊥ | φ ∨ ψ | φ ∧ ψ | ∃xφ ,

where ∼ belongs to {<,=}, the argument x of the predicate ξZ(x) is a variable, and p is
an integer polynomial involving ξ and variables x. For convenience of notation, ξ is in this
context seen as a variable of the polynomial p, so that we can rely on the previously defined
notions of height, degree and bit size. We remark that, then, h(p) is independent of ξ whereas
deg(p) depends on the integers occurring as powers of ξ. The bit size of a formula φ, denoted
as size(φ), is the number of bits required to write down φ (where ξ is stored symbolically,
using a constant number of symbols). Similarly, we write deg(φ) and h(φ) for the maximum
degree and height of polynomials occurring in φ, respectively.

The semantics of formulae from ∃R(ξZ) is standard; it is the one of the FO theory of the
reals, plus a rule stating that ξZ(x) is true whenever x evaluates to a number in ξZ. The
grammar above features disjunctions (∨), conjunctions (∧), true (⊤) and false (⊥), but it
does not feature negation (¬) on top of atomic formulae. This restriction is w.l.o.g.: ¬ξZ(x)
is equivalent to the formula x ≤ 0 ∨ ∃y : ξZ(y) ∧ y < x ∧ x < ξ · y stating that x is either
non-positive or strictly between two successive integer powers of ξ, whereas ¬(p(ξ,x) < 0)
and ¬(p(ξ,x) = 0) are equivalent to p(ξ,x) = 0∨−p(ξ,x) < 0, and p(ξ,x) < 0∨−p(ξ,x) < 0,
respectively. We still sometimes write negations in formulae, but these occurrences should
be seen as shortcuts. The grammar also avoids polynomials in the scope of ξZ(·), since
ξZ(p(ξ,x)) is equivalent to ∃y : y = p(ξ,x) ∧ ξZ(y). We write φ |= ψ whenever φ entails ψ.

4 An algorithm for deciding ∃R(ξZ)

Fix a computable number ξ > 0 that is either transcendental or has a polynomial root barrier.
In this section, we discuss our procedure for deciding the satisfiability of formulae in ∃R(ξZ).
For simplicity, we assume for now ξ > 1. The general case of ξ > 0 is handled in Section 4.5.

STACS 2025

37:6 On the Existential Theory of the Reals with Integer Powers of a Computable Number

Algorithm 1 A procedure deciding the satisfiability problem for ∃R(ξZ).

Fixed: ξ > 1 computable number that is transcendental or has a polynomial root barrier.
Input: φ(x1, . . . , xn) : quantifier-free formula from ∃R(ξZ).
Output: True (⊤) if φ is satisfiable, and otherwise False (⊥).

1: for i ∈ [1..n] do
2: let ui and vi be two fresh variables
3: update φ: replace every occurrence of ξZ(xi) with vi = 1
4: update φ: replace every occurrence of xi with ui · vi
5: φ← φ ∧ (vi = 0 ∨ 1 ≤ |vi| < ξ)
6: ψ(u1, . . . , un)← RealQE(∃v1 . . . ∃vn : φ) ▷ eliminate v1, . . . , vn (see Theorem 7)
7: for i ∈ [1..n] do ▷ gi below is encoded in unary
8: guess gi ← an element of Pψ ▷ Pψ ⊆ Z is the set from in Proposition 8
9: return evaluate whether the assignment (u1 = ξg1 , . . . , un = ξgn) is a solution to ψ

Algorithm 2 Algorithm for solving Signξ when ξ has a root barrier.

Fixed: A number ξ ∈ R computed by a Turing machine T and having a root barrier σ.
Input: A univariate integer polynomial p(x) of degree d and height h.
Output: The symbol ∼ from {<,>,=} such that p(ξ) ∼ 0.

1: n← 1 + 2σ(d, h) + 3d ⌈log(h+ 4)⌉
2: if |p(Tn)| ≤ 2−2σ(d,h)−1 and |Tn| < h+ 2 then return the symbol =
3: else return the sign of p(Tn)

The pseudocode of the procedure is given in Algorithm 1. To keep it as simple as possible,
we use nondeterminism in line 8 instead of implementing, e.g., a routine backtracking
algorithm. The procedure assumes the input formula φ(x1, . . . , xn) to be quantifier-free (this
is without loss of generality, since ∃R(ξZ) is an existential theory), and it is split into three
steps, which we discuss in the forthcoming three subsections.

4.1 Step I (lines 1–6): reducing the variables to integer powers of ξ

The first step reduces the problem of finding a solution over R to the problem of find-
ing a solution over ξZ. Below, we denote by ∃ξZ the existential theory of the structure
(ξZ; 0, 1, ξ,+, ·, <,=). Formulae from this theory are built from the grammar of ∃R(ξZ),
except they do not feature predicates ξZ(x), as they are now trivially true.

For reducing ∃R(ξZ) to ∃ξZ, we observe that every x ∈ R can be factored as u · v where u
belongs to ξZ and v is either 0 (if x = 0) or it belongs, in absolute value, to the interval [1, ξ).
In the case of x ≠ 0, this factorisation is unique, and u corresponds to the largest element of
ξZ that is less or equal to the absolute value of x, i.e., u ≤ |x| < ξ ·u. The procedure uses this
fact to replace every occurrence of a variable xi in the input formula φ(x1, . . . , xn) with two
fresh variables ui and vi (see the for loop of line 1), where vi is set to satisfy either vi = 0 or
1 ≤ |vi| < ξ (the latter is short for the formula (1 ≤ vi < ξ) ∨ (−ξ < vi ≤ −1)), and ui is
(implicitly) assumed to belong to ξZ. This allows to replace all occurrences of the predicate
ξZ(xi) with vi = 1 (line 3). We obtain in this way an equivalent formula from the existential
theory of the reals, but where the variables u1, . . . , un are assumed to range over ξZ.

J. Gallego-Hernández and A. Mansutti 37:7

After the updates performed by the for loop, the procedure eliminates the variables
v1, . . . , vn by appealing to a quantifier elimination procedure for the FO theory of the reals,
named RealQE in the pseudocode. We remind the reader that a quantifier elimination
procedure is an algorithm that, from an input (quantified) formula, produces an equivalent
quantifier-free formula. Since such a procedure preserves formula equivalence, we can use it to
eliminate v1, . . . , vn even if u1, . . . , un are assumed to range over ξZ. The constant ξ appearing
in the formula is treated as an additional free variable by RealQE. The output formula
ψ(u1, . . . , un) belongs to ∃ξZ, as required. This concludes the first step of the algorithm.

To perform the quantifier elimination step, we rely on the quantifier elimination procedure
for the (full) FO theory of the reals developed by Basu, Pollack and Roy [8]. This procedure
achieves the theoretically best-known bounds for the output formula, not only for arbitrary
quantifier alternation but also for the existential fragment (i.e., when taking ω = 1 below).

▶ Theorem 7 ([8, Theorem 1.3.1]). There is an algorithm with the following specification:

Input: A formula φ(y) from the first-order theory of (R; 0, 1,+, ·, <,=).
Output: A quantifier-free formula γ(y) =

∨I
i=1

∧J
j=1 pi,j(y) ∼i,j 0 equivalent to φ,

where every ∼i,j is from {<,=}.

Suppose the input formula φ to be of the form Q1x1 ∈ Rn1 . . . Qωxω ∈ Rnω : ψ(y,x1, . . . ,xω),
where y = (y1, . . . , yk), every Qi is ∃ or ∀, and ψ is a quantifier-free formula with m atomic
formulae gi ∼ 0 satisfying deg(gi) ≤ d and h(gi) ≤ h. Then, the output formula γ satisfies

I ≤ (m · d+ 1)(k+1)Πω
i=1O(ni) , deg(pi,j) ≤ dΠω

i=1O(ni) ,

J ≤ (m · d+ 1)Πω
i=1O(ni) , h(pi,j) ≤ (h+ 1)d

(k+1)Πω
i=1O(ni)

,

and the algorithm runs in time size(φ)O(1)(m · d+ 1)(k+1)Πω
i=1O(ni).

4.2 Step II (lines 7 and 8): solving ∃ξZ

The second step of the procedure searches for a solution to the quantifier-free formula ψ in
line 6. For every variable ui in ψ, the algorithm guesses an integer gi, encoded in unary,
from a finite set Pψ. Implicitly, this guess is setting ui = ξgi . The next proposition shows
that Pψ can be computed from ψ and the base ξ, i.e., ∃ξZ has a small witness property.

▶ Proposition 8. Fix ξ > 1. There is an algorithm with the following specification:

Input: A quantifier-free formula ψ(u1, . . . , un) from ∃ξZ.
Output: A finite set Pψ ⊆ Z such that ψ is satisfiable if and only if

ψ has a solution in the set {(ξj1 , . . . , ξjn) : j1, . . . , jn ∈ Pψ}.

To be effective, the algorithm requires knowing either that ξ is a computable transcendental
number, or two integers c, k ∈ N≥1 for which σ(d, h) := c · (d+ ⌈ln(h)⌉)k is a root barrier of ξ.
In the latter case, the elements in Pψ are bounded in absolute value by (2c ⌈ln(H)⌉)D25n2

kD8n

,
where H := max(8, h(ψ)) and D := deg(ψ) + 2.

We defer a sketch of the proof of Proposition 8 (perhaps the main technical contribution of the
paper) to Section 5. Note that the bound on Pψ given in the final statement of Proposition 8
is in general triply exponential in size(ψ), but it becomes doubly exponential if the root
barrier σ is such that k = 1. The two statements in Theorem 4 stem from this distinction.

STACS 2025

37:8 On the Existential Theory of the Reals with Integer Powers of a Computable Number

4.3 Step III (line 9): polynomial sign evaluation
The last step of the procedure checks if the assignment u1 = ξg1 , . . . , un = ξgn is a solution
to ψ(u1, . . . , un). Observe that ψ(ξg1 , . . . , ξgn) is a Boolean combination of polynomial
(in)equalities p(ξ) ∼ 0, where ξ may occur with negative powers (as some gi may be negative).
This is unproblematic, as one can make all powers non-negative by rewriting each (in)equality
p(ξ) ∼ 0 as ξ−d · p ∼ 0, where d is the smallest negative integer occurring as a power of ξ
in p (or 0 if such an integer does not exist). After this small update, line 9 boils down to
determining the sign that each polynomial in the formula has when evaluated at ξ. This
enables us to simplify all inequalities to either ⊤ or ⊥, to then return ⊤ or ⊥ depending on
the Boolean structure of ψ. Let us thus focus on the required sign evaluation problem, which
we denote by Signξ. Its specification is the following:

Input: A univariate integer polynomial p(x).
Output: The symbol ∼ from {<,>,=} such that p(ξ) ∼ 0.

Solving Signξ when ξ ∈ R is transcendental. It is a standard fact that Signξ becomes
solvable whenever ξ is any computable transcendental number. Indeed, in this case p(ξ)
must be different from 0, and one can rely on the fast-convergence sequence of rational
numbers T0, T1, . . . to find n ∈ N such that |p(ξ) − p(Tn)| is guaranteed to be less than
|p(Tn)|. The sign of p(ξ) then agrees with the sign of p(Tn), and the latter can be easily
computed. In general, the asymptotic running time of this algorithm cannot be bounded.

Solving Signξ when ξ ∈ R has a (polynomial) root barrier. A similar algorithm as the
one given for transcendental numbers can be defined for numbers with a polynomial root
barrier; and in this case its running time can be properly analysed. The pseudocode of such a
procedure is given in Algorithm 2, and it should be self-explanatory. We stress that running
this algorithm requires access to the root barrier σ and the Turing machine T .

▶ Lemma 9. Algorithm 2 respects its specification.

Proof sketch. If |Tn| ≥ h+ 2, then p(ξ) and p(Tn) have the same sign, because h+ 1 is an
upper bound to the absolute value of every root of p(x) [30, Chapter 8]. If |Tn| < h + 2
instead, by studying the derivative of p in the interval [−(h+ 3), h+ 3] containing ξ, one finds
|p(ξ)− p(Tn)| ≤ 2−2σ(d,h)−1, with n defined as in line 1. Then, either |p(Tn)| ≤ 2−2·σ(d,h)−1

and p(ξ) = 0, or |p(Tn)| > 2−2·σ(d,h)−1 and p(ξ) and p(Tn) have the same sign. ◀

When σ is a polynomial root barrier, the integer n from line 1 can be written in unary
using polynomially many digits with respect to size(p). This yields the following lemma.

▶ Lemma 10. Let ξ ∈ R be a number computed by a Turing machine T and having a
polynomial root barrier σ. If T runs in polynomial time, then so does Algorithm 2.

4.4 Correctness and running time of Algorithm 1
Since lines 1–5 preserve the satisfiability the input formula, by chaining Theorem 7, Proposi-
tion 8, and Lemma 9, we conclude that Algorithm 1 is correct.

▶ Lemma 11. Algorithm 1 respects its specification.

J. Gallego-Hernández and A. Mansutti 37:9

This establishes Theorem 1.3 restricted to bases ξ > 1. Analogously, when ξ is a number
with a polynomial root barrier σ(d, h) := c · (d+ ⌈loge h⌉)k, by pairing Lemma 11 with a
complexity analysis of Algorithm 1, one shows Theorem 4 restricted to bases ξ > 1. In
performing this analysis, we observe that the bottleneck of the procedure is given by the
guesses of the integers gi performed lines 7 and 8. The absolute value of these integers
is either doubly or triply exponential in the size of the input formula φ, depending on
whether k = 1. A deterministic implementation of the procedure can iterate through all their
values in doubly or triply exponential time.

4.5 Handling small bases
We now extend our algorithm so that it works assuming ξ > 0 instead of just ξ > 1, hence
completing the proofs of Theorem 1.3 and Theorem 4. Let ξ be computable and either
transcendental or with a polynomial root barrier. First, observe that we can call the procedure
for Signξ on input x− 1 in order to check if ξ ∈ (0, 1), ξ = 1 or ξ > 1.

If ξ = 1, we replace in the input formula φ every occurrence of ξZ(x) with x = 1, obtaining
a formula from the existential theory of the reals, which we can solve by Theorem 7. If ξ > 1,
we call Algorithm 1. Suppose then ξ ∈ (0, 1). In this case, we replace every occurrence of ξZ(x)
with

(1
ξ

)Z(x), and opportunely multiply by integer powers of 1
ξ both sides of polynomials

inequalities in order to eliminate the constant ξ. In this way, we obtain from φ an equivalent
formula in ∃R(

(1
ξ

)Z). Since 1
ξ > 1, we can now call Algorithm 1; provided we first establish

the properties of 1
ξ required to run this algorithm. These properties indeed hold:

1. If ξ is transcendental, then so is 1
ξ . This is because the algebraic numbers form a field.

2. If ξ has a polynomial root barrier σ, then σ is also a root barrier of 1
ξ . Indeed, consider

an integer polynomial p(x) =
∑d
i=0 ai · xi with height h, and assume p(1

ξ) ̸= 0. Since
σ is a root barrier of ξ, we have ξd · |p(1

ξ)| = |
∑d
i=0 ai · ξd−i| ≥ e−σ(h,d), which in turns

implies that |p(1
ξ)| ≥ e−σ(h,d) · ξ−d ≥ e−σ(h,d), where the last inequality uses 1

ξ ≥ 1.
3. From a Turing machine T computing ξ, we can construct a Turing machine T ′ computing 1

ξ .
Lemma 6 gives this construction, and shows that T ′ runs in polynomial time if so does T .

5 Finding solutions over integer powers of ξ

In this section we give a sketch of the proof of Proposition 8, i.e., we show that ∃ξZ has
a small witness property. The proof is split into two parts:
1. We first give a quantifier-elimination-like procedure for ∃ξZ. Instead of targeting formula

equivalence, we only focus on equisatisfiability: given a formula ∃y φ(y,x), with φ

quantifier-free, the procedure derives an equisatisfiable quantifier-free formula ψ(x).
Preserving equisatisfiability, instead of equivalence, is advantageous complexity-wise.
(Our procedure preserves equivalence for sentences, as these are equivalent to ⊤ or ⊥.)

2. By analysing our quantifier elimination procedure, we derive the bounds on the set Pψ
from Proposition 8 that are required to complete the proof. This step is similar to the
quantifier relativisation technique for Presburger arithmetic (see, e.g., [34, Theorem 2.2]).

Some of the core mechanisms of our quantifier-elimination-like procedure follow observations
done by Avigad and Yin for their (equivalence-preserving) quantifier elimination procedure [4].
Apart from targeting equisatisfiability, a key property of our procedure is that it does not
require appealing to a quantifier elimination procedure for the theory of the reals. The
procedure in [4] calls such a procedure once for each eliminated variable instead.

STACS 2025

37:10 On the Existential Theory of the Reals with Integer Powers of a Computable Number

5.1 Quantifier elimination
Fix a real number ξ > 1. In this section, we rely on some auxiliary notation and definitions:

We often see an integer polynomial p(ξ,x) as a polynomial in variables x = (x1, . . . , xm)
having as coefficients univariate integer polynomials on ξ, i.e., p(ξ,x) =

∑n
i=1 qi(ξ) · xdi ,

where the notation xdi is short for the monomial
∏m
j=1 x

di,j

j , with di = (di,1, . . . , di,m).
We sometimes write polynomial (in)equalities using Laurent polynomials, i.e., polynomials
with negative powers. For instance, Lemma 12 below features equalities with monomials
ξg · xdi where g may be a negative integer. Laurent polynomials are just a shortcut for
us, as one can opportunely manipulate the (in)equalities to make all powers non-negative
(as we did in Section 4.3): a polynomial (in)equality p(ξ, x1, . . . , xm) ∼ 0 is rewritten as
p(ξ, x1, . . . , xm) · ξ−d · x−d1

1 · . . . · x−dm
m ∼ 0, where di (resp. d) is the smallest negative

integer occurring as a power of xi (resp. ξ) in p (or 0 if such a negative integer does not
exist). Observe that this transformation does not change the number of monomials nor
the height of the polynomial p, but it may double the degree of each variable and of ξ.
Given a formula φ, a variable x and a Laurent polynomial q(y), we write φ[q(y) / x]
for the formula obtained from φ by replacing every occurrence of x by q(y), and then
updating all polynomial (in)equalities with negative degrees in the way described above.
We write λ : R>0 → ξZ for the function mapping a ∈ R>0 to the largest integer power of ξ
that is less or equal than a, i.e., λ(a) is the only element of ξZ satisfying λ(a) ≤ a < ξ ·λ(a).

The relation λ(p(ξ,x)) = y, where p is an integer polynomial, is definable in ∃ξZ as
p(ξ,x) > 0 ∧ y ≤ p(ξ,x) < ξ · y. To obtain a quantifier elimination procedure, we must first
understand what values can y take given p(ξ,x). The next lemma answers this question.

▶ Lemma 12. Let p(ξ,x) :=
∑n
i=1(qi(ξ)·xdi), where each qi is a univariate integer polynomial.

In the theory ∃ξZ, the formula p(ξ,x) > 0 entails the formula
∨n
i=1

∨
g∈G λ(p(ξ,x)) = ξg ·xdi ,

for some finite set G ⊆ Z. Moreover:
I. If ξ is a computable transcendental number, there is an algorithm computing G from p.

II. If ξ has a root barrier σ(d, h) := c · (d+ ⌈ln(h)⌉)k, for some c, k ∈ N≥1, then

G := [−L..L] , where L :=
(
23cD ⌈ln(H)⌉

)6nk3n

,

with H := max{8, h(qi) : i ∈ [1, n]}, and D := max{deg(qi) + 2 : i ∈ [1, n]}.

Proof sketch. A suitable set G can be found as follows. Let Q be the set of all univariate
integer polynomials Q(z) for which there are j ≤ ℓ ∈ [1..n], numbers gj , . . . , gℓ−1 ∈ N, and
integer polynomials Qj(z), . . . , Qℓ(z) such that Qℓ = Q and
1. the polynomials Qj , . . . , Qℓ are recursively defined as

Qj(z) := qj(z),
Qr(z) := Qr−1(z) · zgr−1 + qr(z), for every r ∈ [j + 1, ℓ],

2. the real numbers Qj(ξ), . . . , Qℓ−1(ξ) are all non-zero, and Qℓ(ξ) is (strictly) positive,
3. for every r ∈ [j..ℓ− 1], the number ξgr belongs to the interval

[
1 , |qr+1(ξ)|+···+|qn(ξ)|

|Qr(ξ)|
]
.

Items 1–3 ensure the set Q to be finite. We define the (finite) set

B :=
{
β ∈ Z : there is Q ∈ Q such that ξβ ∈

{
λ(Q(ξ)), λ(Q(ξ)·(ξ−1))

ξ , λ(Q(ξ)·(ξ+1))
ξ

}}
.

By induction on n, one can prove that any finite set G that includes [minB..maxB] respects
the property in the first statement of the lemma. To prove the remaining statements of the

J. Gallego-Hernández and A. Mansutti 37:11

|
1
ξ3

|
1
ξ2

|
1
ξ

|
1

|
ξ

|
ξ2

|
ξ3

q(u∗) = 0 p(w∗) = 0

λ(u∗) ξ · λ(w∗)

Figure 1 High-level idea of the quantifier elimination procedure. Dashed rectangles are intervals
corresponding to the set of solutions over R of a (univariate) formula φ. To search for a solution
over ξZ, it suffices to look for elements of ξZ that are close to the endpoints of these intervals. At
each endpoint, a polynomial in φ must evaluate to zero (since around endpoints the truth of φ

changes), so it suffices to look for integer powers of ξ that are close to roots or polynomials in φ.

lemma (Items (I) and (II)) one shows how to effectively compute an overapproximation of the
set B. In the case of ξ having a polynomial root barrier, this overapproximation is obtained
by bounding the values of λ(Q(ξ)), λ(Q(ξ)·(ξ−1))

ξ , and λ(Q(ξ)·(ξ+1))
ξ , for every Q ∈ Q. ◀

We now give the high-level idea of the quantifier elimination procedure, which is also
depicted in Figure 1. Let ψ(u,y) be a quantifier-free formula of ∃ξZ, and u be the variable we
want to eliminate. Suppose to evaluate the variables y with elements in ξZ, hence obtaining
a univariate formula φ(u). The set of all solutions over the reals of φ(u) can be decomposed
into a finite set of disjoint intervals. (This follows from the o-minimality of the FO theory of
the reals [26, Chapter 3.3].) Figure 1 shows these intervals as dashed rectangles. Around the
endpoints of these intervals the truth of φ changes, and therefore for each such endpoint u∗

there must be a non-constant polynomial in φ such that q(u∗) = 0. If an interval with
endpoint u∗ ∈ R>0 contains an element of ξZ, then it contains one that is “close” to u∗:

If u∗ ∈ R>0 is the right endpoint of an interval, at least one among λ(u∗) and ξ−1 · λ(u∗)
belongs to the interval. The first case is depicted in Figure 1. The latter case occurs
when u∗ belongs to ξZ but not to the interval.
If u∗ is the left endpoint of an interval, then ξ · λ(u∗) of λ(u∗) belongs to the interval.
The latter case occurs when u∗ belongs to ξZ and also to the interval.

Note that we have restricted the endpoint u∗ to be positive, so that λ(u∗) is well-defined. The
only case were we may not find such an endpoint is when φ(u) is true for every u > 0. But
finding an element of ξZ is in this case simple: we can just pick 1 ∈ ξZ. Since u∗ is positive,
we can split it into x∗ · v∗ with x∗ ∈ ξZ and 1 ≤ v∗ < ξ (so, λ(u∗) = x∗). To obtain quantifier
elimination, our goal is then to characterise, symbolically as a finite set of polynomials τ(y),
the set of all possible values for x∗. In this way, we will be able to eliminate the variable u by
considering the polynomials ξ−1 · τ(y), τ(y) and ξ · τ(y) representing the integer powers of ξ
that are “close” to endpoints. The following lemma provides the required characterisation.

▶ Lemma 13. Let r(x, v,y) :=
∑n
i=0 pi(ξ,y) · (x · v)i, where each pi is an integer polynomial,

M be the set of monomials yℓ occurring in some pi, and N := {yℓ1−ℓ2 : yℓ1 ,yℓ2 ∈M}. Then,

ξZ(x) ∧ 1 ≤ v < ξ ∧ r(x, v,y) = 0 ∧
(n∨
i=0

pi(ξ,y) ̸= 0
)
∧

∧
y from y

ξZ(y) |=
∨

(j,g,yℓ)∈F

xj = ξg · yℓ

holds (in the theory ∃R(ξZ)) for some finite set F ⊆ [1..n]× Z×N . Moreover:
I. If ξ is a computable transcendental number, there is an algorithm computing F from r.

II. If ξ has a root barrier σ(d, h) := c · (d+ ⌈ln(h)⌉)k, for some c, k ∈ N≥1, then,

F := [1..n]× [−L..L]×N, where L := n
(
24cD ⌈ln(H)⌉

)6|M |·k3|M|

,

with H := max{8, h(pi) : i ∈ [1, n]}, and D := max{deg(ξ, pi) + 2 : i ∈ [0, n]}.

STACS 2025

37:12 On the Existential Theory of the Reals with Integer Powers of a Computable Number

Proof sketch. By following the arguments in [4, Lemma 3.9], one shows that the premise of
the entailment in the statement entails a disjunction over formulae of the form

xk−j = ξs·λ(±pj(ξ,y))
λ(∓pk(ξ,y)) ∧ ±pj(ξ,y) > 0 ∧ ∓pk(ξ,y) > 0,

where 0 ≤ j < k ≤ n, s ∈ [−g..g] with g := 1 +
⌈
logξ(n)

⌉
, and m ≤ n2 ·

(
2 ·

⌈
logξ(n)

⌉
+ 3

)
.

Afterwards, we rely on Lemma 12 to remove the occurrences of λ from the above formulae,
establishing in this way the first statement of the lemma. Items (I) and (II) follow from the
analogous items in Lemma 12. To achieve the bounds in Item (II) we also rely on the fact
that

⌈
logξ(n)

⌉
≤ 22c ⌈ln(n)⌉. This follows from a simple computation, noticing that since ξ

is not a root of the polynomial x− 1, by the definition of root barrier we have ξ > 1 + 1
ec . ◀

By relying on the characterisation, given in Lemma 13, of the values that λ(u∗) can take,
where u∗ > 0 is the root of some polynomial, and by applying our previous observation
that satisfiability can be witnessed by picking elements of ξZ that are “close” to u∗ (i.e., the
numbers ξ−1 · λ(u∗), λ(u∗) or ξ · λ(u∗)), we obtain the following key lemma.

▶ Lemma 14. Let φ(u,y) be a quantifier-free formula from ∃ξZ. Then, ∃uφ is equivalent to∨
ℓ∈[−1..1]

∨
q∈Q

∨
(j,g,yℓ)∈Fq

∃u : uj = ξj·ℓ+g · yℓ ∧ φ (†)

where Q is the set of all polynomials in φ featuring u, plus the polynomial u−1, and each Fq is
the set obtained by applying Lemma 13 to r(x, v,y) := q[x ·v / u], with x and v fresh variables.

To eliminate the variable u, we now consider each disjunct ∃u
(
uj = ξk · yℓ ∧ φ

)
from

Formula (†) and, roughly speaking, substitute u with j
√
ξk · yℓ. We do not need however to

introduce jth roots, as shown in the following lemma.

▶ Lemma 15. Let φ(u,y) be a quantifier-free formula from ∃ξZ, with y = (y1, . . . , yn). Let
j ∈ N≥1, k ∈ Z and ℓ := (ℓ1, . . . , ℓn) ∈ Z. Then, ∃y∃u : uj = ξk · yℓ ∧ φ is equivalent to

∨
r:=(r1,...,rn)∈R ∃z : φ[zji · ξri / yi : i ∈ [1..n]][ξ

k+ℓ·r
j · zℓ / u],

where R :=
{

(r1, . . . , rn) ∈ [0..j − 1]n : j divides k +
∑n
i=1 ri · ℓi

}
, ℓ · r :=

∑n
i=1 ri · ℓi, and

z := (z1, . . . , zn) is a vector of fresh variables.

Proof sketch. Consider a solution to the equality uj = ξk ·yℓ. Each yi evaluates to a number
of the form ξqi·j+ri , with qi ∈ Z and ri ∈ [0..j−1]. Since uj is of the form ξj·q for some q ∈ Z,
we must have that k+

∑n
i=1 ri · ℓi is divisible by j. Observe that the set R in the statement of

the lemma contains all possible vectors r = (r1, . . . , rn) satisfying this divisibility condition.
At the formula level, consider a vector r = (r1, . . . , rn) ∈ R, and replace in uj = ξk · yℓ ∧ φ

every variable yi with the term zji · ξri . After this replacement, the equality uj = ξk · yℓ can
be rewritten as u = ξ

k+ℓ·r
j · zℓ, where the division is without remainder. We can therefore

substitute u with ξ
k+ℓ·r

j · zℓ in φ, eliminating it. ◀

By chaining Lemmas 14 and 15, one can eliminate all variables from a quantifier-free
formula φ(x), obtaining an equisatisfiable formula with no variables.

J. Gallego-Hernández and A. Mansutti 37:13

5.2 Quantifier relativisation
Looking closely at how a quantifier-free formula φ(u1, . . . , un) of ∃ξZ evolves as we chain Lem-
mas 14 and 15 to eliminate all variables, we see that the resulting variable-free formula is a
finite disjunction

∨
i ψi of formulae ψi that are obtained from φ via a sequence of substitutions

stemming from Lemma 15. As an example, for a formula in three variables φ(u1, u2, u3),
each ψi is obtained by applying a sequence of substitutions of the form:

elimination of u1 elimination of z1 elimination of z3

u1 = ξk1 · zℓ1

1 · z
ℓ2
2

u2 = zj1
1 · ξr1

u3 = zj1
2 · ξr2

{
z1 = ξk2 · zℓ3

3

z2 = zj2
3 · ξr3

{
z3 = ξk3

We can “backpropagate” these substitutions to the initial variables u1, . . . , un, associating to
each one of them an integer power of ξ. In the above example, we obtain the system

u1 = ξk1 · (ξk2 · (ξk3)ℓ3)ℓ1 · ((ξk3)j2 · ξr3)ℓ2

u2 = (ξk2 · (ξk3)ℓ3)j1 · ξr1

u3 = ((ξk3)j2 · ξr3)j1 · ξr2

By Lemmas 13–15, we can restrict the integers occurring as powers of ξ in the resulting
system of substitutions to a finite set. Since the disjunction

∨
i ψi is finite, this implies

that, under the hypothesis that ξ is a computable number that is either transcendental or
has a polynomial root barrier, it is possible to compute a finite set Pφ ⊆ Z witnessing the
satisfiability of φ. That is, the sentence ∃u1 . . . ∃un φ is equivalent to

∃u1 . . . ∃un
∨

(g1,...,gn)∈(Pφ)n (φ ∧
∧n
i=1 ui = ξgi) .

Proposition 8 follows (in particular, the bound on Pφ for the case of ξ with a polynomial
root barrier is derived by iteratively applying the bounds in Lemmas 13–15).

6 Proof of Theorem 1: classical numbers with polynomial root barriers

In this section, we complete the proof of Theorem 1 by establishing Theorem 1.1 and The-
orem 1.2. Following Theorem 4, we discuss natural choices for the base ξ > 0 that (i) can be
computed with polynomial-time Turing machines and (ii) have polynomial root barriers.

The case of ξ algebraic. Let ξ be a fixed algebraic number represented by (q, ℓ, u). The
following two results (the first one based on performing a dichotomy search to refine the
interval [ℓ, u]) show that one can construct a polynomial-time Turing machine for ξ, and
that ξ has a polynomial root barrier where the integer k from Theorem 4 equals 1.

▶ Lemma 16. Given an algebraic number α represented by (q, ℓ, u), one can construct a
polynomial-time Turing machine computing α.

▶ Theorem 17 ([10, Theorem A.1]). Let α ∈ R be a zero of a non-zero integer polyno-
mial q(x), and consider a non-constant integer polynomial p(x). Then, either p(α) = 0 or
ln |p(α)| ≥ − deg(q) ·

(
ln(deg(p) + 1) + ln h(p)

)
− deg(p) ·

(
ln(deg(q) + 1) + ln h(q)

)
.

STACS 2025

37:14 On the Existential Theory of the Reals with Integer Powers of a Computable Number

Table 1 Transcendence measures for some classical real numbers. For convenience only, the table
assumes h ≥ 16 (so that ln ln h ≥ 1; replace h by h + 15 to avoid this assumption). The numbers
α > 0, β > 0 and η are fixed algebraic numbers, with β ̸= 1. The integers cη, cα,η, cα and cα,β are
constants that depend on, and can be computed from, polynomials representing α, β and η. In the
case of αη, η is assumed to be irrational. In the last line of the table, ln α

ln β
is assumed to be irrational.

Number Transcendence measure from [33] Simplified bound (α, β, η fixed)

π 240d(ln h+ d ln d)(1 + ln d) O(d2(ln d)2 ln h)
eπ 260d2(ln h+ ln d)(ln ln h+ ln d)(1 + ln d) O(d2(ln d)3(ln h)(ln ln h))
eη cη · d2(ln h+ ln d)

(ln lnh+ln d
ln lnh+ln max(1,ln d)

)2
O(d2(ln d)3(ln h)(ln ln h)2)

αη cα,η · d3(ln h+ ln d) ln lnh+ln d
(1+ln d)2 O(d3(ln d)2(ln h)(ln ln h))

lnα cα · d2 lnh+d ln d
1+ln d O(d3(ln d) ln h)

lnα
ln β cα,β · d3 lnh+d ln d

(1+ln d)2 O(d4(ln d) ln h)

By applying Theorem 4.1, Lemma 16 and Theorem 17, we deduce that the satisfiability
problem for ∃R(ξZ) is in 2Exp. However, for algebraic numbers it is possible to obtain a
better complexity result (ExpSpace) by slightly modifying Steps II and III of Algorithm 1.

Proof of Theorem 1.1. Let φ be a formula in input of Algorithm 1, and ψ(u1, . . . , un) to
be the formula obtained from φ after executing lines 1–6. In lines 7 and 8, guess the
integers g1, . . . , gn in binary, instead of unary. These numbers have at most m bits where,
by Theorem 7 and Proposition 8, m is exponential in size(φ). Let gi = ±i

∑m−1
j=0 di,j2j , with

di,j ∈ {0, 1} and ±i ∈ {+1,−1}, so that ξgi =
∏m−1
j=0 ξ±idij2j . Note that the formula

γ(x0, . . . , xm−1) := q(x0) = 0 ∧ ℓ ≤ x0 ≤ u ∧
∧m−1
i=1 xi = (xi−1)2

has a unique solution: for every j ∈ [0..m − 1], xj must be equal to ξ2j . The formula ψ

is therefore equisatisfiable with the formula ψ′ := ψ[x0 / ξ] ∧ γ ∧
∧n
i=1 ui =

∏m−1
j=0 x

±idij

j ,
which (after rewriting ui =

∏m−1
j=0 x

±idij

j into ui
∏m−1
j=0 x

dij

j = 1 when ±i = −1) is a formula
from the existential theory of the reals of size exponential in size(φ). Since the satisfiability
problem for the existential theory of the reals is in PSpace [12], we conclude that checking
whether ψ′ is satisfiable can be done in ExpSpace. Accounting for Steps I and II, we thus
obtain a procedure running in non-deterministic exponential space (because of the guesses in
lines 7 and 8), which can be determinised by Savitch’s theorem [32]. ◀

The case of ξ among some classical transcendental numbers (proof sketch of Theorem 1.2).
In the context of transcendental numbers, root barriers are usually called transcendence
measures. Several fundamental results in number theory concern deriving a transcendence
measure for “illustrious” numbers, such as Euler’s e, π, or logarithms of algebraic numbers [29,
25, 33]. A few of these results are summarised in Table 1, which is taken almost verbatim
from [33, Fig. 1 and Corollary 4.2]. All transcendence measures in the table are polynomial
root barriers. Note that in the cases of αη and lnα

ln β , the transcendence measures hold under
further assumptions, which are given in the caption of the table.

Following Theorem 4.2, to prove Theorem 1.2 it suffices to show how to construct a
polynomial-time Turing machine for every number in Table 1, and derive polynomial root
barriers for the cases ξ = αη and ξ = lnα

ln β without relying on the additional assumptions in
the table. The following two results solve the first of these two issues.

J. Gallego-Hernández and A. Mansutti 37:15

▶ Theorem 18 ([6]). One can construct a polynomial-time Turing machine computing π.

▶ Lemma 19. Given a polynomial-time Turing machine computing r ∈ R,
1. one can construct a polynomial-time Turing machine computing er;
2. if r > 0, one can construct a polynomial-time Turing machine computing ln(r).

Proof idea. The two Turing machines use the power series in the identities ex =
∑∞
j=0

xj

j!

and ln(x) = 2
∑∞
j=0

(1
2j+1

(
x−1
x+1

)2j+1)
, truncated to obtain the required accuracy. ◀

As an example, to construct the Turing machine for ln(α)
ln(β) we construct machines for the

following sequence of numbers: α and β (applying Lemma 16), ln(α) and ln(β) (Lemma 19.2),
1

ln(β) (Lemma 6) and 1
ln(β) · ln(α) (Lemma 5). For αη, we follow the operations in eη·ln(α).

Let us now discuss how to derive polynomial root barriers when ξ = αη or ξ = ln(α)
ln(β) .

In the case ξ = αη, Table 1 assumes η to be irrational. To check whether an algebraic number
represented by (q, ℓ, u) is rational, it suffices to factor q(x) into a product of irreducible
polynomials with rational coefficients, and test for any degree 1 factor n · x −m whether
the rational number m

n belongs to [ℓ, u]. The factorisation of q can be computed (in fact,
in polynomial time) using LLL [23]. If such a rational number does not exist, then η is
irrational and the polynomial root barrier for αη is given in Table 1. Otherwise, η = m

n

and the number αm
n is algebraic. In this case, rely on the following lemma to construct a

representation of αm
n , and then derive a polynomial root barrier by applying Theorem 17.

▶ Lemma 20. There is an algorithm that given a rational r and an algebraic number α > 0
represented by (q, ℓ, u), computes a representation (q′, ℓ′, u′) of the algebraic number αr.

We move to the case ξ = ln(α)
ln(β) , which Table 1 assumes to be irrational. Since ξ is positive,

α, β ̸∈ {0, 1}. We observe that for every m
n ∈ Q, we have ξ = m

n if and only if αnβ−m = 1.
(In other words, ln(α)

ln(β) ∈ Q if and only if α and β are multiplicatively dependent.) From a
celebrated result of Masser [27], the set {(m,n) ∈ Z2 : αnβ−m = 1} is a finitely-generated
integer lattice for which we can explicitly construct a basis K (see [11] for a polynomial-time
procedure). If K = {(0, 0)}, then ξ is irrational and its polynomial root barrier is given
in Table 1. Otherwise, since α, β ̸∈ {0, 1}, there is (m,n) ∈ K with n ̸= 0, and ξ = m

n . We
can then derive a polynomial root barrier by applying Theorem 17.

7 An application: the entropic risk threshold problem

We now apply some of the machinery developed for ∃R(ξZ) to remove the appeal to Schanuel’s
conjecture from the decidability proof of the entropic risk threshold problem for stochastic
games from [5]. Briefly, a (turn-based) stochastic game is a tuple G = (Smax, Smin, A,∆)
where Smax and Smin are disjoint finite set of states controlled by two players, A is a function
from states to a finite set of actions, and ∆ is a function taking as input a state s and an
action from A(s), and returning a probability distribution on the set of states. Below, we
write ∆(s, a, s′) for the probability associated to s′ in ∆(s, a), and set S := Smax ∪ Smin.

Starting from an initial state ŝ, a play of the game produces an infinite sequence of
states ρ = s1s2s3 . . . (a path), to which we associate the total reward

∑∞
i=1 r(si), where

r : S → R≥0 is a given reward function. A classical problem is to determine the strategy
for one of the players that optimises (minimises or maximises) its expected total reward.
Instead of expectation, the entropic risk yields the normalised logarithm of the average of the
function b−ηX , where the base b > 1 and the risk aversion factor η > 0 are real numbers, and
X is a random variable ranging over total rewards. We refer the reader to [5] for motivations
behind this notion, as well as all formal definitions.

STACS 2025

37:16 On the Existential Theory of the Reals with Integer Powers of a Computable Number

Fix a base b > 1 and a risk aversion factor η ∈ R. The entropic risk threshold problem
ERisk[b−η] asks to determine if the entropic risk is above a threshold t. The inputs of this
problem are a stochastic game G having rational probabilities ∆(s, a, s′), an initial state ŝ, a
reward function r : S → Q≥0 and a threshold t ∈ Q. In [5], this problem is proven to be in
PSpace for b and η rationals, and decidable subject to Schanuel’s conjecture if b = e and
η ∈ Q (both results also hold when b and η are not fixed). We improve upon the latter result,
by establishing the following theorem (that assumes having representations of α and η):

▶ Theorem 21. The problems ERisk[e−η] and ERisk[α−η] are in Exp for every fixed algeb-
raic numbers α, η. When α, η are not fixed but part of the input, these problems are decidable.

Proof sketch. Ultimately, in [5] the authors show that the problem ERisk[b−η] is reducible
in polynomial time to the problem of checking the satisfiability of a system of constraints of
the following form (see [5, Equation 7] for an equivalent formula):

v(ŝ) ≤ (b−η)t ∧
∧
s∈T

v(s) = ds ∧
∧
s∈S

v(s) = ⊕a∈A(s)

(
(b−η)r(s)

∑
s′∈S

∆(s, a, s′) · v(s′)
)
, (1)

where T is some subset of the states S of the game, ds ∈ {0, 1}, and in the notation ⊕a∈A(s)
the symbol ⊕ stands for the functions min or max, depending on which of the two players
controls s. The formula has one variable v(s) for every s ∈ S, ranging over R.

Since z = max(x, y) is equivalent to z ≥ x∧ z ≥ y ∧ (z = x∨ z = y), and z = min(x, y) is
equivalent to z ≤ x ∧ z ≤ y ∧ (z = x ∨ z = y), except for the rationality of the exponents t
and r(s) (which we handle below), Formula 1 belongs to ∃R((b−η)Z).

Fix b > 1 to be either e or algebraic, and η > 0 to be algebraic. Assume to have access
to representations for these algebraic numbers, so that if η is represented by (q(x), ℓ, u), then
−η is represented by (q(−x),−u,−ℓ). Consider the problem of checking whether a formula φ
of the form given by Formula 1 is satisfiable. Since φ does not feature predicates (b−η)Z, but
only the constant b−η, instead of Algorithm 1 we can run the following simplified procedure:

I. Update all exponents t and r(s) of φ to be over N and written in unary. (1) Compute
the l.c.m. d ≥ 1 of the denominators of these exponents. (2) Rewrite every term (b−η)

p
q ,

where p
q is one such exponent, into (b

−η
d)

p·d
q . Note that p·d

q ∈ Z. (3) Rewrite φ into
φ[x / b

−η
d]∧xd = b−η∧x ≥ 0, with x fresh variable. (4) Opportunely multiply both sides

of inequalities by integer powers of x to make all exponents range over N. (5) Change
to a unary encoding for the exponents by adding further variables, as done in the proof
of Theorem 1.1 (Section 6). Overall, this step takes polynomial time in size(φ).

II. Eliminate x and all variables v(s) with s ∈ S. This is done by appealing to Theorem 7,
treating b−η as a free variable. The result is a Boolean combination ψ of polynomial
inequalities over b−η. This step runs in time exponential in size(φ).

III. Evaluate ψ. Call Algorithm 2 on each inequality, to then return ⊤ or ⊥ according to
the Boolean structure of ψ. Since we can construct a polynomial-time Turing machine
for b−η (Section 6), by Lemma 10 this step takes polynomial time in size(ψ). ◀

8 Conclusion and future directions

We have studied the complexity of the theory ∃R(ξZ) for different choices of ξ > 0. Particularly
valuable turned out to be the introduction of root barriers (Definition 3): by relying on this
notion, we have established that ∃R(ξZ) is in ExpSpace if ξ is algebraic, and in 3Exp for
natural choices of ξ among the transcendental numbers, such as e and π.

J. Gallego-Hernández and A. Mansutti 37:17

A first natural question is how far are we from the exact complexity of these existential
theories, considering that the only known lower bound is inherited from the existential theory
of the reals, which lies in PSpace [12]. While we have no answer to this question, we remark
that strengthening the hypotheses on ξ may lead to better complexity bounds. For example,
we claim that our ExpSpace result for algebraic numbers improves to Exp when ξ is an
integer (we aim at including this result in an extended version of this paper).

We have presented natural examples of bases ξ having polynomial root barriers. More
exotic instances are known: setting ξ = q(π,Γ(1

4)), where q is an integer polynomial and Γ is
Euler’s Gamma function, results in one such base. This follows from a theorem by Bruiltet [9,
Theorem B′] on the algebraic independence of π and Γ(1

4). This leads to a second natural
question: are there real numbers a, b satisfying aZ ∩ bZ = {1} for which the existential theory
of the reals enriched with both the predicates aZ and bZ is decidable?

References
1 Melanie Achatz, Scott McCallum, and Volker Weispfenning. Deciding polynomial-exponential

problems. In ISSAC, pages 215–222, 2008. doi:10.1145/1390768.1390799.
2 Shaull Almagor, Dmitry Chistikov, Joël Ouaknine, and James Worrell. O-minimal invariants

for discrete-time dynamical systems. ACM Trans. Comput. Log., 23(2), 2022. doi:10.1145/
3501299.

3 Hirokazu Anai and Volker Weispfenning. Deciding linear-trigonometric problems. In ISSAC,
pages 14–22, 2000. doi:10.1145/345542.345567.

4 Jeremy Avigad and Yimu Yin. Quantifier elimination for the reals with a predicate for the
powers of two. Theor. Comput. Sci., 370(1-3):48–59, 2007. doi:10.1016/J.TCS.2006.10.005.

5 Christel Baier, Krishnendu Chatterjee, Tobias Meggendorfer, and Jakob Piribauer. Entropic
risk for turn-based stochastic games. In MFCS, volume 272, pages 15:1–15:16, 2023. doi:
10.4230/LIPICS.MFCS.2023.15.

6 David H. Bailey, Peter B. Borwein, and Simon Plouffe. On the rapid computation
of various polylogarithmic constants. Math. Comput., 66:903–913, 1997. doi:10.1090/
S0025-5718-97-00856-9.

7 Gilles Barthe, Rohit Chadha, Paul Krogmeier, A. Prasad Sistla, and Mahesh Viswanathan.
Deciding accuracy of differential privacy schemes. Proc. ACM Program. Lang., 5(POPL):1–30,
2021. doi:10.1145/3434289.

8 Saugata Basu, Richard Pollack, and Marie-Françoise Roy. On the combinatorial and algebraic
complexity of quantifier elimination. J. ACM, 43(6):1002–1045, 1996. doi:10.1145/235809.
235813.

9 Sylvain Bruiltet. D’une mesure d’approximation simultanée à une mesure d’irrationalité: le
cas de Γ(1/4) et Γ(1/3). Acta Arith., 104(3):243–281, 2002. doi:10.4064/aa104-3-3.

10 Yann Bugeaud. Approximation by Algebraic Numbers. Cambridge Tracts in Mathematics.
Cambridge University Press, 2004. doi:10.1017/CBO9780511542886.

11 Jin-yi Cai, Richard J. Lipton, and Yechezkel Zalcstein. The complexity of the A B C problem.
SIAM J. Comput., 29(6):1878–1888, 2000. doi:10.1137/S0097539794276853.

12 John Canny. Some algebraic and geometric computations in PSPACE. In STOC, pages
460–467, 1988. doi:10.1145/62212.62257.

13 Dmitry Chistikov, Stefan Kiefer, Andrzej S. Murawski, and David Purser. The big-o problem.
Log. Methods Comput. Sci., 18(1), 2022. doi:10.46298/LMCS-18(1:40)2022.

14 Mohan Dantam and Amaury Pouly. On the decidability of reachability in continuous time
linear time-invariant systems. In HSCC, 2021. doi:10.1145/3447928.3456705.

15 Laure Daviaud, Marcin Jurdziński, Ranko Lazić, Filip Mazowiecki, Guillermo A. Pérez, and
James Worrell. When are emptiness and containment decidable for probabilistic automata?
JCSS, 119:78–96, 2021. doi:10.1016/j.jcss.2021.01.006.

STACS 2025

https://doi.org/10.1145/1390768.1390799
https://doi.org/10.1145/3501299
https://doi.org/10.1145/3501299
https://doi.org/10.1145/345542.345567
https://doi.org/10.1016/J.TCS.2006.10.005
https://doi.org/10.4230/LIPICS.MFCS.2023.15
https://doi.org/10.4230/LIPICS.MFCS.2023.15
https://doi.org/10.1090/S0025-5718-97-00856-9
https://doi.org/10.1090/S0025-5718-97-00856-9
https://doi.org/10.1145/3434289
https://doi.org/10.1145/235809.235813
https://doi.org/10.1145/235809.235813
https://doi.org/10.4064/aa104-3-3
https://doi.org/10.1017/CBO9780511542886
https://doi.org/10.1137/S0097539794276853
https://doi.org/10.1145/62212.62257
https://doi.org/10.46298/LMCS-18(1:40)2022
https://doi.org/10.1145/3447928.3456705
https://doi.org/10.1016/j.jcss.2021.01.006

37:18 On the Existential Theory of the Reals with Integer Powers of a Computable Number

16 Andreas Dolzmann and Thomas Sturm. REDLOG: computer algebra meets computer logic.
SIGSAM Bull., 31(2):2–9, 1997. doi:10.1145/261320.261324.

17 Lou van den Dries. The field of reals with a predicate for the powers of two. Manuscripta
Math., 54:187–196, 1986. doi:10.1007/BF01171706.

18 Lou van den Dries and Ayhan Günaydin. The fields of real and complex numbers with
a small multiplicative group. Proc. Lond. Math. Soc., 93(1):43–81, 2006. doi:10.1017/
S0024611506015747.

19 Teemu Hankala, Miika Hannula, Juha Kontinen, and Jonni Virtema. Complexity of neural
network training and ETR: extensions with effectively continuous functions. In AAAI, pages
12278–12285, 2024. doi:10.1609/AAAI.V38I11.29118.

20 Philipp Hieronymi. Defining the set of integers in expansions of the real field by a closed discrete
set. Proc. Am. Math. Soc., 138(6):2163–2168, 2010. doi:10.1090/S0002-9939-10-10268-8.

21 Omri Isac, Yoni Zohar, Clark W. Barrett, and Guy Katz. DNN verification, reachability,
and the exponential function problem. In CONCUR, pages 26:1–26:18, 2023. doi:10.4230/
LIPICS.CONCUR.2023.26.

22 A. G. Khovanskii. Fewnomials. Transl. Math. Monogr., 88, 1991. Translated by Smilka
Zdravkovska. doi:10.1090/mmono/088.

23 Arjen K Lenstra, Hendrik Willem Lenstra, and László Lovász. Factoring polynomials with
rational coefficients. Math. Ann., 261:515–534, 1982. doi:10.1007/bf01457454.

24 Angus Macintyre and Alex J. Wilkie. On the decidability of the real exponential field. In
Piergiorgio Odifreddi, editor, Kreiseliana. About and Around Georg Kreisel, pages 441–467. A
K Peters, 1996.

25 Kurt Mahler. Zur Approximation der Exponentialfunktion und des Logarithmus. Teil I.
Journal für die reine und angewandte Mathematik, 166:118–150, 1932.

26 David Marker. Model Theory: An Introduction. Graduate Texts in Mathematics. Springer,
2002. doi:10.1007/b98860.

27 D. W. Masser. Linear relations on algebraic groups, pages 248–262. Cambridge University
Press, 1988.

28 Scott McCallum and Volker Weispfenning. Deciding polynomial-transcendental problems. J.
Symb. Comput., 47(1):16–31, 2012. doi:10.1016/J.JSC.2011.08.004.

29 J. Popken. Zur Transzendenz von e. Mathematische Zeitschrift, 29:525–541, 1929.
30 Q. I. Rahman and G. Schmeisser. Analytic Theory of Polynomials. Oxford University Press,

September 2002. doi:10.1093/oso/9780198534938.001.0001.
31 H. G. Rice. Recursive real numbers. Proc. Am. Math. Soc., 5(5):784–791, 1954. doi:

10.2307/2031867.
32 Walter J. Savitch. Relationships between nondeterministic and deterministic tape complexities.

JCSS, 4(2):177–192, 1970. doi:10.1016/S0022-0000(70)80006-X.
33 Michel Waldschmidt. Transcendence measures for exponentials and logarithms. J. Aust. Math.

Soc., 25(4):445–465, 1978. doi:10.1017/S1446788700021431.
34 Volker Weispfenning. The complexity of almost linear diophantine problems. J. Symb. Comput.,

10(5):395–404, 1990. doi:10.1016/S0747-7171(08)80051-X.

https://doi.org/10.1145/261320.261324
https://doi.org/10.1007/BF01171706
https://doi.org/10.1017/S0024611506015747
https://doi.org/10.1017/S0024611506015747
https://doi.org/10.1609/AAAI.V38I11.29118
https://doi.org/10.1090/S0002-9939-10-10268-8
https://doi.org/10.4230/LIPICS.CONCUR.2023.26
https://doi.org/10.4230/LIPICS.CONCUR.2023.26
https://doi.org/10.1090/mmono/088
https://doi.org/10.1007/bf01457454
https://doi.org/10.1007/b98860
https://doi.org/10.1016/J.JSC.2011.08.004
https://doi.org/10.1093/oso/9780198534938.001.0001
https://doi.org/10.2307/2031867
https://doi.org/10.2307/2031867
https://doi.org/10.1016/S0022-0000(70)80006-X
https://doi.org/10.1017/S1446788700021431
https://doi.org/10.1016/S0747-7171(08)80051-X

Two-Dimensional Longest Common Extension
Queries in Compact Space
Arnab Ganguly #

University of Wisconsin, Whitewater, WI, USA

Daniel Gibney #

University of Texas at Dallas, TX, USA

Rahul Shah #

Louisiana State University, Baton Rouge, LA, USA

Sharma V. Thankachan #

North Carolina State University, Raleigh, NC, USA

Abstract
For a length n text over an alphabet of size σ, we can encode the suffix tree data structure in
O(n log σ) bits of space. It supports suffix array (SA), inverse suffix array (ISA), and longest
common extension (LCE) queries in O(logϵ

σ n) time, which enables efficient pattern matching; here
ϵ > 0 is an arbitrarily small constant. Further improvements are possible for LCE queries, where
O(1) time queries can be achieved using an index of space O(n log σ) bits. However, compactly
indexing a two-dimensional text (i.e., an n × n matrix) has been a major open problem. We
show progress in this direction by first presenting an O(n2 log σ)-bit structure supporting LCE
queries in near O((logσ n)2/3) time. We then present an O(n2 log σ + n2 log log n)-bit structure
supporting ISA queries in near O(log n · (logσ n)2/3) time. Within a similar space, achieving SA
queries in poly-logarithmic (even strongly sub-linear) time is a significant challenge. However, our
O(n2 log σ + n2 log log n)-bit structure can support SA queries in O(n2/(σ log n)c) time, where c is
an arbitrarily large constant, which enables pattern matching in time faster than what is possible
without preprocessing.

We then design a repetition-aware data structure. The δ2D compressibility measure for two-
dimensional texts was recently introduced by Carfagna and Manzini [SPIRE 2023]. The measure
ranges from 1 to n2, with smaller δ2D indicating a highly compressible two-dimensional text. The
current data structure utilizing δ2D allows only element access. We obtain the first structure based
on δ2D for LCE queries. It takes Õ(n5/3 + n8/5δ

1/5
2D) space and answers queries in O(log n) time.

2012 ACM Subject Classification Theory of computation → Pattern matching

Keywords and phrases String matching, text indexing, two-dimensional text

Digital Object Identifier 10.4230/LIPIcs.STACS.2025.38

Funding Supported by the US National Science Foundation (NSF) under Grant Numbers 2315822
(S Thankachan) and 2137057 (R Shah).

1 Introduction

A two-dimensional text T [0 . . n)[0 . . n) can be viewed as an n × n matrix, where each entry
is a character from an alphabet set Σ of size σ. Data structures for two-dimensional texts
have been studied for decades. In particular, there has been extensive work on generalizing
suffix trees [16, 17, 23] and suffix arrays [16, 22] to 2D text. These data structures, although
capable of answering most queries in optimal (or near optimal) time, require O(n2) words,
or O(n2 log n) bits, of space.

On the other hand, in the case of 1D texts of length n, there exist data structures with the
same functionality as suffix trees/arrays but requiring only O(n log σ) bits of space [18, 32],
or even smaller in the case where the text is compressible [11, 21]. This is true even for

© Arnab Ganguly, Daniel Gibney, Rahul Shah, and Sharma V. Thankachan;
licensed under Creative Commons License CC-BY 4.0

42nd International Symposium on Theoretical Aspects of Computer Science (STACS 2025).
Editors: Olaf Beyersdorff, Michał Pilipczuk, Elaine Pimentel, and Nguyễn Kim Thắng;
Article No. 38; pp. 38:1–38:17

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:gangulya@uww.edu
https://orcid.org/0000-0003-3331-0913
mailto:daniel.gibney@utdallas.edu
https://orcid.org/0000-0003-1493-5432
mailto:rahul@lsu.edu
https://orcid.org/0000-0002-2190-5840
mailto:svalliy@ncsu.edu
https://orcid.org/0000-0002-6852-1035
https://doi.org/10.4230/LIPIcs.STACS.2025.38
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

38:2 Two-Dimensional Longest Common Extension Queries in Compact Space

some variants of suffix trees, such as parameterized [14, 13] and order-isomorphic [12] suffix
trees [33]. The query times of these space-efficient versions are often polylogarithmic, with
the exception of LCE queries, for which Kempa and Kociumaka demonstrated that the query
time can be made constant [19]. For 2D texts, the only results known in this direction include
a data structure by Patel and Shah that uses O(n2 log σ + n2 log log n) bits and supports
inverse suffix array (ISA) queries in O(log4 n/(log log n)3) time [28]. In this work, we make
further progress in this direction. In particular, we focus on space-efficient data structures
for longest common extension (LCE) queries in the 2D setting. The problem is formally
defined as follows:

▶ Problem 1 (2D LCE). Preprocess a 2D text T [0 . . n)[0 . . n) over an alphabet Σ of size σ

into a data structure that can answer 2D LCE queries efficiently. A 2D LCE query consists
of points (i1, j1), (i2, j2) and asks to return the largest L such that T [i1 . . i1 + L)[j1 . . j1 + L)
and T [i2 . . i2 + L)[j2 . . j2 + L) are matching square submatrices of T .

A 2D suffix tree of size O(n2 log n) bits can answer LCE queries in constant time. Our
first result is an LCE data structure that occupies O(n2 log σ) bits of space.

▶ Theorem 1. By maintaining an O(n2 log σ)-bit data structure, we can answer 2D LCE
queries in O((logσ n)2/3 · (log logσ n)5/3) time.

Turning now to highly compressible 2D texts, we consider repetition-aware compression
measures. The δ measure is an important and well-studied compressibility measure for 1D
text [26]. Only recently has it been extended to 2D text by Carfagna and Manzini with a
δ2D-measure [5]. They demonstrate that the data structure of Brisaboa et al. [3] occupies
O((δ2D +

√
nδ2D) log n log σ√

δ2D log n
) space. However, this data structure only supports access to

the elements of T . We provide the first repetition-aware data structure supporting the more
advanced LCE queries. Note that the measure δ2D ranges from 1 to n2, with a smaller δ2D

value implying higher compressibility.

▶ Theorem 2. By maintaining an O((n5/3 + n8/5δ
1/5
2D) log β) word data structure, we can

answer 2D LCE queries in O(1 + log β) time, where β is always O(n) and goes to O(1) as
δ2D approaches n2. In particular,

β =
{

n if δ2D < n9/5

n9/5/δ
9/10
2D if δ2D ≥ n9/5.

When δ2D = Θ(n2), our data structure takes O(n2) words of space and answers LCE
queries in O(1) time. When δ2D = o(n2), the space becomes o(n2) and LCE queries are
answered in logarithmic time. Our approach builds off many of the same techniques as our
compact index but also introduces a matrix representation of the leaves of a truncated suffix
tree. We call this a macro-matrix. We prove that if the original 2D text is compressible,
then this macro-matrix remains compressible for appropriately chosen parameters. This is
then combined with the data structure of Brisaboa et al. [3] to achieve Theorem 2.

As the first steps towards obtaining the other functionalities of the suffix tree, we apply
our 2D LCE query structure from Theorem 1 to get the following results. Definitions of
suffix array (SA) and inverse suffix array (ISA) are deferred to Section 1.1.

The following theorem significantly improves on the results by Patel and Shah [28].

▶ Theorem 3 (2D ISA queries). By maintaining an O(n2 log σ+n2 log log n)-bit data structure,
we can answer inverse suffix array queries in O(log n · (logσ n)2/3 · (log logσ n)5/3) time.

A. Ganguly, D. Gibney, R. Shah, and S. V. Thankachan 38:3

We also provide the first known results regarding a nearly compact index for 2D suffix
array queries.
▶ Theorem 4 (2D SA queries). By maintaining an O(n2 log σ+n2 log log n)-bit data structure,
we can answer suffix array (SA) queries in O(n2/(σ log n)c) time, where c is an arbitrarily
large constant fixed at the time of construction.

A fundamental problem is to find all submatrices of T that match with a given square
pattern P [0 . . m)[0 . . m). After building the 2D suffix tree, given P as a query, the number
of occurrences of P (denoted by occ) can be obtained in O(m2) time, and all occurrences can
be reported in O(m2 + occ) time. Our result, which uses a smaller index, is the following.
▶ Theorem 5 (PM queries). By maintaining an O(n2 log σ + n2 log log n)-bit data structure,
we can count the occurrences of an m × m query pattern in time O(m2 + n2/(σ log n)c) and
report all occurrences in time O(m2 + occ + n2/(σ log n)c), where c is an arbitrarily large
constant fixed at the time of construction.

Although the time complexities in Theorems 4 and 5 are far from satisfactory, these are
the first results demonstrating subquadratic query times in compact space are possible for
2D SA and PM queries.

1.1 Preliminaries
Notation and Strings. We denote the interval i, i + 1, . . ., j with [i . . j] and the interval i,
i + 1, . . ., j − 1, with [i . . j). For a string S of length n we use S[i] to refer to ith character,
i ∈ [0 . . n). We use S1 ·S2 to denote the concatenation of two strings S1 and S2. For notation,
S[i . . j] = S[i] ·S[i+1] · . . . ·S[j], S[i . . j) = S[i] ·S[i+1] · · · . . . ·S[j −1], and S[i . .] = S[i . . n).
Arrays and strings are zero-indexed throughout this work.

For a single string S[0 . . n) and i, j ∈ [0 . . n), LCE(i, j) is defined as the length of the
longest common prefix of S[i . .] and S[j . .]. In the case of two strings, S1[0 . . n1) and
S2[0 . . n2), we overload the notation so that for i ∈ [0 . . n1), j ∈ [0 . . n2), LCE(i, j) is the
length of the longest common prefix of S1[i . .] and S2[j . .]. For a given string S, the suffix
tree [34] is a compact trie of all suffixes of S with leaves ordered according to the lexicographic
rank of the corresponding suffixes. The classical suffix tree takes O(n) words of space and
can be constructed in O(n) time for polynomially sized integer alphabets [9]. The suffix
array SA[0 . . n) of a string S[0 . . n) is the unique array such that S[SA[i] . .] is the ith smallest
suffix lexicographically. The inverse suffix array ISA[0 . . n) is the unique array such that
ISA[SA[i]] = i, or equivalently, ISA[i] gives the lexicographic rank of S[i . .]. The suffix tree
can answer LCE queries in O(1) time. We call a compact trie with lexicographically ordered
leaves for a subset of suffixes a sparse suffix tree. Observe that the number of nodes in a
sparse suffix tree remains proportional to the number of suffixes it is built from.

We will utilize the following result by Kempa and Kociumaka, which provides an LCE
data structure smaller than a classical suffix tree.
▶ Lemma 6 ([19]). 1D LCE queries on a text S[0 . . n) over an alphabet set Σ = [0 . . σ) can
be answered in O(1) time by maintaining a data structure of size O(n log σ) bits.

The next result by Bille et al. allows for a trade-off between space and query time. We
will utilize it in Section 2.2.
▶ Lemma 7 ([1]). Suppose we have the text S[0 . . n) as read-only, such that we can determine
the lexicographic order of any of its two characters in constant time. Then we can answer 1D
LCE queries on S in time O(τ) by maintaining an O(n/τ) words of space auxiliary structure,
where 1 ≤ τ ≤ n is any parameter fixed at the time of construction.

STACS 2025

38:4 Two-Dimensional Longest Common Extension Queries in Compact Space

Figure 1 An example d-cover for n = 12 and d = 7. Here the difference cover used is D = {1, 2, 4},
resulting in a d-cover C = {1, 2, 4, 8, 9, 11} (elements indicated with ‘ ’) and a lookup table A =
[1, 1, 2, 1, 4, 4, 2]. For the positions x = 3 and y = 6, we have h = A[(6 − 3) mod 7] − 3 mod 7 ≡ 5.
Observe that 3 + 5, 6 + 5 ∈ C.

d-Covers. A d-cover of an interval [0 . . n) is a subset of positions, denoted by C, such that
for any x ∈ [0 . . n − d) and y ∈ [0 . . n − d) there exists h ∈ [0 . . d) where x + h, y + h ∈ C. It
was shown by Burkhardt and Kärkkäinen that there exists a d-cover of size O(n/

√
d) that

can be computed in O(n/
√

d) time [4]. d-Covers have been used previously for LCE queries
in the 1D case by Gawrychowski et al. [15] and Bille et al. [2]. Since we need a small data
structure that lets us find an h value as described above in constant time, we briefly outline
the construction given in [4].

A difference cover modulo d is a subset D ⊆ {0, 1, . . . , d−1} where for all w ∈ {0, 1, . . . , d−
1} there exist u, v ∈ D such that w ≡ u − v mod d. Colbourn and Ling showed there exists
D such that |D| = Θ(

√
d) [8]. A d-cover C is constructed from a difference cover D as follows:

For j ∈ [0 . . n), if (j mod d) ∈ D, then j is added to C. We also build a look-up table A of
size d such that for all i ∈ {0, 1, . . . , d − 1} both A[i] and (A[i] + i) mod d are in D. This is
always possible, thanks to the definition of the difference cover. See Figure 1.

▶ Lemma 8 ([4]). For a d-cover C of an interval [0 . . n), there exists a data structure of size
O(d) that given x, y ∈ [0 . . n − d), outputs an h ∈ [0 . . d) such that x + h, y + h ∈ C in O(1)
time.

Proof. We maintain the O(d) space look-up table A as described above. We assume without
loss of generality, y ≥ x. Let h := (A[(y − x) mod d] − x) mod d. Observe that

x + h ≡ A[(y − x) mod d] mod d.

Hence, (x + h mod d) ∈ D and x + h ∈ C. Also,

y + h ≡ A[(y − x) mod d] + (y − x) mod d.

Hence, (y + h mod d) ∈ D and y + h ∈ C. ◀

2D Suffix Trees and 2D Suffix Arrays. We utilize the generalization of suffix trees to
2D texts presented by Giancarlo [16]. This suffix tree is created from the Lstrings of
the 2D text T . LStrings are over an alphabet ∪n

i=1Σ2i−1. For a position (i, j) ∈ [0 . . n)2

the suffix T [i . .][j . .] is a0 · a1 · . . . · al where l = n − max(i, j) and a0 = T [i][j] and
ak = T [i + k][j . . j + k) · T [i . . i + k][j + k] for k > 0. See Figure 2. The characters are
maintained implicitly as references to T , resulting in the 2D suffix tree over all suffixes
T [i . .][j . .], (i, j) ∈ [0, n)2 occuping O(n2) words of space. Once constructed, the 2D suffix
tree allows us to find the LCE of two positions in O(1) time through a lowest common ancestor
(LCA) query. The 2D suffix tree also enables pattern matching in optimal O(m2 + occ) time.

A. Ganguly, D. Gibney, R. Shah, and S. V. Thankachan 38:5

suffix starting at (0, 0): a · aab · bbbba · bcabcab · $$$$$$$$$
suffix starting at (0, 1): a · bbb · babca · cab$$$$
suffix starting at (1, 0): a · bbb · bcbaa · $$$cab$

Figure 2 An example 2D text and the suffixes starting at positions (0, 0), (0, 1), (1, 0). The “·”
denotes concatenation, and consecutive symbols without “·” between them are treated as a single
character.

The order between characters a and a′ of Lstrings is defined as the lexicographic order
induced by the base alphabet Σ. The lexicographic order of two Lstrings (and corresponding
submatrices) is induced by the order of their characters. We additionally assume that the
bottom row and rightmost column of T consist of only a $ symbol, which is the smallest in
the alphabet order and occurs nowhere else in T .

The suffix array SA[0 . . n2) of a 2D text T [0 . . n)[0 . . n) is an array containing 2D points
such that if (i, j) = SA[h], then T [i . .][j . .] is the hth smallest suffix lexicographically. The
inverse suffix array maps each (i, j) ∈ [0 . . n)2 to its position in SA, i.e. ISA[SA[h]] = h.

The δ2D Measure and 2D Block Trees. The δ measure is a well-studied compressibility
measure for 1D texts [7, 20, 24, 25, 30]. It is defined as δ(T) = max1≤t≤n dt(T)/t where
dt(T) denotes the number of distinct length t substrings of T [0, n).

Carfagna and Manzini recently generalized the δ measure to 2D texts [5, 6]. Let-
ting dt(T) denote the number of distinct t × t submatrices of T [0 . . n)[0 . . n), δ2D(T) =
max1≤t≤n dt(T)/t2. Observe that δ2D(T) can range between 1, e.g., in case where all ele-
ments of T are the same character, and n2, i.e., the case where all elements of T are distinct.
Carfagna and Manzini showed that the 2D block tree data structure of Brisaboa, et al. [3]
occupies O((δ2D(T) +

√
nδ2D(T)) log n log σ√

δ2D log n
) words of space and provides access to any

entry of T in O(1 + log n log σ√
δ2D log n

) time. A further generalization of the δ measure to 2D
allowing for non-square matrices was introduced by Romana et al. and related to other
potential 2D compressibility measures [31]. In this work, we will only consider the δ2D

measure based on square submatrices. We hereafter refer to δ2D as δ and omit the text T

when it is clear from context.

2 Compact Data Structures for 2D LCE Queries

We start with some definitions. Let Ri denote the ith row and Cj denote the jth column of
our 2D text T , where 0 ≤ i, j < n. Specifically, Ri[0 . . n) (resp., Cj [0 . . n)) is a text of length
n over the alphabet Σ, such that its kth character is T [i][k] (resp., T [k][j]), where k ∈ [0 . . n).

We define a set of sampled positions on the diagonals of T , that is T [n − 1][0], T [n −
2][0] · T [n − 1][1], . . ., T [0][n − 2] · T [1][n − 1], T [0][n − 1], using d-cover with d = Θ(log2

σ n).
This is obtained by taking a d-cover C for [0 . . n) and using it to define sample positions
starting from the top left of each diagonal. Formally, the sample positions are

CD = {(i, j) | i, j ∈ [0 . . n), min(i, j) ∈ C}.

See Figure 3.

STACS 2025

38:6 Two-Dimensional Longest Common Extension Queries in Compact Space

Figure 3 An example 7-cover C = {1, 2, 4} used for the diagonal sample positions of a 7 × 7 text.
Note that this d = 7 value is for illustrative purposes. Sample positions are indicated with a “ ”.

We maintain a sparse suffix tree over the suffixes starting from these sampled positions.
As this is a compact trie with |CD| = O(n2/

√
d) leaves, the space required for this sparse

suffix tree is O(n2/
√

d) words. By our above choice of d, this is O(n2 log σ) bits. Using this
sparse suffix tree, we can obtain LCE for any two sampled positions in O(1) time.

Additionally, we maintain the data structure from Lemma 6 for the concatenation of
columns C0, . . ., Cn−1 and rows R0, . . ., Rn−1, which adds another O(n2 log σ) bits. This
allows us to find the LCE between Ri[x . .] and Rj [y . .] (or Ci[x . .] and Cj [y . .]) in O(1) time.
We can take a minimum between the LCE value and min(n − x, n − y) to avoid common
prefixes crossing row or column boundaries.

In what follows, we first present a simple preliminary solution. We then develop these
ideas further with two refinements that lead us to Theorem 1. The components defined above
(sparse suffix tree from diagonal samples and LCE data structures for concatenated rows
and columns) are used in all three solutions.

2.1 Achieving O(log2
σ n) Query Time

To answer an LCE query (i1, j1), (i2, j2), we use the look-up structure discussed in Lemma 8 to
obtain an h ∈ [0 . . d) such that (i1+h, j1+h) and (i2+h, j2+h) are sampled diagonal positions.
For convenience, in the case where no such h in the look-up structure exists, because either
(i1, j1) or (i2, j2) is near the boundary of T , we consider h as being one less than the minimum
diagonal offset to a boundary of T . We first obtain LCE((i1 + h, j1 + h), (i2 + h, j2 + h)) in
O(1) time. Next, for k ∈ [0 . . h), we compute the LCEs between Ri1+k[j1 . .] and Ri2+k[j2 . .],
and between Cj1+k[i1 . .] and Cj2+k[i2 . .]. While iterating from k = 1 to k = h − 1, if for
some k either the LCE between Ri1+k[j1 . .] and Ri2+k[j2 . .] or between Cj1+k[i1 . .] and
Cj2+k[i2 . .] becomes less than k, we output k − 1. Otherwise, we output the minimum over
h + LCE((i1 + h, j1 + h), (i2 + h, j2 + h)) and all of the LCE values computed for the rows
and columns specified above.

Only one constant time query for a diagonal sampled position is required, and the number
of 1D LCE queries needed is at most 2d. Since d = Θ(log2

σ n) and each 1D LCE query takes
O(1) time, the total time is O(log2

σ n).

2.2 Achieving O(logσ n · (log logσ n)2) Query Time
First, we define Ri,t and Cj,t. These are texts of length n over an alphabet Σt, such that
0 ≤ i, j and i + t − 1, j + t − 1 < n. The kth character of Ri,t and Cj,t are length t strings
over Σ defined as follows:

Ri,t[k] = Ri[k] · Ri+1[k] · · · Ri+t−1[k]

A. Ganguly, D. Gibney, R. Shah, and S. V. Thankachan 38:7

(a) (b)

Figure 4 The two cases considered when querying. The actual LCE is shown as the black square.
LCE((i1 + h, j1 + h), (i2 + h, j2 + h)) is shown with a green square. The LCE of slabs are shown in
red and blue. Further binary search is necessary in Case (b).

Cj,t[k] = Cj [k] · Cj+1[k] · · · Cj+t−1[k].

We call these meta characters. We also call Ri,t and Cj,t slabs of length t. Applying the
structure from Lemma 6 over the concatenation of rows and the concatenation of columns,
we can compare two meta characters in O(1) time.

Data Structure. In addition to the previous components, we maintain the structure
from Lemma 7 over the text obtained by concatenating Ri,t for i ∈ [0 . . n) and t =
1, 2, 4, 8, . . . , min(n − i, 2⌈log d⌉). We also maintain the structure from Lemma 7 over the text
obtained by concatenating Cj,t for j ∈ [0 . . n) and t = 1, 2, 4, 8, . . . , min(n − j, 2⌈log d⌉). We
leave the parameter τ appearing in Lemma 7 to be optimized later.

Querying. Given an LCE query (i1, j1), (i2, j2), we first find an h ∈ [0 . . d) such that
(i1 + h, j1 + h) and (i2 + h, j2 + h) are sampled positions. We then decompose the interval
[i1 . . i1 + h) and [j1 . . j1 + h) into O(log d) slabs that have lengths that are powers of two. We
perform an LCE query for each corresponding slab for both rows and columns. A minimum
is taken over all these LCE values and h + LCE((i1 + h, j1 + h), (i2 + h, j2 + h)). Denote this
minimum with m. There are two possible cases.

m > h. See Figure 4a. In this case, m is reported as the result.
m ≤ h. See Figure 4b. In this case, we still need to find the largest value y such that
the minimum LCE of the slabs covering Cj1 [i1 . .], . . ., Cj1+y[i1 . .] (with slabs covering
Cj2 [i2 . .],. . ., Cj2+y[i2 . .], respectively) and Ri1 [j1 . .], . . ., Ri1+y[j1] (with slabs covering
Ri2 [j2 . .], . . ., Ri2+y[j2 . .], respectively) is at least y. To accomplish this, we perform a
modified binary search while keeping track of the minimum LCE values for both the
column and row slabs. The only difference compared to standard binary search is that
rather than always dividing the current range under consideration in half, we consider
the power of two closest to half the size of the current range. This is done to ensure that
we always use slabs for which we have prepared LCE data structures.

STACS 2025

38:8 Two-Dimensional Longest Common Extension Queries in Compact Space

Analysis. Letting T (l) be the number of LCE queries on slabs for the binary search on a
range of length l, the resulting recurrence is

T (l) ≤ T (2⌈log l/2⌉) + 1 = O(log l).

Hence, T (h) = O(log d). We now fix τ = logσ n · log logσ n. Since each LCE query on a slab
takes O(τ) time, the overall query time is τ · log d = O(logσ n · (log logσ n)2), where we used
that d = Θ(log2

σ n). The total added space relative to the previous solution is O(log d · n2/τ)
words. Using our definitions of d and τ , the space remains O(n2 log σ) bits.

2.3 Achieving O(log2/3
σ n · (log logσ n)5/3) Query Time

Data Structure. Let x be a parameter to be defined later. In addition to the previously
defined diagonal sample positions, we now define sample positions for the rows and columns
using an x-cover, denoted by X . We maintain the structure in Lemma 7 (with parameter
τ left open for optimizing later) over the text obtained by concatenating slabs Ri,t for
t = 1, 2, 4, 8, . . . , min(n − i, 2⌈log d⌉), whenever i ∈ X . We do the same for slabs Ri,t for
t = 1, 2, 4, 8, . . . , min(2⌈log d⌉) whenever i + t − 1 ∈ X and i ≥ 0. Similarly, we maintain the
structure from Lemma 7 for the concatenation of Cj,t for t = 1, 2, 4, 8, . . . , min(2⌈log d⌉) for
j ∈ X . We do the same for Cj,t for t = 1, 2, 4, 8, . . . , min(2⌈log d⌉) whenever j + t − 1 ∈ X and
j ≥ 0. Note that these slabs do not need to be explicitly constructed and can be simulated
directly using the input text.

Querying. Given a query (i1, j1), (i2, j2), we first find h ∈ [0 . . d) such that (i1 + h, j1 + h)
and (i2 + h, j2 + h) are diagonal sample positions. Let find y ∈ [0 . . x) such that i1 + y and
i2 + y are in X . We find the LCEs of columns Ci1 [j1 . .], . . ., Ci1+y−1[j1 . .] with Ci2 [j2 . .],
. . ., Ci2+y−1[j2 . .], respectively. We next find y′ ∈ [0 . . x) such that i1 + h − 1 − y′ and
i2 + h − 1 − y′ are in X . We then find the LCEs of columns Ci1+h−y′ [j1 . .], . . . Ci1+h−1[j1 . .],
with Ci2+h−y′ [j2 . .], . . ., Ci2+h−1[j2 . .], respectively. We then take the largest power of
two, say 2a, such that i1 + y + 2a ≤ i1 + h − 1 − y′, and obtain the LCE of the slab
Ci1+y,2a [j1 . .] with Ci2+y,2a [j2 . .]. We also obtain the LCE of the slabs Ci1+h−y′−2a,2a [j1 . .]
and Ci2+h−y′−2a,2a [j2 . .]. We perform a symmetric procedure on the rows. A minimum is
taken among all of these LCE values as well as h + LCE((i1 + h, j1 + h), (i2 + h, j2 + h)).
Let m denote this minimum. We consider two cases like in Section 2.2.

m > h. In this case, m is reported as the result.
m ≤ h. As in Section 2.2, we want to output the largest value y such that the minimum
LCE of the slabs covering Cj1 [i1 . .], . . ., Cj1+y[i1 . .] (with LCE relative to slabs covering
Cj2 [i2 . .],. . ., Cj2+y[i2 . .]) and Ri1 [j1 . .], . . ., Ri1+y[j1] (with LCE relative to slabs covering
Ri2 [j2 . .], . . ., Ri2+y[j2 . .]) is at least y. The modification to the binary search algorithm
from Section 2.2 is that we intermix at most x single row/column evaluations to reach
the next position in X . After this position in X is reached, the power of two that most
evenly splits the remaining range can be used.

Analysis. We claim that answering a query requires O(x · log d) number of LCE queries
for single rows/columns and O(log d) number of LCE queries on slabs. To see this, let S(l)
be the number of single row/column LCE queries on a range of length l, and T (l) be the
number of slab LCE queries. Then we have

S(l) ≤ S(2⌈log l/2⌉) + O(x) = O(x log l)

T (l) ≤ T (2⌈log l/2⌉) + 1 = O(log l).

A. Ganguly, D. Gibney, R. Shah, and S. V. Thankachan 38:9

Hence, S(h) = O(x log d) and T (h) = O(log d). Each single row/column LCE query takes
O(1) time and each LCE query on a slab takes O(τ) time. As a result, the total query
time is O(x · log d + log d · τ). To optimize, we keep d = Θ(log2

σ n) and now fix x = τ =
(log2/3

σ n · (log logσ n)2/3) and obtain the query time of O(log2/3
σ n · (log logσ n)5/3).

The (extra) space is O(log d · n2/(
√

x · τ)) words. This is because we take O(log d) larger
slabs for each column/row sample position, creating an overall string of length O(log d·n2/

√
x).

The LCE structure from Lemma 7, then occupies O(log d · n2/(
√

x · τ)) words. With the
above choice of x and τ , the total space is O(n2 log σ) bits. This completes the proof of
Theorem 1.

3 Repetition-Aware LCE Data Structure

Overview. We use a parameter τ that we will optimize over later. We aim to use a truncated
suffix tree in conjunction with a sparse suffix tree on sampled positions from a τ -cover to
efficiently perform LCE queries. If we truncate the 2D suffix tree at a string depth of τ , then
the δ measure provides an upper bound of τ2δ on the number of leaves at depth τ . As we
argue, one can also upper bound the number of additional leaves in the truncated suffix tree
in terms of τ and n.

The first challenge in using the above ideas is that, for these LCE queries from sampled
positions to provide information on the overall LCE result, the matching submatrices starting
at sampled positions should overlap. This is accomplished by using a string depth of 2τ for
the truncated suffix tree while still using a τ -cover. The second challenge is that given our
LCE query, we need to know which leaves to consider in the truncated suffix tree. Moreover,
we should accomplish this in o(n2) space when δ is small. To this end, we introduce the
notion of a macro-matrix M , which stores the leaf in the truncated suffix tree to examine
for a specified position in T . We then relate the δ measure of this macro-matrix to the δ

measure of the matrix T . This relationship enables us to use the 2D block tree data structure
of Brisboa et al. [3] on M , which occupies sublinear space for compressible matrices and
supports efficient access to the elements of M .

3.1 Data Structures

Truncated Suffix Tree. We first construct a 2D suffix tree of T truncated at a string depth
of 2τ . Call this T≤2τ . We use ℓ1, ℓ2, . . . to denote the leaves of T≤2τ .

Compressed Representation of Macro-Matrix. We next define the macro-matrix. The
elements of a macro-matrix are essentially meta symbols, where two meta-symbols are the
same if and only if the corresponding 2τ × 2τ square substrings are identical. Formally, the
macro-matrix M is the matrix obtained as follows: for i, j ∈ [0 . . n),

if there exists a 2τ × 2τ matrix with upper left corner (i, j), i.e., i, j ≤ n − 2τ , then we
make M [i][j] = ℓ where ℓ is a pointer to the leaf of T≤2τ corresponding to T [i . . i + 2τ −
1][j . . j + 2τ − 1];
if i > n − 2τ or j > n − 2τ , then let M [i][j] = ℓ where ℓ is a pointer to the leaf in T≤2τ

corresponding to the (n − max(i, j)) × (n − max(i, j)) matrix with upper left corner (i, j).
See Figure 5. We then construct the 2D block tree of M , denoted as BT(M).

STACS 2025

38:10 Two-Dimensional Longest Common Extension Queries in Compact Space

Figure 5 An example 2D text T , a truncated suffix tree with τ = 1, i.e., truncated at a string
depth of 2τ = 2, and the resulting macro-matrix M .

Sparse Suffix Tree. We define sample positions based on a τ -cover C of [0 . . n). These
consist of sample positions for the rows,

CR = {(i, j) | i ∈ C, j ∈ [0 . . n)}

for the columns,

CC = {(i, j) | i ∈ [0 . . n), j ∈ C}

and for the diagonals,

CD = {(i, j) | i, j ∈ [0 . . n), min(i, j) ∈ C}.

Let C′ = CR ∪ CC ∪ CD. Observe that |C′| = Θ(n2/
√

τ). We build a sparse suffix tree over the
suffixes starting at sampled positions in C′, denoted as Ts. We also maintain the lookup data
structure from Lemma 8. As before, this allows us to find in O(1) time equally far sampled
positions at most τ away from the queried positions in each row, column, and diagonal.

3.2 Querying
Given LCE query (i1, j1), (i2, j2), we first use BT(M) to get the corresponding values in M .
Say these correspond to the leaves ℓ1 and ℓ2 in T≤2τ respectively. If ℓ1 ̸= ℓ2, then the string
depth of the LCA of ℓ1 and ℓ2 gives us the LCE of (i1, j1), (i2, j2).

If ℓ1 = ℓ2 then we use the lookup data structure from Lemma 8 to find:
h1 ∈ [0 . . τ) such that (i1 + h1, j1) and (i2 + h1, j2) are sampled positions. We then use
an O(1) time query on Ts to get the LCE of (i1 + h1, j1) and (i2 + h1, j2). Denote this
LCE value as L1.
h2 ∈ [0 . . τ) such that (i1 + h2, j1 + h2) and (i2 + h2, j2 + h2) are sampled positions. We
use an O(1) time query on Ts to get the LCE of (i1 + h2, j1 + h2) and (i2 + h2, j2 + h2).
Denote this LCE value as L2.
h3 ∈ [0 . . τ) such that (i1, j1 + h3) and (i2, j2 + h3) are sampled positions. We use an
O(1) time query on Ts to get the LCE of (i1, j1 + h3) and (i2, j2 + h3). Denote this LCE
value as L3.

We report min(h1 + L1, h2 + L2, h3 + L3) as the solution.

3.3 Correctness
The first lemma is immediate.

▶ Lemma 9. When ℓ1 ̸= ℓ2, LCE((i1, j1), (i2, j2)) is the string depth of LCA(ℓ1, ℓ2).

A. Ganguly, D. Gibney, R. Shah, and S. V. Thankachan 38:11

Figure 6 The solution LCE L is shown as the black square. Submatrix T1 matrix in red, submatrix
T2 in green, and submatrix T3 matrix in blue.

▶ Lemma 10. When ℓ1 = ℓ2, LCE((i1, j1), (i2, j2)) = min(h1 + L1, h2 + L2, h3 + L3).

Proof. Define L := LCE((i1, j1), (i2, j2)). First, we show that L ≤ min(h1 + L1, h2 + L2, h3 +
L3). Starting from (i1, j1 + h1) there exists a matching submatrix (with respect to position
(i2, j2 + h1)) of size at least L − h1, thus we have that L1 ≥ L − h1. Hence, L1 + h1 ≥ L. A
similar argument holds for h2 and h3.

Next, we show L ≮ min(h1 + L1, h2 + L2, h3 + L3).
We denote the submatrix T [i1 + h1 . . i1 + h1 + L1)[j1 . . j1 + L1) as T1.
We denote the submatrix T [i1 + h2 . . i1 + h2 + L2)[j1 + h2 . . j1 + h2 + L2) as T2.
We denote the submatrix T [i1 . . i1 + L3)[j1 + h3 . . j1 + h3 + L3) as T3

See Figure 6.
Observe that h1, h2, h3 ≤ τ − 1 and since L ≥ 2τ , we have L1, L2, L3 ≥ τ . Submatrix T2

has lower left corner in column j1 + h2 ≤ j1 + L1 − 1 and in row i1 + h2 + L2 − 1 ≥ i1 + h1
making it overlap with T1. Also, T2 has upper right corner in column j1 +h2 +L2 −1 ≥ j1 +h3
and row i1 + h2 ≤ i1 + h3 + L3 − 1. Hence, T2 overlaps with T3 as well.

Now, suppose for the sake of contradiction that h1 + L1, h2 + L2, h3 + L3 > L. For any
positions in row x = i1 + L and column y where j1 ≤ y ≤ j1 + L we have

i1 ≤ x = i1 + L ≤ i1 + h1 + L1 − 1, i1 + h2 + L2 − 1

and

j1 ≤ y ≤ j1 + L ≤ j1 + h1 + L1 − 1, j1 + h2 + L2 − 1.

Similarly, for any position in column y = j1 + L and row x where i1 ≤ x ≤ i1 + L we have

j1 ≤ y = j1 + L ≤ j1 + h2 + L2 − 1, j1 + h3 + L3 − 1

and

i1 ≤ x ≤ i1 + L ≤ i1 + h2 + L2 − 1, i1 + h3 + L3 − 1.

Based on the above inequalities and the fact that submatrices T1, T2, and T3 overlap, this
implies that the matching submatrices with upper left corners (i1, j1) and (i2, j2) can be
extended further by at least one row and column. This contradicts the definition of L. ◀

STACS 2025

38:12 Two-Dimensional Longest Common Extension Queries in Compact Space

3.4 Analysis and Optimization
3.4.1 Space Analysis
Space for τ -Cover lookup structure and Sparse Suffix Tree. According to Lemma 8, the
lookup structure requires O(τ) space. Since |C′| = O(n2/

√
τ), we have that the sparse suffix

tree Ts uses O(n2/
√

τ) space.

Space for T≤2τ . The space for the truncated suffix tree T≤2τ is bounded by the number of
distinct 2τ × 2τ submatrices of T , denoted d2τ (T), plus the number of distinct matrices of
size less than 2τ that can not be further extended down and to the right (due to a boundary
of T). There are at most O(τn) of the latter since, for every length from 1 to 2τ , at most 2n

submatrices cannot be further extended. By the definition of δ, d2τ (T) ≤ 4τ2δ(T), making
the space for T≤2τ bound by O(τ2δ(T) + τn).

Space for Macro-Matrix. The space for BT(M) depends on δ(M). We prove the following
lemma relating δ(T) and δ(M).

▶ Lemma 11. δ(M) = Ω(max(1, δ(T)/τ2 − n/τ)) and δ(M) = O(τ2δ(T) + τn).

Proof. First, the lower bound. Observe that for an arbitrary t ∈ [2τ . . n], two matching t × t

submatrices in T cause two matching (t − 2τ + 1) × (t − 2τ + 1) submatrices in M (with the
same upper left corners as the corresponding submatrices in T). In this way, every distinct
t × t submatrix in T maps to one distinct (t − 2τ + 1) × (t − 2τ + 1) submatrix in M , and
we have dt(T) ≤ d(t−2τ+1)(M). Then for t ≥ 2τ , we have

dt(T)
t2 ≤

d(t−2τ+1)(M)
t2 ≤ (t − 2τ + 1)2δ(M)

t2 ≤ δ(M) (1)

implying dt(T) ≤ t2δ(M) for t ≥ 2τ .
Next, consider t ∈ [1 . . 2τ). Note that the number of distinct t × t submatrices in T is

almost upper bounded by the number of distinct (t + 2τ) × (t + 2τ) submatrices in T , except
that some of the distinct matrices with sizes between t × t and (t + 2τ) × (t + 2τ) may be
prevented from being extended due to the right and bottom boundaries of T . The number of
such submatrices is bounded by 2n(t + 2τ − t) = O(τn). Hence, for t < 2τ ,

dt(T) ≤ d(t+2τ)(T) + O(τn)

Applying Inequality (1), we can then write

dt(T)
t2 ≤

d(t+2τ)(T)
t2 + O(τn)

t2 ≤ (t + 2τ)2

t2 δ(M) + O(τn) = O(τ2δ(M) + τn).

Taking the maximum over both cases, yields that δ(T) = O(τ2δ(M) + τn).
For the upper bound, we claim that, for an arbitrary t ∈ [1 . . n],

dt(M) ≤ d(t+2τ−1)(T) + O(τn),

where we take d(t+2τ−1)(T) = 0 if t + 2τ − 1 > n. The above inequality follows from the
fact that every distinct (t + 2τ − 1) × (t + 2τ − 1) submatrix in T maps to one distinct
t × t submatrix in M . What remains to be counted for dt(M) are distinct t × t submatrices
in M that are not resulting from some (t + 2τ − 1) × (t + 2τ − 1) submatrix in T . That
is, submatrices on the bottom and/or right boundary. Again, the number of such t × t

submatrices is bounded by 2n((t + 2τ − 1) − t) = O(τn).

A. Ganguly, D. Gibney, R. Shah, and S. V. Thankachan 38:13

To complete the proof, we have the bound

δ(M) = max
t

dt(M)
t2 ≤ max

t

d(t+2τ−1)(T) + O(τn)
t2

≤ max
t

(t + 2τ − 1)2

t2 δ(T) + O(τn) = O(τ2δ(T) + τn). ◀

Let σ′ be the alphabet size of the macro-matrix M . The space for the block tree BT(M) is

O

(
(δ(M) +

√
nδ(M)) log

(
n log σ′√
δ(M) log n

))
.

Applying that σ′ ≤ n2 and Lemma 11, this space is bound by

O

(τ2δ(T) + τ
√

nδ(T) + τn) log

 n√
max(1, δ(T)

τ2 − n
τ)

 .

Total Space. Summing the total data structure sizes, the combined space is

O

(τ2δ(T) + τ
√

nδ(T) + τn) log

 n√
max(1, δ(T)

τ2 − n
τ)

+ n2
√

τ
+ τ

 .

3.4.2 Optimizing
We consider two cases based on δ(T), which we now denote as just δ. If δ > n1/3, we set
τ = ⌈n4/5/(2δ2/5)⌉ and let β = n/

√
max(1, 4δ9/5/n8/5 − 2n1/5δ2/5). The space is (up to

constant factors)(
n8/5δ1/5 + n13/10δ1/10 + n9/5

δ2/5

)
log β + n8/5δ1/5 + n4/5

δ2/5 = O
(

n8/5δ1/5 · log β
)

.

Observe that as δ approaches n2, β approaches O(1).
If δ ≤ n1/3, we make τ = n2/3. The resulting space complexity is

(n4/3δ + n7/6
√

δ + n5/3) log β + n5/3 + n2/3 = O
(

n5/3 log β
)

.

For this case, the argument of the logarithm β is O(n). One can also readily check that β as
defined above is bound by the expression for β appearing in Theorem 2.

3.4.3 Query Time
The query time is dominated by the access to BT(M), which takes 1+log n√

δ(M)
= O(1+log β)

time, where β is defined as above. The remaining queries take O(1) time. This completes
the proof of Theorem 2.

4 Applications

We next demonstrate some applications of Theorem 1 by proving Theorems 3, 4, 5.

STACS 2025

38:14 Two-Dimensional Longest Common Extension Queries in Compact Space

4.1 ISA Queries
We maintain a sampled suffix array. Specifically, we sample the suffix array values for every
(logσ n) leaf of the suffix tree. The space required for this is O(n2 log σ) bits. Additionally,
for each text position, we maintain how far away its predecessor sampled leaf is relative to
its leaf in the suffix tree. This requires O(log logσ n) bits per entry. The resulting total space
is O(n2 log σ + n2 log log n) bits.

To find the ISA value of a text position (i, j), we perform a binary search on the sampled
leaves to find the lexicographic predecessor of (i, j) within the sampled set. Once the
predecessor is found, we add the offset associated with (i, j). This gives us the suffix array
position associated with (i, j), i.e., its ISA value. The binary search requires O(log n) number
of LCE queries. Each LCE query takes O(log2/3

σ n · (log logσ n)5/3) time, resulting in an
overall time complexity of O(log n · log2/3

σ n · (log logσ n)5/3).

4.2 SA queries
Let τ be a parameter. We divide the leaves of the suffix tree into contiguous blocks of size
⌈n2/τ⌉ (except for perhaps the last block, which can be smaller). There are Θ(τ) blocks.
We associate each position in T with the block in which its leaf lies in the suffix tree. This
information is stored as follows: consider a binary array Bb associated with each block b.
Each binary array is of length n2 and represents a linearization of T . For a block Bb, we
consider a 1 in a position if the corresponding suffix tree leaf is in block b and 0 otherwise.
Note that there are at most m := ⌈n2/τ⌉ 1’s in Bb. We build a data structure representing
Bb using m log n2

m + O(m) bits of space, or equivalently, n2/τ · log τ + O(n2/τ) bits of space,
such that select queries can be answered in constant time [29]. The total space for select
data structures over all Θ(τ) bit vectors, is n2 log τ + O(n2) = O(n2 log τ) bits. We also
maintain the ISA data structure described previously.

Given an SA query for index i, we first identify which block i is in. Say this is block b.
We use select queries to iterate through the text positions contained in block b. For each text
position iterated over, we perform an ISA query and check whether its ISA value equals i.

The space required for the ISA data structure is O(n2 log σ + n2 log log n) bits. The space
for the select data structures is O(n2 log τ) bits. The query time is O(n2/τ · log n · log2/3

σ n ·
(log logσ n)5/3). We obtain Theorem 4 by making τ = (σ log n)c, where c is an arbitrarily
large constant that can absorb the additional logarithmic factors in the query time.

4.3 Pattern Matching
Counting. In addition to the previous structures, we maintain the LCE data structure from
Lemma 6 over the rows and columns. First, a binary search is done to find the leaf for the
lexicographically smallest suffix with P as a prefix (if one exists). We start by using an SA
query to obtain SA[⌊n2/2⌋]. Using that we have read access to the original text, we match
characters in P in Lstring order to the submatrix starting at SA[⌊n2/2⌋] until we reach our
first mismatch. At this point, we know our lexicographical order relative to our current leaf.
When we transition to a new leaf in the binary search, we perform an SA query followed by
LCE queries with the position from the preceding leaf. This avoids repeatedly iterating over
characters in P . Assuming the LCE query is at least the length already matched, we continue
matching from the last matched position. A similar binary search finds the lexicographically
largest suffix with P as a prefix. We return the suffix range length.

The total number of LCE and SA queries performed is O(log n). The time is dominated
by the SA queries, which require O(n2/(σ log n)c) time.

A. Ganguly, D. Gibney, R. Shah, and S. V. Thankachan 38:15

Reporting. We start with the suffix range obtained previously, say [x . . y]. We use the same
blocking scheme for the suffix leaves described for SA queries, also using constant time select
data structures. We first identify the block that x lies in, say Bb. We use the select data
structure to iterate through all of the text positions corresponding to suffixes in block b. For
each position, we perform an ISA query and check whether its position in the suffix array is
at least x. If it is, we output it. We perform a similar procedure for the block containing y,
now checking if the position in the suffix array is at most y. For the remaining blocks, those
completely contained in [x . . y], we use their select data structures to output all occurrences
with suffixes in that block.

The space complexity is the same as the SA data structure. For the query time, each
block has size O(n2/τ), and with τ = (σ log n)c, the time spent on the blocks containing x

and y is absorbed by n2/(σ log n)c already appearing due to SA queries.

5 Open Problems

We leave open many directions for potential improvement, for example:
Can we design a data structure with faster SA query time that uses O(n2 log σ +
n2 log log n) bits of space (or better)? This seems significantly harder than ISA queries.
Suffix array sampling, like in the FM-index [10], is not immediately adaptable.
Can we design a data structure in repetition-aware compressed space that supports ISA,
SA, or pattern-matching queries? Also, can the space for a data structure for LCE
queries be improved? Grammar-based compression has proven useful for repetition-aware
compressed data structures supporting LCE queries in the 1D case, particularly run-length
straight-line programs (RL-SLP). For 1D text, it is possible to construct RL-SLPs with
size close to the δ measure [25], which can be used for LCE [27] and pattern matching
queries [24]. Although Romana et al. [31] introduce a version of RL-SLP for 2D text, it
is open how such a RL-SLP could be utilized for LCE queries and other types of queries,
e.g., SA and pattern matching queries.

References
1 Philip Bille, Inge Li Gørtz, Mathias Bæk Tejs Knudsen, Moshe Lewenstein, and Hjalte Wedel

Vildhøj. Longest common extensions in sublinear space. In Ferdinando Cicalese, Ely Porat,
and Ugo Vaccaro, editors, Combinatorial Pattern Matching - 26th Annual Symposium, CPM
2015, Ischia Island, Italy, June 29 - July 1, 2015, Proceedings, volume 9133 of Lecture Notes
in Computer Science, pages 65–76. Springer, 2015. doi:10.1007/978-3-319-19929-0_6.

2 Philip Bille, Inge Li Gørtz, Benjamin Sach, and Hjalte Wedel Vildhøj. Time-space trade-offs
for longest common extensions. J. Discrete Algorithms, 25:42–50, 2014. doi:10.1016/J.JDA.
2013.06.003.

3 Nieves R. Brisaboa, Travis Gagie, Adrián Gómez-Brandón, and Gonzalo Navarro. Two-
dimensional block trees. Comput. J., 67(1):391–406, 2024. doi:10.1093/COMJNL/BXAC182.

4 Stefan Burkhardt and Juha Kärkkäinen. Fast lightweight suffix array construction and checking.
In Ricardo A. Baeza-Yates, Edgar Chávez, and Maxime Crochemore, editors, Combinatorial
Pattern Matching, 14th Annual Symposium, CPM 2003, Morelia, Michocán, Mexico, June
25-27, 2003, Proceedings, volume 2676 of Lecture Notes in Computer Science, pages 55–69.
Springer, 2003. doi:10.1007/3-540-44888-8_5.

5 Lorenzo Carfagna and Giovanni Manzini. Compressibility measures for two-dimensional data.
In Franco Maria Nardini, Nadia Pisanti, and Rossano Venturini, editors, String Processing and
Information Retrieval - 30th International Symposium, SPIRE 2023, Pisa, Italy, September
26-28, 2023, Proceedings, volume 14240 of Lecture Notes in Computer Science, pages 102–113.
Springer, 2023. doi:10.1007/978-3-031-43980-3_9.

STACS 2025

https://doi.org/10.1007/978-3-319-19929-0_6
https://doi.org/10.1016/J.JDA.2013.06.003
https://doi.org/10.1016/J.JDA.2013.06.003
https://doi.org/10.1093/COMJNL/BXAC182
https://doi.org/10.1007/3-540-44888-8_5
https://doi.org/10.1007/978-3-031-43980-3_9

38:16 Two-Dimensional Longest Common Extension Queries in Compact Space

6 Lorenzo Carfagna and Giovanni Manzini. The landscape of compressibility measures for two-
dimensional data. IEEE Access, 12:87268–87283, 2024. doi:10.1109/ACCESS.2024.3417621.

7 Anders Roy Christiansen, Mikko Berggren Ettienne, Tomasz Kociumaka, Gonzalo Navarro,
and Nicola Prezza. Optimal-time dictionary-compressed indexes. ACM Trans. Algorithms,
17(1):8:1–8:39, 2021. doi:10.1145/3426473.

8 Charles J. Colbourn and Alan C. H. Ling. Quorums from difference covers. Inf. Process. Lett.,
75(1-2):9–12, 2000. doi:10.1016/S0020-0190(00)00080-6.

9 Martin Farach. Optimal suffix tree construction with large alphabets. In 38th Annual
Symposium on Foundations of Computer Science, FOCS ’97, Miami Beach, Florida, USA,
October 19-22, 1997, pages 137–143. IEEE Computer Society, 1997. doi:10.1109/SFCS.1997.
646102.

10 Paolo Ferragina and Giovanni Manzini. Opportunistic data structures with applications. In
41st Annual Symposium on Foundations of Computer Science, FOCS 2000, 12-14 November
2000, Redondo Beach, California, USA, pages 390–398. IEEE Computer Society, 2000. doi:
10.1109/SFCS.2000.892127.

11 Travis Gagie, Gonzalo Navarro, and Nicola Prezza. Fully functional suffix trees and optimal text
searching in BWT-runs bounded space. J. ACM, 67(1):2:1–2:54, 2020. doi:10.1145/3375890.

12 Arnab Ganguly, Dhrumil Patel, Rahul Shah, and Sharma V. Thankachan. LF successor:
Compact space indexing for order-isomorphic pattern matching. In Nikhil Bansal, Emanuela
Merelli, and James Worrell, editors, 48th International Colloquium on Automata, Languages,
and Programming, ICALP 2021, July 12-16, 2021, Glasgow, Scotland (Virtual Conference),
volume 198 of LIPIcs, pages 71:1–71:19. Schloss Dagstuhl – Leibniz-Zentrum für Informatik,
2021. doi:10.4230/LIPICS.ICALP.2021.71.

13 Arnab Ganguly, Rahul Shah, and Sharma V. Thankachan. pbwt: Achieving succinct data
structures for parameterized pattern matching and related problems. In Philip N. Klein, editor,
Proceedings of the Twenty-Eighth Annual ACM-SIAM Symposium on Discrete Algorithms,
SODA 2017, Barcelona, Spain, Hotel Porta Fira, January 16-19, pages 397–407. SIAM, 2017.
doi:10.1137/1.9781611974782.25.

14 Arnab Ganguly, Rahul Shah, and Sharma V. Thankachan. Fully functional parameterized
suffix trees in compact space. In Mikolaj Bojanczyk, Emanuela Merelli, and David P. Woodruff,
editors, 49th International Colloquium on Automata, Languages, and Programming, ICALP
2022, July 4-8, 2022, Paris, France, volume 229 of LIPIcs, pages 65:1–65:18. Schloss Dagstuhl
– Leibniz-Zentrum für Informatik, 2022. doi:10.4230/LIPICS.ICALP.2022.65.

15 Pawel Gawrychowski, Tomasz Kociumaka, Wojciech Rytter, and Tomasz Walen. Faster longest
common extension queries in strings over general alphabets. In Roberto Grossi and Moshe
Lewenstein, editors, 27th Annual Symposium on Combinatorial Pattern Matching, CPM 2016,
June 27-29, 2016, Tel Aviv, Israel, volume 54 of LIPIcs, pages 5:1–5:13. Schloss Dagstuhl –
Leibniz-Zentrum für Informatik, 2016. doi:10.4230/LIPIcs.CPM.2016.5.

16 Raffaele Giancarlo. A generalization of the suffix tree to square matrices, with applications.
SIAM J. Comput., 24(3):520–562, 1995. doi:10.1137/S0097539792231982.

17 Gaston H Gonnet. Efficient searching of text and pictures. UW Centre for the New Oxford
English Dictionary, 1990.

18 Roberto Grossi and Jeffrey Scott Vitter. Compressed suffix arrays and suffix trees with
applications to text indexing and string matching. SIAM J. Comput., 35(2):378–407, 2005.
doi:10.1137/S0097539702402354.

19 Dominik Kempa and Tomasz Kociumaka. String synchronizing sets: sublinear-time BWT
construction and optimal LCE data structure. In Moses Charikar and Edith Cohen, editors,
Proceedings of the 51st Annual ACM SIGACT Symposium on Theory of Computing, STOC
2019, Phoenix, AZ, USA, June 23-26, 2019, pages 756–767. ACM, 2019. doi:10.1145/
3313276.3316368.

20 Dominik Kempa and Tomasz Kociumaka. Resolution of the Burrows-Wheeler transform
conjecture. Commun. ACM, 65(6):91–98, 2022. doi:10.1145/3531445.

https://doi.org/10.1109/ACCESS.2024.3417621
https://doi.org/10.1145/3426473
https://doi.org/10.1016/S0020-0190(00)00080-6
https://doi.org/10.1109/SFCS.1997.646102
https://doi.org/10.1109/SFCS.1997.646102
https://doi.org/10.1109/SFCS.2000.892127
https://doi.org/10.1109/SFCS.2000.892127
https://doi.org/10.1145/3375890
https://doi.org/10.4230/LIPICS.ICALP.2021.71
https://doi.org/10.1137/1.9781611974782.25
https://doi.org/10.4230/LIPICS.ICALP.2022.65
https://doi.org/10.4230/LIPIcs.CPM.2016.5
https://doi.org/10.1137/S0097539792231982
https://doi.org/10.1137/S0097539702402354
https://doi.org/10.1145/3313276.3316368
https://doi.org/10.1145/3313276.3316368
https://doi.org/10.1145/3531445

A. Ganguly, D. Gibney, R. Shah, and S. V. Thankachan 38:17

21 Dominik Kempa and Tomasz Kociumaka. Collapsing the hierarchy of compressed data
structures: Suffix arrays in optimal compressed space. In 64th IEEE Annual Symposium on
Foundations of Computer Science, FOCS 2023, Santa Cruz, CA, USA, November 6-9, 2023,
pages 1877–1886. IEEE, 2023. doi:10.1109/FOCS57990.2023.00114.

22 Dong Kyue Kim, Yoo Ah Kim, and Kunsoo Park. Generalizations of suffix arrays to
multi-dimensional matrices. Theor. Comput. Sci., 302(1-3):223–238, 2003. doi:10.1016/
S0304-3975(02)00828-9.

23 Dong Kyue Kim, Joong Chae Na, Jeong Seop Sim, and Kunsoo Park. Linear-time
construction of two-dimensional suffix trees. Algorithmica, 59(2):269–297, 2011. doi:
10.1007/S00453-009-9350-Z.

24 Tomasz Kociumaka, Gonzalo Navarro, and Francisco Olivares. Near-optimal search time
in δ-optimal space, and vice versa. Algorithmica, 86(4):1031–1056, 2024. doi:10.1007/
S00453-023-01186-0.

25 Tomasz Kociumaka, Gonzalo Navarro, and Nicola Prezza. Toward a definitive compressibility
measure for repetitive sequences. IEEE Trans. Inf. Theory, 69(4):2074–2092, 2023. doi:
10.1109/TIT.2022.3224382.

26 Gonzalo Navarro. Indexing highly repetitive string collections, part I: repetitiveness measures.
ACM Comput. Surv., 54(2):29:1–29:31, 2022. doi:10.1145/3434399.

27 Takaaki Nishimoto, Tomohiro I, Shunsuke Inenaga, Hideo Bannai, and Masayuki Takeda.
Fully dynamic data structure for LCE queries in compressed space. In Piotr Faliszewski,
Anca Muscholl, and Rolf Niedermeier, editors, 41st International Symposium on Mathemat-
ical Foundations of Computer Science, MFCS 2016, August 22-26, 2016 - Kraków, Poland,
volume 58 of LIPIcs, pages 72:1–72:15. Schloss Dagstuhl – Leibniz-Zentrum für Informatik,
2016. doi:10.4230/LIPICS.MFCS.2016.72.

28 Dhrumil Patel and Rahul Shah. Inverse suffix array queries for 2-dimensional pattern matching
in near-compact space. In Hee-Kap Ahn and Kunihiko Sadakane, editors, 32nd International
Symposium on Algorithms and Computation, ISAAC 2021, December 6-8, 2021, Fukuoka,
Japan, volume 212 of LIPIcs, pages 60:1–60:14. Schloss Dagstuhl – Leibniz-Zentrum für
Informatik, 2021. doi:10.4230/LIPICS.ISAAC.2021.60.

29 Rajeev Raman, Venkatesh Raman, and Srinivasa Rao Satti. Succinct indexable dictionaries
with applications to encoding k-ary trees, prefix sums and multisets. ACM Trans. Algorithms,
3(4):43, 2007. doi:10.1145/1290672.1290680.

30 Sofya Raskhodnikova, Dana Ron, Ronitt Rubinfeld, and Adam D. Smith. Sublinear algorithms
for approximating string compressibility. Algorithmica, 65(3):685–709, 2013. doi:10.1007/
S00453-012-9618-6.

31 Giuseppe Romana, Marinella Sciortino, and Cristian Urbina. Exploring repetitiveness measures
for two-dimensional strings, 2024. doi:10.48550/arXiv.2404.07030.

32 Kunihiko Sadakane. Succinct representations of LCP information and improvements in the
compressed suffix arrays. In David Eppstein, editor, Proceedings of the Thirteenth Annual ACM-
SIAM Symposium on Discrete Algorithms, January 6-8, 2002, San Francisco, CA, USA, pages
225–232. ACM/SIAM, 2002. URL: http://dl.acm.org/citation.cfm?id=545381.545410.

33 Sharma V. Thankachan. Compact text indexing for advanced pattern matching problems:
Parameterized, order-isomorphic, 2d, etc. (invited talk). In Hideo Bannai and Jan Holub,
editors, 33rd Annual Symposium on Combinatorial Pattern Matching, CPM 2022, June 27-
29, 2022, Prague, Czech Republic, volume 223 of LIPIcs, pages 3:1–3:3. Schloss Dagstuhl –
Leibniz-Zentrum für Informatik, 2022. doi:10.4230/LIPICS.CPM.2022.3.

34 Peter Weiner. Linear pattern matching algorithms. In 14th Annual Symposium on Switching and
Automata Theory, Iowa City, Iowa, USA, October 15-17, 1973, pages 1–11. IEEE Computer
Society, 1973. doi:10.1109/SWAT.1973.13.

STACS 2025

https://doi.org/10.1109/FOCS57990.2023.00114
https://doi.org/10.1016/S0304-3975(02)00828-9
https://doi.org/10.1016/S0304-3975(02)00828-9
https://doi.org/10.1007/S00453-009-9350-Z
https://doi.org/10.1007/S00453-009-9350-Z
https://doi.org/10.1007/S00453-023-01186-0
https://doi.org/10.1007/S00453-023-01186-0
https://doi.org/10.1109/TIT.2022.3224382
https://doi.org/10.1109/TIT.2022.3224382
https://doi.org/10.1145/3434399
https://doi.org/10.4230/LIPICS.MFCS.2016.72
https://doi.org/10.4230/LIPICS.ISAAC.2021.60
https://doi.org/10.1145/1290672.1290680
https://doi.org/10.1007/S00453-012-9618-6
https://doi.org/10.1007/S00453-012-9618-6
https://doi.org/10.48550/arXiv.2404.07030
http://dl.acm.org/citation.cfm?id=545381.545410
https://doi.org/10.4230/LIPICS.CPM.2022.3
https://doi.org/10.1109/SWAT.1973.13

A Quasi-Polynomial Time Algorithm for
Multi-Arrival on Tree-Like Multigraphs
Ebrahim Ghorbani #

Hamburg University of Technology, Institute for Algorithms and Complexity, Hamburg, Germany

Jonah Leander Hoff #

Hamburg University of Technology, Institute for Algorithms and Complexity, Hamburg, Germany

Matthias Mnich #

Hamburg University of Technology, Institute for Algorithms and Complexity, Hamburg, Germany

Abstract
Propp machines, or rotor-router models, are a classic tool to simulate random systems in forms of
Markov chains by deterministic systems. To this end, the nodes of the Markov chain are replaced
by switching nodes, which maintain a queue over their outgoing arcs, and a particle sent through
the system traverses the top arc of the queue which is then moved to the end of the queue and the
particle arrives at the next node. A key question to answer about such systems is whether a single
particle can reach a particular target node, given as input an initial configuration of the queues at all
switching nodes. This question was introduced by Dohrau et al. (2017) under the name of Arrival.
A major open question is whether Arrival can be solved in polynomial time, as it is known to
lie in NP ∩ co-NP; yet the fastest known algorithm for general instances takes subexponential time
(Gärtner et al., ICALP 2021).

We consider a generalized version of Arrival introduced by Auger et al. (RP 2023), which
requires routing multiple (potentially exponentially many) particles through a rotor graph. The
Multi-Arrival problem is to determine the particle configuration that results from moving all
particles from a given initial configuration to sinks. Auger et al. showed that for path-like rotor
graphs with a certain uniform rotor order, the problem can be solved in polynomial time.

Our main result is a quasi-polynomial-time algorithm for Multi-Arrival on tree-like rotor
graphs for arbitrary rotor orders. Tree-like rotor graphs are directed multigraphs which can be
obtained from undirected trees by replacing each edge by an arbitrary number of arcs in either or both
directions. For trees of bounded contracted height, such as paths, the algorithm runs in polynomial
time and thereby generalizes the result by Auger et al.. Moreover, we give a polynomial-time
algorithm for Multi-Arrival on tree-like rotor graphs without parallel arcs.

2012 ACM Subject Classification Theory of computation → Randomness, geometry and discrete
structures

Keywords and phrases Arrival, Rotor-routing, Tree-like Multigraph, Path-Like Multigraph, Fixed-
Parameter Tractability

Digital Object Identifier 10.4230/LIPIcs.STACS.2025.39

Funding Funded by the project “Hamburg Quantum Computing”, co-financed by ERDF and Fonds
of the Hamburg Ministry of Science, Research, Equalities and Districts (BWFGB).

1 Introduction

In 2017, Dohrau et al. [3] introduced the Arrival problem, which they intuitively defined
as follows:

“Suppose that a train is running along a railway network, starting from a designated
origin, with the goal of reaching a designated destination. The network, however, is
of a special nature: every time the train traverses a switch, the switch will change
its position immediately afterwards. Hence, the next time the train traverses the

© Ebrahim Ghorbani, Jonah Leander Hoff, and Matthias Mnich;
licensed under Creative Commons License CC-BY 4.0

42nd International Symposium on Theoretical Aspects of Computer Science (STACS 2025).
Editors: Olaf Beyersdorff, Michał Pilipczuk, Elaine Pimentel, and Nguyễn Kim Thắng;
Article No. 39; pp. 39:1–39:19

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:ebrahim.ghorbani@tuhh.de
https://orcid.org/0000-0001-7195-8601
mailto:jonah.hoff@tuhh.de
mailto:matthias.mnich@tuhh.de
https://orcid.org/0000-0002-4721-5354
https://doi.org/10.4230/LIPIcs.STACS.2025.39
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

39:2 A Quasi-Polynomial Time Algorithm for Multi-Arrival on Tree-Like Multigraphs

same switch, the other direction will be taken, so that directions alternate with each
traversal of the switch. Given a network with origin and destination, what is the
complexity of deciding whether the train, starting at the origin, will eventually reach
the destination?”

One may solve Arrival by running the train iteratively according to the outlined rules
until reaching a destination. This may require a number of steps which is exponential in
the number of switches. Gärtner et al. [6] devised an algorithm for Arrival which runs
in subexponential time. It is further known that Arrival lies in NP ∩ co-NP [3], which
motivated the conjecture that the problem is polynomial-time decidable. As of now, this
conjecture is still open, despite some effort [4, 5, 6].

The routing behaviour in Arrival is also known as switching networks, rotor routing,
Propp machines, and Eulerian walkers [4, 7, 10]. We adopt the nomenclature of rotor routing
and refer to the trains as particles. In rotor routing, particles are routed from each node along
its outgoing arcs in a fixed cyclic order called the rotor order. A directed multigraph equipped
with a rotor order at each of its nodes is referred to as a rotor graph. Arrival can be seen
as determining the unique particle configuration resulting from routing a single particle until
it reaches a sink. As the complexity of Arrival in general is unkown, recent efforts focus on
identifying families of instances on which Arrival can be solved in polynomial-time. One
such family are tree-like rotor graphs, which are rotor graphs whose underlying undirected
simple graphs are trees. Note that the class of tree-like rotor graphs is richer than its name
may suggest: they can contain arcs in opposite direction, as well as parallel arcs, between
the same two nodes. Tree-like rotor graphs are directed multi-graphs that can be obtained
from undirected trees by replacing edge undirected edge {u, v} by any number auv ≥ 0 of
arcs (u, v) and any number avu ≥ 0 of arcs (v, u), where auv and avu can be different (not
both of them should be zero). On tree-like rotor graphs, Arrival was shown to be solvable
in polynomial time [1]. More recently, the case of routing multiple (potentially exponentially
many) particles on path-like rotor graphs has been studied. Multi-Arrival refers to the
problem of determining the particle configuration resulting from a routing that moves all
particles from a given initial configuration to the sinks. This resulting configuration has been
proved to be unique [2]. Auger et al. [2] showed that for path-like rotor graphs with a certain
uniform rotor order, Multi-Arrival can be solved in polynomial-time. Results by Gärtner
et al. [6] show that polynomial-time algorithms for Multi-Arrival for a certain family F
of rotor graphs yield polynomial-time algorithms for Arrival for rotor graphs that belong
to F after deleting constantly many nodes.

Our Contributions. Our main contributions are algorithms for Multi-Arrival on tree-like
rotor graphs. To state them, we introduce the notion of contracted height ch(R) of a simple
rooted tree R as the minimum height over all trees obtained from R by contracting, for each
node v of R, one of the arcs to its children. We now state our main results informally, where
κ(T) is the maximum possible ch(⟨T ⟩) over all choices of a root, where ⟨T ⟩ is the simple
undirected underlying tree of T .

▶ Theorem 1 (Informal). Multi-Arrival can be solved on tree-like rotor graph T with
|A(T)| arcs in time O∗(

logκ(T)+1 |A(T)|
)
, where O∗ hides factors polynomial in the input.

In particular, Multi-Arrival can be solved in polynomial time if κ(T) = O
(log |A(T)|

log(log |A(T)|)
)
.

We further show that if κ(T) = O(1) (which includes path-like rotor graphs), Multi-Arrival
can be solved in time polynomial in |Â(T)|, where Â(T) represents the succinct encoding
of the arcs, only recording the number of consecutive parallel arcs. Therefore, our results
widely generalize the previous algorithms by Auger et al. [2] for path-like rotor graphs with
uniform rotor order.

E. Ghorbani, J. Leander Hoff, and M. Mnich 39:3

As an important corollary, we deduce that Multi-Arrival on tree-like rotor graphs
is fixed-parameter tractable when parameterized by κ(T). That is, Multi-Arrival can
be solved in time f(κ(T)) · mO(1) on tree-like rotor graphs of size m. Such fixed-parameter
algorithms are considered to be advantageous over so-called XP-algorithms, where the degree
of the polynomial depends on the parameter. Indeed, for the related parameter “feedback
vertex set size” fvs(G), which measures the node deletion distance of the rotor graph G to
an acyclic digraph, Gärtner et al. [6] provided an XP-algorithm with run time mO(fvs(G)).

Finally, we show:

▶ Theorem 2 (Informal). Multi-Arrival is solvable in polynomial time for tree-like rotor
graphs without parallel arcs.

2 Preliminaries

2.1 Directed Multigraphs

Throughout, we consider directed multigraphs G with finite node set V (G) and arc set A(G).
An arc with tail v and head w is said to be from v to w. A directed multigraph may have
parallel arcs which share the same head-tail pair, and self-loops which are from and to the
same node.

For a given node v ∈ V (G), we denote by A+(v) the set of arcs whose tail is v and define
d+(v) = |A+(v)|. Let N+(v) be the set of out-neighbours of v and let N−(v) be the set of
in-neighbours of v. By d(v, w) we denote the number of arcs from v to w. For a directed
multigraph G, let V +(G) be the set of nodes with positive out-degree and let S0(G) be the
set of the sinks, that is, the nodes with out-degree 0. The underlying undirected simple graph
of G is the undirected simple graph ⟨G⟩ with node set V (G) which contains an edge {v, w}
whenever there is an arc between v and w. We call G tree-like (path-like) if ⟨G⟩ is a tree
(path). A rooted tree is obtained from an undirected tree by designating one node as its root
and orienting all edges away from the root.

2.2 Rotor-Routing

Let G be a directed multigraph. For any node v ∈ V +(G), a rotor order at v is a cyclic
permutation of A+(v). A rotor order for G is a permutation θ of A(G) such that, for each
v ∈ V +(G), the restriction of θ to A+(v) is a rotor order at v. The directed multigraph G

combined with a rotor order θ is a rotor graph.
A rotor configuration of G is a mapping from ρ : V +(G) → A(G) such that ρ(v) ∈ A+(v)

for each v ∈ V +(G). Let RG be the set of rotor configurations of G. A particle configuration
of G is a mapping from σ : V (G) → Z. Let ZV (G) be the set of particle configurations of G.

For node v, denote by v ∈ ZV (G) the function which is 1 at v, and 0 elsewhere. For
example, σ′ = σ + 3v means σ′(v) = σ(v) + 3 and σ′(u) = σ(u) for u ̸= v.

A rotor-particle configuration of G is a pair (ρ, σ) of a rotor configuration ρ ∈ RG and a
particle configuration σ ∈ ZV (G). Routing at v ∈ V +(G) on (ρ, σ) is the operation of moving
a particle from v along the arc ρ(v) and then changing the rotor configuration at v to θ(ρ(v)).
The resulting rotor-particle configuration (ρ′, σ′) = routv(ρ, σ) is then formally defined as

ρ′(u) =
{

θ(ρ(u)) u = v,

ρ(u) u ̸= v,

STACS 2025

39:4 A Quasi-Polynomial Time Algorithm for Multi-Arrival on Tree-Like Multigraphs

and σ′ = σ + head(ρ(v)) − tail(ρ(v)). Routing decomposes into two operators. First, a move
at v, denoted by ϕ(ρ; v) = head(ρ(v)) − tail(ρ(v)). Second, a turn at v, denoted by θv, where
θv(a) = θ(a) for each a ∈ A+(v) and θv(a) = a for each a ̸∈ A+(v). We see that

routv(ρ, σ) = (θv ◦ ρ, σ + ϕ(ρ; v)) = (ρ′, σ′) .

This kind of routing is referred to as move-then-turn, as opposed to turn-then-move. It is
easy to see that both kinds of routing are isomorphic by advancing or reverting the rotor
configuration. We will use this isomorphism in the proof of Proposition 5.

We define θ−v = (θv)−1 and ϕ(ρ; −v) = −ϕ(θ−v ◦ ρ; v); the inverse of routv is defined as

rout−v(ρ′, σ′) = (θ−v ◦ ρ′, σ′ + ϕ(ρ′; −v)) = (ρ, σ) .

Given distinct nodes v ̸= u, observe that routv and routu commute, as the move and
turn of v depend on and affect ρ only at component v. Hence, compositions of the routing
operators are characterized by the number of times each node is routed.

A routing vector (or simply a routing) of G is a mapping from r : V +(G) → Z. We denote
by routr the operator resulting from composing all (routv)r(v) for v ∈ V +(G) in arbitrary
order. Similarly, we let θr denote the composition of all (θv)r(v) for v ∈ V +(G). Extending
the move operator ϕ(ρ; v) is more involved. We do so by interpreting ϕ to be the displacement
of particles when routing. As such, for k ∈ N, we define ϕ(ρ; kv) =

∑k−1
i=0 ϕ(θiv ◦ ρ; v) and

ϕ(ρ; −kv) = −
∑k

i=1 ϕ(θ−iv ◦ ρ; v). Then we define ϕ(ρ; r) =
∑

v∈V +(G) ϕ(ρ; r(v)v). It is
now straightforward to see that

routr(ρ, σ) = (θr ◦ ρ, σ + ϕ(ρ; r)) .

For the sake of convenience, we extend these notations to sinks. Each routing r ∈ ZV +(G)

is identified with the mapping in ZV (G) such that r(s) = 0 for all s ∈ S0. Furthermore,
routing sinks has no effect, i.e., θs = id and ϕ(ρ; s) = 0.

2.3 Arrival and Rotor-Routing Games
In the Arrival game we start with a rotor-particle configuration (ρ, u) where u ∈ V +(G) is
the initial location of the particle. We then repeatedly route the node on which the particle
is located. This makes the particle walk through the rotor graph until it ends up on a sink,
at which point the game terminates. To ensure termination, throughout this article we
require G to be stopping, meaning that every node has a directed path to some sink.

We now introduce the rotor-routing game, which generalizes Arrival. We say that
routing node v is legal on (ρ, σ) if σ(v) > 0. A routing sequence (v0, . . . , vk−1) ∈ (V +(G))k

is legal on (ρ0, σ0) if each routing of vi is legal on (ρi, σi) where (ρi+1, σi+1) = routvi(ρi, σi).
Finally, a non-negative routing r is legal if there is a corresponding legal routing sequence
(v0, . . . , vk−1), which means that r(v) =

∣∣{i ∈ {0, . . . , k − 1} | vi = v}
∣∣ for each v ∈ V +(G).

Such a legal routing r is maximal on (ρ, σ) if σ′ = σ + ϕ(ρ; r) is non-positive on V +(G).
That is, a routing r is maximal if no node can be legally routed after routing r.

In the rotor-routing game, at each step an arbitrary legal node is routed until all particles
are on sinks. It is easy to see that in Arrival, the legal routing sequence is unique, but in
rotor-routing at any point there may be multiple nodes that can be legally routed.

An important consequence of routing a node behaving independent of the configuration
of other nodes is that every legal routing sequence eventually terminates with the same
corresponding maximal legal routing.

▶ Lemma 3 ([9, Lemma 3.9]). For all (ρ, σ) ∈ RG × ZV (G) with σ ≥ 0, there is a unique
maximal legal routing r on (ρ, σ).

E. Ghorbani, J. Leander Hoff, and M. Mnich 39:5

It follows that the maximal legal routing is an upper bound (component-wise) of all legal
routings. We denote by (ρ′, σ′) = rout∞

L (ρ, σ) the rotor-particle configuration resulting from
the unique maximal legal routing on (ρ, σ).

We are now ready to formally define the problems discussed in this paper through the
notion of routings.

▶ Problem (Arrival [3]). Given (ρ, u) ∈ RG ×ZV (G), compute σ′ for (ρ′, σ′) = rout∞
L (ρ, u).

The following generalization of Arrival was introduced by Hoang [8]:

▶ Problem (Legal Multi-Arrival [8]). Given (ρ, σ) ∈ RG ×ZV (G) with σ ≥ 0, compute σ′

for (ρ′, σ′) = rout∞
L (ρ, σ).

An even more general scenario was introduced by Auger et al. [1]. Namely, if we do not
require routings to be legal, for arbitrary σ any routing can be extended such that σ′(v) = 0
for all v ∈ V +(G). Such a rotor-particle configuration is called fully routed. We denote by
rout∞(ρ, σ) the set of fully routed rotor-particle configurations obtainable by routing (ρ, σ).

▶ Proposition 4 ([1, Theorem 2]). For all (ρ, σ) ∈ RG ×ZV (G) there is a routing r such that
with (ρ′, σ′) = routr(ρ, σ) one has σ′(v) = 0 on all v ∈ V +(G). Furthermore, for any two
such routings r1 and r2, resulting in (ρ1, σ1) and (ρ2, σ2), respectively, we have that σ1 = σ2.

This leads to the following problem, which is our main concern in this paper:

▶ Problem (Multi-Arrival [1]). Given (ρ, σ) ∈ RG × ZV (G), compute σ′ for arbitrary
(ρ′, σ′) ∈ rout∞(ρ, σ).

For σ ≥ 0, after applying the maximal legal routing it holds that σ′(v) = 0 for v ∈ V +(G).
It follows that rout∞

L (ρ, σ) ∈ rout∞(ρ, σ) and that Legal Multi-Arrival reduces to
Multi-Arrival. Conversely, finding full routings reduces to finding a maximal legal routing
in G and in G(−1), where G(−1) is obtained from G by reversing the rotor order i.e. using θ−1.

▶ Proposition 5. Let (ρ, σ) ∈ RG ×ZV (G) and σ = σ1 − σ2 such that σ1, σ2 ≥ 0. Then given
the maximal legal routing r1 on (ρ, σ1) in G and the maximal legal routing r2 on (θr1−1 ◦ρ, σ2)
in G(−1), we have that r = r1 − r2 is a full routing on (ρ, σ) in G.

Proof. We define g : RG × ZV (G) → RG × ZV (G) by g(ρ, σ) = (θ−1 ◦ ρ, −σ). The function g

transforms rotor-particle configurations such that negative move-then-turn routings in G

correspond to positive turn-then-move routings in G(−1). We let θ′ = θ−1 and ϕ′ denote the
move and displacement operators in G(−1).

▷ Claim. It holds that routr
G(ρ, σ) = g−1(

rout−r
G(−1)(g(ρ, σ))

)
.

Proof. We show that routv
G(ρ, σ) = g−1(

rout−v
G(−1)(g(ρ, σ))

)
, from which the claim follows.

Recall that rout−v
G(−1)(ρ, σ) =

(
θ′−v ◦ ρ, σ − ϕ(θ′−v ◦ ρ; v)

)
. First, for the turn operator we

see that θ′−v ◦ θ−1 = θ−1 ◦ θv. Then, for the move operator we derive that

−ϕ(θ′−v ◦ θ−1 ◦ ρ; v) = −ϕ(ρ; v) .

Consequently, it holds that

g−1(
rout−v

G(−1)(g(ρ, σ))
)

= g−1 ◦ rout−v
G(−1)(θ−1 ◦ ρ, −σ)

= g−1 ◦
(
θ−1 ◦ θv ◦ ρ, −σ − ϕ(ρ; v)

)
=

(
θv ◦ ρ, σ + ϕ(ρ; v)

)
= routv

G(ρ, σ) .

This proves the claim. ◁

STACS 2025

39:6 A Quasi-Polynomial Time Algorithm for Multi-Arrival on Tree-Like Multigraphs

We next find that σ + ϕ(ρ; r1 − r2) = (σ1 + ϕ(ρ; r1)) − (σ2 + ϕ′(θr1−1 ◦ ρ; r2)). Since r1 is
maximal on (ρ, σ1) with σ1 ≥ 0 in G, it follows that σ1 + ϕ(ρ; r1) is 0 on V +(G). Similarly,
as r2 is maximal on (θr1−1 ◦ ρ, σ2), with σ2 ≥ 0 in G(−1) we have that σ2 + ϕ′(θr1−1 ◦ ρ; r2)
is also 0 on V +(G). It follows that r is a full routing. ◀

Our approach finds maximal legal routings which enables us to solve both Legal Multi-
Arrival and Multi-Arrival on tree-like rotor graphs.

3 Routing Decompositions

In this section we show how to decompose maximal legal routings into legal routings whose
most recently used arcs are directed towards sinks. We shall always denote the maximal
legal routing by r̂, assuming some (ρ, σ) to be fixed.

3.1 Destination Graphs

Given a rotor configuration ρ and routing r ≥ 0, the destination graph G[ρ; r] is a subgraph
of G whose nodes consist of all those that either sent or received particles during routing r.
For each node v ∈ supp(r), that is r(v) ̸= 0, the destination graph G[ρ; r] contains only the
outgoing arc that the last particle traversing v was sent over when routing r. That is, G[ρ; r]
is the subgraph of G induced by the arcs {θ−1(ρ′(v)) | v ∈ supp(r)}, where ρ′ = θr ◦ ρ is the
rotor configuration after routing r. Each node v ∈ supp(r) has one outgoing arc in G[ρ; r]
and every other node in G[ρ; r] has no outgoing arcs.

Furthermore, the destination graph G[ρ; r̂] of the maximal legal routing is acyclic and
the connected components are directed subtrees rooted at sinks. Figure 1 depicts a rotor
graph with the rotor order being clockwise, and a corresponding destination graph.

v1

0

v2

1

v3

2

v4

0

s1

0
s2

0

s3

0

(a) On (ρ, σ).

v1

0

v2

0

v3

0

v4

0

s1

0
s2

2

s3

1

(b) On (ρ′, σ′).

Figure 1 (a) A rotor graph G with a rotor-particle configuration (ρ, σ), where solid lines represent ρ,
labels on the nodes represent the particle distribution σ = 1v2 + 2v3. A possible maximal legal
routing sequence is v2 → v4 → v2 → s2, v3 → v4 → v1 → v2 → v4 → v2 → s2 and v3 → s3, with
corresponding maximal legal routing r̂ = 1v1 + 4v2 + 2v3 + 3v4. (b) Thick red lines are the arcs in
the destination graph G[ρ; r̂] for the maximal legal routing r̂. Note that G[ρ; r̂] does not contain s1.

E. Ghorbani, J. Leander Hoff, and M. Mnich 39:7

3.2 Compensated Routings
Any legal routing r must satisfy the condition that, for each node v, the number of particles
sent out of v during the routing process must not exceed the number of particles initially
present at v and those sent into v during the routing. This establishes one of the main
constraints for a routing to be legal. We call such a routing “compensated”.

Formally, we say that a routing r is compensated at v with respect to (ρ, σ) if

σ(v) +
∑

u∈N−(v)

ϕu
v (ρ; r(u)) ≥

∑
w∈N+(v)

ϕv
w(ρ; r(v)) = r(v),

where ϕv
w(ρ; j) denotes the number of particles sent to w when routing j particles out of v.

A routing is called compensated if it is compensated at each v ∈ V +(G). Equivalently, r

is compensated if and only if σ + ϕ(ρ; r) ≥ 0. Note that compensated routings are not
necessarily legal.

The following proposition, which is a special case of a theorem by Tóthmérész [11,
Theorem 3.4], provides a characterization of compensated routings that are legal. For sake
of completeness, we include a simplified proof.

▶ Proposition 6. Given a routing r ≥ 0 and rotor-particle configuration (ρ, σ) with σ ≥ 0.
Let (ρ′, σ′) = routr(ρ, σ). The routing r is legal on (ρ, σ) if and only if, r is compensated on
(ρ, σ) and each cycle in G[ρ; r] contains some node v such that σ′(v) > 0. In particular, if
G[ρ; r] is acyclic, legality and compensation are equivalent.

Proof. Suppose that r is legal. So it is compensated. If G[ρ; r] contains a cycle C, then
given some corresponding legal routing sequence, there is some node v ∈ V (C) that is routed
last in C. Let w ∈ V (C) denote the successor of v in C. Then a particle is sent from v to w,
but w is not routed afterwards. Hence, as the particle distribution is non-negative during
the legal routing sequence, we have that σ′(w) > 0.

Conversely, assume that r is compensated on (ρ, σ) and each cycle in G[ρ; r] contains
some node v such that σ′(v) > 0. Let r∗ ≤ r be a legal routing with (ρ∗, σ∗) = routr∗(ρ, σ)
obtained by routing until for each node v either σ∗(v) = 0 or r∗(v) = r(v).

Since r∗ is legal, it suffices to show that r∗ = r. Assume, for the sake of contradiction,
that r∗ ̸= r. We then consider the set B = {v ∈ V +(G) | r∗(v) < r(v)} of nodes that still
need to be routed (if any).

It follows that σ∗(v) = 0 for each v ∈ B. In the remaining routing r∗ − r, each particle
sent out from a node in B must be replaced afterward; otherwise, we would end up with a
node v ∈ B such that σ′(v) < 0, which is impossible since r is compensated. This implies
that during the routing r∗ − r, no particle from B is sent outside of B; otherwise, that
particle could not be replaced in B as no node outside of B is routed in r∗ − r. It follows
that in the subgraph H of G[ρ; r] induced by B, the nodes have out-degree of 1, implying
that H contains a cycle. This contradicts the assumption that every cycle in G[ρ; r] contains
a node v such that σ′(v) > 0. ◀

3.3 s-Directed Routings
The compensated routings r are those for which each v ∈ V +(G) satisfies an inequality that
relates r(v) to r(u) for all in-neighbours u of v. Enforcing this inequality is much simpler than
enforcing the stricter property of legality. If restricted to routings with acyclic destination
graph, these properties coincide. For finding the maximal legal routing r̂, we may restrict the
search to only those routings. But the destination graph being acyclic is also a non-trivial
property. Instead, we consider an even more restricted case in which the destination graph is

STACS 2025

39:8 A Quasi-Polynomial Time Algorithm for Multi-Arrival on Tree-Like Multigraphs

oriented towards some fixed sink s. In tree-like rotor graphs, this implies a unique destination
graph (up to parallel arcs), which can be enforced by an appropriate parametrization of
routings. But first, we need to show that these restricted routings still allow us to recover r̂.

Given a rotor configuration ρ and sink s, we say that node v is s-directed in a routing r

if v ∈ supp(r) and there is a path in G[ρ; r] from v to s. Routing r is s-directed if every
v ∈ supp(r) is s-directed in r. Our aim, to be established in Theorem 9, is to decompose r̂

into a set of s-directed routings rs for each sink s. The idea is that each such rs need only
match the number of particles sent into s by r̂. We denote by ϕw(ρ; r) the number of particles
sent to w when routing r.

▶ Lemma 7. Let (ρ, σ) be a rotor-particle configuration with σ ≥ 0 and b ≥ 0 be a legal
routing. Then, for each sink s, there is an s-directed legal routing r ≥ 0 such that r ≤ b and
ϕs(ρ; r) = ϕs(ρ; b).

Proof. We construct a series of legal routings b = r1 ≥ r2 ≥ · · · with A1 ⊂ A2 ⊂ · · ·
denoting the s-directed nodes of the respective routing, such that each ri+1 equals ri on Ai

and each v ∈ Ai has the same in-flow in ri+1 as in ri.
Suppose that we constructed ri and that there is flow from V +(G) \ Ai to Ai when

routing ri. Consider an arbitrary legal routing sequence (v0, . . . , vm−1) corresponding to ri

with (ρ0, σ0) = (ρ, σ) and (ρℓ+1, σℓ+1) = routvℓ(ρℓ, σℓ).
Let j be maximal such that vj ̸∈ Ai and head(ρj(vj)) ∈ Ai. That is, the jth routing step

is the last time a particle is sent into Ai from V +(G) \ Ai. Now, we remove each routing
step ℓ > j with vℓ ̸∈ Ai. Let ri+1 be the corresponding routing vector. Then ri+1 must be
legal since for ℓ > j we have vℓ ∈ Ai and vℓ has in the ℓ-th routing step the same number of
particles as before the removals. By construction ri+1 satisfies the required conditions and
Ai ∪ {vj} ⊆ Ai+1 as vj sent its last particle towards Ai in ri+1.

Otherwise, suppose there is no flow from V +(G) \ Ai to Ai when routing ri. We set r to
be ri on Ai, and zero on V +(G) \ Ai. Then r is an s-directed legal routing with r ≤ r1 = b.
Since s ∈ A1 ⊆ A2 ⊆ . . . we have ϕs(ρ; r1) = ϕs(ρ; r2) = · · · = ϕs(ρ; r). This procedure is
finite as it terminates once supp(b) ⊆ Ai and each step increases the size of Ai. ◀

Next, we show that in the maximal legal routing r̂ the s-directed nodes already route only
as much as is required to achieve the flow towards s. We therefore derive that a corresponding
s-directed routing matches r̂ on those nodes.

▶ Lemma 8. Let (ρ, σ) be a rotor-particle configuration with σ ≥ 0. If r ≥ 0 is an s-directed
legal routing such that ϕs(ρ; r) = ϕs(ρ; r̂), then r(v) = r̂(v) for each s-directed node of r̂.

Proof. Suppose u is s-directed in r̂ such that r(u) ̸= r̂(u). We denote by v the successor on
the path from u to s in G[ρ; r̂]. As r̂ is maximal and r is legal, it must be that r(u) < r̂(u).
Since the last particle sent from u in r̂ is towards v we have ϕu

v (ρ; r(u)) < ϕu
v (ρ; r̂(u)). In

particular, ϕv(ρ; r) < ϕv(ρ; r̂). If v ̸= s, then as r̂ routes v for each received particle and r

receives less particles on v, it follows that r(v) < r̂(v). Now, v is also s-directed in r̂ with
r(v) ̸= r̂(v). We repeat the argument along the path from u to s in G[ρ; r̂] until we end up
with v = s. Then ϕs(ρ; r) < ϕs(ρ; r̂) contradicts the assumption that ϕs(ρ; r) = ϕs(ρ; r̂). ◀

▶ Theorem 9. Let (ρ, σ) be a rotor-particle configuration with σ ≥ 0. For each s ∈ S0, let rs

be an optimal solution of the following optimization problem:

maximize ϕs(ρ; r) subject to r is an s-directed compensated routing.

Then r̂ is given by r̂(v) = max{rs(v) | s ∈ S0} for all v ∈ V +(G).

E. Ghorbani, J. Leander Hoff, and M. Mnich 39:9

Proof. Let s ∈ S0. As rs is s-directed, it has an acyclic destination graph. Since it is also
compensated, it follows from Proposition 6 that rs is legal. In particular, as r̂ is maximal
we have rs ≤ r̂ and ϕs(ρ; rs) ≤ ϕs(ρ; r̂). Now, as shown by Lemma 7 there is some legal
s-directed routing r′

s such that ϕs(ρ; r′
s) = ϕs(ρ; r̂). It follows from rs maximizing ϕs(ρ; r)

that ϕs(ρ; rs) = ϕs(ρ; r̂).
For each v ̸∈ supp(r̂) the claim holds as 0 ≤ rs(v) ≤ r̂(v) = 0 for each s ∈ S0. Let

v ∈ supp(r̂). Then as G[ρ; r̂] is acyclic and each node in G[ρ; r̂] has out-degree at most one,
there is some u that the unique path starting at v ends on. If u ̸∈ S0, then u ̸∈ supp(r̂).
But then u receives a particle in r̂ but is not routed, which contradicts the maximality
of r̂. Thus, u ∈ S0 and v is u-directed in r̂. Consequently, due to Lemma 8 we find that
r̂(v) = ru(v) = max{rs(v) | s ∈ S0}. ◀

4 Algorithms for Multi-Arrival on Tree-Like Rotor Graphs

In the following, let T be a tree-like rotor graph. Henceforth assume, without loss of generality,
that the induced subgraph of T on V +(T) is strongly connected, and each sink to have
exactly one in-neighbour. Indeed, if T were not strongly connected, then we can solve
Multi-Arrival in some ordering of the strongly connected components as each component
has no particles flowing to the prior. Furthermore, if some sink had multiple in-neighbours,
we split it into one sink per in-neighbor.

4.1 Relative Rotor Subgraphs

With the above assumptions on T , each v ∈ V +(T) has a unique successor on its paths to s

in T . We denote by N+
s (v) the successor on the paths from v to s in T , and by N−

s (v) the
set of predecessors whose successor is v on their respective paths towards s. When a routing
is s-directed, its destination graph can be seen to be an s-rooted directed subtree of T .

Throughout this section, we fix a sink s ∈ S0 and a rotor-particle configuration (ρ, σ)
with σ ≥ 0. For the sake of convenience, we leave this dependence on s and (ρ, σ) implicit in
the introduced notation. Further, we simplify the notation and let ϕ(r) denote ϕ(ρ; r), and
similarly extend this simplification to ϕv

w and ϕv.
We proceed to show that s-directed routings can be characterized by their restrictions to

nested rotor subgraphs. For any node v ∈ V +(T) with w = N+
s (v) let Tv be the rotor graph

obtained from T as follows. We remove the arcs between v and w, and then, remove the
nodes not reachable from v. Finally, we add w again with only the original arcs from v to w

(but not the reverse arcs). In Tv, node w is thus a sink. See Figure 2 for an example.

s w

v5

. . .

. . .

v

v1

v2 s2

v3 s3

v4 . . .

N−
s (v)

N+
s (v)

Tv

Figure 2 Example of a relative subtree Tv. Grey dashed lines show the arcs oriented away from s.
Note that, e.g., the rotor graph Tv2 contains v1 as a sink, which therefore has no arcs from v1 to v2.

STACS 2025

39:10 A Quasi-Polynomial Time Algorithm for Multi-Arrival on Tree-Like Multigraphs

For any integers x, y ∈ N, we denote by Hv(x, y) the set of w-directed compensated
routings r in Tv on rotor-particle configuration (ρ, σ + yv) such that ϕv

w(r(v)) = x.
Furthermore, we define hv(y) = max{x ∈ N | Hv(x, y) ̸= ∅}.
Note that for a given y, from Lemma 7 it follows that hv(y) is the flow from v to w that

is legally achievable in Tv when dispersing an additional y particles on v.

▶ Lemma 10. Given v ∈ V +(T) and x, y ∈ N such that Hv(x, y) ̸= ∅, we have Hv(x′, y) ̸= ∅
for any 0 ≤ x′ ≤ x. In particular, Hv(x, y) ̸= ∅ if and only if 0 ≤ x ≤ hv(y).

Proof. Let r ∈ Hv(x, y) and let b be some legal routing such that x′ = ϕw(ρ; b) ≤ ϕw(ρ; r) = x

in Tv, where w = N+
s (v). Note that such a b exists as we may truncate a legal routing

sequence of r up to the x′-th routing towards w. Then, using Lemma 7 with b on Tv, we
obtain an w-directed compensated routing r′ with x′ = ϕw(ρ; r′). Hence, r′ ∈ Hv(x′, y). As
the zero routing is always compensated and s-directed, the second claim follows as well. ◀

Let w = N+
s (v) and u ∈ N−

s (v). We define the function qv : N → N as the minimum
number of routings required to send x particles from v to w. Formally, qv(x) = min{k ∈ N |
ϕv

w(ρ; k) = x}. It is also convenient to specify the notation qv
u(x) = ϕv

u(qv(x)), which is the
number of particles that v sends to u as a by-product.

The following crucial lemma will enable us to recursively construct routings in Hv(x, y).

▶ Lemma 11. Let v ∈ V +(T) and w = N+
s (v). Consider a routing r ≥ 0 on Tv and for

u ∈ N−
s (v) let ru denote the restriction of r on V +(Tu). Then, Hv(0, y) = {0}, and for

x > 0,

r ∈ Hv(x, y)

if and only if

r(v) = qv(x), (1)

and there exist non-negative integers xu, for u ∈ N−
s (v), such that∑

u∈N−
s (v)

xu ≥ r(v) − y − σ(v), (2)

ru ∈ Hu

(
xu, ϕv

u(r(v))
)
, for each u ∈ N−

s (v) . (3)

In particular, Hv(x, y) ̸= ∅ if and only if∑
u∈N−

s (v)

hu(qv
u(x)) ≥ qv(x) − y − σ(v) . (4)

Proof. Let r ∈ Hv(0, y). Then r(v) = 0, as ϕv
w(r(v)) = 0 and r is w-directed. It follows

that v is not in Tv[ρ; r], and since every path from V +(Tv) to w in Tv is through v, it must
be that supp(r) = ∅.

Now, for the case x > 0, assume that r ∈ Hv(x, y) and therefore r(v) > 0. Thus, the last
routing of r at v should be towards w, which is equivalent to (1).

Set xu = ϕu
v (ru(u)) = ϕu

v (r(u)). Then we see that (2) is a rearrangement of r being
compensated at v. For (3), consider u ∈ N−

s (v). As the nodes of Tu are w-directed in r

and their paths towards w in Tv[ρ; r] go through v, it follows that ru is v-directed in Tu. It
remains to show that ru being compensated in Tv is equivalent to ru being compensated

E. Ghorbani, J. Leander Hoff, and M. Mnich 39:11

in Tu. With yu = ϕv
u(r(v)), note that ru needs to be compensated on (ρ, σ + yuu) in Tu.

Clearly, the only non-trivial case is the compensation at u, which follows from the in-flow
being equal in both cases:

ϕu(r) = ϕu(ru) + ϕv
u(r(v)) + σ(u) = ϕu(ru) + σ(u) + yu .

Consequently, ru ∈ Hu(xu, yu).
Now suppose that r ≥ 0 is a routing that satisfies (1)–(3). Notably, as x > 0 we have

qv(x) > 0. As mentioned above, (1) is equivalent to v being w-directed in r. From (3) it
follows that xu = ϕu

v (r(u)), which together with (2) implies that r is compensated at v.
Also, r is w-directed and compensated on V +(Tv) \ {v}, because by (3), each restriction ru

is v-directed and compensated. ◀

The following properties of the functions hv are needed in our argument.

▶ Lemma 12. For any v ∈ V +(T), define fv(x) = qv(x) − σ(v) −
∑

u∈N−
s (v) hu(qv

u(x)) for
all x. Then the following properties hold for the functions fv and hv:

(i) hv(y) = max{x ∈ N | fv(x) ≤ y},
(ii) hv(y) ≤ hv(y + 1) ≤ hv(y) + 1, for y ∈ N,
(iii) fv(x + 1) ≥ fv(x) + 1, for x ∈ N.

Proof. (i) We know that hv(y) equals the largest x with Hv(x, y) ̸= ∅, which, by Lemma 11,
is the largest x satisfying (4), that is, the largest x such that fv(x) ≤ y.

(ii) Let r̂y denote the maximal legal routing in Tv on (ρ, σ + yv). Then, by definition of
hv(y) and Lemma 7, we see that hv(y) = ϕw(ρ; r̂y). Thus, with hv(y + 1) = ϕs(ρ; r̂y+1), we
see that hv(y + 1) = hv(y) + 1 if that additional particle ends up in w and hv(y + 1) = hv(y)
otherwise.

(iii) Being integer-valued function, it suffices to show that fv is strictly increasing.
Observe that qv(x + 1) − qv(x) is the number of arcs until and including the next that has

head w. But qv
u(x+1)−qv

u(x) is then the number of those arcs that have head u. Consequently,
qv(x + 1) − qv(x) >

∑
u∈N−

s (v)
(
qv

u(x + 1) − qv
u(x)

)
, where by (ii), the right-hand side is as

large as
∑

u∈N−
s (v)

(
h(qv

u(x + 1)) − h(qv
u(x))

)
. It then follows that fv(x + 1) > fv(x). ◀

4.2 MULTI-ARRIVAL for Tree-Like Multigraphs
In this subsection, we prove the main result of the paper, Theorem 1. To do so, we first need
to specify how a rotor graph is computationally represented.

Suppose we wanted to represent A+(v) and θv. We could take in a sequence of nodes
w1, . . . , wk and let each index i identify an outgoing arc with head wi. Arc with label i is
taken to be before i + 1 in θv with index k + 1 wrapping around to 1. We can improve upon
this by merging consecutive duplicates wi = wi+1 by associating with each wi the number of
times that entry is repeated. We denote by Â the reduced arc set of the rotor graph obtained
by removing arcs in A that vanish due to this encoding of consecutive parallel arcs. This
encoding is called succinct [4, 11]. Hence, |Â| is polynomial in the input size, while |A| may
be exponential in the input size.

For a rooted simple tree R, its contracted height ch(R) is defined as the minimum height
over all trees which are obtained from R by contracting, for each node v of R, one of the
arcs to its children.

▶ Lemma 13. For any rooted simple tree R, it holds that ch(R) ≤ log(1 + ℓ(R)), where ℓ(R)
is the number of nodes of R with at least two children.

STACS 2025

39:12 A Quasi-Polynomial Time Algorithm for Multi-Arrival on Tree-Like Multigraphs

Proof. We proceed by induction on the height of R; recall that the height of a rooted tree
is the maximum length of a path from its root to any of its other nodes. If the height
of R is zero, the assertion holds trivially. Thus, assume now that the height of R is at
least 1. Let R1, . . . , Rk be the connected components of R after removing its root, with
ch(Rj) = max{ch(Ri) | i = 1, . . . , k}. If there is a unique such j, then ch(R) = ch(Rj) since
the edge to that subtree can be contracted, and we are thus done by the induction hypothesis.

Otherwise, there is another such j, say j′. We may assume that ℓ(Rj) ≤ ℓ(Rj′). Then

ch(R) ≤ 1 + ch(Rj) ≤ log(2 + 2ℓ(Rj)) ≤ log(1 + ℓ(R)) . ◀

Let R′
u be the tree ⟨T [V +]⟩ rooted at u. We define

k(T) = 1 + max{ch(R′
u) | u ∈ N−(S0)} .

By Lemma 13, k(T) ≤ 1 + log(n>2(⟨T ⟩) + 1), where n>2(⟨T ⟩) denotes the number of nodes
in ⟨T ⟩ that have more than two neighbors.

Notice that k(T) ≤ κ(T), where κ(T) is the upper bound on the contracted heights of ⟨T ⟩
as mentioned in introduction for the sake of stating an informal version of the main result.

We can thus now state our main result formally.

▶ Theorem 1. Multi-Arrival can be solved on any tree-like rotor graph T with arc set A

in time O
(

|S0||Â| logk(|A|)
)

, where k = k(T) ≤ 1+ log
(
n>2(⟨T ⟩)+1

)
. In particular, Multi-

Arrival can be solved in time polynomial in |A| if k = O
(

log |A|
log(log |A|)

)
. Furthermore, if

k = O(1) (which includes path-like rotor graphs as then k = 1), Multi-Arrival can be
solved in time polynomial in |Â|.

Furthermore, in the procedure, a full routing for Multi-Arrival is obtained.

When k is fixed, we have that logk(|A|) ≤ f(k)|A| for some computable function f , and
thus the run time of our algorithm would be at most f(k)|A|3. Therefore, we conclude:

▶ Corollary 14. Multi-Arrival on tree-like rotor graphs is fixed-parameter tractable with
parameter k.

One of the main ingredients of our approach is an affine approximation for the func-
tion hv(y), which is provided by the following lemma:

▶ Lemma 15. For any v ∈ V +(T), there is an affine function hv : R → R such that

|hv(y) − hv(y)| ≤ 2|A(Tv)|, y ∈ N . (5)

A set of these functions {hv | v ∈ V +(T)} can be determined in time O(|Â|).

Proof. We first observe that for x > 0, it holds that

qv

(
x + d(v, w)

)
= qv(x) + d+(v),

qv
u

(
x + d(v, w)

)
= qv

u(x) + d(v, u) .

These properties suggest the following approximations:

qv(x) =
(
d+(v) − qv(d(v, w))

)
+ xd+(v)

d(v, w) to approximate qv(x), and

qv
u(x) =

(
d(v, u) − qv

u(d(v, w))
)

+ xd(v, u)
d(v, w) to approximate qv

u(x) .

E. Ghorbani, J. Leander Hoff, and M. Mnich 39:13

Let x = ℓd(v, w) + t ≥ d(v, w) with 0 ≤ t < d(v, w). Then

|qv(x) − qv(x)| =
∣∣∣∣(qv(d(v, w) + t) − qv(d(v, w))

)
− td+(v)

d(v, w)

∣∣∣∣ < d+(v), (6)

|qv
u(x) − qv

u(x)| =
∣∣∣∣(qv

u(d(v, w) + t) − qv
u(d(v, w))

)
− td(v, u)

d(v, w)

∣∣∣∣ < d(v, w) . (7)

Similarly, (6) and (7) hold for x < d(v, w) as then qv(x) and qv(x) lie within an interval of
size d+(v), and qv

u(x) and qv
u(x) lie within an interval of size d(v, w). Now, define inductively

hv(y) = max{x ∈ R | fv(x) ≤ y},

fv(x) = qv(x) − σ(v) −
∑

u∈N−
s (v)

hu

(
qv

u(x)
)

.

▷ Claim. For any x, y, δ ∈ R with δ > 0, it holds that

fv(x + δ) ≥ fv(x) + δ, (8)
hv(y + δ) ≤ hv(y) + δ . (9)

Proof. We first observe that for each node v, (9) follows from (8). Let hv(y) = x. So
fv(x) = y. Then fv(x + δ) ≥ fv(x) + δ = y + δ. As fv is strictly increasing, we must have
hv(y + δ) ≤ x + δ = hv(y) + δ.

Now, we establish (8) by induction. We have that

fv(x + δ) − fv(x) = qv(x + δ) − qv(x) −
∑

u∈N−
s (v)

(
hu

(
qv

u(x + δ)
)

− hu

(
qv

u(x)
))

.

If N−
s (v) = ∅, then fv(x + δ) − fv(x) ≥ δd+(v)

d(v,w) ≥ δ. Next, assume that N−
s (v) ̸= ∅ and (8)

holds for all u ∈ N−
s (v). Then by the above argument, (9) also holds for u ∈ N−

s (v), implying
that

hu

(
qv

u(x + δ)
)

− hu

(
qv

u(x)
)

= hu

(
qv

u(x) + δd(v, u)
d(v, w)

)
− hu

(
qv

u(x)
)

≤ δd(v, u)
d(v, w) .

It follows that fv(x + δ) − fv(x) ≥ δd+(v)
d(v,w) −

∑
u∈N−

s (v)
δd(v,u)
d(v,w) = δ, as required. ◁

▷ Claim 16. If for all x ∈ Z, |fv(x) − fv(x)| ≤ L, then |hv(y) − hv(y)| ≤ L + 1 for all y ∈ Z.

Proof. Suppose that hv(y) = x. Then fv(⌊x⌋) ≤ fv(x) ≤ y and fv(⌊x⌋ + 1) > y. Thus,
fv(⌊x⌋ + 1 + L) ≥ fv(⌊x⌋ + 1) + L ≥ fv(⌊x⌋ + 1), that is fv(⌊x⌋ + 1 + L) > y. That
means hv(y) ≤ ⌊x⌋ + L. On the other hand, fv(⌊x⌋ − L) ≤ fv(⌊x⌋) − L ≤ fv(⌊x⌋) ≤ y. So
hv(y) ≥ ⌊x⌋ − L, and thus

∣∣hv(y) − ⌊x⌋
∣∣ ≤ L which implies that |hv(y) − hv(y)| ≤ L + 1. ◁

Now, we complete the proof by induction. If N−
s (v) = ∅, then hv(y) = d(v,w)

d+(v) (y + σ(v)) is
an affine function that satisfies (5), because of (6) and Claim 16.

So assume that N−
s (v) ̸= ∅ and the assertion holds for hu(y) for every u ∈ N−

s (v). The
property of being an affine function follows directly from the definition of hv(y).

For an integer x, we have:∣∣hu

(
qv

u(x)
)

− hu

(
qv

u(x)
)∣∣ ≤

∣∣hu

(
qv

u(x)
)

− hu

(
qv

u(x)
)∣∣ +

∣∣hu

(
qv

u(x)
)

− hu

(
qv

u(x)
)∣∣ . (10)

STACS 2025

39:14 A Quasi-Polynomial Time Algorithm for Multi-Arrival on Tree-Like Multigraphs

The induction hypothesis implies that∣∣hu

(
qv

u(x)
)

− hu

(
qv

u(x)
)∣∣ ≤ 2|A(Tu)| .

Combining (7) and (9), we see that∣∣hu

(
qv

u(x)
)

− hu

(
qv

u(x)
)∣∣ ≤ d(v, u) .

Thus, the right-hand side of (10) is at most d(v, u) + 2|A(Tu)|. It follows that for every
x ∈ Z, it holds that

|fv(x) − fv(x)| ≤ d+(v) +
∑

u∈N−
s (v)

(
d(v, u) + 2|A(Tu)|

)
.

Then applying Claim 16, for every y ∈ Z we have that

|hv(y) − hv(y)| ≤ 1 + d+(v) +
∑

u∈N−
s (v)

(
d(v, u) + 2|A(Tu)|

)
≤ 2|A(Tv)| .

The inductive constructing of hv for each v ∈ V +(T) can be done in time O(|Â+(v)|).
Therefore, the set {hv | v ∈ V +(T)} can be constructed in time O(|Â+|). ◀

In following, we let kv = 1 + ch(T ′
v) where T ′

v is the rooted simple tree ⟨Tv⟩ − (S0 \ {s})
rooted at w.

▶ Lemma 17. Let t be the unique in-neighbour of s. Then the maximum ϕs(r) over every
s-directed compensated routing r can be obtained in time O

(
|Â| logkt(|A|)

)
.

Proof. We first determine the set of affine functions {hv | v ∈ V +(T)} in time O(|Â|) using
Lemma 15. For given x, y ∈ N, let Tv be the time complexity required to query Hv(x, y),
that is to return a routing from the set or to confirm that it is empty.

We will prove that

Tv = O
(
|Â(Tv)| logkv−1(|A(Tv)|)

)
. (11)

Once we established this, for a given x we can determine if there is some r ∈ Ht(x, 0),
that is an s-directed compensated routing rs such that ϕs(rs) = x, within time Tt.

Moreover, by employing an exponential search using the approximation ht(0), we only
need to check the non-emptiness of Ht(x, 0) for O(log |A|) distinct values of x. This process
enables us to compute

ht(0) = max{ϕs(r) | s-directed compensated routing r}

in time O(Tt log |A|) = O
(
|Â| logk(|A|)

)
, which completes the proof.

So it remains to prove (11). To do so, we first establish the following claim.

▷ Claim 18. For v ∈ V +(T) and any choice of u∗ ∈ N−
s (v), it holds that

Tv = O
(

|Â+(v)| + Tu∗ +
∑

u∈N−
s (v)\{u∗}

Tu log |A(Tu)|
)

.

Proof. Given x, y ∈ N, our objective is to either find a routing r ∈ Hv(x, y) or confirm that
the set is empty. We may assume x > 0 as otherwise we simply return r = 0.

For each u ∈ N−
s (v), let yu = qv

u(x).

E. Ghorbani, J. Leander Hoff, and M. Mnich 39:15

First, we determine r(v) = qv(x). Then, for each u ∈ N−
s (v) \ {u∗}, we determine hu(yu).

Using the induced bound of that approximation on hu(yu), we perform an exponential
search to obtain xu = hu(yu) and ru ∈ Hu(xu, yu).

To perform this, due to Lemma 15, we require at most 1 + log |A(Tu)| queries to Hu. As
for xu∗ , we set

z = r(v) − σ(v) − y −
∑

u∈N−
s (v)\{u∗}

xu .

If z ≤ 0, we let xu∗ = 0 and ru∗ be the zero routing which belongs to Hu∗(0, yu∗).
Otherwise, we let xu∗ = z and query ru∗ ∈ Hu∗(xu∗ , yu∗). If no such ru∗ exists, we terminate
and assert Hv(x, y) = ∅.

Finally, we return r as given by r(v) and whose restrictions to V (Tu) is given by ru for
every u ∈ N−

s (v).
Now, the procedure takes the claimed time if r(v) and {yu | u ∈ N−

s (v)} can be calculated
in time O(|Â+(v)|). This can be done using a straightforward procedure employing two
Euclidean divisions and two iterations through the encoding Â+(v).

As for correctness, if we failed to obtain ru∗ , we must have xu∗ > hu∗(yu∗). Hence:

0 > r(v) − σ(v) − y −
∑

u∈N−
s (v)

hu(yu),

which by Lemma 11 implies Hv(x, y) = ∅. Otherwise, r satisfies every condition of Lemma 11
and thus r ∈ Hv(x, y). ◁

To complete the proof of (11) we now proceed by induction. If N−
s (v) = ∅, we have

Tv = O(|Â+(v)|) which satisfies the hypothesis as kv = 1. Otherwise, by the induction
hypothesis, for each u ∈ N−

s (v), we have that Tu = O
(
|Â(Tu)| logku−1(|A(Tu)|)

)
.

Now, using Claim 18, we obtain

Tv = O
(

|Â+(v)| + |Â(Tu∗)| logku∗ −1(|A(Tu∗)|) +
∑

u∈N−
s (v)\{u∗}

|Â(Tu)| logku(|A(Tu)|)
)

.

We choose u∗ ∈ N−
s (v) such that ku∗ = max{ku | u ∈ N−

s (v)}. Then

kv = max{ku∗} ∪ {ku + 1 | u∗ ̸= u ∈ N−
s (v)},

from which (11) follows. ◀

Proof of Theorem 1. By Proposition 5, it suffices to show that Legal Multi-Arrival
can be solved in the claimed time.

Our algorithm for Theorem 1 finds, for every s ∈ S0, an s-directed compensated routing rs

which maximizes ϕs(r). This by Theorem 9 allows us to obtain the maximal legal routing r̂

given by r̂(v) = max{rs(v) | s ∈ S0} for v ∈ V +(T).
Hence, for each s ∈ S0 we need only show that rs can be obtained in time

O
(
|Â| logk(|A|)

)
, which is established by Lemma 17.

If for some constant C > 0, we have k ≤ C log |A|
log(log |A|) , then it is seen that logk(|A|) ≤ |A|C ,

and thus the run time of the algorithm is O
(

|A|max(1,C)
)

.
Further, if for some constant C > 0, we have k ≤ C, by the fact that log(|A|) ≤ |Â|, the

run time is O
(
|Â|C+2)

. ◀

STACS 2025

39:16 A Quasi-Polynomial Time Algorithm for Multi-Arrival on Tree-Like Multigraphs

4.3 MULTI-ARRIVAL for Tree-like Simple Graphs
In this subsection, we focus on tree-like rotor graphs without parallel arcs, for which we
prove that Multi-Arrival can be solved in polynomial time.

▶ Theorem 2. Multi-Arrival can be solved on tree-like rotor graphs T with arc set A,
sink set S0 and without parallel arcs in time O

(
|S0||A|3

)
. Furthermore, in the procedure, a

full routing is obtained.

We now employ a dynamic program that given bounds b1 ≤ b2 that contain some unknown
s-directed compensated routing r, constructs lower bounds of {hv | v ∈ V +(T)}. Then, as r is
contained in those bounds, these lower bounds allow us to obtain an s-directed compensated
routing r′ ≥ r in time proportional to the size of these bounds.

▶ Lemma 19. Let T be a tree-like rotor graph, and let b1, b2 be two vectors such that
there exists an s-directed compensated routing r with b1 ≤ r ≤ b2. Then we can construct
an s-directed compensated routing r′ such that r′ ≥ r in time O(∆|Â|) where ∆ = 1 +
max

{
ϕv

w(b2(v)) − ϕv
w(b1(v)) | v ∈ V +(T) and w = N+

s (v)
}

.

Proof. First, we inductively construct for each v ∈ V +(T) a strictly increasing function
f̂v : Iv → N where Iv = {ϕv

w(b1(v)), . . . , ϕv
w(b2(v))} and a function ĥv : N → N. The func-

tion ĥv will serve as a lower bound for hv.
Suppose ĥu has been constructed for each u ∈ N−

s (v). We define f̂v and ĥv as follows:

f̂v(x) = qv(x) − σ(v) −
∑

u∈N−
s (v)

ĥu

(
qv

u(x)
)
, for x ∈ Iv,

ĥv(y) =
{

0 y < min f̂v,

max{x ∈ Iv | f̂v(x) ≤ y} min f̂v ≤ y.

It is clear that f̂v is strictly increasing and ĥv is an increasing function by arguments analogous
to that of Lemma 12. Similarly, as by induction we have ĥu ≤ hu for all u ∈ N−

s (v), it follows
that ĥv ≤ hv.

Next, we will show that

ĥv

(
ϕw

v (r(w))
)

≥ ϕv
w(r(v)) . (12)

To this end, suppose that, by induction, ĥu

(
ϕv

u(r(v))
)

≥ ϕu
v (r(u)) for u ∈ N−

s (v). Then
as r is a compensated routing, we have:

ϕw
v (r(w)) ≥ r(v) − σ(v) −

∑
u∈N−

s (v)

ϕu
v (r(u)) .

Since the function ϕv
w(·) is increasing and b1(v) ≤ r(v) ≤ b2(v), we have ϕv

w(r(v)) ∈ Iv.
Also, qv(ϕv

w(r(v))) = r(v), as r is s-directed.
Consequently,

f̂v

(
ϕv

w(r(v))
)

= r(v) − σ(v) −
∑

u∈N−
s (v)

ĥu

(
ϕv

u(r(v))
)

≤ r(v) − σ(v) −
∑

u∈N−
s (v)

ϕu
v (r(u)) ≤ ϕw

v (r(w)) .

From this, by the definition of ĥv, (12) readily follows.

E. Ghorbani, J. Leander Hoff, and M. Mnich 39:17

Next, we inductively construct an s-directed routing r′ and begin by setting r′(s)=r(s)=0.
We assume by induction that r′(w) is defined and satisfies r′(w) ≥ r(w).
Now, if w ̸= s and r′(w) = r(w) = 0, we set r′(v) = 0. From Lemma 11 we see that

r(v) = 0. Otherwise, we define

r′(v) = qv

(
ĥv

(
ϕw

v (r′(w))
))

. (13)

From r′(w) ≥ r(w) and (12) it follows that ĥv

(
ϕw

v (r′(w))
)

≥ ĥv

(
ϕw

v (r(w))
)

≥ ϕv
w(r(v)).

Taking qv from the left and right sides of this inequality, we get r′(v) ≥ r(v).
Since r′ ≥ r, it remains to show that r′ is s-directed and compensated. We accomplish this

by showing that the conditions of Lemma 11 are satisfied by r′. Let v ∈ V +(T) and assume
for each u ∈ N−

s (v) we have r′
u ∈ Hu

(
ϕu

v (r′(u)), ϕv
u(r′(v))

)
where r′

u denotes the restriction
of r′ to Tu. We will show that r′

v belongs to Hv

(
ϕv

w(r′(v)), ϕw
v (r′(w))

)
. By construction,

ϕv
w(r′(v)) > 0 if and only if r′

v(v) > 0. The case r′
v(v) = 0 is trivial as then we see that

r′
v = 0. Otherwise, we need to show that (1)–(3) of Lemma 11 hold. By the assumption, (3)

is already satisfied.
Taking ϕv

w(·) from the both sides of (13), we obtain ϕv
w(r′(v)) = ĥv

(
ϕw

v (r′(w))
)
. So r′(v)

satisfies (1).
Finally, by definition of ĥv and r′, we have:

ϕw
v (r′(w)) ≥ f̂v

(
ϕv

w(r′(v))
)

= r′(v) − σ(v) −
∑

u∈N−
s (v)

ĥu

(
ϕv

u(r′(v))
)

= r′(v) − σ(v) −
∑

u∈N−
s (v)

ϕu
v (r′(u)) .

Consequently, (2) holds as well.
Hence, the procedure returns the desired s-directed compensated routing r′ ≥ r.
Note that ĥv is increasing. Hence, it is straightforward to see that we can construct ĥv

by iterating through x ∈ {ϕv
w(b1(v)), . . . , ϕv

w(b2(v))} while keeping track of the index xu

for each u ∈ N−
s (v) that corresponds to the maximal f̂u(xu) ≤ ϕv

u(qv(x)). Hence, we can
construct ĥv in time O

(
|Â+(v)|∆ + |N−

s (v)|∆
)
. In total, including the construction of r′, we

thus take time at most O(∆|Â|). ◀

Proof of Theorem 2. We proceed analogously to the proof of Theorem 1. It suffices to show
how to obtain rs for each sink s ∈ S0.

We will demonstrate that for the simple tree-like rotor graph T , we can obtain bounds
b1 ≤ b2 in time O(|A|), which contain an s-directed compensated routing r which maxim-
izes ϕs(r). Additionally, we show that the parameter ∆, defined as in Lemma 19, satisfies
∆ ≤ O(|A|2). We then plug these into Lemma 19, which allows us to construct the desired
routing rs in time O(|A|3). Note that, since T is simple, we have |Â| = O(|A|). The
remainder of the proof is therefore devoted to finding the required vectors b1 and b2.

Let {t} = N−
s (s) and let r denote the component-wise maximal routing in Ht(ht(0), 0).

We first construct, for each v ∈ V +(T), the affine approximations hv given in Lemma 15. To
this end, define b1(s) = b2(s) = 0. Now, for v ∈ V +(T) and w = N+

s (v), assume we have
constructed b1(w) ≤ r(w) ≤ b2(w). Hence:

hv

(
ϕw

v (b1(w))
)

≤ hv

(
ϕw

v (r(w))
)

≤ hv

(
ϕw

v (b2(w))
)

.

Since r is maximal we have that ϕv
w(r(v)) = hv

(
ϕw

v (r(w))
)
. From r being s-directed it

follows that

qv

(
hv(ϕw

v (b1(w)))
)

≤ r(v) ≤ qv

(
hv(ϕw

v (b2(w)))
)

.

STACS 2025

39:18 A Quasi-Polynomial Time Algorithm for Multi-Arrival on Tree-Like Multigraphs

Hence, using hv with Cv = 2|A(Tv)| denoting a bound on the error, we define:

b1(v) = qv

(
hv

(
ϕw

v (b1(w))
)

− Cv

)
≤ r(v) ≤ qv

(
hv

(
ϕw

v (b2(w))
)

+ Cv

)
= b2(v) .

Our next task, is to show that for each v ∈ V +(T), it holds that

|b1(v) − b2(v)| ≤ 4d+(v)|A| dist(s, v) . (14)

We prove this relation by induction starting at t. The base case is trivial, as

|b1(t) − b2(t)| =
∣∣∣qt

(
ht

(
0
)

− Ct

)
− qt

(
ht

(
0
)

+ Ct

)∣∣∣ ≤ 4d+(t)|A| .

Assume that (14) holds for v; we now prove it for u ∈ N−
s (v). Since T is simple, we have

that qu(x) − qu(x′) = d+(u)(x − x′) and

|ϕv
u(x) − ϕv

u(x′)| ≤
⌈

|x − x′|
d+(v)

⌉
.

Furthermore, as hv is a contraction (see (9)), we obtain:

|b1(u) − b2(u)| = d+(u)
(∣∣hv(ϕv

u(b1(v))) − hv(ϕv
u(b2(v)))

∣∣ + 2Cu

)
≤ d+(u)

(
|ϕv

u(b1(v)) − ϕv
u(b2(v))| + 2Cu

)
≤ d+(u)

(
|b1(v) − b2(v)|

|d+(v)| + 2Cu + 1
)

≤ 4d+(u) (dist(s, v)|A| + |A(Tu)| + 1) ≤ 4d+(u) dist(s, u)|A| .

By (14) it holds that for each v ∈ V +(T), |ϕv
w(b1(v)) − ϕv

w(b2(v))| = O(|A|2), implying
that the error ∆, defined as in Lemma 19, satisfies ∆ ≤ O(|A|2). This completes the
proof. ◀

5 Conclusion

Our main result is a quasi-polynomial time algorithm for Multi-Arrival on tree-like
multigraphs. We established the polynomial-time solvability of Multi-Arrival on path-like
multigraphs, and on tree-like multigraphs with bounded contracted height. Thereby, we
extended the polynomial-time algorithm by Auger et al., which was restricted to path-like
rotor graphs with certain uniform rotor order, to a much wider class of instances.

The notion of contracted height, as we introduce it in this paper, is related to several
other classic notions of height on trees, such as topological height. Nonetheless, we have not
found any direct reference of this concept in the literature. It may therefore be interesting to
explore its relationship to those well-known concepts of height further.

The complexity of Arrival in general graphs remains widely open. As a next step, it
could be valuable to improve the quasi-polynomial time algorithms for Multi-Arrival on
tree-like rotor graphs to a polynomial-time algorithm.

References
1 David Auger, Pierre Coucheney, and Loric Duhazé. Polynomial time algorithm for ARRIVAL

on tree-like multigraphs. In Proc. MFCS 2022, volume 241 of Leibniz Int. Proc. Inform.,
pages Art. No. 12, 14. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, 2022. doi:
10.4230/LIPIcs.MFCS.2022.12.

https://doi.org/10.4230/LIPIcs.MFCS.2022.12
https://doi.org/10.4230/LIPIcs.MFCS.2022.12

E. Ghorbani, J. Leander Hoff, and M. Mnich 39:19

2 David Auger, Pierre Coucheney, Loric Duhazé, and Kossi Roland Etse. Generalized
ARRIVAL problem for rotor walks in path multigraphs. In Proc. Reachability prob-
lems 2023, volume 14235 of Lecture Notes Comput. Sci., pages 183–198. Springer, 2023.
doi:10.1007/978-3-031-45286-4_14.

3 Jérôme Dohrau, Bernd Gärtner, Manuel Kohler, Jiří Matoušek, and Emo Welzl. ARRIVAL:
a zero-player graph game in NP ∩ coNP. In A journey through discrete mathematics, pages
367–374. Springer, Cham, 2017. doi:10.1007/978-3-319-44479-6_14.

4 John Fearnley, Martin Gairing, Matthias Mnich, and Rahul Savani. Reachability switching
games. Log. Methods Comput. Sci., 17(2):Paper No. 10, 29, 2021. doi:10.23638/LMCS-17(2:
10)2021.

5 Bernd Gärtner, Thomas Dueholm Hansen, Pavel Hubácek, Karel Král, Hagar Mosaad, and
Veronika Slívová. ARRIVAL: Next Stop in CLS. In Proc. ICALP 2018, volume 107 of Leibniz
Int. Proc. Informatics, pages 60:1–60:13, 2018. doi:10.4230/LIPICS.ICALP.2018.60.

6 Bernd Gärtner, Sebastian Haslebacher, and Hung P. Hoang. A subexponential algorithm for
ARRIVAL. In Proc. ICALP 2021, volume 198 of Leibniz Int. Proc. Inform., pages 69:1–69:14.
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, 2021. doi:10.4230/LIPIcs.ICALP.2021.
69.

7 Giuliano Pezzolo Giacaglia, Lionel Levine, James Propp, and Linda Zayas-Palmer. Local-to-
global principles for the hitting sequence of a rotor walk. Electron. J. Combin., 19(1):Paper 5,
23, 2012. doi:10.37236/12.

8 Phuc Hung Hoang. On Two Combinatorial Reconfiguration Problems: Reachability and
Hamiltonicity. PhD thesis, ETH Zurich, 2022.

9 Alexander E. Holroyd, Lionel Levine, Karola Mészáros, Yuval Peres, James Propp, and David B.
Wilson. Chip-firing and rotor-routing on directed graphs. In In and out of equilibrium.
2, volume 60 of Progr. Probab., pages 331–364. Birkhäuser, Basel, 2008. doi:10.1007/
978-3-7643-8786-0_17.

10 Vyatcheslav B. Priezzhev, Deepak Dhar, Abhishek Dhar, and Supriya Krishnamurthy. Eulerian
walkers as a model of self-organized criticality. Phys. Rev. Lett., 77(25):5079, 1996. doi:
10.1103/PhysRevLett.77.5079.

11 Lilla Tóthmérész. Rotor-routing reachability is easy, chip-firing reachability is hard. European
J. Combin., 101:Paper No. 103466, 9, 2022. doi:10.1016/j.ejc.2021.103466.

STACS 2025

https://doi.org/10.1007/978-3-031-45286-4_14
https://doi.org/10.1007/978-3-319-44479-6_14
https://doi.org/10.23638/LMCS-17(2:10)2021
https://doi.org/10.23638/LMCS-17(2:10)2021
https://doi.org/10.4230/LIPICS.ICALP.2018.60
https://doi.org/10.4230/LIPIcs.ICALP.2021.69
https://doi.org/10.4230/LIPIcs.ICALP.2021.69
https://doi.org/10.37236/12
https://doi.org/10.1007/978-3-7643-8786-0_17
https://doi.org/10.1007/978-3-7643-8786-0_17
https://doi.org/10.1103/PhysRevLett.77.5079
https://doi.org/10.1103/PhysRevLett.77.5079
https://doi.org/10.1016/j.ejc.2021.103466

Identity-Preserving Lax Extensions
and Where to Find Them
Sergey Goncharov # Ñ

University of Birmingham, UK

Dirk Hofmann # Ñ

CIDMA, University of Aveiro, Portugal

Pedro Nora #

Radboud Universiteit, Nijmegen, The Netherlands

Lutz Schröder # Ñ

Friedrich-Alexander-Universität Erlangen-Nürnberg, Germany

Paul Wild # Ñ

Friedrich-Alexander-Universität Erlangen-Nürnberg, Germany

Abstract
Generic notions of bisimulation for various types of systems (nondeterministic, probabilistic, weighted
etc.) rely on identity-preserving (normal) lax extensions of the functor encapsulating the system
type, in the paradigm of universal coalgebra. It is known that preservation of weak pullbacks is a
sufficient condition for a functor to admit a normal lax extension (the Barr extension, which in fact
is then even strict); in the converse direction, nothing is currently known about necessary (weak)
pullback preservation conditions for the existence of normal lax extensions. In the present work, we
narrow this gap by showing on the one hand that functors admitting a normal lax extension preserve
1/4-iso pullbacks, i.e. pullbacks in which at least one of the projections is an isomorphism. On the
other hand, we give sufficient conditions, showing that a functor admits a normal lax extension if it
weakly preserves either 1/4-iso pullbacks and 4/4-epi pullbacks (i.e. pullbacks in which all morphisms
are epic) or inverse images. We apply these criteria to concrete examples, in particular to functors
modelling neighbourhood systems and weighted systems.

2012 ACM Subject Classification Theory of computation → Modal and temporal logics; Theory of
computation → Concurrency

Keywords and phrases (Bi-)simulations, lax extensions, modal logics, coalgebra

Digital Object Identifier 10.4230/LIPIcs.STACS.2025.40

Related Version Full Version: https://arxiv.org/abs/2410.14440

Funding Sergey Goncharov: Funded by the Deutsche Forschungsgemeinschaft (DFG, German Re-
search Foundation) – project number 501369690.
Dirk Hofmann: This work is supported by CIDMA under the FCT (Portuguese Foundation for
Science and Technology) Multi-Annual Financing Program for R&D Units.
Lutz Schröder : Funded by the Deutsche Forschungsgemeinschaft (DFG, German Research Founda-
tion) – project number 531706730.
Paul Wild: Funded by the Deutsche Forschungsgemeinschaft (DFG, German Research Foundation) –
project number 434050016.

1 Introduction

Branching-time notions of behavioural equivalence of reactive systems are typically cast as
notions of bisimilarity, which in turn are based on notions of bisimulation, the paradigmatic
example being Park-Milner bisimilarity on labelled transition systems [32]. A key point about
this setup is that while bisimilarity is an equivalence on states, individual bisimulations can

© Sergey Goncharov, Dirk Hofmann, Pedro Nora, Lutz Schröder, and Paul Wild;
licensed under Creative Commons License CC-BY 4.0

42nd International Symposium on Theoretical Aspects of Computer Science (STACS 2025).
Editors: Olaf Beyersdorff, Michał Pilipczuk, Elaine Pimentel, and Nguyễn Kim Thắng;
Article No. 40; pp. 40:1–40:20

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:s.goncharov@bham.ac.uk
https://sergey-goncharov.org/
https://orcid.org/0000-0001-6924-8766
mailto:dirk@ua.pt
https://sweet.ua.pt/dirk/
https://orcid.org/0000-0002-1082-6135
mailto:pedro.nora@ru.nl
https://orcid.org/0000-0001-8581-0675
mailto:lutz.schroeder@fau.de
https://www8.cs.fau.de/people/schroeder/
https://orcid.org/0000-0002-3146-5906
mailto:paul.wild@fau.de
https://www8.cs.fau.de/people/paul-wild/
https://orcid.org/0000-0001-9796-9675
https://doi.org/10.4230/LIPIcs.STACS.2025.40
https://arxiv.org/abs/2410.14440
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

40:2 Identity-Preserving Lax Extensions and Where to Find Them

be much smaller than the full bisimilarity relation, and in particular need not themselves
be equivalence relations. In a perspective where one views bisimulations as certificates for
bisimilarity, this feature enables smaller certificates.

The concept of bisimilarity via bisimulations can be transferred to many system types
beyond basic labelled transition systems, such as monotone neighbourhood systems [21],
probabilistic transition systems, or weighted transition systems. In fact, such systems can be
treated uniformly within the framework of universal coalgebra [38], in which the system type
is encapsulated in the choice of a set functor (the powerset functor for non-deterministic
branching, the distribution functor for probabilistic branching etc.). Coalgebraic notions of
bisimulation were originally limited to functors that preserve weak pullbacks [38], equivalently
admit a strictly functorial extension to the category of relations [5, 44]. They were later
extended to functors admitting an identity-preserving or normal lax extension [30, 31] to
the category of relations (this is essentially equivalent to notions of bisimilarity based on
modal logic [15]). While there is currently no formal general definition of what a notion of
bisimulation constitutes except via normal lax extensions, there is a reasonable claim [30, 31]
that notions of bisimulation in the proper sense, in particular with bisimulations not required
to be equivalence relations but stable under key operations such as relational composition,
will not go beyond functors admitting a normal lax extension.

The Barr extension that underlies the original notion of coalgebraic bisimulation for
weak-pullback-preserving functors [38] is, in particular, a normal lax extension; that is,
preservation of weak pullbacks is sufficient for existence of a normal lax extension. However,
this condition is far from being necessary; there are numerous functors that fail to preserve
weak pullbacks but do admit a normal lax extension, such as the monotone neighbourhood
functor [30, 31]. Using the latter fact, it has been shown that a finitary functor admits a normal
lax extension if and only if it admits a separating set of finitary monotone modalities [30, 31],
cast as monotone predicate liftings in the paradigm of coalgebraic logic [34, 39] (a similar
result holds for unrestricted functors if one considers class-sized collections of infinitary
modalities [14]). The latter condition amounts to existence of an expressive modal logic that
has monotone modalities [34, 39], and as such admits µ-calculus-style fixpoint extensions [11].
In a nutshell, a system type admits a good notion of bisimulation if and only if it admits
an expressive temporal logic. Both sides of this equivalence, however, need to be witnessed
by the construction of a fairly complicated object; what is missing is a characterization via
properties of the underlying functor, rather than via the existence of extra structure.

In the present work, we narrow the gap between weak pullback preservation as a sufficient
condition for admitting a normal lax extension, and no known necessary pullback preservation
condition. On the one hand, we establish a necessary preservation condition, showing that
functors admitting a normal lax extension (weakly) preserve 1/4-iso pullbacks, i.e. pullbacks
in which at least one of the projections is isomorphic. (We often put “weakly” in brackets
because for many of the pullback types we consider, notably for inverse images and 1/4-iso
pullbacks, weak preservation coincides with preservation.) This is a quite natural condition:
A key role in the field is played by difunctional relations [36], which may be thought of as
relations obtained by chopping the domain of an equivalence in half; for instance, given
labelled transition systems X, Y , the bisimilarity relation from X to Y is difunctional. In a
nutshell, we show that a functor preserves 1/4-iso pullbacks iff it acts in a well-defined and
monotone manner on difunctional relations. A first application of this necessary condition
is a very quick proof of the known fact that the neighbourhood functor does not admit a
normal lax extension [31].

S. Goncharov, D. Hofmann, P. Nora, L. Schröder, and P. Wild 40:3

We then go on to establish two separate sets of sufficient conditions: We show that
a functor admits a normal lax extension if it (weakly) preserves either inverse images or
both 1/4-iso pullbacks and 4/4-epi pullbacks, i.e. pullbacks in which all morphisms are epi
(these are also known as surjective pullbacks [42], and weak preservation of 4/4-epi pullbacks
is equivalent to weak preservation of kernel pairs [16]). These sufficient conditions are
technically substantially more involved. As indicated above, they imply that finitary functors
(weakly) preserving either inverse images or 1/4-iso pullbacks and 4/4-epi pullbacks admit a
separating set of finitary monotone modalities; this generalizes a previous result showing the
same for functors preserving all weak pullbacks [28]. We summarize our main contributions
in Figure 1.

weakly
preserves
pullbacks

preserves
inverse images

weakly preserves 1/4-iso
and 4/4-epi pullbacks

admits
normal lax
extensions

preserves
1/4-iso

pullbacks

Theorem 4.22

Theorem 4.16

Corollary 3.13

Example 4.12

Figure 1 Summary of main results. Solid arrows are present contributions, dashed arrows are
trivial. All implications indicated by arrows are non-reversible; in particular, Example 4.12 shows
this for Corollary 3.13.

As per the preceding discussion, these necessary and sufficient criteria essentially determine
(when applicable) whether or not a given type of systems admits a good notion of bisimulation.

The criterion of weak preservation of 1/4-iso pullbacks and 4/4-epi pullbacks is satisfied
by the monotone neighbourhood functor and generalizations thereof (e.g. [42]), and thus in
particular reproves the above-mentioned known fact that functors admitting separating sets
of monotone modalities have normal lax extensions. The criterion of (weak) preservation
of inverse images, in connection with the necessary criterion, implies that a monoid-valued
functor for a commutative monoid M (whose coalgebras are M -weighted transition systems)
admits a normal lax extension if and only if M is positive (which in turn is equivalent to the
functor preserving inverse images [18]).

Related work. With variations in the axiomatics and terminology, lax extensions go back
to an extended strand of work on relation liftings (e.g. [3, 43, 22, 29, 41, 40]). We have
already mentioned work by Marti and Venema relating lax extensions to modal logic [30, 31];
at the same time, Marti and Venema prove that the notion of bisimulation induced by a
normal lax extension captures the standard notion of behavioural equivalence. Lax relation
liftings, constructed for functors carrying a coherent order structure [24], also serve the
study of coalgebraic simulation but obey a different axiomatics than lax extensions [31,
Remark 4]). Strictly functorial (and converse-preserving) extensions of set functors to the
category of sets and relations are known to be unique when they exist, and exist if and
only if the functor preserves weak pullbacks [7, 44]; this has been extended to other base

STACS 2025

40:4 Identity-Preserving Lax Extensions and Where to Find Them

categories [3, 8]. There has been both longstanding and recent interest in quantitative
notions of relation liftings and lax extensions that act on relations taking values in a quantale,
such as the unit interval, in particular with a view to obtaining notions of quantitative
bisimulation [37, 47, 23, 13, 45, 46, 14] that witness low behavioural distance (the latter
having first been treated in coalgebraic generality by Baldan et al. [4]). The correspondence
between normal lax extensions and separating sets of modalities generalizes to the quantitative
setting [45, 46, 14].

Organization. We review material on relations, in particular difunctional relations, and
lax extensions in Section 2. In Section 3, we introduce our necessary pullback preservation
condition and show that it characterizes well-definedness of the natural functor action on
difunctional relations. We prove our main results in Section 4. In Subsection 4.1 we show
that a functor that weakly preserves 1/4-iso pullbacks and 4/4-epi pullbacks admits a normal
lax extension, and in Subsection 4.2 we show the same for functors that preserve 1/4-mono
pullbacks.

2 Preliminaries: Relations and Lax Extensions

We work in the category Set of sets and functions throughout. We assume basic familiarity
with category theory (e.g. [2]). A central role in the development is played by (weak)
pullbacks: A commutative square f · p = g · q is a pullback (of f, g) if for every competing
square f · p′ = g · q′, there exists a unique morphism k such that p · k = p′ and q · k = q′;
the notion of weak pullback is defined in the same way except that k is not required to be
unique. A functor F weakly preserves a given pullback if it maps the pullback to a weak
pullback; it is known that weak preservation of pullbacks of a given type is equivalent to
preservation of weak pullbacks of the same type [17, Corollary 4.4]. Our interest in functors
F : Set → Set is driven mainly by their role as encapsulating types of transition systems
in the paradigm of universal coalgebra [38]: An F-coalgebra (X, α) consists of a set X of
states and a transition map α : X → FX assigning to each state x ∈ X a collection α(x) of
successors, structured according to F. For instance, coalgebras for the powerset functor P
assign to each state a set of successors, and hence are just standard relational transition
systems, while coalgebras for the distribution functor D (which maps a set X to the set
of discrete probability distributions on X) assign to each state a distribution on successor
states, and are thus probabilistic transition systems.

A morphism f : (X, α) → (Y, β) of F-coalgebras is a map f : X → Y for which
β · f = Ff · α. Such morphisms are thought of as preserving the behaviour of states,
and correspondingly, states x and y in coalgebras (X, α) and (Y, β), respectively, are beha-
viourally equivalent if there exist a coalgebra (Z, γ) and morphisms f : (X, α)→ (Z, γ),
g : (Y, β)→ (Z, γ) such that f(x) = g(y).

▶ Example 2.1. On relational transition systems, i.e. coalgebras for the powerset functor P ,
behavioural equivalence instantiates to the usual notion of bisimilarity. More generally,
labelled transition systems with labels taken from a set A are coalgebras for the functor
P(A× (−)), and behavioural equivalence instantiates to Park-Milner bisimilarity [1]. On
Markov chains, understood as D-coalgebras, all states are behaviourally equivalent, as
all states are identified in the final coalgebra 1 → D1 ∼= 1. This triviality is removed
in various forms of probabilistic labelled transition systems, for instance in D(A × (−))-
coalgebras, on which behavioural equivalence instantiates to standard notions of probabilistic
bisimilarity [26].

S. Goncharov, D. Hofmann, P. Nora, L. Schröder, and P. Wild 40:5

One is then interested in notions of bisimulation relation that characterize behavioural
equivalence in the sense that two states are behaviourally equivalent iff they are related by
some bisimulation [38, 31]; this motivates the detailed study of relations and of extensions
of F that act on relations. We write r : X−7−→Y to indicate that r is a relation from the set X

to the set Y (i.e. r ⊆ X × Y), and we write x r y when (x, y) ∈ r. Both for functions and for
relations, we use applicative composition, i.e. given r : X−7−→Y and s : Y−7−→Z, their composite is
s · r : X−7−→Z (defined as s · r = {(x, z) | ∃y ∈ Y. x r y s z}). We say that r, s of type r : X−7−→Y

and s : Y−7−→Z are composable, and we extend this terminology to sequences of relations
in the obvious manner. Relations between the same sets are ordered by inclusion, that is
r ≤ r′ ⇐⇒ r ⊆ r′. We denote by 1X : X → X the identity map (hence relation) on X,
and we say that a relation r : X−7−→X is a subidentity if r ≤ 1X . Given a relation r : X−7−→Y ,
r◦ : Y−7−→X denotes the corresponding converse relation; in particular, if f : X → Y is a
function, then f◦ : Y−7−→X denotes the converse of the corresponding relation. For a relation
r : X−7−→Y , we denote by dom r ⊆ X and cod r ⊆ Y the respective domain and codomain (i.e.
dom r = {x ∈ X | ∃y ∈ Y. x r y} and cod r = {y ∈ Y | ∃x ∈ X. x r y}). A special class of
relations of interest are difunctional relations [36], which are relations factorizable as
g◦ · f for some functions f : X → Z and g : Y → Z, i.e. x r y iff f(x) = g(y). In the following
we record some folklore facts about difunctional relations.

▶ Lemma 2.2. Let r : X−7−→Y be a relation. Then the following are equivalent:
1. r is difunctional;
2. for all x1, x2 in X and y1, y2 ∈ Y , if x1 r y1 r◦ x2 r y2, then x1 r y2.
3. for every span X π1←− R π2−→ Y such that r = π2 · π◦

1 , the pushout square

R Y

X O

π2

π1

⌜
p1

p2

is a weak pullback.

As we can see in Lemma 2.2(3) above, difunctional relations are characterized as weak
pullbacks, and in this regard we recall that generally, a commutative square f · p = g · q is a
weak pullback iff q · p◦ = g◦ · f , equivalently p · q◦ = f◦ · g.

The difunctional closure of a relation r : X−7−→Y is the least difunctional relation
r̂ : X−7−→Y greater than or equal to r. It follows from Lemma 2.2 that the difunctional closure
of a relation r : X−7−→Y given by a span X π1←− R π2−→ Y is obtained by computing its pushout
X p1−→ O p2←− Y ; i.e., the difunctional closure r̂ of r is the relation p◦

2 · p1. More explicitly,
r̂ =

∨
n∈N r · (r◦ · r)n (e.g. [36, 20]).

A lax extension L of an endofunctor F : Set→ Set is a mapping that sends any relation
r : X−7−→Y to a relation Lr : FX−7−→FY in such a way that

(L1) r ≤ r′ =⇒ Lr ≤ Lr′,
(L2) Ls · Lr ≤ L(s · r),
(L3) Ff ≤ Lf and (Ff)◦ ≤ L(f◦),

for all r : X−7−→Y , s : Y−7−→Z and f : X → Y . We define relax extensions in the same way,
without however requiring property (L2). We call a (re)lax extension identity-preserving,
or normal, if L1X = 1FX for every set X, and we say that a (re)lax extension preserves
converses if L(r◦) = (Lr)◦.

STACS 2025

40:6 Identity-Preserving Lax Extensions and Where to Find Them

A tactical advantage of using the term “relax extension” is that we can thus refer to
constructions that produce lax extensions most of the time, except for some cases when
(L2) may fail. A prototypical example of this sort is the Barr extension F [6], which
for weak-pullback-preserving F is even a strict extension, and is defined as follows. Given
a relation r : X−7−→Y , choose a factorization π2 · π◦

1 for some span X π1←− R π2−→ Y and put
Fr = Fπ2 · (Fπ1)◦. This assignment is independent of the factorization of r, and r admits a
canonical factorization which is given by projecting into X and Y the subset of X × Y

of pairs of elements related by r. It is well-known that for every Set-functor, the Barr
extension is a normal relax extension, but it is a lax extension precisely when F preserves
weak pullbacks [27]. In this case, the Barr extension is also the least lax extension of F, for it
follows from (L1)–(L3) that Fπ2 · (Fπ1)◦ ≤ Lr for every lax extension L.

Lax extensions have been used extensively to treat the notion of bisimulation coalgeb-
raically (e.g. [22, 29, 31]). Given a lax extension L : Rel → Rel of a functor F : Set → Set,
an L-simulation between F-coalgebras (X, α) and (Y, β) is a relation s : X−7−→Y such that
β · s ≤ Ls · α, that is, whenever x r y, then α(x) Lr β(y). If L preserves converses, then
L-simulations are more suitably called L-bisimulations. Between two given coalgebras,
there is a greatest L-(bi)simulation, which is termed L-(bi)similarity. It has been shown
[31] that if L is normal and preserves converses, then L-bisimilarity coincides with coalgebraic
behavioural equivalence as recalled above. The axioms of lax extensions guarantee that
L-bisimulations are closed under converse and composition and that coalgebra morphisms
are (functional) L-bisimulations, so that L-bisimilarity includes behavioural equivalence; that
is, L-bisimilarity is complete for behavioural equivalence. Normality of lax extensions ensures
that L-bisimulations are sound for behavioural equivalence, i.e. L-bisimilarity is included in
behavioural equivalence.

▶ Example 2.3.
1. For relational transition systems, understood as P-coalgebras, we have a normal lax

extension L of P given by the standard Barr extension, which in turn coincides with
the well-known Egli-Milner extension: Given r : X−7−→Y , S ∈ PX, and T ∈ PY , we have
S Lr T iff for all x ∈ S, there exists y ∈ T such that x r y, and symmetrically. An
L-bisimulation is then just a bisimulation in the standard sense.

2. On F = D(A×(−)), we have a normal lax extension L given for r : X−7−→Y , µ ∈ D(A×X),
ν ∈ D(A× Y) by µ Lr ν iff for all l ∈ A, A ∈ PX, we have ν({l} × r[A]) ≥ µ({l} × A),
and symmetrically [15]. The arising notion of L-bisimulation is sound and complete for
probabilistic bisimilarity on probabilistic labelled transition systems.

▶ Remark 2.4. As mentioned in the introduction, a functor F admits a normal lax extension
iff F admits a separating class of monotone predicate liftings [31, 14]. For readability, we
discuss only the case where both the functor and the predicate liftings are finitary [31]. An
n-ary predicate lifting λ for F is a natural transformation of type λ : Qn → Q · Fop where Q
denotes the contravariant powerset functor (given by QX being the powerset of a set X, and
Qf(B) = f−1[B] for f : X → Y and B ∈ QY); that is, for a set X, λX lifts n predicates
on X to a predicate on FX. Predicate liftings determine modalities in coalgebraic modal
logic [34, 39]; a basic example is the unary predicate lifting λ for the (covariant) powerset
functor P given by λX(A) = {B ∈ PX | B ⊆ A} for a predicate A ⊆ X, which determines
the standard box modality on P-coalgebras, i.e. on standard relational transition systems. A
set of predicate liftings is separating if distinct elements of FX can be separated by lifted
predicates; this condition ensures that the associated instance of coalgebraic modal logic is

S. Goncharov, D. Hofmann, P. Nora, L. Schröder, and P. Wild 40:7

expressive, i.e. separates behaviourally inequivalent states [34, 39]. Monotonicity of predicate
liftings allows the definition of modal fixpoint logics for temporal specification [11]. In the
mentioned correspondence between lax extensions and predicate liftings, the construction of
predicate liftings from a lax extension L roughly speaking involves application of L to the
elementhood relation.

3 Functor Actions on Difunctional Relations

Our pullback preservation criterion for existence of normal lax extensions grows from an
analysis of how functors act on difunctional relations. To start off, it is well-known that
normal lax extensions of a given Set-functor are given on difunctional relations by the action
of the functor (e.g. [31, 23]):

▶ Proposition 3.1. Let L be an assignment of relations Lr : FX−7−→FY to relations r : X−7−→Y

that satisfies (L1), (L2) as well as 1FX ≤ L1X for all X ∈ Set. Then L is a lax extension of F
iff for all functions f : W → X, g : Z → Y and relations r : X−7−→Y , L(g◦ ·r ·f) = (Fg)◦ ·Lr ·Ff.

▶ Corollary 3.2. All normal lax extensions of a given Set-functor coincide on difunctional
relations. Specifically, for every normal lax extension L of F : Set→ Set, L(g◦ · f) = Fg◦ · Ff

for all f : X → A and g : Y → A.

Therefore, a functor F : Set → Set that admits at least one normal lax extension must be
monotone on difunctional relations in the following sense: for all difunctional relations
g◦ · f : X−7−→Y and g′◦ · f ′ : X−7−→Y , if g◦ · f ≤ g′◦ · f ′ then (Fg)◦ · Ff ≤ (Fg′)◦ · Ff ′. This
property no longer mentions lax extensions, and implies that the functor is well-defined
on difunctional relations, i.e. that F sends cospans that determine the same difunctional
relation to cospans that determine the same difunctional relation. In this section, we show
that being monotone on difunctional relations is equivalent to preserving 1/4-iso (2/4-mono)
pullbacks in the sense defined next; as indicated in the introduction, this allows for a quick
proof of the fact that the neighbourhood functor fails to admit a normal lax extension [31].
On this occasion, we also discuss various types of pullbacks and their (weak) preservation in
some more breadth for later use in our sufficient criteria (Section 4).

▶ Definition 3.3. We say that a functor F : Set → Set preserves 1/4-iso 2/4-mono
pullbacks, 1/4-iso pullbacks, 1/4-mono pullbacks and inverse images if it sends
pullbacks of the following forms, respectively, to pullbacks, with arrows ↣ and ≃−→ indicating
injectivity and bijectivity correspondingly.

P B

X Y

⌟
≃ P B

X Y

⌟
≃ P B

X Y.

⌟
P B

X Y

⌟

▶ Remark 3.4. 1/4-Iso 2/4-mono pullbacks are special inverse images, characterized by the
property that the fibre over every element in the image of the function B ↣ Y is a singleton.
In particular, the inverse image of the empty subset is a 1/4-iso 2/4-mono pullback.

Due to the following proposition, for consistency, we tend to use “preservation of 1/4-mono
pullbacks” instead of “preservation of inverse images”.

▶ Proposition 3.5. A Set-functor preserves 1/4-mono pullbacks iff it preserves inverse
images.

STACS 2025

40:8 Identity-Preserving Lax Extensions and Where to Find Them

Similarly, we will see in Theorem 3.12 that preservation of 1/4-iso pullbacks is equivalent to
preservation of 1/4-iso 2/4-mono pullbacks. We thus tend to use the terms “1/4-iso 2/4-mono
pullback preserving” and “1/4-iso pullback preserving” interchangeably. Furthermore, in
Example 3.10 we will see that preservation of 1/4-mono pullbacks is properly stronger than
preservation of 1/4-iso pullbacks.

Each of the preservation properties introduced in Definition 3.3 implies preservation
of monomorphisms, even if we only require that the corresponding pullbacks are weakly
preserved. Hence, as at least one of the projections of the pullbacks is monic, preserving the
pullbacks mentioned is equivalent to weakly preserving them, and, therefore, each of the
properties is implied by weakly preserving pullbacks. Also, note that weakly preserving limits
of a given shape is equivalent to preserving weak limits of that shape (e.g. [17, Corollary 4.4]).
Furthermore, weakly preserving pullbacks is known to be sufficient for the existence of a
normal lax extension – the Barr extension – and this condition can be decomposed as follows:

▶ Theorem 3.6 ([19, Theorem 2.7]). A Set-functor weakly preserves pullbacks iff it weakly
preserves inverse images and kernel pairs.

It turns out that weakly preserving kernel pairs is equivalent to weakly preserving 4/4-epi
pullbacks as defined next.

▶ Definition 3.7. We say that a functor F : Set→ Set weakly preserves 4/4-epi pullbacks,
if it sends pullbacks of the form

P B

X Y,

⌟

with arrows ↠ indicating surjectivity, to weak pullbacks (necessarily of surjections).

▶ Theorem 3.8 ([16, Corollary 5]). A Set-functor weakly preserves kernel pairs iff it weakly
preserves 4/4-epi pullbacks.

Therefore, the condition of weakly preserving pullbacks can be decomposed as:

▶ Corollary 3.9. A Set-functor weakly preserves pullbacks iff it weakly preserves 1/4-mono
pullbacks and 4/4-epi pullbacks.

In Section 4, we will show that either preserving 1/4-mono pullbacks or weakly preserving
1/4-iso pullbacks and 4/4-epi pullbacks is sufficient for the existence of a normal lax extension.

▶ Example 3.10.
1. The subfunctor (−)3

2 : Set → Set of the functor (−)3 : Set → Set that sends a set X to
the set of triples of elements of X consisting of at most two distinct elements does not
preserve pullbacks weakly [1] but it preserves inverse images.

2. The neighbourhood functor N : Set → Set (whose coalgebras are neighbourhood
frames [10]) sends a set X to the set NX = PPX of neighbourhood systems over X,
and a function f : X → Y to the function N f : NX → NY that assigns to every ele-
ment A ∈ NX the set {B ⊆ Y | f−1[B] ∈ A}. The monotone neighbourhood functor
M : Set→ Set is the subfunctor of the neighbourhood functor that sends a set X to the
set of upward-closed subsets of (PX,⊆). Its coalgebras are monotone neighbourhood
frames, which feature, e.g., in the semantics of game logic [33] and concurrent dynamic
logic [35]. A closely related functor is the clique functor C : Set → Set, which is the

S. Goncharov, D. Hofmann, P. Nora, L. Schröder, and P. Wild 40:9

subfunctor of M given by CX = {α ∈ MX | ∀A, B ∈ α. A ∩ B ̸= ∅}. The functors M
and C do not preserve inverse images: Consider the sets 3 = {0, 1, 2} and 2 = {a, b}.
Let e : 3 → 2 be the function that sends 0, 1 to a and 2 to b, and B = {a}. Then
Me(↑{0, 1} ∪ ↑{1, 2}) = ↑{a}, where ↑ denotes upwards closure, but e−1[B] = {0, 1} and
↑{0, 1}∪↑{1, 2} does not belong to the image of the functionMi : M{0, 1}↣M3, where
i : {0, 1}↣ 3 denotes the corresponding inclusion. However, routine calculations show
that these functors do preserve 1/4-iso (2/4-mono) pullbacks and weakly preserve 4/4-epi
pullbacks (for the first functor, see [42, Proposition 4.4]).

3. Given a commutative monoid (M, +, 0) (or just M), the monoid-valued functor M (−)

maps a set X to the set M (X) of functions µ : X →M with finite support, i.e. µ(x) ̸= 0
for only finitely many x. The coalgebras of M (−) are M -weighted transition systems. It
is known that M (−) preserves inverse images iff M is positive, i.e. does not have non-zero
invertible elements [18, Theorem 5.13] (the cited theorem shows the equivalence for non-
empty inverse images; it is easy to check that in case M is positive, M (−) preserves empty
pullbacks). Moreover, M (−) preserves weak pullbacks iff M is positive and refinable, i.e.
whenever m1 + m2 = n1 + n2 for m1, m2, n1, n2 ∈ M , then there exists a 2× 2-matrix
with entries in M whose i-th column sums up to mi and whose j-th row sums up to nj ,
for i, j ∈ {1, 2} [18, Theorem 5.13]. Monoids that are positive but not refinable are fairly
common [12]; the simplest example is the additive monoid {0, 1, 2} where 2 + 1 = 2.
The functor M (−) preserves 1/4-iso (2/4-mono) pullbacks iff it preserves inverse images iff
M is positive. Indeed, suppose that M is not positive. Consider the functions !2 : 2→ 1,
!∅ : ∅ → 1. Then, for mutually inverse non-zero elements u and v of M , the function
M (!2) sends both the pair (0, 0) and the pair (u, v) to 0 ∈ M (1), which is in the image
of M (!∅) : M (∅) → M (1). Therefore, the functor M (−) does not preserve the (1/4-iso)
pullback of (!2, !∅): This pullback has vertex ∅, and M (∅) has only one element.

4. In recent work [16], it has been shown that the functor of a monad induced by a variety
of algebras preserves inverse images iff whenever a variable x is canceled from a term
when identified with other variables, then the term does not actually depend on x. This
provides a large reservoir of functors that preserve inverse images but do not always have
easily guessable normal lax extensions (whose existence will however be guaranteed by
our main results). One example is the functor that maps a set X to the free semigroup
over X quotiented by the equation xxx = xx, as neither this equation nor associativity
cancel any variables. Notice that this functor does not preserve 4/4-epi pullbacks.

Finally, we show that being monotone on difunctional relations is equivalent to preserving
1/4-iso (2/4-mono) pullbacks. The next lemma connects the order on difunctional relations
and pullbacks of such type.

▶ Lemma 3.11. Let X f−→ A g←− Y and X f ′
−→ A′ g′

←− Y be cospans for which there is a map
h : A→ A′ such that f ′ = h · f and g′ = h · g. Moreover, consider the commutative square

f [X] ∩ g [Y] f ′ [X] ∩ g′ [Y]

A A′

h′

h

(3.i)

where h′ : f [X] ∩ g[Y]→ f ′[X] ∩ g′[Y] is the restriction of h to f [X] ∩ g[Y] and the vertical
arrows denote subset inclusions.
1. If g◦ · f ≥ g′◦ · f ′, then h′ is a bijection.
2. If g◦ · f ≥ g′◦ · f ′ and the cospan (f, g) is epi, then (3.i) is a pullback.
3. If h′ is a bijection and (3.i) is a pullback, then g◦ · f ≥ g′◦ · f ′.

STACS 2025

40:10 Identity-Preserving Lax Extensions and Where to Find Them

(Notice in particular that if h′ is a bijection and (3.i) is a pullback, then (3.i) is a 1/4-iso
pullback.) Using Lemma 3.11, one proves the announced characterization:

▶ Theorem 3.12. The following clauses are equivalent for a functor F : Set→ Set:
1. F preserves 1/4-iso 2/4-mono pullbacks.
2. F is well-defined on difunctional relations.
3. F is monotone on difunctional relations.
4. F preserves 1/4-iso pullbacks.

▶ Corollary 3.13. If a Set-functor admits a normal lax extension, then it preserves 1/4-iso
pullbacks.

Therefore, the following functors do not admit a normal lax extension.

▶ Example 3.14.
1. The neighbourhood functor N : Set→ Set (cf. Example 3.10(2)) does not preserve 1/4-

iso pullbacks: the element P1 ∈ N1 belongs to the image of the function N !∅, with
!∅ : ∅ ↣ 1, however, its fiber w.r.t. N !2, with !2 : 2→ 1, is not a singleton.

2. For every non-positive commutative monoid, the monoid valued functor M (−) : Set→ Set
does not preserve 1/4-iso pullbacks (Example 3.10(3)).

3. More generally, by (the proof of) [12, Proposition 4.4], the functor F : Set→ Set of the
monad induced by a variety of algebras that admits a weak form of subtraction (for
instance, groups, rings, vector spaces) does not preserve 1/4-iso pullbacks.

4. For every set A with at least two elements, consider the functor Set(A,−)/ ∼ that maps
a set X to the quotient of the set Set(A, X) by the equivalence relation ∼ that identifies
exactly all non-injective maps, and maps a function f : X → Y to the one sending the
equivalence class of g : A → X to that of f · g. This functor does not preserve 1/4-iso
pullbacks. For instance, for A = {0, 1}, consider the sets 3 = {a, b, c} and B = {0}.
Then, the fibre of each element of B ⊆ A w.r.t. the function f : 3→ A that sends a to 0
and b, c to 1 is a singleton; however, the fibre of the equivalence class of the constant map
into 0 w.r.t. Set(A, f)∼ is not a singleton. Similar counterexamples can be constructed
for arbitrary A with at least two elements.

▶ Remark 3.15. Every coalgebra can be quotiented by behavioural equivalence (e.g. [25]).
Such a quotient can be described by a cocongruence on a given coalgebra, i.e. an equivalence
relation that is compatible with the coalgebra structure, and, of course, a cocongruence can
be specified by a generating relation that need not itself be an equivalence. For instance,
cocongruences have been studied in the context of linear weighted automata [9] (where they
are in fact termed bisimulations), and even on neighbourhood frames, one obtains such a
notion of equivalence-witnessing relation from the standard Barr extension [31]. All this
does not contradict the moral claim that, by Example 3.14, there are no “good” notions
of bisimulation for, e.g., neighbourhood frames or integer-weighted transition systems, as
(generating relations of) cocongruences are missing some of the features that we include in
the wish list for bisimulations and that L-bisimulations do provide (cf. Section 2). Notably,
cocongruences work only on a single coalgebra (while we expect bisimulations to connect two
possibly different coalgebras), and they fail to be closed under relational composition.

4 Existence of Normal Lax Extensions

We proceed to present the main results of the paper: a Set-functor that weakly preserves
1/4-iso pullbacks and 4/4-epi pullbacks, or that preserves 1/4-mono pullbacks admits a
normal lax extension. In view of the facts recalled in Section 2, this means that these functors

S. Goncharov, D. Hofmann, P. Nora, L. Schröder, and P. Wild 40:11

admit a notion of bisimulation that captures behavioural equivalence, or equivalently, that
they admit a separating class of monotone predicate liftings.

We begin by showing that the smallest lax extension of a Set-functor is obtained by
“closing its Barr relax extension under composition”. As a consequence, in Corollary 4.5 we
obtain a criterion to determine if a Set-functor admits a normal lax extension.

Consider the partially ordered classes Lax(F) and ReLax(F) of lax and relax extensions of F,
respectively, ordered pointwise. With the following result we can construct lax extensions
from relax extensions in a universal way.

▶ Proposition 4.1. Let F : Set→ Set be a functor. The inclusion Lax(F) ↣ ReLax(F) has a
left adjoint (−)• : ReLax(F)→ Lax(F) that sends a relax extension R : Rel→ Rel of F to its
laxification R• : Rel→ Rel, which is defined on r : X−7−→Y by

R•r =
∨

r1,...,rn :
rn·...·r1≤r

Rrn · . . . · Rr1. (4.i)

Furthermore, if a relax extension R : Set→ Set preserves converses, then so does its laxifica-
tion.

Since every lax extension of a functor is greater than or equal to the Barr relax extension (cf.
Section 2), we thus have:

▶ Corollary 4.2. The smallest lax extension of a functor is given by the laxification of its
Barr relax extension.

For the Barr relax extension of a Set-functor, the supremum in the formula (4.i) can be
restricted as follows.

▶ Lemma 4.3. For every composable sequence r1, . . . , rn such that rn · . . . · r1 ≤ r, for
some relation r, there is a composable sequence r′

1, . . . , r′
n such that r′

n · . . . · r′
1 = r and

Frn · . . . · Fr1 ≤ Fr′
n · . . . · Fr′

1.

▶ Corollary 4.4. Let F : Set→ Set be a functor. For every relation r : X−7−→Y ,

(F)•r =
∨

r1,...,rn :
rn·...·r1=r

Frn · . . . · Fr1.

Therefore, as normality of a lax extension also implies normality of any lax extension below
it, we have

▶ Corollary 4.5. A functor F : Set→ Set admits a normal lax extension iff the laxification
of its Barr relax extension is normal. More concretely, a functor F : Set → Set admits a
normal lax extension iff for every set X and every composable sequence of relations r1, . . . , rn,
whenever rn · . . . · r1 = 1X , then Frn · . . . · Fr1 ≤ 1FX .

▶ Remark 4.6. It is well-known [6] that for every functor F : Set → Set and all relations
r : X−7−→Y and s : Y−7−→Z, F(s · r) ≤ Fs ·Fr. Hence, once we show the inequality of Corollary 4.5
we actually have equality.

In general terms, our main results follow by showing that in Corollary 4.5, under certain
conditions on Set-functors, it suffices to consider composable sequences of relations that
satisfy nice properties. In this regard, it is convenient to introduce the following notion.

▶ Definition 4.7. Let r1, . . . , rn be a composable sequence of relations. A composable sequence
s1, . . . , sk is said to be a Barr upper bound of the sequence r1, . . . , rn if rn·. . .·r1 = sk ·. . .·s1
and Frn · . . . · Fr1 ≤ Fsk · . . . · Fs1.

STACS 2025

40:12 Identity-Preserving Lax Extensions and Where to Find Them

In Section 3 we have seen that every Set-functor that admits a normal lax extension
preserves 1/4-iso pullbacks, or equivalently, it is monotone on difunctional relations (The-
orem 3.12). As we show next, the latter condition is also equivalent to satisfying the criterion
of Corollary 4.5 for pairs of composable relations.

▶ Proposition 4.8. Let F : Set→ Set be a functor. The following clauses are equivalent:
(i) The functor F : Set→ Set preserves 1/4-iso pullbacks.
(ii) For all relations r1 : X−7−→Y , r2 : Y−7−→X such that r2 · r1 ≤ 1X , Fr2 · Fr1 ≤ 1FX .
(iii) For all relations r1 : X−7−→Y , r2 : Y−7−→X such that r2 · r1 = 1X , Fr2 · Fr1 ≤ 1FX .

Now, suppose that we want to extend the previous result in inductive style to composable
triples of relations. Due to the next lemma, a simple idea to reduce the case of composable
triples to the case of composable pairs of relations is to take the difunctional closure of the
second relation in the sequence.

▶ Lemma 4.9. Let r1 : X0−7−→X1 , r2 : X1−7−→X2 and r3 : X2−7−→X3 be relations given by spans
that form the base of the commutative diagram

O

X0 R1 X1 R2 X2 R3 X3.π1 ρ1 π2 ρ2 π3 ρ3

p1 p2

ρ′
1 π′

3

⌞

Then, with r′
1 : X−7−→O and r′

3 : O−7−→X3 defined by the spans X0 π1←− R1
ρ′

1−→ O and X0
π′

3←−
R3

ρ3−→ X3, respectively, Fr3 · Fr2 · Fr1 ≤ Fr3 · Fr̂2 · Fr1 ≤ Fr′
3 · Fr′

1.

Indeed, let r1 : X−7−→X1 , r2 : X1−7−→X2 and r3 : X2−7−→X be relations such that r3 · r2 · r1 = 1X .
Then, by Proposition 4.8 and Lemma 4.9, we conclude that Fr3 · Fr2 · Fr1 ≤ 1FX once we
show that r′

3 · r′
1 = 1X . Of course, in general, this does not hold. Consider the following

example where the arrows depict pairs of related elements.

• •

x • • x

y • • y

• •

X X1 X2 X

r1 r2 r3

By taking the difunctional closure r̂2 of r2 we get

• •

x • • x

y • • y

• •

r1 r̂2 r3

S. Goncharov, D. Hofmann, P. Nora, L. Schröder, and P. Wild 40:13

So, r3 · r̂2 · r1 = r′
3 · r′

1 is not a subidentity. Now the property of preserving 1/4-iso pullbacks
is helpful again. As we will see in Lemma 4.10, under this condition, the sequence below is a
Barr upper bound of the first one and it is obtained from it by “splitting” where necessary
the elements of X1 that do not belong to the codomain of r1 and the elements of X2 that do
not belong to the domain of r3.

• •

x • • x

•

•

y • • y

• •

r1 r2 r3

In this situation we can apply the difunctional closure to r2 (which in this particular example
is already difunctional) to reduce the number of relations as discussed in Lemma 4.9.

▶ Lemma 4.10. Let F : Set → Set be a functor that preserves 1/4-iso pullbacks, and let
r1 : X−7−→Y , r2 : Y−7−→Z and r3 : Z−7−→W be relations. Then, there are relations s1 : X−7−→Y ′,
s2 : Y ′−7−→Z ′ and s3 : Z ′−7−→W such that s1, s2, s3 is a Barr upper bound of r1, r2, r3 and
1. for all y, y′ ∈ Y ′ and all z ∈ Z ′, if y ̸= y′, y s2 z and y′ s2 z, then z ∈ dom(s3);
2. for all y ∈ Y ′ and z, z′ ∈ Z ′, if z ̸= z′, y s2 z and y s2 z′, then y ∈ cod(s1).

The previous lemma essentially closes the argument that we have been crafting so far.

▶ Theorem 4.11. Let F : Set→ Set be a functor. The following clauses are equivalent:
(i) The functor F : Set→ Set preserves 1/4-iso pullbacks.
(ii) For all relations r1 : X−7−→Y , r2 : Y−7−→Z and r3 : Z−7−→X such that r3 · r2 · r1 ≤ 1X ,

Fr3 · Fr2 · Fr1 ≤ 1FX .
(iii) For all relations r1 : X−7−→Y , r2 : Y−7−→Z and r3 : Z−7−→X such that r3 · r2 · r1 = 1X ,

Fr3 · Fr2 · Fr1 ≤ 1FX .

However, as we see next, Theorem 4.11 is as far as we can go under the assumption of
1/4-iso pullbacks preservation. In other words, the fact that a Set-functor preserves 1/4-iso
pullbacks is not sufficient to conclude that it admits a normal lax extension.

▶ Example 4.12. Let us define a functor F : Set→ Set as a quotient of
∐

n∈{f,g}{n}×X5 ∼=
X5 + X5 under the equivalence defined by the clauses:

f(y, x, z, x, t) ∼ f(y′, x, z′, x, t′) f(t, x, x, y, y) ∼ f(t′, x, x, y, y)
g(y, x, z, x, t) ∼ g(y′, x, z′, x, t′) g(x, x, y, y, t) ∼ g(x, x, y, y, t′)
f(y, x, z, x, t) ∼ g(y′, x, z′, x, t′) f(t, x, z, y, z) ∼ g(t, x, t, y, z)

where f(x1, . . . , x5) and g(x1, . . . , x5) denote the corresponding elements (f, x1, . . . , x5),
(g, x1, . . . , x5) ∈

∐
n∈{f,g}{n} ×X5. Let 2 = {x, y} and consider the composable sequence of

relations depicted below.

STACS 2025

40:14 Identity-Preserving Lax Extensions and Where to Find Them

• • • x

• • y

x • •

y • • •

r1 r2 r3 r4

Then, F preserves 1/4-iso pullbacks and r4 · r3 · r2 · r1 = 12, however, Fr4 ·Fr3 ·Fr2 ·Fr1 ̸≤ 1F2.

4.1 The case of functors that weakly preserve 4/4-epi pullbacks
From Theorem 4.11 it basically follows that a functor that weakly preserves 1/4-iso pullbacks
and 4/4-epi pullbacks admits a normal lax extension. But to see this, first we need to
sharpen Corollary 4.5. The goal is to show that it suffices to consider composable sequences
of relations where all relations other than the first and the last are total and surjective. To
illustrate how we achieve this, let us consider the sequence of relations depicted below.

• • •

x • • • x

y • • • y

• • •

X X1 X2 X3 X

r1 r2 r3 r4

Then, by adding new elements 0 and 1 to X1, X2 and X3 we can extend this sequence to the
sequence

• • •

0 0 0

x • • • x

y • • • y

1 1 1

• • •

X X ′
1 X ′

2 X ′
3 X,

r′
1 r′

2 r′
3 r′

4

where the dotted arrows indicate pairs of elements that were added to the corresponding
relation as follows: for i = 2, 3, r′

i relates 0 ∈ X ′
i−1 to every element of Xi ∪ {0} that does

not belong to the codomain of ri and relates every element of Xi−1 ∪ {1} that does not
belong to the domain of ri to 1 ∈ X ′

i. In this way, we guarantee that r′
2 and r′

3 are total and
surjective and that r′

4 · r′
3 · r′

2 · r′
1 = r4 · r3 · r2 · r1 = 1X . We could have extended r2 and r3

S. Goncharov, D. Hofmann, P. Nora, L. Schröder, and P. Wild 40:15

to total and surjective relations by adding just a single element ∗ to X1, X2 and X3 that
would simultaneously take the role of 0 and 1. However, composing the resulting sequence of
relations would not yield the identity relation:

• • •

∗ ∗ ∗

x • • • x

y • • • y

• • •

X X ′
1 X ′

2 X ′
3 X.

r′
1 r′

2 r′
3 r′

4

In other words, by splitting ∗ in two elements 0 and 1, the former to make the relations r2
and r3 surjective and the latter to make them total, we obtain a subidentity because we never
create paths between elements of X1 that are not part of the domain of r2 and elements of
X3 that are not part of the codomain of r3. In the next lemma we formalize this procedure
for arbitrary composable sequences of relations and show that it yields Barr upper bounds.

▶ Lemma 4.13. A functor F : Set→ Set that preserves 1/4-iso pullbacks admits a normal
lax extension iff for every composable sequence of relations r1, . . . , rn such that n ≥ 4 and
r2, . . . , rn−1 are total and surjective, whenever rn · . . . · r1 = 1X , for some set X, then
Frn · . . . · Fr1 ≤ 1FX .

▶ Remark 4.14. In a composable sequence of relations that satisfies the conditions of
Lemma 4.13 the first relation is necessarily total while the last one is necessarily surjective.

Now, our first main result follows straightforwardly. Since the composite of total and
surjective relations is total and surjective, due to the following fact, every composable
sequence of relations where all relations other than the first and the last are total and
surjective admits a Barr upper bound consisting of three relations.

▶ Proposition 4.15. A functor F : Set→ Set weakly preserves 4/4-epi pullbacks iff for all
relations r : X−7−→Y and s : Y−7−→Z, whenever r is surjective and s is total, Fs · Fr = F(s · r).

▶ Theorem 4.16. A Set-functor that weakly preserves 1/4-iso pullbacks and 4/4-epi weak
pullbacks admits a normal lax extension.

▶ Remark 4.17. Preservation of 4/4-epi pullbacks plays a role in the analysis of interpolation
in coalgebraic logic [42]. In particular, this analysis implies that given a separating set Λ of
monotone predicate liftings for a finite-set-preserving functor F, which induces an expressive
modal logic L(Λ) for F-coalgebras, the logic L(Λ) has interpolation iff F weakly preserves
4/4-epi pullbacks [42, Theorem 37]. In connection with the fact that a functor has a normal
lax extension iff it has a separating set of monotone predicate liftings [31], we obtain the
following application of Theorem 4.16 and Corollary 3.13: A finite-set preserving functor F
has a separating set of monotone predicate liftings such that the associated modal logic has
uniform interpolation iff F weakly preserves 1/4-iso pullbacks and 4/4-epi pullbacks.

STACS 2025

40:16 Identity-Preserving Lax Extensions and Where to Find Them

4.2 The case of functors that preserve 1/4-mono pullbacks
To obtain Theorem 4.16, we refined Corollary 4.5 to composable sequences of relations where
all relations other than the first and the last are total and surjective. And to achieve this in
Lemma 4.13, given a composable sequence of relations, we added pairs of related elements to
the relations in the sequence. In the sequel, we will show that every functor that preserves
1/4-mono pullbacks admits a normal lax extension. We will see that for these functors it is
even possible to refine Corollary 4.5 to composable sequences of relations where all relations
are total and surjective. However, we will achieve this in Lemma 4.19 below by, given a
composable sequence of relations, removing pairs of related elements from the relations in
the sequence. Our proof strategy is justified by the next fact.

▶ Proposition 4.18. A functor F : Set→ Set preserves 1/4-mono pullbacks iff for all relations
r : X−7−→Y and s : Y−7−→Z, whenever r is the converse of a partial function or s is a partial
function, Fs · Fr = F(s · r).

This result enables a “look ahead and behind” strategy for Corollary 4.5. The idea is
that, given a composable sequence of relations r1, . . . , rn such that rn · . . . · r1 = 1X , then,
with ri : Xi−1−7−→Xi being a relation in the sequence, removing the elements of Xi that do not
belong to the codomain of ri · . . . · r1 or do not belong to the domain of rn · . . . · ri+1 yields a
Barr upper bound of our original sequence. For instance, consider the composable sequence
of relations depicted in Example 4.12, which we used to show that there are functors that
preserve 1/4-iso pullbacks but do not admit a normal lax extension. In the next lemma, in
particular, we show that for functors that preserve 1/4-mono pullbacks the sequence below of
total and surjective relations is a Barr upper bound of this one. The dotted arrows represent
pairs of related elements that were removed, and the grey boxes represent the elements of
each set that are not removed.

• • • x

• • y

x • •

y • • •

r′
1 r′

2 r′
3 r′

4

▶ Lemma 4.19. A functor F : Set→ Set that preserves 1/4-mono pullbacks admits a normal
lax extension if for every composable sequence of total and surjective relations r1, . . . , rn,
whenever rn · . . . · r1 = 1X for some set X, then Frn · . . . · Fr1 ≤ 1FX .

It turns out that the sufficient condition of the previous lemma is actually satisfied by
every Set-functor that preserves 1/4-iso pullbacks. Indeed, due to the next result, Lemma 4.9
and the fact that surjections are stable under pushouts, every composable sequence of total
and surjective relations whose composite is an identity admits a Barr upper bound consisting
of three relations.

▶ Lemma 4.20. Let r1 : X−7−→X1, r2 : X1−7−→X2 and r3 : X2−7−→X be a composable sequence
of total and surjective relations, and let r̂2 : X1−7−→X2 be the difunctional closure of r2. If
r3 · r2 · r1 = 1X , then r3 · r̂2 · r1 = 1X .

▶ Proposition 4.21. Let F : Set→ Set be a functor that preserves 1/4-iso pullbacks, and let
r1, . . . , rn be a composable sequence of total and surjective relations. If rn · . . . · r1 = 1X for
some set X, then Frn · . . . · Fr1 ≤ 1FX .

S. Goncharov, D. Hofmann, P. Nora, L. Schröder, and P. Wild 40:17

Therefore,

▶ Theorem 4.22. Every Set-functor that preserves 1/4-mono pullbacks admits a normal lax
extension.

In particular, since in Example 3.10(3) we have seen that for (commutative) monoid-
valued functors preserving 1/4-mono pullbacks is equivalent to preserving 1/4-iso pullbacks,
as a consequence of Theorem 4.22 and Corollary 3.13 we obtain:

▶ Corollary 4.23. A (commutative) monoid-valued functor admits a normal lax extension iff
the monoid is positive.

▶ Remark 4.24. The above result may be equivalently stated as saying that a monoid-valued
functor has a separating set of monotone predicate liftings iff the monoid is positive. In this
formulation, it improves on a previous result effectively stating the same equivalence under the
additional assumption that the monoid is refinable [42, Proposition 22]. For every monoid M ,
one has a preorder on M given by m ≥ n iff ∃k ∈ M. m = n + k, which is a partial order
whenever the monoid is cancellative and positive. It is then clear that one has a separating set
of monotone predicate liftings ♢m, for m ∈M , defined by ♢m(A) = {µ ∈M (X) | µ(A) ≥ m}
where we write µ(A) =

∑
x∈A µ(x). The arising normal lax extension is given for r : X−7−→Y ,

µ ∈M (X), ν ∈M (Y) by µ Lr ν iff ν(r[A]) ≥ µ(A) for all A ⊆ X and symmetrically, much like
for probabilistic transition systems (Example 2.3(2)). For non-cancellative positive monoids,
the description of the normal lax extension and the separating set of monotone predicate
liftings whose existence are guaranteed by Corollary 4.23 is in general more involved. In
particular, the predicate liftings ♢m described above may fail to be separating, as witnessed,
for instance, by the commutative additive monoid {0, 1, 2} with 1 + 2 = 1. Specifically,
µ, ν ∈M ({⋆}) given by µ(⋆) = 1 and ν(⋆) = 2 cannot be distinguished.

The class of Set-functors that admit a normal lax extension is closed under subfunctors
and several natural constructions such as the sum of functors. This makes it easy to extend
the reach of our sufficient conditions, but it also shows that it is easy to provide examples of
functors that admit a normal lax extension and do not weakly preserve 1/4-mono pullbacks
nor 4/4-epi pullbacks. A quick example is the functor given by the sum of the functor (−)3

2
and the monotone neighbourhood functor. To conclude this section, we present a less obvious
example that is constructed analogously to Example 4.12. Notice that, as we have seen in
Example 3.14(4), the class of functors that admit a normal lax extension is not closed under
quotients.

▶ Example 4.25. For any set X, let FX be the quotient of X3 under the equivalence
relation ∼ defined by the clauses (x, x, y) ∼ (x, x, x) ∼ (y, x, x). This yields a functor
F : Set → Set that neither weakly preserves 1/4-mono pullbacks nor 4/4-epi pullbacks,
however, F admits a normal lax extension.

5 Conclusions

Normal lax extensions of functors play a dual role in the coalgebraic modelling of reactive
systems, on the one hand allowing for good notions of bisimulations on functor coalgebras and
on the other hand guaranteeing the existence of expressive temporal logics. We have shown
on the one hand that every functor admitting a lax extension preserves 1/4-iso pullbacks,
and on the other hand that a functor admits a normal lax extension if it weakly preserves
either 1/4-iso pullbacks and 4/4-epi pullbacks or inverse images. These results improve on

STACS 2025

40:18 Identity-Preserving Lax Extensions and Where to Find Them

previous results [28, 30, 31], which combine to imply that weak-pullback-preserving functors
admit normal lax extensions. One application of our results implies, roughly, that a given
type of monoid-weighted transition systems admits a good notion of bisimulation iff the
monoid is positive.

The most obvious issue for future work is to close the remaining gap, i.e. to give a
necessary and sufficient criterion for the existence of normal lax extensions in terms of limit
preservation. Additionally, the structure of the lattice of normal lax extensions of a functor
merits attention, in the sense that larger lax extensions induce more permissive notions of
bisimulation.

References
1 Peter Aczel and Nax Paul Mendler. A final coalgebra theorem. In David H. Pitt, David E.

Rydeheard, Peter Dybjer, Andrew M. Pitts, and Axel Poigné, editors, Category Theory and
Computer Science, Manchester, UK, September 5-8, 1989, Proceedings, volume 389 of Lecture
Notes in Computer Science, pages 357–365. Springer, 1989. doi:10.1007/BFB0018361.

2 Jiří Adámek, Horst Herrlich, and George E. Strecker. Abstract and concrete categories: The joy
of cats. John Wiley & Sons Inc., 1990. Republished in: Reprints in Theory and Applications
of Categories, No. 17 (2006) pp. 1–507. URL: http://tac.mta.ca/tac/reprints/articles/
17/tr17abs.html.

3 Roland Carl Backhouse, Peter J. de Bruin, Paul F. Hoogendijk, Grant Malcolm, Ed Voermans,
and Jaap van der Woude. Polynomial relators (extended abstract). In Maurice Nivat, Charles
Rattray, Teodor Rus, and Giuseppe Scollo, editors, Algebraic Methodology and Software
Technology, AMAST 1991, Workshops in Computing, pages 303–326. Springer, 1991.

4 Paolo Baldan, Filippo Bonchi, Henning Kerstan, and Barbara König. Coalgebraic behavioral
metrics. Log. Methods Comput. Sci., 14(3), 2018. doi:10.23638/LMCS-14(3:20)2018.

5 Michael Barr. Relational algebras. In Reports of the Midwest Category Seminar IV, number
137 in Lect. Notes Math., pages 39–55. Springer, 1970. doi:10.1007/BFb0060439.

6 Michael Barr. Relational algebras. In Reports of the Midwest Category Seminar IV, pages
39–55. Springer, 1970. doi:10.1007/bfb0060439.

7 Michael Barr. Terminal coalgebras in well-founded set theory. Theor. Comput. Sci., 114(2):299–
315, 1993. doi:10.1016/0304-3975(93)90076-6.

8 Richard S. Bird and Oege de Moor. Algebra of programming. Prentice Hall International series
in computer science. Prentice Hall, 1997.

9 Filippo Bonchi, Marcello M. Bonsangue, Michele Boreale, Jan J. M. M. Rutten, and Alexandra
Silva. A coalgebraic perspective on linear weighted automata. Inf. Comput., 211:77–105, 2012.
doi:10.1016/J.IC.2011.12.002.

10 Brian F. Chellas. Modal Logic – An Introduction. Cambridge University Press, 1980. doi:
10.1017/CBO9780511621192.

11 Corina Cîrstea, Clemens Kupke, and Dirk Pattinson. EXPTIME tableaux for the coalgebraic
mu-calculus. Log. Methods Comput. Sci., 7(3), 2011. doi:10.2168/LMCS-7(3:3)2011.

12 Maria Manuel Clementino, Dirk Hofmann, and George Janelidze. The monads of classical
algebra are seldom weakly cartesian. J. Homotopy and Related Structures, 9(1):175–197, 2014.

13 Francesco Gavazzo. Quantitative behavioural reasoning for higher-order effectful programs:
Applicative distances. In Anuj Dawar and Erich Grädel, editors, Logic in Computer Science,
LICS 2018, pages 452–461. ACM, 2018. doi:10.1145/3209108.3209149.

14 Sergey Goncharov, Dirk Hofmann, Pedro Nora, Lutz Schröder, and Paul Wild. A point-free
perspective on lax extensions and predicate liftings. Mathematical Structures in Computer
Science, pages 1–30, 2023. doi:10.1017/S096012952300035X.

15 Daniel Gorín and Lutz Schröder. Simulations and bisimulations for coalgebraic modal
logics. In Reiko Heckel and Stefan Milius, editors, Algebra and Coalgebra in Computer
Science, CALCO 2013, volume 8089 of LNCS, pages 253–266. Springer, 2013. doi:
10.1007/978-3-642-40206-7_19.

https://doi.org/10.1007/BFB0018361
http://tac.mta.ca/tac/reprints/articles/17/tr17abs.html
http://tac.mta.ca/tac/reprints/articles/17/tr17abs.html
https://doi.org/10.23638/LMCS-14(3:20)2018
https://doi.org/10.1007/BFb0060439
https://doi.org/10.1007/bfb0060439
https://doi.org/10.1016/0304-3975(93)90076-6
https://doi.org/10.1016/J.IC.2011.12.002
https://doi.org/10.1017/CBO9780511621192
https://doi.org/10.1017/CBO9780511621192
https://doi.org/10.2168/LMCS-7(3:3)2011
https://doi.org/10.1145/3209108.3209149
https://doi.org/10.1017/S096012952300035X
https://doi.org/10.1007/978-3-642-40206-7_19
https://doi.org/10.1007/978-3-642-40206-7_19

S. Goncharov, D. Hofmann, P. Nora, L. Schröder, and P. Wild 40:19

16 H. Peter Gumm. Free-algebra functors from a coalgebraic perspective. In Daniela Petrisan
and Jurriaan Rot, editors, Coalgebraic Methods in Computer Science, CMCS 2020, volume
12094 of LNCS, pages 55–67. Springer, 2020. doi:10.1007/978-3-030-57201-3_4.

17 H. Peter Gumm and Tobias Schröder. Coalgebraic structure from weak limit preserving
functors. In Horst Reichel, editor, Coalgebraic Methods in Computer Science, CMCS 2000,
Berlin, Germany, March 25-26, 2000, volume 33 of Electronic Notes in Theoretical Computer
Science, pages 111–131. Elsevier, 2000. doi:10.1016/S1571-0661(05)80346-9.

18 H. Peter Gumm and Tobias Schröder. Monoid-labeled transition systems. In Andrea Corradini,
Marina Lenisa, and Ugo Montanari, editors, Coalgebraic Methods in Computer Science, CMCS
2001, volume 44(1) of ENTCS, pages 185–204. Elsevier, 2001. doi:10.1016/S1571-0661(04)
80908-3.

19 H. Peter Gumm and Tobias Schröder. Types and coalgebraic structure. Algebra universalis,
53(2–3):229–252, August 2005. doi:10.1007/s00012-005-1888-2.

20 H. Peter Gumm and Mehdi Zarrad. Coalgebraic simulations and congruences. In Marcello M.
Bonsangue, editor, Coalgebraic Methods in Computer Science - 12th IFIP WG 1.3 International
Workshop, CMCS 2014, Colocated with ETAPS 2014, Grenoble, France, April 5-6, 2014,
Revised Selected Papers, volume 8446 of Lecture Notes in Computer Science, pages 118–134.
Springer, 2014. doi:10.1007/978-3-662-44124-4_7.

21 Helle Hvid Hansen and Clemens Kupke. A coalgebraic perspective on monotone modal logic. In
Jirí Adámek and Stefan Milius, editors, Coalgebraic Methods in Computer Science, CMCS 2004,
volume 106 of ENTCS, pages 121–143. Elsevier, 2004. doi:10.1016/j.entcs.2004.02.028.

22 Wim H. Hesselink and Albert Thijs. Fixpoint semantics and simulation. Theor. Comput. Sci.,
238(1-2):275–311, 2000. doi:10.1016/S0304-3975(98)00176-5.

23 Dirk Hofmann, Gavin J. Seal, and Walter Tholen, editors. Monoidal Topology. A Categorical
Approach to Order, Metric, and Topology, volume 153 of Encyclopedia of Mathematics and its
Applications. Cambridge University Press, Cambridge, July 2014. Authors: Maria Manuel
Clementino, Eva Colebunders, Dirk Hofmann, Robert Lowen, Rory Lucyshyn-Wright, Gavin
J. Seal and Walter Tholen. doi:10.1017/cbo9781107517288.

24 Jesse Hughes and Bart Jacobs. Simulations in coalgebra. Theor. Comput. Sci., 327(1-2):71–108,
2004. doi:10.1016/J.TCS.2004.07.022.

25 Thomas Ihringer. Algemeine Algebra. Mit einem Anhang über Universelle Coalgebra von
H. P. Gumm, volume 10 of Berliner Studienreihe zur Mathematik. Heldermann Verlag, 2003.

26 Bartek Klin. Structural operational semantics for weighted transition systems. In Jens
Palsberg, editor, Semantics and Algebraic Specification, Essays Dedicated to Peter D. Mosses
on the Occasion of His 60th Birthday, volume 5700 of LNCS, pages 121–139. Springer, 2009.
doi:10.1007/978-3-642-04164-8_7.

27 Clemens Kupke, Alexander Kurz, and Yde Venema. Completeness for the coalgebraic cover
modality. Log. Methods Comput. Sci., 8(3), 2012. doi:10.2168/LMCS-8(3:2)2012.

28 Alexander Kurz and Raul Andres Leal. Modalities in the stone age: A comparison of coalgebraic
logics. Theor. Comput. Sci., 430:88–116, 2012. doi:10.1016/J.TCS.2012.03.027.

29 Paul Blain Levy. Similarity quotients as final coalgebras. In Martin Hofmann, editor,
Foundations of Software Science and Computational Structures, FOSSACS 2011, volume 6604
of LNCS, pages 27–41. Springer, 2011. doi:10.1007/978-3-642-19805-2_3.

30 Johannes Marti and Yde Venema. Lax extensions of coalgebra functors. In Dirk Pattinson
and Lutz Schröder, editors, Coalgebraic Methods in Computer Science, CMCS 2021, volume
7399 of LNCS, pages 150–169. Springer, 2012. doi:10.1007/978-3-642-32784-1_9.

31 Johannes Marti and Yde Venema. Lax extensions of coalgebra functors and their logic. Journal
of Computer and System Sciences, 81(5):880–900, 2015. doi:10.1016/j.jcss.2014.12.006.

32 Robin Milner. Communication and concurrency. PHI Series in computer science. Prentice
Hall, 1989.

33 Rohit Parikh. Propositional game logic. In Foundations of Computer Science, FOCS 1983,
pages 195–200. IEEE Computer Society, 1983. doi:10.1109/SFCS.1983.47.

STACS 2025

https://doi.org/10.1007/978-3-030-57201-3_4
https://doi.org/10.1016/S1571-0661(05)80346-9
https://doi.org/10.1016/S1571-0661(04)80908-3
https://doi.org/10.1016/S1571-0661(04)80908-3
https://doi.org/10.1007/s00012-005-1888-2
https://doi.org/10.1007/978-3-662-44124-4_7
https://doi.org/10.1016/j.entcs.2004.02.028
https://doi.org/10.1016/S0304-3975(98)00176-5
https://doi.org/10.1017/cbo9781107517288
https://doi.org/10.1016/J.TCS.2004.07.022
https://doi.org/10.1007/978-3-642-04164-8_7
https://doi.org/10.2168/LMCS-8(3:2)2012
https://doi.org/10.1016/J.TCS.2012.03.027
https://doi.org/10.1007/978-3-642-19805-2_3
https://doi.org/10.1007/978-3-642-32784-1_9
https://doi.org/10.1016/j.jcss.2014.12.006
https://doi.org/10.1109/SFCS.1983.47

40:20 Identity-Preserving Lax Extensions and Where to Find Them

34 Dirk Pattinson. Expressive logics for coalgebras via terminal sequence induction. Notre Dame
J. Formal Log., 45(1):19–33, 2004. doi:10.1305/ndjfl/1094155277.

35 David Peleg. Concurrent dynamic logic (extended abstract). In Robert Sedgewick, editor,
Symposium on Theory of Computing, STOC 1985, pages 232–239. ACM, 1985. doi:10.1145/
22145.22172.

36 Jacques Riguet. Relations binaires, fermetures, correspondances de Galois. Bulletin de la
Société Mathématique de France, 76:114–155, 1948. doi:10.24033/bsmf.1401.

37 Jan J. M. M. Rutten. Relators and metric bisimulations. In Bart Jacobs, Larry Moss, Horst
Reichel, and Jan J. M. M. Rutten, editors, Coalgebraic Methods in Computer Science, CMCS
1998, volume 11 of ENTCS, pages 252–258. Elsevier, 1998. doi:10.1016/S1571-0661(04)
00063-5.

38 Jan J. M. M. Rutten. Universal coalgebra: a theory of systems. Theor. Comput. Sci.,
249(1):3–80, 2000. doi:10.1016/S0304-3975(00)00056-6.

39 Lutz Schröder. Expressivity of coalgebraic modal logic: The limits and beyond. Theoretical
Computer Science, 390(2-3):230–247, January 2008. doi:10.1016/j.tcs.2007.09.023.

40 Christoph Schubert and Gavin J. Seal. Extensions in the theory of lax algebras. Theory and
Applications of Categories, 21(7):118–151, 2008.

41 Gavin J. Seal. Canonical and op-canonical lax algebras. Theory and Applications of Categories,
14(10):221–243, 2005. URL: http://www.tac.mta.ca/tac/volumes/14/10/14-10abs.html.

42 Fatemeh Seifan, Lutz Schröder, and Dirk Pattinson. Uniform interpolation in coalgebraic
modal logic. In Filippo Bonchi and Barbara König, editors, Algebra and Coalgebra in Computer
Science, CALCO 2017, volume 72 of LIPIcs, pages 21:1–21:16. Schloss Dagstuhl – Leibniz-
Zentrum für Informatik, 2017. doi:10.4230/LIPICS.CALCO.2017.21.

43 Albert Thijs. Simulation and fixpoint semantics. PhD thesis, University of Groningen, 1996.
44 Věra Trnková. General theory of relational automata. Fund. Inform., 3(2):189–233, 1980.

doi:10.3233/FI-1980-3208.
45 Paul Wild and Lutz Schröder. Characteristic logics for behavioural metrics via fuzzy lax

extensions. In Igor Konnov and Laura Kovács, editors, Concurrency Theory, CONCUR 2020,
volume 171 of LIPIcs, pages 27:1–27:23. Schloss Dagstuhl – Leibniz-Zentrum für Informatik,
2020. doi:10.4230/LIPICS.CONCUR.2020.27.

46 Paul Wild and Lutz Schröder. Characteristic logics for behavioural hemimetrics via fuzzy lax
extensions. Log. Methods Comput. Sci., 18(2), 2022. doi:10.46298/LMCS-18(2:19)2022.

47 James Worrell. Coinduction for recursive data types: partial orders, metric spaces and Ω-
categories. In Horst Reichel, editor, Coalgebraic Methods in Computer Science, CMCS 2000,
volume 33 of ENTCS, pages 337–356. Elsevier, 2000. doi:10.1016/S1571-0661(05)80356-1.

https://doi.org/10.1305/ndjfl/1094155277
https://doi.org/10.1145/22145.22172
https://doi.org/10.1145/22145.22172
https://doi.org/10.24033/bsmf.1401
https://doi.org/10.1016/S1571-0661(04)00063-5
https://doi.org/10.1016/S1571-0661(04)00063-5
https://doi.org/10.1016/S0304-3975(00)00056-6
https://doi.org/10.1016/j.tcs.2007.09.023
http://www.tac.mta.ca/tac/volumes/14/10/14-10abs.html
https://doi.org/10.4230/LIPICS.CALCO.2017.21
https://doi.org/10.3233/FI-1980-3208
https://doi.org/10.4230/LIPICS.CONCUR.2020.27
https://doi.org/10.46298/LMCS-18(2:19)2022
https://doi.org/10.1016/S1571-0661(05)80356-1

Residue Domination in Bounded-Treewidth Graphs
Jakob Greilhuber #

TU Wien, Austria
CISPA Helmholtz Center for Information Security, Saarbrücken, Germany

Philipp Schepper
CISPA Helmholtz Center for Information Security, Saarbrücken, Germany

Philip Wellnitz #

National Institute of Informatics, Tokyo, Japan
The Graduate University for Advanced Studies, SOKENDAI, Tokyo, Japan

Abstract
For the vertex selection problem (σ, ρ)-DomSet one is given two fixed sets σ and ρ of integers and
the task is to decide whether we can select vertices of the input graph such that, for every selected
vertex, the number of selected neighbors is in σ and, for every unselected vertex, the number of
selected neighbors is in ρ [Telle, Nord. J. Comp. 1994]. This framework covers many fundamental
graph problems such as Independent Set and Dominating Set.

We significantly extend the recent result by Focke et al. [SODA 2023] to investigate the case
when σ and ρ are two (potentially different) residue classes modulo m ≥ 2. We study the problem
parameterized by treewidth and present an algorithm that solves in time mtw · nO(1) the decision,
minimization and maximization version of the problem. This significantly improves upon the known
algorithms where for the case m ≥ 3 not even an explicit running time is known. We complement
our algorithm by providing matching lower bounds which state that there is no (m − ε)pw · nO(1)-time
algorithm parameterized by pathwidth pw, unless SETH fails. For m = 2, we extend these bounds
to the minimization version as the decision version is efficiently solvable.

2012 ACM Subject Classification Theory of computation → Parameterized complexity and exact
algorithms

Keywords and phrases Parameterized Complexity, Treewidth, Generalized Dominating Set, Strong
Exponential Time Hypothesis

Digital Object Identifier 10.4230/LIPIcs.STACS.2025.41

Related Version The Master’s Thesis of Jakob Greilhuber [36] is based on the lower bound results
of this work.
Full Version: https://arxiv.org/abs/2403.07524

Funding Jakob Greilhuber : Part of Saarbrücken Graduate School of Computer Science, Germany.
Philipp Schepper : Part of Saarbrücken Graduate School of Computer Science, Germany.

Acknowledgements The work of Jakob Greilhuber has been carried out mostly during a summer
internship at the Max Planck Institute for Informatics, Saarbrücken, Germany. The work of Philip
Wellnitz was partially carried out at the Max Planck Institute for Informatics.

1 Introduction

Classical graph problems such as Dominating Set or Independent Set are ubiquitous in
computer science. These problems are not only of theoretical interest but also have many
practical applications; including facility location, coding theory, modeling communication
networks, map labeling, or even similarity measures on molecules [3, 4, 16, 31, 38, 39].
Therefore, these problems are extensively studied on plenty of graph classes and several
generalizations and variations have been formulated and considered [7, 12, 22, 30, 32, 41, 50,

© Jakob Greilhuber, Philipp Schepper, and Philip Wellnitz;
licensed under Creative Commons License CC-BY 4.0

42nd International Symposium on Theoretical Aspects of Computer Science (STACS 2025).
Editors: Olaf Beyersdorff, Michał Pilipczuk, Elaine Pimentel, and Nguyễn Kim Thắng;
Article No. 41; pp. 41:1–41:20

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:jakob.greilhuber@cispa.de
https://orcid.org/0009-0001-8796-6400
https://orcid.org/0000-0002-5810-7949
mailto:wellnitz@nii.ac.jp
https://orcid.org/0000-0002-6482-8478
https://doi.org/10.4230/LIPIcs.STACS.2025.41
https://arxiv.org/abs/2403.07524
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

41:2 Residue Domination in Bounded-Treewidth Graphs

52, 54, 59]. Moreover, the problems seem to come with a significant complexity but also
sufficient structural properties to serve as a testing point for new techniques which frequently
result in faster algorithms for the problems [20, 28, 61].

In 1993, Telle and Proskurowski introduced the general class of (σ, ρ)-DomSet problems
which capture several well-known vertex selection problems for appropriately chosen sets
σ, ρ ⊆ Z≥0 [57, 58]. In this problem the input is an undirected graph and the task is to
decide if we can select vertices such that (1), for every selected vertex, the number of selected
neighbors is contained in the set σ and (2), for every unselected vertex, the number of selected
neighbors is contained in the set ρ. Formally, for a graph G, decide if there exists a vertex
set S ⊆ V (G) such that, for all v ∈ S, we have |N(v) ∩ S| ∈ σ, and, for all v /∈ S, we have
|N(v) ∩ S| ∈ ρ. Such a set S is called a (σ, ρ)-set.

It is easy to see that (σ, ρ)-DomSet captures classical Dominating Set when we set σ =
Z≥0 and ρ = Z≥0 \ {0} and ask for a selection of bounded size. Moreover, with different
requirements imposed on the size of the selection, we can also reformulate other problems
such as Independent Set (σ = {0} and ρ = Z≥0), Perfect Code (σ = {0} and ρ = {1}),
Induced q-regular Subgraph (σ = {q} and ρ = Z≥0), Odd Domination (σ = {0, 2, . . . } and
ρ = {1, 3, . . . }), and many more. We refer to [8, 57] for a longer list of problems that can be
described as (σ, ρ)-DomSet.

Since (σ, ρ)-DomSet generalizes many fundamental graph problems, the ultimate goal is
to settle the complexity of (σ, ρ)-DomSet for all (decidable) sets σ and ρ. We know that
for many choices of σ and ρ the problem is NP-hard. Hence, we frequently either restrict the
input to special graph classes or parameterize by some (structural) measure of the input (for
example, the solution size).

One of the best explored structural parameters is treewidth [6, 18, 20, 26, 42, 45, 46, 51, 61]
which measures how similar a graph is to a tree (see [19, Chapter 7] for a more thorough
introduction). Many problems admit efficient algorithms on trees with a simple dynamic
program. With treewidth as parameter, we can lift these programs to more general graphs
and obtain fast algorithms especially compared to the running time obtained from Courcelle’s
Theorem [17]. For most of these problems the goal is to find the smallest constant c such
that the respective problem can be solved in time ctw · nO(1).

For problems parameterized by treewidth a perpetual improvement of the algorithm seems
unlikely. After a few iterations, frequently conceptually new ideas seems to be necessary to
obtain further improvements. Lokshtanov, Marx, and Saurabh initiated a line of research
that proves that such limitations are often not a shortcoming of the techniques at hand, but
rather an inherent property of the problem itself [45]. For example, they prove that the
known algorithm for Dominating Set [61] which takes time 3tw · nO(1) cannot be improved
further unless the Strong Exponential-Time Hypothesis (SETH) [9, 40] fails.

Hence, the ultimate goal for (σ, ρ)-DomSet is to show the following result (or to prove
that no such constant exists in the respective setting):

For all sets σ and ρ, determine the constant cσ,ρ such that (σ, ρ)-DomSet
can be solved in time ctw

σ,ρ · nO(1)

but not in time (cσ,ρ − ε)tw · nO(1) for any ε > 0, unless SETH fails.

For certain choices of the sets σ and ρ, some (partial) results of this form are already
known [49]. A broad class of algorithms was given by van Rooij, Bodlaender, and Ross-
manith [61] for the case of finite and cofinite sets. These algorithms were later improved
by van Rooij [60]. Focke et al. [26, 24] recently introduced highly non-trivial techniques to
improve these algorithms further for an infinite class of choices for σ and ρ. Moreover, Focke
et al. additionally provide matching lower bounds for these new algorithms that rule out
additional improvements [26, 25].

J. Greilhuber, P. Schepper, and P. Wellnitz 41:3

Beyond Finite and Cofinite Sets. Although the known results already capture large classes
of problems, they are limited to finite and cofinite sets. This leaves open the entire range of
infinite sets (with infinite complements), which contains not only “unstructured” sets like
the set of prime numbers, for example, but also easy to describe and frequently used sets like
the even or odd numbers, and arithmetic progressions in general.

One important example for families that are neither finite nor cofinite are residue classes.
We say that a set τ ⊆ Z≥0 is a residue class modulo m if there are two integers a and m
such that τ = {n ∈ Z≥0 | n ≡m a}; we usually require that 0 ≤ a < m for the canonical
representation. Again, the two most natural residue classes are the even and odd numbers.

Surprisingly, for such infinite sets the complexity of (σ, ρ)-DomSet is significantly
underexplored and heavily fragmented even in the classical, non-parameterized, setting. This
is especially surprising as this variant of the problem has direct applications in other fields
like coding theory [13, 38].

Halldórsson, Kratochvíl, and Telle consider a variation of Independent Set where the
unselected vertices have parity constraints [37]. They provide a complete dichotomy between
polynomial-time solvable cases and NP-hard cases. Later the same group of authors considered
the case where each of the sets comprises either the even or odd integers and proved similar
hardness results [38]. Caro, Klostermeyer, and Goldwasser consider a variant of (σ, ρ)-Dom-
Set with residue classes as sets where they restrict the closed neighborhood of a vertex [11]. In
this setting they prove new upper bounds for specific graphs classes including complements of
powers of cycles and grid graphs. Fomin, Golovach, Kratochvíl, Kratsch, and Liedloff consider
general graphs and provide exponential-time algorithms for general residue classes [27].

Although for the case of general sets some more results are known in the parameterized
setting [1, 8, 30, 35], surprisingly few involve sets that are neither finite nor cofinite and the
parameter treewidth. Gassner and Hatzl [33] consider the problem of residue domination
where the sets are either all even or all odd numbers. They provide an algorithm for the
problem with running time 23tw ·nO(1). Gassner and Hatzl also conjecture that their algorithm
works when the sets have a larger modulus but unfortunately do not state the expected
running time or the actual algorithm.

Chapelle in contrast provides a general algorithm for (σ, ρ)-DomSet which covers all
ultimately periodic sets1 but, unfortunately, does not provide an explicit running time of the
algorithm [14, 15].

In this work, we answer the main question from above and settle the complexity of
(σ, ρ)-DomSet for another large class of sets, namely for the residue classes.

▶ Main Theorem 1. Write σ, ρ ⊆ Z≥0 for two residue classes modulo m ≥ 2.
Then, in time mtw · |G|O(1) we can decide simultaneously for all s if the given graph G

has a (σ, ρ)-set of size s when a tree decomposition of width tw is given with the input.

We remark that our algorithm does not only solve the decision version but also the
maximization, minimization and exact version of (σ, ρ)-DomSet.

Despite the fact that there are some pairs for which the decision version of (σ, ρ)-DomSet
is efficiently solvable (for example, the empty set is a trivial minimum solution if 0 ∈ ρ), we
prove that for all other “difficult” cases our algorithm is optimal even for the decision version
and cannot be improved unless SETH fails. We refer to Definition 2.6 for a complete list of
the “easy” pairs for which the decision version can be solved in polynomial time; to all other
pairs we refer as “difficult”.

1 A set τ is ultimately periodic if there is a finite automaton (over a unary alphabet) such that the length
of the accepted words is precisely described by the set τ .

STACS 2025

41:4 Residue Domination in Bounded-Treewidth Graphs

▶ Main Theorem 2. Write σ, ρ ⊆ Z≥0 for difficult residue classes modulo m ≥ 2.
Unless SETH fails, for all ε > 0, there is no algorithm that can decide in time (m − ε)pw ·

|G|O(1) whether the input graph G has a (σ, ρ)-set, when a path decomposition of width pw is
given with the input.

Observe that our lower bound is for the larger parameter pathwidth, which immediately
implies the result for the smaller parameter treewidth.

Our Contribution. Before we outline the formal ideas behind our results, we first highlight
why these bounds are more surprising than they seem to be at the first glance.

To that end, let us take a deeper look at the algorithms of [24, 60]. Typically, the limiting
factor for faster algorithms parameterized by treewidth is the number of states that have to
be considered for each bag of the tree decomposition. For vertex selection problems, the state
of a vertex is defined by two values: (1) whether it is selected and (2) how many selected
neighbors it gets in some (partial) solution. To bound this latter number, we identify the
largest “reasonable” state a vertex can have when it is selected and when it is unselected.

For finite sets σ and ρ this largest reasonable state is simply determined by the maximum
of the respective sets, that is, we set stop = max σ and rtop = max ρ as the largest reasonable
number of neighbors, respectively.

Then, for a selected vertex, the allowed number of selected neighbors ranges from 0 to stop,
yielding stop + 1 states for selected vertices. Similarly, we need to consider rtop + 1 states
for unselected vertices. Combining the two cases, for each bag of the tree decomposition
there are at most (stop + rtop + 2)tw+1 states to consider. Surprisingly, Focke et al. proved
that, for an infinite number of finite sets, even at most (ttop + 1)tw+1 of said states suffice,
where ttop = max(stop, rtop) [26].2 When stop = rtop this improves the algorithm by a factor
of 2tw+1.

Similarly, for the case of residue classes with modulus m, the number of selected neighbors
effectively ranges from 0 to m − 1 as for all larger values the behavior is equivalent to some
smaller value. This gives us m states if a vertex is unselected and m states if a vertex is
selected. Hence, the straight-forward bound for the number of states is (2m)tw+1 which is a
factor of 2tw+1 worse than the bound from the running time of our algorithm.

We remark that the most naive approach, for which we remove all integers from the sets σ

and ρ that are larger than the number of vertices of the input graph and then apply the
improved result by Focke et al. for finite sets, fails miserably. This approach would merely
give an XP-algorithm as the size of the sets now depends on the size of the input graph.

Hence, it is far from trivial to obtain the claimed running time since the classical approach
would not give something better than (2m)tw · nO(1).

Our Techniques. Although we use the algorithmic result by Focke et al. as a basis for our
upper bounds, our algorithm does not follow as an immediate corollary. There are two main
challenges that we need to overcome to obtain the fast running time.

First, all previous results with tight bounds considered finite or cofinite sets. In this
setting all integers (starting from some threshold) are somewhat equivalent in the sense that
they are either all contained in the set or all not contained in the set. This makes defining a
largest reasonable state quite convenient. For the residue classes this is not as easily possible
as the integers change between membership and non-membership. Hence, we need an even
more careful construction and analysis when improving upon the naive bound for the number
of states.

2 To keep notation simple, we omit the special case where the bound is (ttop + 2)tw+1.

J. Greilhuber, P. Schepper, and P. Wellnitz 41:5

Second, it does not suffice to bound the number of states which the dynamic program
considers, but we also need to be able to combine these states efficiently at the join nodes.
Although this is a general issue when parameterizing by treewidth, until today there does
not seem to be one solution which works in a black-box manner in all settings. Instead, we
need to carefully design a new approach that takes care of the particular setting we consider
which is based on but differs from the existing results for finite and cofinite sets.

For the lower bound result we are at a similar situation as for the upper bound; the
setting is similar to what is known but still different. There are several known lower bounds
for Dominating Set and its related problems, but these reductions are usually quite tailored
to the specific problem and lack a modular construction – it is difficult to reuse existing
results. The proofs are usually based on a direct reduction from k-SAT which introduces an
additional overhead that obfuscates the high-level idea by technicalities (SAT has a running
time bound of the form 2n but we want a bound of the form cpw).

We avoid this overhead by reducing from an appropriate Constraint Satisfaction Problem
introduced by Lampis for precisely such settings [44]. Our results can be seen as one of the
first applications of this new approach (outside the original setting) that can potentially also
serve as a blue-print to simplify many other reductions and lower bound proofs or to directly
obtain simpler results from scratch.

The Special Case of Parity Domination. When taking a closer look at the precise statement
of our lower bound (and Definition 2.6), we are reminded that both results do not apply for
the same set of pairs. Especially for the case of residue classes with modulus m = 2, our
algorithm solves the minimization version, but Main Theorem 2 provides no matching lower
bound. As we may solve the decision problem for these cases in polynomial-time via Gaussian
elimination (see, for example, [2, 21, 34, 38, 56]), our lower bound explicitly excludes these
cases by referring to them as “easy”.

Surprisingly, exactly these easy cases can be related to a single-player game called
Lights Out that was published 1995. In this game the unassuming player is presented with a
5 × 5 grid of switches and lamps, some or all of them initially turned on, and the task is to
turn off all lamps by pressing the switches. The catch is that every switch flips not only the
state of its corresponding lamp (from “on” to “off” or vice-versa), but also the states of the
neighboring lamps in the grid [5, 23].3

Since the order in which the buttons are pressed does not matter and every button has
to be pressed at most once as a second press would undo the first operation, we can describe
a solution to an initial configuration as a set of switches that need to be flipped to turn all
lights off.

When we assume that initially all lights are turned on, then we can directly treat Lights Out
as a variant of (σ, ρ)-DomSet with σ = {x ∈ Z≥0 | x ≡2 0} and ρ = {x ∈ Z≥0 | x ≡2 1}.
We also refer to this problem, where the input is an arbitrary graph, as Reflexive-AllOff
since we assume that each switch triggers the corresponding lamp. When this is not the case
but still all lights are initially turned on, we have σ = {x ∈ Z≥0 | x ≡2 1} = ρ and refer to
the problem as AllOff as the corresponding switch does not trigger the associated lamp.

Despite the fact that it is easy to find some solution for these two problems if one
exists, the minimization versions do not have such a trivial answer and are known to be
NP-complete [11, 38, 55]. Hence, we investigate the minimization versions for these two
problems and complement the algorithmic result from Main Theorem 1 as follows.

3 Similar games have also been released under the names Merlin and Orbix [23].

STACS 2025

41:6 Residue Domination in Bounded-Treewidth Graphs

▶ Main Theorem 3. Unless SETH fails, for all ε > 0, there is no algorithm for each of
the problems Reflexive-AllOff and AllOff that can decide in time (2 − ε)pw · |G|O(1)

whether there exists a solution of arbitrary size (the size is given as input) for a graph G

that is given with a path decomposition of width pw.

Together with the lower bound for the general case, we conclude that our algorithm is the
best possible, unless a major breakthrough for solving SAT happens.

Further Directions. When taking a step back, the results of this work serve two purposes
which can be seen as starting points for further investigations and improvements.

First, we settle the complexity of (σ, ρ)-DomSet conclusively for the case of residue
classes by providing matching upper and lower bounds.
We later list some candidates that might allow similar improvements. Such improvements
would, similar to our results, extend the list of problems started by Focke et al. [26] where
significant improvements for the supposedly optimal algorithms are possible.
Second, in comparison to the fairly complicated results for the case of finite sets in [26],
this work can be seen as a significantly simpler introduction to those techniques that are
relevant to obtain faster algorithms by exploiting the structural properties of the sets.
We believe that for many other (parameterized) problems – including but not limited
to (σ, ρ)-DomSet – the algorithms can be improved exponentially by using these new
techniques.

In the following we list several possible directions that could serve as a next step on the
route to a complete picture of the complexity of (σ, ρ)-DomSet.

A first natural case could be pairs of two residue classes with different moduli mσ and
mρ. Then, the natural structural parameter m (which is the modulus in our case) is the
greatest common divisor of mσ and mρ. In this setting the case m = 1 is also relevant as
this does not directly imply that the sets contain all natural numbers.
A different direction considers the combination of a residue class with a finite or cofinite
set. Focke et al. show that representative sets [29, 43, 48, 53] can be used to speed up
the algorithm even further for the case of cofinite sets [24]. Independently of finding the
optimal algorithm to handle the join operation for representative sets, it is not even clear
what the optimal running time should be in such a case.
Caro and Jacobson [10] introduced the problem Non-z(mod k) Dominating Set which
can also be described as a (σ, ρ)-DomSet problem where the sets are complements of
residue classes, which is equivalent to a finite union of residue classes. For example,
for z = 0 and k = 3, we set σ = {0, 1, 3, 4, . . . } = {0, 3, 6, . . . } ∪ {1, 4, 7, . . . } and
ρ = {1, 2, 4, 5, 7, 8, . . . } = {1, 4, 7, . . . } ∪ {2, 5, 8, . . . }. What is the optimal running time
in this case?
The general algorithm by Chapelle for the case when both sets are ultimately periodic has
a running time single-exponential in treewidth despite being stated implicitly only [14, 15].
What is the best running time for an algorithm solving all cases of (σ, ρ)-DomSet that
are currently known to be fixed-parameter tractable?
Are there more classes of sets for which there is an fpt algorithm parameterized by
treewidth? Chapelle showed that once there are large gaps in the set, the problem
becomes significantly harder [14, 15].

J. Greilhuber, P. Schepper, and P. Wellnitz 41:7

▶ Theorem 1.1 ([14, Theorem 1] and [15, Théorème 3.3.1]). Write σ for a set with
arbitrarily large gaps between two consecutive elements (such that a gap of length t is at
distance poly(t) in σ), and write ρ for a cofinite set with min σ ≥ 1 and min ρ ≥ 2. Then,
the problem (σ, ρ)-DomSet is W[1]-hard when parameterized by the treewidth of the input
graph.
Examples are the two natural sets where σ = {2i | i ∈ Z≥0} or when σ is the set of all
Fibonacci numbers [14]. We observe that this is one of the rare cases where a problem is
W[1]-hard even when parameterizing by treewidth.
The classification by Chapelle is not a dichotomy result in the sense that it provides a
full classification between the fpt cases and the ones that are W[1]-hard. For instance,
what is the complexity for sets like σ = Z≥0 \ {2i | i ∈ Z≥0} which have gaps of constant
size only but are not ultimately periodic?
With our results, there are improved algorithms for the case when the sets are finite,
cofinite or residue classes. Nevertheless, the description of the exact running time is
highly non-uniform, that is, the exact complexity explicitly depends on the underlying
set. Can we describe the complexity of optimal algorithms in a compact form as, for
example, done by Chapelle for the general algorithm via finite automata [14, 15]? This
notation suffices to describe the state of a single vertex, but the representation of the
structural insights leading to fewer states and faster algorithms remains open.
Lastly, for which other problems besides (σ, ρ)-DomSet can the techniques from our
upper bounds (sparse languages and compression of vectors) be used to obtain faster
algorithms? As the high-level idea of our lower bounds is quite modular, it should also
be possible to use these concepts as blue-prints to achieve matching bounds for other
problems as well.

2 Technical Overview

In this section we give a high-level overview of the results in this paper and outline the main
technical contributions we use. We start by rigorously defining the main problem considered
in this work and the property of a set being m-structured.

▶ Definition 2.1 ((σ, ρ)-sets, (σ, ρ)-DomSet). Fix two non-empty sets σ and ρ of non-
negative integers.

For a graph G, a set S ⊆ V (G) is a (σ, ρ)-set for G if and only if (1) for all v ∈ S, we
have |N(v) ∩ S| ∈ σ, and (2), for all v ∈ V (G) \ S, we have |N(v) ∩ S| ∈ ρ.

The problem (σ, ρ)-DomSet asks for a given graph G, whether there is a (σ, ρ)-set S or
not.

We also refer to the problem above as the decision version. The problem naturally also
admits related problems such as asking for a solution of a specific size, or for the smallest or
largest solution, that is, the minimization and maximization version.

For the case of finite and cofinite sets, Focke et al. [24, 25] realized that the complexity
of (σ, ρ)-DomSet significantly changes (and allows faster algorithms) when σ and ρ exhibit
a specific structure, which they refer to as m-structured.

▶ Definition 2.2 (m-structured sets [24, Definition 3.2]). Fix an integer m ≥ 1. A set τ ⊆ Z≥0
is m-structured if all numbers in τ are in the same residue class modulo m, that is, if there
is an integer c∗ such that c ≡m c∗ for all c ∈ τ .

STACS 2025

41:8 Residue Domination in Bounded-Treewidth Graphs

Observe that every set τ is m-structured for m = 1. Therefore, one is usually interested
in the largest m such that a set is m-structured. When considering two sets σ and ρ, we say
that this pair is m-structured if each of the two sets is m-structured. More formally, assume
that σ is mσ-structured and ρ is mρ-structured. In this case the pair (σ, ρ) is m-structured
where m is the greatest common divisor of mσ and mρ. As in our case the sets σ and ρ are
residue classes modulo m ≥ 2, the sets are always m-structured.

In the following we first present the algorithmic result, which outlines the proof of Main
Theorem 1. Afterward we move to the lower bounds where we consider Main Theorem 2 and
finally we focus on the special case of Lights Out from Main Theorem 3.

2.1 Upper Bounds
The basic idea to prove the upper bound is to provide a dynamic programming algorithm that
operates on a tree decomposition of the given graph. For each node of this decomposition we
store all valid states, where each such state describes how a possible solution, i.e., a set of
selected vertices, interacts with the bags of the corresponding node. We formalize this by
the notion of a partial solution.

For a node t with associated bag Xt, we denote by Vt the set of vertices introduced in
the subtree rooted at t and by Gt the graph induced by these vertices. We say that a set
S ⊆ Vt is a partial solution (for Gt) if

for each vertex v ∈ S \ Xt, we have |N(v) ∩ S| ∈ σ, and
for each vertex v ∈ Vt \ (S ∪ Xt), we have |N(v) ∩ S| ∈ ρ.

The solution is partial in the sense that there are no constraints imposed on the number of
neighbors of the vertices in Xt, that is, only the vertices in Vt \ Xt must have a valid number
of neighbors.

We characterize the partial solutions by the states of the vertices in the bag. When σ

and ρ are finite or cofinite sets, the largest reasonable state is included in the respective set,
which is not necessarily the case for residue classes. Consider two fixed, residue classes σ and
ρ modulo m ≥ 2. Every selected vertex can have up to m different states and similarly, every
unselected vertex can have m different states. Hence, for each bag, the number of relevant
different partial solutions is bounded by (2m)|Xt|.

High-level Idea. The crucial step to fast and efficient algorithms is to provide a better
bound on the number of states for each bag when the sets σ and ρ are residue classes modulo
m ≥ 2. We denote by A the set of all possible states a vertex might have in a valid solution.
Then, let L ⊆ AXt be the set of all possible state-vectors corresponding to partial solutions
for Gt. Our first goal is to show that |L| ≤ m|Xt|, which means that not all theoretically
possible combinations of states can actually have a corresponding partial solution in the
graph.

Moreover, we also need to be able to combine two partial solutions at the join nodes of
the tree decomposition. For a fast join operation, it does not suffice to bound the size of L.
This follows from the observation that the convolution algorithm used to handle the join
operation does not depend on L but on the space where the states come from. In our case,
the size of the space where L comes from is still (2m)|Xt|, which is too large. To decrease
this size, we observe that a significant amount of information about the states of the vertices
can be inferred from other positions, that is, we can compress the vectors.

As a last step it remains to combine the states significantly faster than a naive algorithm.
To efficiently compute the join, we use an approach based on the fast convolution techniques
by van Rooij which was already used for the finite case [60]. However, we have to ensure
that the compression of the vectors is actually compatible with the join operation, that

J. Greilhuber, P. Schepper, and P. Wellnitz 41:9

is, while designing the compression we already have to take in mind that we later join
two (compressed) partial solutions together. Since the compressed vectors are significantly
simpler, these states can now be combined much faster.

Bounding the Size of a Single Language. Recall that every partial solution S can be
described by a state-vector x ∈ An where we abuse notation and set n := |Xt|. When x

describes the partial solution S, we also say that S is a witness for x. We denote the set
of the state-vectors of all partial solutions for Gt as L. We later refer to the set L as the
realized language of (Gt, Xt). To provide the improved bound on the size of L, we decompose
each state-vector x into two vectors: The selection-vector of x, also called the σ-vector and
denoted by −→σ (x), indicates whether each vertex in Xt is selected or not. The weight-vector
of x, denoted by −→w (x), contains the number of selected neighbors of the vertices in Xt.

The key insight into the improved bound is that for two partial solutions of similar size
(with regard to modulo m), the σ-vectors and the weight-vectors of these two solutions are
orthogonal. This observation was already used to prove the improved bound when σ and ρ

are finite [24]. We extend this result to the case of residue classes.
To formally state the key insight, we define the notion of a graph with portals.

▶ Definition 2.3 (Graph with Portals; compare [24, Section 3]). A graph with portals G is a
pair (G′, U), where G′ is a graph and U ⊆ V (G′). If U = {u1, . . . , uk}, then we also write
(G′, u1, . . . , uk) instead of (G′, U).

If it is clear from the context, we also refer to a graph with portals simply as a graph.

Intuitively, one can think of G′ being the graph Gt, and U the set Xt for a node t of a tree
decomposition.

▶ Lemma 2.4 (Compare [24, Lemma 4.3]). Let σ and ρ denote two residue classes modulo
m ≥ 2. Let (G, U) be a graph with portals and let L := L(G, U) ⊆ AU denote its realized
language. Consider two strings x, y ∈ L with witnesses Sx, Sy ⊆ V (G) such that |Sx \ U | ≡m
|Sy \ U |. Then, −→σ (x) · −→w (y) ≡m

−→σ (y) · −→w (x).

To prove this result, we count edges between the vertices in Sx and the vertices in Sy in
two different ways. We first count the edges based on their endpoint in Sx. These vertices
can be partitioned into three groups: (1) the vertices contained in U , (2) the vertices outside
U which are not in Sy, and (3) the vertices outside U which are in Sy. Then, the number of
edges |E(Sx → Sy)| from Sx to Sy satisfies

|E(Sx → Sy)| ≡m min ρ · |Sx \ (Sy ∪ U)| + min σ · |(Sx ∩ Sy) \ U | + −→σ (x) · −→w (y)

because the sets σ and ρ are residue classes modulo m. When counting the edges based on
their endpoint in Sy, the positions of x and y flip and the result follows. As this property
enables us to prove that the size of L is small, we refer to this property as sparse.

Even though intuitively this orthogonality provides a reason why the size of the language
is not too large, this does not result in a formal proof. However, when fixing which vertices
are selected, that is, when fixing a σ-vector s⃗, then there is an even stronger restriction on
the values of the weight-vectors. Instead of restricting the entire vector, it actually suffices to
fix the vector on a certain number of positions which are described by some set S to which
we refer as σ-defining set. If two σ-vectors of strings of the language agree on these positions
from S, then all remaining positions of the two σ-vectors must be identical as well.

STACS 2025

41:10 Residue Domination in Bounded-Treewidth Graphs

With the sparseness property we then show that it suffices to fix the σ-vectors on the
positions from S (which then determines the values on S), and the weight-vector on the
positions from S (which then determines the weight-vector on the positions from S). Formally,
we prove Lemma 2.5 which mirrors [24, Lemma 4.9] in the case of residue classes.

▶ Lemma 2.5 (Compare [24, Lemma 4.9]). Let σ and ρ denote two residue classes modulo
m ≥ 2. Let L ⊆ An be a sparse language with a σ-defining set S for {−→σ (x) | x ∈ L}. Then,
for any two strings x, y ∈ L with −→σ (x) = −→σ (y), the positions S uniquely characterize the
weight vectors of x and y, that is, we have

−→w (x)[S] = −→w (y)[S] implies −→w (x) = −→w (y).

With this result it is straight-forward to bound the size of a sparse language of dimension n.
Our goal is to bound the number of weight-vectors that can be combined with a fixed σ-vector
to form a valid type. Assume we fixed a σ-vector s⃗ on the positions from S. Since this
already determines the remaining positions of the σ-vector (even if we do not know the values
a priori), the number of possible σ-vectors is at most 2|S|. For the weight-vector there are
m choices for each of the positions from S. Then, the values for the positions from S are
uniquely determined by those on S because of the previous result. Using m ≥ 2 this allows
us to bound the size of a sparse language by

m|S| · 2|S| ≤ mn.

Compressing Weight-Vectors. Based on the previous observations and results, we focus
on the analysis for a fixed σ-vector s⃗. Though we could iterate over all at most 2|Xt|

possible σ-vectors without dominating the running time, the final algorithm only considers
the σ-vectors resulting from the underlying set L. Hence, we assume that all vectors in L

share the same σ-vector s⃗.
When looking again at the bound for the size of L, it already becomes apparent how

we can compress the weight-vectors. Recall that once we have fixed the entries of a weight-
vector of some vector x ∈ L at the positions of S, the entries of the weight-vector on S are
predetermined by Lemma 2.5. Hence, for the compressed vector we simply omit the entries
on the positions in S, that is, the compressed weight-vector is the projection of the original
weight-vector to the dimensions from S.

It remains to recover the original vectors from their compression. As the implication from
Lemma 2.5 actually does not provide the values for the positions on S, it seems tempting
to store a single representative, which we refer to as origin-vector o to recover the omitted
values for all compressed vectors. Unfortunately, this is not (yet) sufficient.

Observe that Lemma 2.5, which serves as basis for the compression, requires that the
weight-vector u and the origin-vector o agree on the coordinates from S. Therefore, it would
be necessary to store one origin-vector for each possible choice of values on S, which would
not yield any improvement in the end.

In order to recover the values of the compressed weight-vector, we use our structural
property from Lemma 2.4 once more. Intuitively, we use that changing the weight-vector
at one position (from S, in our case), has an effect on the value at some other position
(from S, in our case). Based on this idea we define an auxiliary vector, which we refer
to as remainder-vector. Intuitively, the entries of this vector capture the difference of the
weight-vector u and the origin-vector o on the positions in S. By the previous observation
this also encodes how much these two vectors u and o differ on the positions from S. This
remainder-vector then allows us to efficiently decompress the compressed weight-vectors again.
In consequence, the final compression reduces the size of the space where the weight-vectors
are chosen from, which is a prerequisite for the last part of the algorithm.

J. Greilhuber, P. Schepper, and P. Wellnitz 41:11

Faster Join Operations. To obtain the fast join operation, we apply the known convolution
techniques by van Rooij [60]. As the convolution requires that all operations are done modulo
some small number, we can directly apply it as every coordinate of the compressed vector is
computed modulo m. As the convolution operates in the time of the space where the vectors
are from, we obtain an overall running time of m|Xt| for the join operation.

The final algorithm is then a dynamic program where the procedures for all nodes except
the join node follow the standard procedure. For the join node, we iterate over all potential
σ-vectors of the combined language, then join the compressed weight-vectors, and finally
output the union of their decompressions.

By designing the algorithm such that we consider solutions of a certain size, we achieve
that the considered languages are sparse and thus, the established machinery provides the
optimal bound for the running time. In total, we obtain Main Theorem 1.

▶ Main Theorem 1. Write σ, ρ ⊆ Z≥0 for two residue classes modulo m ≥ 2.
Then, in time mtw · |G|O(1) we can decide simultaneously for all s if the given graph G

has a (σ, ρ)-set of size s when a tree decomposition of width tw is given with the input.

2.2 Lower Bounds
After establishing the upper bounds, we focus on proving matching lower bounds, that is, we
prove the previous algorithm to be optimal under SETH. For all difficult cases, we provide
a general lower bound and for the easy cases that are solvable in polynomial time but are
non-trivial, we prove a lower bound for the minimization version by a separate reduction. In
the following we first focus on the difficult cases.

▶ Definition 2.6 (Easy and Difficult Cases). Let σ and ρ be two residue classes. We say that
this pair is easy if 0 ∈ ρ or

σ = {x ∈ Z≥0 | x ≡2 0} and ρ = {x ∈ Z≥0 | x ≡2 1}, or
σ = {x ∈ Z≥0 | x ≡2 1} and ρ = {x ∈ Z≥0 | x ≡2 1}.

Otherwise, we say that the pair is difficult.

Clearly the case 0 ∈ ρ is trivial since the empty set is a valid solution. For the other two
cases we can formulate the problem as a system of linear equations over F2: for each vertex
we create a variable indicating the selection status and introduce one appropriately chosen
constraint involving the neighboring vertices. Then, Gaussian elimination provides a solution
in polynomial time. We refer to [2, 34, 38, 56] for a formal proof. Thus, unless mentioned
otherwise, we henceforth focus on the difficult cases.

Starting from the first SETH-based lower bounds when parameterizing by treewidth by
Lokshtanov, Marx and Saurabh [45] (see also references in [44] for other applications) many
reductions suffered from the following obstacle: SETH provides a lower bound of the form
(2 − ε)n whereas for most problems a lower bound of the form (c − ε)tw is needed for some
integer c > 2. To bridge this gap, several technicalities are needed to obtain the bound
with the correct base. Lampis introduced the problem (family) q-CSP-B, which hides these
technicalities and allows for cleaner reductions. This problem generalizes q-SAT such that
every variable can now take B different values, that is, for B = 2 this is the classical q-SAT
problem. Formally q-CSP-B is defined as follows.

▶ Definition 2.7 (q-CSP-B [44]). Fix two numbers q, B ≥ 2. An instance of q-CSP-B is a
tuple (X, C) that consists of a set X of n variables having the domain D = [1 . . B] each, and
a set C of constraints on X. A constraint C is a pair (scp(C), acc(C)) where scp(C) ∈ Xq is
the scope of C and acc(C) ⊆ Dq is the set of accepted states.

STACS 2025

41:12 Residue Domination in Bounded-Treewidth Graphs

The task of the problem is to decide if (X, C) is satisfiable, that is, decide if there exists
an assignment π : X → D such that, for all constraints C with scp(C) = (vλ1 , . . . , vλq

) it
holds that (π(vλ1), . . . , π(vλq

)) ∈ acc(C).

In other words, the constraints specify valid assignments for the variables, and we are looking
for a variable assignment that satisfies all constraints.

Apart from introducing this problem, Lampis also proved a conditional lower bound
based on SETH which allows us to base our reduction on this special type of CSP.

▶ Theorem 2.8 ([44, Theorem 3.1]). For any B ≥ 2, ε > 0 we have the following: assuming
SETH, there is a q such that n-variable q-CSP-B with ℓ constraints cannot be solved in time
(B − ε)n · (n + ℓ)O(1).

To obtain the correct lower bound the most suitable version of q-CSP-B can be used, which
then hides the unwanted technicalities.

In our case we cover numerous (actually infinitely many) problems. This creates many
positions in the potential proof where (unwanted) properties of the sets σ and ρ have to be
circumvented or exploited. In order to minimize these places and to make use of the special
starting problem, we split the proof in two parts. This concept of splitting the reduction has
already proven to be successful for several other problems [18, 24, 47, 48].

As synchronizing point, we generalize the known (σ, ρ)-DomSet problem where we
additionally allow that relations are added to the graph. Therefore, we refer to this problem
as (σ, ρ)-DomSetRel. Intuitively one can think of these relations as constraints that observe
a predefined set of vertices, which we refer to as scope, and enforce that only certain ways of
selecting these vertices are allowed in a valid solution. To formally state this intermediate
problem, we first define the notion of a graph with relations.

▶ Definition 2.9 (Graph with Relations [25, Definition 4.1]). We define a graph with relations
as a tuple G = (V, E, C), where V is a set of vertices, E is a set of edges on V , and C is a
set of relational constraints, that is, each C ∈ C is in itself a tuple (scp(C), acc(C)). Here the
scope scp(C) of C is an unordered tuple of |scp(C)| vertices from V . Then, acc(C) ⊆ 2scp(C)

is a |scp(C)|-ary relation specifying possible selections within scp(C). We also say that C

observes scp(C).
The size of G is |G| := |V | +

∑
C∈C |acc(C)|. Slightly abusing notation, we usually do

not distinguish between G and its underlying graph (V, E). We use G to refer to both objects
depending on the context.

We define the treewidth and pathwidth of a graph with relations as the corresponding
measure of the modified graph that is obtained by replacing all relations by a clique on the
vertices from the scope.

We lift the notion of (σ, ρ)-set from Definition 2.1 to graphs with relations by requiring
that every relation has to be satisfied as well. Hence, the definition of (σ, ρ)-DomSetRel

follows naturally. These definitions are a reformulation of [25, Definition 4.3 and 4.8].

▶ Definition 2.10 ((σ, ρ)-Sets of a Graph with Relations, (σ, ρ)-DomSetRel). Fix two non-
empty sets σ and ρ of non-negative integers.

For a graph with relations G = (V, E, C), a set S ⊆ V is a (σ, ρ)-set of G if and only
if (1) S is a (σ, ρ)-set of the underlying graph (V, E) and (2) for every C ∈ C, the set S

satisfies S ∩ scp(C) ∈ acc(C). We use |G| as the size of the graph and say that the arity of
G is the maximum arity of a relation of G.

J. Greilhuber, P. Schepper, and P. Wellnitz 41:13

The problem (σ, ρ)-DomSetRel asks for a given graph with relations G = (V, C, C),
whether there is such a (σ, ρ)-set or not.

With this intermediate problem, we can now formally state the two parts of our lower
bound proof. The first step embeds the q-CSP-B problem (for appropriately chosen B)
into the graph problem (σ, ρ)-DomSetRel. We design the reduction in such a way that the
resulting instance has a small pathwidth (namely, roughly equal to the number of variables).
Combined with the conditional lower bound for q-CSP-B based on SETH from Theorem 2.8,
we prove the following intermediate lower bound.

▶ Lemma 2.11. Let σ and ρ be two residue classes modulo m ≥ 2.
Then, for all ε > 0, there is a constant d such that (σ, ρ)-DomSetRel on instances of

arity at most d cannot be solved in time (m − ε)pw · |G|O(1), where pw is the width of a path
decomposition provided with the input instance G, unless SETH fails.

For the second step, we then remove the relations from the constructed (σ, ρ)-DomSetRel

instance, to obtain a reduction to the (σ, ρ)-DomSet problem. Observe that the construction
from Lemma 2.11 works for the general case (even when 0 ∈ ρ is allowed). Hence, our second
step now exploits that the sets are difficult.

▶ Lemma 2.12. Let σ and ρ be two difficult residue classes modulo m. For all constants
d, there is a polynomial-time reduction from (σ, ρ)-DomSetRel on instances with arity d

given with a path decomposition of width pw to (σ, ρ)-DomSet on instances given with a
path decomposition of width pw + O(2d).

Combining these two intermediate results directly leads to the proof of Main Theorem 2.

▶ Main Theorem 2. Write σ, ρ ⊆ Z≥0 for difficult residue classes modulo m ≥ 2.
Unless SETH fails, for all ε > 0, there is no algorithm that can decide in time (m − ε)pw ·

|G|O(1) whether the input graph G has a (σ, ρ)-set, when a path decomposition of width pw is
given with the input.

Proof. Assume we are given a faster algorithm for (σ, ρ)-DomSet for some ε > 0. Let d be
the constant from Lemma 2.11 such that there is no algorithm solving (σ, ρ)-DomSetRel in
time (m − ε)pw · |G|O(1) when the input instance G is given with a path decomposition of
width pw.

Consider an instance G of (σ, ρ)-DomSetRel with arity d along with a path decomposition
of width pw(G). We use Lemma 2.12 to transform this instance into an instance G′ of
(σ, ρ)-DomSet with a path decomposition of width pw(G′) = pw(G) + O(2d).

We apply the fast algorithm for (σ, ρ)-DomSet to the instance G′ which correctly outputs
the answer for the original instance G of (σ, ρ)-DomSetRel. The running time of this entire
procedure is

|G|O(1) + (m − ε)pw(G′) · |G′|O(1) = (m − ε)pw(G)+O(2d) · |G|O(1) = (m − ε)pw(G) · |G|O(1)

since d is a constant only depending on ε. This contradicts SETH and concludes the proof. ◀

The following highlights the main technical contributions leading to the results from
Lemmas 2.11 and 2.12.

STACS 2025

41:14 Residue Domination in Bounded-Treewidth Graphs

1 - 1

R1𝑛

𝑤1
1

𝑤1
𝑛 𝑤ℓ

𝑛

𝑤ℓ
1

R22

R21

𝑤2
1

Rℓ1

Rℓ𝑛

R12

𝑤1
2

R11

(a) The information vertices together with the man-
agers and the consistency relations Rj

i .

1 - 2

𝑤1
1

𝑤1
𝑛 𝑤ℓ

𝑛

𝑤ℓ
1𝑤2

1

C1

C2

C

(b) The information vertices together with the man-
agers and the constraint relations Cj .

Figure 1 A depiction of the construction from the lower bound where m = 5, n = 4, and ℓ = 3.

Step 1: Encoding the CSP as a Graph Problem

Focke et al. already established the corresponding intermediate result when σ and ρ are
finite [25]. Hence, we could try to reuse their lower bound for (σ̂, ρ̂)-DomSetRel for two
finite sets σ̂ ⊆ σ and ρ̂ ⊆ ρ. However, since σ and ρ are residue classes, several solutions
could be indistinguishable from each other (not globally but locally from the perspective of a
single vertex) which would result in unpredictable behavior of the construction. Thus, we
need to come up with a new intermediate lower bound.

To prove this lower bound for (σ, ρ)-DomSetRel, we provide a reduction from q-CSP-B
where B = m but reuse some ideas from the known lower bounds in [18, 25, 47, 48]. This
allows for a much cleaner reduction (especially compared to the one from [25]) that focuses
on the conversion of a constraint satisfaction problem into a vertex selection problem without
having to deal with technicalities. Consult Figure 1 for an illustration of the high-level idea
of the construction.

Consider a q-CSP-m instance I with n variables and ℓ constraints. To achieve a low
treewidth (or actually pathwidth), we construct a graph with n · ℓ vertices, which we refer
to as information vertices, that are arranged as an n times ℓ grid; rows corresponding to
variables and columns corresponding to constraints. We refer to the information vertex from
row i and column j as wj

i . We encode the m different values of each variable by the states of
the information vertices in the graph.

To provide sufficiently many neighbors to these information vertices, we introduce man-
agers. In our case a manager consists of 2n blocks, n left blocks and n right blocks, and each
block can provide up to m − 1 neighbors to a single vertex. We create one manager for each
column (i.e., constraint) and assign one left block and one right block to each information
vertex. Then, we make each information vertex adjacent to the two associated blocks by
m − 1 edges each.

We use the number of selected neighbors from the left block to determine the state of an
information vertex (though the vertex might have selected neighbors in the right block too).
This directly relates the states of the information vertices to the variable assignments.

Recall that we create a separate manager for each column and that the managers are
not connected to each other. Thus, despite the mentioned correspondence, even for a single
row the information vertices can have different states. Phrased differently, the encoded

J. Greilhuber, P. Schepper, and P. Wellnitz 41:15

assignment is not necessarily consistent. To keep treewidth low, we cannot simply add a
single big relation for each row enforcing the intended behavior. Instead, for each row i, we
add a small consistency relation Rj

i between every two consecutive columns j and j + 1.
The relation Rj

i ensures the consistency between the information vertices wj
i and wj+1

i ,
and thus, additionally observes the right block of wj

i and the left block of wj+1
i . First,

Rj
i ensures that information vertex wj

i is unselected. Now assume that wj
i has b1 selected

neighbors in its right block and wj+1
i has b2 selected neighbors in its left block. Then,

relation Rj
i ensures that b2 complements b1 in the sense that b2 = min ρ − b1 mod m, that

is, b2 is the smallest number such that b1 + b2 ≡m min ρ.
It remains to analyze the influence of the information vertices themselves on the consistency

of the encoded assignment. By our construction, information vertex wj
i receives b0 neighbors

from its left block of the manager, receives b1 neighbors from its right block of the manager,
and receives no other neighbors. Since we consider a solution, vertex wj

i must have a valid
number of neighbors, that is, the solution must satisfy b0 + b1 ∈ ρ. Since ρ is a residue
class modulo m, we get b0 + b1 ≡m min ρ which implies that b1 = min ρ − b0 mod m. When
combining this with the observation from the previous paragraph, where we consider two
different information vertices, we get b2 = min ρ − (min ρ − b0 mod m) mod m and hence,
b2 = b0 mod m which implies that all information vertices of one row have the same state.

As a last step we encode the constraints of the CSP instance. For each constraint Cj

we add one constraint relation Cj which observes, for each variable appearing in Cj , the
neighbors of the corresponding information vertex in the left block of the manager (they
are needed to infer the state of the information vertices). The relation Cj then accepts a
selection of these vertices if and only if it corresponds to a satisfying assignment.

This concludes the lower bound for the intermediate problem (σ, ρ)-DomSetRel. Next,
we remove the relations and replace them by appropriate gadgets to lift the result to
(σ, ρ)-DomSet.

Step 2: Realizing the Relations

Formally, the second step is a reduction from (σ, ρ)-DomSetRel to (σ, ρ)-DomSet. We
replace each relation by a suitable gadget that precisely mimics the behavior of the original
relation, that is, we realize the relation. The realization gadget accepts a selection of vertices
if and only if the original relation also accepted this selection. Moreover, such a gadget must
not add any selected neighbors to a vertex from the scope, as that could affect the existence
of a solution (in the positive but also in the negative).

Curticapean and Marx [18] show that just two types of relations suffice to realize arbitrary
relations. Focke et al. prove that for (σ, ρ)-DomSet only HW=1 relations are needed [25,
Corollary 8.8], that is, once we can realize such HW=1 relations, then every relation can be
realized. The HW=1 relation accepts if exactly one vertex from the scope of the relation is
selected, that is, if the Hamming weight of the σ-vector is exactly one. We strengthen this
result further by using an observation from [47] such that only realizations of HW=1 with arity
one, two or three are needed.

To realize these relations, we use an auxiliary relation. For some set τ , the relation HW∈τ

accepts, if and only if the number of selected vertices from the scope of the relation, i.e., the
Hamming weight of the σ-vector, is contained in τ . Once we set τ − k := {t − k | t ∈ τ} to
simplify notation, our main results for realizing relations reads as follows.

▶ Lemma 2.13. Let σ and ρ be two difficult residue classes modulo m. Then, the relation
HW∈ρ−min ρ+1 can be realized.

STACS 2025

41:16 Residue Domination in Bounded-Treewidth Graphs

When σ and ρ are difficult we have m ≥ 3, and hence this gadget directly gives HW=1 when
restricting to arity at most 3 as min ρ + 1, min ρ + 2 /∈ ρ. Thus, together with the previous
intermediate lower bound this concludes the proof of the lower bound.

For m = 2 the decision version is easy, so we cannot expect to realize the HW=1 relation.
So, we consider the minimization version instead and focus on the two non-trivial cases; for
ρ = {x ∈ Z≥0 | x ≡2 1}, we consider σ = {x ∈ Z≥0 | x ≡2 1} and σ = {x ∈ Z≥0 | x ≡2 0}.
For the lower bounds from Main Theorem 3, we modify the known NP-hardness reductions
by Sutner [55] to keep pathwidth low and to obtain the matching bounds.

References
1 Jochen Alber, Hans L. Bodlaender, Henning Fernau, Ton Kloks, and Rolf Niedermeier. Fixed

parameter algorithms for dominating set and related problems on planar graphs. Algorithmica,
33(4):461–493, 2002. doi:10.1007/S00453-001-0116-5.

2 Marlow Anderson and Todd Feil. Turning lights out with linear algebra. Mathematics Magazine,
71(4):300–303, 1998. doi:10.1080/0025570X.1998.11996658.

3 Ferhat Ay, Manolis Kellis, and Tamer Kahveci. Submap: Aligning metabolic pathways
with subnetwork mappings. J. Comput. Biol., 18(3):219–235, 2011. PMID: 21385030. doi:
10.1089/cmb.2010.0280.

4 Lukas Barth, Benjamin Niedermann, Martin Nöllenburg, and Darren Strash. Temporal map
labeling: a new unified framework with experiments. In Siva Ravada, Mohammed Eunus Ali,
Shawn D. Newsam, Matthias Renz, and Goce Trajcevski, editors, Proceedings of the 24th ACM
SIGSPATIAL International Conference on Advances in Geographic Information Systems, GIS
2016, Burlingame, California, USA, October 31 - November 3, 2016, pages 23:1–23:10. ACM,
2016. doi:10.1145/2996913.2996957.

5 Abraham Berman, Franziska Borer, and Norbert Hungerbühler. Lights out on graphs. Math-
ematische Semesterberichte, 68(2):237–255, 2021. doi:10.1007/s00591-021-00297-5.

6 Hans L. Bodlaender. A linear time algorithm for finding tree-decompositions of small treewidth.
In S. Rao Kosaraju, David S. Johnson, and Alok Aggarwal, editors, Proceedings of the Twenty-
Fifth Annual ACM Symposium on Theory of Computing, May 16-18, 1993, San Diego, CA,
USA, pages 226–234. ACM, 1993. doi:10.1145/167088.167161.

7 Glencora Borradaile and Hung Le. Optimal dynamic program for r-domination problems over
tree decompositions. In Jiong Guo and Danny Hermelin, editors, 11th International Symposium
on Parameterized and Exact Computation, IPEC 2016, August 24-26, 2016, Aarhus, Denmark,
volume 63 of LIPIcs, pages 8:1–8:23. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, 2016.
doi:10.4230/LIPICS.IPEC.2016.8.

8 Binh-Minh Bui-Xuan, Jan Arne Telle, and Martin Vatshelle. Fast dynamic programming
for locally checkable vertex subset and vertex partitioning problems. Theor. Comput. Sci.,
511:66–76, 2013. doi:10.1016/J.TCS.2013.01.009.

9 Chris Calabro, Russell Impagliazzo, and Ramamohan Paturi. The complexity of satisfiability
of small depth circuits. In Jianer Chen and Fedor V. Fomin, editors, Parameterized and Exact
Computation, 4th International Workshop, IWPEC 2009, Copenhagen, Denmark, September
10-11, 2009, Revised Selected Papers, volume 5917 of Lecture Notes in Computer Science,
pages 75–85. Springer, 2009. doi:10.1007/978-3-642-11269-0_6.

10 Yair Caro and Michael S. Jacobson. On non-z(mod k) dominating sets. Discuss. Math. Graph
Theory, 23(1):189–199, 2003. doi:10.7151/dmgt.1195.

11 Yair Caro, William F. Klostermeyer, and John L. Goldwasser. Odd and residue domination
numbers of a graph. Discuss. Math. Graph Theory, 21(1):119–136, 2001. doi:10.7151/dmgt.
1137.

12 David Cattanéo and Simon Perdrix. Parameterized complexity of weak odd domination
problems. In Leszek Gasieniec and Frank Wolter, editors, Fundamentals of Computation
Theory - 19th International Symposium, FCT 2013, Liverpool, UK, August 19-21, 2013.
Proceedings, volume 8070 of Lecture Notes in Computer Science, pages 107–120. Springer,
2013. doi:10.1007/978-3-642-40164-0_13.

https://doi.org/10.1007/S00453-001-0116-5
https://doi.org/10.1080/0025570X.1998.11996658
https://doi.org/10.1089/cmb.2010.0280
https://doi.org/10.1089/cmb.2010.0280
https://doi.org/10.1145/2996913.2996957
https://doi.org/10.1007/s00591-021-00297-5
https://doi.org/10.1145/167088.167161
https://doi.org/10.4230/LIPICS.IPEC.2016.8
https://doi.org/10.1016/J.TCS.2013.01.009
https://doi.org/10.1007/978-3-642-11269-0_6
https://doi.org/10.7151/dmgt.1195
https://doi.org/10.7151/dmgt.1137
https://doi.org/10.7151/dmgt.1137
https://doi.org/10.1007/978-3-642-40164-0_13

J. Greilhuber, P. Schepper, and P. Wellnitz 41:17

13 David Cattanéo and Simon Perdrix. The parameterized complexity of domination-type
problems and application to linear codes. In T. V. Gopal, Manindra Agrawal, Angsheng
Li, and S. Barry Cooper, editors, Theory and Applications of Models of Computation - 11th
Annual Conference, TAMC 2014, Chennai, India, April 11-13, 2014. Proceedings, volume
8402 of Lecture Notes in Computer Science, pages 86–103. Springer, 2014. doi:10.1007/
978-3-319-06089-7_7.

14 Mathieu Chapelle. Parameterized complexity of generalized domination problems on bounded
tree-width graphs. CoRR, abs/1004.2642v5, 2010. doi:10.48550/arxiv.1004.2642.

15 Mathieu Chapelle. Décompositions de graphes : quelques limites et obstructions. (Graphs
decompositions: some limites and obstructions). PhD thesis, University of Orléans, France,
2011. URL: https://tel.archives-ouvertes.fr/tel-00659666.

16 E. Cockayne and S. Hedetniemi. Optimal domination in graphs. IEEE Transactions on
Circuits and Systems, 22(11):855–857, 1975. doi:10.1109/TCS.1975.1083994.

17 Bruno Courcelle. The monadic second-order logic of graphs. i. recognizable sets of finite graphs.
Inf. Comput., 85(1):12–75, 1990. doi:10.1016/0890-5401(90)90043-H.

18 Radu Curticapean and Dániel Marx. Tight conditional lower bounds for counting perfect
matchings on graphs of bounded treewidth, cliquewidth, and genus. In Robert Krauthgamer,
editor, Proceedings of the Twenty-Seventh Annual ACM-SIAM Symposium on Discrete Al-
gorithms, SODA 2016, Arlington, VA, USA, January 10-12, 2016, pages 1650–1669. SIAM,
2016. doi:10.1137/1.9781611974331.CH113.

19 Marek Cygan, Fedor V. Fomin, Lukasz Kowalik, Daniel Lokshtanov, Dániel Marx, Marcin
Pilipczuk, Michal Pilipczuk, and Saket Saurabh. Parameterized Algorithms. Springer, 2015.
doi:10.1007/978-3-319-21275-3.

20 Marek Cygan, Jesper Nederlof, Marcin Pilipczuk, Michal Pilipczuk, Johan M. M. van Rooij, and
Jakub Onufry Wojtaszczyk. Solving connectivity problems parameterized by treewidth in single
exponential time. ACM Trans. Algorithms, 18(2):17:1–17:31, 2022. doi:10.1145/3506707.

21 Yevgeniy Dodis and Peter Winkler. Universal configurations in light-flipping games. In
S. Rao Kosaraju, editor, Proceedings of the Twelfth Annual Symposium on Discrete Algorithms,
January 7-9, 2001, Washington, DC, USA, pages 926–927. ACM/SIAM, 2001. URL: http:
//dl.acm.org/citation.cfm?id=365411.365812.

22 Devdatt P. Dubhashi, Alessandro Mei, Alessandro Panconesi, Jaikumar Radhakrishnan, and
Aravind Srinivasan. Fast distributed algorithms for (weakly) connected dominating sets
and linear-size skeletons. In Proceedings of the Fourteenth Annual ACM-SIAM Symposium
on Discrete Algorithms, January 12-14, 2003, Baltimore, Maryland, USA, pages 717–724.
ACM/SIAM, 2003. URL: http://dl.acm.org/citation.cfm?id=644108.644226.

23 Rudolf Fleischer and Jiajin Yu. A survey of the game “Lights Out!”. In Andrej Brodnik,
Alejandro López-Ortiz, Venkatesh Raman, and Alfredo Viola, editors, Space-Efficient Data
Structures, Streams, and Algorithms - Papers in Honor of J. Ian Munro on the Occasion of His
66th Birthday, volume 8066 of Lecture Notes in Computer Science, pages 176–198. Springer,
2013. doi:10.1007/978-3-642-40273-9_13.

24 Jacob Focke, Dániel Marx, Fionn Mc Inerney, Daniel Neuen, Govind S. Sankar, Philipp
Schepper, and Philip Wellnitz. Tight complexity bounds for counting generalized dominating
sets in bounded-treewidth graphs Part I: Algorithmic results. CoRR, abs/2211.04278v2, 2023.
doi:10.48550/arXiv.2211.04278.

25 Jacob Focke, Dániel Marx, Fionn Mc Inerney, Daniel Neuen, Govind S. Sankar, Philipp
Schepper, and Philip Wellnitz. Tight complexity bounds for counting generalized dominating
sets in bounded-treewidth graphs Part II: Hardness results. CoRR, abs/2306.03640, 2023.
doi:10.48550/arXiv.2306.03640.

26 Jacob Focke, Dániel Marx, Fionn Mc Inerney, Daniel Neuen, Govind S. Sankar, Philipp
Schepper, and Philip Wellnitz. Tight complexity bounds for counting generalized dominating
sets in bounded-treewidth graphs. In Nikhil Bansal and Viswanath Nagarajan, editors,
Proceedings of the 2023 ACM-SIAM Symposium on Discrete Algorithms, SODA 2023, Florence,
Italy, January 22-25, 2023, pages 3664–3683. SIAM, 2023. doi:10.1137/1.9781611977554.
ch140.

STACS 2025

https://doi.org/10.1007/978-3-319-06089-7_7
https://doi.org/10.1007/978-3-319-06089-7_7
https://doi.org/10.48550/arxiv.1004.2642
https://tel.archives-ouvertes.fr/tel-00659666
https://doi.org/10.1109/TCS.1975.1083994
https://doi.org/10.1016/0890-5401(90)90043-H
https://doi.org/10.1137/1.9781611974331.CH113
https://doi.org/10.1007/978-3-319-21275-3
https://doi.org/10.1145/3506707
http://dl.acm.org/citation.cfm?id=365411.365812
http://dl.acm.org/citation.cfm?id=365411.365812
http://dl.acm.org/citation.cfm?id=644108.644226
https://doi.org/10.1007/978-3-642-40273-9_13
https://doi.org/10.48550/arXiv.2211.04278
https://doi.org/10.48550/arXiv.2306.03640
https://doi.org/10.1137/1.9781611977554.ch140
https://doi.org/10.1137/1.9781611977554.ch140

41:18 Residue Domination in Bounded-Treewidth Graphs

27 Fedor V. Fomin, Petr A. Golovach, Jan Kratochvíl, Dieter Kratsch, and Mathieu Liedloff. Sort
and search: Exact algorithms for generalized domination. Inf. Process. Lett., 109(14):795–798,
2009. doi:10.1016/J.IPL.2009.03.023.

28 Fedor V. Fomin, Fabrizio Grandoni, and Dieter Kratsch. A measure & conquer approach for the
analysis of exact algorithms. J. ACM, 56(5):25:1–25:32, 2009. doi:10.1145/1552285.1552286.

29 Fedor V. Fomin, Daniel Lokshtanov, Fahad Panolan, and Saket Saurabh. Efficient computation
of representative families with applications in parameterized and exact algorithms. J. ACM,
63(4):29:1–29:60, 2016. doi:10.1145/2886094.

30 Fedor V. Fomin and Dimitrios M. Thilikos. Dominating sets in planar graphs: Branch-
width and exponential speed-up. SIAM J. Comput., 36(2):281–309, 2006. doi:10.1137/
S0097539702419649.

31 Andrei Gagarin and Padraig Corcoran. Multiple domination models for placement of electric
vehicle charging stations in road networks. Comput. Oper. Res., 96:69–79, 2018. doi:
10.1016/j.cor.2018.03.014.

32 Serge Gaspers, Dieter Kratsch, Mathieu Liedloff, and Ioan Todinca. Exponential time
algorithms for the minimum dominating set problem on some graph classes. ACM Trans.
Algorithms, 6(1):9:1–9:21, 2009. doi:10.1145/1644015.1644024.

33 Elisabeth Gassner and Johannes Hatzl. A parity domination problem in graphs with bounded
treewidth and distance-hereditary graphs. Computing, 82(2-3):171–187, July 2008. doi:
10.1007/s00607-008-0005-8.

34 John Goldwasser, William Klostermeyer, and George Trapp. Characterizing switch-
setting problems. Linear and Multilinear Algebra, 43(1-3):121–135, 1997. doi:10.1080/
03081089708818520.

35 Petr A. Golovach, Jan Kratochvíl, and Ondrej Suchý. Parameterized complexity of generalized
domination problems. Discret. Appl. Math., 160(6):780–792, 2012. doi:10.1016/J.DAM.2010.
11.012.

36 Jakob Greilhuber. Shining light on periodic dominating sets in bounded-treewidth graphs.
Master’s thesis, TU Wien, 2024. doi:10.34726/hss.2024.120579.

37 Magnús M. Halldórsson, Jan Kratochvíl, and Jan Arne Telle. Independent sets with domination
constraints. Discret. Appl. Math., 99(1-3):39–54, 2000. doi:10.1016/S0166-218X(99)00124-9.

38 Magnús M. Halldórsson, Jan Kratochvíl, and Jan Arne Telle. Mod-2 independence and
domination in graphs. Int. J. Found. Comput. Sci., 11(3):355–363, 2000. doi:10.1142/
S0129054100000272.

39 Stephen T. Hedetniemi and Renu C. Laskar. Bibliography on domination in graphs and
some basic definitions of domination parameters. Discret. Math., 86(1-3):257–277, 1990.
doi:10.1016/0012-365X(90)90365-O.

40 Russell Impagliazzo and Ramamohan Paturi. On the complexity of k-sat. J. Comput. Syst.
Sci., 62(2):367–375, 2001. doi:10.1006/jcss.2000.1727.

41 Samir Khuller, Manish Purohit, and Kanthi K. Sarpatwar. Analyzing the optimal neighborhood:
Algorithms for budgeted and partial connected dominating set problems. In Chandra Chekuri,
editor, Proceedings of the Twenty-Fifth Annual ACM-SIAM Symposium on Discrete Algorithms,
SODA 2014, Portland, Oregon, USA, January 5-7, 2014, pages 1702–1713. SIAM, 2014.
doi:10.1137/1.9781611973402.123.

42 Tuukka Korhonen. A single-exponential time 2-approximation algorithm for treewidth. In
62nd IEEE Annual Symposium on Foundations of Computer Science, FOCS 2021, Denver, CO,
USA, February 7-10, 2022, pages 184–192. IEEE, 2021. doi:10.1109/FOCS52979.2021.00026.

43 Stefan Kratsch and Magnus Wahlström. Representative sets and irrelevant vertices: New tools
for kernelization. J. ACM, 67(3):16:1–16:50, 2020. doi:10.1145/3390887.

44 Michael Lampis. Finer tight bounds for coloring on clique-width. SIAM J. Discret. Math.,
34(3):1538–1558, 2020. doi:10.1137/19M1280326.

https://doi.org/10.1016/J.IPL.2009.03.023
https://doi.org/10.1145/1552285.1552286
https://doi.org/10.1145/2886094
https://doi.org/10.1137/S0097539702419649
https://doi.org/10.1137/S0097539702419649
https://doi.org/10.1016/j.cor.2018.03.014
https://doi.org/10.1016/j.cor.2018.03.014
https://doi.org/10.1145/1644015.1644024
https://doi.org/10.1007/s00607-008-0005-8
https://doi.org/10.1007/s00607-008-0005-8
https://doi.org/10.1080/03081089708818520
https://doi.org/10.1080/03081089708818520
https://doi.org/10.1016/J.DAM.2010.11.012
https://doi.org/10.1016/J.DAM.2010.11.012
https://doi.org/10.34726/hss.2024.120579
https://doi.org/10.1016/S0166-218X(99)00124-9
https://doi.org/10.1142/S0129054100000272
https://doi.org/10.1142/S0129054100000272
https://doi.org/10.1016/0012-365X(90)90365-O
https://doi.org/10.1006/jcss.2000.1727
https://doi.org/10.1137/1.9781611973402.123
https://doi.org/10.1109/FOCS52979.2021.00026
https://doi.org/10.1145/3390887
https://doi.org/10.1137/19M1280326

J. Greilhuber, P. Schepper, and P. Wellnitz 41:19

45 Daniel Lokshtanov, Dániel Marx, and Saket Saurabh. Known algorithms on graphs of
bounded treewidth are probably optimal. ACM Trans. Algorithms, 14(2):13:1–13:30, April
2018. doi:10.1145/3170442.

46 Dániel Marx. Four shorts stories on surprising algorithmic uses of treewidth. In Fedor V.
Fomin, Stefan Kratsch, and Erik Jan van Leeuwen, editors, Treewidth, Kernels, and Algorithms
- Essays Dedicated to Hans L. Bodlaender on the Occasion of His 60th Birthday, volume
12160 of Lecture Notes in Computer Science, pages 129–144. Springer, 2020. doi:10.1007/
978-3-030-42071-0_10.

47 Dániel Marx, Govind S. Sankar, and Philipp Schepper. Degrees and gaps: Tight complexity
results of general factor problems parameterized by treewidth and cutwidth. In Nikhil Bansal,
Emanuela Merelli, and James Worrell, editors, 48th International Colloquium on Automata,
Languages, and Programming, ICALP 2021, July 12-16, 2021, Glasgow, Scotland (Virtual
Conference), volume 198 of LIPIcs, pages 95:1–95:20. Schloss Dagstuhl – Leibniz-Zentrum für
Informatik, 2021. doi:10.4230/LIPICS.ICALP.2021.95.

48 Dániel Marx, Govind S. Sankar, and Philipp Schepper. Anti-factor is FPT parameterized by
treewidth and list size (but counting is hard). In Holger Dell and Jesper Nederlof, editors, 17th
International Symposium on Parameterized and Exact Computation, IPEC 2022, September
7-9, 2022, Potsdam, Germany, volume 249 of LIPIcs, pages 22:1–22:23. Schloss Dagstuhl –
Leibniz-Zentrum für Informatik, 2022. doi:10.4230/LIPICS.IPEC.2022.22.

49 Mohsen Alambardar Meybodi, Fedor V. Fomin, Amer E. Mouawad, and Fahad Panolan. On
the parameterized complexity of [1, j]-domination problems. Theor. Comput. Sci., 804:207–218,
2020. doi:10.1016/j.tcs.2019.11.032.

50 Neeldhara Misra and Piyush Rathi. The parameterized complexity of dominating set and friends
revisited for structured graphs. In René van Bevern and Gregory Kucherov, editors, Computer
Science - Theory and Applications - 14th International Computer Science Symposium in Russia,
CSR 2019, Novosibirsk, Russia, July 1-5, 2019, Proceedings, volume 11532 of Lecture Notes in
Computer Science, pages 299–310. Springer, 2019. doi:10.1007/978-3-030-19955-5_26.

51 Karolina Okrasa and Pawel Rzazewski. Fine-grained complexity of graph homomorphism
problem for bounded-treewidth graphs. In Shuchi Chawla, editor, Proceedings of the 2020
ACM-SIAM Symposium on Discrete Algorithms, SODA 2020, Salt Lake City, UT, USA,
January 5-8, 2020, pages 1578–1590. SIAM, 2020. doi:10.1137/1.9781611975994.97.

52 Geevarghese Philip, Venkatesh Raman, and Somnath Sikdar. Solving dominating set in larger
classes of graphs: FPT algorithms and polynomial kernels. In Amos Fiat and Peter Sanders,
editors, Algorithms - ESA 2009, 17th Annual European Symposium, Copenhagen, Denmark,
September 7-9, 2009. Proceedings, volume 5757 of Lecture Notes in Computer Science, pages
694–705. Springer, 2009. doi:10.1007/978-3-642-04128-0_62.

53 Hadas Shachnai and Meirav Zehavi. Representative families: A unified tradeoff-based
approach. In Andreas S. Schulz and Dorothea Wagner, editors, Algorithms - ESA 2014
- 22th Annual European Symposium, Wroclaw, Poland, September 8-10, 2014. Proceed-
ings, volume 8737 of Lecture Notes in Computer Science, pages 786–797. Springer, 2014.
doi:10.1007/978-3-662-44777-2_65.

54 Shay Solomon and Amitai Uzrad. Dynamic ((1+ε) ln n)-approximation algorithms for minimum
set cover and dominating set. In Barna Saha and Rocco A. Servedio, editors, Proceedings of
the 55th Annual ACM Symposium on Theory of Computing, STOC 2023, Orlando, FL, USA,
June 20-23, 2023, pages 1187–1200. ACM, 2023. doi:10.1145/3564246.3585211.

55 Klaus Sutner. Additive automata on graphs. Complex Syst., 2(6), 1988. URL: http:
//www.complex-systems.com/abstracts/v02_i06_a03.html.

56 Klaus Sutner. Linear cellular automata and the garden-of-eden. The Mathematical Intelligencer,
11(2):49–53, 1989. doi:10.1007/BF03023823.

57 Jan Arne Telle. Complexity of domination-type problems in graphs. Nord. J. Comput.,
1(1):157–171, 1994.

STACS 2025

https://doi.org/10.1145/3170442
https://doi.org/10.1007/978-3-030-42071-0_10
https://doi.org/10.1007/978-3-030-42071-0_10
https://doi.org/10.4230/LIPICS.ICALP.2021.95
https://doi.org/10.4230/LIPICS.IPEC.2022.22
https://doi.org/10.1016/j.tcs.2019.11.032
https://doi.org/10.1007/978-3-030-19955-5_26
https://doi.org/10.1137/1.9781611975994.97
https://doi.org/10.1007/978-3-642-04128-0_62
https://doi.org/10.1007/978-3-662-44777-2_65
https://doi.org/10.1145/3564246.3585211
http://www.complex-systems.com/abstracts/v02_i06_a03.html
http://www.complex-systems.com/abstracts/v02_i06_a03.html
https://doi.org/10.1007/BF03023823

41:20 Residue Domination in Bounded-Treewidth Graphs

58 Jan Arne Telle and Andrzej Proskurowski. Practical algorithms on partial k-trees with an
application to domination-like problems. In Frank K. H. A. Dehne, Jörg-Rüdiger Sack, Nicola
Santoro, and Sue Whitesides, editors, Algorithms and Data Structures, Third Workshop,
WADS ’93, Montréal, Canada, August 11-13, 1993, Proceedings, volume 709 of Lecture Notes
in Computer Science, pages 610–621. Springer, 1993. doi:10.1007/3-540-57155-8_284.

59 Kuo-Hui Tsai and Wen-Lian Hsu. Fast algorithms for the dominating set problem on per-
mutation graphs. In Tetsuo Asano, Toshihide Ibaraki, Hiroshi Imai, and Takao Nishizeki,
editors, Algorithms, International Symposium SIGAL ’90, Tokyo, Japan, August 16-18, 1990,
Proceedings, volume 450 of Lecture Notes in Computer Science, pages 109–117. Springer, 1990.
doi:10.1007/3-540-52921-7_60.

60 Johan M. M. van Rooij. Fast algorithms for join operations on tree decompositions. In
Fedor V. Fomin, Stefan Kratsch, and Erik Jan van Leeuwen, editors, Treewidth, Kernels,
and Algorithms - Essays Dedicated to Hans L. Bodlaender on the Occasion of His 60th
Birthday, volume 12160 of Lecture Notes in Computer Science, pages 262–297. Springer, 2020.
doi:10.1007/978-3-030-42071-0_18.

61 Johan M. M. van Rooij, Hans L. Bodlaender, and Peter Rossmanith. Dynamic programming on
tree decompositions using generalised fast subset convolution. In Amos Fiat and Peter Sanders,
editors, Algorithms - ESA 2009, 17th Annual European Symposium, Copenhagen, Denmark,
September 7-9, 2009. Proceedings, volume 5757 of Lecture Notes in Computer Science, pages
566–577. Springer, 2009. doi:10.1007/978-3-642-04128-0_51.

https://doi.org/10.1007/3-540-57155-8_284
https://doi.org/10.1007/3-540-52921-7_60
https://doi.org/10.1007/978-3-030-42071-0_18
https://doi.org/10.1007/978-3-642-04128-0_51

Local Enumeration: The Not-All-Equal Case
Mohit Gurumukhani # Ñ

Cornell University, Ithaca, NY, USA

Ramamohan Paturi #

Department of Computer Science and Engineering,
University of California San Diego, La Jolla, CA, USA

Michael Saks #

Department of Mathematics, Rutgers University, Piscataway, NJ, USA

Navid Talebanfard # Ñ

University of Sheffield, UK

Abstract
Gurumukhani et al. (CCC’24) proposed the local enumeration problem Enum(k, t) as an approach
to break the Super Strong Exponential Time Hypothesis (SSETH): for a natural number k and a
parameter t, given an n-variate k-CNF with no satisfying assignment of Hamming weight less than
t(n), enumerate all satisfying assignments of Hamming weight exactly t(n). Furthermore, they gave
a randomized algorithm for Enum(k, t) and employed new ideas to analyze the first non-trivial
case, namely k = 3. In particular, they solved Enum(3, n

2) in expected 1.598n time. A simple
construction shows a lower bound of 6 n

4 ≈ 1.565n.
In this paper, we show that to break SSETH, it is sufficient to consider a simpler local enumeration

problem NAE-Enum(k, t): for a natural number k and a parameter t, given an n-variate k-CNF
with no satisfying assignment of Hamming weight less than t(n), enumerate all Not-All-Equal
(NAE) solutions of Hamming weight exactly t(n), i.e., those that satisfy and falsify some literal
in every clause. We refine the algorithm of Gurumukhani et al. and show that it optimally solves
NAE-Enum(3, n

2), namely, in expected time poly(n) · 6 n
4 .

2012 ACM Subject Classification Theory of computation → Circuit complexity

Keywords and phrases Depth 3 circuits, k-CNF satisfiability, Circuit lower bounds, Majority function

Digital Object Identifier 10.4230/LIPIcs.STACS.2025.42

Related Version Full Version: https://arxiv.org/abs/2501.02886

Funding Mohit Gurumukhani: Supported by NSF CAREER Award 2045576 and a Sloan Research
Fellowship.
Ramamohan Paturi: Partially supported by NSF grant 2212136.

Acknowledgements We want to thank Pavel Pudlák for helpful discussions.

1 Introduction

Four decades of research on the exact complexity of k-SAT has given rise to a handful
of non-trivial exponential time algorithms, i.e., algorithms running in time 2(1−ϵ)n with
non-trivial savings ϵ > 0 [10, 12, 15, 2, 11, 8, 6, 13]. Despite extensive effort, PPSZ [11]
remains essentially the fastest known k-SAT algorithm. It is also known that its analysis
cannot be substantially improved [14]. The Super Strong Exponential Time Hypothesis
(SSETH) formalizes the lack of progress in improving the exact complexity of k-SAT, and
states that it cannot be solved in time 2(1−ω(1/k))n [16]. Gurumukhani et al. [5] recently
proposed the local enumeration problem as a new approach to refute SSETH. More precisely,
Enum(k, t) is defined as follows: for natural number k and a parameter t, given an n-variate
k-CNF F with no satisfying assignment of Hamming weight less than t(n), enumerate

© Mohit Gurumukhani, Ramamohan Paturi, Michael Saks, and Navid Talebanfard;
licensed under Creative Commons License CC-BY 4.0

42nd International Symposium on Theoretical Aspects of Computer Science (STACS 2025).
Editors: Olaf Beyersdorff, Michał Pilipczuk, Elaine Pimentel, and Nguyễn Kim Thắng;
Article No. 42; pp. 42:1–42:19

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:mgurumuk@cs.cornell.edu
https://www.mohitgurumukhani.com/
https://orcid.org/0009-0007-8808-2846
mailto:rpaturi@ucsd.edu
mailto:saks@math.rutgers.edu
mailto:n.talebanfard@sheffield.ac.uk
https://staffwww.dcs.shef.ac.uk/people/n.talebanfard/
https://orcid.org/0000-0002-3524-9282
https://doi.org/10.4230/LIPIcs.STACS.2025.42
https://arxiv.org/abs/2501.02886
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

42:2 Local Enumeration: The Not-All-Equal Case

all satisfying assignments of Hamming weight exactly t(n). They provided a randomized
branching algorithm and presented novel ideas to analyze it for the first non-trivial case,
k = 3.

In this paper, we argue that fast algorithms for an easier local enumeration problem
would also refute SSETH. To be precise, we consider the NAE-Enum(k, t) problem which
is formally defined as follows: for a natural number k and a parameter t, given an n-variate
k-CNF F with no satisfying assignment of Hamming weight less than t(n), enumerate all
Not-All-Equal (NAE) solutions of Hamming weight exactly t(n) 1. Recall that a NAE
solution to a CNF is one which satisfies and falsifies a literal in every clause. We will show
that a refinement of the algorithm of [5] can optimally solve NAE-Enum(k, n

2) for k = 3.
For this algorithm t = n

2 is the hardest case, and we therefore have an algorithm for all
t ≤ n

2 . Our proof utilizes a new technique for analyzing a transversal tree (a tree of satisfying
solutions with Hamming weight exactly t(n) constructed using the clauses of the k-CNF).

It is easy to see that k-SAT can be reduced to (k+ 1)-NAE-SAT by the following folklore
reduction: Given a k-CNF F , define a (k + 1)-CNF F ′ as follows. Let z be a new variable.
For each clause C ∈ F we include the clause C ∨ z in F ′. It is clear that F is satisfiable iff
F ′ has a NAE solution2. Furthermore, if we can solve k-NAE-SAT in time 2(1−µk)n, then
we can solve k-SAT in time O(2(1−µk−1)n). In the other direction, the k-NAE-SAT problem
has a trivial reduction to k-SAT: Given a k-CNF F , construct the formula F ′ by adding, for
each clause of F the clause consisting of the negations of its literals, then F has an NAE
solution if and only if F ′ is satisfiable. Therefore, for large k, k-SAT can be solved with
asymptotically the same savings as that of k-NAE-SAT.

It is noted in [5] that upper bounds on Enum(k, t) for all t ≤ n
2 imply k-SAT upper

bounds. It is easy to see that the same holds for NAE-Enum(k, t) and k-NAE-SAT.
Therefore, by the discussion above, as far as k-SAT savings are concerned, we may only focus
on NAE-Enum(k, t) for all t ≤ n

2 .

Lower bounds for local enumeration

Define k-CNF Majn,k as follows. Divide the n variables into blocks of size 2k − 2, and
for each block include all positive clauses of size k. Every satisfying assignment of Majn,k

sets at least k − 1 variables in each block to 1, and thus has Hamming weight at least n
2 .

Notably, all minimum-weight satisfying assignments are NAE. Furthermore, the number of
minimum-weight satisfying assignments of Majn,k is 2(1−O(log(k)/k))n. This, in particular, is a
lower bound on the complexity of both Enum(k, n

2) and NAE-Enum(k, n
2), and thus if we

can show that any of these bounds is tight for all t ≤ n
2 , we break SSETH. We reiterate that

it is wide open to obtain even a combinatorial (non-algorithmic) upper bound of this kind;
while this is not good enough to break SSETH, it is necessary and will be very interesting to
obtain such a bound.

1.1 Our Contributions
Gurumukhani et al. [5] showed that their algorithm solves Enum(k, t) for all t ≤ n

2 , and in
particular, it solves Enum(3, n

2) in expected 1.598n time. Compare this with the lower bound
of 6 n

4 ≈ 1.565n which follows from Majn,3. With respect to this algorithm, the complexity of

1 we emphasize that we require F to have no satisfying assignment, not only no NAE-satisfying assignment
of weight less than t(n)

2 A satisfying assignment of F can be extended to a NAE solution of F ′ by setting z = 0. Conversely, a
NAE solution of F ′ is a satisfying assignment of F projected on the first n variables if z = 0, and if
z = 1, the negation of the remaining variables is a satisfying assignment of F .

M. Gurumukhani, R. Paturi, M. Saks, and N. Talebanfard 42:3

Enum(k, t) increases as t grows. Therefore t = n
2 is the hardest instance for this algorithm.

Here we refine their algorithm, and show that it optimally solves NAE-Enum(3, n
2), which

is also the hardest instance for this algorithm.

▶ Theorem 1. For n ≥ 0, t ≤ n/2, let F be an arbitrary n-variate 3-CNF where every
satisfying assignment has Hamming weight at least t. Then, the number of NAE satisfying
assignments of F of Hamming weight exactly t is at most 6 n

4 . Furthermore, we can enumerate
these solutions in expected poly(n) · 6 n

4 time.

Theorem 1 will follow from Theorem 21 and Theorem 38. The algorithm of [5] is a
randomized variant of the seminal method of Monien and Speckenmeyer [10]: take a positive
clause C = x1 ∨ . . . ∨ xk and for a random ordering π of its variables, recursively solve the
problem under the restriction xπ(1) = . . . = xπ(i−1) = 0, xπ(i) = 1, for every i ∈ [k]. While
the analysis in [5] is essentially local (only depends on the information along root-leaf paths),
we had to develop a global technique to get the optimal bound where we use information
from one subtree to analyze the performance in an entirely different subtree. We believe that
the elements of our analysis have the potential to generalize for k > 3.

Depth-3 complexity of Majority function

Majority is a natural candidate function for beating the state-of-the-art depth-3 circuit lower
bounds [7, 9, 1]. The local enumeration paradigm of [5] gives a promising paradigm to
establish this, and their result yields new lower bounds for Σ3

3 circuits, i.e., OR-AND-OR
circuits with bottom fan-in at most 3. Our result can also be interpreted as an optimal lower
bound Majority for Σ3

3 circuits in which every Hamming weigh n
2 input is a NAE solution of

some depth-2 subcircuit.

Hypergraph Turán problems

Following [3, 5, 4], by restricting ourselves to monotone formulas, our result has a natural
interpretation for hypergraphs. Let H = (V,E) be a 3-uniform n-vertex hypergraph with
no transversal of size less than n

2 , i.e., any set of vertices that intersects every hyperedge
has size at least n

2 . We show that the number of 2-colorings of H with no monochromatic
hyperedge is at most 6 n

4 and give a randomized algorithm that in expected poly(n) · 6 n
4 time

enumerates them. This bound is tight, by considering the disjoint union of n
4 cliques of size

4 (this hypergraph corresponds to the formula Majn,3).

Combinatorial interpretation

Our result can also be interpreted in a purely combinatorial manner. For instance, let
S(n, t, k) be the maximum number of weight t satisfying assignments of a k-CNF that has
no solutions of weight less than t. By construction, we can show S(n, n/2, 3) ≥ 6n/4. It
was conjectured in [5] that S(n, n/2, 3) ≤ 6n/4. We here prove S(n, n/2, 3) ≤ 6n/4 under
an additional assumption that the 3-CNF formula F is negation closed: If α satisfies F ,
then negation of α also satisfies F . As pointed out in [5, 4], proving strong upper bounds
for S(n, n/2, k) for k > 3 is a major open problem and doing so for large k would lead
to breakthrough circuit lower bounds for depth 3 circuits. The current best bounds were
first obtained by [7] who showed S(n, n/2, k) ≤ 2n−O(n/k). We also note that to refute
SSETH, one not only needs to show strong upper bounds for S(n, n/2, k) but also needs an
enumeration algorithm.

STACS 2025

42:4 Local Enumeration: The Not-All-Equal Case

1.2 Proof Strategy
As mentioned earlier, our enumeration algorithm is similar to [5] where we select an unsatisfied
monotone clause C, randomly order the variables in C and for 1 ≤ i ≤ 3, set the first i− 1
variables to 0, set variable i to 1 and recurse. This gives rise to a recursion tree (henceforth
called transversal tree) where each leaf may correspond to a transversal (it could be a leaf
corresponds to a falsified formula). We bound the expected number of leaves that our
algorithm visits by carefully ensuring we do not double count leaves that correspond to the
same transversal. This is also what [5] did. The key difference here is that in our algorithm,
we very carefully choose which clause to develop next: we divide the transversal tree into
stages and for each stage, carefully argue certain kinds of clauses must exist and carefully
pick those clauses to develop the transversal tree. This is also where we use the not-all-equals
assumption to show certain kinds of favorable clauses must exist. With careful accounting,
we are able to obtain the tight bound.

2 Transversal trees and the TreeSearch algorithm

In this section we review the TreeSearch algorithm from [5] which enumerates the solu-
tions of a k-CNF solutions of minimum Hamming weight. We also make some additional
observations that allow us to get a tight analysis of the algorithm for NAE-3-SAT.

The TreeSearch algorithm is for k-SAT and we want algorithms for NAE-k-SAT. Define
the negation-clause for clause C to be the clause C ′ whose literals are the negations of the
literals of C. The negation-closure of a formula F is the formula F̂ obtained from F by
adding the negation-clause of every clause of F (if it is not already in F). We say that F is
negation-closed if F̂ = F . It is easy to see that the set of NAE solutions for a formula F is
exactly the same as the set of SAT-solutions for its negation-closure F̂ . So any algorithm
that enumerates the minimum-weight satisfying assignments for k-CNF formulas can be
used to find the minimum weight NAE-assignments of a k-CNF formula F by applying the
algorithm to F̂ .

2.1 Transversals and Transversal trees

2.1.1 Important definitions
▶ Definition 2 (Transversals). A set S ⊆ X is a transversal of F if the assignment that sets
the variables in S to 1 and the variables in X \ S to 0 is a satisfying assignment of F .

We say S is a minimal transversal of F if no subset of S is a transversal. We say that S
is a minimum-size transversal of F if it has the smallest size over all transversals.

The definition of transversal of a formula can be seen as a natural generalization of the
standard notion of transversal of a hypergraph, which is a set that has nonempty intersection
with every edge. Indeed, if F is a monotone formula (where every clause consists of positive
literals) then a transversal of F is exactly a transversal of the hypergraph H consisting of
the set of clauses of F .

▶ Definition 3 (Transversal number). For a satisfiable k-CNF F , the transversal number
τ(F) is the cardinality of the minimum-size transversal of F . The set of all minimum-size
transversals of F is denoted by Γ(F) and the cardinality of Γ(F) is denoted by #Γ(F).

M. Gurumukhani, R. Paturi, M. Saks, and N. Talebanfard 42:5

We focus on two related problems: (1) Give an algorithm that enumerates Γ(F) and
analyze its complexity, and (2) Determine the maximum cardinality of Γ(F) among all
k-CNF (or NAE-k-CNF) with τ(F) = n/2. Our main technical tool will be transversal trees,
introduced in [5], and defined below. The definition applies to k-CNF with τ(F) = t for any
k, t.

We need some preliminary definitions. We associate a subset Y of variables to the partial
assignment that sets all variables of Y to 1. A clause C is said to be satisfied by Y if C
contains a positive literal corresponding to a variable from Y .

▶ Definition 4 (Simplification of clause / formula). For a clause C that is not satisfied by
Y , the simplification of C by Y , C/Y is the clause obtained by removing occurrences of
negations of variables of Y . Similarly, the simplification of F by Y , denoted F/Y , is the
formula on X − Y obtained by deleting clauses satisfied by Y , and replacing each remaining
clauses C by C/Y .

Note that the underlying set of variables of both F and F/Y is the same - X. Furthermore,
the set of satisfying assignments of F with variables in Y set to 1 is in 1-1 correspondence
with the set of satisfying assignments of F/Y . We say that F is falsified by Y if F/Y contains
an empty clause.

We will be considering rooted trees with root r where each edge e is assigned a label
Q(e) ∈ X.

▶ Definition 5. For a node u and descendant node v we have the following definitions:
P (u, v) denotes the path from u to v.
The shoot from u to v, S(u, v), consists of the edges of P (u, v) together with all child
edges of nodes on the path other than v.
Q(u, v) = {Q(e) : e ∈ P (u, v)}. We write Q(v) for Q(r, v).
A clause C is live at v provided that C contains no variable in Q(v) (but it may contain
the negation of variables in Q(v)). For such a clause we write C/v for C/Q(v) and for a
formula F , we write F/v for F/Q(v).

2.1.2 Constructing the tree
We now define a process for growing a tree with node and edge labels Q(e) starting from a
root r. The leaves of the current tree are referred to as frontier nodes. Each frontier node v
is examined and is either designated as a leaf (of the final tree) or a non-leaf as follows:

If v is a node at depth at most t − 1 such that F/v contains no empty clause, then v

is a non-leaf. It is labeled by a clause C for which C/v is a positive clause3. Node v is
expanded to have |C/v| children with the edges labeled by distinct variables in C/v. We
denote the label of an edge e by Q(e).
If F/v contains an empty clause then v is a leaf of the final tree called a falsified leaf.
For the parent u of such a leaf v, F/u has no empty clause. Since F/v is obtained from
F/u by setting Q(uv) to 1, the single literal clause ¬Q(uv) is in F/u. We refer uv as a
falsifying edge.
If v is a node at depth t then v is a leaf. If it is not a falsified leaf then v is a viable leaf.

A tree constructed according to the above process is a transversal tree. The following
easy fact (noted in [5]) justifies the name:

3 F/v must contain a positive clause, otherwise Q(v) is a transversal of size less than t, contradicting
τ(F) = t.

STACS 2025

42:6 Local Enumeration: The Not-All-Equal Case

▶ Proposition 6. Let F be a formula with τ(F) = t and let T be a transversal tree for F .
For every minimum-size transversal S of F , there is a depth t leaf v of T such that S = Q(v).

The depth-t leaves can be divided into three types: falsified leaves, viable leaves ℓ for
which Q(ℓ) is a transversal, and viable leaves ℓ for which Q(ℓ) is not a transversal. For a leaf
of the third type, Q(ℓ) might be a subset of one or more transversals of size larger than t.

▶ Remark 7. Notice that if a leaf u appears before depth t, then u must be a falsified
leaf. Unless arising from “effective width 2 clauses”, for our analysis sake, we will continue
expanding the tree below u. Since u is already falsified, we assume, without loss of generality,
that all possible clauses of width at most 3 are live at u (including the empty clause). We
then choose a monotone clause and recursively develop the tree underneath u until we reach
depth t. Similarly, at all nodes v underneath u, we pretend this is the case, that all clauses
are live at v. We do this since our algorithm will dictate for various nodes which kind of
clause must be chosen and developed next. We will argue that certain kinds of clauses exist
for such nodes. Hence, to simplify analysis, we will assume all clauses needed are already
present.

Note that it is possible that many leaves correspond to the same transversal.

2.2 The TreeSearch algorithm for enumerating minimum-size
transversals

From Proposition 6, we can enumerate all minimum-sized transversals of F by constructing
a transversal tree for F , traversing the tree, and for each leaf ℓ computing Q(ℓ) and testing
whether Q(ℓ) is a transversal. To make this procedure fully algorithmic we need to specify
two things.

The first is a clause selection strategy which determines, for each node v, the clause of F
that labels v. In general, the clause selection strategy may be randomized, but in this paper
we consider only deterministic strategies.

The second thing to be specified is the order of traversal of the tree, which is specified
a family π = {π(v) : internal nodes v of T} where π(v) is a left-to-right ordering of the
variables of C/v and thus of the child edges of v. We use the ordering to determine a depth
first search traversal of the tree which upon arrival at each leaf ℓ, outputs Q(ℓ) if Q(ℓ) is a
transversal. We will say that u is to the left of v if it is visited before v in the traversal. The
running time of the algorithm is dominated by the size of the tree, which may be as large as
kτ(F).

To speed up the search, [5] described a simple criterion on edges such that in the pruned
tree obtained by removing all edges meeting this criterion and the subtrees below, every
minimum-size transversal corresponds to a unique leaf,

To formulate this criterion note that if u is an ancestor of v, the edges of shoot S(u, v)
are situated in one of three ways with respect to the path P (u, v): to the left of the tree
path, to the right of the tree path, or along the tree path.

▶ Definition 8 (Superfluous edge). An edge (uv) is superfluous if there is an ancestor w of v
that has a child edge wz to the left of P (r, v) such that Q(wz) = Q(uv).

We define the algorithm TreeSearch on the ordered tree (T, π) to be the depth first
search procedure with the following modification: before traversing any edge check whether
it is superfluous; if it is then skip that edge (thereby pruning the edge and the subtree below
it). This indeed corresponds to setting the corresponding variable to 0.

M. Gurumukhani, R. Paturi, M. Saks, and N. Talebanfard 42:7

▶ Proposition 9 (Implicit in [5]). For any transversal tree T of F and any ordering of T ,
the tree obtained by removing all superfluous edges and the subtrees below them satisfies:
every minimum-size transversal S of F has a unique leaf ℓ of the pruned tree for which
Q(ℓ) = S, and this leaf is the leftmost leaf of the original tree for which Q(ℓ) = S. Therefore
TreeSearch outputs each minimum-size transversals exactly once.

The time complexity of TreeSearch is bounded (up to poly(n) factors) by the number
of leaf nodes in the pruned tree. The number of leaves depends on the clause selection
strategy and the order π. Our goal is to choose the strategy and the order so that we can
prove a good upper bound on the number of leaves.

In [5], the algorithm for 3-SAT was analyzed under a specific clause selection rule by
considering a randomly chosen ordering π, in which the children of each node in the transversal
tree are ordered independently and uniformly at random. This enabled them to get an upper
bound that is non-trivial, though probably not optimal.

In this paper, we use a similar approach to analyze NAE-3-SAT. As in [5] we choose
π at random. We combine this with a carefully chosen clause selection strategy, described
in Section 3, which leads to an optimal upper bound for enumeration of minimum-sized
transversals.

2.3 Pruning under random edge ordering
Let F = (X, C) be a k-CNF. Let t = τ(F) be the transversal number of F . Let T be a
transversal tree for F . As indicated above we consider a random ordering π in which the
child edges of each node are randomly ordered from left-right independent of other nodes.
Under this distribution, whether or not a particular edge is superfluous is a random event.

▶ Definition 10 (Survival and survival probability).
An edge uv is said to survive provided that v is not a falsified leaf v and uv is not
superfluous. We say that path P (u, v) survives if every edge of the path survives, and
node v survives if path P (r, v) survives.
The conditional survival probability of an edge uv, σ(uv) is defined to be
P[v survives |u survives]. More generally the conditional survival probability σ(u, v) of
path P (u, v) is defined to be P[P (u, v) survives |u survives]. It follows that σ(u, v) =∏

e∈P (u,v) σ(e).
For a node u, let L(u) be the number of leaves of the subtree T (u) that survive, and define
the survival value of u, ψ(u), to be the conditional expectation E[L(u)|u survives]. It
follows from linearity of expectation that ψ(u) =

∑
v is leaf of T (u) σ(u, v).

▶ Proposition 11. Let F be a 3-CNF with n variables and τ(F) = n/2. Fix a clause
selection rule for building transversal trees. Then the expected running time of TreeSearch
on a randomly selected order is ψ(r)poly(n) and the number of transversals of F satisfies
#Γ(F) ≤ ψ(r).

Proof. For the first statement, the running time of TreeSearch for a given π is at most
L(r)poly(n) and so the expected running time on a random order is at most ψ(r)poly(n).
For the second statement, for any order π, Proposition 9 implies that #Γ(F) ≤ L(r), and so
#Γ(F) ≤ ψ(r). ◀

In the sections that follow, we will describe a clause specification strategy and analyze
ψ(r) for the case of negation-closed 3-CNF formula (which as noted earlier, corresponds to
the case of NAE-3-SAT). For the analysis we will need some additional observations.

STACS 2025

42:8 Local Enumeration: The Not-All-Equal Case

First, we determine a condition under which we can exactly determine σ(uv) for an
edge uv. It follows from the definition of survival probability if uv is a falsifying edge then
σ(uv) = 0. So we consider the case that uv is not falsifying. None of the edges on the path
P (r, u) are falsified (since the child node of a falsifying edge is always a leaf).

If uv is not falsifying then it survives if and only if is not superfluous. The condition for
being superfluous depends on the label of uv appearing as the label of a child edge of an
ancestor of u. To account for this we use a system of marking of edges and vertices:

▶ Definition 12 (Marking of edges and vertices).
The marking set M(e) of a tree edge e = (u, v) is the set of nodes w ̸= u in the path
P (r, u) which have a child edge e′ such that Q(e) = Q(e′). For w ∈ M(e) we say that w
marks the edge e and w marks the label Q(e).
An edge e is marked provided that M(e) ̸= ∅.
A node u is i-marked (for i ∈ {0, 1, 2, 3}) if exactly i child edges of u are marked.

Marked edges are edges that have a non-zero probability of being superfluous. The
analysis in [5] uses this to obtain upper bounds on the survival probability of nodes. We
now show that under favorable conditions we can calculate the survival probability of nodes
exactly.

The event that edge uv survives is exactly the event that for every node w ∈ M(uv),
the child edge of w with the same label as uv is to the right of the path edge that comes
from w, which happens with probability 1/2. Thus whether uv survives is determined by the
orderings π(w) of the child edges of w for all w ∈ M(uv), and P[uv survives] = 2−|M(e)|.

The above computation gives the unconditioned probability that uv survives, but σ(uv) =
P[uv survives |u survives] is a conditional probabilty. We now identify a condition under
which the conditioning event is independent of the event that uv survives. Say that an
edge uv is disjointly marked if its marking set M(uv) is disjoint from M(e) for every edge
e ∈ P (r, u). For a disjointly marked edge, the event that uv survives is independent of
the event that u survives, i.e., that all edges on P (r, u) survive, because the latter event
is determined by the order π(w) for nodes that mark some edge of P (r, u) and since uv is
disjointly marked, this set of nodes is disjoint from M(uv). Since the order of child edges of
nodes are chosen independently, the event that uv survives is independent of the event that
all edges on P (r, u) survive. From this we conclude:

▶ Proposition 13. Let T be a transversal tree for the k-CNF F .
1. Let uv be an edge that is not a falsifying edge and is disjointly marked.Then σ(uv) =

2−|M(e)|.
2. If v is a leaf that is not falsifying and each edge on P (r, v) is disjointly marked then

σ(v) = 2−
∑

e∈P (r,v)
|M(e)|.

For the case of negation-closed 3-CNF (which corresponds to NAE 3-SAT) we note the
following:

▶ Proposition 14. If F is a negation-closed 3-CNF formula then in any transversal tree T ,
every edge that is not a falsifying edge is disjointly marked. Therefore Proposition 13 applies
to every edge and every leaf of T .

Proof. Let uv be an edge with ancestor edge wz and y is a node that marks both uv and
wz. We claim that uv is a falsifying edge. y is necessarily an ancestor of w. Let y′ be the
child of y on the path to w. Then the clause labeling y is Q(yy′) ∨Q(wz) ∨Q(uv). Since F
is negation closed, F also contains the clause (¬Q(yy′)) ∨ (¬Q(wz)) ∨ (¬Q(uv)). This clause
is falsified at the node v since Q(yy′), Q(wz), Q(uv) ∈ Q(v), and therefore v is a falsifying
leaf. ◀

M. Gurumukhani, R. Paturi, M. Saks, and N. Talebanfard 42:9

We need a few additional definitions.

▶ Definition 15 (Mass of a node). For a non-leaf node u in a transversal tree, the mass of u
is the conditional expectation of the number of surviving children of u given that u survives.
By linearity of expectation this is the same as

∑
v: child node of u σ(u, v). We also refer to this

as the mass of the clause at u.

▶ Definition 16 (Defect). For node u, with e child edges, let defect of u to be 3 − e. We
similarly define defect of path / shoot as the sum of the defects of all nodes on the path /
shoot.

▶ Definition 17 (Weight). Let S(u, v) be a shoot in T . The weight of S(u, v) is defined as
W (u, v) def= |{e ∈ S : M(e) ̸= ∅}| + defect of S(u, v), i.e., the number of marked edges along
S(u, v) plus the defect of S(u, v).

The following fact provides a lower bound on the weight of each root to leaf shoot in T .

▶ Fact 18. Every root to leaf shoot S(r, u) in T has a weight of at least 3t− n.

Proof. Let f be the defect of S(r, u). Since the depth of T is t, a root to leaf shoot has
3t− f edges. Partition the edges of the shoot into classes according to the label of the edge,
and note that all edges in a class are at different depths. For each class, the edge of minimum
depth is unmarked and all other edges in the class are marked, so the number of unmarked
edges is at most n and the number of marked edges is at least 3t− f − n. Hence, the weight
of S(r, u) is at least (3t− f − n) + f = 3t− n. ◀

3 Clause Selection Criterion

We here provide a clause selection criterion for transversal trees for 3-CNFs that will provide us
with a tight analysis for the number of NAE-solutions and for the complexity of enumerating
them. The clause selection is divided into three stages. Each node will be associated with a
stage and a corresponding clause will be selected from that stage. The three stages are:
1. Disjoint stage
2. Controlled stage
3. Arbitrary stage

We begin the disjoint stage by selecting a pseudomaximum collection C0 of disjoint
monotone clauses of width 3 from F (See Remark 20 for what we mean by pseudomaximum
collection; on first reading, the readers should pretend as if we selected maximum such
collection). Let t0 = |C0|. Our further clause selection criterion depends on the value of t0:

If t0 ≥ n
4 , then we skip the controlled stage and directly enter the arbitrary stage where

we select arbitrary monotone clauses for the rest of the TreeSearch process.
If t0 ≤ n

4 , then we enter the controlled stage where we carefully control which clauses to
select, argue about existence of certain clauses and our analysis leverages this control.
This controlled stage also helps us get a handle on the kinds of clauses we can encounter
in the arbitrary stage.

We here describe the disjoint stage further. The arbitrary stage needs no further explana-
tion. We analyze the t0 ≥ n

4 case in Section 4. We will explain the controlled stage further
in Section 5 and will analyze the t0 ≤ n

4 case depending upon it in Section 6.

STACS 2025

42:10 Local Enumeration: The Not-All-Equal Case

3.1 The disjoint stage
Let the clauses in C0 be arbitrarily ordered as C0

0 , C
0
1 , . . . , C

0
t0−1. We will develop the

transversal tree so that for all 0 ≤ i ≤ t0 − 1, all nodes at level i will be expanded using
clause C0

i . We can do this because the disjointness of the clauses ensures that C0
i is a live

clause at every node at level i. We record the useful observation that any clause used to
develop a node appearing at level ℓ ≥ t0 will have at least one marking:

▶ Fact 19. Let u be a node at level ℓ ≥ t0 and let C be a width 3 clause used to expand at
u. Then, u will not be 0-marked, i.e., u will be j-marked for 1 ≤ j ≤ 3.

Proof. For u to be 0-marked, C must be a width 3 monotone clause and C must be disjoint
from all clauses from C0. However, that contradicts the fact that C0 is a maximal collection
of disjoint width 3 monotone clauses. ◀

▶ Remark 20 (Algorithmic aspect of maximum matching - pseudomaximum matching). Finding
a collection C0 of maximum size is NP-hard, and may require large exponential overhead. To
mitigate this, we implement an auxiliary data structure that maintains a pseudomaximum
collection of disjoint clauses. Initially, the data structure will greedily pick a maximal such
collection of clauses. Later in the algorithm, we might encounter scenarios where we can find
a larger collection of disjoint clauses. In these cases, we will “reset” the algorithm with that
larger collection of disjoint clauses. Such a reset can take place at most n times and hence,
the overhead is poly(n). In our analysis, we will make claims that take this for granted and
allow them to use the fact that C0 has maximum size ; for any claim where we use this, if
the claim does not hold because C0 is not necessarily of maximum size, the proof of the
claim actually will supply us with clauses that will help us form a larger disjoint collection of
clauses and we will “reset” our algorithm.

4 Bounding ψ when t0 ≥ n/4

In this section, we will show that if in a transversal tree, the number of maximally disjoint
clauses chosen in the disjoint stage is at least n/4, then ψ(r) ≤ 6n/4 where r is the root of
the tree. Formally:

▶ Theorem 21. Let T be a transversal tree developed using the clause selection criterion as
laid out in Section 3 with t0(T) ≥ n

4 . Then, ψ(r) ≤ 6 n
4 where r is the root of T .

We will use the following lemma to prove the theorem:

▶ Lemma 22. Let 0 ≤ d ≤ n
2 − t0, w ≥ 0 and let u be a node at level n

2 − d such that every
u to leaf shoot in T (u) has weight at least w. Then, ψ(u) ≤ F (w, d) where F (w, d) is defined
as follows:

F (w, d) =
{

(5
2)2d−w2w−d if w ≤ 2d

23d−w(3
2)w−2d if 2d ≤ w.

Assuming this lemma, our main theorem easily follows:

Proof of Theorem 21. Let t0 = n
4 + ∆ for some ∆ ≥ 0. Let u be an arbitrary node at

depth t0. Let T (u) be the sub-tree rooted at u. The tree T (u) has remaining depth n
4 − ∆,

and minimum weight of every root to leaf shoot is at least n
2 since all edges in the disjoint

M. Gurumukhani, R. Paturi, M. Saks, and N. Talebanfard 42:11

stage are unmarked. Thus, T (u) satisfies the requirements of Lemma 22, and we infer that
ψ(u) ≤ F (n/2, n/4 − ∆). Summing over all 3n/4+∆ nodes at the end of the disjoint stage,
we infer that

ψ(r) ≤ 3n/4+∆F (n/2, n/4 − ∆)

= 3n/4+∆2n/4−3∆
(

3
2

)2∆

= 6n/4
(

27
32

)∆

≤ 6n/4

where the last inequality follows because ∆ ≥ 0. ◀

5 Clause Selection Criterion: the Controlled Stage

Recall that this stage appears after the disjoint stage and applies to nodes u at level t0 or
larger provided t0 ≤ n

4 . To analyze this stage we will need to construct the transversal tree
more carefully, using an involved clause selection criterion which is described in this section.

We use the structural properties of the tree to obtain our lower bound in Section 6.
In the controlled stage, we will carefully select clauses in a way that imposes useful

restrictions on the structure of the tree. After that, we enter the arbitrary stage during which
we expand the tree using monotone clauses in an arbitrary order. We will show that the
structure of the clauses in the controlled stage imposes useful restrictions on the structure of
the clauses that arises in the arbitrary stage which will help us bound the survival probability.
Nodes with same number of markings will appear consecutively in the controlled stage.

We will need the following definition:

▶ Definition 23. A node u with clause C of width w has effective width w′ if it has w − w′

falsifying edges (as defined in Section 2.1.2) arising out of it.

Recall from Section 2.1.2 that a falsifying edge leads to a falsifying leaf, i.e. a node v for
which F/v contains an empty clause. Therefore the effective width of a node corresponds to
the number of children whose subtrees need to be explored.

Our controlled stage is divided into two substages:
κ1. 1-marked nodes.
κ2. 2-marked nodes corresponding to clauses of effective width 2.

▶ Remark 24. In stage κ2, an effective width 2 (monotone) clause C corresponds to a width
3 (monotone) clause where one of the variables, say x, in C will cause a falsifying edge. We
will show that there exists a monotone clause C ′ s.t. x ∈ C ′ and remaining two literals in C ′

are set to 1. Since F is negation-closed, the negation of C ′ will have both its literals set to 0,
simplifying it to the clause ¬x. So, any node expanded using C will have the edge labelled
with x as a falsifying edge.

We first introduce useful notation regarding the disjoint stage. We then provide a detailed
construction of each of the substages in the controlled stage followed by the impact of the
controlled stage on the arbitrary stage.

STACS 2025

42:12 Local Enumeration: The Not-All-Equal Case

5.1 Additional notation for the disjoint stage
As described in Section 3.1, we select a pseudomaximum size disjoint collection of clauses
C0

0 , C
0
1 , . . . , C

0
t0−1 in this stage. Our analysis in Section 6 will focus on obtaining an upper

bound on ψ(u0) where u0 is an arbitrary node at level t0. We will fix such a node u0 for
the rest of the section. Write C0

i = {pi, xi, x
′
i} where the variable pi is the label of the edge

along the path P (r, u0). Let V0 = {0, 1, . . . , t0 − 1}. For i ∈ [t0], let Xi = {xi, x
′
i} and let

X = ∪i∈[t0]Xi. We will also need the following useful fact:

▶ Fact 25. Let u be a node at level ℓ ≥ t0 and let C be a width 3 monotone clause used to
expand at u. Then, there must exist i ∈ V0 such that Xi ∩ C ̸= ∅.

Proof. Indeed, assume such C existed. Then, C must be disjoint from all clauses in C0.
However, this contradicts the fact C0 is a pseudomaximum collection of clauses. ◀

5.2 Stage κ1: 1-marked nodes
Let F1 be the set of width 3 monotone clauses that are live at u0 and have exactly one
marked variable at u0. We select a pseudomaximum size disjoint collection C1 of clauses
from F1 and expand u0 to a sub-tree of uniform depth t1 = |C1|.

▶ Remark 26. Similar to Remark 20, in the algorithmic implementation we will maintain an
auxiliary data structure that will maintain the pseudomaximum collection C1. Initially, the
collection will be a maximal set of disjoint clauses from F1 and whenever we come across a
claim that uses maximum size property of C1 and is violated, we will reset C1 to the disjoint
clauses supplied by the proof and “reset” this phase of the algorithm. Again, since a reset
can happen at most n times per u0, this will increase the total runtime of the algorithm by
factor of n.

Clauses in F1 satisfy the following property:

▶ Fact 27. If C = {xi, a, b} and C ′ = {x′
i, c, d} are in F1 where i ∈ V0, then {a, b}∩{c, d} ≠ ∅.

Proof. If C and C ′ are disjoint, we can replace the clause C0
i in C0 with C and C ′ to obtain

a larger size collection violating the pseudomaximum size condition on C0. ◀

Let V1 = {i | a variable from Xi appears in a clause from C1}. Note that |V1| = |C1| =
t1. By Fact 25, for every C ∈ F1, there is a unique i ∈ V0 such that C contains exactly one
of xi or x′

i with a single marking, and the remaining two variables in C do not appear in
any clause from C0. Furthermore, by Fact 27, for each i ∈ V0, at most one variable from Xi

can appear in some clause of C1; that is, if xi (x′
i) appears in some clause of C1, then x′

i (xi)
does not appear in any other clause of C1. These two indeed imply that |V1| = |C1| = t1.

We index the clauses in C1 using V1. So, for i ∈ V1, we write clause C1
i as {x̃i, yi, y

′
i}

where x̃i ∈ Xi. For i ∈ V1, let Yi = {yi, y
′
i}. Let VB = V0 − V1 and mB = |VB | = t0 − t1.

Before we describe stage κ2, we make some careful observations to prepare for it.

5.3 Preparation for Stage κ2

For a node u at the end of the stage κ1, define F2(u) to be the set of monotone width 3
clauses C that are live at u and have exactly two singly marked variables (so that C has
mass 2).

M. Gurumukhani, R. Paturi, M. Saks, and N. Talebanfard 42:13

▶ Lemma 28. Let u be an arbitrary node at the end of stage κ1. Let C ∈ F2(u) be arbitrary.
Then, C must be of one of the following forms:
1. C = {x̃i, ỹi, z} for some i ∈ V1, x̃i ∈ Xi \ C0

i , ỹi ∈ Yi and where z does not appear in the
shoot S(r, u).

2. C = {x̃i, x̃j , z} for some i ∈ V1, j ∈ VB , x̃i ∈ Xi \ C0
i , x̃j ∈ Xj and z does not appear in

the shoot S(r, u).
3. {x̃i, x̃j , z} where i, j ∈ VB , x̃i ∈ Xi, x̃j ∈ Xj and z does not appear in the shoot S(r, u).
4. {x̃i, ỹj , z} where i ∈ VB , j ∈ V1, x̃i ∈ Xi, ỹj ∈ Yj, and z does not appear in the shoot

S(r, u).

Proof. Since C has mass 2, there must be z ∈ C that does not appear in the shoot S(r, u).
By Fact 25, there exists i ∈ V0 such that Xi ∩ C ≠ ∅. We take cases on whether i ∈ V1 or
not and whether there exist two variables in C from X.
Case 1. i ∈ V1. Since C ∈ F2(u) and x̃i is singly marked, x̃i ̸∈ C1

i ∩Xi.
Assume that the second marked variable in C is from X. By Fact 27, the second marked
variable must be from Xj where j ∈ V0 and j ̸= i. We claim that j ∈ VB. Assume for
contradiction that j ∈ V1. Since x̃j is singly marked, x̃j ̸∈ C1

j . Then C1
i , C

1
j and C are

disjoint clauses that we can use to replace clauses C0
i , C

0
j from C0 and obtain a larger

set of disjoint clauses, contradicting the fact that C0 is a pseudomaximum collection of
clauses. Hence, the claim follows.
If the second marked variable in C is not from X, then it must be from Y . Let ỹj ∈ C

where j ∈ V1, ỹj ∈ Yj . We claim that i = j in this case. Indeed, if not then the clauses
C1

i and C will be disjoint clauses containing distinct variables from Xi, violating Fact 27.
Hence, the claim follows.

Case 2. i ̸∈ V1. As VB = V0 \ V1, we infer that i ∈ VB. In this case, if the second marked
variable in C is from X, it must be from Xj where j ∈ VB (if j ∈ V1, then we are in the
previous case) and the claim follows. Otherwise, the second marked variable in C is from
Y and the claim follows as well. ◀

Let u∗ denote the unique node at the end of stage κ1 where the path P (u0, u
∗) consists

of only marked edges, each of which is labeled by a variable from Xi for i ∈ V1. We note a
useful relationship between the live clauses at an arbitrary node u at the end of κ1 and the
live clauses at u∗:

▶ Fact 29. For every node u at the end of stage κ1, F2(u) ⊆ F2(u∗).

Proof. Let C ∈ F2(u) be arbitrary. If C is live at u∗, then C must have exactly 2 markings
since S(r, u) = S(r, u∗) and the markings only depend on the shoot. Hence, we show that all
such C are live at u∗. Since C is live at u, it is also live at u0. Hence, if C is not live at u∗,
then it must be that C contains one of the variables from P (u0, u

∗). Equivalently, C must
have to contain x̃i where i ∈ V1 and x̃i ∈ C0

i . This cannot happen since by Lemma 28, it
must be that x̃i ∈ Xi \ C0

i . ◀

For simplicity we write F2 := F2(u∗). Let F2R = {C ∈ F2 : x̃i ∈ C where i ∈ V1}. Let
F2B = F2 \ F2R.

▶ Fact 30. Any maximally disjoint set of clauses from F2B has size at most mB .

STACS 2025

42:14 Local Enumeration: The Not-All-Equal Case

Proof. By choice of F2B , it only contains clauses of type 3 or type 4 as laid out in Lemma 28.
Assume that there exists a collection S of more than mB disjoint clauses from F2B. Let
T = {C0

i : i ∈ V1}. We see that clauses in S are disjoint from T , and S and T have no
clauses in common. However then, S ∪ T is a disjoint collection of clauses of size

|S| + |T | ≥ (mB + 1) + |V1| = |V0| + 1 = t0 + 1

violating the fact that C0 is a pseudomaximum collection of clauses. ◀

▶ Remark 31. We use this fact later in Lemma 37. So even though this fact does not
algorithmically provide us with clauses to replace C0 with, for algorithm’s sake, we only
care about the maximal collection we encounter from Lemma 37 and there indeed, we can
constructively find such a collection if pseudomaximum property is violated.

▶ Fact 32. Let C ∈ F2R be arbitrary. Let i ∈ V1 be such that x̃i ∈ C. Let u be arbitrary
node at the end of stage κ1 where a variable from Xi appears along the path P (u0, u). Then
C is live at u.

Proof. By Lemma 28, C can only take one of two forms: If C is of the form (x̃i, x̃j , z) where
j ∈ VB and z does not appear along the shoot S(u0, u), then this follows. Otherwise, C
must be of the form (x̃i, ỹi, z) where z is not along the shoot S(u0, u) and ỹi ∈ Yi. By
assumption, a variable from Xi is in the path P (u0, u). This can only happen at the node
corresponding to the clause C1

i . As ỹi appears exactly once along the shoot S(u0, u) - at the
node corresponding to the clause C1

i - we infer that ỹi is not along the path P (u0, u). Hence,
the clause C is still live at u. ◀

Let VR = {i ∈ V1 | ∃C ∈ F2R such that Xi ∩C ≠ ∅}. Let mR = |VR|. Let mI = |V1 \VR|.
We have mB +mR +mI = t0 = n

4 − ∆. Fix a pseudomaximum size collection C′
R of disjoint

clauses from F2R. Let V ′
R = {i ∈ VR | x′

i appears in a clause in C′
R} and m′

R = |V ′
R| = |C′

R|.
Observe that m′

R ≤ mR.
▶ Remark 33. Similar to Remark 20 and Remark 26, in the algorithmic implementation, we
will maintain an auxiliary data structure that will maintain C′

R to be a pseudomaximum set
of disjoint clauses from F2R and whenever we come across a claim that uses this property
but is violated, we will reset C′

R to be the disjoint clauses supplied by the proof and will
reset stage κ1. Such reset can happen at most n times per u0 and hence, the runtime of the
algorithm can be increased by at most n. We will allow remaining claims in this section to
use that C′

R is a maximum sized collection.

5.4 Stage κ2: 2-marked nodes with effective width 2 clauses
Consider a node u at the end of the stage κ1. Let V marked(u) denote the set of marked variables
along the root to u path P (r, u). Let C′

R(u) = {C ∈ C′
R | ∃i ∈ V marked(u) such that C∩Xi ≠

∅}. Let ℓ(u) = |C′
R(u)| = |V marked(u) ∩ V ′

R|.
In stage κ2, we expand using the clauses in C′

R(u). By Fact 32, these clauses are live at u
and disjoint from each other, the expansion will be carried out for exactly ℓ(u) levels where
each clause in C′

R(u) will be used to expand one level. We record this fact here:

▶ Fact 34. Let u be a node at the end of stage κ1. Then, stage κ2 underneath u has length
ℓ(u) = |C′

R(u)| = |V marked(u) ∩ V ′
R|

After this expansion, we finish the controlled stage and enter the arbitrary stage. We
record the following useful property of nodes in this stage:

M. Gurumukhani, R. Paturi, M. Saks, and N. Talebanfard 42:15

▶ Lemma 35. All nodes in stage κ2 will have effective width 2 and mass at most 3
2 .

Proof. Let v be arbitrary node in stage κ2 developed using clause C where C ∈ C′
R(u). Let

i ∈ V marked(u) be such that x̃i ∈ C. As C0
i = (pi ∨ xi ∨ x′

i) is a clause in C0, and F is
negation-closed, the negation-clause of C0

i is also in F . At v, the negation-clause of C0
i

simplifies to the unit clause ¬x̃i. So, at v, the edge with label x̃i will be a falsifying edge,
making its effective width equal to 2. Moreover, since v is 2-marked, some other edge from
C is also marked. This implies the mass of v will indeed be at most 3

2 as desired. ◀

5.5 Arbitrary Stage
Let u be arbitrary node at the end of the controlled stage. In the controlled stage, we expand
using any monotone clause that is available and put no restrictions. However, we will still be
able to argue regarding the kinds of clauses that one could encounter in this stage.

We begin by showing that every 1-marked vertex in this stage will have mass at most 9
4 :

▶ Lemma 36. Every 1-marked node in arbitrary stage has mass at most 9
4 .

Proof. Indeed, if a 1-marked vertex v with clause C in arbitrary stage has a larger mass,
then it must have mass 5

2 . In that case, there exists a unique i ∈ V0 such that C contains
exactly one element from Xi. Since mass of v is 5

2 and i ̸∈ V1, the remaining two variables
do not appear in the shoot S(r, u). However, this implies C is disjoint from C1, contradicting
the fact that C1 is a pseudomaximum disjoint set of clauses with single marking. ◀

▶ Lemma 37. For any root to leaf shoot S in T (u), the number of nodes with 2 marked
edges and mass 2 is at most m′

R +mB − ℓ(u).

Proof. Call such clauses as heavy clauses. By Fact 29, heavy clauses along any shoot during
arbitrary stage are all in F2. Observe that these heavy clauses must be disjoint from C′

R(u).
We first claim that there can be at most m′

R − ℓ(u) heavy clauses from F2R during arbitrary
stage along S. Indeed, if there were more, then these heavy clauses combined with C′

R(u)
would form a collection of disjoint clauses of size at least (m′

R − ℓ(u) + 1) + ℓ(u) = m′
R + 1,

violating the fact that C′
R is a pseudomaximum collection of disjoint clauses.

The only other heavy clauses that can occur in arbitrary stage are from the set F2B . By
Fact 30, there are at most mB disjoint clauses in F2B. Since heavy clauses along a shoot
must be disjoint from each other, there can be at most m′

R +mB − ℓ(u) heavy clauses in
S. ◀

6 Bounding ψ when t0 ≤ n
4

In this section, we show that if in a transversal tree T , the number of maximally disjoint
clauses chosen in the disjoint stage is at most n/4, then ψ(r) ≤ 6n/4 where r is the root of T .
Formally, our main theorem is:

▶ Theorem 38. Let T be a transversal tree developed using the clause selection criteria as
laid out in Section 3 and Section 5 with t0 ≤ n

4 . Then, ψ(r) ≤ 6 n
4 where r is the root of T .

To bound ψ(r), we will carefully count and sum up the survival values of all nodes that
appear at the end of the disjoint stage. To facilitate that, we need a handle on the survival
value of a subtree that is developed in arbitrary stage. We introduce the following quantity
to help us with that:

STACS 2025

42:16 Local Enumeration: The Not-All-Equal Case

Let M(w, d, h) = maxu ψ(u) where u is a node at depth n
2 − d in arbitrary stage, every

root to leaf shoot in T (u) has weight at least w, and for every root to leaf shoot, the number
of 2-marked nodes with mass 2 is bounded by h.

As u is a node at level n
2 − d, the depth of T (u) is d. Moreover, as u is in arbitrary stage,

every node in T has at least one marked edge coming out of it, and by Lemma 36, every
1-marked node has that marked edge with survival probability at most 1/4.

We will define the following useful function:

F (w, d, h) =

(

9
4

)d if w ≤ d(
9
4

)2d−w 2w−d if d ≤ w ≤ d + h(
9
4

)2d−w 2h
(

27
8

)(w−d−h)/2 = 2h
(

27
8

)(3d−w−h)/2 (
3
2

)w−2d if d + h ≤ w ≤ 3d − h

23d−w
(

3
2

)w−2d if 3d − h ≤ w

We will use the following bound on M(w, d, h) that we prove in the appendix of the full
version.

▶ Lemma 39. For all w, d, h: M(w, d, h) ≤ F (w, d, h).

With this, we are ready to prove Theorem 38:

Proof of Theorem 38. Let u0 ∈ T be an arbitrary node at depth t0. Then, we can associate
quantities mB(u0),m′

R(u0), t1(u0) with the subtree T (u0). We bound ψ(u0) in terms of these
quantities and function F from Lemma 39. We will sum over ψ(u) where u is a node at
the end of controlled stage and then use F to bound ψ(u) as u will be at the beginning of
arbitrary stage. We will also need to precisely compute σ(u0, u), for such u and for that, we
keep track of how many marked edges (say i) from stage κ1 corresponding to m′

R(u0) are on
the path from u0 to u. This i will also be the length of stage κ2, which will further help us
in bounding σ(u0, u).

To do that, we first introduce the following quantities that we will use in the upper bound:
Let w(u0, i) = n

2 − 2i− t1(u0), d(u0, i) = n
2 − t0 − t1(u0) − i, h(u0, i) = m′

R(u0) +mB(u0) − i.
Using these quantities, we will upper bound ψ(u0) using the following expression: Define

N(u0) =
(

5
2

)t1(u0) (
4
5

)m′
R(u0) m′

R(u0)∑
i=0

(
m′

R(u0)
i

) (
3
8

)i

· F (w(u0, i), d(u0, i), h(u0, i))

Using this function, we will obtain the following as our main lemma:

▶ Lemma 40. ψ(u0) ≤ N(u0).

We assume this bound holds and continue our proof of Theorem 38. We will prove the
lemma in the appendix of the full version of the paper.

As N(u0) depends on F , we want to figure out what case for the function of F applies.
Recall that this depends on the relationship between w(u0, i), d(u0, i), h(u0, i). To help with
this, we introduce the following function:

I(u0) = 3t0 + 2t1(u0) +m′
R(u0) +mB(u0)

We show that the values of I and n govern which of the 4 functions will F equal. This
is surprising since I is a function of u0 and not a function of i. We first show that only 2
function choices of F can arise. We do this by showing:

▷ Claim 41. d(u0, i) + h(u0, i) ≤ w(u0, i).

M. Gurumukhani, R. Paturi, M. Saks, and N. Talebanfard 42:17

Proof of Claim 41. Indeed we compute:

d(u0, i) + h(u0, i) = n

2 − t0 − t1(u0) +m′
R(u0) +mB(u0) − 2i

= w(u0, i) + (m′
R(u0) +mB(u0) − t0)

≤ w(u0, i)

where the last inequality follows because m′
R(u0) +mB(u0) ≤ t1(u0) +mB(u0) = t0. ◁

We next show that the value of I decides the choice function for F :

▷ Claim 42. w(u0, i) ≤ 3d(u0, i) − h(u0, i) if and only if I(u0) ≤ n.

Proof of Claim 42. We compute the following:

3d(u0, i) − h(u0, i) = 3n
2 − 3t0 − 3t1(u0) −m′

R(u0) −mB(u0) − 2i

= w(u0, i) + n− 3t0 − 2t1(u0) −m′
R(u0) −mB(u0)

and hence,

w(u0, i) ≤ 3d(u0, i) − h(u0, i) ⇐⇒ 3t0 + 2t1(u0) +m′
R(u0) +mB(u0) = I(u0) ≤ n ◁

With this, we bound ψ(r) as follows:

ψ(r) =
∑

u0:u0 at depth t0

ψ(u0)

≤
∑

u0:u0 at depth t0

N(u0)

=
∑

u0:u0 at depth t0,I(u0)≤n

N(u0) +
∑

u0:u0 at depth t0,I(u0)>n

N(u0)

≤ 3t0 max
(

max
u0:I(u0)≤n

N(u0), max
u0:I(u0)>n

N(u0)
)

= max
(

max
u0:I(u0)≤n

3t0 ·N(u0), max
u0:I(u0)≥n

3t0 ·N(u0)
)

We show that the inner quantities are maximized when I(u0) = n by the following two
claims. These claims just rely on the inequalities listed in the claim, proving that some
expression is bounded. We see these claims as solving an optimization problem and do not
rely on any properties of the transversal tree.

▷ Claim 43. Let u0 be such that mB(u0) + t1(u0) ≤ t0,m
′
R(u0) ≤ t1(u0), I(u0) ≤ n. Then,

3t0 ·N(u0) is maximised when I(u0) = n.

▷ Claim 44. Let u0 be such that mB(u0) + t1(u0) ≤ t0,m
′
R(u0) ≤ t1(u0), I(u0) ≥ n. Then,

3t0 ·N(u0) is maximised when I(u0) = n.

Lastly, we show that when I(u0) = n, then the inner quantity is bounded by 6n/4:

▷ Claim 45. Let u0 be such that mB(u0) + t1(u0) ≤ t0,m
′
R(u0) ≤ t1(u0), I(u0) = n. Then,

3t0 ·N(u0) ≤ 6n/4.

These 3 claims together indeed show that ψ(r) ≤ 6n/4 as desired. We defer the proofs of
all these claims to the appendix of the full version of the paper. ◀

STACS 2025

42:18 Local Enumeration: The Not-All-Equal Case

7 Conclusion

We gave an optimal algorithm for the Not-All-Equal variant of Enum(k, n
2) for k = 3.

Extending the analysis of our algorithm to large k would break SSETH. However, extending
this to even k = 4 poses a great challenge.

References
1 Kazuyuki Amano. Depth-three circuits for inner product and majority functions. In Satoru

Iwata and Naonori Kakimura, editors, 34th International Symposium on Algorithms and
Computation, ISAAC 2023, December 3-6, 2023, Kyoto, Japan, volume 283 of LIPIcs, pages
7:1–7:16. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, 2023. doi:10.4230/LIPICS.
ISAAC.2023.7.

2 Evgeny Dantsin, Andreas Goerdt, Edward A. Hirsch, Ravi Kannan, Jon M. Kleinberg,
Christos H. Papadimitriou, Prabhakar Raghavan, and Uwe Schöning. A deterministic (2 −
2/(k + 1))n algorithm for k-SAT based on local search. Theor. Comput. Sci., 289(1):69–83,
2002. doi:10.1016/S0304-3975(01)00174-8.

3 Peter Frankl, Svyatoslav Gryaznov, and Navid Talebanfard. A variant of the VC-dimension with
applications to depth-3 circuits. In Mark Braverman, editor, 13th Innovations in Theoretical
Computer Science Conference, ITCS 2022, January 31 - February 3, 2022, Berkeley, CA, USA,
volume 215 of LIPIcs, pages 72:1–72:19. Schloss Dagstuhl – Leibniz-Zentrum für Informatik,
2022. doi:10.4230/LIPIcs.ITCS.2022.72.

4 Mohit Gurumukhani, Marvin Künnemann, and Ramamohan Paturi. On extremal properties
of k-cnf: Capturing threshold functions. CoRR, abs/2412.20493, 2024. arXiv:2412.20493.

5 Mohit Gurumukhani, Ramamohan Paturi, Pavel Pudlák, Michael E. Saks, and Navid Tale-
banfard. Local enumeration and majority lower bounds. In Rahul Santhanam, editor, 39th
Computational Complexity Conference, CCC 2024, July 22-25, 2024, Ann Arbor, MI, USA,
volume 300 of LIPIcs, pages 17:1–17:25. Schloss Dagstuhl – Leibniz-Zentrum für Informatik,
2024. doi:10.4230/LIPICS.CCC.2024.17.

6 Thomas Dueholm Hansen, Haim Kaplan, Or Zamir, and Uri Zwick. Faster k-SAT algorithms
using biased-PPSZ. In Moses Charikar and Edith Cohen, editors, Proceedings of the 51st
Annual ACM SIGACT Symposium on Theory of Computing, STOC 2019, Phoenix, AZ, USA,
June 23-26, 2019, pages 578–589. ACM, 2019. doi:10.1145/3313276.3316359.

7 Johan Håstad, Stasys Jukna, and Pavel Pudlák. Top-down lower bounds for depth-three
circuits. Comput. Complex., 5(2):99–112, 1995. doi:10.1007/BF01268140.

8 Timon Hertli. Breaking the PPSZ barrier for unique 3-SAT. In Javier Esparza, Pierre
Fraigniaud, Thore Husfeldt, and Elias Koutsoupias, editors, Automata, Languages, and
Programming - 41st International Colloquium, ICALP 2014, Copenhagen, Denmark, July 8-11,
2014, Proceedings, Part I, volume 8572 of Lecture Notes in Computer Science, pages 600–611.
Springer, 2014. doi:10.1007/978-3-662-43948-7_50.

9 Victor Lecomte, Prasanna Ramakrishnan, and Li-Yang Tan. The composition complexity of
majority. In Shachar Lovett, editor, 37th Computational Complexity Conference, CCC 2022,
July 20-23, 2022, Philadelphia, PA, USA, volume 234 of LIPIcs, pages 19:1–19:26. Schloss
Dagstuhl – Leibniz-Zentrum für Informatik, 2022. doi:10.4230/LIPIcs.CCC.2022.19.

10 Burkhard Monien and Ewald Speckenmeyer. Solving satisfiability in less than 2n steps. Discret.
Appl. Math., 10(3):287–295, 1985. doi:10.1016/0166-218X(85)90050-2.

11 Ramamohan Paturi, Pavel Pudlák, Michael E. Saks, and Francis Zane. An improved
exponential-time algorithm for k-SAT. J. ACM, 52(3):337–364, 2005. doi:10.1145/1066100.
1066101.

12 Ramamohan Paturi, Pavel Pudlák, and Francis Zane. Satisfiability coding lemma. Chic. J.
Theor. Comput. Sci., 1999, 1999. URL: http://cjtcs.cs.uchicago.edu/articles/1999/11/
contents.html.

https://doi.org/10.4230/LIPICS.ISAAC.2023.7
https://doi.org/10.4230/LIPICS.ISAAC.2023.7
https://doi.org/10.1016/S0304-3975(01)00174-8
https://doi.org/10.4230/LIPIcs.ITCS.2022.72
https://arxiv.org/abs/2412.20493
https://doi.org/10.4230/LIPICS.CCC.2024.17
https://doi.org/10.1145/3313276.3316359
https://doi.org/10.1007/BF01268140
https://doi.org/10.1007/978-3-662-43948-7_50
https://doi.org/10.4230/LIPIcs.CCC.2022.19
https://doi.org/10.1016/0166-218X(85)90050-2
https://doi.org/10.1145/1066100.1066101
https://doi.org/10.1145/1066100.1066101
http://cjtcs.cs.uchicago.edu/articles/1999/11/contents.html
http://cjtcs.cs.uchicago.edu/articles/1999/11/contents.html

M. Gurumukhani, R. Paturi, M. Saks, and N. Talebanfard 42:19

13 Dominik Scheder. PPSZ is better than you think. In 62nd IEEE Annual Symposium on
Foundations of Computer Science, FOCS 2021, Denver, CO, USA, February 7-10, 2022, pages
205–216. IEEE, 2021. doi:10.1109/FOCS52979.2021.00028.

14 Dominik Scheder and Navid Talebanfard. Super strong ETH is true for PPSZ with small
resolution width. In Shubhangi Saraf, editor, 35th Computational Complexity Conference,
CCC 2020, July 28-31, 2020, Saarbrücken, Germany (Virtual Conference), volume 169 of
LIPIcs, pages 3:1–3:12. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, 2020. doi:
10.4230/LIPIcs.CCC.2020.3.

15 Uwe Schöning. A probabilistic algorithm for k-SAT based on limited local search and restart.
Algorithmica, 32(4):615–623, 2002. doi:10.1007/s00453-001-0094-7.

16 Nikhil Vyas and R. Ryan Williams. On super strong ETH. J. Artif. Intell. Res., 70:473–495,
2021. doi:10.1613/JAIR.1.11859.

STACS 2025

https://doi.org/10.1109/FOCS52979.2021.00028
https://doi.org/10.4230/LIPIcs.CCC.2020.3
https://doi.org/10.4230/LIPIcs.CCC.2020.3
https://doi.org/10.1007/s00453-001-0094-7
https://doi.org/10.1613/JAIR.1.11859

Approximating Densest Subgraph in Geometric
Intersection Graphs
Sariel Har-Peled #

Department of Computer Science, University of Illinois at Urbana-Champaign, IL, USA

Saladi Rahul #

Indian Institute of Science (IISc), Bangalore, India

Abstract
For an undirected graph G = (V, E), with n vertices and m edges, the densest subgraph problem, is
to compute a subset S ⊆ V which maximizes the ratio |ES |/|S|, where ES ⊆ E is the set of all edges
of G with endpoints in S. The densest subgraph problem is a well studied problem in computer
science. Existing exact and approximation algorithms for computing the densest subgraph require
Ω(m) time. We present near-linear time (in n) approximation algorithms for the densest subgraph
problem on implicit geometric intersection graphs, where the vertices are explicitly given but not
the edges. As a concrete example, we consider n disks in the plane with arbitrary radii and present
two different approximation algorithms.

As a by-product, we show a reduction from (shallow) range-reporting to approximate count-
ing/sampling which seems to be new and is useful for other problems such as independent query
sampling.

2012 ACM Subject Classification Theory of computation → Computational geometry

Keywords and phrases Geometric intersection graphs, Densest subgraph, Range searching, Approx-
imation algorithms

Digital Object Identifier 10.4230/LIPIcs.STACS.2025.43

Related Version Full Version: https://www.arxiv.org/abs/2405.18337

Funding Research of Saladi Rahul is funded by Walmart Center for Tech Excellence.

1 Introduction

Given an undirected graph G = (V,E), the density of a set S ⊆ V (G) is |ES |/|S|, where
each edge in ES ⊆ E(G) has both its vertices in S. In the densest subgraph problem, the goal
is to find a subset of V (G) with the maximum density. Computing the densest subgraph
is a primitive operation in large-scale graph processing, and has found applications in
mining closely-knit communities [12], link-spam detection [18], and reachability and distance
queries [14]. See [7] for a detailed discussion on the applications of densest subgraph, and
[22] for a survey on the recent developments on densest subgraph.

Exact algorithms for densest subgraph. Unlike the (related) problem of computing the
largest clique (which is NP-Hard), the densest subgraph can be computed (exactly) in
polynomial time. Goldberg [19] show how to reduce the problem to O(log n) instances of s−t
min-cut problem. Gallo et al. [17] improved the running time slightly by using parametric
max flow computation. Charikar [10] presented an LP based solution to solve the problem,
for which Khuller and Saha [21] gave a simpler rounding scheme.

Approximation algorithms for densest subgraph. The exact algorithms described above
require solving either an LP or an s−t min-cut instance, both of which are relatively expensive
to compute. To obtain a faster algorithm, Charikar [10] analyzed a 2-approximation algorithm

© Sariel Har-Peled and Saladi Rahul;
licensed under Creative Commons License CC-BY 4.0

42nd International Symposium on Theoretical Aspects of Computer Science (STACS 2025).
Editors: Olaf Beyersdorff, Michał Pilipczuk, Elaine Pimentel, and Nguyễn Kim Thắng;
Article No. 43; pp. 43:1–43:17

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:sariel@illinois.edu
https://orcid.org/0000-0003-2638-9635
mailto:saladi@iisc.ac.in
https://orcid.org/0000-0001-5984-0934
https://doi.org/10.4230/LIPIcs.STACS.2025.43
https://www.arxiv.org/abs/2405.18337
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

43:2 Approximating Densest Subgraph in Geometric Intersection Graphs

which repeatedly removes the vertex with the smallest degree and calculates the density of
the remaining graph. This algorithm runs in linear time. After that, Bahmani et al. [6]
used the primal-dual framework to give a (1 + ε)-approximation algorithm which runs in
O

(
(m/ε2) log n

)
time. The problem was also studied in the streaming model the focus is

on approximation using bounded space. McGregor et al. [24] and Esfandiari et al. [16]
presented a (1 + ε)-approximation streaming algorithm using roughly Õ(|V|) space. There
has been recent interest in designing dynamic algorithms for approximate densest subgraph,
where an edge gets inserted or deleted in each time step [8, 26, 15].

Geometric intersection graphs. The geometric intersection graph of a set D of n objects is
a graph G = (V,E), where each object in D corresponds to a unique vertex in V , and an
edge exists between two vertices if and only if the corresponding objects intersect. Further,
in an implicit geometric intersection graph, the input is only the set of objects D and not the
edge set E, whose size could potentially be quadratic in terms of |V|.

Unlike general graphs, the geometric intersection graphs typically have more structure, and
as such computing faster approximation algorithms [4, 11], or obtaining better approximation
algorithms on implicit geometric intersection graphs has been an active field of research.

One problem closely related to the densest subgraph problem is that of finding the
maximum clique. Unlike the densest subgraph problem, the maximum clique problem is
NP-hard for various geometric intersection graphs as well (for e.g., segment intersection
graphs [9]). However, for the case of unit-disk graphs, an elegant polynomial time solution
by Clark et al. [13] is known.

a
b

c
d

e

c
d

a
b

c

d e

Figure 1.1 Five disks and their corresponding graph. The densest subgraph is {a, b, c, d} with
density 5/4.

Motivation. Densest subgraph computation on geometric intersection graphs can help
detect regions which have strong cellular network coverage, or have many polluting factories.
The region covered (resp., polluted) by cellular towers (resp., or factories) can be represented
by disks of varying radii.

1.1 Our results
Here, we study the densest subgraph problem on (implicit) geometric intersection graphs,
and present near-linear time (in terms of |V|) approximation algorithms.

From reporting to approximate counting/sampling. We show a reduction from (shallow)
range-reporting to approximate counting/sampling: given a set of objects D, and a reporting
data-structure for D, we show a reduction to building a data-structure, such that given a query
object q, it returns approximately-at-uniform an object from q ⊓ D = {x ∈ D | x ∩ q ̸= ∅} ,
and also returns an (1± ε)-approximation for the size of this set. Previous work on closely

S. Har-Peled and S. Rahul 43:3

Approximation Running time Ref
2 + ε O

(
n log n

ε4

)
Theorem 19

1 + ε O
(

n log2 n
ε2 (1

ε2 + log log n)
)

Theorem 29

Figure 1.2 Our results.

related problem includes the work by Afshani and Chan [1] (that uses shallow counting
queries), the work by Afshani et al. [2], and the work by Afshani and Philips [3]. For our
application, this data-structure enables us to sample (1± ε)-uniformly a disk from the set of
disks intersecting a given disk. See Section 3 and Theorem 12 for details.

The reduction seems to be new, and should be useful for other problems. For example, in
databases, motivated by summarizing large query output size, and to incorporate fairness
and diversity in the output results, independent query sampling (IQS) has received quite a
bit of attention. In IQS the goal is to report a uniform sample of the query output (i.e.,
of q ⊓ D). Crucially, the query output should be independent of all the previous queries
posed (for example, if the same query is posed again, then the sample reported should be
independent of the previous sample). See the survey by Tao [27] on IQS (and the references
within). Our reduction addresses two of the future directions proposed in the survey: (a)
designing a generic IQS data structure which works for a broad class of geometric queries,
and (b) approximate IQS where the probability of reporting an object is almost-uniform,
which is usually good enough in practice.

The application. For the sake of concreteness, we consider the case of n disks (with arbitrary
radii) lying in the plane and present two different approximation algorithms. See Figure 1.1.
However, our algorithms would work for other shapes with minor modifications.

A (2 + ε)-approximation. Our first approximation algorithm uses the greedy strategy of
removing disks of low-degree from the intersection graph. By batching the queries, and
using the above data-structure, we get a (2 + ε)-approximation for the densest subset of
disks in time Oε(n log n), where Oε hides constants polynomial in 1/ε. Getting this running
time requires some additional ideas such as establishing densest subgraph’s connection with
deepest point in the arrangement of disks (defined later). The running time is optimal in
terms of n in the comparison-based model, see Remark 20.

A (1 + ε)-approximation. A more promising approach is to randomly sample edges from
the intersection graph, and then apply known approximation algorithms. This requires some
additional work since unlike previous work, we can only sample approximately in uniform.
See Section 5 for details. The running time of the new algorithm is Oε(n log2 n log log n)
which is slower than the first (2 + ε)-approximation algorithm. The results are summarized
in Figure 1.2.

2 Preliminaries

2.1 Definitions
In the following, D denotes a (given) set of n objects (i.e., disks). For S ⊆ D and u ∈ D, we
use the shorthands S + u = S ∪ {u} and S − u = S \ {u}. For ε ∈ (0, 1) and a real number
α > 0, let (1± ε)α denote the interval

(
(1− ε)α, (1 + ε)α

)
. Throughout, a statement holds

with high probability, if it holds with probability at least 1− n−c, where c is a sufficiently
large constant.

STACS 2025

43:4 Approximating Densest Subgraph in Geometric Intersection Graphs

▶ Observation 1.
(I) For any ε, we have 1

1+ε ≥ 1− ε.

(II) For ε ∈ (0, 1/2), we have 1
1±ε =

(
1/(1 + ε), 1/(1− ε)

)
⊆ 1± 2ε since 1− ε ≤ 1

1+ε ≤
1

1−ε ≤ 1 + 2ε.

(III) For ε ∈ (0, 1/3), we have (1± ε)2 ⊆ (1± 3ε).

(IV) For ε ∈ (0, 1) and constants c, c1 and c2, such that c ≥ c1c2, we have (1± c1ε/c)(1±
c2ε/c) ⊆ 1± c1+c2+1

c ε1.

▶ Definition 2. Given a set of objects D (say in Rd), their intersection graph has an
edge between two objects if and only if they intersect. Formally,

G∩D = (D, {uv | u, v ∈ D, and u ∩ v ̸= ∅}).

▶ Definition 3. For a graph G, and a subset S ⊆ V(G), let

ES = ES(G) = {uv ∈ E(G) | u, v ∈ S} .

The induced subgraph of G over S is GS = (S,ES), and let m(S) = |ES | denote the number
of edges in this subgraph.

▶ Definition 4. For a set S ⊆ V(G), its density in G is ∇(S) = ∇G(S) = m(GS)/ |S| , where
m(GS) is the number of edges in GS. Similarly, for a set of objects D, and a subset S ⊆ D,
the density of S is ∇(S) = m(G∩S)/ |S|.

▶ Definition 5. For a graph G, its max density is the quantity d(G) = maxS⊆V(G)∇(S),
and analogously, for a set of objects D, its max density is d(D) = maxS⊆D∇(S),

The problem at hand is to compute (or approximate) the maximum density of a set of
objects D. If a subset S realizes this quantity, then it is the densest subset of D (i.e.,
(G∩D)S is the densest subgraph of G∩D). One can make the densest subset unique, if there
are several candidates, by asking for the lexicographic minimal set realizing the maximum
density. For simplicity of exposition we threat the densest subset as being unique.

▶ Lemma 6. Let O ⊆ D be the densest subset, and let ∇ = ∇(O). For u ∈ O, let
dO(u) = |u ⊓ (O − u)|, where u ⊓ (O − u) = {x ∈ O − u | x ∩ u ̸= ∅}. Then, for all u ∈ O,
we have dO(u) ≥ ∇,

Proof. Observe that

∇ = |EO|
|O|

= |EO−u|+ dO(u)
|O| − 1 + 1 .

As such, if dO(u) < ∇, then

dO(u)
1 < ∇ = dO(u) + |EO−u|

1 + |O| − 1 <
|EO−u|
|O| − 1 .

But this implies that O − u is denser than O, which is a contradiction. ◀

1 Indeed, (1 + c1ε/c)(1 + c2ε/c) ≤ 1 + (c1/c + c2/c + c1c2/c2)ε ≤ 1 + (c1 + c2 + 1)ε/c.

S. Har-Peled and S. Rahul 43:5

2.2 Reporting all intersecting pairs of disks
The algorithm of Section 5 requires an efficient algorithm to report all the intersecting pairs
of disks.

▶ Lemma 7. Given a set D of n disks, all the intersecting pairs of disks of D can be computed
in O(n log n+ k) expected time, where k is the number of intersecting pairs.

Proof. We break the boundary of each disk at its two x-extreme points, resulting in a set of
2n x-monotone curves. Computing the vertical decomposition of the arrangement of these
disks (curves) A(D) can be done in O(n log n+ k) expected time [20]. See Figure 2.1 for an
example. This gives us readily all the pairs that their boundaries intersect.

As for the intersections that rise out of containment, perform a traversal of the dual graph
of the vertical decomposition (i.e., each vertical trapezoid is a vertex, and two trapezoids are
adjacent if they share a boundary edge). The dual graph is planar with O(n+ k) vertices
and edges, and as such the graph can be traversed in O(n+ k) time. During the traversal,
by appropriate bookkeeping, it is straightforward to maintain the list of disks containing the
current trapezoid, in O(1) per edge traversed, as any edge traversed changes this set by at
most one.

For a disk d, let pd be the rightmost point of d. For each disk d, pick any trapezoid ∆
such that pd ∈ ∆ and either the top boundary of d is the ceiling of ∆ or the bottom boundary
of d is the floor of ∆. Assign ∆d ← ∆ as the representative trapezoid of d.

During the traversal of the dual graph, consider the case where we arrive at a representative
trapezoid of a disk d. Let L(d) be the list of disks containing ∆d. Then scan L(d) to report all
the containing pairs of d. Each disk in L(d) either intersects the boundary of d, or contain it.
Therefore, the total time spent at the representative trapezoids is

∑
d∈D |L(d)| = O(k). ◀

Figure 2.1 Vertical decomposition of four disks.

3 From reporting to approximate sampling/counting

In this section, given a set of objects D, and a reporting data-structure for D, we show a
reduction to building a data-structure, such that given a query object q, it returns an object
from q ⊓ D = {x ∈ D | x ∩ q ̸= ∅} , with almost uniform probability, and also returns an
(1± ε)-approximation for the size of this set.

STACS 2025

43:6 Approximating Densest Subgraph in Geometric Intersection Graphs

3.1 The data-structure
The given reporting data-structure. Let D be a set of n objects, and assume for any
subset X ⊆ D of size m, one can construct, in C(m) time, a data-structure that given a
query object d, returns, in O(Q(m) + k) time, all the objects in X that intersects d, where
k = |d ⊓X|. Furthermore, we assume that if a parameter k′ is specified by the query, then
the data-structure stops after O(Q(m) + k′) time, if k > k′, and indicate that this is the case.

▶ Example 8. If D is a set of disks, and the query d is a disk, then this becomes a query
reporting of the k-nearest neighbors in an additive weighted Voronoi diagram. Liu [23]
showed how to build such a reporting data-structure, in O(n log n) expected preprocessing
time, and query time O(log n+ k).

Data-structure construction. We build a random binary tree over the objects of D, by
assigning each object of D with equal probability either a 0 or a 1 label. This partitions D
into two sets D0 (label 0) and D1 (label 1). Recursively build random trees T0 and T1 for
D0 and D1, respectively, with the output tree having T0 and T1 as the two children of the
root. The constructions bottoms out when the set of objects is of size one. Let T be the
resulting tree that has exactly n leaves. For every node u of T , we construct the reporting
data-structure for the set of objects D(u) – that is, the set of objects stored in the subtree
of u.

Finally, create an array Li for each level i of the tree T , containing pointers to all the
nodes in this level of the tree.

Answering a query. Given a query object q, and a parameter ε ∈ (0, 1/2), the algorithm
starts from an arbitrary leaf v of T . The leaf v has a unique root to v path, denoted by
π = u0u1 . . . ut, where u0 = root(T) and ut = v. The algorithm performs a binary search
on π, using the reporting data-structure associated with each node, to find the maximal i,
such that |q ⊓ D(ui)| > ψ = c log n, where c is a sufficiently large constant. Here, we use the
property that one can abort the reporting query if the number of reported objects exceeds
ψ. This implies that each query takes Q(n) + O(log n) time (with no dependency on ε).
Next, the algorithm computes the maximal j such that |q ⊓ D(uj)| > ψε = cε−2 log n (or
set j = 0 if such a j does not exist). This is done by going up the path π from ui, trying
ui−1, ui−2, . . . , uj using the reporting data-structure till the condition is fulfilled2. Next, the
algorithm chooses a vertex u ∈ Lj uniformly at random. It computes the set S = q ⊓ D(u)
using the reporting data-structure. The algorithm then returns a random object from S

uniformly at random, and the number 2j |S|. The first is a random element chosen from
q ⊓ D, and the second quantity returned is an estimate for |q ⊓ D|.

3.2 Analysis

3.2.1 Correctness
▶ Lemma 9. Let ε ∈ (0, 1/2), ψε = cε−2 log n, and q be a query object. Let M ≥ 1 be the
integer such that ψε/16 ≤ |D ⊓ q| /2M < ψε/8. Then, for all nodes v at distance i ≤M from
the root of T , we have P

[
|D(v) ⊓ q| /∈ (1± ε/2) |D⊓q|

2i

]
≤ 1

nΩ(c) .

2 One can also “jump” to level i + log2(1/ε2) − 2, and do a local search there for j, but this “improvement”
does not effect the performance.

S. Har-Peled and S. Rahul 43:7

Proof. Consider a node v at a distance i from the root, and let Yv = |D(v) ⊓ q|. Clearly,
µv = E[Yv] = |D ⊓ q| /2i. Since i ≤ M , we have µv ≥ ψε/16. By Chernoff’s inequality, we
have

P
[
Yv /∈ (1± ε/2)µv

]
≤ 2 exp

(
−ε2µv/3

)
≤ 2 exp

(
−ε2ψε/48

)
≤ 2 exp(−(c/48) log n) ≤ 2

nc/48 .

The number of nodes in T is O(n), and hence, by the union bound, for all nodes v at distance
i ≤M from the root, we have P[Yv /∈ (1± ε/2)µv] ≤ 1/nΩ(c). ◀

▶ Observation 10. Lemma 9 implies that for all nodes v at distance i > M from the root
of T , we have P

[
|D(v) ⊓ q| > ψε

]
≤ 1/nΩ(c). Indeed, Lemma 9 implies this for all nodes at

distance M from the root, and the sizes of these sets are monotonically decreasing along any
path down the tree.

▶ Lemma 11. Assume that the number of distinct sets q′ ⊓D, over all possible query objects
q′, is bounded by a polynomial O(nd), where d is some constant. Then, for a query q, the
probability that the algorithm returns a specific object o ∈ D ⊓ q, is in (1 ± ε)/β, where
β = |D ⊓ q|. Similarly, the estimate the algorithm outputs for β is in (1± ε)β. The answer
is correct for all queries, with probability ≥ 1− 1/nΩ(c), for a sufficiently large constant c.

Proof. It is easy to verify the algorithm works correctly if |q ⊓ D(uj)| < ψε. Otherwise,
for the node uj computed by the algorithm, we have |q ⊓ D(uj)| > ψε = cε−2 log n. By
Observation 10, with high probability, we have that j ≤M . By Lemma 9, it implies that for
any node u ∈ Lj , we have 2j |D(u) ⊓ q| ∈ (1± ε/2) |D ⊓ q| = (1± ε/2)β, which implies that
the estimate for the size of β is correct, as u ∈ Lj . This readily implies that the probability
of returning a specific object o ∈ D ⊓ q is in (1± ε)/β, since

1− ε
β
≤ 1

(1 + ε/2) |D ⊓ q| ≤
1

|Lj | · |D(u) ⊓ q| ≤
1

(1− ε/2) |D ⊓ q| ≤
1 + ε

β
.

As for the probabilities, there are n nodes in T , and O(nd) different queries, and thus
the probability of failure is at most nd+1/nΩ(c) < 1/nΩ(c), by Lemma 9. ◀

3.2.2 Running times
Query time. The depth of T is h = O(log n) with high probability (follows readily from
Chernoff’s inequality). Thus, the first stage (of computing the maximal i) requires O(log log n)
queries on the reporting data-structure, where each query takes O(Q(n) + log n) time. The
second stage (of finding maximal j) takes

τ = E
[∑i

t=j
O(Q(n) + |D(ut) ⊓ q|)

]
.

Thus, we have
(A) If Q(n) = O(log n), then τ = O(ψε), as the cardinality of D(ut)⊓ q decreases by a factor

of two (in expectation) as one move downward along a path in the tree. Thus τ is a
geometric summation dominated by the largest term.

(B) If Q(n) = Ω(log n), we have (in expectation) that |i− j| ≤ O(log(1/ε)), and thus
τ = O(Q(n) log(1/ε) + ψε) time.

(C) If Q(n) = O(nλ), for 0 < λ ≤ 1, then the query time is dominated by the query time for
the top node (i.e., uj) in this path, and τ = O(Q(n)), as can easily be verified.

STACS 2025

43:8 Approximating Densest Subgraph in Geometric Intersection Graphs

Construction time. The running time bounds of the form O(C(n)) are well-behaved, if
for any non-negative integers n1, n2, . . ., such that

∑
i=1 ni = n, implies that

∑
i=1 C(ni) =

O(C(n)). Under this assumption on the construction time, we have that the total construction
time is O(C(n) log n).

3.2.3 Summary
▶ Theorem 12. Let D be a set of n objects, and assume we are given a well-behaved range-
reporting data-structure that can be constructed in C(m) time, for m objects, and answers
a reporting query q in O(Q(m) + |q ⊓ D|) time. Then, one can construct a data-structure,
in O(C(n) log n) time, such that given a query object q, it reports an (1 ± ε)-estimate for
β = |q ⊓ D|, and also returns an object from q ⊓ D, where each object is reported with
probability (1± ε)/β. The data-structure answers all such queries correctly with probability
≥ 1− 1/nΩ(1). The expected query time is:

(i) O((ε−2 + log log n) log n) if Q(m) = O(logm).

(ii) O(Q(n)) if Q(m) = O(mλ), for some constant λ > 0.

(iii) O
(
ε−2 log n+Q(n) log logn

ε) otherwise.

Plugging in the data-structure of Liu [23] for disks, with C(m) = O(m logm), and
Q(m) = O(logm), in the above theorem, implies the following.

▶ Corollary 13. Let D be a set of n disks in the plane. One can construct in O(n log2 n)
time a data-structure, such that given a query disk q and a parameter ε ∈ (0, 1/2), it outputs
an (1± ε)-estimate for β = |q ⊓ D|, and also returns a disk in q⊓D with a probability that is
(1± ε)-uniform. The expected query time is O((ε−2 + log log n) log n), and the result returned
is correct with high probability for all possible queries.

Approximate depth queries for a fixed threshold. If we are interested only in a single
threshold, the above data-structure is an overkill, as one can directly construct a single
sample and perform the query directly on this sample. This implies the following.

▶ Corollary 14. Let D be a set of n disks in the plane. One can construct, in O(n log n)
time, a data-structure, such that given a query disk q, and a parameter ε ∈ (0, 1/2), it reports
whether |q ⊓ D| ≥ β or |q ⊓ D| < β. The data structure is allowed to make a mistake when
|q ⊓ D| ∈ [(1− ε)β, (1 + ε)β]. The data-structure answers the query correctly with probability
≥ 1− 1/nΩ(1), and the query time is O(ε−2 log n).

4 A (2 + ε)-approximation for densest subset disks

In this section, we design a (2 + ε)-approximation algorithm to compute the densest subset
of disks in O(ε−4n log n) time.

4.1 Constant approximation via depth
The depth of a point in the arrangement of disks is the number of disks containing the point.
The deepest point in the plane is the point with the maximum depth. The deepest point in
the arrangement of disks and the densest subgraph in the geometric intersection graph of
disks are the same (up to a constant factor).

S. Har-Peled and S. Rahul 43:9

▶ Lemma 15. Let h be the depth of the deepest point in D, where D is a set of disks in
the plane, and let d be maximum density of D. Then (h− 1)/2 ≤ d≤ 7 · h, where c is a
sufficiently large constant. In particular, in O(n log n) time, one can compute a quantity t,
such that (t− 1)/2 ≤ d≤ 8t.

Proof. Lemma 6 readily implies that d≥ (h− 1)/2, as this is the density provided by the
disks containing the deepest point.

d

Figure 4.1 Defending a disk by a guard set made of 7 points.

As for the other direction, consider the densest subset O ⊆ D, and let d be the smallest
disk in S. By Lemma 6, the set T = d ⊓ (O − d) has size least d. Let c be the center of d
and inscribe an equilateral triangle in d. Consider a tiling of 6 such triangles that are interior
disjoint, all sharing a vertex at c. Let P be the set of 7 vertices used by these triangles
(including c), see Figure 4.1. One can verify3 that any disk d′ at least as large as d that
intersect d, must contain at least one point of P .

Thus, each disk in T is stabbed by at least one point in P , which readily implies that
there is a point in P that has depth |T | / |P | ≥ d/7.

As for the last part, a 1.1-approximation of the deepest point in the arrangement of
the disks can be computed in O(n log n) time [5]. The returned approximate deepest point
provides the desired approximation. ◀

4.2 The algorithm
The input is a set D of n disks in the plane. Let ϑ = ε/15. The algorithm starts by computing
a number ξ, such that d ∈ [(ξ − 1)/2, 8ξ], using the algorithm of Lemma 15. The basic
idea is to try a sequence of exponentially decaying values to the optimal density d. To
this end, in the ith round, the algorithm tries the degree threshold β = 8ξ(1 − ϑ)i, for
i = 1, . . . , log1+ϑ 16 = O(1/ε).

In the beginning of such a round, let L ← D. During a round, the algorithm repeatedly
removes “low-degree” objects, by repeatedly doing the following:

3 Indeed, if the center c′ of d′ is in the union of the seven copies of d centered at the points of P , see
Figure 4.1, then the disk d′ must contain one of the points of P . Otherwise, it can be verified that d
and d′ do not intersect.

STACS 2025

43:10 Approximating Densest Subgraph in Geometric Intersection Graphs

(I) Construct the data-structure of Corollary 14 on the objects of L.
(II) Let L< ⊆ L be the objects whose degree in L is smaller than (1 + ϑ)β according to

this data-structure (i.e., query all the objects of L for their degree). Let L≥ = L \ L<.
(III) If L≥ is empty, then this round failed, and the algorithm continues to the next round.
(IV) If |L<| < ϑ |L|, then the algorithm returns L as the desired approximate densest

subset.
(V) Otherwise, let L ← L \ L<. The algorithm continues to the next iteration (still inside

the same round).

4.3 Analysis
▶ Lemma 16. When the algorithm terminates, we have β ≥ (1−ϑ)3d, with high probability,
where d is the optimal density.

Proof. Consider the iteration when β ∈ [(1− ϑ)3d, (1− ϑ)2d]. By definition of L<, all the
objects in it have a degree at most (1 +ϑ)β ≤ (1 +ϑ)(1−ϑ)2d≤ (1−ϑ)d. By Lemma 6, all
the objects in the optimal solution have degree ≥ d (when restricted to the optimal solution).
Therefore, none of the objects in the optimal solution are in L< and hence, the set L≥ is
not empty (and contains the optimal solution). Inside this round, the loop is performed at
most O(ϑ−1 log n) times, as every iteration of the loop shrinks L by a factor of 1− ϑ. This
implies that the algorithm must stop in this round. ◀

▶ Lemma 17. The above algorithm returns a (2 + ε)-approximation of the densest subset.

Proof. Consider the set L, the value of β when the algorithm terminated, and let ν = |L|. By
Lemma 16, β ≥ (1− ϑ)3d, and by the algorithm stopping condition, we have |L<| < ϑ |L| .
In addition, all the objects in L≥ have degree at least (1−ϑ)β. Thus, the number of induced
edges on L is

m(L) ≥ (1− ϑ)β |L≥|
2 >

(1− ϑ)2β |L|
2 ≥ (1− ϑ)5 d

2 |L| ≥ (1− 5ϑ)d2 |L| .

Thus ∇(L) = m(L)
|L| ≥ (1− 5ϑ)d/2 = (1− ε/3)d/2, as ϑ = ε/15. Observe that 2/(1− ε/3) ≤

2(1 + ε/2) ≤ 2 + ε. ◀

▶ Lemma 18. The expected running time of the above algorithm is O(nε−4 log n).

Proof. The expected time spent, in an iteration, in step I and II is O(ϑ−2n log n), where
n = |L|, and this dominates the running time of this iteration. Let ni be the size of L in
the ith iteration (inside the same round), and observe that ni+1 ≤ (1 − ϑ)ni. Assume t
iterations are performed inside this round. As

∑t
i=1 ni = O(n/ϑ), the expected running time

for the round is
∑t
i=1 O(ϑ−2ni log ni) = O(ϑ−3n log n). The value of β can change O(1/ε)

times during the algorithm and hence, the overall expected running time of the algorithm is
O(nϑ−4 log2 n), which implies the result since ϑ = Θ(ε). ◀

Summarizing, we get the following.

▶ Theorem 19. Let D be a set of n disks in the plane, and let ε ∈ (0, 1/2) be a parameter.
The overall algorithm computes, in O(ε−4n log n) expected time, a (2 + ε)-approximation to
the densest subgraph of G∩D, and the result is correct with high probability.

S. Har-Peled and S. Rahul 43:11

▶ Remark 20 (A lower bound). Consider the element uniqueness problem – of deciding if
n real numbers are all distinct. It is known that in the comparison model this requires
Ω(n log n) time. Treating each number as a disk of radius zero, readily implies there is a
subgraph of density ≥ 1 (and in particular, non-zero), if and only if there are two identical
numbers. Thus, any approximation algorithm for the maximum density problem requires
Ω(n log n) time (in the comparison model).

5 An (1 + ε)-approximation for densest subset disks

Here, we present a (1 + ε)-approximation algorithm for the densest subset of disks, which is
based on the following intuitive idea – if the intersection graph is sparse, then the problem is
readily solvable. If not, then one can sample a sparse subgraph, and use an approximation
algorithm on the sampled graph.

5.1 Densest subgraph estimation via sampling
Let G = (V,E) be a graph with n vertices and m edges, with maximum subgraph density
d. Let ϑ ∈ (0, 1/6) be a parameter, and assume that m > c′nϑ−2 log n, where c′ is some
sufficiently large constant, which in particular implies that

d= d(G) ≥ m

n
≥ c′

ϑ2 log n.

Assume we have an estimate m ∈ (1± ϑ)m of m. For a constant c to be specified shortly,
with c < c′, let

ψ = c
n

m
ϑ−2 log n ≤ c

c′(1− ϑ) ≤
6c
5c′ < 1.

Let F = {e1, . . . , er} be a random sample of r = ⌈ψm⌉ edges from G. Specifically, in the ith
iteration, an edge ei is picked from the graph, where the probability of picking any edge
is in (1 ± ϑ)/m. Let H = (V, F), and observe that H is a sparse graph with n vertices
and r = O(ϑ−2n log n) edges. The claim is that the densest subset D ⊆ V in H, or even
approximate densest subset, is close to being the densest subset in G. The proof of this
follows from previous work [24], but requires some modifications, since we only have an
estimate to the number of edges m, and we are also interested in approximating the densest
subgraph on the resulting graph. We include the details here so that the presentation is self
contained. The result we get is summarized in Lemma 24, if the reader is uninterested in the
(somewhat tedious) analysis of this algorithm.

5.1.1 Analysis
▶ Lemma 21. Let d = d(G), and let U ⊆ V , be an arbitrary set of k vertices. If
∇G(U) ≤ d/60, then P[∇H(U) ≥ ψd/5] ≤ n−100k.

Proof. We have d≥ m/n, where n = |V(G)| and m = |E(G)|, and thus

ψ = c
n

mϑ2 log n ≥ c n

(1 + ϑ)mϑ2 log n ≥ 1
d
· c

(1 + ϑ)ϑ2 log n

Let Xi = 1 if the edge sampled in the ith round belongs to HU and zero, otherwise. Let
X =

∑
iXi be the number of edges in HU . Then

P[Xi = 1] ∈ (1± ϑ) |E(GU)|
m

= (1± ϑ)k∇G(U)
m

.

STACS 2025

43:12 Approximating Densest Subgraph in Geometric Intersection Graphs

By linearity of expectations, and as m ∈ (1± ϑ)m, we have

E[X] ∈ (1± ϑ)ψmk∇G(U)
m

⊆ (1± ϑ)2ψk∇G(U). (5.1)

By assumption ∇G(U) ≤ d/60, implying that E[X] ≤ (1 + 3ϑ)ψkd/60 ≤ ψkd/30, if
ϑ ∈ (0, 1/3), by Observation 1. Observe that (1 + (2e − 1))E[X] ≤ ψkd

5 . By Chernoff’s
inequality, Lemma 30, we have

P
[
∇H(U) ≥ ψd

5

]
= P

[
X ≥ ψkd

5

]
≤ 2−ψkd/5 ≤ 1

n100k ,

by picking c to be sufficiently large. ◀

▶ Lemma 22. Let d = d(G), and let U ⊆ V , be an arbitrary set of k vertices. If
∇G(U) ≥ d/60, then P

[
∇H(U) ∈ (1± ϑ)3ψ∇G(U)

]
≥ 1− n−100k .

Proof. Following the argument of Lemma 21 and as ∇G(U) ≥ d/60, we have that E[X] =
Ω(k · ψ∇G(U)) = Ω(k · ψd) = Ω(k · cϑ−2 log n). Chernoff’s inequality, Theorem 31, then
implies that X ∈ (1±ϑ)E[X] with probability at least 1− 2 exp(−ϑ2 E[X] /4) ≥ 1− 1/n100k,
for n sufficiently large. The claim now readily follows from Eq. (5.1). ◀

▶ Lemma 23. Let α ∈ (0, 1/6) be a parameter. For all sets U ⊆ V , such that ∇H(U) ≥
(1− α)d(H), we have that ∇G(U) ≥ (1− 6ϑ)(1− α)d, and this holds with high probability.

Proof. Let X be the densest subset in G. By Lemma 22, we have that

∇H(X) ∈ (1± ϑ)3ψd(G) =⇒ d(H) ≥ (1− ϑ)3ψd≥ ψd

2 .

By Lemma 21, we have that for all the sets T ⊆ V, with ∇G(T) ≤ d/60, we have
∇H(T) < ψd/5 < d(H)/2, and this happens with probability

∑n
k=2

∑
T⊆V:|T |=k 1/n100k ≤∑n

k=2
(
n
k

)
/n100k ≤ 1/n99.

Thus, all the sets U ⊆ V under consideration have ∇G(U) > d/60. By Lemma 22, for all
such sets, with probability 1− n−100k ≥ 1− 1/n99, we have ∇H(U) ∈ (1± ϑ)3ψ∇G(U), which
implies ∇G(U) ∈ 1

(1±ϑ)3ψ∇H(U). Thus, we have

∇G(U) ≥ 1
(1 + ϑ)3ψ

∇H(U) ≥ (1− α)d(H)
(1 + ϑ)3ψ

≥ (1− α)(1− ϑ)3ψd

(1 + ϑ)3ψ
≥ (1− α)(1− 6ϑ)d,

since 1/(1 + ϑ) ≥ 1− ϑ, and (1− ϑ)6 ≥ 1− 6ϑ. ◀

5.1.2 Summary
▶ Lemma 24. Let ε ∈ (0, 1) be a parameter, and let G = (V,E) be a graph with n vertices
and m edges, with m = Ω(ε−2n log n). Furthermore, let m be an estimate to m, such
that m ∈ (1 ± ϑ)m, where ϑ = ε/10. Let ψ = c(n/m)ϑ−2 log n, and let F be a random
sample of ψm = O(ε−2n log n) edges, with repetition, where the probability of any specific
edge to be picked is (1 ± ϑ)/m, and c is a sufficiently large constant. Let H = (V, F) be
the resulting graph, and let X ⊆ V be subset of H with ∇H(X) ≥ (1 − ε/6)d(H). Then,
∇(X) ≥ (1− ε)d(G).

Proof. This follows readily from the above, by setting α = ε/6, and using Lemma 23. ◀

S. Har-Peled and S. Rahul 43:13

5.2 Random sampler
To implement the above algorithm, we need an efficient algorithm for sampling edges from
the intersection graph of disks, which we describe next.

5.2.1 The algorithm
The algorithm consists of the following steps:

(I) Build the data-structure of Corollary 13 on the disks of D with error parameter ε/c,
where c is a sufficiently large constant. Also, build the range-reporting data-structure
of Liu [23] on the disks of D.

(II) For each object o ∈ D, query the data-structure of Corollary 13 with o. Let the
estimate returned be d′. If d′ < c′/ε (for a constant c′ ≫ c), then report o ⊓ D by
querying the range-reporting data-structure with o, and set do ← |o⊓D|−1. Otherwise,
set do ← d′.

(III) We perform |F | iterations and in each iteration, sample a random edge from G∩D. In
a given iteration, sample a disk o ∈ D, where o has a probability of do∑

o∈D
do

being

sampled. If do < c′/ε, then uniformly-at-random report a disk from o ⊓ (D − o).
Otherwise, query the data-structure of Corollary 13 with o which returns a disk in
o ⊓ D (keep querying till a disk other than o is returned).

5.2.2 Analysis
▶ Lemma 25. For each object o ∈ D, we have do ∈ (1± ε/c′′)|o ⊓ (D − o)|, where c≫ c′′

with high probability.

Proof. Fix an object o. When d′ < c′/ε, then the statement holds trivially. Let d =
|o⊓ (D−o)|. Now we consider the case d′ ≥ c′/ε. We know that d′ ∈ (1± ε/c)(d+ 1). Firstly,
d′ ≤ (1 + ε/c)(d+ 1) ≤ (1 + ε/c′′)d hold if

d ≥ 1
ε
· 1 + ε/c

1/c′′ − 1/c ≥ 1/2ε.

Observe that d ≥ 1/2ε, since c′/ε ≤ d′ ≤ (1+ε/c)(d+1) implies that d ≥ c′

ε(1+ε/c) −1 ≥ 1/2ε.
Finally, d′ ≥ (1− ε/c)(d+ 1) ≥ (1− ε/c′′)d holds trivially. Therefore,

do = d′ ∈ (1± ε/c′′)d. ◀

▶ Lemma 26. In each iteration, the probability of sampling any edge in G∩D is (1± ε)/m.

Proof. An edge (u, v) in G∩D can get sampled in step (III) in two ways. In the first way, the
disk corresponding to u gets sampled and then v gets reported as the random neighbor of u,
and vice-versa for the second way.

Let d = |o ⊓ (D − o)|, where o is the disk corresponding to u. Consider the case, where
do ≥ c′/ε. As such, the first way of sampling the edge (u, v) has probability lower-bounded
by:

do∑
do
· 1± ε/c

d︸ ︷︷ ︸
almost-uniformity

⊆ do

(1± ε/c′′)2m︸ ︷︷ ︸
Lemma 25

· 1± ε/c
d

⊆ (1± ε/c′′)d
(1± ε/c′′)2m ·

1± ε/c
d

⊆ 1± ε
2m .

Therefore, for the case do ≥ c′/ε, the probability of sampling the edge (u, v) is (1± ε)/m.
Similarly, the statement holds for the case do < c′/ε. ◀

STACS 2025

43:14 Approximating Densest Subgraph in Geometric Intersection Graphs

▶ Lemma 27. The expected running time of the algorithm is O(ε−4n log2 n+ ε−2n log2 n ·
log log n).

Proof. The first step of the algorithm takes O(n log2 n) expected time. The second step
of the algorithm takes O(n(ε−2 + log log n) log n) expected time. In the third step of
the algorithm, each iteration requires querying the data-structure of Corollary 13 O(1)
times in expectation. Therefore, the third step takes O(|F |) · O((ε−2 + log log n) log n) =
O(ε−4n log2 n+ ε−2n log2 n · log log n) expected time. ◀

The above implies the following result.

▶ Lemma 28. Let D be a collection of n disks in the plane, and let G∩D be the corresponding
geometric intersection graph with m edges. Let F be a random sample of O(ε−2n log n) edges
from G∩D, with repetition, where the probability of any specific edge to be picked is (1± ε)/m.
The edges are all chosen independently into F . Then, the algorithm described above, for
computing F , runs in O(ε−4n log2 n+ ε−2n log2 n · log log n) expected time.

5.3 The result
▶ Theorem 29. Let D be a collection of n disks in the plane. A (1 + ε)-approximation to
the densest subgraph of D can be computed in O(ε−4n log2 n+ ε−2n log2 n · log log n) expected
time. The correctness of the algorithm holds with high probability.

Proof. The case of intersection graph having O(ε−2n log n) edges can be handled directly by
computing the whole intersection graph in O(ε−2n log n) expected time (using Lemma 7).

To handle the other case, we use Lemma 28 to generate a graph H = (V, F) in
O(ε−4n log2 n + ε−2n log2 n · log log n) expected time. Since the intersection graph has
Ω(ε−2n log n) edges, using Lemma 24, it suffices to compute a (1− ε/6) approximate densest
subgraph of H, which can be computed by the algorithm of [6] in O(ε−4n log2 n) expected
time. ◀

6 Extension to other geometric intersection graphs

Although the focus of the paper has been on disks, the techniques described in this paper can
be extended to other geometric intersection graphs as well. For any geometric intersection
graph with a well-behaved range-reporting data-structure that can be constructed in C(n) time
and query time O(Q(n) + |q ⊓ D|), the technique in Section 5 gives a (1 + ε)-approximation
algorithm with a running time of Õ(C(n) + nQ(n)) (where the Õ notation hides poly-
logarithmic factors in n). Therefore, if C(n) = O(n2−λ1) and Q(n) = O(n1−λ2), it leads to
a (1 + ε)-approximation algorithm with running time O(n2−λ3), where λ1, λ2, λ3 ∈ (0, 1).
For example, data structures with such bounds exist for axis-aligned boxes in d-dimension
(with n logO(d) n running time) and spheres in d-dimensions (via reduction to halfspace range
reporting). This improves upon the running time of Ω(m) = Ω(n2) obtained for general
graphs where the edges are given explicitly.

The technique in Section 4 for disks performs O(1/ε) rounds by establishing a connection
between the deepest point in the arrangement of disks with the maximum density. This
connection extends to spheres in d-dimensions but does not hold, for example, for axis-aligned
boxes in d-dimensions (in 2-d the depth can be at most two but the maximum density can
be Ω(n)). In any case, the technique in Section 4 will perform at most O(ε−1 log n) rounds
if we start guessing the degree threshold from n. Then the running time of the algorithm
will be Õ(C(n) + nQ(n)), where C(n) and Q(n) are the construction time and the query

S. Har-Peled and S. Rahul 43:15

time, respectively, of the approximate depth data-structure for a fixed threshold (analogous
version of Corollary 14). Once again this leads to n logO(d) n running time for axis-aligned
boxes in d-dimensions and truly sub-quadratic running time for spheres in d-dimensions.

7 Conclusions

We presented two near-linear time approximation algorithms to compute the densest subgraph
on (implicit) geometric intersection graph of disks. We conclude with a few open problems.
Are there implicit geometric intersection graphs, such as unit-disk graphs or say, interval
graphs, for which the exact densest subgraph can be computed in sub-quadratic time (in
terms of n)? Finally, maintaining the approximate densest subgraph in sub-linear time (again
in terms of n) under insertions and deletions of objects, looks to be a challenging problem (in
prior work on general graphs an edge gets deleted or inserted, but in an intersection graph a
vertex gets deleted or inserted).

References
1 Peyman Afshani and Timothy M. Chan. Optimal halfspace range reporting in three dimensions.

In Claire Mathieu, editor, Proc. 20th ACM-SIAM Sympos. Discrete Algs. (SODA), pages
180–186. SIAM, 2009. doi:10.1137/1.9781611973068.21.

2 Peyman Afshani, Chris H. Hamilton, and Norbert Zeh. A general approach for cache-oblivious
range reporting and approximate range counting. Comput. Geom., 43(8):700–712, 2010.
doi:10.1016/J.COMGEO.2010.04.003.

3 Peyman Afshani and Jeff M. Phillips. Independent range sampling, revisited again. In
Proceedings of Symposium on Computational Geometry (SoCG), volume 129, pages 4:1–4:13,
2019. doi:10.4230/LIPICS.SOCG.2019.4.

4 Pankaj K. Agarwal and Jiangwei Pan. Near-linear algorithms for geometric hitting sets and
set covers. In Proceedings of Symposium on Computational Geometry (SoCG), page 271, 2014.
doi:10.1145/2582112.2582152.

5 Boris Aronov and Sariel Har-Peled. On approximating the depth and related problems. SIAM
Journal of Computing, 38(3):899–921, 2008. doi:10.1137/060669474.

6 Bahman Bahmani, Ashish Goel, and Kamesh Munagala. Efficient primal-dual graph algorithms
for mapreduce. In Algorithms and Models for the Web Graph: 11th International Workshop,
pages 59–78, 2014. doi:10.1007/978-3-319-13123-8_6.

7 Bahman Bahmani, Ravi Kumar, and Sergei Vassilvitskii. Densest subgraph in streaming
and mapreduce. Proceedings of the VLDB Endowment, 5(5):454–465, 2012. doi:10.14778/
2140436.2140442.

8 Sayan Bhattacharya, Monika Henzinger, Danupon Nanongkai, and Charalampos E. Tsouraka-
kis. Space- and time-efficient algorithm for maintaining dense subgraphs on one-pass dynamic
streams. In Proceedings of ACM Symposium on Theory of Computing (STOC), pages 173–182,
2015. doi:10.1145/2746539.2746592.

9 Sergio Cabello, Jean Cardinal, and Stefan Langerman. The clique problem in ray inter-
section graphs. Discrete & Computational Geometry, 50(3):771–783, 2013. doi:10.1007/
S00454-013-9538-5.

10 Moses Charikar. Greedy approximation algorithms for finding dense components in a graph.
In Proceedings of Approximation Algorithms for Combinatorial Optimization Problems (AP-
PROX), pages 84–95, 2000. doi:10.1007/3-540-44436-X_10.

11 Chandra Chekuri, Sariel Har-Peled, and Kent Quanrud. Fast LP-based approximations for
geometric packing and covering problems. In Proc. 31st ACM-SIAM Sympos. Discrete Algs.
(SODA), pages 1019–1038, 2020. doi:10.1137/1.9781611975994.62.

STACS 2025

https://doi.org/10.1137/1.9781611973068.21
https://doi.org/10.1016/J.COMGEO.2010.04.003
https://doi.org/10.4230/LIPICS.SOCG.2019.4
https://doi.org/10.1145/2582112.2582152
https://doi.org/10.1137/060669474
https://doi.org/10.1007/978-3-319-13123-8_6
https://doi.org/10.14778/2140436.2140442
https://doi.org/10.14778/2140436.2140442
https://doi.org/10.1145/2746539.2746592
https://doi.org/10.1007/S00454-013-9538-5
https://doi.org/10.1007/S00454-013-9538-5
https://doi.org/10.1007/3-540-44436-X_10
https://doi.org/10.1137/1.9781611975994.62

43:16 Approximating Densest Subgraph in Geometric Intersection Graphs

12 Jie Chen and Yousef Saad. Dense subgraph extraction with application to community detection.
IEEE Transactions on Knowledge and Data Engineering (TKDE), 24(7):1216–1230, 2012.
doi:10.1109/TKDE.2010.271.

13 Brent N. Clark, Charles J. Colbourn, and David S. Johnson. Unit disk graphs. Discrete
Mathematics, 86(1-3):165–177, 1990. doi:10.1016/0012-365X(90)90358-O.

14 Edith Cohen, Eran Halperin, Haim Kaplan, and Uri Zwick. Reachability and distance
queries via 2-hop labels. SIAM Journal of Computing, 32(5):1338–1355, 2003. doi:10.1137/
S0097539702403098.

15 Alessandro Epasto, Silvio Lattanzi, and Mauro Sozio. Efficient densest subgraph computation
in evolving graphs. In Proceedings of International World Wide Web Conferences (WWW),
pages 300–310, 2015. doi:10.1145/2736277.2741638.

16 Hossein Esfandiari, MohammadTaghi Hajiaghayi, and David P. Woodruff. Brief announcement:
Applications of uniform sampling: Densest subgraph and beyond. In Proceedings of Symposium
on Parallelism in Algorithms and Architectures (SPAA), pages 397–399, 2016. doi:10.1145/
2935764.2935813.

17 Giorgio Gallo, Michael D. Grigoriadis, and Robert Endre Tarjan. A fast parametric maximum
flow algorithm and applications. SIAM Journal of Computing, 18(1):30–55, 1989. doi:
10.1137/0218003.

18 David Gibson, Ravi Kumar, and Andrew Tomkins. Discovering large dense subgraphs in
massive graphs. In Proceedings of Very Large Data Bases (VLDB), pages 721–732, 2005. URL:
http://www.vldb.org/archives/website/2005/program/paper/thu/p721-gibson.pdf.

19 A. V. Goldberg. Finding a maximum density subgraph. Technical report, University of
California at Berkeley, Berkeley, CA, USA, 1984.

20 Sariel Har-Peled. Geometric Approximation Algorithms, volume 173 of Math. Surveys &
Monographs. Amer. Math. Soc., Boston, MA, USA, 2011. doi:10.1090/surv/173.

21 Samir Khuller and Barna Saha. On finding dense subgraphs. In Proceedings of International
Colloquium on Automata, Languages and Programming (ICALP), pages 597–608, 2009. doi:
10.1007/978-3-642-02927-1_50.

22 Tommaso Lanciano, Atsushi Miyauchi, Adriano Fazzone, and Francesco Bonchi. A survey
on the densest subgraph problem and its variants. CoRR, abs/2303.14467, 2023. doi:
10.48550/arXiv.2303.14467.

23 Chih-Hung Liu. Nearly optimal planar k nearest neighbors queries under general distance
functions. SIAM J. Comput., 51(3):723–765, 2022. doi:10.1137/20M1388371.

24 Andrew McGregor, David Tench, Sofya Vorotnikova, and Hoa T. Vu. Densest subgraph in
dynamic graph streams. In Proceedings of Mathematical Foundations of Computer Science
(MFCS), pages 472–482, 2015. doi:10.1007/978-3-662-48054-0_39.

25 Rajeev Motwani and Prabhakar Raghavan. Randomized Algorithms. Cambridge University
Press, Cambridge, UK, 1995. doi:10.1017/CBO9780511814075.

26 Saurabh Sawlani and Junxing Wang. Near-optimal fully dynamic densest subgraph. In
Proceedings of ACM Symposium on Theory of Computing (STOC), pages 181–193, 2020.
doi:10.1145/3357713.3384327.

27 Yufei Tao. Algorithmic techniques for independent query sampling. In Proceedings of ACM
Symposium on Principles of Database Systems (PODS), pages 129–138, 2022. doi:10.1145/
3517804.3526068.

A Chernoff’s inequality

The following are standard forms of Chernoff’s inequality, see [25].

▶ Lemma 30. Let X1, . . . , Xn be n independent Bernoulli trials, where P[Xi = 1] = pi,

and P[Xi = 0] = 1 − pi, for i = 1, . . . , n. Let X =
∑b
i=1 Xi, and µ = E

[
X

]
=

∑
i pi. For

δ > 2e− 1, we have P
[
X > (1 + δ)µ

]
< 2−µ(1+δ).

https://doi.org/10.1109/TKDE.2010.271
https://doi.org/10.1016/0012-365X(90)90358-O
https://doi.org/10.1137/S0097539702403098
https://doi.org/10.1137/S0097539702403098
https://doi.org/10.1145/2736277.2741638
https://doi.org/10.1145/2935764.2935813
https://doi.org/10.1145/2935764.2935813
https://doi.org/10.1137/0218003
https://doi.org/10.1137/0218003
http://www.vldb.org/archives/website/2005/program/paper/thu/p721-gibson.pdf
https://doi.org/10.1090/surv/173
https://doi.org/10.1007/978-3-642-02927-1_50
https://doi.org/10.1007/978-3-642-02927-1_50
https://doi.org/10.48550/arXiv.2303.14467
https://doi.org/10.48550/arXiv.2303.14467
https://doi.org/10.1137/20M1388371
https://doi.org/10.1007/978-3-662-48054-0_39
https://doi.org/10.1017/CBO9780511814075
https://doi.org/10.1145/3357713.3384327
https://doi.org/10.1145/3517804.3526068
https://doi.org/10.1145/3517804.3526068

S. Har-Peled and S. Rahul 43:17

▶ Theorem 31. Let ε ∈ (0, 1) be a parameter. Let X1, . . . , Xn ∈ {0, 1} be n independent
random variables, let X =

∑n
i=1 Xi, and let µ = E[X]. We have that

max
(
P

[
X < (1− ε)µ

]
,P

[
X > (1 + ε)µ

])
≤ exp

(
−ε2µ/3

)

STACS 2025

Independence and Domination
on Bounded-Treewidth Graphs:
Integer, Rational, and Irrational Distances
Tim A. Hartmann #

CISPA Helmholtz Center for Information Security, Saarbrücken, Germany

Dániel Marx #

CISPA Helmholtz Center for Information Security, Saarbrücken, Germany

Abstract
The distance-d variants of Independent Set and Dominating Set problems have been extensively
studied from different algorithmic viewpoints. In particular, the complexity of these problems are
well understood on bounded-treewidth graphs [Katsikarelis, Lampis, and Paschos, Discret. Appl.
Math 2022][Borradaile and Le, IPEC 2016]: given a tree decomposition of width t, the two problems
can be solved in time dt · nO(1) and (2d + 1)t · nO(1), respectively. Furthermore, assuming the Strong
Exponential-Time Hypothesis (SETH), the base constants are best possible in these running times:
they cannot be improved to d−ε and 2d+1−ε, respectively, for any ε > 0. We investigate continuous
versions of these problems in a setting introduced by Megiddo and Tamir [SICOMP 1983], where
every edge is modeled by a unit-length interval of points. In the δ-Dispersion problem, the task is
to find a maximum number of points (possibly inside edges) that are pairwise at distance at least δ

from each other. Similarly, in the δ-Covering problem, the task is to find a minimum number of
points (possibly inside edges) such that every point of the graph (including those inside edges) is at
distance at most δ from the selected point set. We provide a comprehensive understanding of these
two problems on bounded-treewidth graphs.

1. Let δ = a/b with a and b being coprime. If a ≤ 2, then δ-Dispersion is polynomial-time solvable.
For a ≥ 3, given a tree decomposition of width t, the problem can be solved in time (2a)t · nO(1),
and, assuming SETH, there is no (2a − ε)t · nO(1) time algorithm for any ε > 0.

2. Let δ = a/b with a and b being coprime. If a = 1, then δ-Covering is polynomial-time
solvable. For a ≥ 2, given a tree decomposition of width t, the problem can be solved in time
((2 + 2(b mod 2))a)t · nO(1), and, assuming SETH, there is no ((2 + 2(b mod 2))a − ε)t · nO(1)

time algorithm for any ε > 0.

3. For every fixed irrational number δ > 0 satisfying some mild computability condition, both
δ-Dispersion and δ-Covering can be solved in time nO(t) on graphs of treewidth t. We
show a very explicitly defined irrational number δ = (4

∑∞
j=1 2−2j

)−1 ≈ 0.790085 such that
δ-Dispersion and δ/2-Covering are W[1]-hard parameterized by the treewidth t of the input
graph, and, assuming ETH, cannot be solved in time f(t) · no(t).

As a key step in obtaining these results, we extend earlier results on distance-d versions of
Independent Set and Dominating Set: We determine the exact complexity of these problems in
the special case when the input graph arises from some graph G′ by subdividing every edge exactly
b times.

2012 ACM Subject Classification Theory of computation → Discrete optimization; Mathematics of
computing → Graph algorithms; Theory of computation → Problems, reductions and completeness;
Theory of computation → Parameterized complexity and exact algorithms

Keywords and phrases Independence, Domination, Irrationals, Treewidth, SETH

Digital Object Identifier 10.4230/LIPIcs.STACS.2025.44

© Tim A. Hartmann and Dániel Marx;
licensed under Creative Commons License CC-BY 4.0

42nd International Symposium on Theoretical Aspects of Computer Science (STACS 2025).
Editors: Olaf Beyersdorff, Michał Pilipczuk, Elaine Pimentel, and Nguyễn Kim Thắng;
Article No. 44; pp. 44:1–44:19

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:tim.hartmann@cispa.de
https://orcid.org/0000-0002-1028-6351
mailto:marx@cispa.de
https://orcid.org/0000-0002-5686-8314
https://doi.org/10.4230/LIPIcs.STACS.2025.44
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

44:2 Independence and Domination on Bounded-Treewidth Graphs

1 Introduction

An independent set of a graph G is a subset of vertices that have pairwise distance at least 2.
A well-known generalization to higher distance is the notion of a-independent set for some
integer a, which is a subset of vertices that have pairwise distance at least a. Receiving
extensive attention in the literature, e.g. [12, 29, 13, 4, 32, 21], the problem seems reasonably
well understood. The dual notion of distance-d dominating set, which is a set D of vertices
such that every vertex of the graph is at distance at most d from S, was also similarly
well studied. In this paper, we present an extensive study of both problems, focusing on
their complexity on subdivided and bounded-treewidth graphs. Furthermore, we explore the
generalization of these problems to noninteger (even irrational!) distances in an appropriate
continuous model [8, 33] that received renewed attention lately [16, 17, 18, 14].

Independent Set and Dispersion
Integer distances. Finding a maximum a-independent set is NP-hard for a = 2 (as it is
the same as the classic Independent Set problem) and it is not difficult to show that it
remains NP-hard for any fixed a ≥ 2. In contrast, there are polynomial time algorithms for
a ∈ {2, 4} when the input is a 2-subdivided graph, that is a graph G that resulted from a
graph G′ by replacing every edge by a path of length two.

▶ Theorem 1.1 (Grigoriev et al. [14]). For a ∈ {2, 4}, a maximum a-independent set on a
2-subdivided graph can be found in linear time.1

Due to an important connection to the dispersion problem (see later in this section), we
are particularly interested in the complexity of finding a maximum a-independent set on
subdivided graphs, where every edge is replaced by a path of length b. Formally, let αa(G)
be the maximum cardinality of an a-independent set of a graph G. For a graph class G,
let a-Independent Set(G) be the corresponding decision problem, which is, given a graph
G ∈ G and integer k, deciding whether αa(G) ≥ k. Let Gb be class of graphs G that are
b-subdivisions, meaning G results from a graph G′ by replacing every edge by a path of
length b.

As a first contribution, for every fixed integer a, b, we settle the NP-hardness and the
parameterized complexity of finding a maximum a-independent set when parameterized by
the solution size (as color-coded in Figure 1). If the ratio a

b is smaller than 2, then the
problem is FPT, and otherwise it is W[1]-hard unless it is a polynomial time solvable case.

▶ Theorem 1.2 (Section 4). a-Independent Set(Gb) is
polynomial time solvable if b = ca or if b = c a

2 and a
2 is even for some integer c; and

NP-hard for all other integers a, b; and is
fixed-parameter tractable for the solution size as parameter if a

b < 2 or if a
b = 2, b even;

and W[1]-hard for all other integers a, b.

Next, we consider the problem parameterized by treewidth. Intuitively, the a-
Independent Set problem is harder for larger a. Indeed, for all a ≥ 2, there is a matching
upper and lower bound with a in the base of an exponential run time for graphs of bounded
treewidth, assuming the Strong Exponential Time Hypothesis (SETH).

1 The original statement is about a continuous dispersion problem, but can be put as above using a
connection of these two problem which we mention later.

T. A. Hartmann and D. Marx 44:3

a

b 1 2 3 4 5 6

1 |V | |V | + |E| |V | + 2|E| |V | + 3|E| |V | + 4|E| |V | + 5|E|
2 IS 1-Disp IS+|E| 1/2-Disp IS+2|E| 1/3-Disp
3 3-IS |V | 3-IS+|E| |V | + |E|
4 4-IS 2-Disp 1-Disp 4-IS+|E| 2/3-Disp
5 5-IS |V | 5-IS+|E|
6 6-IS 3-Disp IS 3/2-Disp 1-Disp

Figure 1 Some problems, such as IndependentSet and Dispersion, (or solution sizes) cor-
responding to a-Independent Set on a graph Gb for small values of a, b and V = V (G) and
E = E(G). A light green cell indicates a polynomial time solvable case, an orange NP-hardness &
FPT, and a dark red NP-hardness & W[1]-hardness.

▶ Theorem 1.3 (Katsikarelis et al. [20]). For a ≥ 2, given a tree decomposition of width t

of an n vertex input graph, a maximum a-independent set can be found in time at · nO(1).
Assuming SETH, there is no (a − ε)tw(G) · nO(1) time algorithm for any ε > 0, even for
graphs without a cycle of length < a.2

We refine Theorem 1.3 by restricting the a-Independent Set problem to b-subdivided
graphs and determining the optimal base of the exponent for all integers a and b. We expect
that larger a makes the problem harder (as in Theorem 1.3) and larger b makes the problem
easier (as the graphs become more restricted), but it turns out that the optimal base depends
on a and b in a very subtle way. Let gcd(a, b) denote the greatest common divisor of integers
a and b.

▶ Theorem 1.4 (Section 5). Let a′, b′ integers with gcd(a′, b′) = c, ca = a′ and cb = b′.
Assume SETH, an ε > 0 and that a tree decomposition of width t is part of the input.

If gcd(a′, b′) is odd: If a = 1, a′-Independent Set(Gb′) is in P, else a′-
Independent Set(Gb′) can be solved in time at · nO(1) but not in (a − ε)pw(G) · nO(1).
If gcd(a′, b′) is even: If a ∈ {1, 2}, a′-Independent Set(Gb′) is in P, else a′-
Independent Set(Gb′) can be solved in time (2a)t · nO(1) but not in (2a − ε)pw(G) · nO(1).

The proof heavily uses hidden symmetries of a-independent sets on b-subdivided graphs
for different values of a and b. Such symmetries were explored first for a continuous version
of a-independent set, in a series of work [14, 17, 15]. We show that these results hold in
similar form for a-independent sets as well.

Rational distances. As the distance between any two vertices in a graph is an integer,
it makes no sense to consider a-independent sets for noninteger a. However, noninteger
distances can be highly relevant if we consider the complexity of the said continuous version
of a-independent. The continuous version, introduced by Dearing and Francis [8], is known as
δ-dispersion for a positive real distance δ. In this setting, instead of requiring a selection of
vertices of a graph G, we allow the selection of points that may be on a vertex or somewhere
on the continuum of an edge. We fix the length of the edges to 1, which defines a distance
relation of the points in the graph G. A δ-dispersed set then is a subset of points S where

2 The restriction to graphs without short cycles is not explicitly given, but easily observed. We will rely
on this restriction later.

STACS 2025

44:4 Independence and Domination on Bounded-Treewidth Graphs

every distinct points p, q ∈ S have distance at least δ; as studied for example in [35, 14, 17].
The problem δ-Dispersion is the decision version asking for a δ-dispersed set of size at
least k, for some budget k given in the input. It turns out that the notion of a

b -dispersed
sets is similar to a-independent sets on b-subdivided graphs. Indeed, a crucial connection
between the two types of sets is that a

b -dispersed sets are in one-to-one correspondence to
2a-independent sets on the 2b-subdivided graph, as follows from a discretization argument
by Grigoriev et al. [14]. Particularly, the polynomial time solvable case of a-independent set,
as stated in Theorem 1.1, follow from this discretization argument and a characterization
of the polynomial time solvable cases of δ-dispersion. Finding a maximum δ-dispersed set
is polynomial time solvable if δ is a twice a unit-fraction (including 1 and 2), and all other
cases are NP-hard [14]. Further, δ-dispersion when parameterized by the solution size is
FPT when δ ≤ 2 and otherwise W[1]-hard, as shown by Hartmann et al. [17].

With such connections and Theorem 1.4 at our hands, we can turn the results on a-
independent set on b-subdivided graphs into tight results for δ-Dispersion on bounded
treewidth graphs for every fixed rational δ.

▶ Theorem 1.5 (Section 5). Let coprime a, b define δ = a
b . If a ≤ 2, then δ-Dispersion is

in P. For a ≥ 3, given a tree decomposition of width t, the problem can be solved in time
(2a)t · nO(1), and, assuming SETH, there is no (2a − ε)t · nO(1) time algorithm for any ε > 0.

Irrational distances. By Theorem 1.5, for a fixed rational δ = a
b , finding a maximum size

a
b -dispersed set is fixed-parameter tractable in the treewidth of the input graph. This is not
necessarily the case for irrational δ. Deciding δ-Dispersion can be as hard as outputting the
digits of δ, which for some δ is not even computable. Consider, for example, a path of length
ℓ. Then there is a dispersed set of size k + 1 if and only if ℓ

k ≤ δ. Hence it is reasonable to
consider the question of efficient algorithms only if δ is efficiently comparable to rationals,
meaning that there is an algorithm that, given y

x , decides whether x
y ≤ δ in time polynomial

in log x + log y.
For every fixed efficiently comparable δ, it is possible to find a maximum δ-dispersed

set in an n-vertex graph in time nO(tw(G)), i.e., there is an XP algorithm parameterized by
treewidth. This follows from a rounding procedure by Hartmann et al. [17], by which for an
n-vertex graph the dispersion number of δ equals to the dispersion number of the smallest
rational x

y where δ ≤ x
y with x ≤ 2n. Using that δ is efficiently comparable, we can find this

rational in polynomial time since x ≤ 2n and y is in the order of n for a fixed δ. Then it
remains to apply the algorithm of Theorem 1.5 to find a maximum x

y -dispersed set.
In contrast, the above algorithm cannot be improved to a fixed-parameter tractable under

standard complexity assumptions. As we show, there is a very explicitly defined and efficiently
comparable irrational δ = (4

∑∞
j=1 2−2j)−1 ≈ 0.790085, for which computing the δ-dispersion

number is W[1]-hard parameterized by the treewidth (in fact even for pathwidth), and an
according lower bound holds under the Exponential Time Hypothesis (ETH).

▶ Theorem 1.6 (Section 6). There is an efficiently comparable irrational δ for which δ-
Dispersion is W[1]-hard in the pathwidth pw(G) of the n-vertex input graph G and, assuming
ETH, cannot be solved in time f(pw(G)) · no(pw(G)) for any computable function f .

Domination Problems
In addition to distance a-independent set, we perform a similar study of the dual domination
problems. As we show, the results for a-independence hold quite similarly for according
domination problems. We use a definition that unifies several concepts such as that of a
dominating set and a vertex cover.

T. A. Hartmann and D. Marx 44:5

A distance-d dominating set D is a subset of vertices such that every other vertex is
at distance at most d to a vertex in D. The literature contains several more distance
domination-like problems, which are often quite well understood on bounded treewidth
graphs. A well-studied example is mixed dominating set, for example [38, 19, 25, 37, 10] and
under the name total covering [1, 11, 28, 2, 31], which is (even though not directly phrased as
such) equivalent to a distance-2 dominating set of the 2-subdivision of a graph G. Similarly,
a vertex-edge dominating set is a subset of vertices D such that every edge has one of its end
vertices in distance at most 1 to a vertex in D, as studied in [23, 40, 39]. More generally, a
distance-d vertex cover (not to be confused with a d-path vertex cover) is a subset of vertices
D such that every edge has one of its end vertices in distance at most d to a vertex in D, as
studied in [3, 7].

We unify all above concepts by the notion of an a-walk dominating set for an integer
a, which is a subset of vertices D such that for every edge e ∈ E(G), there are (possibly
identical) vertices w1, w2 ∈ D and a w1, w2-walk of length at most a containing edge e.

▶ Observation 1.7. For a graph G without isolated vertices, the following notions coincide:
a vertex cover and a 2-walk dominating set,
a dominating set and a 3-walk dominating set,
a vertex-edge dominating set and a 4-walk dominating set,
a distance-d dominating set and a (2d + 1)-walk dominating set, for every d ≥ 1,
a mixed dominating set in G and a 5-walk dominating set in the 2-subdivision G2, and
a distance-d vertex cover and a (2d + 2)-walk dominating set, for every d ≥ 0.

Integer distances. Finding a minimum a-walk dominating set is NP-hard for a = 2 (i.e.,
finding minimum vertex cover) and it is not difficult to show that it remains NP-hard for
any fixed a ≥ 2. In some cases, the hardness also extends to when we restrict the input to
2-subdivided graphs: Finding a minimum mixed dominating set, i.e., a 5-walk dominating
set of 2-subdivided graphs, is NP-hard, as shown by Majumdar [26]. In contrast, there are
polynomial time algorithms for a ∈ {2, 4} when the input is a 2-subdivided graph.

▶ Theorem 1.8 (Hartmann et al. [18]). For a ∈ {2, 4}, a minimum a-walk dominating set on
a 2-subdivided graph can be found in linear time.3

These examples give a glimpse into the complexity of finding an a-walk dominating set of
a b-subdivided graphs for integers a, b. This work settles, for every fixed integer a, b, whether
finding a minimum a-walk dominating set of a b-subdivided graph is polynomial time solvable
or NP-hard, and additionally settles the parameterized complexity for the solution size as
parameter (as color-coded in Figure 2). Formally, let γa(G) be the minimum cardinality of an
a-walk dominating set of a graph G. For a graph class G, let a-Walk Dominating Set(G)
be the according decision problem, which is, given a graph G ∈ G and an integer k, deciding
whether γa(G) ≥ k.

▶ Theorem 1.9 (⋆). a-Walk Dominating Set(Gb) is
polynomial time solvable if b = ca or if b = c a

2 and a
2 is even for some integer c; and is

NP-hard for all other integers a, b; and is
fixed-parameter tractable for the parameter solution size if a

b < 3; and W[2]-hard for all
other integers a, b.

3 The original statement is about a continuous covering problem, but can be phrased as here by using a
discretization argument given in the same work.

STACS 2025

44:6 Independence and Domination on Bounded-Treewidth Graphs

a

b 1 2 3 4 5 6

1 |V | |V | + |E| |V | + 2|E| |V | + 3|E| |V | + 4|E| |V | + 5|E|
2 VC 1/2-Cover VC+|E| 1/4-Cover VC+2|E| 1/6-Cover
3 DS DS(G2) |V | DS+|E| DS(G2) + |E| |V | + |E|
4 VED 1-Cover 1/2-Cover VED+|E| 1/3-Cover
5 2-DS MDS MDS |V | 2-DS+|E|
6 3/2-Cover VC DS(G2) 1/2-Cover
7 3-DS
8 2-Cover 1-Cover 2/3-Cover
9 4-DS DS DS(G2)

Figure 2 Some problems, such as VertexCover, (Mixed)DominatingSet, VertexEdge
Domination, (or solution sizes) corresponding to a-Walk Dominating Set of a graph Gb for
small values of a, b, where V = V (G) and E = E(G). A light green cell indicates a polynomial time
solvable case, an orange NP-hardness and FPT, and a dark red NP-hardness & W[2]-hardness.

We note that a-Walk Dominating Set(Gb) is polynomial time solvable for the same set
of integers a, b where a-Independent Set(Gb) is polynomial time solvable. In contrast, the
threshold which separates the fixed-parameter tractable cases from the W[1]-hard/W[2]-hard
cases is shifted, which should be expected as Vertex Cover and Dominating Set are to
be separated by this threshold.

Further, we study the problem parameterized by treewidth. Again, intuitively, the a-walk
dominating set problem is harder for larger a. Indeed, for many cases the notion of an a-walk
dominating set corresponds to a known problem (as in Observation 1.7) where the literature
knows a matching upper and lower bound with a in the base of an exponential run time for
graphs of bounded treewidth, assuming SETH. This is also the case for a = 5 on 2-subdivided
graphs, as this corresponds to a mixed dominating set.

▶ Theorem 1.10 ([30, 36, 5, 24, 10]). For a ∈ {2} ∪ {3, 5, 7, . . . }, given a tree decomposition
of width t of an n vertex input graph, a minimum a-walk dominating set can be found in time
at · nO(1), and, assuming SETH, there is no (a − ε)t · nO(1) time algorithm for any ε > 0.
Moreover, for a = 5 this even holds when the input graph is restricted to 2-subdivided graphs.

We refine Theorem 1.10 by including also even distances a ≥ 4 and by considering the
restriction of a-Walk Dominating Set to b-subdivided graphs, beyond the case a = 5 and
b = 2. We determine the optimal base of the exponent for all integers a and b. As it turns
out, the optimal base depends on a and b in a very subtle way.

▶ Theorem 1.11 (⋆). Let a′, b′ integers with gcd(a′, b′) = c and ca = a′ and cb = b′. Assume
SETH, ε > 0, and that a tree decomposition of width t is part of the input.

If gcd(a′, b′) is odd: If a = 1, a′-Walk Dominating Set(Gb′) is in P, else a′-
Walk Dominating Set(Gb′) can be solved in time at ·nO(1) but not in (a−ε)pw(G) ·nO(1).
If gcd(a′, b′) is even: If a ∈ {1, 2}, a′-Walk Dominating Set(Gb′) is in P, else a′-
Walk Dominating Set(Gb′) can be solved in time (2a)t · nO(1) but not (2a − ε)pw(G) ·
nO(1).

The proof of Theorem 1.11 heavily uses hidden symmetries of a-walk dominating sets on
b-subdivided graphs, which are of similar nature as for independent sets. Such symmetries
were explored first for a continuous version of a-walk dominating set [18]. We show that
these results hold in similar form for a-walk dominating set as well.

T. A. Hartmann and D. Marx 44:7

Regarding distance-d domination, our results so far imply the following.

▶ Corollary 1.12. Finding a minimum distance-d dominating set in b-subdivided graphs
is polynomial time solvable if b is a multiple of 2d + 1, otherwise is NP-hard;
if b is not a multiple of 2d+1, with gcd(2d+1, b) = c can be solved in time ((2d+1)/c)t·nO(1)

if a tree decomposition of width t is part of the input, and, assuming SETH, cannot be
solved in time ((2d + 1)/c − ε)pw(G) · nO(1); and
fixed-parameter tractable for the parameter solution size if 2d+1

b < 3; and W[2]-hard for
all other values of d, b.

Rational distances. The continuous version of a-walk dominating set, as introduced by
Shier [33], is known as δ-covering for a positive real distance δ. Similarly to δ-dispersion,
we allow the selection of points that may be on a vertex or somewhere on the continuum
of an edge. We fix the length of the edges to 1, which defines a distance relation of the
points in the graph G. A δ-cover is a set of points S that covers every point p in the graph,
that is there is a point q ∈ S such that p, q have distance at most δ; as studied for example
in [27, 34] and receiving renewed attention lately [16, 18]. The problem δ-Covering is the
decision version asking for a δ-cover of size at most k, for some budget k given in the input.
The notion of a a

b -cover is quite similar to an a-walk dominating set of a b-subdivided graph;
though the connection is more subtle compared to the independence problems. Based on
a discretization argument by Hartmann et al. [18] we show that a

b -covers are in one-to-one
correspondence to 2a-walk dominating sets on b-subdivided graphs, if b is even; while if b is
odd, a

b -covers are in one-to-one correspondence to 4a-walk dominating sets on 2b-subdivided
graphs. Particularly, we obtain the polynomial time solvable cases of δ-covering based on
this connection. Finding a minimum δ-cover is polynomial time solvable if δ is a unit-fraction
and otherwise NP-hard [18]. By the same work, δ-Covering parameterized by the solution
size is FPT in case δ < 3

2 an otherwise W[2]-hard. (We observe a similar dichotomy for
a-independent sets on b-subdivided graphs, as stated in Theorem 1.9.)

With such connections and Theorem 1.11 at our hands, we can turn the results on
a-independent set on b-subdivided graphs into tight results for δ-Covering on bounded
treewidth graphs for every fixed rational δ.

▶ Theorem 1.13 (⋆). Let a′, b′ integers with gcd(a′, b′) = c and ca = a′ and cb = b′. Assume
SETH, ε > 0, and that a tree decomposition of width t is part of the input.

a′

b′ -Covering for a = 1 is in P; if a ≥ 2 and b is odd, can be solved in time (4a)t · nO(1)

but not in (4a − ε)pw(G) · nO(1); if a′ ≥ 2 and b is even, can be solved in time (2a)t · nO(1)

but not in (2a − ε)pw(G) · nO(1).

Irrational distances. By Theorem 1.13, for every fixed rational δ = a
b , finding a minimum

a
b -cover is fixed-parameter tractable parameterized by the treewidth of the input graph. As
is the case for δ-covering, this is not necessarily true for irrational δ. Deciding δ-Covering
can be as hard as outputting the digits of δ, which for some δ is not even computable. For a
path of length ℓ, there is a covering set of size k if and only if δ ≥ ℓ

2k . Hence it is reasonable
to consider only δ which are efficiently comparable.

For every fixed efficiently comparable δ, it is possible to find a minimum δ-cover in time
nO(tw(G)), i.e., there is an XP algorithm parameterized by treewidth. This follows from a
rounding procedure by Tamir [34], by which for an n-vertex graph the covering number of δ

equals to the covering number of the largest rational x
y ≤ δ with x ≤ 2n. Using that δ is

STACS 2025

44:8 Independence and Domination on Bounded-Treewidth Graphs

efficiently comparable, we can find this rational in polynomial time since x < 2n and y is in
the order of n for a fixed δ. Then it remains to apply the algorithm of Theorem 1.13 to find
a minimum x

y -covering set.
In contrast, the above algorithm cannot be improved to a fixed-parameter tractable

under standard complexity assumptions. As we show, there is a very explicitly defined and
efficiently comparable irrational δ′ = (2

∑∞
j=1 2−2j)−1 ≈ 0.395043, for which computing the

δ′-covering number is W[1]-hard parameterized by the treewidth (in fact even for pathwidth),
and an according lower bound under ETH.

▶ Theorem 1.14 (⋆). There is an efficiently comparable irrational δ′ such that δ′-Covering
is W[1]-hard in the pathwidth pw(G) of the n-vertex input graph G and, assuming ETH,
cannot be solved in time f(pw(G)) · no(pw(G)) for any computable function f .

2 Preliminaries

All our graphs are simple and undirected. Usually we assume that our graphs as input do
not contain isolated vertices, as they can easily be preprocessed for the studied problems.

b-Subdivision. For a graph G and an integer b, the b-subdivision of G, denoted as Gb,
results from G by replacing every edge {u, v} ∈ E(G) by a u, v-path of length b. For example,
G = G1. For an edge {u, v} ∈ E(G) and β ∈ {0, . . . , b}, let v(u, v, β) be the unique vertex
on the unique shortest u, v-path in Gb with distance β to u and distance b − β to v. Let Gb

be the class of every graph H that is the b-subdivision Gb of a graph G.

Point space. For a graph G, we assume that its edges have unit length. Let p(u, v, λ), for
an edge {u, v} ∈ E(G) and a real λ ∈ [0, 1], denote the point on the edge {u, v} with distance
λ to u and distance 1 − λ to v. Hence p(u, v, λ) coincides with p(u, v, 1 − λ), and the point
p(u, v, 0) coincides with the vertex u. By P (G) we denote the set of points of a graph G. Let
d(p, q), for two points p, q ∈ P (G), denote the distance of p, q of the underlying metric space
on P (G).

Graph parameters. We use the following well known relation of graph parameters. By
ν(G) we denote the maximum size of a matching in a graph G. A tree decomposition (T, β)
of G consists of a tree T and a mapping β from the vertices of T (referred to as nodes) to
subsets of V (G) (referred to as bags), such that (1)

⋃
n∈V (T) = V (G), (2) {u, v} ∈ E(G)

implies a node n ∈ V (T) with {u, v} ⊆ β(n), and (3) for nodes n1, n2, n3 ∈ V (T) where
n2 lies on the path from n1 to n2, we have β(n1) ∩ β(n3) ⊆ β(n2). The width of a tree
decomposition is the maximum of |β(n)| − 1 for all n ∈ V (T). A path decomposition of G is
a tree decomposition (P, β) where P is a path. We let (β(n1), . . . , β(nt)) denote the path
decomposition using a path (n1, . . . , nt). The treewidth tw(G) of a graph is the minimum
width of a tree decomposition, and likewise the pathwidth pw(G) is the minimum width of a
path decomposition.

It is well known that 2ν(G) ≥ pw(G) ≥ tw(G). Hence a parameterized algorithm with
the treewidth as parameter is more general result than using the pathwidth (assuming a
respective decomposition is given in the input). On the other hand, a lower bound for the
parameter pathwidth also holds for the parameter treewidth.

Efficiently comparable real. A real δ is efficiently comparable if there is an algorithm that,
given y

x , decides whether x
y ≤ δ in time polynomial in log x + log y.

T. A. Hartmann and D. Marx 44:9

3 Independent and Dispersed Sets

This section explores the close relationship between a-independent sets and δ-dispersed
sets. Our goal is to establish the following two transformations of δ-dispersed sets also for
independent sets. The first relates the dispersion number to the subdividing the graph.

▶ Lemma 3.1 ([14]). For every real δ > 0 and integer c ≥ 1, δ-disp(G) = cδ-disp(Gc).

The second relates the dispersion number of the same graph but of different distances.
For certain distances the solution size differs by exactly one point for every edge.

▶ Lemma 3.2 ([17, 15]). δ-disp(G) + |E(G)| = δ
1+δ -disp(G) for every real δ > 0 and graph

G without cycles of length < δ.

In a key result later, we will apply Lemma 3.2 multiple time, stated as follows. (The
proof thereof and of other statements marked with (⋆) can be found in the full version of
this paper.)

▶ Corollary 3.3 (⋆). δ-disp(G) = δ
1+b·δ -disp(G) − b|E(G)| for an integer b ≥ 1, real δ > 0

and graph G without cycles of length < δ.

To obtain Lemma 3.1 and Lemma 3.2 in terms of a-independent sets, we consider certain
normalized dispersed sets. To that end, recall that a point p(u, v, λ) ∈ P (G) is c-simple if λ

is a multiple of c. Further, let S ⊆ P (G) be c-simple if all its points are c-simple. The good
news is that there is a direct correspondence of b-simple a

b -dispersed sets in a graph G and
a-independent sets in the b-subdivision Gb.

▶ Observation 3.4. Let k ∈ N. There is an a-independent set of size k in Gb, if and only if
there is a b-simple a

b -dispersed set of size k in G.

Proof. The vertex v(u, v, β) for an edge {u, v} ∈ E(G) and β ∈ {0, . . . , b} corresponds to
the b-simple point p(u, v, i

b) and vice versa. The distance between vertices corresponds to
the same distance of corresponding points multiplied by the factor 1

b . ◀

Unfortunately, there may be no minimum a
b -dispersed set that is b-simple. On the positive

side, a minimum a
b -dispersed set S can be modified to a 2b-simple dispersed set S⋆ of same

size. Actually, one can observe that S⋆ is not b-simple only because of certain points in S.

▶ Lemma 3.5 ([14]). For an a
b -dispersed set S, the following set S⋆ = {p⋆ | p ∈ S} is

2b-simple and a
b -dispersed. For each point p(u, v, λ) with λ ∈ (i

b − 1
2b , i

b + 1
2b) for some integer

i ≥ 0, let p⋆ := p(u, v, i
b); for all other p ∈ S, let p⋆ = p.

▶ Corollary 3.6. a
b -disp(G) = α2a(G2b) for every a, b ∈ N+ and graph G.

This already implies a subdivision argument almost as for a-independent sets (Lemma 3.1).

▶ Lemma 3.7. For every graph G, αa(Gb) = αca(Gcb) if c is odd, or a, b are even.

Proof. First consider that a and b are even. Then αa(Gb) = α2a′(G2b′) for some integers a′, b′.
Then α2a′(G2b′) = a′

b′ -disp = ca′

cb′ -disp = α2ca′(G2cb′) = αca(Gcb), because of Corollary 3.6.
Now consider that c is odd. Clearly, an a-independent set in Gb corresponds to a ca-

independent set in Gcb. For the reverse direction, let I ⊆ V (Gcb) be a ca-independent set of
Gcb. Consider the corresponding a-dispersed set S ⊆ V (Gb) in Gb, which is bc-simple. We
apply the construction of Lemma 3.5. As c is odd, there is no point p ∈ S with edge position
1
2 . Hence the construction only produces points with edge position 0 or 1. That is, the
constructed set S⋆ is 1-simple, and hence S⋆ corresponds to an a-independent set in Gb. ◀

STACS 2025

44:10 Independence and Domination on Bounded-Treewidth Graphs

Next, we obtain the second connection (Lemma 3.2) quite similarly for dispersed sets.
That is, we relate a-independent sets in the subdivided graphs Gb and Ga+b. The basic idea
is to translate the independent set to a dispersed set and apply Lemma 3.2. However, the
construction of Lemma 3.2 does not preserve simplicity. Hence we adapt the construction
slightly such that it always maps b-simple inputs to (a + b)-simple outputs. As we show in
the appendix, the correctness follows with almost the same proof as for Lemma 3.2.

▶ Lemma 3.8 (⋆). Let G be a graph without a cycle of length < a
b . A b-simple a

b -dispersed set
S implies an (a + b)-simple a

a+b -dispersed set of size |S| + |E(G)|. Further, an (a + b)-simple
a

a+b -dispersed set S′ implies a b-simple a
b -dispersed set of size |S′| − |E(G)|.

Equipped with Lemma 3.8, we obtain an result analogous to Lemma 3.2.

▶ Theorem 3.9. αa(Gb) + |E(G)| = αa(Ga+b) if graph Gb contains no cycle of length < a.

Proof. Let I be an a-independent set I in Gb. Then I corresponds to a b-simple a
b -dispersed

set S in G, by Observation 3.4. Lemma 3.8 maps S to an (a + b)-simple a
a+b -dispersed set

S′ in G of size |I| + |E(G)|. This construction is applicable since Gb contains no cycle of
length < a, and hence G contains no cycle of length < a

b . Then the (a + b)-simple set S′

corresponds to an a-independent set in Ga+b of size |I| + |E(G)|, by Observation 3.4. That
means αa(Gb) + |E(G)| ≤ αa(Ga+b).

Vice versa, let I be an a-independent set in Ga+b. Then I ′ corresponds to an (a + b)-
simple a

a+b -dispersed set S′ in G of size |I|, by Observation 3.4. Lemma 3.8 maps S to an
a-simple a

b -dispersed set S in G of size |I ′| − |E(G)|. Then the b-simple set S corresponds
to an a-independent set in Gb of size |I ′| − |E(G)|, by Observation 3.4. That means
αa(Gb) + |E(G)| ≥ αa(Ga+b). ◀

Now with these two relation of independent sets established (Corollary 3.6 and Theo-
rem 3.9), we easily obtain the the integers a, b for which finding a maximum a-independent set
on b-subdivided graphs is polynomial time solvable. A simple case is, that a is odd and b is a
multiple of a. By Lemma 3.7, this is equivalent to finding a maximum 1-independent set on a
a
b -subdivided graph, which trivially consist of all vertices. In the case that a is even and b is a
multiple of a, and that a

2 is even and b is a multiple of a
2 , Lemma 3.7 and Theorem 3.9 allow

to reduce the problem to a polynomial time solvable case from Theorem 1.2. Theorem 3.9 is
applicable as in above cases a

b ≤ 2.

▶ Theorem 3.10. a-Independent Set on b-subdivided graph is polynomial time solvable if
b is a multiple of a, or a

2 is even and b is an odd multiple of a
2 .

4 Independent Set with Parameter Solution Size

This section settles the parameterized complexity of finding a maximum a-independent set
on b-subdivided graphs with the solution size as parameter, for every integer a, b. These
results are also color-coded in Figure 1 and summarized as follows.

▶ Theorem 4.1 (Theorem 1.2 restated). a-Independent Set(Gb) is
polynomial time solvable if b = ca or if b = c a

2 and a
2 is even for some integer c; and

NP-hard for all other integers a, b; and is
fixed-parameter tractable for the solution size as parameter if a

b < 2 or if a
b = 2, b even;

and W[1]-hard for all other integers a, b.

T. A. Hartmann and D. Marx 44:11

The polynomial time solvable cases are already settled by Theorem 3.10. As is well-known,
2-Independent Set (on general graphs, hence 1-subdivided graphs) is W[1]-hard [9]. This
also puts all cases where a

b = 2 and b odd to W[1]-hard, by applying Lemma 3.7; while all
over cases with a

b = 2 are polynomial time solvable. The fixed-parameter tractable cases
rely on bounding the solution size below by the size of a maximum matching in a graph G,
denoted as ν(G); similarly as for the covering problem [17].

▶ Lemma 4.2. ν(G) ≤ αa(Gb) for every graph G and integers a, b with a
b < 2.

Proof. If a
b ≤ 1, then V (G) is an a-independent set in Gb. Since |V (G)| ≥ ν(G), the

statement follows for a
b ≤ 1. Otherwise, consider a maximum matching M ⊆ E(G). Then

the two vertices v(u, v, ⌊ b
2 ⌋) and v(u′, v′, ⌊ b

2 ⌋) for distinct matching edges {u, v}, {u′, v′} ∈ M

have distance at least b + 2⌊ b
2 ⌋ ≥ b + (b − 1) = 2b − 1 ≥ a. The last inequality holds since

otherwise 2b ≤ a in contradiction to a
b < 2. In conclusion {v(u, v, ⌊ b

2 ⌋) | {u, v} ∈ M, u ≺ v}
is an a-independent set of Gb, where ≺ is an arbitrary ordering of V (G). ◀

As the maximum size of a matching in a graph upper bounds the treewidth, an FPT-
algorithm results from a win-win situation. Either the input asks for an independent set that
is relatively large compared to ν(G) and hence also compared to the treewidth, in which case
we can use Theorem 1.3, or the answer is trivially “yes”.

▶ Lemma 4.3 (⋆). For every a, b with a
b < 2, a-Independent Set(Gb) is FPT for the

parameter solution size.

It remains to show W[1]-hardness if a
b > 2, which follows from two parameter preserving

reductions from Independent Set showing W[1]-hardness, the first for a
b ∈ (2, 3), the

second for a
b ≥ 3; similarly as for the covering problem [17].

▶ Lemma 4.4 (⋆). For integers a, b where a
b > 2, a-Independent Set(Gb) is W[1]-hard.

5 Dispersion for Rational Distances

This section derives the upper and lower bounds under SETH for finding a minimum a-
independent set on b-subdivided graphs for the parameter treewidth, for all integers a, b. All
lower bounds follow from the mere lower bound for even distance a ≥ 6.

▶ Theorem 5.1 (⋆). Let a ≥ 6 be even. Assuming SETH, a-Independent Set has no
(a − ε)pw(G) · nO(1) time algorithm for any ε > 0, even when the input is restricted to
2-subdivided graphs without a cycle of length < a.

In fact, we show this lower bound assuming the Primal Pathwidth SETH, recently
introduced by Lampis [22]. We provide the details in the full version.

▶ Theorem 5.2 (Theorem 1.4, Theorem 1.5 combined). Let integers a′, b′ define gcd(a′, b′) = c

and ca = a′ and cb = b′. Assume SETH, an ε > 0 and that a tree decomposition of width t

is part of the input.
If gcd(a′, b′) is odd: If a = 1, a′-Independent Set(Gb′) is in P, else a′-
Independent Set(Gb′) can be solved in time at · nO(1) but not in (a − ε)pw(G) · nO(1).
If gcd(a′, b′) is even: If a ∈ {1, 2}, a′-Independent Set(Gb′) is in P, else a′-
Independent Set(Gb′) can be solved in time (2a)t · nO(1) but not in (2a − ε)pw(G) · nO(1).
If a′ ∈ {1, 2}, a′

b′ -Dispersion is in P; while if a′ ≥ 3 can be solved in (2a)t · nO(1) time
but not in time (2a − ε)pw(G) · nO(1).

STACS 2025

44:12 Independence and Domination on Bounded-Treewidth Graphs

Proof. First, we consider that c = gcd(a′, b′) is odd. Then ca-Independent Set(Gcb)
is equivalent to a-Independent Set(Gb) by Lemma 3.7. In case a = 1, then
1-Independent Set(Gb) has the trivial 1-independent set |V (G)|. Otherwise, a-
Independent Set(Gb) can be solved in time at · nO(1) using Theorem 1.3.

For the lower bound we use that yb = 1 + xa for some integers x, y. Assume SETH.
Then we know from Theorem 1.3 that a-Independent Set(G1) has no (a − ε)pw(G) · nO(1)

time algorithm for any ε > 0. Particularly, this lower bound relies on graphs without a cycle
of length < a. Then Theorem 3.9 applied x times yields that a-Independent Set(G1+xa),
and equivalently a-Independent Set(Gyb), also has no (a − ε)pw(G) · nO(1) time algorithm
for any ε > 0. Thus especially a-Independent Set(Gb) has no (a − ε)pw(G) · nO(1) time
algorithm. This settles the cases for independent set with odd gcd(a′, b′).

Next, we consider that c = gcd(a′, b′) is even, hence that c = 2ĉ for some integer ĉ. Then
(2ĉa)-Independent Set(G2ĉb) is equivalent to 2a-Independent Set(G2b), by Lemma 3.7.
Again, by Theorem 1.3, 2a-Independent Set(G2b) can be solved in time (2a)t · nO(1).

If a ∈ {1, 2}, then a-Dispersion is polynomial time solvable, by Theorem 1.1. Further,
as a

b ≤ 2, applying Lemma 3.2 yields that also a′

b′ -Dispersion is polynomial time solvable
(as also observed in [14]). By Corollary 3.6, 2a-Independent Set(G2b) is equivalent to
a′

b′ -Dispersion, hence polynomial time solvable.
In case a ≥ 3, and assuming SETH, Theorem 5.1 provides that 2a-Independent Set(G2)

has no (2a − ε)pw(G) · nO(1) time algorithm for any ε > 0. Particularly, this lower bound does
not rely on graphs with a cycle of length < a. Since a, b are co-prime, again Theorem 3.9
applies, and we obtain that 2a-Independent Set(G2b) has no (2a − ε)pw(G) · nO(1) for any
ε > 0. This settles the cases for independent set with even gcd(a′, b′).

Finally, a′

b′ -Dispersion is equivalent to a
b -Dispersion by definition. Then a

b -Dispersion
is equivalent to 2a-Independent Set(G2b) by Corollary 3.6. Since a, b are co-prime, 2a, 2b

have greatest common devisor 2. By the discussion for an greatest common devisor which
is even, we follow that a

b -Dispersion has an (2a)t · nO(1) time algorithm, and, assuming
SETH, has no (2a − ε)t · nO(1) time algorithm for any ε > 0. ◀

6 Dispersion for Irrational Distance

This section derives the hardness result for computing a maximum δ-dispersed set for the
efficiently comparable irrational δ = (

∑
j∈[i+1] 22−2j)−1 ≈ 0.790085.

▶ Theorem 6.1 (Theorem 1.6 restated). There is an efficiently comparable irrational δ for
which δ-Dispersion is W[1]-hard in the pathwidth pw(G) of the n-vertex input graph G and,
assuming ETH, cannot be solved in time f(pw(G)) · no(pw(G)) for any computable function f .

Our proof is based on two main reductions. The first one is fairly standard: It is a
reduction from a colorful clique problem to ci-Dispersion, where ci = 22i is a sufficiently large
integer (polynomially bounded in the number of vertices of the colorful clique problem). The
reduction is robust in the sense that it is simultaneously a reduction to (ci − 1)-Dispersion
as well, i.e., the yes/no answer does not change if we reduce the radius by 1. The second
reduction is the main nontrivial part of the proof: We reduce ci-Dispersion to δi-Dispersion
for some rational δi in a robust way. That is, the reduction can be interpreted also as a
reduction from (ci − 1)-Dispersion to γi-Dispersion for some γi < δi. Thus if the source
instance has the same yes/no answer for radius ci and ci − 1, then the target problem has
the same answer for any radius δ ∈ [γi, δi]. We manage to define γi, δi in such a way that
there is an irrational δ that is in [γi, δi] for every i. Thus for every i, the problem can be
reduced to δ-Dispersion.

T. A. Hartmann and D. Marx 44:13

Colorful Clique
k color classes
each of size n

≤p

≤
p

ci-Dispersion
pathwidth O(k)

same mapping,
Lemma 6.2

(ci − 1)-Dispersion
pathwidth O(k)

≤p

same mapping,
Lemma 6.6

γi ≤ δ ≤ δi

≤p

δi-Dispersion
pathwidth O(k)

γi-Dispersion
pathwidth O(k)

=

=

δ-Dispersion
pathwidth O(k)

Figure 3 Reductions used for the proof of Theorem 6.1. Lemma 6.2 is simultaneously a reduction
to ci-Dispersion and to (ci − 1)-Dispersion. ’Agnostic’ to whether the distance is ci or ci − 1,
Lemma 6.6 reduces to Dispersion with distance γi respectively δi. These rationals γi and δi form an
approximation of δ from below and above. Thus the combined reduction reduces to δ-Dispersion.

Our main tools so far are subdividing (using Lemma 3.1), and translating (using
Lemma 3.2). Translating only applies to instances ⟨δ, G, k⟩ where the graph G contains no
cycle of length < δ. Hence, for convenience, let Dispersion⋆ be the Dispersion problem
restricted to instances where the graph G contains no cycle of length < δ.

The starting point is Colorful Clique where, given a graph G and an integer k and
a proper k-coloring of G, the task is to decide whether G contains a k-clique that contains
exactly one vertex of each color. It is known [6] that Colorful Clique is W[1]-hard
parameterized by the solution size k and, assuming ETH, has no f(k) · no(k) time algorithm
for any computable function f .

The first reduction is based on a reduction from Colorful Clique to the task of finding
a maximum a-independent set with a as part of the input, as given by Katsikarelis et al. [20].
We output a graph with enough leeway such that the δ-dispersion number does not change
for δ in the interval [c, c − 1] for some integer c. Doing so, our construction constitutes a
reduction from Colorful Clique to c-Dispersion and, at the same time, a reduction from
Colorful Clique to (c − 1)-Dispersion. Further, we make sure that the construction
does not introduce any short cycles.

▶ Lemma 6.2 (⋆). There is a polynomial time reduction that, given a Colorful Clique-
instance ⟨G, k⟩ with k color classes of size n, outputs a graph G′ of pathwidth O(k) and
integer k′, such that: ⟨G, k⟩ is a yes-instance of Colorful Clique if and only if ⟨G′, k′⟩
is a yes-instance of 32n-Dispersion⋆ if and only if ⟨G′, k′⟩ is a yes-instance of (32n − 1)-
Dispersion⋆.

Next, let us define δ in an abstract sense. Distance δ is approximated by values δi and
γi from below and above with increasing precision. The idea is to define distance δi by a
fraction ai

bi
that results from applying translation (Lemma 3.2) and subdivision (Lemma 3.1)

to a (quite large) distance ci. Later, our second reduction then reduces to δi-Dispersion
and to γi-Dispersion by applying the according translation and subdivision.

▶ Definition 6.3. Let c1, c2, · · · ∈ N+ be an increasing integer sequence. Then a0 = b0 = 1
and, for i ≥ 1,

ai := ai−1ci, bi := bi−1ci + 1, δi := ai

bi
, γi := ai − ai−1

bi − bi−1
.

This defines δ := limi→∞ δi.

The sequence is decreasing and bounded from below, hence the limit δ := limi→∞ δi is
well defined.

STACS 2025

44:14 Independence and Domination on Bounded-Treewidth Graphs

▶ Lemma 6.4 (⋆). For i ≥ 2, and γi, δ, δi as defined in Definition 6.3, we have γi−1 < γi <

δ < δi < δi−1

We obtain nice computational properties if we use the double-exponential sequence for ci.

▶ Lemma 6.5. Using sequence ci := 22i for Definition 6.3, integers ai, bi are polynomial-time
computable given ci, and ai is polynomial in ci. Further, δ is efficiently comparable.

Proof. We observe that ai =
∏i

j=1 cj = 221 · 222 · · · 22i = 22i+1−2 = 22i+1
/4 = ci

2/4,
hence that ai is polynomial-time computable given ci and is polynomial in ci. Further,
bi = (. . . ((c1 + 1)c2 + 1) . . .)ci + 1 =

∑i
j=1 cjcj+1 . . . ci ≤ i · ai = log log ci · c2

i /4. Hence bi is
polynomial-time computable given ci, by at most 2i multiplications and additions of integers
that are polynomial in ci.

Let us determine δ. We let ηi =
∑i

j=1 2−2j . Then

bi =
∑i+1

j=1
∏i

k=j ck =
∏i

k=1 ck

∑i+1
j=1

∏j−1
k=1 c−1

k = ai

∑i+1
j=1 2−(2j−2) = 4aiηi+1.

This yields δ = limi→∞
ai

bi
=

(
4

∑∞
j=1 2−2j

)−1
≈ 0.790085.

We show that δ is efficiently comparable, that is there is an algorithm that, given a
rational x

y , decides whether x
y < δ in time polynomial in log x + log y. Our algorithm first

checks whether 1
2 < x

y < 1, and if not can conclude that x
y < δ or x

y > δ. Instead of
comparing x

y with δ, we compare their inverses y
x and δ−1, and output the negated answer.

In base 2, we obtain that δ−1 = 1.01000100000001 . . . , which is that the i-th digit 1 succeeds
the (i − 1)-st digit 1 in 2i steps. Hence the first j digits (after the dot) of δ−1 can be output
in time polynomial in j. We may also output the first j digits (after the dot) of y

x in time
polynomial in j. If there is a position where the digits differ, we can conclude whichever is
larger. It remains to show that there will be a difference in the first j = O(log x + log y)
digits of δ−1 and y

x , hence that comparing the first j digits suffices. Indeed, the digits of y
x

as a string cannot contain the substring 0⌈log x⌉1 after the dot. Otherwise y
x + y

x contains
the substring 0⌈log x⌉−11 after the dot, and by induction y

x · x = y contains the substring 1
after the dot, in contradiction that y is integer. In contrast, the first O(log x) digits of δ−1

do include the substring 0⌈log x⌉1. Thus it suffices to compare the fist log x digits of δ−1 and
y
x , which concludes the proof. ◀

The following lemma lies at the heart of our result: the definition of the sequences
ai, bi, ci allows us to reduce ci-Dispersion to δi-Dispersion and, at the same time,
(ci − 1)-Dispersion to γi-Dispersion with the same reduction.

▶ Lemma 6.6. Let sequence (ci)i≥1 be as in Definition 6.3. There is a polynomial-time
reduction that, given integers ci, k′ and a graph G′, outputs a subdivision G′′ of G′ and integer
k′′, such that: ⟨G′, k′⟩ is a yes-instance of ci-Dispersion⋆, if and only if the output ⟨G′′, k′′⟩
is a yes-instance of δi-Dispersion⋆. Also, ⟨G′, k′⟩ is a yes-instance of (ci − 1)-Dispersion⋆,
if and only if the output ⟨G′′, k′′⟩ is a yes-instance of γi-Dispersion⋆.

Proof. Let ai, bi and sequence (ci)i≥1 be defined as in Definition 6.3. Our algorithm begins
by addressing some border cases. If k′ = 0, we output a trivial simultaneous yes-instance
of δi-Dispersion⋆ and γi-Dispersion⋆. Else, if ci exceeds |V (G′)| and k′ ≥ 1, we output a
trivial simultaneous no-instance. Else, we output an ai−1-subdivision of the input graph G′

as G′′ and as budget k′′ = k′ + bi−1|E(G′)|. Hence G′ and G′′ have the same pathwidth up
to subdividing the edges. Any number of subdivisions of edges may increase the pathwidth
only by a total of one. To compute gi with ci as part of the input, we use Lemma 6.5

T. A. Hartmann and D. Marx 44:15

to compute ai−1 and bi−1 in polynomial time. In particular, ai−1 is polynomial in ci and
hence polynomial in |V (G′)|, such that we may output G′′, the ai−1-subdivision of G′, in
polynomial time.

We have ci-disp(G′) = ci

1+ci
-disp(G′) − |E(G′)| by Lemma 3.2 and as G′ contains no cycle

of length < a. Applying this translation not only once but bi−1 times, by Corollary 3.3, we
obtain ci-disp(G′) = ci

1+bi−1ci
-disp(G′) − bi−1|E(G′)|. Then by an ai−1-subdivision of the

input graph we have ci

1+bi−1ci
-disp(G′) = ai−1ci

1+bi−1ci
-disp(G′

ai−1
) = ai

bi
-disp(G′′) = δi-disp(G′′)

by Lemma 3.1. Thus the input ⟨G′, k′⟩ is a yes-instance of ci-Dispersion⋆, if and only if
the output ⟨G′′, k′′⟩ is a yes-instance of δi-Dispersion⋆.

The analogous transformations yields that (ci − 1)-disp(G′) = ai−1(ci−1)
1+bi−1(ci−1) -disp(G′′) −

bi−1|E(G′)|. We observe that the numerator of the latter is ai−1(ci − 1) = ai−1ci − ai−1 =
ai − ai−1, while the denominator is 1 + bi−1(ci − 1) = 1 + bi−1ci − bi−1 = bi − bi−1. Hence
this rational is equal to γi. Thus ⟨G′, k′⟩ is a yes-instance of (ci − 1)-Dispersion⋆, if and
only if the output ⟨G′′, k′′⟩ is a yes-instance of γi-Dispersion⋆. ◀

Proof of Theorem 6.1. Let δ be defined by integer sequence ci = 22i for i ≥ 1. Then δ is
efficient comparable by Lemma 6.5. Consider a Colorful Clique-instance ⟨G, k⟩ with
color classes of size n̂. Let i be such that n̂ ≤ ci/32 = 22i−5 =: n, hence 32n = ci. We note
that cj+1 = c2

j , for j ≥ 0, and hence n ≤ n̂2. Thus n and ci are polynomial-time computable,
and n, ci are polynomial in n̂. We extend the color-classes of ⟨G, k⟩ with n − n̂ isolated
vertices each, resulting in color classes of size n. Next, we apply the reduction of Lemma 6.2
on ⟨G, k⟩, now with ci color classes, which outputs ⟨G′, k′⟩. In turn, we apply the reduction
of Lemma 6.6 on ⟨G′, k′⟩ which outputs ⟨G′′, k′′⟩, forming our final output.

We note that the reductions of Lemma 6.2 and Lemma 6.6 are polynomial-time computable.
The former outputs a graph of pathwidth O(k), the latter does not change the pathwidth up
to a constant. Hence overall we output a graph G′′ of pathwidth O(k).

By Lemma 6.2 and Lemma 6.6, ⟨G, k⟩ is a yes-instance of Colorful Clique, if and
only if ⟨G′′, k′′⟩ is a yes-instance of δi-Dispersion, if and only if ⟨G′′, k′′⟩ is a yes-instance
of γi-Dispersion. Since γi < δ < δi, by Lemma 6.4, the dispersion numbers satisfy
γi-disp(G′′) = δ-disp(G′′) = δ-disp(G′′). Thus the output ⟨G′′, k′′⟩ is a yes-instance of
δ-Dispersion, if and only if ⟨G, k⟩ is a yes-instance of Colorful Clique.

Since Colorful Clique is W[1]-hard parameterized by k, also δ-Dispersion is W[1]-
hard parameterized by the pathwidth of the input graph. For the lower bound under ETH,
assume an f(pw(G)) · no(pw(G)) time algorithm for δ-Dispersion for a computable function
f . Then using the above reduction on a Colorful Clique-instance yields an f(k) · no(k)

time algorithm for Colorful Clique, in contradiction to ETH. ◀

7 Domination and Covering

Finally, we turn to the domination problems and covering as their continuous counterpart.
This section outlines the connection of a-walk dominating set and δ-covers. We establish
tools that relate a-walk dominating set on b-subdivided graphs for different values of a, b,
similarly as we did for the independent set problem. These tools then allow to derive the
complexity results for a-Walk Dominating Set on b-subdivided graphs and δ-Covering
as stated in the introduction. The details thereof are deferred to the full version.

The notion of an a-walk dominating set can be defined in three different ways, (D1),
(D2) and (D3), which are useful for different kind of proofs. Let G be a graph without
isolated vertices. For an integer a, a subset D ⊆ V (G) a-walk dominates some subset of
edges E′ ⊆ E(G), defining V ′ := V (G[E′]), if:

STACS 2025

44:16 Independence and Domination on Bounded-Treewidth Graphs

(D1) For every edge e ∈ E′, there are (possibly identical) vertices w1, w2 ∈ D and a
w1, w2-walk in G of length at most a that contains e; or
(D2) Every vertex u ∈ V (G[E′]) has d(u, D) ≤ a

2 , and the set vertices u ∈ V (G[E′])
where d(u, D) = a

2 forms an independent set.
(D3) D ⊆ V (G) a-dominates V ′ ∪ E′ in the 2-subdivision G2 of G (when identifiying an
edge {u, v} with the vertex with neighborhood {u, v} in G2). That is, for every vertex
u ∈ V ′ ∪ E′ , there is a vertex w ∈ D with dG2(u, w) ≤ a.

An a-walk dominating set of G is a subset D ⊆ V (G) that a-walk dominates E(G).

▶ Lemma 7.1 (⋆). Conditions (D1), (D2), (D3) are equivalent.

We have the following two transformation of δ-dispersed sets for different values of δ, as
shown by Hartmann et al. [18].

▶ Lemma 7.2 ([18]). For every real δ > 0 and integer c ≥ 1, δ-cover(G) = cδ-cover(Gc).

▶ Lemma 7.3 ([18]). δ-cover(G) + |E(G)| = δ
1+2δ -cover(G).

Aiming to translate these modifications to the realm of a-walk dominating set on b-
subdivided graphs, we observe the following connection.

▶ Observation 7.4 (⋆). Let k ∈ N. There is a b-simple a
2b -covering set of size k of a graph

G without isolated vertices, if and only if there is an a-walk dominating set of Gb of size k.

A minimum a
b -cover S can be assumed to be b-simple [18]. Actually, if b is even, we

observation can be improved. For example, a 1
2 -covering set implies a 2-simple 1

2 -covering
set of same size.

▶ Lemma 7.5 (⋆). Let S be an a
b -cover of a graph G for integers a, b ∈ N. Then there is an

a
b -cover S⋆ of G of size |S⋆| = |S| that is 2b-simple and, if b is a multiple of 2, is b-simple.

Assuming that S contains no point at a position 2i−1
2b for i ∈ N, then S⋆ is b-simple, and,

if additionally b is a multiple of 2, S⋆ is b
2 -simple.

With this connection at hand, we can state a refined connection of minimum a
b -covers of

a graph G and minimum a-walk dominating set on b-subdivided graphs.

▶ Corollary 7.6. a
b -cover(G) = γ4a(G2b) = γ4ca(G2cb); a

2b -cover(G) = γ2a(G2b) =
γ2ca(G2cb), for any a, b, c ∈ N and graph G without isolated vertices.

Now we can put the earlier stated transformation of δ-dispersed sets in terms of a-walk
dominating on b-subdivided graphs.

▶ Theorem 7.7 (⋆). γa(Gb) = γca(Gcb) when c is odd, or a, b are even.

▶ Theorem 7.8 (⋆). γa(Gb) + |E(G)| = γa(Ga+b).

These two transformation lay the groundwork for show Theorem 1.11, Theorem 1.13 and
Theorem 1.14. For details, we refer to the full version.

References
1 Yousef Alavi, M. Behzad, Linda M. Lesniak-Foster, and E. A. Nordhaus. Total matchings and

total coverings of graphs. Journal of Graph Theory, 1(2):135–140, 1977. doi:10.1002/jgt.
3190010209.

2 Yousef Alavi, Jiuqiang Liu, Jianfang Wang, and Zhongfu Zhang. On total covers of graphs.
Discret. Math., 100(1-3):229–233, 1992. doi:10.1016/0012-365X(92)90643-T.

https://doi.org/10.1002/jgt.3190010209
https://doi.org/10.1002/jgt.3190010209
https://doi.org/10.1016/0012-365X(92)90643-T

T. A. Hartmann and D. Marx 44:17

3 José D. Alvarado, Simone Dantas, and Dieter Rautenbach. Distance k-domination, distance
k-guarding, and distance k-vertex cover of maximal outerplanar graphs. Discret. Appl. Math.,
194:154–159, 2015. doi:10.1016/J.DAM.2015.05.010.

4 Gábor Bacsó, Daniel Lokshtanov, Dániel Marx, Marcin Pilipczuk, Zsolt Tuza, and Erik Jan
Van Leeuwen. Subexponential-time algorithms for maximum independent set in Pt-free and
broom-free graphs. Algorithmica, 81:421–438, 2019.

5 Glencora Borradaile and Hung Le. Optimal dynamic program for r-domination problems over
tree decompositions. In Jiong Guo and Danny Hermelin, editors, 11th International Symposium
on Parameterized and Exact Computation, IPEC 2016, August 24-26, 2016, Aarhus, Denmark,
volume 63 of LIPIcs, pages 8:1–8:23. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, 2016.
doi:10.4230/LIPIcs.IPEC.2016.8.

6 Marek Cygan, Fedor V. Fomin, Lukasz Kowalik, Daniel Lokshtanov, Dániel Marx, Marcin
Pilipczuk, Michal Pilipczuk, and Saket Saurabh. Parameterized Algorithms. Springer, 2015.
doi:10.1007/978-3-319-21275-3.

7 Clément Dallard, Mirza Krbezlija, and Martin Milanic. Vertex cover at distance on H-free
graphs. In Paola Flocchini and Lucia Moura, editors, Combinatorial Algorithms – 32nd
International Workshop, IWOCA 2021, Ottawa, ON, Canada, July 5-7, 2021, Proceedings,
volume 12757 of Lecture Notes in Computer Science, pages 237–251. Springer, 2021. doi:
10.1007/978-3-030-79987-8_17.

8 Perino M. Dearing and Richard L. Francis. A minimax location problem on a network.
Transportation Science, 8(4):333–343, 1974.

9 Rodney G. Downey and Michael R. Fellows. Fixed-parameter tractability and completeness
II: on completeness for W[1]. Theor. Comput. Sci., 141(1&2):109–131, 1995. doi:10.1016/
0304-3975(94)00097-3.

10 Louis Dublois, Michael Lampis, and Vangelis T. Paschos. New algorithms for mixed dominating
set. Discret. Math. Theor. Comput. Sci., 23(1), 2021. doi:10.46298/DMTCS.6824.

11 Paul Erdős and Amram Meir. On total matching numbers and total covering numbers of
complementary graphs. Discret. Math., 19(3):229–233, 1977. doi:10.1016/0012-365X(77)
90102-9.

12 Hiroshi Eto, Fengrui Guo, and Eiji Miyano. Distance-d independent set problems for bipartite
and chordal graphs. J. Comb. Optim., 27(1):88–99, 2014. doi:10.1007/s10878-012-9594-4.

13 Hiroshi Eto, Takehiro Ito, Zhilong Liu, and Eiji Miyano. Approximation algorithm for the
distance-3 independent set problem on cubic graphs. In Sheung-Hung Poon, Md. Saidur
Rahman, and Hsu-Chun Yen, editors, WALCOM: Algorithms and Computation, 11th Inter-
national Conference and Workshops, WALCOM 2017, Hsinchu, Taiwan, March 29-31, 2017,
Proceedings, volume 10167 of Lecture Notes in Computer Science, pages 228–240. Springer,
2017. doi:10.1007/978-3-319-53925-6_18.

14 Alexander Grigoriev, Tim A. Hartmann, Stefan Lendl, and Gerhard J. Woeginger. Dis-
persing obnoxious facilities on a graph. Algorithmica, 83(6):1734–1749, 2021. doi:10.1007/
s00453-021-00800-3.

15 Tim A. Hartmann. Facility location on graphs. Dissertation, RWTH Aachen University,
Aachen, 2022. doi:10.18154/RWTH-2023-01837.

16 Tim A. Hartmann and Tom Janßen. Approximating δ-covering (to appear). In Approximation
and Online Algorithms – 22nd International Workshop, WAOA 2024, Egham, United Kingdom,
September 5-6, 2024, Proceedings, Lecture Notes in Computer Science. Springer, 2024.

17 Tim A. Hartmann and Stefan Lendl. Dispersing obnoxious facilities on graphs by rounding
distances. In Stefan Szeider, Robert Ganian, and Alexandra Silva, editors, 47th International
Symposium on Mathematical Foundations of Computer Science, MFCS 2022, August 22-26,
2022, Vienna, Austria, volume 241 of LIPIcs, pages 55:1–55:14. Schloss Dagstuhl – Leibniz-
Zentrum für Informatik, 2022. doi:10.4230/LIPICS.MFCS.2022.55.

18 Tim A. Hartmann, Stefan Lendl, and Gerhard J. Woeginger. Continuous facility location on
graphs. Math. Program., 192(1):207–227, 2022. doi:10.1007/s10107-021-01646-x.

STACS 2025

https://doi.org/10.1016/J.DAM.2015.05.010
https://doi.org/10.4230/LIPIcs.IPEC.2016.8
https://doi.org/10.1007/978-3-319-21275-3
https://doi.org/10.1007/978-3-030-79987-8_17
https://doi.org/10.1007/978-3-030-79987-8_17
https://doi.org/10.1016/0304-3975(94)00097-3
https://doi.org/10.1016/0304-3975(94)00097-3
https://doi.org/10.46298/DMTCS.6824
https://doi.org/10.1016/0012-365X(77)90102-9
https://doi.org/10.1016/0012-365X(77)90102-9
https://doi.org/10.1007/s10878-012-9594-4
https://doi.org/10.1007/978-3-319-53925-6_18
https://doi.org/10.1007/s00453-021-00800-3
https://doi.org/10.1007/s00453-021-00800-3
https://doi.org/10.18154/RWTH-2023-01837
https://doi.org/10.4230/LIPICS.MFCS.2022.55
https://doi.org/10.1007/s10107-021-01646-x

44:18 Independence and Domination on Bounded-Treewidth Graphs

19 Pallavi Jain, Jayakrishnan Madathil, Fahad Panolan, and Abhishek Sahu. Mixed domi-
nating set: A parameterized perspective. In Hans L. Bodlaender and Gerhard J. Woegin-
ger, editors, Graph-Theoretic Concepts in Computer Science – 43rd International Work-
shop, WG 2017, Eindhoven, The Netherlands, June 21-23, 2017, Revised Selected Pa-
pers, volume 10520 of Lecture Notes in Computer Science, pages 330–343. Springer, 2017.
doi:10.1007/978-3-319-68705-6_25.

20 Ioannis Katsikarelis, Michael Lampis, and Vangelis T. Paschos. Structurally parameterized
d-scattered set. Discret. Appl. Math., 308:168–186, 2022. doi:10.1016/j.dam.2020.03.052.

21 Ioannis Katsikarelis, Michael Lampis, and Vangelis T. Paschos. Improved (in-)approximability
bounds for d-scattered set. J. Graph Algorithms Appl., 27(3):219–238, 2023. doi:10.7155/
JGAA.00621.

22 Michael Lampis. The primal pathwidth SETH. CoRR, abs/2403.07239, 2024. doi:10.48550/
arXiv.2403.07239.

23 Jason Lewis, Stephen T. Hedetniemi, Teresa W. Haynes, and Gerd H. Fricke. Vertex-edge
domination. Utilitas mathematica, 81:193–213, 2010.

24 Daniel Lokshtanov, Dániel Marx, and Saket Saurabh. Known algorithms on graphs of
bounded treewidth are probably optimal. ACM Trans. Algorithms, 14(2):13:1–13:30, 2018.
doi:10.1145/3170442.

25 Jayakrishnan Madathil, Fahad Panolan, Abhishek Sahu, and Saket Saurabh. On the complexity
of mixed dominating set. In René van Bevern and Gregory Kucherov, editors, Computer Science
– Theory and Applications – 14th International Computer Science Symposium in Russia, CSR
2019, Novosibirsk, Russia, July 1-5, 2019, Proceedings, volume 11532 of Lecture Notes in
Computer Science, pages 262–274. Springer, 2019. doi:10.1007/978-3-030-19955-5_23.

26 Aniket Majumdar. Neighborhood hypergraphs: A framework for covering and packing parameters
in graphs. Dissertation, Clemson University, 1992.

27 Nimrod Megiddo and Arie Tamir. New results on the complexity of p-center problems. SIAM
J. Comput., 12(4):751–758, 1983. doi:10.1137/0212051.

28 Amram Meir. On total covering and matching of graphs. J. Comb. Theory B, 24(2):164–168,
1978. doi:10.1016/0095-8956(78)90017-5.

29 Pedro Montealegre and Ioan Todinca. On distance-d independent set and other problems in
graphs with “few” minimal separators. In Pinar Heggernes, editor, Graph-Theoretic Concepts
in Computer Science – 42nd International Workshop, WG 2016, Istanbul, Turkey, June 22-24,
2016, Revised Selected Papers, volume 9941 of Lecture Notes in Computer Science, pages
183–194, 2016. doi:10.1007/978-3-662-53536-3_16.

30 Rolf Niedermeier. Invitation to Fixed-Parameter Algorithms. Oxford University Press, 2006.
doi:10.1093/ACPROF:OSO/9780198566076.001.0001.

31 Uri N. Peled and Feng Sun. Total matchings and total coverings of threshold graphs. Discret.
Appl. Math., 49(1-3):325–330, 1994. doi:10.1016/0166-218X(94)90216-X.

32 Michal Pilipczuk and Sebastian Siebertz. Kernelization and approximation of distance-r
independent sets on nowhere dense graphs. Eur. J. Comb., 94:103309, 2021. doi:10.1016/J.
EJC.2021.103309.

33 Douglas R. Shier. A min-max theorem for p-center problems on a tree. Transportation Science,
11(3):243–252, 1977. URL: http://www.jstor.org/stable/25767877.

34 Arie Tamir. On the solution value of the continuous p-center location problem on a graph.
Math. Oper. Res., 12(2):340–349, 1987. doi:10.1287/moor.12.2.340.

35 Arie Tamir. Obnoxious facility location on graphs. SIAM J. Discret. Math., 4(4):550–567,
1991. doi:10.1137/0404048.

36 Johan M. M. van Rooij, Hans L. Bodlaender, and Peter Rossmanith. Dynamic programming on
tree decompositions using generalised fast subset convolution. In Amos Fiat and Peter Sanders,
editors, Algorithms – ESA 2009, 17th Annual European Symposium, Copenhagen, Denmark,
September 7-9, 2009. Proceedings, volume 5757 of Lecture Notes in Computer Science, pages
566–577. Springer, 2009. doi:10.1007/978-3-642-04128-0_51.

https://doi.org/10.1007/978-3-319-68705-6_25
https://doi.org/10.1016/j.dam.2020.03.052
https://doi.org/10.7155/JGAA.00621
https://doi.org/10.7155/JGAA.00621
https://doi.org/10.48550/arXiv.2403.07239
https://doi.org/10.48550/arXiv.2403.07239
https://doi.org/10.1145/3170442
https://doi.org/10.1007/978-3-030-19955-5_23
https://doi.org/10.1137/0212051
https://doi.org/10.1016/0095-8956(78)90017-5
https://doi.org/10.1007/978-3-662-53536-3_16
https://doi.org/10.1093/ACPROF:OSO/9780198566076.001.0001
https://doi.org/10.1016/0166-218X(94)90216-X
https://doi.org/10.1016/J.EJC.2021.103309
https://doi.org/10.1016/J.EJC.2021.103309
http://www.jstor.org/stable/25767877
https://doi.org/10.1287/moor.12.2.340
https://doi.org/10.1137/0404048
https://doi.org/10.1007/978-3-642-04128-0_51

T. A. Hartmann and D. Marx 44:19

37 Mingyu Xiao and Zimo Sheng. Improved parameterized algorithms and kernels for mixed
domination. Theor. Comput. Sci., 815:109–120, 2020. doi:10.1016/J.TCS.2020.02.014.

38 Yancai Zhao, Liying Kang, and Moo Young Sohn. The algorithmic complexity of mixed
domination in graphs. Theor. Comput. Sci., 412(22):2387–2392, 2011. doi:10.1016/J.TCS.
2011.01.029.

39 Radosław Ziemann and Paweł Żyliński. Vertex-edge domination in cubic graphs. Discret.
Math., 343(11):112075, 2020. doi:10.1016/J.DISC.2020.112075.

40 Paweł Żyliński. Vertex-edge domination in graphs. Aequationes mathematicae, 93(4):735–742,
2019.

STACS 2025

https://doi.org/10.1016/J.TCS.2020.02.014
https://doi.org/10.1016/J.TCS.2011.01.029
https://doi.org/10.1016/J.TCS.2011.01.029
https://doi.org/10.1016/J.DISC.2020.112075

Forbidden Patterns in Mixed Linear Layouts
Deborah Haun #

Karlsruhe Institute of Technology, Germany

Laura Merker #

Karlsruhe Institute of Technology, Germany

Sergey Pupyrev #

Menlo Park, CA, USA

Abstract
An ordered graph is a graph with a total order over its vertices. A linear layout of an ordered graph
is a partition of the edges into sets of either non-crossing edges, called stacks, or non-nesting edges,
called queues. The stack (queue) number of an ordered graph is the minimum number of required
stacks (queues). Mixed linear layouts combine these layouts by allowing each set of edges to form
either a stack or a queue. The minimum number of stacks plus queues is called the mixed page
number. It is well known that ordered graphs with small stack number are characterized, up to a
function, by the absence of large twists (that is, pairwise crossing edges). Similarly, ordered graphs
with small queue number are characterized by the absence of large rainbows (that is, pairwise nesting
edges). However, no such characterization via forbidden patterns is known for mixed linear layouts.

We address this gap by introducing patterns similar to twists and rainbows, which we call thick
patterns; such patterns allow a characterization, again up to a function, of mixed linear layouts of
bounded-degree graphs. That is, we show that a family of ordered graphs with bounded maximum
degree has bounded mixed page number if and only if the size of the largest thick pattern is bounded.
In addition, we investigate an exact characterization of ordered graphs whose mixed page number
equals a fixed integer k via a finite set of forbidden patterns. We show that for k = 2, there is no
such characterization, which supports the nature of our first result.

2012 ACM Subject Classification Mathematics of computing → Graph theory

Keywords and phrases Ordered Graphs, linear Layout, mixed linear Layout, Stack Layout, Queue
Layout

Digital Object Identifier 10.4230/LIPIcs.STACS.2025.45

Related Version Full Paper : https://doi.org/10.48550/arXiv.2412.12786 [41]

Funding Deborah Haun: supported by the Deutsche Forschungsgemeinschaft – 520723789.

1 Introduction

An ordered graph is a graph given with a fixed linear vertex order, ≺. A linear layout of an
ordered graph is a partition of its edges such that each part satisfies certain requirements
with respect to the order. In a stack layout each part, also called a stack, is required to be
crossing-free with respect to ≺, that is, two edges in the same stack may not have alternating
endpoints. A queue layout is a “dual” concept which forbids two edges to nest in the same
part, called a queue; that is, if u ≺ x ≺ y ≺ v, then edges uv and xy must be in different
queues. The two concepts are generalized in mixed linear layouts, where each part (called a
page then) may either be a stack or a queue. A linear layout using s stacks and/or q queues
is called pure s-stack, pure q-queue, and mixed s-stack q-queue, respectively. In all three
cases, the objective is to minimize the number of parts. The stack number sn(G) (queue
number qn(G), mixed page number mn(G)) of an ordered graph G is the smallest k such that
there is a stack (queue, mixed) layout with at most k stacks (queues, pages).

© Deborah Haun, Laura Merker, and Sergey Pupyrev;
licensed under Creative Commons License CC-BY 4.0

42nd International Symposium on Theoretical Aspects of Computer Science (STACS 2025).
Editors: Olaf Beyersdorff, Michał Pilipczuk, Elaine Pimentel, and Nguyễn Kim Thắng;
Article No. 45; pp. 45:1–45:21

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:deborah.haun@student.kit.edu
https://orcid.org/0009-0004-2365-0804
mailto:laura.merker2@student.kit.edu
https://orcid.org/0000-0003-1961-4531
mailto:spupyrev@gmail.com
https://orcid.org/0000-0003-4089-673X
https://doi.org/10.4230/LIPIcs.STACS.2025.45
https://doi.org/10.48550/arXiv.2412.12786
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

45:2 Forbidden Patterns in Mixed Linear Layouts

Stack layouts and queue layouts are well understood and a rich collection of tools has been
developed. Most notably, the product structure theory [22], layered path decompositions [7,
26], track layouts [23], and different kinds of H-partitions that were used successfully both for
queue layouts [8,22,35,45] and stack layouts [48]. A fundamental technique in this context is
a characterization of stack and queue layouts via forbidden ordered patterns. Formally, a
pattern is an ordered graph with at least one edge. The size of a pattern is the number of
edges. An ordered graph (G, ≺1) contains a pattern (H, ≺2) if H is a subgraph of G and
≺2 is a suborder of ≺1; otherwise, the graph avoids the pattern. A k-twist denotes a set of
k pairwise crossing edges with respect to some vertex order, and a k-rainbow is a set of k

pairwise nesting edges, where symbol k can be omitted if not needed. We define a graph
parameter to be a function assigning a non-negative integer to every graph. A parameter p is
bounded for a family of graphs if there is a constant c such that p(G) ≤ c for every graph G

of the family. Now, the characterization of stack and queue layouts can be formulated as
follows.

▶ Theorem 1 ([17, 40]). A family of ordered graphs has bounded stack number if and only if
the size of the largest twist is bounded.

▶ Theorem 2 ([44]). A family of ordered graphs has bounded queue number if and only if
the size of the largest rainbow is bounded.

These theorems are useful both for upper bounds (as an explicit assignment of edges to
stacks or queues is not needed) and for lower bounds (as a tedious case distinction which
edge could go to which stack or queue gets superfluous). Unfortunately, no analogous
characterization is known for mixed linear layouts. As a consequence, all known results
on mixed linear layouts rely on an explicit assignment of edges to stacks and queues. In
this paper, we aim to close this gap and find a set of patterns whose absence characterizes
mixed linear layouts similarly to twists and rainbows in Theorems 1 and 2. The following
open question asks whether there is a theorem similar to Theorems 1 and 2 for mixed linear
layouts, where stack/queue is replaced by mixed page number and the largest twist/rainbow
is replaced by the largest pattern in P.

▶ Open Problem 3. Do there exist finite sets, P1, P2, . . . , of patterns and a binding function,
f : N → N, such that for all k ∈ N and every ordered graph, G, the following holds:

mn(G) < f(k) if G avoids all patterns in Pk, and
mn(G) ≥ k if G contains some pattern in Pk?

Indeed, an affirmative answer would give a theorem of the form of Theorems 1 and 2:
There is a set P of patterns, namely the union of P1, P2, . . . , such that a family of ordered
graphs has bounded mixed page number if and only if the size of the largest pattern of P
that occurs in a graph of the family is bounded. To see the implication, note that there
are only finitely many patterns of a certain size, so if the size of the largest pattern of P
is bounded, then the first property of Open Problem 3 gives that the mixed page number
is bounded. And conversely, a family whose mixed page number is at most k contains no
patterns of P that are larger than the largest pattern in P1, . . . , Pk by the second property.

Note that for pure stack/queue layouts, the answer to the question is positive, since the
corresponding sets Pk of forbidden patterns (also called obstruction sets) contain a single
element, a k-twist and a k-rainbow, respectively. Indeed, a more technical formulation of
Theorem 1 would be that for every ordered graph G and every k ∈ N, it holds that the stack
number of G is less than 14k log k if G avoids a k-twist, and is at least k if G contains a
k-twist [17,40]. We remark that in contrast to stack layouts, queue layouts even admit the

D. Haun, L. Merker, and S. Pupyrev 45:3

u7u1 u6u0 u4u2 u3 u5 u8 v7v1 v6v0 v4v2 v3 v5 v8 u7u1 u6u0 u4u2 u3 u5 u8 v7v1 v6v0 v4v2 v3 v5 v8

Figure 1 The two 3-thick patterns: Three pairwise crossing 3-rainbows (left) and three pairwise
nesting 3-twists (right).

identity as binding function [44]. To complement this, we answer the problem affirmatively
for mixed linear layouts of bounded-degree graphs and provide negative results for an exact
characterization with the identity binding function.

The remainder of this section is organized as follows. First, we present our main results
and describe technical contributions with concrete bounds that guide through the subsequent
sections. Then, we relate our findings to the state-of-the-art. Finally, we discuss linear
layouts from various perspectives targeted to readers not familiar with the topic.

1.1 Main Results
For an explicit description of the set P of patterns, we define a k-thick pattern to be obtained
either from a k-twist by replacing each edge by a k-rainbow, or from a k-rainbow by replacing
each edge by k-twist; see Figure 1 and Section 2.2 for a more elaborate introduction.

▶ Theorem 4. For every family of ordered graphs with bounded maximum degree, the size of
the largest thick pattern is bounded if and only if the mixed page number is bounded.

Note that Open Problem 3 asks for a characterization up to a function bounding the
mixed page number depending on the size of the largest pattern occurring in the graph. That
is, even if we know the size of the largest pattern, we do not learn the exact mixed page
number but only an upper bound. A more granular characterization would guarantee the
exact mixed page number given that a set of forbidden patterns is excluded. As a negative
result, we present an infinite family of patterns that needs to be included in an obstruction
set of graphs with mixed page number 2. Thus, Open Problem 3 does not admit such a
precise answer.

▶ Theorem 5. Let P be the set of patterns such that an ordered matching has mixed page
number at most 2 if and only of it contains no pattern of P. Then P is infinite.

1.2 Summary
When answering Open Problem 3, which we do positively for bounded-degree graphs, there
is a trade-off between three objectives: First, the number of patterns should be small since
each of them needs to be excluded to prove upper bounds. Second, the bound we obtain on
the mixed page number should be small. And third, we want our results to hold for graph
classes that are as large as possible, while smaller graph classes have the potential of better
results in the first two objectives. In this subsection, we present explicit bounds on the mixed
page number that are different trade-offs between these three objectives.

STACS 2025

45:4 Forbidden Patterns in Mixed Linear Layouts

As a base for subsequent results, we start with (ordered) matchings having a separated
layout and a relatively large obstruction set. Here, a layout of a bipartite graph is called
separated if we first have all vertices of one part of the bipartition, and then all vertices of
the other part. We provide an explicit list of the patterns in Section 2.1.

▶ Theorem 6 (Section 2.1). There is a set P of patterns such that for every matching M

with a separated layout, if the largest pattern of P in M is of size k2, then the mixed page
number of M is at least k and at most 2k.

For stack layouts and queue layouts, it turned out to be a powerful tool to have only
one pattern, namely twists, respectively rainbows. Close enough, we present two patterns,
namely the two options for thick patterns, to play the same role for mixed linear layouts by
combining twists and rainbows.

▶ Theorem 7 (Section 2.2). If the largest thick pattern in a matching M with a separated
layout is a k-thick pattern, then the mixed page number of M is at least k and at most 2k7.

We finish the matching case by generalizing the separated layout to an arbitrary vertex
ordering. We remark that we expect the patterns to always be matchings, as is the case with
twists and rainbows, and even conjecture that the same set of patterns also works for general
ordered graphs.

▶ Theorem 8 (Section 3). If the largest thick pattern in an ordered matching M is a k-thick
pattern, then the mixed page number of M is at least k and at most kO(k).

To prove this, we work with so-called quotients of linear layouts that can capture the
global structure of an (ordered) graph and show how to transfer linear layouts of a quotient
to the initial graph (Lemma 17), which might be of independent interest.

With Vizing’s theorem [76], all our results on matchings generalize to bounded-degree
graphs, in particular we obtain the following bounds for Theorem 4.

▶ Theorem 9 (Section 3). If the largest thick pattern in an ordered graph G with maximum
degree ∆ is a k-thick pattern, then the mixed page number of G is at least k and at most
∆kO(k).

Note that this is indeed a specification of Theorem 4 since the upper bound shows that if
there is no large thick pattern, then the mixed page number is bounded, and conversely, if
the mixed page number is bounded, there is no large thick pattern due to the lower bound.

Finally, we aim for the second objective to be optimal, i.e., we aim for an obstruction set
such that the mixed page number is at most k if and only if none of the forbidden patterns is
contained. For k = 2, we show that such a finite obstruction set exists if the ordered graph
is bipartite and has a separated layout, but not in the general case.

▶ Theorem 10 (Section 4.1). There is a finite set P of patterns such that a bipartite graph
with separated layout has mixed page number at most 2 if and only if it contains no pattern
of P.

For the negative side, we remark that it is not surprising that such an exact characterization
is infeasible as no such characterization is known for stack layouts. Here, we know that
an ordered graph without k-twist has stack number at most O(k log k) [17] and that this
bound is tight [55]. However, one might think that with a larger obstruction set, an exact
characterization is possible. For k ≥ 4 this is not true [74] but to the best of our knowledge
no explicit infinite family of patterns was known to be in the obstruction set. We provide

D. Haun, L. Merker, and S. Pupyrev 45:5

constructions for the following theorem, which in particular proves Theorem 5 as all minimal
patterns need to be included in the obstruction set. Here, minimal refers to edge-minimal
for a given mixed page number (stack number), i.e., if any edge is removed, then the mixed
page number (stack number) decreases.

▶ Theorem 11 (Section 4.2). There is an infinite family of minimal ordered matchings with
mixed page number > 2 and an infinite family of minimal ordered matchings with stack
number k for all k > 2.

As some theorems have only a proof sketch, we refer to [41] for the full paper.

1.3 Related Work
Building on earlier notions [50, 64], the concepts of stack and queue number were first
investigated by Bernhart and Kainen [12] in 1979 and Heath and Rosenberg [44] in 1992,
respectively. Over the last three decades, there has been extensive research on these concepts
leading to numerous results, primarily for planar graphs [2, 8, 9, 20, 22, 35, 65, 80, 81], but also
for 1-planar graphs [10] and graphs with bounded genus [42,57] or bounded treewidth [56]. In
light of our results it is worth mentioning that there is a particular interest in bounded-degree
graphs [11, 25, 78]. In this context, the vertex ordering is usually not given, so there are
two steps to solve: First one needs to find a good vertex ordering and second, the resulting
ordered graph is analyzed, often using the characterization with twists and rainbows. In
addition, the stack and queue number for directed acyclic graphs [43,48,63], where the vertex
ordering must respect the orientation of the edges, have been studied fruitfully, e.g., for
(planar) posets [4, 32,53,62,69], or upward planar graphs [34,48,49].

Although Heath and Rosenberg [44] already suggested a study of mixed linear layouts
back in 1992, specifically conjecturing that every planar graph has a 1-stack 1-queue layout,
significant progress began only quite recently when Pupyrev [68] disproved their conjecture.
Subsequently, other papers have followed strengthening Pupyrev’s result by showing that not
even series-parallel [5] or planar bipartite graphs [35] admit a 1-stack 1-queue layout. Further
investigations into more general mixed linear layouts have often been proposed [9, 11, 63].
Results on this include complete and complete bipartite graphs [3], subdivisions [24,60,68],
and computational hardness results [19]. Very recently, Katheder, Kaufmann, Pupyrev, and
Ueckerdt [51] related the queue, stack, and mixed page number to each other and asked for an
improved understanding of graphs with small mixed page number both in the separated and
in the general setting as, together with their results, this would fully reveal the connection
between these three concepts. All these investigations have in common that it is quite
difficult to analyze mixed linear layouts due to the lack of a simple characterization similar to
rainbows and twists for stack and queue layouts, which is the gap we address in this paper.

An explicit investigation of rainbows and twists in linear layouts can be found from early
on. In their seminal paper on queue layouts, Heath and Rosenberg [44] identified rainbows
as a simple characterization for queue layouts. They showed that the queue number with
respect to a fixed vertex order always equals the size of the largest rainbow, a result that has
often been used to derive bounds on the queue number [2, 4, 8, 11, 22, 27, 32, 53, 69]. Similarly,
twists offer a straight-forward characterization for stack layouts, although the stack number
of an ordered graph is not exactly the size of the largest twist. While the the size of the
largest twist is clearly a lower bound on the stack number, Davies [17] recently showed an
upper bound of O(k log k) on the stack number, where k denotes the size of the largest
twist. This very recent and asymptotically tight [55] bound, along with earlier larger upper
bounds [15, 18, 40, 55] has proven useful for bounding the stack number of various graph

STACS 2025

45:6 Forbidden Patterns in Mixed Linear Layouts

classes [34,48,49,63]. For small k, it is known that an order without a 2-twist (that is, when
k = 1) corresponds to an outerplanar drawing of a graph, which is a 1-stack layout. For k = 2
(that is, an order without a 3-twist), five stacks are sufficient and sometimes necessary [1,54];
for k = 3, it is known that 19 stacks suffice [17].

Similarly, for the mixed page number we do not expect an exact characterization, but
rather a characterization up to a function. For general graphs, previous results [19, 74]
have shown that deciding whether an ordered matching has an s-stack q-queue layout is
NP-complete for all s ≥ 4 and q ≥ 0, making the question for a finite set of patterns exactly
characterizing s-stack q-queue layouts obsolete. However, in some special cases, such as for
separated layouts of bipartite graphs or for smaller s and q, there is still potential for an
exact characterization, while in the general case we aim to find a finite characterization up
to a function that is as small as possible.

Our investigations start with bipartite graphs having a separated layout, which is a
setting that has been widely studied (sometimes, implicitly) under different names, such as
2-track layouts, 2-layer drawings, or partitioned drawings [3,6,16,21,23,24,28,29,61,67,70,79].
Initially, we further narrow down our focus to matchings with a separated layout. Separated
mathings can also be viewed as permutations of the right endpoints of the edges, relative to the
order of the left endpoints. In this context, the mixed page number of the ordered matching
equals the minimum number of monotone subsequences into which the permutation can be
partitioned. For this problem it is known that permutations that can be partitioned into a
fixed number of monotone subsequences, and thus matchings with a fixed mixed page number,
are characterized by a finite, though potentially large set of forbidden subsequences [31,52,77].

Another related topic is the extremal theory of ordered graphs [66,72], which has also
been studied from the perspective of 0-1-matrices in the case of bipartite graphs with a
separated layout [36, 38, 47, 58, 71]. In this field, the focus is on determining how many edges
(or 1-entries) an ordered graph (or a 0-1-matrix) can have while avoiding a specified family of
patterns (or submatrices). A necessary condition for a set of patterns to characterize a fixed
mixed page number is that these patterns must enforce the number of edges to be linear in
the number of vertices. If the patterns are matchings, this necessary condition is met by the
proof of the Füredi-Hajnal conjecture [36], which was proven by Marcus and Tardos [58].

1.4 Connections to Other Fields
Before proving our results in the subsequent sections, let us review linear layouts from
different perspectives. We briefly state some connections here and refer to the full version [41]
for a more detailed discussion.

Stack/Queue Perspective. Stack layouts and queue layouts capture how well an ordered
graph can be processed by stacks and queues, which can be best seen in the case of an ordered
matching (but also works for general ordered graphs). Here, the vertices are considered in the
given order, and an edge is pushed into the data structure when its first endpoint is reached,
and it is popped when its second endpoint is reached. With a stack, an ordered matching
can be processed if and only if the edges obey a first-in-last-out order, i.e., if and only if
no two edges have alternating endpoints. Similarly, an ordered matching can be processed
with a queue if and only of the edges obey a first-in-first-out order, which is equivalent to
having no two nesting edges. Thus, the minimum number of stacks or queues equals the
stack number, respectively queue number, and allowing to use both as needed represents
mixed linear layouts. That is, investigating linear layouts improves our understanding of
how three very fundamental data structures, namely graphs, stacks, and queues, interact.

D. Haun, L. Merker, and S. Pupyrev 45:7

Coloring Perspective. Finding a stack layout for an ordered graph is equivalent to coloring
a circle graph [17]. A circle graph is the intersection graph of chords of a circle, where
two chords intersect if they cross but not if they share an endpoint. Hence, all findings on
colorings of circle graphs [15,18,37,40,55,74,75] also apply to stack layouts and vice versa.
Most importantly, Theorem 1 is proved in the language of circle graphs by showing that
they are χ-bounded, that is their chromatic number is bounded by a function of their clique
number [17,40]. A twist in an ordered graph corresponds to pairwise crossing chords, and
similarly the size of the largest rainbow is the maximum number of parallel chords, up to a
factor of 2. Together, a mixed linear layout asks for a partition of the chords into two groups:
The first group is supposed to have only few pairwise crossing chords and corresponds to the
set of stacks in the mixed linear layout. And the second group should have only small sets of
parallel chords and thereby corresponds to the set of queues.

Upward Stack Number Perspective. One of the most prominent open questions in the field
of linear layouts is whether or not planar posets and upward planar graphs have bounded
stack number [62]. A directed acyclic graph is called upward planar if it can be drawn in
the plane such that the edges are crossing-free and y-monotone. Despite intensive research
in this direction [13,14,34,46,48,49,59,63], this problem is still widely open. Hoping for a
positive answer, bounding the mixed page number is an intermediate step before answering
the question for pure stack layouts. In light of this, our results provide tools in this direction.

2 Separated Layouts

We start with matchings having a separated layout, which is the base for proving Theorem 4
in Section 3. Recall that a linear layout of a bipartite graph G = (V1 ∪ V2, E) is separated
if all vertices of V1 precede all vertices of V2 in the vertex ordering. First, we give a linear
upper bound in Section 2.1 using a comparably large obstruction set of patterns with mixed
page number k. We then reduce the number of patterns to 2 in Section 2.2 and still obtain a
polynomial dependency on k.

2.1 ⊞-Patterns
Consider the grid representation of a bipartite graph G with a fixed separated layout. That
is, one part of the bipartition is represented by columns, the other by rows, and each edge
is described by an x- and a y-coordinate indicating the column, respectively the row, of its
endpoints. As we consider matchings, we have only one edge in each row and in each column.
For two edges e1, e2 of G we write e1 ↗ e2 if x(e1) < x(e2) and y(e1) < y(e2), i.e., if e1 and
e2 cross. Similarly, we write e1 ↘ e2 if x(e1) < x(e2) and y(e1) > y(e2), i.e., if e1 and e2
nest. Consider a set of k2 edges indexed by ei,j for 1 ≤ i ≤ k and 1 ≤ j ≤ k. We say that
the edges form a k- ⊞-pattern if the following holds:

(i) ei,j ↗ ei,j+1 for every 1 ≤ i ≤ k and 1 ≤ j < k, and
(ii) ei,j ↘ ei+1,j for every 1 ≤ i < k and 1 ≤ j ≤ k.

That is, in the grid representation we have k increasing sequences of length k, where the
j-th elements in each chain together form a decreasing sequence for each j = 1, . . . , k. We
denote the size of a k- ⊞-pattern by k × k to indicate that we have k2 edges, where k is the
parameter we are usually interested in. Notice that there are exactly four ⊞-patterns of size
2 × 2; see Figure 2.

As it turns out, ⊞-patterns are deeply connected to mixed linear layouts. Our main
result on ⊞-patterns is summarized in the following theorem.

STACS 2025

45:8 Forbidden Patterns in Mixed Linear Layouts

v3

v2

v1

v0
u0 u1 u2 u3

u0 u1 u2 u3 v0 v1 v2 v3

v3

v2

v1

v0
u0 u1 u2 u3

u0 u1 u2 u3 v0 v1 v2 v3

v3

v2

v1

v0
u0 u1 u2 u3

u0 u1 u2 u3 v0 v1 v2 v3

v3

v2

v1

v0
u0 u1 u2 u3

u0 u1 u2 u3 v0 v1 v2 v3

Figure 2 2- ⊞-patterns for Theorem 12.

▶ Theorem 12. Let M be a matching with a separated layout. If the largest ⊞-pattern in
M has size k × k, then the separated mixed page number of G is at least k and at most 2k.

We translate Theorem 12 to the language of posets so we can use a result by Greene [39]
to prove it in this regime. For this, we interpret a ⊞-pattern, or more generally any matching
M with a separated vertex ordering, as a poset P (M) whose elements are the edges of M .
Since M is a matching, for every two elements, e1, e2 of P (M) with x(e1) < x(e2), it holds
that either e1 ↗ e2 or e1 ↘ e2. In the former case, we set e1 < e2 in P (M) and in the latter
we make the two elements incomparable, for which we write e1 ∥ e2. We call P (M) the poset
of M . Observe that a chain of P (M) is increasing in the grid representation and corresponds
to a twist in M , and an antichain is decreasing in the grid representation and corresponds to
a rainbow. That is, to bound the mixed page number, we aim to cover each element of the
poset by a chain or an antichain (or both) and thereby minimize the number of chains plus
antichains.

▶ Observation 13. For the mixed page number mn(M) of a matching M with separated
vertex ordering we have mn(M) ≤ m if and only if its poset P (M) can be covered by m

chains and antichains.

Now, the lower bound of Theorem 12 asks for a proof that P (M) cannot be covered by less
than k chains and antichains. The omitted proof of the following slightly stronger statement
is straight-forward by counting the maximum number of elements in an (anti)chain.

▶ Lemma 14. Let M be a k- ⊞-pattern and let P (M) be its poset. Then every decomposition
of P (G) into a minimum number of chains and antichains consists either of k chains or of k

antichains.

That is, ⊞-patterns are particularly hard graphs for mixed linear layouts as they do not
profit from the possibility to mix chains and antichains, respectively queues and stacks, which
makes them a suitable candidate for a characterization. The remainder of this subsection is
devoted to the upper bound of Theorem 12, which confirms that these candidates are, up to
a factor of 2, the only reason for a large mixed page number.

The upper bound relies on insights into a Ferrer’s diagram, a standard combinatorial
tool [30], that represents how many elements can be covered by a certain number of chains,
respectively antichains. In general, a Ferrer’s diagram represents a partition of an integer by
left-aligned rows of cells, where a summand s is represented by a row of length s and the
rows are ordered by decreasing length from bottom to top. In our context, we partition the
number |P | of elements of a poset. Roughly speaking, the Ferrer’s diagram of a poset P

consists of |P | cells arranged in such a way that the number of cells in the first i rows is the

D. Haun, L. Merker, and S. Pupyrev 45:9

Figure 3 Left: A grid representation of a matching M with edges indicating the comparabilities
in the poset P (M) of M . The 2- ⊞-pattern is highlighted red. Right: The Ferrer’s diagram of P (M)
showing the partition |P (M)| = 5 + 3 + 1 by rows of length 5, 3 and 1. The diagram expresses that
one chain can cover five elements (bottommost row), two chains can cover 5 + 3 = 8 chains (two
bottommost rows), and that three chains can cover all 5 + 3 + 1 = 9 elements (all three rows). Note,
however, that eight elements cannot be covered with two chains of length 5 and 3.

number of elements in P that can be covered by i chains, and the number of cells in the first
i columns equals the number of elements that can be covered by i antichains. It is proved by
Greene [39] that such diagrams exist. We refer readers not familiar with this kind of Ferrer’s
diagrams, sometimes also called Greene’s diagrams, to the full version [41, Section 2.1] and
also point to Figure 3 (right) for an example.

For Theorem 12, we want a bound depending on the size of the largest ⊞-pattern, so we
first need to identify these patterns in the Ferrer’s diagrams. Let us first discuss why this is
not a trivial task. Recall that the Ferrer’s diagram only indicates the number of elements
that can be covered by a certain number of (anti)chains but does not associate the cells with
elements of the poset as this is not always possible. For an example, consider Figure 3 where
we have three rows of size 5, 3, and 1 but there is no chain decomposition with chains of
lengths 5, 3, 1. That is, there is no way of writing elements into all cells of the diagram such
that elements in the same row form a chain. Therefore, we cannot simply use the “elements
in the k × k-square” to identify a k- ⊞-pattern.

Instead, besides the translation of the linear layout problem to posets and its Ferrer’s
diagrams, the core of the proof of Theorem 12 is a counting argument that allows to identify
a ⊞-pattern of the same size as the largest square in the Ferrer’s diagram. Having this, we
may use 2k (anti)chains, where k is the size of the largest square instead of the ⊞-pattern,
which can be done using the properties of a Ferrer’s diagram (see full version [41, Section 2.1]).
Finally, we remark that Theorem 12 is tight (see full version [41, Lemma 18]) and yields a
2-approximation in O(n3/2 log n) [33, 73].

2.2 Connection to Twists and Rainbows

Having Theorem 12, we can characterize which patterns cause a large mixed page number
up to a factor of 2. In contrast to stack layouts and queue layouts, however, we have not
only a single pattern like twists or rainbows, respectively, but a family of patterns. Note
that all k- ⊞-patterns are necessary to forbid if we want an exact characterization as they
all have mixed page number k. In this section, we give up the idea of an (almost) exact
characterization in favor of reducing the number of patterns we forbid. More precisely, we
point out two specific ⊞-patterns whose absence characterizes the mixed page number up to
a polynomial factor.

As we may use both stacks and queues in mixed linear layouts, we combine twists and
rainbows to obtain two new patterns for characterizing the mixed page number. A t-thick
k-twist is obtained from a k-twist by replacing each edge by a t-rainbow. That is, we have

STACS 2025

45:10 Forbidden Patterns in Mixed Linear Layouts

u1u0 u4u2u3 u5 v1v0 v4v2 v3 v5 u1u0 u2 u3 u4 u5u0 u4u2 u3 u5

v0

v1

v2

v3

v4

v5

u1u0 u4u2u3 u5 v1v0 v4v2 v3 v5 u1u0 u2 u3 u4 u5u0 u4u2 u3 u5

v0

v1

v2

v3

v4

v5

Figure 4 From left to right: A 2-thick 3-twist with its grid representation, and a 2-thick 3-rainbow
with its grid representation.

k pairwise vertex-disjoint t-rainbows, where each edge nests with the edges belonging to
the same rainbow but crosses the edges of all other rainbows, see Figure 4 (left). Similarly,
a t-thick k-rainbow is obtained from a k-rainbow by replacing each edge by a t-twist, see
Figure 4 (right). In both cases, we call t the thickness and write the size as k × t to emphasize
that we have kt edges organized as k smaller groups of size t. Throughout the paper, we
often have t = k and simply write k-thick rainbow, respectively k-thick twist. If we mean
any of the two patterns, we say k-thick pattern.

In this section, we investigate the relation between thick patterns and ⊞-patterns.
Specifically, we show that thick patterns occur if and only if ⊞-pattern occur, where the
sizes are tied by a polynomial function. Together with Theorem 12 we obtain:

▶ Theorem 15. Let M be a matching with a separated layout. If the largest thick pattern in
M has size k × k, then the mixed page number of M is at least k and at most 2k7.

Note that the lower bound is already given by Theorem 12, so our task is to bound the
mixed page number in terms of the largest thick pattern. Theorem 12 also gives an upper
bound using ⊞-patterns instead of thick patterns, so we aim to show that if there is a large
⊞-pattern, than there also is a large thick pattern.

▶ Proposition 16. Let M be a k7- ⊞-pattern, then M contains a k-thick pattern.

The proof makes use of the grid representation, which is subdivided repeatedly. First,
after each subdivision, we find a sufficiently large ⊞-pattern, and second these smaller
patterns can be combined to a thick pattern. See the full version [41, Lemma 19] for the
proof.

3 Non-separated Matchings and Bounded-Degree Graphs

To transfer our findings for separated layouts to the general matching case, we first need the
notion of quotients. For this, consider a matching G with a fixed vertex ordering ≺ together
with a partition I of the vertices into intervals, i.e., the vertices in each part are consecutive.
The quotient G/I of G and I with respect to ≺ is the graph obtained from contracting each
interval together with the inherited vertex ordering. The following lemma shows that mixed
linear layouts of quotients can be transferred to the original matching.

▶ Lemma 17. Let k ≥ 1, let G be a matching with a fixed vertex ordering without a (k + 1)-
thick pattern, let I be a partition of the vertices into intervals, and let H = G/I be the
quotient. Then we have

mn(G) ≤ 6ℓ · 2k7(1 + 14(k + 1) log(k + 1) + k) + 2m ∈ O(ℓk8 log(k) + m),

where ℓ = mn(H) is the mixed page number of the quotient and m = maxI∈I(mn(G[I])) is
the maximum mixed page number induced by some interval.

D. Haun, L. Merker, and S. Pupyrev 45:11

Figure 5 A stack of the quotient H consisting of one-sided stars (left) and the matching induced
in G (middle and right). Each star induces a separated pattern admitting a page assignment α

with at most 2k7 stacks (blue) and queues (red). The set Q is formed by one queue per star (red).
The stacks can be reused for distinct stars, while the edges in the queues of all stars together are
partitioned into two groups – one having only small twists and one having only small rainbows. The
intervals of I are indicated by gray boxes.

Note that the lemma is not false for k = 0 but does not make sense to state as a 1-thick
pattern is a 1-thick 1-rainbow or a 1-thick 1-twist, i.e., a single edge. Thus, forbidding a
1-thick pattern means that G has no edges.

Proof. First, observe that all edges with both endpoints in the same interval I can be covered
by at most mn(G[I]) stacks plus the same number of queues. As the pages can be reused for
all intervals, we have 2 maxI∈I(mn(G[I])) = 2m pages for all edges with both endpoints in
the same interval.

Thus, our main task is to deal with edges in G between distinct intervals, that is with
the edges of G induced by some edge of the quotient H. We only consider a single page of
H, which we pay with a factor of ℓ. Now having a stack or a queue, it is well known that
it can be partitioned into six one-sided star forests, i.e., for each part either all stars have
their center to the left of their leaves or all to the right. That is, at the cost of a factor of
6, we may now consider a stack, respectively a queue, of H consisting of one-sided stars.
Without loss of generality, we may assume that the stars have their center as their rightmost
vertex. Note that a one-sided star in H induces a separated pattern in G consisting of a
single interval (corresponding to the center of the star) on one side and possibly several
intervals on the other. This is particularly convenient as we already know how to deal with
separated matchings by Theorem 15. We fix a 2k7-page assignment α for each subgraph of
G induced by some one-sided star.

Stacks of H. We are now ready to construct a mixed linear layout for a subgraph of G

induced by a one-sided star forest forming a stack in the layout of H, see Figure 5. First,
edges in G that are assigned to a stack by α are easy to handle: As the stars do not cross, we
may reuse the same 2k7 stacks. That is, we are left with the edges of G assigned to queues
by α. Consider only one out of the up to 2k7 queues of each star and let Q denote the set of
these edges. We pay this with a factor of 2k7. As the stars may nest, we cannot simply join
the queues but need a more involved strategy. Observe that the edges of Q belonging to the
same star in H are separated but do not nest, i.e., they form a twist. Next we aim to use
these twists to either cover the edges with few pages or to find a large thick rainbow. For
each twist, take the k leftmost edges (or all if there are less than k), and denote the union of
all these edges of all twists by L. As the stars do not cross, the edges in L form twists of size
at most k and can be covered by 14k log(k) stacks [17].

For the remaining edges, we show that a rainbow implies a thick rainbow of the same
size in G, and thus they can be covered by k queues. Indeed, consider a rainbow e1, e2, . . .

in Q − L, where the edges nest above each other in this order. We refer to Figure 6 for an
illustration of the upcoming argument. Recall that the edges of Q belonging to the same
star form a twist and thus the edges in the rainbow belong to pairwise distinct stars. Let Ti

STACS 2025

45:12 Forbidden Patterns in Mixed Linear Layouts

e1

e2
e3

Figure 6 Left: Non-crossing one-sided stars in H. Right: A rainbow e1, e2, e3 ∈ Q − L ⊆ E(G)
together with the twist T2. Recall that e2 is chosen such that it is the rightmost edge of T2. The
right endpoints of T2 are consecutive as their are in a common interval that is contracted to the
center of the star in H. The left endpoints are consecutive as the respective edges in the stars do
not cross and thus the edges of T2 do not cross any edges of other stars like e3.

denote the (k + 1)-twist consisting of ei and the k edges in L induced by the same star. Also
recall that the stars are in a stack of H and as their edges do not cross, the same holds for
edges in G belonging to distinct stars. In particular, the edges of the twist Ti do not cross
ei+1 nor ei−1. Therefore, the left endpoints of Ti are between the left endpoints of ei and
ei+1. For the right endpoints of Ti, recall that the stars are one-sided with the center to
the very right. As such, the right endpoints of Ti belong to a common interval of I, and
thus are to the right of ei−1. Since Ti is a twist, its right endpoints are between the right
endpoints of ei−1 and ei. This yields (k + 1)-twists that are pairwise nesting, i.e., if there is
a (k + 1)-rainbow in Q − L, then we obtain a (k + 1)-thick rainbow in G, a contradiction.
Hence, there is no (k + 1)-rainbow in Q − L and k queues suffice for these edges.

To sum up, we have 2k7 stacks for the edges assigned to stacks by α, plus 14k log(k)
stacks for L and k queues for Q − L, which we do 2k7 times as this is the number of queues
α may use. This yields 2k7 + (14k log(k) + k) · 2k7 for all edges induced by one star forest in
H that is in a stack in the layout of H.

Queues of H. Although not completely symmetric, the approach for a queue of H is fairly
similar, which is why we refer to the full version [41, Lemma 20] here. ◀

Next we use Lemma 17 to prove our main result of this section, namely that it suffices to
bound the size of the largest thick pattern to obtain bounded mixed page number. Recall
that this is also necessary as k-thick patterns have mixed page number k.

▶ Theorem 18. Let G be a matching with a fixed vertex ordering. If G does not contain a
k-thick pattern, then the mixed page number of G is in kO(k).

Proof. The idea is to start with G and apply Lemma 17 repeatedly, i.e., we define suitable
intervals, contract them, and repeat the procedure on the quotient graph. After at most
k − 1 steps, we show that the mixed page number of the obtained quotient graph is bounded.
Applying Lemma 17 to the levels of contractions then gives that the mixed page number of
G is bounded.

More detailed, we define a sequence of graphs H1, H2, . . . , starting with H1 = G. If for
some i ≥ 1, there is no (k + 1)-twist in Hi, the stack number, and thus the mixed page
number of Hi is bounded by O(k log k) [17] and we stop the procedure. Otherwise, we define
Hi+1 as the quotient of Hi and the partition Ii into intervals Ii

1, Ii
2, . . . of Hi as follows. The

first interval Ii
1 starts with the first vertex of Hi in the given vertex ordering. From left to

right, we add vertices to Ii
1 until it contains a (k + 1)-twist. In particular, the last vertex of

Ii
1 is the rightmost right endpoint of a (k + 1)-twist and is followed by the first vertex of Ii

2.
The next interval Ii

2 is then defined in the same way, i.e., starting from its first vertex, it
includes the minimum number of vertices such that it contains a (k + 1)-twist (or all if there

D. Haun, L. Merker, and S. Pupyrev 45:13

is no (k + 1)-twist in the remaining vertices). We continue until every vertex is in one of
the intervals. Then, Hi+1 is defined as the quotient Hi/Ii. Note that every interval, except
possibly the last one, contains a (k + 1)-twist. On the other hand, by construction, there is
no (k + 2)-twist in the subgraph of Hi induced by any of the intervals, so the mixed page
number within the intervals is bounded by O(k log k) [17].

Next we show that the procedure stops with Hk (or before). Suppose to the contrary
that there is always a (k + 1)-twist in Hi for i = 1, . . . , k. We show that this implies a
k-thick rainbow in G, which is a contradiction. That is, we now look for k-twists, one
in each Hi, that nest above each other. For this, consider a (k + 1)-twist with vertices
u1, . . . , uk+1, v1, . . . , vk+1 in Hi, for 2 ≤ i ≤ k, and note that the first k edges form a k-twist
which nests above uk+1. Now recall that every vertex of Hi (except for the last) is the result
of contracting an interval of Hi−1 containing a (k + 1)-twist. Thus, a (k + 1)-twist in Hi

corresponds to a k-twist nesting above a (k + 1)-twist of Hi−1. By transitivity of the nesting
relation, this gives a k-thick rainbow, a contradiction.

It follows that we make at most k −1 steps until Hk is the last quotient we obtain and has
no further (k + 1)-twist. Then, the mixed page number of Hk is bounded by O(k log k). Also
recall that the mixed page number within the intervals is O(k log k) and thus is dominated
by the quotient. Hence for Hk−1, Lemma 17 yields mn(Hk−1) ≤ mn(Hk) · c · k8 log k +
maxj mn(Ik−1

j) ∈ O(k log k · k8 log k), where c ≤ 6 · 2 · 14 = 168 is the constant from the
big-O notation of Lemma 17. Similarly, applying Lemma 17 to Hi−1 and Hi = Hi−1/Ii−1
for 2 ≤ i ≤ k gives us a factor of c · k8 log k + O(k log k) each time. After k − 1 steps, we
obtain an upper bound of O(ck−1 · k8(k−1)+1 logk(k)) ∈ kO(k) on the mixed page number of
H1 = G. ◀

With Vizings’s theorem [76], Theorem 18 generalizes to bounded-degree graphs. Note
that for both theorems, the size of the largest thick pattern gives a trivial linear lower bound.

▶ Theorem 19. Let G be an ordered graph with maximum degree ∆. If G does not contain
a k-thick pattern, then the mixed page number of G is in ∆kO(k).

4 Critical Graphs

In this section, we focus on the existence of a one-to-one characterization of mixed linear
layouts. Note that up until now, we only identified patterns characterizing the mixed page
number up to a function, i.e., we only get an upper and lower bound on the mixed page
number even if we know exactly the size of the largest pattern. Here, we are attacking the
question for an exact characterization, which would guarantee the exact mixed page number,
given that all of the specified patterns are excluded. To this end, we introduce the concept
of critical graphs that are minimal graphs that do not admit a mixed linear layout with a
certain number of pages. Suppose G = (V, E) is a graph with a fixed vertex order ≺. For
s, q ≥ 0, we call G (s, q)-critical if it does not admit an s-stack q-queue layout under ≺ but
every subgraph G − e for all edges e does. Similarly, we define k-critical graphs as minimal
graphs not admitting a layout on mixed k = s + q (for some s, q ≥ 0) pages.

We begin by investigating critical graphs for separated layouts. In the case of separated
matchings, prior results [31,52,77] imply that the number of critical graphs is finite. However,
for separated non-matchings, we can only bound the number of k-critical graphs when k = 2,
and it remains open for larger k. In the non-separated case, prior hardness results [19,74]
imply that the number of (s, q)-critical graphs is infinite for s ≥ 4 and q ≥ 0, even for
matchings. For k = 2 and for s ≥ 2 we construct infinite sets of matchings that are k- and

STACS 2025

45:14 Forbidden Patterns in Mixed Linear Layouts

matching non-matching
separated

non-separated

finite k = 2: finite (Theorem 21); k > 2: open

k = 2: infinite (Theorem 26); k ̸= 2: open;
0 < s < 4, q > 0: open; s = 0, q ≥ 0: finite;
s ≥ 2, q = 0: infinite (Theorem 25); s ≥ 4, q ≥ 0: infinite

Figure 7 An overview visualizing whether the number of k-critical and (s, q)-critical graphs is
finite or infinite in the cases of separated/non-separated layouts of matchings/non-matchings. The
blue cases follow immediately from previous results, which we discuss in Section 4.1 and Section 4.2.

(s, 0)-critical, respectively. For all other cases, particularly for all k ̸= 2, the question of
whether there exists a finite set of patterns that exactly characterizes a mixed page number
of k remains unresolved. Our results are summarized in Figure 7.

4.1 Critical Graphs for Separated Layouts
A separated matching G corresponds to a permutation π(G). The separated mixed page
number of a matching G equals the minimum number of monotone subsequences that π(G)
can be partitioned into. In this setting the following is known: permutations that can be
partitioned into a fixed number of monotone subsequences are characterized by a finite set of
forbidden subsequences [31,52,77]. Thus, for every pair (s, q), there exists a finite number
of (s, q)-critical matchings with a fixed separated layout. For separated non-matchings our
main result is that there is only a finite number of 2-critical graphs.

▶ Theorem 20. There exists a finite number of separated (1, 1)-critical and 2-critical graphs.

On the way to proving this, we additionally show that if the maximum degree of all
(s, q)-critical graphs is bounded, then the total number of (s, q)-critical graphs must be finite.
Further, we show that if the number of (s, q)-critical graphs is bounded for all pairs (s, q)
with s + q = k, then the number of k-critical graphs is bounded. Therefore, to show that the
number of k-critical graphs is finite, not only for k = 2 but for arbitrary k, it suffices to show
that the maximum degree of all (s, q)-critical graphs is bounded. Then, for (1, 1)-critical
graphs, we show that the maximum degree is indeed bounded, so we can conclude that the
number of (1, 1)-critical graphs is finite.

Before proving Theorem 20, we remark that a similar characterization of graphs with
a bounded separated pure stack (queue) number is straightforward. In fact, there exists
a single (s, 0)-critical graph and a single (0, q)-critical graph for all s, q ≥ 1. In contrast,
characterizations for mixed linear layouts are significantly more complex. We computationally
identified all 9 graphs that are 1-critical, all 20 graphs that are (1, 1)-critical, and all 3128
graphs that are 2-critical.

Our proof uses essentially the same arguments as [77] to show that if the maximum degree
in an (s, q)-critical graph G is bounded, then the total number of edges of G is bounded. The
key in the arguments in [77] is that partial Boolean functions, interpreted as an assignment
of the edges of a subgraph to the set of stacks or to the set of queues, can be combined to a
total Boolean function corresponding to the given graph. See the full version [41, Section
4.1] for details.

The following lemma is the result of these arguments and potentially useful for proving
that the number of (s, q)-critical graphs is finite for arbitrary s and q. For this, it now suffices
to show that the maximum degree in every (s, q)-critical graph is bounded.

D. Haun, L. Merker, and S. Pupyrev 45:15

x

y

(a)

x

y

(b)

x

y

(c)

x

y

(d)

x

y

(e)

Figure 8 There are two cases each for the 1-stack 1-queue layouts of G − x and G − y: Either the
increasing sequence (blue) contains all points below x, resp. y, while the decreasing sequence (red)
covers all points above (a and c), or the other way around (b and d). (e) visualizes the combination
of (a) and (d) into a 1-stack 1-queue layout of G.

▶ Lemma 21. There is a function N∗(s, q, ∆) such that for every s, q it holds that every
separated (s, q)-critical graph with maximum degree ∆ contains at most N∗(s, q, ∆) edges.

Additionally, the following lemma allows us to extend results on (s, q)-critical graphs
to more general k-critical graphs. Specifically, it shows that if the number of (s, q)-critical
graphs is bounded for all pairs (s, q) with s + q = k, then the number of k-critical graphs is
also bounded. The proof is not surprising and also inspired by [77] so we refer to the full
version [41, Lemma 22]

▶ Lemma 22. Suppose that the number of edges in an (s, q)-critical graph is bounded by
some function m(s, q) for every s, q. Then, for any k, the number of edges in a k-critical
graph is bounded by

∑
s+q=k m(s, q).

Note that in the separated case there is exactly one (2, 0)-critical graph – a 3-twist – and
exactly one (0, 2)-critical graph – a 3-rainbow. Moreover, the following lemma, together
with Lemma 21, shows that the number of (1, 1)-critical graphs is also bounded. Applying
Lemma 22, it then follows that the number of 2-critical graphs is finite. With Lemma 21,
the only thing that is left to finish Theorem 20 is to prove that the maximum degree in any
(1, 1)-critical graph is bounded.

▶ Lemma 23. Let G be a separated (1, 1)-critical graph. Then ∆(G) < 6.

The following proof sketch is worked out more detailed in the full version [41, Lemma 24].

Proof Sketch. Consider the grid representation of G, i.e., vertices are represented by columns
and rows, with a point in the intersection if the two vertices share an edge. Suppose that G

has a vertex of degree 6, say represented by a column. Since G is critical, removing any point
yields a 1-stack 1-queue graph, i.e., all remaining points can be covered by an increasing and
a decreasing sequence together. We choose two such points x and y and obtain two pairs of
sequences that we combine to one increasing and one decreasing sequence covering all points,
i.e., all edges of G. This contradicts G being (1, 1)-critical.

Figure 8 shows how two such layouts are recombined. To see that the situation indeed
is as illustrated, observe that none of the sequences contains points above and below the
removed point as then the point could simply be added. For the combination to work, it is
crucial to choose x and y such that at least two vertices are between them and they are not
the topmost or bottommost vertex. Together with the first observation, this guarantees that
the order in which the sequences reach the cutting line fit together. ◀

STACS 2025

45:16 Forbidden Patterns in Mixed Linear Layouts

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21

x R
C

Figure 9 A forbidden edge pattern with k = 6 for mn = 2.

4.2 Critical Graphs for Non-Separated Layouts
Based on the literature, we first observe that the number of critical graphs characterizing
non-separated s-stack q-queue layouts is expected to be infinite even for matchings, for s ≥ 4.
To this end, we use a hardness result stating that it is NP-complete to recognize 4-stack
layout for matchings with a fixed layouts (from coloring circle graphs) [74]. Moreover, an
already NP-complete mixed linear layout recognition problem with given vertex ordering
remains NP-complete under addition of a stack or queue [19]. Thus, deciding whether a
matching with a given vertex ordering admits an s-stack q-queue layout is NP-complete for
all s ≥ 4 and q ≥ 0. On the other hand, a finite forbidden set of critical graphs implies a
poly-time recognition, which would contradict the two mentioned hardness results under the
assumption that P ̸= NP. However, it is still interesting to construct an explicit infinite set
of critical graphs, for fixed k = s + q, especially for k < 4 where the state of the art does
not give whether or not the obstruction set is finite. In the following, we construct such an
infinite set of (s, 0)- and 2-critical graphs for s ≥ 2.

As a first step, we give an infinite obstruction set for layouts with s = 2, q = 0. We use
edges such that the conflicting edges (that cannot share a stack) form an odd-length cycle;
clearly, the cycle requires three colors (stacks). In the full version [41, Lemma 25] this is
generalized to an infinite obstruction set for all pure stack layouts with stack number at
least 2.

▶ Theorem 24. For every integer s ≥ 2 and every n ≥ 3, there exists an (s, 0)-critical
matching with at least n vertices.

Observe that Theorem 24 does not rule out a possibility of a finite obstruction set for
mixed linear layouts with mn = 2. The next theorem closes this gap.

▶ Theorem 25. For every n ≥ 3, there exists a 2-critical matching with at least n vertices.

Proof. Let k ≥ 2 be an even integer. We build a matching with n = 2(k + 2) + 6 vertices
(starting with 0) having three types of edges (see Figure 9):

C = {(2i, 2i + 3), 0 ≤ i < k − 1} ∪ {(2k − 2, 2k + 3)} ∪ {(1, 2k + 1)};
a single edge x = (2k, 2k + 2);
R = {(n − 6, n − 1)} ∪ {(n − 5, n − 2)} ∪ {(n − 4, n − 3)}.

We claim that the graph Gk = ({0, . . . , n−1}, C∪{x}∪R) is 2-critical, that is, mn(Gk) = 3
but mn(Gk − e) = 2 for every edge e. First, we show that Gk − e admits a mixed linear
layout on two pages for every edge e, then that Gk requires at least 3 pages. We consider
the three cases e ∈ C, e = x, and e ∈ R separately. First, if we remove an edge from C, then
the graph admits a 2-stack layout: The edges of C \ {e} can be assigned to two stacks, while
x and edges from R are assigned to one of the two stacks. Second, if we remove edge x, then
the graph admits a 1-stack 1-queue layout: The “long” edge (1, 2k + 1) of C together with
edges from R are assigned to a stack, while the “short” edges (2i, 2i + 3) of C are assigned to
a queue. And third, if we remove an edge from R, then the graph admits a 2-queue layout:
One queue contains an edge from R, edge x, and the “long” edge (1, 2k + 1) from C. Another
queue contains an edge from R along with the “short” edges (2i, 2i + 3) from C.

D. Haun, L. Merker, and S. Pupyrev 45:17

Finally, graph Gk does not admit a layout on two (mixed) pages, since on one hand (i) it
cannot be assigned to two queues (R forms a 3-rainbow), and (ii) it cannot be assigned to
two stacks (C is an odd cycle). On the other hand, (iii) Gk cannot be assigned to a stack
and a queue, since otherwise the “long” edge (1, 2k + 1) of C is in the queue (it crosses two
edges forming a 2-rainbow) and hence, all edges covered by the “long” edge would be in a
stack, which implies a crossing between two such stack edges. ◀

To summarize, we know that the number of (s, q)-critical graphs is infinite if s ≥ 4,
even for matchings, due to previous hardness results [19,74]. Furthermore, Theorem 24 and
Theorem 25 show that for s ≥ 2 the numbers of (s, 0)- and 2-critical matchings are also
infinite, providing a construction for an infinite, though not necessarily complete, set of such
graphs. Recall that the (0, q)-critical graphs are exactly the (q + 1)-rainbows [44], i.e., there
is exactly one such graph for every q ∈ N. What remains open is the case s < 4 and q ≥ 1, as
well as the more general k-critical graphs for any k ̸= 2. Notably, it is even unknown whether
the set of 1-critical graphs is finite. For s = q = 1, we conjecture that there there is a finite
number of critical graphs and present candidates in the full version [41, Conjecture 27].

5 Conclusions

In this paper we made the first steps towards characterizing mixed linear layouts of ordered
graphs via forbidden patterns. The most prominent open question for fully resolving Open
Problem 3 is to transfer Theorem 4 to general graphs with unbounded maximum degree. We
remark that the proofs in Section 3 work similarly for general ordered graphs; hence, the
challenge is to bound the mixed page number of bipartite graphs in the separated settings.
We expect that thick patterns is the correct choice even for large-degree graphs.

Another interesting question is whether separated mixed linear layouts are characterized
by a finite obstruction set; that is, whether the statement of Section 4.1 holds for all k. Again
we expect a positive answer here, and observe that for a proof, it is sufficient to bound the
maximum degree of separated k-critical graphs for k ≥ 3, that is, extend Lemma 23 for the
case.

Finally, we highlight a possible application of the studied characterizations. Is the mixed
page number of upward planar (possibly, bounded-degree) graphs bounded by a constant?
To answer the question affirmatively, it is sufficient for a graph to construct a topological
ordering containing no k-thick pattern for some k ∈ N.

References

1 A. A. Ageev. A triangle-free circle graph with chromatic number 5. Discrete Mathematics,
152(1-3):295–298, May 1996. doi:10.1016/0012-365X(95)00349-2.

2 Jawaherul Md. Alam, Michael A. Bekos, Martin Gronemann, Michael Kaufmann, and Sergey
Pupyrev. Queue layouts of planar 3-trees. Algorithmica, 82(9):2564–2585, September 2020.
doi:10.1007/s00453-020-00697-4.

3 Jawaherul Md. Alam, Michael A. Bekos, Martin Gronemann, Michael Kaufmann, and Sergey
Pupyrev. The mixed page number of graphs. Theoretical Computer Science, 2022. doi:
10.1016/j.tcs.2022.07.036.

4 Jawaherul Md. Alam, Michael A. Bekos, Martin Gronemann, Michael Kaufmann, and Sergey
Pupyrev. Lazy queue layouts of posets. Algorithmica, 85(5):1176–1201, May 2023. doi:
10.1007/s00453-022-01067-y.

STACS 2025

https://doi.org/10.1016/0012-365X(95)00349-2
https://doi.org/10.1007/s00453-020-00697-4
https://doi.org/10.1016/j.tcs.2022.07.036
https://doi.org/10.1016/j.tcs.2022.07.036
https://doi.org/10.1007/s00453-022-01067-y
https://doi.org/10.1007/s00453-022-01067-y

45:18 Forbidden Patterns in Mixed Linear Layouts

5 Patrizio Angelini, Michael A. Bekos, Philipp Kindermann, and Tamara Mchedlidze. On mixed
linear layouts of series-parallel graphs. Theoretical Computer Science, 936:129–138, November
2022. doi:10.1016/j.tcs.2022.09.019.

6 Patrizio Angelini, Giordano Da Lozzo, Henry Förster, and Thomas Schneck. 2-layer k-
planar graphs: Density, crossing lemma, relationships, and pathwidth. In Graph Drawing
and Network Visualization: 28th International Symposium, GD 2020, pages 403–419, 2020.
doi:10.1007/978-3-030-68766-3_32.

7 Michael J Bannister, William E Devanny, Vida Dujmović, David Eppstein, and David R Wood.
Track layouts, layered path decompositions, and leveled planarity. Algorithmica, 81:1561–1583,
2019. doi:10.1007/s00453-018-0487-5.

8 Michael Bekos, Martin Gronemann, and Chrysanthi N. Raftopoulou. An improved upper
bound on the queue number of planar graphs. Algorithmica, 85(2):544–562, February 2023.
doi:10.1007/s00453-022-01037-4.

9 Michael Bekos, Michael Kaufmann, Fabian Klute, Sergey Pupyrev, Chrysanthi Raftopoulou,
and Torsten Ueckerdt. Four pages are indeed necessary for planar graphs. Journal of
Computational Geometry, pages 332–353 Pages, August 2020. doi:10.20382/JOCG.V11I1A12.

10 Michael A. Bekos, Till Bruckdorfer, Michael Kaufmann, and Chrysanthi N. Raftopoulou. The
book thickness of 1-planar graphs is constant. Algorithmica, 79(2):444–465, October 2017.
doi:10.1007/s00453-016-0203-2.

11 Michael A. Bekos, Henry Förster, Martin Gronemann, Tamara Mchedlidze, Fabrizio Mon-
tecchiani, Chrysanthi Raftopoulou, and Torsten Ueckerdt. Planar graphs of bounded degree
have bounded queue number. SIAM Journal on Computing, 48(5):1487–1502, January 2019.
doi:10.1137/19M125340X.

12 Frank Bernhart and Paul C Kainen. The book thickness of a graph. Journal of Combinatorial
Theory, Series B, 27(3):320–331, December 1979. doi:10.1016/0095-8956(79)90021-2.

13 Sujoy Bhore, Giordano Da Lozzo, Fabrizio Montecchiani, and Martin Nöllenburg. On the
upward book thickness problem: Combinatorial and complexity results. European Journal of
Combinatorics, 110:103662, 2023. doi:10.1016/j.ejc.2022.103662.

14 Carla Binucci, Giordano Da Lozzo, Emilio Di Giacomo, Walter Didimo, Tamara Mchedlidze,
and Maurizio Patrignani. Upward book embeddability of st-graphs: Complexity and algorithms.
Algorithmica, 85(12):3521–3571, 2023. doi:10.1007/S00453-023-01142-Y.

15 Jakub Černỳ. Coloring circle graphs. Electronic notes in Discrete mathematics, 29:457–461,
2007. doi:10.1016/j.endm.2007.07.072.

16 Sabine Cornelsen, Thomas Schank, and Dorothea Wagner. Drawing graphs on two and
three lines. Journal of Graph Algorithms and Applications, 8(2):161–177, January 2004.
doi:10.7155/jgaa.00087.

17 James Davies. Improved bounds for colouring circle graphs. Proceedings of the American
Mathematical Society, July 2022. doi:10.1090/proc/16044.

18 James Davies and Rose McCarty. Circle graphs are quadratically χ-bounded. Bulletin of the
London Mathematical Society, 53(3):673–679, 2021. doi:10.1112/blms.12447.

19 Philipp de Col, Fabian Klute, and Martin Nöllenburg. Mixed linear layouts: Complexity,
heuristics, and experiments. In Graph Drawing and Network Visualization: 27th International
Symposium, GD 2019, pages 460–467, Berlin, Heidelberg, 2019. Springer-Verlag. doi:10.1007/
978-3-030-35802-0_35.

20 H. de Fraysseix, P. O. de Mendez, and J. Pach. A left-first search algorithm for planar graphs.
Discrete & Computational Geometry, 13(3):459–468, June 1995. doi:10.1007/BF02574056.

21 Emilio Di Giacomo, Walter Didimo, Peter Eades, and Giuseppe Liotta. 2-layer right angle cross-
ing drawings. Algorithmica, 68:954–997, January 2014. doi:10.1007/S00453-012-9706-7.

22 Vida Dujmović, Gwenaël Joret, Piotr Micek, Pat Morin, Torsten Ueckerdt, and David R Wood.
Planar graphs have bounded queue-number. Journal of the ACM (JACM), 67(4):1–38, 2020.
doi:10.1145/3385731.

https://doi.org/10.1016/j.tcs.2022.09.019
https://doi.org/10.1007/978-3-030-68766-3_32
https://doi.org/10.1007/s00453-018-0487-5
https://doi.org/10.1007/s00453-022-01037-4
https://doi.org/10.20382/JOCG.V11I1A12
https://doi.org/10.1007/s00453-016-0203-2
https://doi.org/10.1137/19M125340X
https://doi.org/10.1016/0095-8956(79)90021-2
https://doi.org/10.1016/j.ejc.2022.103662
https://doi.org/10.1007/S00453-023-01142-Y
https://doi.org/10.1016/j.endm.2007.07.072
https://doi.org/10.7155/jgaa.00087
https://doi.org/10.1090/proc/16044
https://doi.org/10.1112/blms.12447
https://doi.org/10.1007/978-3-030-35802-0_35
https://doi.org/10.1007/978-3-030-35802-0_35
https://doi.org/10.1007/BF02574056
https://doi.org/10.1007/S00453-012-9706-7
https://doi.org/10.1145/3385731

D. Haun, L. Merker, and S. Pupyrev 45:19

23 Vida Dujmović, Attila Pór, and David R Wood. Track layouts of graphs. Discrete Mathematics
& Theoretical Computer Science, 6(2):497–522, 2004. doi:10.46298/dmtcs.315.

24 Vida Dujmović and David R Wood. Stacks, queues and tracks: Layouts of graph subdivisions.
Discrete Mathematics and Theoretical Computer Science, 7:155–202, 2005. doi:10.46298/
dmtcs.346.

25 Vida Dujmović, Pat Morin, and David R. Wood. Queue layouts of graphs with bounded
degree and bounded genus, 2019. arXiv:1901.05594, doi:10.48550/arXiv.1901.05594.

26 Vida Dujmović, Pat Morin, and Céline Yelle. Two results on layered pathwidth and linear
layouts. Journal of Graph Algorithms and Applications, 25(1):43–57, 2021. doi:10.7155/jgaa.
00549.

27 Vida Dujmović and David R. Wood. On linear layouts of graphs. Discrete Mathematics &
Theoretical Computer Science, Vol. 6 no. 2:317, 2004. doi:10.46298/dmtcs.317.

28 Peter Eades and Sue Whitesides. Drawing graphs in two layers. Theoretical Computer Science,
131(2):361–374, 1994. doi:10.1016/0304-3975(94)90179-1.

29 Peter Eades and Nicholas C Wormald. Edge crossings in drawings of bipartite graphs.
Algorithmica, 11(4):379–403, 1994. doi:10.1007/BF01187020.

30 Martin J. Erickson. Introduction to Combinatorics. John Wiley & Sons, Ltd, 1996. doi:
10.1002/9781118032640.

31 Tomás Feder and Pavol Hell. Matrix partitions of perfect graphs. Discrete Mathematics,
306(19-20):2450–2460, 2006. doi:10.1016/j.disc.2005.12.035.

32 Stefan Felsner, Torsten Ueckerdt, and Kaja Wille. On the queue-number of partial orders.
In Helen C. Purchase and Ignaz Rutter, editors, Graph Drawing and Network Visualization:
29th International Symposium, GD 2021, pages 231–241, Cham, 2021. Springer International
Publishing. doi:10.1007/978-3-030-92931-2_17.

33 Stefan Felsner and Lorenz Wernisch. Maximum k-chains in planar point sets: Combinatorial
structure and algorithms. SIAM Journal on Computing, 28(1):192–209, 1998. doi:10.1137/
S0097539794266171.

34 Fabrizio Frati, Radoslav Fulek, and Andres Ruiz-Vargas. On the page number of upward
planar directed acyclic graphs. Journal of Graph Algorithms and Applications, 17(3):221–244,
March 2013. doi:10.7155/jgaa.00292.

35 Henry Förster, Michael Kaufmann, Laura Merker, Sergey Pupyrev, and Chrysanthi
Raftopoulou. Linear layouts of bipartite planar graphs. In Pat Morin and Subhash Suri, editors,
Algorithms and Data Structures, pages 444–459, Cham, 2023. Springer Nature Switzerland.
doi:10.1007/978-3-031-38906-1_29.

36 Zoltán Füredi and Péter Hajnal. Davenport-Schinzel theory of matrices. Discrete Mathematics,
103(3):233–251, May 1992. doi:10.1016/0012-365X(92)90316-8.

37 M. R. Garey, D. S. Johnson, G. L. Miller, and C. H. Papadimitriou. The complexity of coloring
circular arcs and chords. SIAM Journal on Algebraic Discrete Methods, 1(2):216–227, 1980.
doi:10.1137/0601025.

38 Jesse Geneson. Almost all permutation matrices have bounded saturation functions. The
Electronic Journal of Combinatorics, 28(P2.16), May 2021. doi:10.37236/10124.

39 Curtis Greene. Some partitions associated with a partially ordered set. Journal of Combinatorial
Theory, Series A, 20(1):69–79, 1976. doi:10.1016/0097-3165(76)90078-9.

40 A. Gyárfás. On the chromatic number of multiple interval graphs and overlap graphs. Discrete
Mathematics, 55(2):161–166, July 1985. doi:10.1016/0012-365X(85)90044-5.

41 Deborah Haun, Laura Merker, and Sergey Pupyrev. Forbidden patterns in mixed linear layouts,
2024. doi:10.48550/arXiv.2412.12786.

42 Lenwood S. Heath and Sorin Istrail. The pagenumber of genus g graphs is o(g). J. ACM,
39(3):479–501, July 1992. doi:10.1145/146637.146643.

43 Lenwood S. Heath, Sriram V. Pemmaraju, and Ann N. Trenk. Stack and queue layouts of
directed acyclic graphs: Part i. SIAM Journal on Computing, 28(4):1510–1539, January 1999.
doi:10.1137/S0097539795280287.

STACS 2025

https://doi.org/10.46298/dmtcs.315
https://doi.org/10.46298/dmtcs.346
https://doi.org/10.46298/dmtcs.346
https://arxiv.org/abs/1901.05594
https://doi.org/10.48550/arXiv.1901.05594
https://doi.org/10.7155/jgaa.00549
https://doi.org/10.7155/jgaa.00549
https://doi.org/10.46298/dmtcs.317
https://doi.org/10.1016/0304-3975(94)90179-1
https://doi.org/10.1007/BF01187020
https://doi.org/10.1002/9781118032640
https://doi.org/10.1002/9781118032640
https://doi.org/10.1016/j.disc.2005.12.035
https://doi.org/10.1007/978-3-030-92931-2_17
https://doi.org/10.1137/S0097539794266171
https://doi.org/10.1137/S0097539794266171
https://doi.org/10.7155/jgaa.00292
https://doi.org/10.1007/978-3-031-38906-1_29
https://doi.org/10.1016/0012-365X(92)90316-8
https://doi.org/10.1137/0601025
https://doi.org/10.37236/10124
https://doi.org/10.1016/0097-3165(76)90078-9
https://doi.org/10.1016/0012-365X(85)90044-5
https://doi.org/10.48550/arXiv.2412.12786
https://doi.org/10.1145/146637.146643
https://doi.org/10.1137/S0097539795280287

45:20 Forbidden Patterns in Mixed Linear Layouts

44 Lenwood S Heath and Arnold L Rosenberg. Laying out graphs using queues. SIAM Journal
on Computing, 21(5):927–958, 1992. doi:10.1137/0221055.

45 Robert Hickingbotham and David R. Wood. Shallow minors, graph products, and beyond-
planar graphs. SIAM Journal on Discrete Mathematics, 38(1):1057–1089, 2024. doi:10.1137/
22M1540296.

46 Le Tu Quoc Hung. A planar poset which requires 4 pages. Ars Combinatoria, 35:291–302,
1993.

47 Barnabás Janzer, Oliver Janzer, Van Magnan, and Abhishek Methuku. Tight general bounds
for the extremal numbers of 0–1 matrices. International Mathematics Research Notices,
2024(15):11455–11463, June 2024. doi:10.1093/imrn/rnae129.

48 Paul Jungeblut, Laura Merker, and Torsten Ueckerdt. Directed acyclic outerplanar graphs have
constant stack number. In 2023 IEEE 64th Annual Symposium on Foundations of Computer
Science (FOCS), pages 1937–1952, November 2023. doi:10.1109/FOCS57990.2023.00118.

49 Paul Jungeblut, Laura Merker, and Torsten Ueckerdt. A sublinear bound on the page number
of upward planar graphs. SIAM Journal on Discrete Mathematics, 37(4):2312–2331, 2023.
doi:10.1137/22M1522450.

50 Paul C. Kainen. Some recent results in topological graph theory. In Ruth A. Bari and Frank
Harary, editors, Graphs and Combinatorics, pages 76–108, Berlin, Heidelberg, 1974. Springer
Berlin Heidelberg. doi:10.1007/BFb0066436.

51 Julia Katheder, Michael Kaufmann, Sergey Pupyrev, and Torsten Ueckerdt. Transforming
stacks into queues: Mixed and separated layouts of graphs. In 42nd International Symposium
on Theoretical Aspects of Computer Science (STACS 2025), 2024. doi:10.48550/arXiv.2409.
17776.

52 André E Kézdy, Hunter S Snevily, and Chi Wang. Partitioning permutations into increasing
and decreasing subsequences. Journal of Combinatorial Theory, Series A, 73(2):353–359, 1996.
doi:10.1016/S0097-3165(96)80012-4.

53 Kolja Knauer, Piotr Micek, and Torsten Ueckerdt. The queue-number of posets of bounded
width or height. In Therese Biedl and Andreas Kerren, editors, Graph Drawing and Network
Visualization: 26th International Symposium, GD 2018, pages 200–212, Cham, 2018. Springer
International Publishing. doi:10.1007/978-3-030-04414-5_14.

54 Alexandr Kostochka. Upper bounds on the chromatic number of graphs. Trudy Inst.
Mat.(Novosibirsk), 10(Modeli i Metody Optim.):204–226, 1988.

55 Alexandr Kostochka and Jan Kratochvíl. Covering and coloring polygon-circle graphs. Discrete
Mathematics, 163(1-3):299–305, 1997. doi:10.1016/S0012-365X(96)00344-5.

56 Joseph L. Ganley and Lenwood S. Heath. The pagenumber of k-trees is o(k). Discrete Applied
Mathematics, 109(3):215–221, May 2001. doi:10.1016/S0166-218X(00)00178-5.

57 S. M. Malitz. Genus g graphs have pagenumber O(√g). Journal of Algorithms, 17(1):85–109,
1994. doi:10.1006/jagm.1994.1028.

58 Adam Marcus and Gábor Tardos. Excluded permutation matrices and the Stanley–Wilf
conjecture. Journal of Combinatorial Theory, Series A, 107(1):153–160, July 2004. doi:
10.1016/j.jcta.2004.04.002.

59 Tamara Mchedlidze and Antonios Symvonis. Crossing-free acyclic hamiltonian path completion
for planar st-digraphs. In Yingfei Dong, Ding-Zhu Du, and Oscar Ibarra, editors, Algorithms
and Computation (ISAAC 2009), volume 5878 of Lecture Notes in Computer Science, pages
882–891, 2009. doi:10.1007/978-3-642-10631-6_89.

60 Miki Miyauchi. Topological stack-queue mixed layouts of graphs. IEICE Transactions on
Fundamentals of Electronics, Communications and Computer Sciences, E103.A(2):510–522,
2020. doi:10.1587/transfun.2019EAP1097.

61 Hiroshi Nagamochi. An improved bound on the one-sided minimum crossing number in
two-layered drawings. Discrete & Computational Geometry, 33(4):569–591, 2005. doi:10.
1007/s00454-005-1168-0.

https://doi.org/10.1137/0221055
https://doi.org/10.1137/22M1540296
https://doi.org/10.1137/22M1540296
https://doi.org/10.1093/imrn/rnae129
https://doi.org/10.1109/FOCS57990.2023.00118
https://doi.org/10.1137/22M1522450
https://doi.org/10.1007/BFb0066436
https://doi.org/10.48550/arXiv.2409.17776
https://doi.org/10.48550/arXiv.2409.17776
https://doi.org/10.1016/S0097-3165(96)80012-4
https://doi.org/10.1007/978-3-030-04414-5_14
https://doi.org/10.1016/S0012-365X(96)00344-5
https://doi.org/10.1016/S0166-218X(00)00178-5
https://doi.org/10.1006/jagm.1994.1028
https://doi.org/10.1016/j.jcta.2004.04.002
https://doi.org/10.1016/j.jcta.2004.04.002
https://doi.org/10.1007/978-3-642-10631-6_89
https://doi.org/10.1587/transfun.2019EAP1097
https://doi.org/10.1007/s00454-005-1168-0
https://doi.org/10.1007/s00454-005-1168-0

D. Haun, L. Merker, and S. Pupyrev 45:21

62 Richard Nowakowski and Andrew Parker. Ordered sets, pagenumbers and planarity. Order,
6(3):209–218, September 1989. doi:10.1007/BF00563521.

63 Martin Nöllenburg and Sergey Pupyrev. On families of planar dags with constant stack
number. In Graph Drawing and Network Visualization: 31st International Symposium,
GD 2023, pages 135–151, Berlin, Heidelberg, January 2024. Springer-Verlag. doi:10.1007/
978-3-031-49272-3_10.

64 L. Taylor Ollmann. On the book thicknesses of various graphs. In Proc. 4th Southeastern
Conference on Combinatorics, Graph Theory and Computing, volume 8, 1973.

65 Shannon Overbay. Generalized book embeddings. Phd thesis, Colorado State University, USA,
November 1998.

66 János Pach and Gábor Tardos. Forbidden paths and cycles in ordered graphs and matrices.
Israel Journal of Mathematics, 155:359–380, 2006. doi:10.1007/BF02773960.

67 Sriram V Pemmaraju. Exploring the powers of stacks and queues via graph layouts. PhD
thesis, Virginia Tech, 1992.

68 Sergey Pupyrev. Mixed linear layouts of planar graphs. In Fabrizio Frati and Kwan-Liu
Ma, editors, Graph Drawing and Network Visualization: 25th International Symposium,
GD 2017, pages 197–209, Cham, 2018. Springer International Publishing. doi:10.1007/
978-3-319-73915-1_17.

69 Sergey Pupyrev. Queue layouts of two-dimensional posets. In Patrizio Angelini and Rein-
hard von Hanxleden, editors, Graph Drawing and Network Visualization: 30th Interna-
tional Symposium, GD 2022, pages 353–360, Cham, 2023. Springer International Publishing.
doi:10.1007/978-3-031-22203-0_25.

70 Matthew Suderman. Pathwidth and layered drawings of trees. International Journal of Compu-
tational Geometry & Applications, 14(03):203–225, 2004. doi:10.1142/S0218195904001433.

71 Gábor Tardos. On 0–1 matrices and small excluded submatrices. Journal of Combinatorial
Theory, Series A, 111(2):266–288, August 2005. doi:10.1016/j.jcta.2004.11.015.

72 Gábor Tardos. Extremal theory of ordered graphs. In Proceedings of the International Congress
of Mathematicians (ICM 2018), pages 3235–3243, Rio de Janeiro, Brazil, May 2019. WORLD
SCIENTIFIC. doi:10.1142/9789813272880_0179.

73 Alexander Tiskin. Fast RSK correspondence by doubling search. In Shiri Chechik, Gonzalo
Navarro, Eva Rotenberg, and Grzegorz Herman, editors, 30th Annual European Symposium
on Algorithms (ESA 2022), volume 244 of Leibniz International Proceedings in Informatics
(LIPIcs), pages 86:1–86:10, Dagstuhl, Germany, 2022. Schloss Dagstuhl – Leibniz-Zentrum für
Informatik. doi:10.4230/LIPIcs.ESA.2022.86.

74 Walter Unger. On the k-colouring of circle-graphs. In Robert Cori and Martin Wirsing, editors,
STACS 88, pages 61–72, Berlin, Heidelberg, 1988. Springer. doi:10.1007/BFb0035832.

75 Walter Unger. The complexity of colouring circle graphs. In STACS 92: 9th Annual Symposium
on Theoretical Aspects of Computer Science Cachan, France, February 13–15, 1992 Proceedings
9, pages 389–400. Springer, 1992. doi:10.1007/3-540-55210-3_199.

76 V. G. Vizing. The chromatic class of a multigraph. Cybernetics, 1(3):32–41, May 1965.
doi:10.1007/BF01885700.

77 David Wärn. Partitioning permutations into monotone subsequences. Electron. J. Comb.,
28(3), 2021. doi:10.37236/10267.

78 David R Wood. Bounded-degree graphs have arbitrarily large queue-number. Discrete
Mathematics & Theoretical Computer Science, 10(1), 2008. doi:10.46298/dmtcs.434.

79 David R Wood. 2-layer graph drawings with bounded pathwidth. Journal of Graph Algorithms
and Applications, 27(9):843–851, November 2023. doi:10.7155/jgaa.00647.

80 Mihalis Yannakakis. Embedding planar graphs in four pages. Journal of Computer and System
Sciences, 38(1):36–67, February 1989. doi:10.1016/0022-0000(89)90032-9.

81 Mihalis Yannakakis. Planar graphs that need four pages. Journal of Combinatorial Theory,
Series B, 145:241–263, November 2020. doi:10.1016/j.jctb.2020.05.008.

STACS 2025

https://doi.org/10.1007/BF00563521
https://doi.org/10.1007/978-3-031-49272-3_10
https://doi.org/10.1007/978-3-031-49272-3_10
https://doi.org/10.1007/BF02773960
https://doi.org/10.1007/978-3-319-73915-1_17
https://doi.org/10.1007/978-3-319-73915-1_17
https://doi.org/10.1007/978-3-031-22203-0_25
https://doi.org/10.1142/S0218195904001433
https://doi.org/10.1016/j.jcta.2004.11.015
https://doi.org/10.1142/9789813272880_0179
https://doi.org/10.4230/LIPIcs.ESA.2022.86
https://doi.org/10.1007/BFb0035832
https://doi.org/10.1007/3-540-55210-3_199
https://doi.org/10.1007/BF01885700
https://doi.org/10.37236/10267
https://doi.org/10.46298/dmtcs.434
https://doi.org/10.7155/jgaa.00647
https://doi.org/10.1016/0022-0000(89)90032-9
https://doi.org/10.1016/j.jctb.2020.05.008

Sampling Unlabeled Chordal Graphs in
Expected Polynomial Time
Úrsula Hébert-Johnson #

University of California, Santa Barbara, CA, USA

Daniel Lokshtanov #

University of California, Santa Barbara, CA, USA

Abstract
We design an algorithm that generates an n-vertex unlabeled chordal graph uniformly at random in
expected polynomial time. Along the way, we develop the following two results: (1) an FPT algorithm
for counting and sampling labeled chordal graphs with a given automorphism π, parameterized
by the number of moved points of π, and (2) a proof that the probability that a random n-vertex
labeled chordal graph has a given automorphism π ∈ Sn is at most 1/2c max{µ2,n}, where µ is the
number of moved points of π and c is a constant. Our algorithm for sampling unlabeled chordal
graphs calls the aforementioned FPT algorithm as a black box with potentially large values of the
parameter µ, but the probability of calling this algorithm with a large value of µ is exponentially
small.

2012 ACM Subject Classification Theory of computation → Generating random combinatorial
structures; Theory of computation → Graph algorithms analysis

Keywords and phrases Chordal graphs, graph sampling, graph counting, unlabeled graphs

Digital Object Identifier 10.4230/LIPIcs.STACS.2025.46

Related Version Full Version: https://arxiv.org/abs/2501.05024

Funding Úrsula Hébert-Johnson: Supported by NSF grant CCF-2147094.

Acknowledgements We would like to thank Eric Vigoda for discussions that led to a concise proof
of an important step in the running time analysis.

1 Introduction

A graph is chordal if it has no induced cycles of length at least 4. The term was coined
by Gavril in 1972 [12], more than fifty years ago, but the notion of chordal graphs in fact
goes as far back as 1958 [13]. In the early papers, chordal graphs were referred to by other
names, such as triangulated graphs. By now, many structural results have been proved about
chordal graphs, and there are many algorithms that take a chordal graph as input. Thus it
would be useful to have an efficient algorithm for generating random chordal graphs, both
for the practical purpose of software testing, as well as the more mathematical purpose of
testing conjectures.

In [14], Hébert-Johnson et al. designed an algorithm that generates n-vertex labeled
chordal graphs uniformly at random. This algorithm runs in polynomial time, using at most
O(n7) arithmetic operations for the first sample and O(n4) arithmetic operations for each
subsequent sample. However, when discussing the performance of an algorithm that is being
tested, the correct output typically does not depend on the labeling of the vertices. If we
use a labeled-graph sampling algorithm to generate random test cases, then asymmetric
graphs will be given too much weight/probability compared to those that happen to have
many automorphisms. This naturally leads to the question of efficiently generating unlabeled
chordal graphs uniformly at random. In this paper, we present an algorithm that solves this
problem and runs in expected polynomial time.

© Úrsula Hébert-Johnson and Daniel Lokshtanov;
licensed under Creative Commons License CC-BY 4.0

42nd International Symposium on Theoretical Aspects of Computer Science (STACS 2025).
Editors: Olaf Beyersdorff, Michał Pilipczuk, Elaine Pimentel, and Nguyễn Kim Thắng;
Article No. 46; pp. 46:1–46:20

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:ursula@ucsb.edu
https://orcid.org/0000-0001-8615-1253
mailto:daniello@ucsb.edu
https://orcid.org/0000-0002-3166-9212
https://doi.org/10.4230/LIPIcs.STACS.2025.46
https://arxiv.org/abs/2501.05024
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

46:2 Sampling Unlabeled Chordal Graphs in Expected Polynomial Time

▶ Theorem 1. There is a randomized algorithm that given n ∈ N, generates a graph uniformly
at random from the set of all unlabeled chordal graphs on n vertices. This algorithm uses
O(n7) arithmetic operations in expectation.

It is worth mentioning the difference between the running times for labeled vs. unlabeled
chordal graph sampling. The sampling algorithm of Hébert-Johnson et al. generates a
random n-vertex labeled chordal graph in polynomial time, even in the worst case. However,
obtaining a worst-case polynomial-time algorithm for sampling unlabeled chordal graphs –
or an expected-polynomial-time counting algorithm for such graphs – appears to be very
difficult since these questions remain open even for general graphs. This is relevant because
the class of chordal graphs is known to be GI-complete. While there exist classes of graphs
(which we discuss below) for which efficient unlabeled sampling algorithms are known, we
are not aware of any GI-complete graph class with such an algorithm.

Our algorithm for sampling unlabeled chordal graphs builds upon an algorithm of Wormald
that generates n-vertex unlabeled graphs uniformly at random in expected time O(n2) [20].
This in turn builds upon a related algorithm by Dixon and Wilf [7] that solves the same
problem but assumes that the exact number of n-vertex unlabeled graphs has already been
computed. In [20], the algorithm of Wormald follows a somewhat similar structure but
removes that assumption. As mentioned above, the question of computing the exact number
of n-vertex unlabeled graphs in expected polynomial time remains open to this day.

It often happens that we wish to sample from a particular graph class (e.g., chordal
graphs). For unlabeled trees, there is a uniform sampling algorithm that runs in polynomial
time [19]. One can also count the exact number of unlabeled trees on n vertices in polynomial
time [17, A000055]. On the topic of counting, an algorithm for counting unlabeled k-trees is
presented in [9], but the running time is not stated. An expected-polynomial-time algorithm
for uniform sampling of 2-connected unlabeled planar graphs was presented by Bodirsky
et al. in 2005 [4], followed by the same result for connected unlabeled cubic planar graphs
in 2008 [6]. For the class of connected unlabeled bipartite permutation graphs, a uniform
sampling algorithm was designed by Saitoh et al. that runs in O(n) time [18].

Although extensive research has been done on the topic of labeled graph sampling
[5, 8, 10, 11], to the best of our knowledge, the literature on sampling unlabeled graphs from
a given graph class is relatively sparse. As is the case for chordal graphs, the corresponding
labeled sampling problem tends to be solved first for a given graph class, and then perhaps
one can address the problem of efficiently sampling unlabeled graphs from the same graph
class.

1.1 Methods
The sampling algorithm of Wormald [20] is based on the fact that unlabeled graphs correspond
to orbits of the following group action: the symmetric group Sn acts on the set of labeled
graphs by permuting the vertex labels. This correspondence follows from the Frobenius-
Burnside lemma. Therefore, to sample a random unlabeled graph, it is enough to sample a
random orbit of this group action.

To make this approach work for chordal graphs, we need two ingredients: (1) an algorithm
for counting and sampling labeled chordal graphs with a given automorphism π, and (2)
a proof that the probability that a random n-vertex labeled chordal graph has a given
automorphism π ∈ Sn is at most 1/2c max{µ2,n}, where µ is the number of moved points of π

and c is a constant.

Ú. Hébert-Johnson and D. Lokshtanov 46:3

For (1), we design an FPT (fixed-parameter tractable) counting algorithm that is param-
eterized by µ, the number of moved points of π. This algorithm uses O(27µn9) arithmetic
operations. Using the standard sampling-to-counting reduction of [15], we also obtain a
corresponding sampling algorithm with the same running time. Our main algorithm (for
sampling unlabeled chordal graphs) calls each of these FPT algorithms as a black box with
potentially large values of the parameter µ. Nevertheless, using the bound from (2), we are
able to show that the probability of using a large value of µ is exponentially small, so the
expected running time is not significantly affected.

To design the counting algorithm for (1), we rewrite each of the recurrences from the
algorithm of Hébert-Johnson et al., now carrying around information about the automorphism
π and its moved points. The original algorithm is a dynamic-programming algorithm in
which there is a constant number of types of vertices (X, L, etc.) in each graph that we
wish to count. In our updated version, we now keep track of the type of each vertex that is
moved by π.

To prove the bound for (2), we distinguish between the cases when µ is small and µ is
large (µ is either less than or greater than n

d log n , where d is a constant). When µ is small,
we use the fact that almost every chordal graph is a split graph [1], and we strengthen this
by showing that in fact, almost every chordal graph is a balanced split graph. For the case
of balanced split graphs, the argument is easy and is similar to the proof of the bound for
general graphs [16]. When µ is large, the argument is more complicated. We observe that
the vast majority of n-vertex labeled chordal graphs have maximum clique size close to n/2.
Along the way, we also use the fact that for every chordal graph G, there exists a PEO
(perfect elimination ordering) of G such that some maximum clique appears at the tail end
of that PEO.

2 Preliminaries

Let N be the set of natural numbers, not including 0. For n ∈ N, we use the notation
[n] := {1, 2, . . . , n}. For a graph G and vertex subsets S, T ⊆ V (G), we say S sees all of T if
T ⊆ N(S).

▶ Definition 2. Let A = {a1, . . . , ar} and B = {b1, . . . , br} be finite subsets of N such
that |A| = |B|, where the elements ai and bi are listed in increasing order. We define
ϕ(A, B) : A→ B as the bijection that maps ai to bi for all i ∈ [r].

2.1 Permutations and labeled graphs

For n ∈ N, let Sn denote the group of all permutations of [n]. For a permutation π ∈ Sn,
we define Mπ := {i ∈ [n] : π(i) ̸= i} to be the set of points moved by π. For n ∈ N,
[n]0 := {0, 2, 3, . . . , n} denotes the set of all possible values of |Mπ| for π ∈ Sn.

Suppose π ∈ Sn, C ⊆ [n]. We write π(C) := {π(i) : i ∈ C} to denote the image of C

under π. We say C is invariant under π if π(i) ∈ C for all i ∈ C. For a set C that is invariant
under π, we write π|C to denote the permutation π restricted to the domain C.

A labeled graph is a pair G = (V, E), where the vertex set V is a finite subset of N and
the edge set E is a set of two-element subsets of V . For a permutation π ∈ Sn and a labeled
graph G such that V (G) ⊆ [n] is invariant under π, we say π|V (G) is an automorphism of G

if for all u, v ∈ V (G), u and v are adjacent if and only if π(u) and π(v) are adjacent.

STACS 2025

46:4 Sampling Unlabeled Chordal Graphs in Expected Polynomial Time

2.2 Chordal graphs and related notions
A vertex v in a graph G is simplicial if its neighborhood N(v) is a clique. A perfect elimination
ordering (PEO) of a graph G is an ordering v1, . . . , vn of the vertices of G such that for
all i ∈ [n], vi is simplicial in the subgraph induced by the vertices vi, . . . , vn. A graph is
chordal if and only if it has a perfect elimination ordering [3]. The following two lemmas are
well-known facts about chordal graphs. The proof of the first can be found in [3].

▶ Lemma 3. Every chordal graph G contains a simplicial vertex. If G is not a complete
graph, then G contains two non-adjacent simplicial vertices.

▶ Lemma 4. A chordal graph G on n vertices has at most n maximal cliques.

Proof. Let C be a maximal clique in G, and let vi be the leftmost vertex of C in a
given perfect elimination ordering v1, . . . , vn of G. We claim that C is equal to the closed
neighborhood to the right of vi, i.e., C = N [vi] ∩ {vi, . . . , vn}. It is clear that C is contained
in N [vi] ∩ {vi, . . . , vn} since vi has no other neighbors to its right, so we indeed have
C = N [vi] ∩ {vi, . . . , vn} by maximality of C. Therefore, there are at most n maximal
cliques. ◀

▶ Definition 5. Let G1, G2 be two graphs, and suppose C := V (G1) ∩ V (G2) is a clique in
both G1 and G2. When we say we glue G1 and G2 together at C to obtain G, this means
G is the union of G1 and G2: the vertex set is V (G) = V (G1) ∪ V (G2), and the edge set is
E(G) = E(G1) ∪ E(G2).

As is shown in [14], if G1 and G2 are both chordal, then the resulting graph G is chordal.

2.3 Evaporation sequences
Our algorithm for counting the number of labeled chordal graphs with a given automorphism
will use the notion of evaporation sequences from [14].

Suppose we are given a chordal graph G and a clique X ⊆ V (G). The evaporation
sequence of G with exception set X is defined as follows: If X = V (G), then the evaporation
sequence of G is the empty sequence. If X ⊊ V (G), then let L̃1 be the set of all simplicial
vertices in G, and let L1 = L̃1 \X. Suppose L2, . . . , Lt is the evaporation sequence of G \L1
(with exception set X). Then L1, L2, . . . , Lt is the evaporation sequence of G. As is shown
in [14], the fact that X is a clique implies that all vertices outside of X eventually evaporate,
so this is well-defined.

If the evaporation sequence L1, L2, . . . , Lt of G has length t, then we say G evaporates at
time t with exception set X, and t is called the evaporation time. We define LG(X) := Lt

to be the last set in the evaporation sequence of G, and we let LG(X) = ∅ if the sequence
is empty. Similarly, we define the evaporation time of a vertex subset. Suppose G has
evaporation sequence L1, L2, . . . , Lt with exception set X, and suppose S ⊆ V (G) \ X is
a nonempty vertex subset. Let tS be the largest index i such that Li ∩ S ̸= ∅. We say S

evaporates at time tS in G with exception set X.

3 Sampling unlabeled chordal graphs

In [20], Wormald presented an algorithm that generates an n-vertex unlabeled graph uniformly
at random in expected time O(n2). In this paper, we achieve a similar result for chordal
graphs:

Ú. Hébert-Johnson and D. Lokshtanov 46:5

▶ Theorem 1. There is a randomized algorithm that given n ∈ N, generates a graph uniformly
at random from the set of all unlabeled chordal graphs on n vertices. This algorithm uses
O(n7) arithmetic operations in expectation.

The sampling algorithm of Wormald makes use of the fact that unlabeled graphs corre-
spond to orbits of a particular group action. Since our algorithm will follow a similar outline,
we begin by discussing some of the ideas behind the algorithm of Wormald.

Suppose we have been given n ∈ N as input, and let Ω be the set of all labeled graphs
with vertex set [n]. The symmetric group Sn acts on Ω in the following way: For each π ∈ Sn

and G ∈ Ω, π ·G is the graph that results from permuting the vertex labels of G according
to π. The orbits of Ω under the action of Sn are the isomorphism classes of labeled graphs,
each of which corresponds to an unlabeled graph. Let

Γ = {(π, G) ∈ Sn × Ω : π is an automorphism of G}.

Suppose we fix an n-vertex unlabeled graph H, and let the corresponding isomorphism class
of labeled graphs be H. As is shown in [20], the number of pairs (π, G) ∈ Γ such that G ∈ H
is equal to |Sn| = n!. This follows from the Frobenius-Burnside lemma. Therefore, if we
sample a random pair (π, G) ∈ Γ uniformly at random, and then we forget the labels on the
graph G, this amounts to sampling an n-vertex unlabeled graph uniformly at random.

In the case of chordal graphs, the same statements hold true. Let Ωchord be the set of all
labeled chordal graphs with vertex set [n]. The symmetric group Sn acts on Ωchord in the
same way as above, by permuting the vertex labels. The set of orbits of this group action
corresponds to the set of unlabeled chordal graphs. Let

Γchord = {(π, G) ∈ Sn × Ωchord : π is an automorphism of G}.

Let Hc be an unlabeled chordal graph, and let Hc be the corresponding isomorphism class of
labeled graphs. Applying the Frobenius-Burnside lemma to the orbit corresponding to Hc

shows that the number of pairs (π, G) ∈ Γchord such that G ∈ Hc is equal to n!.
In [20], Wormald describes an algorithm for sampling a random pair (π, G) ∈ Γ in order

to sample a random unlabeled graph. The same outline can be used to sample a random
pair (π, G) ∈ Γchord. However, there are two key points where some difficulty arises. First
of all, in one of the steps of the algorithm that samples from Γ, it is necessary to count
the number of n-vertex labeled graphs with a given automorphism (and sample from the
set of such graphs). This is easy to do for general graphs but becomes more complicated
for chordal graphs (see Section 4). Second, the algorithm of Wormald uses the fact that
the number of labeled graphs with a given automorphism π is at most 2(n

2)−µn/2+µ(µ+2)/4,
where µ = |Mπ| is the number of moved points of π. To transform this into an algorithm for
sampling unlabeled chordal graphs, it is necessary to prove similar bounds on the number
of labeled chordal graphs with a given automorphism. These will be the bounds Bµ in our
algorithm.

3.1 Algorithm for sampling unlabeled chordal graphs
Let Count_Chordal_Lab(n) stand for the counting algorithm in [14] that computes the
number of n-vertex labeled chordal graphs. In the full version of the paper, we prove the
following two theorems.

▶ Theorem 6. There is a deterministic algorithm that given n ∈ N and π ∈ Sn, computes
the number of labeled chordal graphs with vertex set [n] for which π is an automorphism.
This algorithm uses O(27µn9) arithmetic operations, where µ = |Mπ|.

STACS 2025

46:6 Sampling Unlabeled Chordal Graphs in Expected Polynomial Time

▶ Theorem 7. There is a randomized algorithm that given n ∈ N and π ∈ Sn, generates a
graph uniformly at random from the set of all labeled chordal graphs with vertex set [n] for
which π is an automorphism. This algorithm uses O(27µn9) arithmetic operations, where
µ = |Mπ|.

See Section 4 for the details of the counting algorithm of Theorem 6 along with
some intuition behind the proof of correctness. In our algorithm for sampling unlabeled
chordal graphs, Count_Chordal_Lab(n, π) stands for the algorithm of Theorem 6 and
Sample_Chordal_Lab(n, π) stands for the algorithm of Theorem 7.

Recall that [n]0 = {0, 2, 3, . . . , n}. For µ ∈ [n]0, let Rµ := {π ∈ Sn : |Mπ| = µ} be the
set of permutations with exactly µ moved points. For π ∈ Sn, let Fix(π) denote the set of
n-vertex labeled chordal graphs G such that π is an automorphism of G. To follow the same
approach as the algorithm of Wormald, for each µ ∈ [n]0, we need an upper bound Bµ that
satisfies Bµ ≥ |Rµ||Fix(π)| for all π ∈ Rµ. Let B0 be the number of n-vertex labeled chordal
graphs, which is exactly equal to |R0||Fix(id)|. For 2 ≤ µ ≤ n

200 log n , let

Bµ =
(

B0(9/10)n + 2n22n2/9 + n · 2n2/4+n/2
)

nµµ!, (1)

and for n
200 log n < µ ≤ n, let

Bµ = n2n+12n2/4−f(µ)nµµ!, (2)

where f(µ) = µ2

900 −
µ
10 . In Section 3.2, we will prove that we indeed have Bµ ≥ |Rµ||Fix(π)|

for all π ∈ Rµ, when n is sufficiently large. Let B =
∑

µ∈[n]0
Bµ.

Our algorithm for sampling a random n-vertex unlabeled chordal graph is given in
Algorithm 1. The general idea is as follows. For µ ∈ [n]0, let Γµ = {(π, G) ∈ Γchord : |Mπ| =
µ}. We choose µ such that the probability of each value of µ is Bµ/B, which is approximately
equal to Γµ/Γchord. (We do not know how to efficiently compute the exact value of Γµ/Γchord
since we do not know the exact number of unlabeled chordal graphs.) Since Bµ/B is not
exactly equal to Γµ/Γchord, we adjust for this by restarting with a certain probability in
Step 11. We then proceed to select a random pair (π, G) ∈ Γµ, and we output the graph G

without labels.

Algorithm 1 Unlabeled chordal graph sampler.

1: procedure Sample_Chordal_Unlabeled(n)
2: ▷ Setup
3: B0 ← Count_Chordal_Lab(n)
4: Let Bµ be given by Equation (1) for 2 ≤ µ ≤ n

200 log n

5: Let Bµ be given by Equation (2) for n
200 log n < µ ≤ n

6: B ←
∑

µ∈[n]0
Bµ

7:
8: ▷ Main algorithm
9: Choose µ ∈ [n]0 at random such that µ = i with probability Bi/B for each i ∈ [n]0

10: Choose π ∈ Rµ uniformly at random
11: Restart (go back to Step 9) with probability

1− |Rµ| ·Count_Chordal_Lab(n, π)/Bµ

12: G← Sample_Chordal_Lab(n, π)
13: Forget the labels on the vertices of G

14: return G

15: end procedure

Ú. Hébert-Johnson and D. Lokshtanov 46:7

Step 10 can easily be implemented in O(n) time in the following way. If µ = 0, let
π = id. For µ ≥ 2, we can repeatedly choose a random permutation of [µ] until we obtain a
derangement. The expected number of trials for this is a constant (see [20]).

In Step 11, to compute |Rµ|, we observe that |R0| = 1 and |Rµ| = !µ
(

n
µ

)
for µ ≥ 2. Here !µ

is the number of derangements of µ. We compute !µ using the formula !m = m!
∑m

i=0(−1)i/i!
for m ∈ N, which can be derived using the inclusion-exclusion principle.

3.2 Correctness of Algorithm 1
The correctness of Count_Chordal_Lab(n, π) and Sample_Chordal_Lab(n, π) is
proved in the full version of the paper.

We need to show that the output graph is chosen uniformly at random. One “iteration”
refers to one run of Steps 9 to 11 or 9 to 14. In a given iteration, we say the pair (π, G) was
“chosen” if π was chosen from Rµ and G was chosen by Sample_Chordal_Lab(n, π). We
claim that for all (π, G) ∈ Γchord, in any given iteration, the probability that (π, G) is chosen
is 1/B. Indeed, this probability is equal to

Bµ

B

1
|Rµ|

|Rµ||Fix(π)|
Bµ

1
|Fix(π)| = 1

B
,

where µ = |Mπ|, since the probability of choosing G in Step 12 is 1/|Fix(π)|. Therefore, we
output all n-vertex unlabeled chordal graphs with equal probability.

Next, we need to show that Bµ ≥ |Rµ||Fix(π)| for all π ∈ Rµ to verify that the probability
|Rµ||Fix(π)|/Bµ in Step 11 is at most 1. When µ = 0 this is an equality, so suppose µ ≥ 2.
Clearly |Rµ| ≤ nµµ!, so we just need to prove that the number of n-vertex labeled chordal
graphs with automorphism π is at most Bµ/(nµµ!) for all π ∈ Sn with µ moved points.

In the case when Bµ is defined according to Equation (2), this follows from Theorem 8.
The proof this theorem can be found in the full version of the paper. (The bound in Theorem 8
is in fact true for all values of µ – the reason why we define Bµ differently for smaller values
of µ will become clear when we discuss the running time in Section 3.3.)

▶ Theorem 8. Let n ∈ N, π ∈ Sn, and let µ = |Mπ|. The number of labeled chordal graphs
with vertex set [n] for which π is an automorphism is at most

n2n+12n2/4−f(µ),

where f(µ) = µ2

900 −
µ
10 .

For the other case, suppose 2 ≤ µ ≤ n
200 log n , and suppose π ∈ Sn is a permutation with

µ moved points. We need to show that the number of n-vertex labeled chordal graphs with
automorphism π is at most Bµ/(nµµ!). We begin by reducing to the case of split graphs. A
split graph is a graph whose vertex set can be partitioned into a clique and an independent
set, with arbitrary edges between the two parts. It is easy to see that every split graph is
chordal. Furthermore, the following result by Bender et al. [1] shows that a random n-vertex
labeled chordal graph is a split graph with probability 1− o(1).

▶ Proposition 9 (Bender et al. [1]). If α >
√

3/2, n is sufficiently large, and G is a random
n-vertex labeled chordal graph, then

Pr(G is a split graph) > 1− αn.

STACS 2025

46:8 Sampling Unlabeled Chordal Graphs in Expected Polynomial Time

Applying this proposition with α = 9
10 tells us that the number of n-vertex labeled chordal

graphs that are not split is at most B0
(9

10
)n. To bound the number of n-vertex labeled split

graphs with automorphism π, we consider two cases: balanced split graphs and unbalanced
split graphs. We say a partition of the vertex set of a split graph G is a split partition if it
partitions G into a clique and an independent set; i.e., a split partition is a partition that
demonstrates that G is split. We denote a split partition that consists of the clique C and
the independent set I by the ordered pair (C, I). We say an n-vertex split graph is balanced
if |C| ≥ n

3 and |I| ≥ n
3 for every split partition (C, I) of G. It is easy to bound the number

of unbalanced split graph as follows.

▶ Lemma 10. The number of labeled split graphs on n vertices that are not balanced is at
most 2n22n2/9.

Proof. Suppose (C, I) is a partition of [n] into two parts such that |C| < n
3 or |I| < n

3 . The
number of labeled split graphs with this particular split partition is at most 2|I||C| ≤ 2 n

3 · 2n
3 =

22n2/9. Therefore, the number of unbalanced labeled split graphs on n vertices is at most
2n22n2/9 since there are at most 2n possible partitions. ◀

The following lemma will be useful for bounding the number of balanced split graphs.

▶ Lemma 11. Let π ∈ Sn, and let G be an n-vertex labeled split graph. If π is an automor-
phism of G, then there exists a split partition (C, I) of G such that C and I are invariant
under π.

Proof. Let Ĉ be the set of vertices that belong to the clique in every split partition of G, let
Î be the set of vertices that belong to the independent set in every split partition of G, and
let Q̂ = V (G) \ (Ĉ ∪ Î). By Observation 7.3 in [14], every vertex in Q̂ is adjacent to every
vertex in Ĉ and is non-adjacent to every vertex in Î. By Lemma 7.4 in [14], Q̂ is either a
clique or an independent set. Suppose π is an automorphism of G. If Q̂ is a clique, then the
split partition (Ĉ ∪ Q̂, Î) has the desired property. If Q̂ is an independent set, then the split
partition (Ĉ, Î ∪ Q̂) has the desired property. ◀

▶ Lemma 12. Let π ∈ Sn, and suppose |Mπ| ≥ 2. The number of balanced labeled split
graphs G on n vertices such that π is an automorphism of G is at most

n · 2n2/4+n/2.

Proof. Suppose (C, I) is a partition of [n] into two parts. Let i = |I| and c = |C|. The
number of labeled split graphs with this particular split partition is 2ic. Therefore, the
number of labeled split graphs with automorphism π for which (C, I) has the property from
Lemma 11 is at most 2ic. Let Z(C,I) be the number of such graphs. Whenever two vertices
u, v ∈ I (resp. C) belong to the same cycle in the cycle decomposition of π, u and v must
have the same relationship as each other to each of the vertices in C (resp. I). Therefore,
we in fact have an upper bound of max{2(i−1)c, 2i(c−1)} on Z(C,I), since π has at least two
moved points. If i ≥ n

3 and c ≥ n
3 , then we have max{2(i−1)c, 2i(c−1)} ≤ 2n2/4−n/2.

By Lemma 11, every balanced labeled split graph on n vertices with automorphism π

has a split partition (C, I) such that C and I are invariant under π. Furthermore, this split
partition is balanced (i.e., both parts have size at least n

3). Therefore, the number of balanced
labeled split graphs on n vertices with automorphism π is at most∑

⌈ n
3 ⌉≤i≤⌊ 2n

3 ⌋

2n · 2n2/4−n/2 ≤ n · 2n2/4+n/2

since the number of partitions (C, I) with |I| = i is certainly at most 2n. ◀

Ú. Hébert-Johnson and D. Lokshtanov 46:9

Putting together Proposition 9 and Lemmas 10 and 12, we can see that(
B0(9/10)n + 2n22n2/9 + n · 2n2/4+n/2

)
nµµ!

is an upper bound on |Rµ||Fix(π)| when n is sufficiently large.
Let N0 be the cutoff such that this works for n ≥ N0. To be precise, when implementing

this algorithm, we would solve the problem by brute force if n < N0 (by generating all
possible n-vertex chordal graphs and then selecting one at random), and we would run
Algorithm 1 as written if n ≥ N0.

3.3 Running time of Algorithm 1
The running time of Steps 1-6 is O(n7) arithmetic operations since that is the running time
of Count_Chordal_Lab(n). In this section, we will show that the rest of the algorithm
uses only O(n7) arithmetic operations in expectation.

If we choose µ = 0 in Step 9 of Algorithm 1, then the algorithm is guaranteed to terminate
in that iteration. Thus the expected number of iterations is at most B/B0. Let T be the
expected running time of Algorithm 1 after completing Step 6 (this is where we choose µ at
random and the loop begins). In Lemma 13, we show that E[T] is at most the product of
B/B0 and the expected running time of one iteration.

Let N be the number of iterations of Algorithm 1, and let Tj be the time spent in
iteration j for each j ∈ [N]. We have T =

∑N
j=1 Tj .

▶ Lemma 13. We have E[T] ≤ B
B0

E[T1].

Proof. Clearly E[T] is finite since the expected number of iterations is finite and the
procedures Count_Chordal_Lab(n, π) and Sample_Chordal_Lab(n, π) have worst-
case running time bounds. Therefore, we can solve for E[T] in the following way.

The steps that we run in one iteration (Steps 9-14) do not depend on j – they are
always the same, regardless of how many iterations have happened so far. Thus we have
E
[∑N

j=2 Tj

∣∣N > 1
]

= E[T], which implies E[T | N > 1] = E[T1 | N > 1] + E[T]. Therefore,
we have

E[T] = E[T | N = 1] Pr(N = 1) + E[T | N > 1] Pr(N > 1)
= E[T1 | N = 1] Pr(N = 1) +

(
E[T1 | N > 1] + E[T]

)
· Pr(N > 1)

=⇒ E[T](1− Pr(N > 1)) = E[T1 | N = 1] Pr(N = 1) + E[T1 | N > 1] Pr(N > 1)
= E[T1]

=⇒ E[T] = E[T1]
Pr(N = 1) ≤

B

B0
E[T1]. ◀

For µ ∈ [n]0, let T (n, µ) be an upper bound on the time it takes to run one iter-
ation, assuming we have chosen this particular value of µ in Step 9. By the running
time of Count_Chordal_Lab(n, π) and Sample_Chordal_Lab(n, π), we can assume
T (n, µ) = O(27µn9). We have

E[T1] =
∑

µ∈[n]0

Bµ

B
T (n, µ).

STACS 2025

46:10 Sampling Unlabeled Chordal Graphs in Expected Polynomial Time

To prove a bound on E[T1], we will start by proving a bound on Bµ/B for all µ ∈ [n]0. Since
B0 ≤ B, it is sufficient to prove a bound on Bµ/B0 for all µ ∈ [n]0. The following lemma
gives us a lower bound on B0.

▶ Lemma 14. For n ≥ 2, the number of n-vertex labeled chordal graphs is at least

2n2n2/4

n2 .

Proof. It is enough to just consider n-vertex labeled split graphs with a split partition (C, I)
such that |C| = ⌊n

2 ⌋. Since
(

n
⌊ n

2 ⌋
)
≥ 2n/n for n ≥ 2, the number of such graphs is at least

(
n

⌊n
2 ⌋

)
2n2/4

n
≥ 2n2n2/4

n2 .

We divide by n in the first expression since each split graph can have up to n distinct split
partitions in which C is of a given size [2]. ◀

▶ Lemma 15. Suppose n ≥ 13. If 2 ≤ µ ≤ n
200 log n , then

Bµ

B0
≤ 3

n16µ
.

Proof. Let B
(1)
µ , B

(2)
µ , and B

(3)
µ be the three terms that are added together in Equation (1),

in order, so that Bµ =
(

B
(1)
µ + B

(2)
µ + B

(3)
µ

)
nµµ!. We have

B
(1)
µ nµµ!

B0
=
(

9
10

)n

nµµ!,

and we claim that this is at most 1/n16µ. Since µ! ≤ nµ, it is sufficient to show n18µ ≤ (10/9)n,
which is true when µ ≤ n

200 log n .
For the next term, by Lemma 14 we have

B
(2)
µ nµµ!

B0
≤ n22−n2/36nµµ!.

To see that this is at most 1/n16µ, it is sufficient to show n19/200 ≤ 2n/36 since µ ≤ n
200 . This

is indeed true for n ≥ 13.
For the third term, by Lemma 14 we have

B
(3)
µ nµµ!

B0
≤ n32−n/2nµµ!.

To see that this is at most 1/n16µ, it is sufficient to show n20µ ≤ 2n/2, which is true when
µ ≤ n

40 log n . Adding together these three terms, we obtain Bµ/B0 ≤ 3/n16µ. ◀

▶ Lemma 16. For sufficiently large n, if n
200 log n < µ ≤ n, then

Bµ

B0
≤ 1

n16µ
.

Ú. Hébert-Johnson and D. Lokshtanov 46:11

Proof. Lemma 14 implies B0 ≥ 2n2/4 for n ≥ 4, so we have

Bµ

B0
≤ n2n+12−f(µ)nµµ!,

where f(µ) = µ2

900 −
µ
10 . We claim that this expression is at most 1/n16µ. Since µ! ≤ nµ,

it is sufficient to show n2n+1n18µ ≤ 2f(µ). When n is sufficiently large,1 we have log3 n ≤
1

2002·1800
n2

2n+1 . Since µ ≥ n
200 log n , this implies

n2n+1 ≤ 2µ2/1800. (3)

When n is sufficiently large,2 we also have n ≥ 18 · 900 · 200 log2 n + 90 · 200 log n. Since
µ ≥ n

200 log n , this implies

n18µ ≤ 2µ2/1800−µ/10. (4)

Multiplying Equations (3) and (4) gives us the desired bound of n2n+1n18µ ≤ 2f(µ).
◀

By Lemmas 15 and 16, the above summation for E[T1] is at most T (n, 0) + O(1) since
T (n, µ) is certainly at most O(n16µ). For an iteration in which we have chosen µ = 0, when
counting and sampling n-vertex labeled chordal graphs with automorphism π = id, we can
simply run the counting and sampling algorithms of [14], rather than passing in π = id as an
input. Thus the expected running time E[T1] of one iteration is at most O(n7) arithmetic
operations. Lemmas 15 and 16 also immediately give us a bound on B/B0, since we have

B

B0
= B0

B0
+ B2

B0
+ . . . + Bn

B0
= O(1).

Therefore, by Lemma 13, the overall running time is at most O(n7) arithmetic operations in
expectation.

4 Counting labeled chordal graphs with a given automorphism

In this section, we describe the algorithm for Count_Chordal_Lab(n, π), which counts
the number of labeled chordal graphs with a given automorphism. In the full version of
the paper, we prove correctness, analyze the running time, and derive the corresponding
sampling algorithm (Theorem 7).

▶ Theorem 6. There is a deterministic algorithm that given n ∈ N and π ∈ Sn, computes
the number of labeled chordal graphs with vertex set [n] for which π is an automorphism.
This algorithm uses O(27µn9) arithmetic operations, where µ = |Mπ|.

There is a known dynamic-programming algorithm for computing the number n-vertex
labeled chordal graphs that uses O(n7) arithmetic operations, if we do not require the graphs
to have a particular automorphism [14]. Our algorithm is closely based on that one, but
we add more arguments and more details to each of the recurrences to keep track of the
behavior of the automorphism. As was done in [14], we evaluate the recurrences top-down
using memoization.

1 This holds for n ≥ 2.6 · 105.
2 This holds for n ≥ 3.3 · 109.

STACS 2025

46:12 Sampling Unlabeled Chordal Graphs in Expected Polynomial Time

4.1 Reducing from counting chordal graphs to counting connected
chordal graphs

For k ∈ N, let a(k) denote the number of labeled chordal graphs with vertex set [k], and
let c(k) denote the number of connected labeled chordal graphs with vertex set [k]. The
algorithm of [14] begins by reducing from counting chordal graphs to counting connected
chordal graphs via the following recurrence, which appears as Lemma 3.13 in [14]. (We omit
the “ω-colorable” requirement since we will not need that here.)

▶ Lemma 17 ([14]). The number of labeled chordal graphs with vertex set [k] is given by

a(k) =
k∑

k′=1

(
k − 1
k′ − 1

)
c(k′)a(k − k′)

for all k ∈ N.

Here k′ stands for the number of vertices in the connected component that contains
the label 1. The remaining connected components have a total of k − k′ vertices. Since
this recurrence is relatively simple, most of the difficulty in the algorithm of [14] lies in the
recurrences for counting connected chordal graphs. However, when counting graphs with a
given automorphism, the step of reducing to connected graphs is already quite a bit more
involved.

Suppose we are given n ∈ N and π ∈ Sn as input. From now on, whenever we refer to n

or π, we mean these particular values from the input.
We will first define a(k, p, M) and c(k, p, M), which are variations of a(k) and c(k) that

only count graphs for which πp|V (G) is an automorphism (see Definition 18). Here πp stands
for π to the power p, i.e., the permutation that arises from applying π a total of p times.
The reason for raising π to a power will be apparent in the recurrence for a(k, p, M). In the
initial, highest-level recursive call, we will have p = 1 and thus πp = π.

In [14], when counting the number of possibilities for a subgraph of size k′ (for example,
a connected component), the authors essentially relabel that subgraph to have vertex set [k′],
so that one can count the number of possibilities using, for example, c(k′). In our algorithm,
we want to relabel the vertices of each subgraph in a similar way. However, this time, we do
not relabel the vertices that are moved by π. This ensures that the automorphism in each
later recursive call will still be π, or a permutation closely related to π.

As a consequence, the vertex sets of the subgraphs that we wish to count become slightly
more complicated. For example, suppose we wish to count the number of possibilities for
a 5-vertex subgraph that originally contains the moved vertices 2, 8, 9 ∈ Mπ. Since we do
not relabel the moved vertices, the resulting vertex set after relabeling is {1, 2, 3, 8, 9} rather
than {1, 2, 3, 4, 5}. More formally, suppose we have been given k ∈ N and M ⊆Mπ, where
|M | ≤ k. Let V be the set of the first k − |M | natural numbers in N \Mπ. We define
Vk,M := V ∪M . For example, if k = 5 and M = Mπ = {2, 8, 9}, then Vk,M = {1, 2, 3, 8, 9}.
Intuitively, Vk,m is the label set of size k whose intersection with Mπ is M and that otherwise
contains labels that are as small as possible.

For π̂ ∈ Sn and M ⊆ [n], recall that M is invariant under π̂ if π̂(i) ∈ M for all i ∈ M .
For M ′, M ⊆ [n], we write M ′ ⊆π̂ M to indicate that M ′ ⊆M and M ′ is invariant under π̂.
Intuitively, M ′ is a subset of M that respects the cycles of π̂ by taking all or nothing of each
cycle.

▶ Definition 18. Suppose k, p ∈ [n] and suppose M ⊆πp Mπ, where |M | ≤ k. Let a(k, p, M)
(resp. c(k, p, M)) denote the number of labeled chordal graphs (resp. connected labeled chordal
graphs) with vertex set Vk,M for which πp|V (G) is an automorphism.

Ú. Hébert-Johnson and D. Lokshtanov 46:13

Our algorithm returns a(n, 1, Mπ). This is precisely the number of labeled chordal graphs
with vertex set [n] and automorphism π since Vn,Mπ

= [n].
Suppose we have been given fixed values of the arguments k, p, M of a(k, p, M). Let

s be the smallest label in the vertex set Vk,M . For k′ ∈ [k], let Pk′ be the family of sets
M ′ ⊆πp M such that |M | − k + k′ ≤ |M ′| ≤ k′ and such that the following condition holds:
if s ∈M , then s ∈M ′, and otherwise, |M ′| ≤ k′ − 1. This last condition will ensure that s

belongs to the connected component of size k′ in the recurrence for a(k, p, M).
Suppose C ⊆ [n], σ ∈ Sn. For an element i ∈ C, we say the period of i with respect to

(C, σ) is the smallest positive integer j such that σj(i) ∈ C. Let Q be the family of sets
C ⊆M such that all elements of C have the same period j ≥ 2 with respect to (C, πp), and
such that s ∈ C. For a set C ∈ Q, we write pC to denote the period of the elements of C

(with respect to (C, πp)), and we let Cσ := C ∪ σ(C) ∪ · · · ∪ σpC −1(C) denote the union of
the sets that C is mapped to by powers of σ, where σ = πp.

To compute a(k, p, M), we use the following recurrence. The dot in front of the curly
braces denotes multiplication. Note that we have |M ′| ≤ k′ and |M \M ′| ≤ k − k′ by the
definition of Pk′ .

▶ Lemma 19. Let k, p ∈ [n] and suppose M ⊆πp Mπ, where |M | ≤ k. We have

a(k, p, M) =
∑

1≤k′≤k
M ′∈Pk′

c(k′, p, M ′)a(k − k′, p, M \M ′) ·
{(

k−|M |
k′−|M ′|

)
if s ∈M(

k−1−|M |
k′−1−|M ′|

)
otherwise

+
∑
C∈Q

c(|C|, p · pC , C)a(k − pC |C|, p, M \ Cπp).

For some intuition, suppose G is a graph counted by a(k, p, M), and let C be the connected
component of G that contains s. The first line of the recurrence for a(k, p, M) covers the case
when C is invariant under πp. This case is analogous to Lemma 17. In the first summation,
k′ stands for |C| and M ′ stands for the set of vertices in C that can be moved by πp. If
s ∈M , then in addition to the vertices in M ′, we need to choose k′− |M ′| additional vertices
for C so that |C| = k′. For these, we must choose non-moved vertices, so there are k − |M |
possible vertices to choose from. If s /∈M , then we subtract 1 from each of the numbers in
the binomial coefficient since we already know that s is a non-moved vertex in C.

The second line covers the case when C is not invariant under πp, which means all of
C is mapped to some other connected component of G by πp. In this case, we have pC

components of size |C| that are all isomorphic to C, and the rest of the graph has k − pC |C|
vertices. We do not need a binomial coefficient in this case because all of the vertices in
C are moved. There are c(|C|, p · pC , C) possibilities for the edges of C since πp·pC is an
automorphism of C. As an example, suppose p = 1. If we apply πp = π to the vertices of
C a total of pC times, then the image πpC (C) is equal to C, although these two sets might
not match up pointwise. To ensure that the image πpC (C) matches up with the edges of
C, we require that πpC is an automorphism of C. This is why we need the argument p in
a(k, p, M) and c(k, p, M).

Note that for a graph G counted by a(k, p, M), we have Mπp ∩ V (G) ⊆Mπ ∩ V (G) ⊆M

since V (G) = Vk,M . This means no vertex in V (G) \M is moved by πp, so we are free to
relabel these vertices in the proof of Lemma 19 without changing the automorphism. In the
initial recursive call a(n, 1, Mπ), we have p = 1 and M = Mπ, so Mπp ∩ V (G) = M . Later
on in the algorithm, it is possible that some vertices in M are not actually moved by πp. For
example, in the previous paragraph, it could happen that πp·pC is the identity on C (and

STACS 2025

46:14 Sampling Unlabeled Chordal Graphs in Expected Polynomial Time

then p · pC becomes the new value of p). However, we always have M ⊆Mπ by the definition
of a(k, p, M), so if |Mπ| = µ, then |M | ≤ µ. This fact will be useful for the running time
analysis.

The proof of Lemma 19, along with the proofs of all of the following recurrences, can be
found in the full version of the paper.

4.2 Recurrences for counting connected chordal graphs
To compute c(k, p, M), we will define various counter functions that are analogous to those
in [14]. First, we recall the counter functions from [14]. We refer to functions 1-4 in
Definition 20 as g-functions, and we refer to the others as f -functions. See Figure 1 in [14]
for an illustration of all of these functions.

▶ Definition 20 ([14]). The following functions count various subclasses of chordal graphs.
The arguments t, x, ℓ, k, z are nonnegative integers, where t ≤ n, z ≤ n, x + k ≤ n for
g-functions, and x + ℓ + k ≤ n for f -functions. These also satisfy the domain requirements
listed below.
1. g(t, x, k, z) is the number of labeled connected chordal graphs G with vertex set [x + k]

that evaporate in time at most t with exception set X := [x], where X is a clique, with the
following property: every connected component of G \X (if any) has at least one neighbor
in X \ [z]. Domain: t ≥ 0, x ≥ 1, z < x.

2. g̃(t, x, k, z) is the same as g(t, x, k, z), except every connected component of G \ X (if
any) evaporates at time exactly t in G. Note: A graph with V (G) = X would be counted
because in that case, g̃ is the same as g. Domain: t ≥ 1, x ≥ 1, z < x.

3. g̃p(t, x, k, z) is the same as g̃(t, x, k, z), except no connected component of G \X sees all
of X. Domain: t ≥ 1, x ≥ 1, z < x.

4. g̃1(t, x, k) and g̃≥2(t, x, k) are the same as g̃(t, x, k, z), except every connected component
of G \X sees all of X (hence we no longer require every component of G \X to have
a neighbor in X \ [z]), and furthermore, for g̃1 we require that G \ X has exactly one
connected component, and for g̃≥2 we require that G \X has at least two components.
Domain for g̃1: t ≥ 1, x ≥ 0. Domain for g̃≥2: t ≥ 1, x ≥ 1.

5. f(t, x, ℓ, k) is the number of labeled connected chordal graphs G with vertex set [x + ℓ + k]
that evaporate at time exactly t with exception set X := [x], such that G \X is connected,
LG(X) = {x + 1, . . . , x + ℓ}, and X ∪ LG(X) is a clique. Domain: t ≥ 1, x ≥ 0, ℓ ≥ 1.

6. f̃(t, x, ℓ, k) is the same as f(t, x, ℓ, k), except every connected component of G\(X∪LG(X))
evaporates at time exactly t− 1 in G, and there exists at least one such component, i.e.,
X ∪ LG(X) ⊊ V (G). Domain: t ≥ 2, x ≥ 0, ℓ ≥ 1.

7. f̃p(t, x, ℓ, k) is the same as f̃(t, x, ℓ, k), except no connected component of G\ (X∪LG(X))
sees all of X ∪ LG(X). Domain: t ≥ 2, x ≥ 0, ℓ ≥ 1.

8. f̃p(t, x, ℓ, k, z) is the same as f̃p(t, x, ℓ, k), except rather than requiring that G \ X is
connected, we require that G \ [z] is connected. Domain: t ≥ 2, x ≥ 0, ℓ ≥ 1, z ≤ x.

The counter functions for our algorithm will be similar to these, except we only want to
count graphs with a particular automorphism. Therefore, we will have several more arguments
in addition to the usual ones t, x, ℓ, k, z from Definition 20. As above, the argument p will
indicate that πp is the current automorphism. We also introduce the arguments MX , ML,
MZ , and MK , each of which is a subset of Mπ. Roughly, these sets specify which vertices –
in X, L := LG(X), Z := [z], and the rest of the graph, respectively – can be moved by the
current permutation (but the sets X, L, and Z will be modified slightly).

Ú. Hébert-Johnson and D. Lokshtanov 46:15

In Definition 20, the g-functions count graphs with vertex set [x + k], and the f -functions
count graphs with vertex set [x + ℓ + k]. For our algorithm, we will make some adjustments
to these vertex sets to ensure that the vertices moved by the current permutation still appear
in the graph. This is similar to how we defined Vk,M above. To do so, we define several
symbols for these vertex sets and vertex subsets (Vargs, etc.). Each of these depends on the
list of arguments of the function in question, which we denote by args. For example, when

defining g, we have args =
(

t x k z

p MX MK MZ

)
(see Definition 21).

First, suppose args comes from one of the g-functions in Definition 21. Let VX be the set
of the first x− |MX | natural numbers in N \Mπ, and let VK be the set of the first k − |MK |
natural numbers in N\(VX∪Mπ). We define Xargs := VX∪MX and Vargs := Xargs∪VK∪MK .
Also, if z is included in args, then let VZ be the set of the first z − |MZ | natural numbers in
N \Mπ. In this case, we define Zargs := VZ ∪MZ .

For the other case, suppose args comes from one of the f -functions. Let VX be the set
of the first x − |MX | natural numbers in N \Mπ, let VL be the set of the first ℓ − |ML|
natural numbers in N \ (VX ∪Mπ), and let VK be the set of the first k − |MK | natural
numbers in N \ (VX ∪ VL ∪Mπ). We define Xargs := VX ∪MX , Largs = VL ∪ML, and
Vargs := Xargs∪Largs∪VK ∪MK . Also, if z is included in args, then let VZ be the set of the
first z − |MZ | natural numbers in N \Mπ. In this case, we again define Zargs := VZ ∪MZ .

These vertex subsets still have the same sizes as they did in the original algorithm: the
size of Vargs is x + k or x + ℓ + k, |Xargs| = x, |Largs| = ℓ, the rest of the graph has
size k, and |Zargs| = z. Just as we had Z ⊆ X in the original algorithm, we now have
Zargs ⊆ Xargs. This is because we require MZ ⊆MX in Definition 21, and we also require
z − |MZ | ≤ x− |MX |, which implies VZ ⊆ VX .

For g-functions, we have Mπp ∩ Vargs ⊆MX ∪MK , and for f -functions, we have Mπp ∩
Vargs ⊆ MX ∪ML ∪MK , by the definition of Vargs. We are now ready to define our new
counter functions.

▶ Definition 21. The following functions count various subclasses of chordal graphs. The
arguments t, x, ℓ, k, z are nonnegative integers with the same domains as in Definition 20. We
have p ∈ [n], and the arguments MX , ML, MK , MZ are subsets of Mπ. All other requirements
for their domains are specified below.

1. g

(
t x k z

p MX MK MZ

)
, g̃

(
t x k z

p MX MK MZ

)
, g̃p

(
t x k z

p MX MK MZ

)
,

g̃1

(
t x k

p MX MK

)
, and g̃≥2

(
t x k

p MX MK

)
are the same as g(t, x, k, z), g̃(t, x, k, z),

g̃p(t, x, k, z), g̃1(t, x, k), and g̃≥2(t, x, k), respectively, except we only count graphs for
which πp|V (G) is an automorphism, and we make the following changes to the vertices of
the graph: the vertex set is Vargs rather than [x + k], the exception set is Xargs rather
than [x], and [z] is replaced by Zargs.
Domain: MX ⊆πp Mπ, MK ⊆πp Mπ \ MX , MZ ⊆πp MX , |MX | ≤ x, |MK | ≤ k,
|MZ | ≤ z, and z − |MZ | ≤ x− |MX |.

2. f

(
t x ℓ k

p MX ML MK

)
, f̃

(
t x ℓ k

p MX ML MK

)
, f̃p

(
t x ℓ k

p MX ML MK

)
, and

f̃p

(
t x ℓ k z

p MX ML MK MZ

)
are the same as f(t, x, ℓ, k), f̃(t, x, ℓ, k), f̃p(t, x, ℓ, k), and

f̃p(t, x, ℓ, k, z), respectively, except we only count graphs for which πp|V (G) is an automor-
phism, and we make the following changes to the vertices of the graph: the vertex set is

STACS 2025

46:16 Sampling Unlabeled Chordal Graphs in Expected Polynomial Time

Vargs rather than [x + ℓ + k], the exception set is Xargs rather than [x], the last set to
evaporate is Largs rather than {x + 1, . . . , x + ℓ}, and [z] is replaced by Zargs.
Domain: MX ⊆πp Mπ, ML ⊆πp Mπ \MX , MK ⊆πp Mπ \ (MX ∪ML), MZ ⊆πp MX ,
|MX | ≤ x, |ML| ≤ ℓ, |MK | ≤ k, |MZ | ≤ z, and z − |MZ | ≤ x− |MX |.

For a graph G counted by one of these functions, πp|V (G) is indeed a permutation of
V (G) since MX and MK (and ML if needed) are invariant under πp.

To compute c(k, p, M), we consider all possibilities for the evaporation time. In the
following recurrence, g̃1 (with those particular arguments) counts the number of labeled
connected chordal graphs with vertex set Vargs = Vk,M and automorphism πp|V (G) that
evaporate at time exactly t with empty exception set.

▶ Lemma 22. Let k, p ∈ [n] and suppose M ⊆πp Mπ, where |M | ≤ k. We have

c(k, p, M) =
k∑

t=1
g̃1

(
t 0 k

p ∅ M

)
.

To compute g̃1, we consider all possibilities for the size ℓ of Largs. The set M in the
inner sum stands for the set of vertices in Largs that can be moved by πp. Note that we
have |M | ≤ ℓ and |MK \M | ≤ k − ℓ by the definition of Iℓ. For g̃1 and all of the following
functions, we recommend reading the analogous recurrences in [14] for further insight into
what is happening with the arguments t, x, ℓ, k, z in each recursive call.

▶ Lemma 23. For g̃1, we have

g̃1

(
t x k

p MX MK

)
=

k∑
ℓ=1

∑
M∈Iℓ

(
k − |MK |
ℓ− |M |

)
f

(
t x ℓ k − ℓ

p MX M MK \M

)
,

where Iℓ = {M ⊆πp MK : |MK | − k + ℓ ≤ |M | ≤ ℓ}.

To compute f , we consider all possibilities for the set of labels that appear in connected
components of G \ (Xargs ∪ Largs) that evaporate at time exactly t− 1. These components
correspond to the recursive call to f̃ . The set M stands for the set of vertices in components
that evaporate at time exactly t− 1 that can be moved by πp. Note that we have |M | ≤ k′

and |MK \M | ≤ k − k′ by the definition of Ik′ . Since |ML| ≤ ℓ, we also have x− |MX | ≤
x + ℓ− |MX ∪ML|, which is required by the domain of g.

▶ Lemma 24. For f , we have

f

(
t x ℓ k

p MX ML MK

)
=

k∑
k′=1

∑
M∈Ik′

(
k − |MK |
k′ − |M |

)
f̃

(
t x ℓ k′

p MX ML M

)
g

(
t− 2 x + ℓ k − k′ x

p MX ∪ML MK \M MX

)
,

where Ik′ = {M ⊆πp MK : |MK | − k + k′ ≤ |M | ≤ k′}.

To compute g, we consider all possibilities for the set of labels that appear in connected
components of G \Xargs that evaporate at time exactly t. These components correspond to
the recursive call to g̃. The set M stands for the set of vertices in components that evaporate
at time exactly t that can be moved by πp.

Ú. Hébert-Johnson and D. Lokshtanov 46:17

▶ Lemma 25. For g, we have

g

(
t x k z

p MX MK MZ

)
=

k∑
k′=0

∑
M∈Ik′

(
k − |MK |
k′ − |M |

)
g̃

(
t x k′ z

p MX M MZ

)
g

(
t− 1 x k − k′ z

p MX MK \M MZ

)
,

where Ik′ = {M ⊆πp MK : |MK | − k + k′ ≤ |M | ≤ k′}.

For the next recurrence, we will need a few more definitions. Suppose we have been given
fixed values of the arguments of g̃. Let s be the smallest label in Vargs \Xargs. For k′ ∈ [k],
let Pk′ be the family of sets M ⊆πp MK such that |MK | − k + k′ ≤ |M | ≤ k′ and such that
the following condition holds: if s ∈ MK , then s ∈ M , and otherwise, |M | ≤ k′ − 1. For
x′ ∈ [x], let Ix′ = {M ′ ⊆πp MX : |M ′| ≤ x′}.

LetQ be the family of pairs (C, M ′), where C ⊆MK and M ′ ⊆MX , such that all elements
of C have the same period pC ≥ 2 with respect to (C, πp), such that s ∈ C, and such that M ′

is invariant under πp·pC . For a set C from such a pair, we let Cσ := C∪σ(C)∪· · ·∪σpC −1(C),
where σ = πp.

To compute g̃, we consider all possibilities for the label set of the connected component C

of G \Xargs that contains s. In the definition of g̃, the components of G \Xargs are similar
enough (since they all evaporate at time t) that they can potentially be mapped to one
another by πp. Thus we consider two cases: either C is invariant under πp, or C is mapped
to some other component of G \Xargs by πp. We add together the summations from these
two cases, in a similar way to the recurrence for a(k, p, M). In the recurrence for g̃, k′ stands
for |C|, and x′ stands for |N(C)|. The set M stands for the set of vertices in C that can be
moved by πp, and M ′ stands for the set of vertices in N(C) that can be moved by πp.

▶ Lemma 26. For g̃, we have

g̃

(
t x k z

p MX MK MZ

)
=

∑
1≤k′≤k
1≤x′≤x
M∈Pk′
M ′∈Ix′

g̃1

(
t x′ k′

p M ′ M

)
g̃

(
t x k − k′ z

p MX MK \M MZ

)

·

{(
k−|MK |
k′−|M |

)
if s ∈MK(

k−1−|MK |
k′−1−|M |

)
otherwise

·

{(
x−|MX |
x′−|M ′|

)
if M ′ ̸⊆MZ(

x−|MX |
x′−|M ′|

)
−
(

z−|MZ |
x′−|M ′|

)
otherwise

+
∑

1≤x′≤x
(C,M ′)∈Q

g̃1

(
t x′ |C|

p · pC M ′ C

)
g̃

(
t x k − pC |C| z

p MX MK \ Cπp MZ

)

·

{(
x−|MX |
x′−|M ′|

)
if M ′ ̸⊆MZ(

x−|MX |
x′−|M ′|

)
−
(

z−|MZ |
x′−|M ′|

)
otherwise.

To compute f̃ , we consider three cases: either no component of G \ (Xargs ∪ Largs)
sees all of Xargs ∪ Largs, exactly one component sees all of Xargs ∪ Largs, or at least two
components see all of Xargs ∪ Largs. The recursive calls to g̃1 and g̃≥2 correspond to the
component/components that see all of Xargs ∪ Largs. In the second and third cases, the
set M stands for the set of vertices that can be moved by πp in components that see all of
Xargs ∪ Largs.

STACS 2025

46:18 Sampling Unlabeled Chordal Graphs in Expected Polynomial Time

▶ Lemma 27. For f̃ , we have

f̃

(
t x ℓ k

p MX ML MK

)
= f̃p

(
t x ℓ k

p MX ML MK

)
+
∑

1≤k′≤k
M∈Ik′

(
k − |MK |
k′ − |M |

)
g̃1

(
t − 1 x + ℓ k′

p MX ∪ ML M

)
f̃p

(
t x ℓ k − k′

p MX ML MK \ M

)

+
∑

1≤k′≤k
M∈Ik′

(
k − |MK |
k′ − |M |

)
g̃≥2

(
t − 1 x + ℓ k′

p MX ∪ ML M

)
g̃p

(
t − 1 x + ℓ k − k′ x

p MX ∪ ML MK \ M MX

)
,

where Ik′ = {M ⊆πp MK : |MK | − k + k′ ≤ |M | ≤ k′}.

For the next recurrence, suppose we have been given fixed values of the arguments of
g̃≥2. Let s be the smallest label in Vargs \ Xargs, and let Pk′ be defined as it was in the
recurrence for g̃. Let Q be the family of sets C ⊆M such that all elements of C have the
same period pC ≥ 2 with respect to (C, πp), and such that s ∈ C. For a set C ∈ Q, we let
Cσ := C ∪ σ(C) ∪ · · · ∪ σpC −1(C), where σ = πp.

▶ Lemma 28. For g̃≥2, we have

g̃≥2

(
t x k

p MX MK

)
=

∑
1≤k′≤k
M∈Pk′

g̃1

(
t x k′

p MX M

)(
g̃1

(
t x k − k′

p MX MK \ M

)
+ g̃≥2

(
t x k − k′

p MX MK \ M

))

·

{(
k−|MK |
k′−|M|

)
if s ∈ MK(

k−1−|MK |
k′−1−|M|

)
otherwise

+
∑
C∈Q

g̃1

(
t x |C|

p · pC MX C

)(
g̃1

(
t x k − pC |C|
p MX MK \ Cπ

)
+ g̃≥2

(
t x k − pC |C|
p MX MK \ Cπ

))
.

To compute g̃p, all we need to do is make a slight adjustment to the recurrence for g̃.

▶ Lemma 29. The recurrence for g̃p is exactly the same as the recurrence for g̃ in Lemma 26,
except for the two sums over x′: In both summations, rather than summing over x′ such that
1 ≤ x′ ≤ x, we sum over x′ such that 1 ≤ x′ ≤ x− 1.

To compute f̃p, we first observe that when z = x, requiring G \ Zargs to be connected is
the same as requiring G \Xargs to be connected.

▶ Lemma 30. We have f̃p

(
t x ℓ k

p MX ML MK

)
= f̃p

(
t x ℓ k x

p MX ML MK MX

)
.

For the next f̃p recurrence, we need one last round of definitions. Suppose we have been
given fixed values of the arguments of f̃p, including z and MZ . Let s be the smallest label
in Vargs \ (Xargs ∪ Largs). For k′ ∈ [k], let Pk′ be the family of sets M ⊆πp MK such that
|MK | − k + k′ ≤ |M | ≤ k′ and such that the following condition holds: if s ∈ MK , then
s ∈ M , and otherwise, |M | ≤ k′ − 1. For 0 ≤ x′ ≤ x, let Ix′ = {M ′ ⊆πp MX : |M ′| ≤ x′}.
Also, for 0 ≤ ℓ′ ≤ ℓ, let Jℓ′ = {M ′ ⊆πp ML : |M ′| ≤ ℓ′}.

Let Q be the family of triples (C, M ′
X , M ′

L), where C ⊆MK , M ′
X ⊆MX , and M ′

L ⊆ML,
such that all elements of C have the same period pC ≥ 2 with respect to (C, πp), such that
s ∈ C, and such that M ′

X ∪M ′
L is invariant under πp·pC . For a set C from such a triple, we

let Cσ := C ∪ σ(C) ∪ · · · ∪ σpC −1(C), where σ = πp.

Ú. Hébert-Johnson and D. Lokshtanov 46:19

▶ Lemma 31. For f̃p with the argument z, we have

f̃p

(
t x ℓ k z

p MX ML MK MZ

)
=

∑
1≤k′≤k
0≤x′≤x
0≤ℓ′≤ℓ

0<x′+ℓ′<x+ℓ

∑
M∈Pk′

M ′
X ∈Ix′

M ′
L∈Jℓ′

g̃1

(
t− 1 x′ + ℓ′ k′

p M ′
X ∪M ′

L M

)

·
(

ℓ− |ML|
ℓ′ − |M ′

L|

)
·

{(
k−|MK |
k′−|M |

)
if s ∈MK(

k−1−|MK |
k′−1−|M |

)
otherwise

·

(

x−|MX |
x′−|M ′

X
|
)

if ℓ′ > 0 or M ′
X ̸⊆MZ(

x−|MX |
x′−|M ′

X
|
)
−
(

z−|MZ |
x′−|M ′

X
|
)

otherwise

·

f̃p

(
t x + ℓ′ ℓ− ℓ′ k − k′ z

p MX ∪M ′
L ML \M ′

L MK \M MZ

)
if ℓ′ < ℓ

g̃p

(
t− 1 x + ℓ k − k′ z

p MX ∪M ′
L MK \M MZ

)
otherwise

+
∑

0≤x′≤x
0≤ℓ′≤ℓ

0<x′+ℓ′<x+ℓ
(C,M ′

X ,M ′
L)∈Q

g̃1

(
t− 1 x′ + ℓ′ |C|
p · pC M ′

X ∪M ′
L C

)
·
(

ℓ− |ML|
ℓ′ − |M ′

L|

)

·

(

x−|MX |
x′−|M ′

X
|
)

if ℓ′ > 0 or M ′
X ̸⊆MZ(

x−|MX |
x′−|M ′

X
|
)
−
(

z−|MZ |
x′−|M ′

X
|
)

otherwise

·

f̃p

(
t x + ℓ′ ℓ− ℓ′ k − pC |C| z

p MX ∪M ′
L ML \M ′

L MK \ Cπ MZ

)
if ℓ′ < ℓ

g̃p

(
t− 1 x + ℓ k − pC |C| z

p MX ∪M ′
L MK \ Cπ MZ

)
otherwise.

See the full version of the paper for more intuition behind the recurrences for g̃≥2 and
f̃p. The base cases for all of these counter functions are the same as in [14] since they only
depend on the arguments t, x, ℓ, k, z.

5 Conclusion

We built upon the algorithm of Wormald for generating random unlabeled graphs to design
an algorithm that, given n, generates a random unlabeled chordal graph on n vertices in
expected polynomial time. This serves as a proof of concept that one can obtain a sampling
algorithm for unlabeled graphs from a GI-complete graph class G using the following two
ingredients: (1) an FPT algorithm for counting labeled graphs in G with a given automorphism
π parameterized by the number of moved points of π and (2) a bound on the probability
that a labeled graph in G has a given automorphism. A few potential candidates for this
are bipartite graphs, strongly chordal graphs, and chordal bipartite graphs, all of which are
GI-complete. An additional open problem would be to design a uniform, or approximately
uniform, sampling algorithm – either for unlabeled chordal graphs or general unlabeled
graphs – that runs in expected polynomial time even when we condition on the output graph.

STACS 2025

46:20 Sampling Unlabeled Chordal Graphs in Expected Polynomial Time

References
1 Edward A. Bender, L. Bruce Richmond, and Nicholas C. Wormald. Almost all chordal graphs

split. Journal of the Australian Mathematical Society, 38(2):214–221, 1985.
2 Vladislav Bína and Jiří Přibil. Note on enumeration of labeled split graphs. Commentationes

Mathematicae Universitatis Carolinae, 56(2):133–137, 2015.
3 Jean R.S. Blair and Barry Peyton. An introduction to chordal graphs and clique trees. In

Graph theory and sparse matrix computation, pages 1–29. Springer, 1993.
4 Manuel Bodirsky, Clemens Gröpl, and Mihyun Kang. Sampling unlabeled biconnected

planar graphs. In Algorithms and Computation: 16th International Symposium, ISAAC 2005,
Sanya, Hainan, China, December 19-21, 2005. Proceedings 16, pages 593–603. Springer, 2005.
doi:10.1007/11602613_60.

5 Manuel Bodirsky, Clemens Gröpl, and Mihyun Kang. Generating labeled planar graphs
uniformly at random. Theoretical Computer Science, 379(3):377–386, 2007. doi:10.1016/J.
TCS.2007.02.045.

6 Manuel Bodirsky, Clemens Gröpl, and Mihyun Kang. Generating unlabeled connected cubic
planar graphs uniformly at random. Random Structures & Algorithms, 32(2):157–180, 2008.
doi:10.1002/RSA.20206.

7 John D. Dixon and Herbert S. Wilf. The random selection of unlabeled graphs. Journal of
Algorithms, 4(3):205–213, 1983. doi:10.1016/0196-6774(83)90021-4.

8 Éric Fusy. Uniform random sampling of planar graphs in linear time. Random Structures &
Algorithms, 35(4):464–522, 2009. doi:10.1002/RSA.20275.

9 Andrew Gainer-Dewar and Ira M. Gessel. Counting unlabeled k-trees. Journal of Combinatorial
Theory, Series A, 126:177–193, 2014. doi:10.1016/J.JCTA.2014.05.002.

10 Pu Gao and Nicholas Wormald. Uniform generation of random regular graphs. SIAM Journal
on Computing, 46:1395–1427, 2017. doi:10.1137/15M1052779.

11 Pu Gao and Nicholas Wormald. Uniform generation of random graphs with power-law degree
sequences. In Proceedings of the 29th Annual ACM-SIAM Symposium on Discrete Algorithms
(SODA), pages 1741–1758, 2018. doi:10.1137/1.9781611975031.114.

12 Fănică Gavril. Algorithms for minimum coloring, maximum clique, minimum covering by
cliques, and maximum independent set of a chordal graph. SIAM Journal on Computing,
1(2):180–187, 1972. doi:10.1137/0201013.

13 András Hajnal and János Surányi. Über die auflösung von graphen in vollständige teilgraphen.
Ann. Univ. Sci. Budapest, Eötvös Sect. Math, 1:113–121, 1958.

14 Úrsula Hébert-Johnson, Daniel Lokshtanov, and Eric Vigoda. Counting and sampling labeled
chordal graphs in polynomial time, 2023. doi:10.48550/arXiv.2308.09703.

15 Mark R. Jerrum, Leslie G. Valiant, and Vijay V. Vazirani. Random generation of combinatorial
structures from a uniform distribution. Theoretical Computer Science, 43:169–188, 1986.
doi:10.1016/0304-3975(86)90174-X.

16 Walter Oberschelp. Kombinatorische anzahlbestimmungen in relationen. Mathematische
Annalen, 174:53–78, 1967.

17 OEIS Foundation Inc. Entry A058862 in the On-Line Encyclopedia of Integer Sequences, 2024.
Published electronically at http://oeis.org.

18 Toshiki Saitoh, Yota Otachi, Katsuhisa Yamanaka, and Ryuhei Uehara. Random generation
and enumeration of bipartite permutation graphs. Journal of Discrete Algorithms, 10:84–97,
2012. doi:10.1016/J.JDA.2011.11.001.

19 Herbert S. Wilf. The uniform selection of free trees. Journal of Algorithms, 2(2):204–207,
1981. doi:10.1016/0196-6774(81)90021-3.

20 Nicholas C. Wormald. Generating random unlabelled graphs. SIAM Journal on Computing,
16(4):717–727, 1987. doi:10.1137/0216048.

https://doi.org/10.1007/11602613_60
https://doi.org/10.1016/J.TCS.2007.02.045
https://doi.org/10.1016/J.TCS.2007.02.045
https://doi.org/10.1002/RSA.20206
https://doi.org/10.1016/0196-6774(83)90021-4
https://doi.org/10.1002/RSA.20275
https://doi.org/10.1016/J.JCTA.2014.05.002
https://doi.org/10.1137/15M1052779
https://doi.org/10.1137/1.9781611975031.114
https://doi.org/10.1137/0201013
https://doi.org/10.48550/arXiv.2308.09703
https://doi.org/10.1016/0304-3975(86)90174-X
https://doi.org/10.1016/J.JDA.2011.11.001
https://doi.org/10.1016/0196-6774(81)90021-3
https://doi.org/10.1137/0216048

Minimizing the Number of Tardy Jobs with
Uniform Processing Times on Parallel Machines
Klaus Heeger #

Department of Industrial Engineering and Management, Ben-Gurion University of the Negev,
Beer-Sheva, Israel

Hendrik Molter #

Department of Computer Science, Ben-Gurion University of the Negev, Beer-Sheva, Israel

Abstract
In this work, we study the computational (parameterized) complexity of P | rj , pj = p |

∑
wjUj .

Here, we are given m identical parallel machines and n jobs with equal processing time, each
characterized by a release date, a due date, and a weight. The task is to find a feasible schedule,
that is, an assignment of the jobs to starting times on machines, such that no job starts before its
release date and no machine processes several jobs at the same time, that minimizes the weighted
number of tardy jobs. A job is considered tardy if it finishes after its due date.

Our main contribution is showing that P | rj , pj = p |
∑

Uj (the unweighted version of the
problem) is NP-hard and W[2]-hard when parameterized by the number of machines. The former
resolves an open problem in Note 2.1.19 by Kravchenko and Werner [Journal of Scheduling, 2011]
and Open Problem 2 by Sgall [ESA, 2012], and the latter resolves Open Problem 7 by Mnich and
van Bevern [Computers & Operations Research, 2018]. Furthermore, our result shows that the
known XP-algorithm by Baptiste et al. [4OR, 2004] for P | rj , pj = p |

∑
wjUj parameterized by

the number of machines is optimal from a classification standpoint.
On the algorithmic side, we provide alternative running time bounds for the above-mentioned

known XP-algorithm. Our analysis shows that P | rj , pj = p |
∑

wjUj is contained in XP when
parameterized by the processing time, and that it is contained in FPT when parameterized by the
combination of the number of machines and the processing time. Finally, we give an FPT-algorithm
for P | rj , pj = p |

∑
wjUj parameterized by the number of release dates or the number of due dates.

With this work, we lay out the foundation for a systematic study of the parameterized complexity
of P | rj , pj = p |

∑
wjUj .

2012 ACM Subject Classification Theory of computation → Parameterized complexity and exact
algorithms; Mathematics of computing → Discrete mathematics; Computing methodologies →
Planning and scheduling

Keywords and phrases Scheduling, Identical Parallel Machines, Weighted Number of Tardy Jobs,
Uniform Processing Times, Release Dates, NP-hard Problems, Parameterized Complexity

Digital Object Identifier 10.4230/LIPIcs.STACS.2025.47

Funding Klaus Heeger : Supported by the ISF, grant No. 1070/20.
Hendrik Molter : Supported by the ISF, grant nr. 1470/24 and by the European Union’s Horizon
Europe research and innovation program under grant agreement 949707.

1 Introduction

Machine scheduling is one of the most fundamental application areas of combinatorial
optimization [34]. In a typical scheduling problem, the task is to assign jobs to machines
with the goal of maximizing a certain optimization objective while complying with certain
constraints. Jobs are usually characterized by a processing time, a release date, a due date,
and a weight (or a subset thereof). We consider the setting where we have access to several

© Klaus Heeger and Hendrik Molter;
licensed under Creative Commons License CC-BY 4.0

42nd International Symposium on Theoretical Aspects of Computer Science (STACS 2025).
Editors: Olaf Beyersdorff, Michał Pilipczuk, Elaine Pimentel, and Nguyễn Kim Thắng;
Article No. 47; pp. 47:1–47:17

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:heeger@post.bgu.ac.il
https://orcid.org/0000-0001-8779-0890
mailto:molterh@post.bgu.ac.il
https://orcid.org/0000-0002-4590-798X
https://doi.org/10.4230/LIPIcs.STACS.2025.47
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

47:2 Minimizing the Number of Tardy Jobs with Uniform Processing Times

identical parallel machines that can each process one job (non-preemptively) at a time. One
of the most fundamental optimization objectives is to minimize the weighted number of tardy
jobs, where a job is considered tardy if it is completed after its due date.

The arguably simplest scheduling problem aims to minimize the (unweighted) number
of tardy jobs on a single machine, where all jobs are released at time zero. In the standard
three-field notation for scheduling problems by Graham et al. [15], this problem is called
1 ||

∑
Uj . It can be solved in polynomial time by a classic algorithm of Moore [33]. However,

this problem becomes NP-hard when weights are introduced, the number of machines is
increased, or release dates are added.

The weighted version, 1 ||
∑

wjUj , is one of the first scheduling problems shown to
be (weakly) NP-hard. It remains hard even if all jobs have the same due date, as in
this case, it is equivalent to the well-known Knapsack problem, which was already
included in Karp’s famous list of 21 NP-hard problems [21]. The problem can be solved
in pseudopolynomial time with a classic algorithm by Lawler and Moore [28].
Adding a second machine leads to the problem 2 ||

∑
j Uj , which is (weakly) NP-hard even

if all jobs have the same due date, as it is a generalization of the well-known Partition
problem, which was also already included in Karp’s list of 21 NP-hard problems [21]. If
the number of machines is unbounded, the problem is called P ||

∑
j Uj and it is strongly

NP-hard even if all jobs have the same due date, as it generalizes the well-known Bin
Packing problem [14].
Introducing release times leads to the problem 1 | rj |

∑
j Uj , which is weakly NP-

hard [30], even if there are only two different release dates and two different due dates.
The reduction of Lenstra et al. [30] can be extended in a straightforward way to show
that 1 | rj |

∑
Uj is strongly NP-hard.

Problem Setting and Motivation. We consider the case where release dates and weights
are present and we have multiple identical parallel machines. However, we add the restriction
that all processing times are the same. This problem is called P | rj , pj = p |

∑
wjUj , we

give a formal definition in Section 2. This problem arises naturally in manufacturing systems,
where

exact specifications by the customers for the product have negligible influence on the
production time, but
the specifications only become available at certain times and customers request the
product to meet certain due dates.

As an illustrative example, consider the problem of scheduling burn-in operations in
integrated circuit manufacturing. The specification of the layout of the circuit may only
become available at a certain time, as it takes time to optimize it. At the same time, the
specific layout has little to no influence on the processing time of the burn-in operation [31].
Furthermore, the customer may wish to have the circuit delivered at a certain due date.

To the best of our knowledge, the only known algorithmic result for P | rj , pj = p |
∑

wjUj

is a polynomial-time algorithm by Baptiste et al. [2, 3] for the case where the number of
machines is a constant. However, two special cases are known to be polynomial-time solvable.
It is folklore that the case without release dates, P | pj = p |

∑
j wjUj , and the case where

the processing times equal one, P | rj , pj = 1 |
∑

j wjUj , can both be reduced to the Linear
Assignment problem in a straightforward manner. The Linear Assignment problem
is known to be solvable in polynomial time [27]. Furthermore, it is known that, given an
instance of P | rj , pj = p |

∑
wjUj , we can check in polynomial time whether all jobs can be

scheduled such that no job is tardy [5, 37, 38].

K. Heeger and H. Molter 47:3

Our Contribution. The complexity status of P | rj , pj = p |
∑

wjUj and its unweighted
version P | rj , pj = p |

∑
Uj was a longstanding open problem. Kravchenko and Werner [25]

pointed out that this question remains unanswered in Note 2.1.19 and Sgall [36] listed this
issue as Open Problem 2. Our main contribution is to resolve the complexity status of
P | rj , pj = p |

∑
Uj (and hence also P | rj , pj = p |

∑
wjUj) by showing the following.

P | rj , pj = p |
∑

Uj is NP-hard.

Having established NP-hardness, we focus on studying the parameterized complexity of
P | rj , pj = p |

∑
wjUj . As mentioned before, Baptiste et al. [2, 3] showed that the problem

is in XP when parameterized by the number of machines. Mnich and van Bevern [32, Open
Problem 7] asked whether this result can be improved to an FPT algorithm. We answer this
question negatively by showing the following.

P | rj , pj = p |
∑

Uj is W[2]-hard when parameterized by the number of machines.

On the positive side, we give several new parameterized tractability results. By providing
an alternative running time analysis of the algorithm for P | rj , pj = p |

∑
wjUj by Baptiste

et al. [2, 3], we show the following.
P | rj , pj = p |

∑
wjUj is in XP when parameterized by the processing time.

P | rj , pj = p |
∑

wjUj is in FPT when parameterized by the combination of the number
of machines and the processing time.

Finally, we give a new algorithm based on a mixed integer linear program (MILP)
formulation for P | rj , pj = p |

∑
wjUj . We show the following.

P | rj , pj = p |
∑

wjUj is in FPT when parameterized by the number of different release
dates.
P | rj , pj = p |

∑
wjUj is in FPT when parameterized by the number of different due

dates.

We conclude by pointing to new future research directions. Most prominently, we leave
open whether P | rj , pj = p |

∑
wjUj is in FPT or W[1]-hard when parameterized by the

processing time.

Related Work. We give an overview of the literature investigating the parameterized
complexity of minimizing the weighted number of tardy jobs in various related settings.

The problem of minimizing the weighted number of tardy jobs on a single machine,
1 ||

∑
j wjUj has been extensively studied in the literature under various aspects and

constraints. Hermelin et al. [20] showed that the classical pseudopolynomial time algorithm
by Lawler and Moore [28] can be improved in several special cases. Hermelin et al. [19] give
an overview of the parameterized complexity of 1 ||

∑
j wjUj with respect to the parameters

“number of processing times”, “number of due dates”, and “number of weights” (and their
combinations). In particular, 1 ||

∑
wjUj is in XP when parameterized by the number of

different processing times [19]. This presumably cannot be improved to an FPT result as
recently, it was shown that 1 ||

∑
wjUj parameterized by the number of different processing

times is W[1]-hard [16]. Faster algorithms are known for the case where the job weights equal
the processing times [4, 12, 23, 35] and the problem has also been studied under fairness
aspects [17]. Kaul et al. [22] extended the results of Hermelin et al [19] to 1 | rj |

∑
wjUj ,

considering the “number of release times” as an additional parameter.
Minimizing the weighted number of tardy jobs on parallel machines has mostly been

studied in the context of interval scheduling (P | dj − rj = pj |
∑

j wjUj) and generalizations
thereof [1, 18, 26, 39].

STACS 2025

47:4 Minimizing the Number of Tardy Jobs with Uniform Processing Times

The setting where processing times are assumed to be uniform has been studied under
various optimization criteria (different from minimizing the weighted number of tardy jobs)
and constraints. For an overview, we refer to Kravchenko and Werner [25] and Baptiste et
al. [3]. The even more special case of unit processing times has also been extensively studied.
Reviewing the related literature in this setting is out of scope for this work.

2 Preliminaries

Scheduling. Using the standard three-field notation for scheduling problems by Graham
et al. [15], the problem considered in this work is called P | rj , pj = p |

∑
wjUj . In this

problem, we have n jobs and m machines. Each machine can process one job at a time.
Generally, we use the variable j to denote jobs and the variable i to denote machines. Each
job j has a processing time pj = p, a release date rj , a due date dj , and a weight wj , where
p, rj , dj , and wj are nonnegative integers. We use r#, d#, and w# to denote the number of
different release dates, due dates, and weights, respectively.

A schedule maps each job j to a combination of a machine i and a starting time t,
indicating that j shall be processed on machine i starting at time t. More formally, a schedule
is a function σ : {1, . . . , n} → {1, . . . , m} × N. If for job j we have σ(j) = (i, t), then job j is
scheduled to be processed on machine i starting at time t until time t + p. A schedule σ is
feasible if there is no job j with σ(j) = (i, t) and t < rj and if there is no pair of jobs j, j′

with σ(j) = (i, t) and σ(j′) = (i, t′) such that |t − t′| < p. We say that a job j is early in
a feasible schedule σ if σ(j) = (i, t) and t + p ≤ dj , otherwise we say that job j is tardy.
We say that machine i is idle at time t in a feasible schedule σ if there is no job j with
σ(j) = (i, t′) and t′ ≤ t ≤ t′ + p. The goal is to find a feasible schedule that minimizes the
weighted number of tardy jobs or, equivalently, maximizes the weighted number of early
jobs W =

∑
j|σ(j)=(i,t)∧t+p≤dj

wj . We call a feasible schedule that maximizes the weighted
number of early jobs optimal. Formally, the problem is defined as follows.

P | rj , pj = p |
∑

wjUj

Input: A number n of jobs, a number m of machines, a processing time p, a list
of release dates (r1, r2, . . . , rn), a list of due dates (d1, d2, . . . , dn), and a list of
weights (w1, w2, . . . , wn).

Task: Compute a feasible schedule σ that maximizes W =
∑

j|σ(j)=(i,t)∧t+p≤dj
wj .

We use P | rj , pj = p |
∑

Uj to denote the unweighted (or, equivalently, uniformly
weighted) version of P | rj , pj = p |

∑
wjUj , that is, the case where wj = wj′ for every two

jobs j and j′, or equivalently, w# = 1.
Note that given any feasible schedule of the early jobs, one can easily extend this to

a feasible schedule of all jobs as tardy jobs can be scheduled arbitrarily late. Thus, when
describing a schedule, we will only describe how the early jobs are scheduled.

Given an instance I of P | rj , pj = p |
∑

wjUj , we can make the following observation,
essentially implying that one can switch the roles of release dates and due dates.

▶ Observation 1. Let I be an instance of P | rj , pj = p |
∑

wjUj and let dmax be the largest
due date of any job in I. Let I ′ be the instance obtained from I by setting r′

j = dmax − dj

and d′
j = dmax − rj. Then I admits a feasible schedule where the weighted number of early

jobs is W if and only if I ′ admits a feasible schedule where the weighted number of early jobs
is W .

K. Heeger and H. Molter 47:5

To see that Observation 1 is true note that a feasible schedule σ for I can be transformed
into a feasible schedule σ′ for I ′ (with the same weighted number of early jobs) by setting
σ′(j) = (i, dmax − t − p), where σ(j) = (i, t).

We now show that we can restrict ourselves to schedules where jobs may start only at
“few” different points in time, which will be useful in our proofs. In order to do so, we define
a set T of relevant starting time points.

T = {t | ∃ rj and ∃ 0 ≤ ℓ ≤ n s.t. t = rj + p · ℓ}

It is known that there always exists an optimal schedule where the starting times of all jobs
are in T .

▶ Lemma 2 ([2, 3]). Let I be an instance of P | rj , pj = p |
∑

wjUj. Then there exists a
feasible schedule σ that maximizes the weighted number of early jobs such that for each job j

we have σ(j) = (i, t) for some t ∈ T .

Parameterized Complexity. We use the following standard concepts from parameterized
complexity theory [7, 11, 13]. A parameterized problem L ⊆ Σ∗ × N is a subset of all
instances (x, k) from Σ∗ × N, where k denotes the parameter. A parameterized problem L is
in the class FPT (or fixed-parameter tractable) if there is an algorithm that decides every
instance (x, k) for L in f(k) · |x|O(1) time for some computable function f that depends only
on the parameter. A parameterized problem L is in the class XP if there is an algorithm
that decides every instance (x, k) for L in |x|f(k) time for some computable function f that
depends only on the parameter. If a parameterized problem L is W[1]-hard or W[2]-hard,
then it is presumably not contained in FPT [7, 11, 13].

3 Hardness of P | rj, pj = p | ∑
Uj

In this section, we present our main result, namely that the unweighted version of our
scheduling problem, P | rj , pj = p |

∑
Uj , is NP-hard and W[2]-hard when parameterized

by the number m of machines. The former resolves an open problem in Note 2.1.19 by
Kravchenko and Werner [25] and Open Problem 2 by Sgall [36], and the latter resolves Open
Problem 7 by Mnich and van Bevern [32].

▶ Theorem 3. P | rj , pj = p |
∑

Uj is NP-hard and W[2]-hard parameterized by the
number m of machines.

In order to show Theorem 3, we present a parameterized reduction from Hitting Set
parameterized by solution size k, which is known to be NP-hard [21] (unparameterized) and
W[2]-hard [10].

Hitting Set
Input: A finite set U = {u0, . . . , un−1}, a set A = {A0, . . . , Am−1} of subsets of U , and

an integer k.
Question: Is there a hitting set of size k, that is, a set X ⊆ U with |X| = k and

X ∩ Aj ̸= ∅ for every j ∈ {0, . . . , m − 1}?

Let I = (U = {u0, . . . , un−1}, A = {A0, . . . , Am−1}, k) be an instance of Hitting Set.
In order to ease the presentation, we give jobs names rather than identifying them with
natural numbers. Furthermore, for a job J , we use r(J) to denote the release date of J , and
we use d(J) to denote the deadline of J .

STACS 2025

47:6 Minimizing the Number of Tardy Jobs with Uniform Processing Times

JA1,u1

JA1,u2

JA1,u3

p

p

p

DA1

JA2,u3

JA1,u4

JA1,u5

p

p

p

DA2

JA3,u1

JA3,u5

JA3,u6

p

p

p

DA3

Figure 1 The jobs of the first reduction approach for the Hitting Set instance I =
({u1, u2, u3, u4, u5, u6}, {A1 = {u1, u2, u3}, A2 = {u3, u4, u5}, A3 = {u1, u5, u6}, k = 2).

Our reduction will have k machines. The main idea behind the reduction is as follows.
Each machine acts as a “selection gadget”, that is, we will interpret the jobs scheduled on
each machine in an optimal schedule as the selection of a particular element of U to be
included in the hitting set. As there are k machines, this ensures that the (hitting) set
consisting of the selected elements has size at most k. Intuitively, we want that selecting
element ui on a machine corresponds to all jobs on this machine starting at time i modulo p

in an optimal schedule. For each set Aj ∈ A, there are two kinds of jobs.
First, jobs JAj ,ui

for each ui ∈ Aj , where scheduling job JAj ,ui
encodes that the element ui

is selected to be part of the hitting set.
Second, there are k − 1 dummy jobs DAj

which can be scheduled on the up to k − 1
machines not corresponding to elements of Aj .

We give the jobs JAj ,ui
and DAj

release dates and due dates such that they are the only
jobs that can be started in the interval [j · p, (j + 1) · p − 1] and are early. See Figure 1 for
an illustration. Intuitively, this makes sure that an optimal solution has to schedule one of
these jobs on each machine. In particular, one job JAj ,ui

is scheduled, implying that Aj is
hit by one of the selected elements. See Figure 2 for an illustration.

There is, however, one problem with the reduction as sketched above. We do not ensure
that all early jobs scheduled on some machine start at the same time modulo p. Thus, it
is possible to schedule e.g. first job JA1,u2 on machine 1 and then job JA2,u3 such that the
two jobs are both early. Machine 1 now does not encode the selection of a single element to
the hitting set. We illustrate an example in Figure 3. However, note that it is only possible
to increase the index of the “selected” element, and as there are only k machines, the total
increase is bounded by k · (n − 1). Consequently, repeating the reduction sketched above
k · (n − 1) + 1 times ensures that at least one of the repeated instances will select only one
item per machine, and then this instance correctly encodes a hitting set of size k.

We now describe the reduction in detail. Formally, given the instance I of Hitting Set,
we construct an instance I ′ of P | rj , pj = p |

∑
Uj as follows. We set the processing time

to p = 2n. We construct the following jobs for each Aj ∈ A and ℓ ∈ {0, . . . , k · (n − 1)}:

1:

2:

JA1,u1 DA2 JA3,u1

DA1 JA2,u3 DA3

Figure 2 An optimal schedule for the instance from Figure 1 representing the hitting set {u1, u3}.

K. Heeger and H. Molter 47:7

1:

2:

JA1,u2 JA2,u3 DA3

DA1 DA2 JA3,u1

Figure 3 An optimal schedule for the instance from Figure 1 which does not represent a hitting
set.

one job Jℓ
Aj ,ui

for each ui ∈ Aj with release date r(Jℓ
Aj ,ui

) = (ℓ · m + j) · p + i and due
date d(Jℓ

Aj ,ui
) = r(Jℓ

Aj ,ui
) + p, and

k − 1 dummy jobs Dℓ
Aj

with release date r(Dℓ
Aj

) = (ℓ · m + j) · p and due date d(Dℓ
Aj

) =
r(Dℓ

Aj
) + p + n.

Finally, we set the number of machines to k. This finishes the construction. For an
overview of the due dates and release dates of the jobs, see Table 1. We can easily observe
the following.

▶ Observation 4. Given an instance I of Hitting Set, the above-described instance I ′ of
P | rj , pj = p |

∑
Uj can be computed in polynomial time and has k machines.

We continue by showing the correctness of the reduction. More specifically, we show that
the Hitting Set I instance is a yes-instance if and only if the constructed instance I ′ of
P | rj , pj = p |

∑
Uj admits a feasible schedule with (k · (n − 1) + 1) · m · k early jobs. We

split the proof into the forward and backward direction. We start with the forward direction.

▶ Lemma 5. If the Hitting Set instance I admits a hitting set of size k, then the
P | rj , pj = p |

∑
Uj instance I ′ admits a feasible schedule with (k · (n − 1) + 1) · m · k early

jobs.

Proof. Let X = {ui1 , . . . , uik
} be a hitting set of size k for I. We construct a schedule for I ′

as follows. On machine q, for each ℓ ∈ {0, . . . , k · (n − 1)} and j ∈ {0, . . . , m − 1}, we schedule
one job to start at time (ℓ · m + j) · p + iq. This job is Jℓ

Aj ,uiq
if uiq

∈ Aj , and Dℓ
Aj

otherwise.
Because X is a hitting set, we have that uiq

∈ Aj for some q ∈ {1, . . . , k} and hence we
schedule each dummy job Dℓ

Aj
at most k − 1 times, that is, at most its multiplicity times.

We can observe that all jobs scheduled so far are early. For each job Jℓ
Aj ,uiq

that is
scheduled on machine q, we have set its starting time to (ℓ · m + j) · p + iq which equals this
job’s release date (cf. Table 1). Furthermore, job Jℓ

Aj ,uiq
finishes at (ℓ · m + j + 1) · p + iq,

its deadline. Each dummy job Dℓ
Aj

is early as well, since their release times are smaller or
equal to the release time of Jℓ

Aj ,uiq
, and their due dates are larger or equal to the due date

of Jℓ
Aj ,uiq

. Furthermore, we can observe that there is no overlap in the processing times
between any two jobs scheduled on machine q.

It follows that we have feasibly scheduled (k · (n − 1) + 1) · m · k such that they finish
early. We schedule the remaining jobs in some arbitrary way such that the schedule remains
feasible. ◀

Table 1 Overview of the release dates and due dates of the jobs created for each Aj ∈ A and
ℓ ∈ {0, . . . , k · (n − 1)}.

job release date due date multiplicity
Jℓ

Aj ,ui
(ℓ · m + j) · p + i (ℓ · m + j + 1) · p + i 1

Dℓ
Aj

(ℓ · m + j) · p (ℓ · m + j + 1) · p + n k − 1

STACS 2025

47:8 Minimizing the Number of Tardy Jobs with Uniform Processing Times

Next, we continue with the backward direction.

▶ Lemma 6. If the P | rj , pj = p |
∑

Uj instance I ′ admits a feasible schedule with
(k · (n − 1) + 1) · m · k early jobs, then the Hitting Set instance I admits a hitting set of
size k.

Proof. Let σ be a feasible schedule for I ′ with (k · (n − 1) + 1) · m · k early jobs. Since the
largest due date is (k · (n − 1) · m + m) · p + n and p = 2n, it follows that on each machine,
at most k · (n − 1) · m + m jobs can be scheduled in a feasible way such that they finish early.
Consequently, on each machine, there are exactly (k · (n − 1) + 1) · m early jobs.

More specifically, for each machine, each ℓ ∈ {0, . . . , k · (n − 1)} and j ∈ {0, . . . , m − 1},
there must be one job which starts in the interval [(ℓ · m + j) · p, (ℓ · m + j) · p + n]. Otherwise,
there would be less than (k · (n − 1) + 1) · m early jobs on that machine. For machine q,
let xq

ℓ ∈ {1, . . . , n} such that there is a job on machine q which starts at time ℓ · m · p + xq
ℓ

(the existence of such a job is guaranteed by the previous observation). Then we must have
1 ≤ xq

0 ≤ xq
1 ≤ . . . ≤ xq

k·(n−1) ≤ n. This follows from the observation that if xq
ℓ > xq

ℓ+1, then
the starting time of the job corresponding to xq

ℓ+1 would be earlier than the completion time
of the job corresponding to xq

ℓ and hence the schedule would be infeasible. Consequently,
there are at most n − 1 values of ℓ such that xq

ℓ ̸= xq
ℓ+1. As there are k machines, this implies

that there are at most k · (n − 1) values such that xq
ℓ ̸= xq

ℓ+1 for some machine q. We can
conclude that there exists at least one ℓ ∈ {0, . . . , k · (n − 1)} so that xq

ℓ = xq
ℓ+1 for every

machine q. This implies that for each j ∈ {0, . . . , m − 1} and each machine q, there is one
job starting at time (ℓ · m + j) · p + xq

ℓ on machine q. We fix such an ℓ for the rest of the
proof and claim that X = {ux1

ℓ
, . . . , uxk

ℓ
} is a hitting set of size at most k for I.

Clearly, X has size at most k. Consider some set Aj ∈ A with j ∈ {0, . . . , m − 1}. The
only jobs which can start in the interval [(ℓ · m + j) · p, (ℓ · m + j) · p + n] are the dummy
jobs Dℓ

Aj
and the jobs Jℓ

Aj ,ui
for ui ∈ Aj . Because there are only k − 1 dummy jobs Dℓ

Aj

but k machines, this implies that there exists at least one machine q such that job Jℓ
Aj ,ui

is scheduled at machine q for some ui ∈ Aj . We know that on machine q one job starts in
the interval [(ℓ · m + j) · p, (ℓ · m + j) · p + n] and has starting time (ℓ · m + j) · p + xq

ℓ . By
construction, this job must be Jℓ

Aj ,ui
with i = xq

ℓ which implies that ui = uxq
ℓ

∈ X. We can
conclude that X is a hitting set for I. ◀

Now we have all the pieces to prove Theorem 3.

Proof of Theorem 3. Observation 4 shows that the described reduction can be computed
in polynomial time and produces an instance of P | rj , pj = p |

∑
Uj with k machines.

Lemmas 5 and 6 show that the described reduction is correct. Since Hitting Set is known
to be NP-hard [21] and W[2]-hard when parameterized by k [10], the result follows. ◀

4 New Analysis of Known Algorithm for P | rj, pj = p | ∑
wjUj

With Theorem 3 we have established that P | rj , pj = p |
∑

Uj is NP-hard. Hence, it
is natural to resort to parameterized algorithms for efficiently finding exact solutions in
restricted cases. To the best of our knowledge, the only known parameterized algorithm for
P | rj , pj = p |

∑
wjUj is an XP-algorithm for the number m of machines as a parameter by

Baptiste et al. [2, 3].

▶ Theorem 7 ([2, 3]). P | rj , pj = p |
∑

wjUj can be solved in nO(m) time, where n is the
number of jobs and m is the number of machines.

K. Heeger and H. Molter 47:9

Theorem 7 implies that P | rj , pj = p |
∑

wjUj is in XP when parameterized by the
number m of machines. Since Theorem 3 also shows W[2]-hardness for P | rj , pj = p |

∑
Uj

parameterized by the number m of machines, the algorithm behind Theorem 7 presumably
cannot be improved to an FPT-algorithm.

However, as it turns out, we can upper-bound the running time of the algorithm behind
Theorem 7 in different ways to obtain additional tractability results. In the remainder of
this section, we show that the algorithm developed by Baptiste et al. [2, 3] additionally to
Theorem 7 also implies the following.

▶ Theorem 8. P | rj , pj = p |
∑

wjUj can be solved in pO(m) ·nO(1) time and in mO(p) ·nO(1)

time, where n is the number of jobs, m is the number of machines, and p is the processing
time.

Theorem 8 implies that P | rj , pj = p |
∑

wjUj is in XP when parameterized by the
processing time p and that P | rj , pj = p |

∑
wjUj is in FPT when parameterized by the

combination of the number m of machines and the processing time p. In order to prove
Theorem 8, we present the dynamic programming algorithm for P | rj , pj = p |

∑
wjUj by

Baptiste et al. [2, 3]. For the correctness of this algorithm, we refer to their work. We give
an alternative running time analysis that shows the claimed running time bounds.

To this end, we need to introduce some additional notation and terminology. Recall
that T denotes the set of relevant starting time points. The algorithm makes use of Lemma 2,
that is, we can assume the starting times of all jobs in an optimal schedule are from T . A
resource profile is a vector x = (x1, x2, . . . , xm) with x1 ≤ x2 ≤ . . . ≤ xm, xm − x1 ≤ p, and
xi ∈ T for all i ∈ {1, . . . , m}. Let X denote the set of all resource profiles. Now we define
the following dynamic program. We assume that the jobs are sorted according to their due
dates, that is, d1 ≤ d2 ≤ . . . ≤ dn.

For two resource profiles a, b ∈ X and some k ∈ {1, . . . , n} we define W (k, a, b) to be the
maximum weighted number of early jobs of any feasible schedule for the jobs 1, . . . , k such
that

sorting the starting times of the first jobs on each machine from smallest to largest yields
a vector a′ with a ≤ a′, and
sorting the completion times of the last jobs on each machine from smallest to largest
yields a vector b′ with b′ ≤ b,

where for two vectors a, b of length m we say that a ≤ b if and only if for all i ∈ {1, . . . , m}
we have that ai ≤ bi.

From this definition, it follows that W (n, (0, . . . , 0), (tmax, . . . , tmax)), where tmax is the
largest element in T , is the maximum weighted number of early jobs of any feasible schedule.
Baptiste et al. [2, 3] proved the following.

▶ Lemma 9 ([2, 3]). For all k ∈ {1, . . . , n} and all resource profiles a, b ∈ X with a ≤ b it
holds that W (k, a, b) equals W (k − 1, a, b) if rk /∈ [a1, bm − p) and otherwise

max

W (k − 1, a, b), max
x∈X ,rk≤x1,x1+p≤dk,a≤x,

x′=(x2,x3,...,xm,x1+p)≤b

(
W (k − 1, a, x) + W (k − 1, x′, b) + wk

) ,

where we define W (0, a, b) = 0 for all a, b ∈ X with a ≤ b.

A straightforward running time analysis yields the following. We have that |T | ∈ O(n2) and
hence |X | ∈ O(n2m). It follows that the size of the dynamic programming table W is in
O(n4m+1) and the time to compute one entry is in O(n2m). This together with Lemma 9
yields Theorem 7. In the remainder of the section, we give an alternative running time
analysis to prove Theorem 8.

STACS 2025

47:10 Minimizing the Number of Tardy Jobs with Uniform Processing Times

Proof of Theorem 8. To prove Theorem 8 we give a different bound for the size of X . Recall
that for all resource profiles x ∈ X we have that xm − x1 ≤ p. It follows that there are |T |
possibilities for the value of x1, and then for 2 ≤ i ≤ m we have that x1 ≤ xi ≤ x1 + p.
Hence, we get that |X | ∈ O(n2 · pm−1). This together with Lemma 9 immediately gives us
that P | rj , pj = p |

∑
wjUj can be solved in pO(m) · nO(1) time.

Furthermore, we have x1 ≤ x2 ≤ . . . ≤ xm. Hence, the resource profile x can be
characterized by counting how many times a value t ∈ T appears in x. Again, we can exploit
that xm − x1 ≤ p. There are |T | possibilities for the value of x1 and given x1, each other
entry xi of x with 2 ≤ i ≤ m can be characterized by the amount 0 ≤ yi = xi − x1 ≤ p by
which it is larger than x1. Clearly, there are p + 1 different possible values for the amount yi.
It follows that given x1, we can characterize x by counting how often a value 0 ≤ t ≤ p

appears as an amount. Hence, we get that |X | ∈ O(n2 · mp+1). This together with Lemma 9
immediately gives us that P | rj , pj = p |

∑
wjUj can be solved in mO(p) · nO(1) time. ◀

Lastly, we remark that with similar alternative running time analyses for the dynamic
programming algorithm by Baptiste et al. [2, 3], one can show that P | rj , pj = p |

∑
wjUj

is in XP when parameterized by the number of release dates or due dates, and that P |
rj , pj = p |

∑
wjUj is in FPT when parameterized by the combination of the number of

machines and the number of release dates or due dates. However, as we show in the next
section, we can obtain fixed-parameter tractability by parameterizing only by the number of
release dates or parameterizing only by the number of due dates.

5 FPT-Algorithm for P | rj, pj = p | ∑
wjUj

In this section, we present a new FPT algorithm for P | rj , pj = p |
∑

wjUj parameterized
by the number of release dates or due dates. Formally, we show the following.

▶ Theorem 10. P | rj , pj = p |
∑

wjUj can be solved in 2O(2r# ·r#) · nO(1) time and
in 2O(2d# ·d#) · nO(1) time.

Theorem 10 implies that P | rj , pj = p |
∑

wjUj is in FPT when parameterized by
the number r# of different release dates and when parameterized by the number d# of
different due dates. We prove the first running time upper-bound of Theorem 10, where we
parameterize by the number r# of release dates. By Observation 1, the case for the number
d# of deadlines is symmetric. We present a reduction from P | rj , pj = p |

∑
wjUj to Mixed

Integer Linear Program (MILP).

Mixed Integer Linear Program (MILP)
Input: A vector x of n variables, a subset S of the variables which are considered integer

variables, a constraint matrix A ∈ Rm×n, and two vectors b ∈ Rm, c ∈ Rn.
Task: Compute an assignment to the variables (if one exists) such that all integer variables

in S are set to integer values, Ax ≤ b, x ≥ 0, and c⊺x is maximized.

We give a reduction that produces an MILP instance with a small number of integer
values. More precisely, the number of integer values will be upper-bounded by a function
of the number of release dates of the P | rj , pj = p |

∑
wjUj instance. This allows us to

upper-bound the running time necessary to solve the MILP instance using the following
well-known result.

▶ Theorem 11 ([8, 29]). MILP can be solved in 2O(nint log nint) · |I|O(1) time, where nint is
the number of integer variables and |I| is the instance size.

K. Heeger and H. Molter 47:11

Furthermore, we construct the MILP instance in a way that ensures that there always
exist optimal solutions where all variables are set to integer values. Informally, we ensure
that the constraint matrix for the rational variables is totally unimodular1. This allows us
to use the following result.

▶ Lemma 12 ([6]). Let Afrac ∈ Rm×n2 be totally unimodular. Then for any Aint ∈ Rm×n1 ,
b ∈ Rm, and c ∈ Rn1+n2 , the MILP

max c⊺x subject to (Aint Afrac)x ≤ b, x ≥ 0,

where x = (xint xfrac)⊺ with the first n1 variables (i.e., xint) being the integer variables, has
an optimal solution where all variables are integer.

Before we describe how to construct an MILP instance for a given instance of P | rj , pj =
p |

∑
wjUj , we make an important observation on optimal schedules. Intuitively, we show

that we can assume that each job is scheduled as early as possible and idle times only happen
directly before release dates.

▶ Lemma 13. Let σ be a feasible schedule for an instance of P | rj , pj = p |
∑

wjUj such
that the weighted number of early jobs is W . Then there exists a feasible schedule σ′ such that

the weighted number of early jobs is W ,
for each job j with σ′(j) = (i, t) for some t ̸= rj , machine i is not idle at time t − 1, and
all starting times of σ′ are in the set T of relevant starting time points.

Proof. Assume that there is a job j such that σ(j) = (i, t) for some t > rj and machine i is
idle at time t − 1. Assume that job j is the earliest such job, that is, the job with minimum t.
Since machine i is idle at time t − 1 and rj < t, we can create a new schedule σ′ that is the
same as σ except that σ′(j) = (i, t − 1). Clearly, we have that σ′ is feasible and has the
same weighted number of early jobs as σ. By repeating this process, we obtain a feasible
schedule σ′′ with the same set of early jobs and such that for each job j with σ′′(j) = (i, t)
and machine i is idle at time t − 1, it holds that t = rj . Furthermore, we have that each
starting point in σ′′ is a release date r or a time t with t = r + ℓ · p for some release date r

and some integer ℓ. Hence, all starting times of σ′′ are in the set T of relevant starting time
points. ◀

We call a feasible schedule σ release date aligned if the second condition of Lemma 13 holds,
i.e., for each job j with σ(j) = (i, t) for some t > rj , the machine i is not idle at time t − 1.
Note that Lemma 13 is stronger than Lemma 2 and implies that there always exists an
optimal feasible schedule that is release date aligned.

Given a feasible schedule σ that is release date aligned, we say that a release date rj is
active on machine i if job j is scheduled to start at this release date, that is, σ(j) = (i, rj),
and machine i is idle at time rj − 1. Let T be a subset of all release dates, then we say that
machine i has type T in σ if T is the set of active release dates on machine i.

Recall that T = {t | ∃ rj and ∃ 0 ≤ ℓ ≤ n s.t. t = rj + p · ℓ} denotes the set of relevant
starting time points. We say that a starting time t ∈ T is available on a machine with type T

if t = r + ℓ · p for some r ∈ T and t + p ≤ r′, where r′ is the smallest release date in T that
is larger than r.

1 A matrix is totally unimodular if each of its square submatrices has determinant 0, 1, or −1 [9].

STACS 2025

47:12 Minimizing the Number of Tardy Jobs with Uniform Processing Times

Given an instance I of P | rj , pj = p |
∑

wjUj , we create an instance I ′ of MILP as
follows. For each type T we create an integer variable xT that quantifies how many machines
have type T and create the constraint∑

T

xT ≤ m. (1)

For each starting time t ∈ T we create a fractional variable xt that quantifies on how
many machines the starting time t is available and create the following set of constraints.

∀ t ∈ T : xt =
∑

T

tT · xT , (2)

where tT = 1 if starting time t is available on a machine with type T and tT = 0 otherwise.
For each combination of a job j and a starting time t, we create a fractional variable xj,t

if job j can be scheduled to start at time t without violating j’s release date or due date.
This variable indicates whether job j is scheduled to start at starting time t and is early. We
create the following constraints.

∀ t ∈ T :
∑

j

xj,t ≤ xt. (3)

∀ j ∈ {1, . . . , n} :
∑

t

xj,t ≤ 1. (4)

Finally, we use the following function as the maximization objective.∑
j,t

wj · xj,t (5)

This finishes the construction of the MILP instance I ′. We can observe the following.

▶ Observation 14. Given an instance I of P | rj , pj = p |
∑

wjUj, the above described
MILP instance I ′ can be computed in O(2r# · (m + n)2) time and has 2r# integer variables.

In the following, we prove the correctness of the reduction to MILP. We start with showing
that if the P | rj , pj = p |

∑
wjUj instance admits a feasible schedule where the weighted

number of early jobs is W , then the constructed MILP instance admits a feasible solution
that has objective value W .

▶ Lemma 15. If the P | rj , pj = p |
∑

wjUj instance I admits a feasible schedule where the
weighted number of early jobs is W , then the MILP instance I ′ admits a feasible solution
that has objective value W .

Proof. Assume that we are given a feasible schedule σ for I such that the weighted number
of early jobs is W . By Lemma 13 we can assume that σ is release date aligned.

We construct a solution for I ′ as follows. Consider job j and let σ(j) = (i, t) such that
t + p ≤ dj , that is, job j is early. We know that t ∈ T . We set xj,t = 1 and for all t′ ∈ T
with t′ ̸= t, we set xj,t′ = 0. Note that this guarantees that Constraints (4) are fulfilled.
Furthermore, assuming we can set the remaining variables to values such that the remaining
constraints are fulfilled, we have that the objective value of the solution to I ′ is W .

In the remainder, we show how to set the remaining variables such that all constraints
are fulfilled. Initially, we set all variables xT to zero. Next, we determine the type of each
machine. Consider machine i. Then T := {r | ∃j s.t. σ(j) = (i, rj)} is the type of machine i.
Then we increase xT by one. We do this for every machine. Clearly, afterwards Constraint (1)
are fulfilled.

K. Heeger and H. Molter 47:13

Next, we set xt :=
∑

T tT · xT , where tT = 1 if starting time t is available on a machine
with type T and tT = 0 otherwise. Clearly, this fulfills Constraints (2). It remains to show
that Constraints (3) are fulfilled. So consider some time t ∈ T . For each job j starting at
time t on some machine i, we increased xT by one for some T with tT = 1 when processing
machine i. Thus, we have

∑
j xj,t ≤

∑
T tT · xT = xt. ◀

Before we continue with the other direction of the correctness, we prove that we can
apply Lemma 12 to show that the MILP instance I ′ admits an optimal solution where all
variables are set to integer values.

▶ Lemma 16. The MILP instance I ′ admits an optimal solution where all variables are set
to integer values. Such a solution can be computed in 2O(2r# ·r#) · nO(1) time.

Proof. Notice that since the Constraints (2) are equality constraints, we have that in any
feasible solution to I ′, all variables xt are set to integer values. Hence, I ′ is equivalent to the
MILP I ′′ arising from I ′ by declaring xt to be integer variables for every t ∈ T (in addition
to the variables xT), and it suffices to show that I ′′ has an integer solution.

We show that the constraint matrix for the fractional variables xj,t in I ′′ (i.e., the
variables xj,t) is totally unimodular. By Lemma 12 this implies that I ′′ and therefore also I ′

admits an optimal solution where all variables are set to integer values.
Note that the Constraints (3) partition the set of fractional variables xj,t, that is, each

fractional variable is part of exactly one of the Constraints (3). The same holds for the
Constraints (4). Furthermore, the coefficients in the constraint matrix for each variable are
either 1 (if they are part of a constraint) or 0. Hence, we have that the constraint matrix is
a 0-1 matrix with exactly two 1’s in every column. Moreover, in each column, one of the
two 1’s appears in a row corresponding to the Constraints (3) and the other 1 is in a row
corresponding to the Constraints (4). This is a sufficient condition for the constraint matrix
to be totally unimodular [9].

Finally, we argue that an optimal integer solution for I ′′ can be computed in the claimed
running time upper-bound. We use the algorithm implicitly described by Chaudhary et
al. [6] in their proof for Lemma 12. First, we compute an optimal solution for I ′. By the
arguments at the beginning of this proof, this is also an optimal solution for I ′′. To transform
this optimal solution into an optimal solution where every variable is set to an integer value,
we fix all integer variables, resulting in an LP2 instance I ′′′ whose variables are precisely the
fractional variables from I ′′. Since the constraint matrix of this LP I ′′′ is totally unimodular
(as argued above), it is well-known that an optimal solution for I ′′′ where all variables are
set to integer values can be computed in polynomial time, see e.g. Korte and Vygen [24,
Theorem 4.18]. Combining this integral optimal solution for I ′′′ with the integral variables
from I ′′ then yields an optimal solution for I ′′. Now, with Theorem 11 and Observation 14,
we get the claimed overall running time upper-bound. ◀

Now we proceed with showing that if the constructed MILP instance admits an optimal
solution that has objective value W , then the original P | rj , pj = p |

∑
wjUj instance

admits a feasible schedule where the weighted number of early jobs is W .

▶ Lemma 17. If the MILP instance I ′ admits an optimal solution where all variables are set
to integer values and that has objective value W , then the P | rj , pj = p |

∑
wjUj instance I

admits a feasible schedule σ where the weighted number of early jobs is W . The schedule σ

can be computed from the optimal solution to I ′ in polynomial time (in the size of I ′).

2 Linear Program (LP) is the special case of MILP where no variables are considered integer variables
(that is, the set S in the definition of MILP is empty).

STACS 2025

47:14 Minimizing the Number of Tardy Jobs with Uniform Processing Times

Proof. Assume we are given an optimal solution for I ′ where all variables are set to integer
values and that has objective value W . We construct a feasible schedule σ as follows.

First, we assign a type to every machine. Iterate through the types T and, initially,
set i = 1. If xT > 0, then assign type T to machines i to i + xT − 1. Afterwards, increase i

by xT . Since the solution to I ′ fulfills Constraint (1), we know that this procedure does not
assign types to more than m machines.

Now iterate through the relevant starting times i ∈ T . Let Jt = {j | xj,t = 1} and let
Mt = {i | starting time t is available on machine i}. By Constraints (2) and (3) we know
that |Jt| ≤ |Mt| = xt. Hence, we can create a feasible schedule by setting σ(j) = (i, t)
for every job j ∈ Jt, where i ∈ Mt and for all j, j′ ∈ Jt with j ̸= j′ we have σ(j) = (i, t)
and σ(j′) = (i′, t) with i ≠ i′. In other words, we schedule each job in Jt to a distinct
machine i ∈ Mt with starting time t. The Constraints (4) ensure that we schedule each job
at most once. For all jobs j that are not contained in any set Jt with t ∈ T , we schedule j to
an arbitrary machine i to a starting time that is later than rj and later than the completion
time of the last job scheduled on i. Clearly, we can compute σ in time polynomial in |I ′|.
By the definition of available starting times and the fact that we only create variable xj,t if
t ≥ rj , this schedule is feasible.

It remains to show that the weighted number of early jobs is W . To this end, note that
we only create variable xj,t if rj ≤ t and t + p ≤ dj . Hence, for each job j with xj,t = 1 for
some t ∈ T , we know that this job is early in the constructed schedule σ. It follows that the
weighted number of early jobs is

∑
j,t wj · xj,t, which equals the maximization objective of I

and hence equals W . ◀

Now we have all the pieces to prove Theorem 10.

Proof of Theorem 10. Given an instance I of P | rj , pj = p |
∑

wjUj we create an MILP
instance I ′ as described above and use Lemma 16 to compute an optimal solution for I

where all variables are set to integer values. Lemmas 15 and 17 show that we can correctly
compute an optimal schedule for I from the solution to I ′ in polynomial time (in the size
of I ′). Observation 14 together with Lemma 16 show that this algorithm has the claimed
running time upper-bound. ◀

6 Conclusion and Future Work

In this work, we resolved open questions by Kravchenko and Werner [25], Sgall [36], and Mnich
and van Bevern [32] by showing that P | rj , pj = p |

∑
Uj is NP-hard and W[2]-hard when

parameterized by the number of machines. The established hardness of the problem motivates
investigating it from the viewpoint of exact parameterized or approximation algorithms. In
this work, we focussed on the former, leaving the latter for future research. We provided a
first step in systematically exploring the parameterized complexity of P | rj , pj = p |

∑
wjUj .

Our parameterized hardness result shows that the known XP-algorithm for the number
of machines as a parameter is optimal from a classification standpoint. Furthermore, we
showed that this known algorithm implies that the problem is also contained in XP when
parameterized by the processing time, and that it is contained in FPT when parameterized
by the combination of the number of machines and the processing time. Finally, we give an
FPT-algorithm for P | rj , pj = p |

∑
wjUj parameterized by the number of release dates (or

due dates). We leave several questions open, the most interesting one is the following.
Is P | rj , pj = p |

∑
wjUj in FPT or W[1]-hard when parameterized by the processing

time p of any job?

K. Heeger and H. Molter 47:15

Other interesting parameters to consider might be the number of early jobs or the number
of tardy jobs. It is easy to see that P | rj , pj = p |

∑
wjUj is in XP when parameterized by

either one of those parameters, by some simple guess-and-check algorithm (recall that we
can check in polynomial time whether all jobs can be scheduled early [5, 37, 38]). Hence, it
remains open whether the problem is in FPT or W[1]-hard with respect to those parameters.

References
1 Esther M. Arkin and Ellen B. Silverberg. Scheduling jobs with fixed start and end times.

Discrete Applied Mathematics, 18(1):1–8, 1987. doi:10.1016/0166-218X(87)90037-0.
2 Philippe Baptiste. Scheduling equal-length jobs on identical parallel machines. Discrete

Applied Mathematics, 103(1-3):21–32, 2000. doi:10.1016/S0166-218X(99)00238-3.
3 Philippe Baptiste, Peter Brucker, Sigrid Knust, and Vadim G Timkovsky. Ten notes on

equal-processing-time scheduling: at the frontiers of solvability in polynomial time. Quarterly
Journal of the Belgian, French and Italian Operations Research Societies, 2(2):111–127, 2004.

4 Karl Bringmann, Nick Fischer, Danny Hermelin, Dvir Shabtay, and Philip Wellnitz. Faster
minimization of tardy processing time on a single machine. Algorithmica, 84(5):1341–1356,
2022. doi:10.1007/S00453-022-00928-W.

5 Peter Brucker and Svetlana A. Kravchenko. Scheduling jobs with equal processing times
and time windows on identical parallel machines. Journal of Scheduling, 11(4):229–237, 2008.
doi:10.1007/S10951-008-0063-Y.

6 Juhi Chaudhary, Hendrik Molter, and Meirav Zehavi. Parameterized analysis of bribery in
challenge the champ tournaments. In Proceedings of the 33rd International Joint Conference
on Artificial Intelligence (IJCAI), pages 2704–2712. ijcai.org, 2024. URL: https://www.ijcai.
org/proceedings/2024/299.

7 Marek Cygan, Fedor V. Fomin, Łukasz Kowalik, Daniel Lokshtanov, Dániel Marx, Marcin
Pilipczuk, Michał Pilipczuk, and Saket Saurabh. Parameterized Algorithms. Springer, 2015.
doi:10.1007/978-3-319-21275-3.

8 Daniel Dadush, Chris Peikert, and Santosh Vempala. Enumerative lattice algorithms in any
norm via M -ellipsoid coverings. In Proceedings of the 52nd IEEE Annual Symposium on
Foundations of Computer Science (FOCS), pages 580–589. IEEE, 2011. doi:10.1109/FOCS.
2011.31.

9 George Bernard Dantzig. Linear inequalities and related systems. Number 38. Princeton
University Press, 1956.

10 Rodney G. Downey and Michael R. Fellows. Parameterized Complexity. Springer, 1999.
doi:10.1007/978-1-4612-0515-9.

11 Rodney G. Downey and Michael R. Fellows. Fundamentals of Parameterized Complexity.
Springer, 2013. doi:10.1007/978-1-4471-5559-1.

12 Nick Fischer and Leo Wennmann. Minimizing tardy processing time on a single machine in
near-linear time. In Proceedings of the 51st International Colloquium on Automata, Languages,
and Programming (ICALP), volume 297 of LIPIcs, pages 64:1–64:15. Schloss Dagstuhl –
Leibniz-Zentrum für Informatik, 2024. doi:10.4230/LIPICS.ICALP.2024.64.

13 Jörg Flum and Martin Grohe. Parameterized Complexity Theory, volume XIV of Texts in The-
oretical Computer Science. An EATCS Series. Springer, 2006. doi:10.1007/3-540-29953-X.

14 Michael R. Garey and David S. Johnson. Computers and Intractability: A Guide to the Theory
of NP-Completeness. W. H. Freeman, 1979.

15 Ronald L. Graham, Eugene L. Lawler, Jan K. Lenstra, and A. H. G. Rinnooy Kan. Optimization
and approximation in deterministic sequencing and scheduling: a survey. In Annals of Discrete
Mathematics, volume 5, pages 287–326. Elsevier, 1979.

16 Klaus Heeger and Danny Hermelin. Minimizing the weighted number of tardy jobs is W[1]-
hard. In Proceedings of the 32nd Annual European Symposium on Algorithms (ESA), volume
308 of LIPIcs, pages 68:1–68:14. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, 2024.
doi:10.4230/LIPICS.ESA.2024.68.

STACS 2025

https://doi.org/10.1016/0166-218X(87)90037-0
https://doi.org/10.1016/S0166-218X(99)00238-3
https://doi.org/10.1007/S00453-022-00928-W
https://doi.org/10.1007/S10951-008-0063-Y
https://www.ijcai.org/proceedings/2024/299
https://www.ijcai.org/proceedings/2024/299
https://doi.org/10.1007/978-3-319-21275-3
https://doi.org/10.1109/FOCS.2011.31
https://doi.org/10.1109/FOCS.2011.31
https://doi.org/10.1007/978-1-4612-0515-9
https://doi.org/10.1007/978-1-4471-5559-1
https://doi.org/10.4230/LIPICS.ICALP.2024.64
https://doi.org/10.1007/3-540-29953-X
https://doi.org/10.4230/LIPICS.ESA.2024.68

47:16 Minimizing the Number of Tardy Jobs with Uniform Processing Times

17 Klaus Heeger, Danny Hermelin, George B Mertzios, Hendrik Molter, Rolf Niedermeier, and
Dvir Shabtay. Equitable scheduling on a single machine. Journal of Scheduling, 26(2):209–225,
2023. doi:10.1007/S10951-022-00754-6.

18 Danny Hermelin, Yuval Itzhaki, Hendrik Molter, and Dvir Shabtay. On the parameterized
complexity of interval scheduling with eligible machine sets. Journal of Computer and System
Sciences, page 103533, 2024. doi:10.1016/J.JCSS.2024.103533.

19 Danny Hermelin, Shlomo Karhi, Michael L. Pinedo, and Dvir Shabtay. New algorithms for
minimizing the weighted number of tardy jobs on a single machine. Annals of Operations
Research, 298(1):271–287, 2021. doi:10.1007/S10479-018-2852-9.

20 Danny Hermelin, Hendrik Molter, and Dvir Shabtay. Minimizing the weighted number of
tardy jobs via (max,+)-convolutions. INFORMS Journal on Computing, 2023.

21 Richard M. Karp. Reducibility among combinatorial problems. In Complexity of Computer
Computations, pages 85–103. Springer, 1972. doi:10.1007/978-1-4684-2001-2_9.

22 Matthias Kaul, Matthias Mnich, and Hendrik Molter. Single-machine scheduling to minimize
the number of tardy jobs with release dates. In Proceedings of the 19th International Symposium
on Parameterized and Exact Computation (IPEC), volume 321 of LIPIcs, pages 19:1–19:15.
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, 2024. doi:10.4230/LIPICS.IPEC.2024.
19.

23 Kim-Manuel Klein, Adam Polak, and Lars Rohwedder. On minimizing tardy processing
time, max-min skewed convolution, and triangular structured ilps. In Proceedings of the 2023
Annual ACM-SIAM Symposium on Discrete Algorithms (SODA), pages 2947–2960. SIAM,
2023. doi:10.1137/1.9781611977554.CH112.

24 Bernhard Korte and Jens Vygen. Combinatorial Optimization. Springer, 6th edition edition,
2018.

25 Svetlana A Kravchenko and Frank Werner. Parallel machine problems with equal processing
times: a survey. Journal of Scheduling, 14:435–444, 2011. doi:10.1007/S10951-011-0231-3.

26 Sven O Krumke, Clemens Thielen, and Stephan Westphal. Interval scheduling on related
machines. Computers & Operations Research, 38(12):1836–1844, 2011. doi:10.1016/J.COR.
2011.03.001.

27 Harold W Kuhn. The hungarian method for the assignment problem. Naval research logistics
quarterly, 2(1-2):83–97, 1955.

28 Eugene L. Lawler and James M. Moore. A functional equation and its application to resource
allocation and sequencing problems. Management Science, 16(1):77–84, 1969.

29 Hendrik W. Lenstra. Integer programming with a fixed number of variables. Mathematics of
Operations Research, 8:538–548, 1983. doi:10.1287/MOOR.8.4.538.

30 Jan K. Lenstra, A.H.G. Rinnooy Kan, and Peter Brucker. Complexity of machine scheduling
problems. Annals of Discrete Mathematics, 1:343–362, 1977.

31 LL Liu, Chi To Ng, and TC Edwin Cheng. Bicriterion scheduling with equal processing
times on a batch processing machine. Computers & Operations Research, 36(1):110–118, 2009.
doi:10.1016/J.COR.2007.07.007.

32 Matthias Mnich and René van Bevern. Parameterized complexity of machine scheduling: 15
open problems. Computers & Operations Research, 100:254–261, 2018. doi:10.1016/J.COR.
2018.07.020.

33 James M. Moore. An n job, one machine sequencing algorithm for minimizing the number of
late jobs. Management Science, 15:102–109, 1968.

34 Michael L. Pinedo. Scheduling: Theory, Algorithms, and Systems, 5th Edition. Springer, 2016.
35 Baruch Schieber and Pranav Sitaraman. Quick minimization of tardy processing time on a

single machine. In Proceedings of the 18th International Symposium on Algorithms and Data
Structures Symposium (WADS), volume 14079 of Lecture Notes in Computer Science, pages
637–643. Springer, 2023. doi:10.1007/978-3-031-38906-1_42.

https://doi.org/10.1007/S10951-022-00754-6
https://doi.org/10.1016/J.JCSS.2024.103533
https://doi.org/10.1007/S10479-018-2852-9
https://doi.org/10.1007/978-1-4684-2001-2_9
https://doi.org/10.4230/LIPICS.IPEC.2024.19
https://doi.org/10.4230/LIPICS.IPEC.2024.19
https://doi.org/10.1137/1.9781611977554.CH112
https://doi.org/10.1007/S10951-011-0231-3
https://doi.org/10.1016/J.COR.2011.03.001
https://doi.org/10.1016/J.COR.2011.03.001
https://doi.org/10.1287/MOOR.8.4.538
https://doi.org/10.1016/J.COR.2007.07.007
https://doi.org/10.1016/J.COR.2018.07.020
https://doi.org/10.1016/J.COR.2018.07.020
https://doi.org/10.1007/978-3-031-38906-1_42

K. Heeger and H. Molter 47:17

36 Jirí Sgall. Open problems in throughput scheduling. In Proceedings of the 20th Annual European
Symposium on Algorithms (ESA), volume 7501 of Lecture Notes in Computer Science, pages
2–11. Springer, 2012. doi:10.1007/978-3-642-33090-2_2.

37 Barbara B. Simons. Multiprocessor scheduling of unit-time jobs with arbitrary release times
and deadlines. SIAM Journal on Computing, 12(2):294–299, 1983. doi:10.1137/0212018.

38 Barbara B. Simons and Manfred K. Warmuth. A fast algorithm for multiprocessor scheduling
of unit-length jobs. SIAM Journal on Computing, 18(4):690–710, 1989. doi:10.1137/0218048.

39 Shao Chin Sung and Milan Vlach. Maximizing weighted number of just-in-time jobs on
unrelated parallel machines. Journal of Scheduling, 8(5):453–460, 2005. doi:10.1007/
S10951-005-2863-7.

STACS 2025

https://doi.org/10.1007/978-3-642-33090-2_2
https://doi.org/10.1137/0212018
https://doi.org/10.1137/0218048
https://doi.org/10.1007/S10951-005-2863-7
https://doi.org/10.1007/S10951-005-2863-7

Subshifts Defined by Nondeterministic and
Alternating Plane-Walking Automata
Benjamin Hellouin de Menibus # Ñ

Université Paris-Saclay, CNRS, Laboratoire Interdisciplinaire des Sciences du Numérique, 91400,
Orsay, France

Pacôme Perrotin # Ñ

Université Paris-Saclay, CNRS, Laboratoire Interdisciplinaire des Sciences du Numérique, 91400,
Orsay, France

Il voulut être sofic,
il ne fut que pompé.

Abstract
Plane-walking automata were introduced by Salo & Törma to recognise languages of two-dimensional
infinite words (subshifts), the counterpart of 4-way finite automata for two-dimensional finite words.
We extend the model to allow for nondeterminism and alternation of quantifiers. We prove that the
recognised subshifts form a strict subclass of sofic subshifts, and that the classes corresponding to
existential and universal nondeterminism are incomparable and both larger that the deterministic
class. We define a hierarchy of subshifts recognised by plane-walking automata with alternating
quantifiers, which we conjecture to be strict.

2012 ACM Subject Classification Theory of computation → Automata over infinite objects; Theory
of computation → Tree languages; Theory of computation → Regular languages

Keywords and phrases Formal languages, Finite automata, Subshifts, Symbolic dynamics, Tilings

Digital Object Identifier 10.4230/LIPIcs.STACS.2025.48

Funding The authors acknowledge financial support from the ANR-22-CE40-0011 project Inside
Zero Entropy Systems.

Acknowledgements Many people have contributed to this article through discussions, suggestions
and failed attempts; we wish to thank (in alphabetical order) Florent Becker, Amélia Durbec, Pierre
Guillon and Guillaume Theyssier. We are grateful to Ville Salo for providing the proof of Theorem 8
and pointing us towards the Kari-Moore rectangles of Section 5.3, and to Denis Kuperberg and
Thomas Colcombet for pointing us towards works on tree-walking automata cited in Section 5.2.

1 Introduction

One-dimensional finite automata are a classical model to recognise languages of finite words.
They have been extended to recognise languages of finite patterns in two and more dimensions,
often called picture languages, starting with the work of Blum and Hewitt in 1967 [3]. While
the one-dimensional model is very robust to changes in definition, this is not the case in higher
dimensions and many different models have been introduced with varying computational
power; see [11] for a survey that focuses on the non-deterministic case.

Symbolic dynamics are concerned with subshifts, which are languages of infinite words or
patterns. In dimension 1, sofic subshifts can be seen as the infinite counterparts to regular
languages, and have three equivalent definitions: the set of infinite walks on a labelled
graph (finite automaton without initial nor final states); the set of infinite words avoiding
a regular set of forbidden subwords; the letter-to-letter projection of a subshift of finite
type. The latter definition carries through to higher dimensions without difficulties to define
higher-dimensional sofic subshifts.

© Benjamin Hellouin de Menibus and Pacôme Perrotin;
licensed under Creative Commons License CC-BY 4.0

42nd International Symposium on Theoretical Aspects of Computer Science (STACS 2025).
Editors: Olaf Beyersdorff, Michał Pilipczuk, Elaine Pimentel, and Nguyễn Kim Thắng;
Article No. 48; pp. 48:1–48:15

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:hellouin@lisn.fr
https://www.lisn.upsaclay.fr/~hellouin/
https://orcid.org/0000-0001-5194-929X
mailto:pacome.perrotin@gmail.com
https://www.pacomeperrotin.com
https://orcid.org/0000-0003-1197-2676
https://doi.org/10.4230/LIPIcs.STACS.2025.48
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

48:2 Nondeterministic and Alternating Plane-Walking Automata

There are many ways to extend regular languages to higher dimensions. Some models
such as 4-way automata keep the notion of a linear run where the head reads the input
pattern, letter by letter, by moving (“walking”) over the pattern; this contrasts with models
such as recognisable languages where acceptance consists in checking local constraints instead
of a run. Broadly speaking, the latter models are more powerful than the former, and the
same phenomenon arises for languages on trees: tree automata vs. tree-walking automata.
[7] provides a catalogue of the different kinds of models, while a more recent survey on the
“walking” models can be found in [11].

When applying these models to subshifts, recognisable languages yields an alternative
definition of sofic subshifts; this was first done in [8] to our knowledge, and we present this
construction in Section 2.3. Recently, Salo and Törma introduced plane-walking automata
(PWA) [14], a particular case of graph-walking automata, which are a counterpart of 4-way
automata for infinite patterns. In particular, they proved that deterministic plane-walking
automata define a class of subshifts that is strictly between subshifts of finite type and
sofic subshifts, extending to infinite patterns a result from [9] on 4-way automata. It is also
proved in [9] that, for finite patterns, nondeterministic 4-way automata are strictly more
powerful than the deterministic version and that languages of alternating 4-way automata
are incomparable with recognisable languages, a sharp contrast with the one-dimensional
case.

In this paper, we introduce nondeterminism and alternations to plane-walking automata
and consider the classes of higher-dimensional subshifts obtained this way. We prove
that subshifts accepted by Σ1 PWA (existential nondeterminism) and Π1 PWA (universal
nondeterminism) form incomparable classes (Theorem 14), both strictly larger than the
deterministic case, and that subshifts accepted by arbitrary alternating PWA still form a strict
subclass of sofic subshifts (Theorem 8). This yields two new classes of higher-dimensional
subshifts that are intermediate between finite type and sofic subshifts, and natural in that
they generalise one-dimensional sofic subshifts. We introduce an alternating hierarchy
of nondeterministic power from deterministic up to unbounded alternating plane-walking
automata, and conjecture that this hierarchy of subshifts does not collapse; to our knowledge,
this is not known even for finite words. Our proofs involve equivalents of the pumping lemma
for two-dimensional infinite patterns.

Definitions and results are written with the two-dimensional case (Z2) in mind, although
they extend easily to any higher dimension, and our definitions also extend to any finitely
generated groups (see [15]).

2 Configurations and Subshifts

2.1 Symbolic Dynamics
We call positions the elements of Z2, which is endowed with the Manhattan distance d. We
use → = (1, 0) and ↑ = (0, 1), • = (0, 0) and so on; we often write 0 as a position instead of
(0, 0).

Let Σ be a finite set called alphabet. A configuration x is an element of ΣZ2 , while a
pattern p is an element of ΣS for some finite S ⊂ Z2, called the support of p and denoted
supp(p) = S. For i ∈ Z2, σi(x) is a new configuration shifted by i, i.e. (σi(x))j = xi+j . In
dimension one, we call a pattern a word.

Given π : Σ′ → Σ, we extend π to Σ′Z2 by putting π(x)p = π(xp) for all p ∈ Z2.
A subshift X is a set of configurations that is closed in the product topology and invariant

by all shifts; more concretely, it is defined as the set of configurations where no pattern from
a set of forbidden patterns F appears.

B. Hellouin de Menibus and P. Perrotin 48:3

A subshift defined by a finite set of forbidden patterns is called of finite type (SFT
for short). By a standard technique of higher block coding, replacing the alphabet Σ by
Σ[0,n]×[0,n] for n large enough, we can assume without loss of generality that forbidden
patterns all have support {•,→} or {•, ↑}, and we do throughout the paper.

A subshift that can be written as π(X), where X is an SFT on alphabet Σ′ and π : Σ′ → Σ,
is called sofic. In dimension one, sofic subshifts have alternative definitions as the set of
bi-infinite walks on some labelled graph or as the set of bi-infinite words avoiding some
regular set of forbidden words.

We denote the classes of SFT and sofic subshifts SFT and Sofic, respectively.

2.2 Two-dimensional Automata
We define an abstract model of two-dimensional automata. We use different notions of
acceptance in the paper, and add additional restrictions to the model as necessary.

▶ Definition 1. A two-dimensional automaton on Z2 is a labelled directed graph A =
(V, E, Σ, D, I), where

V and E are finite sets of vertices and edges, respectively, where E ⊂ V 2 × Z2 (we call
the second component the direction);
Σ is a finite alphabet and D : V → Σ associates a symbol to each vertex.
I ∈ V are the initial states and D is a bijection from I to Σ. For any a ∈ Σ, we denote
ia the only state in I such that D(ia) = a.

If the automaton is alternating, then there is additionally a map Q : V → {∀, ∃}
associating a quantifier to each vertex.

Notice that since E is finite, the set of possible directions is a finite subset of Z2.

2.3 Recognisable Picture Languages
Recognisable languages, as introduced in [6], are a possible extension of regular languages to
higher-dimensional words (or picture languages) as projections of local languages, which can
be expressed using two-dimensional automata.

The same model applied on subshifts yields an alternative definition of sofic subshifts
using two-dimensional automata.

▶ Definition 2. Let A be a non-alternating two-dimensional automaton whose set of directions
is {↑,→}. Given a pattern or a configuration x, an recognising run of A on x is a function
r : supp(x)→ V such that:

for all i ∈ supp(x), D(r(i)) = xi;
for all i ∈ supp(x) such that i +→ ∈ supp(x), there is an edge (r(i), r(i +→),→) ∈ E,
and similarly for ↑.

Then:
the recognised language Rf (A) is the set of all patterns that admit a recognising run.
the recognised subshift R∞(A) is the set of all configurations that admit a recognising run.

Notice that this definition is intrinsically nondeterministic in the choice of the run and
makes no use of initial states, so we omit I in this section. The first equivalence of the
following result appeared in [8, Proposition 7]; we provide a short proof in our framework.

STACS 2025

48:4 Nondeterministic and Alternating Plane-Walking Automata

▶ Proposition 3. For a subshift X, the following are equivalent:
1. X is sofic;
2. X = R∞(A) for some automaton A;
3. X is defined by a set of forbidden patterns Rf (A)c for some automaton A,
where A is assumed to satisfy the hypotheses of Definition 2.

Proof. (1⇒ 2) Let Y be a SFT on alphabet Σ′ given by a finite set F of forbidden patterns
and π : Σ′ → Σ be such that π(Y) = X; remember that we assume that patterns in F have
support {•, ↑} or {•,→}. We define A = (V, E, Σ′, D) by setting V = Σ′ and D = π, and E

is defined as follows: for all p ∈ Σ′{•,↑}, (p•, p↑, ↑) ∈ E if and only if p /∈ F , and similarly
for →. By construction, y ∈ Σ′Z2 is a recognising run of A on x if and only if y ∈ Y and
π(y) = x, so X = R∞(A).

(2⇒ 1). Let A = (V, E, Σ′, D) be an automaton and define the SFT Y ⊂ V Z2 by the set
of forbidden patterns:

F = {p ∈ V {•,→} : (p•, p→,→) /∈ E}) ∪ {p ∈ V {•,↑} : (p•, p↑, ↑) /∈ E}.

Again by construction, y is a recognising run of A on x if and only if y ∈ Y and D(y) = x,
so X = D(Y) is sofic.

(2⇔ 3) The two statements are equivalent for any automaton A. If x ∈ R∞(A) has a
recognising run, then the restriction of this run to any finite pattern in x is recognising, so
all patterns in x belong to Rf (A). Conversely, if all patterns in x admit a recognising run,
then x does as well by a standard compactness argument. ◀

Notice that the third condition involves complementation, in contrast with the one-
dimensional case; recognisable languages are not closed by complement in dimension 2 [1].

3 Plane-walking Automata and Associated Subshifts

Plane-walking automata generalise the definition of one-dimensional sofic subshifts seen as
the set of infinite walks on a labelled graph.

3.1 Definitions
The automata we use in this section correspond to the plane-walking automata (PWA)
from Salo and Törma [14] with one head and added nondeterminism. They are alternating
two-dimensional automata with a specific acceptance condition, that we call alternating
plane-walking automata to be consistent with the literature.

▶ Definition 4 (Subshifts defined by plane-walking automata). Let A = (V, E, Σ, D, I, Q) be
an alternating PWA. Given x ∈ ΣZ2 , p ∈ Z2 and v ∈ V , there is an accepting run on x

starting from (p, v) if D(v) = xp and:

Q(v) = ∃ and there is an edge (v, v′, d) ∈ E and an accepting run starting from (p + d, v′),
or
Q(v) = ∀ and all edges (v, v′, d) ∈ E with D(v′) = xp+d have an accepting run starting
from (p + d, v′); furthermore, there must be one such edge.

A configuration x is accepted by A if, for every p ∈ Z2, there is an accepting run of A

on x starting from (p, ixp). The set of configurations accepted by A is a subshift, denoted
L∞(A).

B. Hellouin de Menibus and P. Perrotin 48:5

1 1

1 0, ∀ 1

01

→

→

→
→

↑

↑

↑
↑

↑ →

•

•

0
0
0
0
0
0
0
0

0
0
0
0
0
0
0
0

0
0
0
0
0
0
0
0

0
0
0
0
0
0
0
0

0
0
0
0
0
0
0
0

0
0
0
0
0
0
0
0

0
0
0
0
0
0
0
0

0
0
0
0
0
0
0
0

0
0
0
0
0
0
0
0

0
0
0
0
0
0
0
0

1 1 1 1
1 1 1 1

1 1
1 1 1 1
1 1 1 1

1 1
1 1
1 1

Figure 1 On the left, an example of an alternating plane-walking automaton. On the right, a
finite pattern of a configuration accepted by the automaton. The associated subshift is the subshift
where all vertical and horizontal runs of 1s are either of even size or infinite.

The lack of a base case in the previous definition means that an accepting run must be
infinite; in other words, a run accepts if it never reaches a position and state with no possible
move. The model of Salo and Törma used rejecting states, which we opted not to do by
symmetry w.r.t the lack of accepting states; this is a stylistic choice as a rejecting state can
be simulated by a state with no outgoing edge, and an accepting state by a state with a loop
with direction •.

An alternating plane-walking automaton and its associated subshift are illustrated in
Figure 1. Without loss of generality, by adding additional states, the set of directions can be
restricted to {↑, ↓,←,→, •} which we assume in the rest of this article.

We denote Alt the class of subshifts X such that X = L∞(A) for some alternating PWA
A. It is not difficult, as in Proposition 3, to extend the notion of acceptance to finite patterns
(considering a run as accepting when it leaves the support of the pattern), where it coincides
with alternating 4-way picture-walking automata. Subshifts in Alt can equivalently be defined
by a set of forbidden patterns that are the complement of the language of some alternating
PWA. As for recognisable languages, these languages are not closed by complement [11,
Theorem 7].

Plane-walking automata as considered by Salo & Törma [14] are deterministic, in the
sense that there is only one outgoing edge from each state on which the run does not fail
immediately; therefore the quantifiers in the definition are unused. We denote by ∆1 the class
of subshifts defined by such deterministic plane-walking automata, and we call deterministic
every state where the quantifier is not relevant, so we omit it in the pictures for clarity.

▶ Definition 5 (Branch, Footprint). A run on x can be represented by a tree where each
vertex corresponds to a current position and state.

A branch of a run is a branch in that tree, in the usual sense.
The footprint of a subtree or a branch is the set of all visited positions.

3.2 Comparison with SFT and Sofic Subshifts
We show that subshifts defined by alternating plane-walking automata are an intermediate
class between the two classical classes of SFT and sofic subshifts. Notice that, in dimension
one, the classical powerset construction tells us that added nondeterminism does not impact
the power of the finite automata, so every class defined in this article coincide with sofic
subshifts.

STACS 2025

48:6 Nondeterministic and Alternating Plane-Walking Automata

The next result is proved in [14] (Inclusion is stated without proof, Strictness is Lemma 1;
Inclusion also follows from Lemma 15 below).

▶ Proposition 6. SFT ⊊ ∆1 ⊂ Alt.

The following result appeared in [9] (Theorem 1) for finite patterns. We translate the
proof in our framework since our statements differ due to differing models.

▶ Proposition 7. Alt ⊂ Sofic.

Proof. Let A = (V, E, Σ, D, I, Q) be an alternating PWA. Let Σ′ = Σ × P(V), where a
symbol from Σ′ encodes the set of states starting from which there is an accepting run in
the current position. Let π1 and π2 be the projections on the first and second component,
respectively.

We define a SFT Y ⊂ Σ′Z2 by the following set F of forbidden patterns: for p ∈
Σ′{←,→,↑,↓,•}, denote p• = (s, S) where s ∈ Σ and S ∈ P(V). Then p ∈ F if and only if:
1. ∃v ∈ S, D(v) ̸= s, or
2. S ∩ I = ∅, or
3. there is v ∈ S such that

Q(v) = ∃ and for all (v, v′, d) ∈ E, we have pd = (s′, S′) with v′ /∈ S′.
Q(v) = ∀ and there is (v, v′, d) ∈ E such that pd = (s′, S′) with v′ /∈ S′.

We claim that L∞(A) = π1(Y).
Given a configuration y ∈ Y , we prove inductively the following statement: there is an

accepting run starting from (i, v) on π1(y) for all i ∈ Z2 and v ∈ π2(yi). If Q(v) = ∃, then
Condition 3 ensures we find an edge (v, v′, d) with v′ ∈ π2(yi+d). Condition 1 and iterating
this argument yields an accepting run starting from (i + d, v′). A similar argument works for
∀. Condition 2 ensures that there is an initial state in π2(yi), so π1(y) is accepted by A.

Conversely, given a configuration x ∈ L∞(A), we define yi = (xi, Si) where Si ⊂ V is
the set of states v such that there is an accepting run on x from (i, v). Since x admits
an accepting run from any position for some initial state, it is easy to see that all three
conditions above are satisfied and y ∈ Y . ◀

The proof of the following result is due to Ville Salo (personal communication).

▶ Theorem 8. Alt ⊊ Sofic.

▶ Definition 9. Given a one-dimensional subshift X ⊂ ΣZ, its two-dimensional lift is defined
as

X↑ = {y ∈ ΣZ2
: ∃x ∈ X, ∀i, j, yi,j = xi}.

By the constructions of Aubrun-Sablik [2] or Durand-Romaschenko-Shen [5], the lift of
any one-dimensional subshift given by a computable set of forbidden patterns is a sofic
subshift.

▶ Lemma 10. If X↑ is accepted by an alternating PWA, then X is sofic.

Proof. Let A be the automaton that accepts X↑ in the sense that X↑ = L∞(A), and A′ be
the automaton obtained by replacing every direction ↑ or ↓ by • in A.

Since every configuration in X↑ is constant in the vertical direction, A′ accepts every
configuration in X↑ (as well as additional configurations that are not constant vertically).
Since A′ only travels horizontally, it can be seen as a two-way one-dimensional automaton

B. Hellouin de Menibus and P. Perrotin 48:7

that accepts exactly the one-dimensional configurations that lift to X↑; in other words,
A′ accepts X. It follows that X is defined by a regular set of forbidden patterns, so it is
sofic. ◀

To prove Theorem 8, see that the lift X↑ of any non-sofic one-dimensional subshift X

given by a computable set of forbidden patterns is sofic and not accepted by any alternating
PWA. It is well-known that such subshifts exist; see e.g. [12, Example 3.1.7].

4 Alternating Hierarchy for Plane-walking Automata

In this paper, we are interested in comparing the power of plane-walking automata with
varying access to nondeterminism. We introduce an alternating hierarchy of subshifts, similar
to the classic alternating hierarchies of propositional logic formulæ. We are not able to
prove that this forms a strict hierarchy of subshifts, but we show that the hierarchy does not
collapse at the first level.

4.1 Definitions
Starting from ∆1 (deterministic) PWA, we define Σ1, resp. Π1, PWA as the existential, resp.
universal, PWA, that is, all states are labelled by ∃ quantifiers, resp. ∀ quantifiers. We call
Σ1 and Π1 the corresponding classes of subshifts.

By definition, ∆1 ⊂ Σ1 ∩Π1. The rest of this paper is dedicated to show that Σ1 and Π1
are incomparable sets (and thus strictly larger than ∆1). First, we define the whole hierarchy
inductively by using automata decompositions.

▶ Definition 11 (Decomposition). A two-dimensional automaton A = (V, E, Σ, D, I, Q) has
a decomposition (S, V \ S) for S ⊆ V if there exists no path from V \ S to S in E. By
extension, we call decomposition the pair of induced subautomata.

▶ Definition 12 (Σn and Πn). An alternating plane-walking automaton is Σn+1 if it admits
a decomposition into a Σ1-automaton and a Πn-automaton. We denote Σn+1 the class of
subshifts X such that X = L∞(A) for a Σn+1-automaton.

The definitions for Πn+1 are symmetrical.

Equivalently, a Σn automata is such that the image by Q of any path starting from I is a
word of ∃∗∀∗ . . . with n blocks (n− 1 alternations). This justifies the following definition:

▶ Definition 13 (∆n). An alternating plane-walking automaton is ∆n if the image by Q

of any path starting from I is a word of {∃, ∀}∗ with n− 1 blocks (n− 2 alternations). We
denote by ∆n the class of subshifts X such that X = L∞(A) for some ∆n PWA A.

Is is not difficult to see that ∆n ⊆ Σn ⊆ ∆n+1 and ∆n ⊆ Πn ⊆ ∆n+1. We do not know
whether Σn ∩Πn = ∆n.

We are ready to state our main result:

▶ Theorem 14. Σ1 ̸⊂ Π1, and Π1 ̸⊂ Σ1. As a consequence, ∆1 ⊊ Σ1 and ∆1 ⊊ Π1.

In the next two subsections, we build two subshifts in Σ1\Π1 and Π1\Σ1, respectively.
We begin by a technical lemma:

▶ Lemma 15. Let X ∈ Σn be a subshift and Y be a SFT. Then X ∩ Y ∈ Σn. The same
holds for Π and ∆.

STACS 2025

48:8 Nondeterministic and Alternating Plane-Walking Automata

0

1, ∀

0, ∀0, ∀ 0, ∀ 0, ∀

1

0 00 0

←
↓ →

↑

↑ ← ↓ →

↑↓→←

← ↓ → ↑

↑ ← ↓ →

•

← ↓ → ↑

↑ ← ↓ →

Figure 2 A ∀-automaton accepting Xssu. A branch visiting the central state has no next move,
so it rejects.

Proof. Given a PWA A, define A′ as follows. From the initial state, check the area {•, ↑,→}
around the initial position. If a forbidden pattern is found, reject; this is done deterministically.
Otherwise, come back to the initial position and execute a run of A. A′ belongs to the same
class as A and accepts all configurations in L∞(A) where no forbidden pattern appears. ◀

4.2 Sunny Side Up
▶ Definition 16 (Sunny side up). The sunny side up subshift Xssu is the set of configurations
x ∈ {0, 1}Z2 with at most one i ∈ Z2 such that xi = 1.

The sunny side up subshift can be easily accepted using a ∀-automaton that has the
ability of exploring an unbounded space and rejecting if any “problem” is found in any of
the branches.

▶ Proposition 17. Xssu ∈ Π1.

Proof. Let A be the automaton represented in Figure 2. Every run starting from a position
containing 0 accepts. Therefore every configuration with no 1 is accepted.

If A starts on a 1 at position i, it nondeterministically picks a quarter-plane to explore
and rejects if this branch encounters another 1. A run never visits a given position twice, so
if x contains a single 1, all runs accept.

If x contains two 1 at positions i and j, draw a path from i to j using at most two
directions in {→, ↑,←, ↓}. This path yields a rejecting run starting from i. ◀

▶ Proposition 18. Xssu /∈ Σ1.

The following proof is related to Proposition 1 in [14], which only holds for deterministic
PWA (and a larger class of subshifts). Intuitively, Σ1-automata are ill-fitted to explore
unbounded spaces, as a run may reject from a given starting point only if all branches reject,
but every branch may only visit a small part of the space.

In the next proof, we use the notation p±K = {p± i : i ∈ K} for p ∈ Z2, K ⊂ Z2.

B. Hellouin de Menibus and P. Perrotin 48:9

Proof. Let A be a Σ1 PWA with C states; we show that Xssu ̸= L∞(A). For v⃗ ∈ Z2 and
r ∈ N, we denote by B+(v⃗, r) the set {j ∈ Z2 : ∃k ∈ R+, d(j, kv⃗) ≤ r} (for the Manhattan
distance on R2), and B(v⃗, r) = B+(v⃗, r) ∪ −B+(v⃗, r). In other words, this is the band of
width r around the (half-)line of direction v⃗ starting from 0; if v⃗ = 0, B(0, r) = B+(0, r) is a
ball of radius r. When r is not indicated, we assume that r = C.

Let A be a Σ1-automaton that accepts all configurations in Xssu. Define x ∈ Xssu such
that xi = 0 for all i; y ∈ Xssu such that y0 = 1 and yi = 0 for all other positions i; and, for
any p ̸= 0, zp /∈ Xssu such that zp

0 = zp
p = 1 and zp

i = 0 for all other positions i. We find
some p such that A accepts zp, showing that A does not accept Xssu.

To find some accepted zp, we use the following property: if there is an accepting branch
in x that visits neither 0 nor p, the same branch is accepting in zp. Similarly, if an accepting
branch in y does not visit p or an accepting branch in σp(y) does not visit 0, then the same
branch is accepting in zp.

Let S1(r) ⊂ V ×B(0, r) be such that (s, k) ∈ S1 if and only if there is an accepting run
on y from (s, k). For each (s, k) ∈ S1, pick an arbitrary accepting branch b. It is described
by a sequence (sn, pn)n∈N ∈ (V × Z2)N. If b stays in B(0), we find two steps i < j such
that (si, pi) = (sj , pj) and, by a pumping argument, we build another accepting branch bp

which is eventually periodic and stays in B(0). If b leaves B(0), we find two steps i < j

such that si = sj and d(0, pj) ≥ d(0, pi) and, by a pumping argument, we build another
accepting branch bp which is eventually periodic up to translation by the pumping vector
v(s,k) = pj − pi every j − i steps; in other words, bp stays in some band B(v(s,k)). Denote
P1(r) = {v(s,k) : (s, k) ∈ S1(r)} the set of all such pumping vectors.

Let S0 ⊂ V be the set of states reachable from i0 through a path labelled by 0. Since
x is accepted, there must be a cycle that stays in S0. For any such simple cycle (without
repeated states), the associated pumping vector is the sum of all directions. Denote P0 the
finite set of all such pumping vectors.

We distinguish two cases that we illustrate in Figure 3.

All vectors in P0 are colinear to some v

We choose p such that p /∈ B(v)∪
⋃

v1∈P1(0) B(v1). This avoids a finite set of one-dimensional
subsets, so such a choice is possible.

Take any position k ∈ Z2 and assume that k /∈ p−B+(v). Pick an accepting branch b in
y from k. As long as b never visits the 1 in position 0, it stays in a state of S0, so we can
pump to build a periodic accepting branch that stays in k + B+(v) and does not visit p. If
b visits 0, then it is in some state s such that (s, 0) ∈ S1(0), and so we can pump to build
another accepting branch bp that stays in B(0) or in B+(v1) for some v1 ∈ P1(0). Either
way, we built an accepting branch in y from k that does not visit p, so it is accepting in zp.

If k ∈ p− B+(v), then k /∈ 0− B+(v) since we chose p in such a way that the sets are
disjoint. With a similar argument, we build an accepting branch that does not visit 0 on
σp(y).

Every starting position in zp has an accepting branch, so zp is accepted by A.

There are two noncolinear vectors va, vb in P0

This means that, in x, the accepting run from (i0, 0) has two accepting branches that stay
in B+(va) and B+(vb), respectively. Since va and vb are not colinear, there is r > 0 large
enough that B(va) ∩B(vb) ⊂ B(0, r).

STACS 2025

48:10 Nondeterministic and Alternating Plane-Walking Automata

v

vv

1

1

v1

v1

v1

v1

v′1 v′1

v′1

va

vava

1

1

v1

v1

v1

v1

v′1 v′1

v′1

vb vb

vb

Figure 3 Left: the first case when all vectors in P0 are colinear to v. Right: the second case when
{va, vb} ⊂ P0. In both cases, P1 = {v1, v′

1} and the circles represent positions 0 and p. The proof
shows that each initial position admits a path that never visits 0 or p and accepts in y or σp(y).

We choose p such that p /∈
⋃

v1∈P1
B(v1, r + C) and such that p is in the quarterplane

generated by va, vb, at distance at least r + 2C from the border.
Take a position k ∈ Z2. If k ∈ B(0, r), then we pump to build an accepting branch bp in

y that stays either in B(0) or in k + B+(v1) for some v1 ∈ P1(r), so that bp does not visit p.
If k ∈ B(p, r), the same argument applies on σp(y).

If k /∈ B(0, r)∪B(p, r), then one of the two bands Ba = k + B+(va) and Bb = k + B+(vb)
contains neither 0 nor p. Indeed,

Ba ∩Bb contains neither position by definition of r;
If both positions appeared, we would have |p− 0−±(ava − bvb)| ≤ 2C for some a, b ≥ 0,
which contradicts the choice of p.

Assuming that it is Ba, we pump to build an accepting branch in x from k that stays in Ba

and visits neither 0 nor p.
Every position in zp has an accepting branch, so zp is accepted by A. ◀

4.3 The Cone Labyrinth
▶ Definition 19. Let Σ = {0, 1, #}. The cone labyrinth subshift (denoted Xcl) is the set of
configurations x which contains none of the forbidden patterns 010, 11, #1#, 0

,
0 , 1

,
1 and

such that from any position with a pattern #1, there is a path to a position with a pattern
1# using steps ↗,→,↘ that only visits positions with symbols 0.

In a configuration x ∈ {0, 1, #}Z2 of Xcl, every column contains either only # symbols,
or only 0 and 1 symbols. The # marks the outside areas, the 0 the inside areas, and 1
corresponds to entrances / exits to change areas. In particular, a 1 can only be between a 0
and a #. Furthermore, every entrance #1 can be matched to at least one exit 1#, in the
sense that one can walk from #1 to 1# through zeroes using steps ↗,→,↘.

In other words, if the width of the inside area is k, then every entrance must be matched
to an exit at a vertical distance at most k.

▶ Proposition 20. Xcl ∈ Σ1.

B. Hellouin de Menibus and P. Perrotin 48:11

0

1

•

•

#

{#, 0}

1

1

0, ∃

0 #

→

→

→

↑ • ↓→

→ →

↑↓

•
•

Figure 4 ∃-automaton accepting Xcl. We assumed for readability that the patterns from
Definition 19 have already been forbidden.

Proof. We build a ∃ automaton that accepts Xcl assuming that patterns from Definition 19
do not appear; we can do this assumption by Lemma 15. The automaton is represented in
Figure 4.

If the initial position is not the entrance of a labyrinth #1, accept (by looping). Otherwise,
walk nondeterministically in all directions ↗,→,↘. Keep going as long as you see 0, accept
if you find a 1, reject if you find a #. Therefore the automata accepts if and only if, starting
from every entrance, one branch found a matching exit. ◀

▶ Proposition 21. Xcl /∈ Π1.

Intuitively, in order for a run to reject a labyrinth with no exit, some individual branch
must reject, which requires visiting a region of unbounded size (depending on the width on
the labyrinth). By making the width large enough, we disorient this run into rejecting a
valid configuration because it cannot check all required cells.

Proof. Let A be a Π1-automaton that rejects all configurations not in Xcl. We build a
configuration y ∈ Xcl that A rejects, the process being illustrated in Figure 5.

First define a configuration xn /∈ Xcl for some n > |Q|.

xn
(i,j) =

1 if (i, j) = (0, 0)
0 otherwise, if 0 ≤ i ≤ n

otherwise

Since A rejects xn, there exists a position from which there is no accepting run of A; that
is, some branch b from some position p rejects (in finite time). The configuration would be
valid if we switched the symbols at positions (0, 0) or (n, k) for any −n ≤ k ≤ n; therefore b

must visit all these positions, since it would otherwise reject a valid configuration.
Within xn, we call “the left” the half-plane i ≤ 0, “the right” the half-plane i ≥ n, and

“the center” the band 0 < i < n. For simplicity, we assume that b starts in the left and ends
in the right. We decompose b as ℓ0cℓ→r

0 r0cr→ℓ
0 . . . ℓT cℓ→r

T rT , where for all k = 0, . . . , T :
every subsequence is nonempty;
ℓk starts in the left, stays in the left and center, and ends in the left (left stays);
rk starts in the right, stays in the right and center, and ends in the right (right stays);
cℓ→r

k and cr→ℓ
k stay in the center (center crossings).

Consider the first crossing cℓ→r
0 . Crossing takes at least n steps, so we find two positions

(i, j) and (i + a0, j + b0) with a0 > 0 that cℓ→r
0 visited in that order in the same state; (a0, b0)

is the pumping vector. Similarly, we find such pumping vectors (ak, bk) with ak > 0 for all
cℓ→r

k and (αk, βk) with αk < 0 for all cr→ℓ
k .

STACS 2025

48:12 Nondeterministic and Alternating Plane-Walking Automata

start

v

w

u

le
ft

st
ay

s
center crossings

rig
ht

st
ay

rig
ht

st
ay

#
#
#
#
#
#
#
#
#
#
#

0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0

0
0
0
0
0

0
0
0
0
0

1

start

u

u

u

vv

w

wle
ft

st
ay

le
ft

st
ay

center crossings

rig
ht

st
ay

rig
ht

st
ay

#
#
#
#
#
#
#
#
#
#
#
#
#

0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0

0
0
0
0
0
1
0
1
0
0
0
0
0

0
0
0
0
0
0
1
0
0
0
0
0
0

Figure 5 On the left, a rejecting run over the invalid labyrinth x4, which has no exit. Bolded
parts u⃗, v⃗ and w⃗ represent pumping vectors which start and end in the same state. These vectors
are repeated on the right to provide another rejecting run of the same automata over the valid
labyrinth y.

By pumping on these vectors on each crossing, we build a branch b′ that will be valid on
some other configuration y ̸= xn; for the time being, we only pay attention to the positions
in the branch and not to the underlying configuration.

Let C be the lowest common multiple of all ak and −αk and let m > 0 to be fixed later.
We define b′ = ℓ′0c′ℓ→r

0 r′0c′r→ℓ
0 . . . ℓ′T c′ℓ→r

T r′T step by step.

ℓ′0 = ℓ0 is unchanged;
c′ℓ→r

0 is cℓ→r
0 that we pump mC

a0
times along the vector (a0, b0).

r′0 = σ(mC, mC
a1

b1)(r0); in other words, r′0 is shifted relative to r0 so that the positions are
consistent with the previous part.
c′r→ℓ

0 is cr→ℓ
0 shifted by (mC, mC

a1
b1) and pumped mC

−α0
times along the vector (α0, β0).

In a similar manner, we pump every crossing in the center and shift:
ℓ′k and c′ℓ→r

k by (0, oℓ
k(m)), where oℓ

k(m) = Σk−1
i=0

mC
ai

bi + Σk−1
i=0

mC
−αi

βi;
r′k and c′r→ℓ

k by (mC, or
k(m)) where or

k(m) = Σk
i=0

mC
ai

bi + Σk−1
i=0

mC
−αi

βi.
These values are chosen so that the positions are locally consistent with allowed transitions
in A. Notice that oℓ

k(m)− oℓ
k′(m) is either always 0 or tends to ±∞ as m→∞.

Denoting φ the footprint, we see that φ(ℓ′k) = φ(ℓk) + oℓ
k(m). Because every φ(ℓk)

is finite, we can find m large enough such that, for all k and k′, φ(ℓ′k) ∩ φ(ℓ′k′) = ∅ or
φ(ℓ′k)∩φ(ℓ′k′) = φ(ℓk)∩φ(ℓk′), and similarly for right stays. In other words, two stays either
visit no cell in common or they cross in exactly the same manner as the original branch.

If needed, we increase m so that m > |φ(b)|.
Now we build a configuration y so that b′ is a branch of the run starting at the same

position p. Start by putting y = xn+mC , and do the following modifications:
1. set y(0,oℓ

k
(m)) = 1 for all k;

2. choose some i such that |i| < n+Cm and (n+Cm, i) /∈
⋃

k φ(r′k). Then set y(n,i+oℓ
k

(m)) = 1
for all k.

B. Hellouin de Menibus and P. Perrotin 48:13

Condition 1 adds entrances at such positions that the left stay ℓ′k “sees” an entrance
exactly when the original left stay ℓk saw an entrance at position (0, 0). This does not impact
other left stays by the argument above.

Condition 2 adds exits at positions that are not visited by b′, which is possible because
we chose m to be larger than the footprint of b, but satisfy the definition for a valid labyrinth.
This ensures that y ∈ Xcl and that b′ rejects.

By construction, the branch b′ is a branch for the run on y starting at p. It follows that
y ∈ Xcl is rejected by A, a contradiction. ◀

5 Conclusion

5.1 Summary and open questions
We proved that subshifts accepted by alternating plane-walking automata form a strict subset
of sofic subshifts, and that the first level of the hierarchy with bounded alternations is strict:
Σ1 and Π1 are incomparable, and thus the inclusion of ∆1 in both of them is strict.

We sum up our open questions:
1. Is the hierarchy strict for all n or does it collapse at some level? For example, can we

find a subshift in Σ2\Σ1?
2. If a subshift is accepted by a universal PWA and an existential PWA, is it also accepted

by a deterministic PWA? More generally, is it the case that ∆n = Σn ∩Πn?
3. Is there an equivalent definition for subshifts accepted by alternating plane-walking

automata by forbidden patterns accepted by plane-walking automata that do not require
taking a complement?

Pumping arguments are tedious even in the first floors of the hierarchy, and we would like
to find other tools, for example (as suggested by Guillaume Theyssier and inspired by [17])
from communication complexity.

This is only one of multiple possible hierarchies on walking automata. We mention
n-nested automata in the next section. Automata with the ability to leave up to n pebbles
(non-moving marks used as memory) during a run have also been considered. Salo and
Törma studied automata with multiple heads and this hierarchy collapses at n = 3 [14, 13].

Definitions 2 and 4 (recognised / accepted subshifts) extend to higher dimensions Zd, d ≥ 2,

or any finitely generated group by replacing the set of directions by S and S ∪ S−1 ∪ {•},
respectively, where S is a set of generators of the group. While our main results extend
directly to Zd by considering lifts of our two-dimensional examples (see Definition 9), we
make no guesses as to the situation in more complicated groups.

5.2 Strict Hierarchy and Tree-walking Automata
▶ Conjecture 22. The hierarchy is strict, that is, Σn ⊊ Σn+1 for all n (and the same is true
for all combinations of Π, Σ and ∆).

We present some elements supporting this conjecture. Tree-walking automata (TWA)
is a similar model that recognise words written on (finite or infinite) trees. For example,
Theorem 8 can be seen as the translation of [4].

In the context of tree-walking automata, we could not find any work on a similar Σ/Π
hierarchy. However, [16] considers k-nested TWA, defined intuitively as follows: 0-nested
TWA are (existential) nondeterministic TWA; k-nested TWA are nondeterministic TWA
where, at each step, the set of available transitions is determined by foreseeing the behaviour
of two k − 1-nested TWA A and A, in the following sense: the next transition is chosen
nondeterministically among transitions after which A would accept and A would reject.

STACS 2025

48:14 Nondeterministic and Alternating Plane-Walking Automata

The class of (tree-walking or plane-walking) k-nested automata seems to be related
to Σk+1 automata, although we do not have a proof of either direction. For tree-walking
automata, Theorem 29 in [16] proves that the hierarchy of languages recognized by k-nested
TWA is strict. This is to us a strong indication that the alternating hierarchy is strict on
trees (free groups).

We believe that these results can be brought to plane-walking automata by considering
subshifts where trees are drawn on a background on zeroes (this can be ensured with
finitely many forbidden patterns), and every tree must belong to Lk, where Lk is a tree
language that is Σk+1 but not Σk (alternatively, k-nested and not k − 1-nested). This is not
straightforward as plane-walking automata have the ability to walk out of the tree, which
should not provide additional recognition power, but pumping arguments are very tedious for
alternating plane-walking automata. We leave this as an open question for future research.

5.3 An Alternative Approach: Kari-Moore’s Rectangles
We mention an alternative approach to prove that Σ1 ̸= Π1 that was used in [10] for finite
patterns. The following statements are only translations to our model and from finite
patterns to periodic configurations, and we do not vouch for their correctness. This is another
suggestion for future work generalising Theorem 14.

Let f : N → P(N). Let Xf ⊂ {0, 1}Z2 be the smallest subshift containing the strongly
periodic configurations generated by the rectangles:

{r ∈ {0, 1}[0,n]×[0,k] : k ∈ f(n) and for all i, j > 0, r0,0 = ri,0 = r0,j = 1, ri,j = 0}.

If Xf is accepted by a Σ1 plane-walking automaton with k states, then for every n, the
language {1j : j ∈ f(n)} is recognised by a two-way nondeterministic finite automaton with
kn states, and hence regular [10].

The following example of a function f is such that Xf ∈ Σ1\Π1, while Xfc ∈ Π1\Σ1:

f(n) = {in + j : i, j ∈ N, j < i}.

Indeed, f c(n) is a finite set whose largest element is (n−2) ·n+(n−1) ≈ n2. If it is accepted
by an automaton with kn states, this would be a contradiction for n > k by pumping.

References
1 Marcella Anselmo and Maria Madonia. Classes of two-dimensional languages and recognizability

conditions. RAIRO Theor. Informatics Appl., 44(4):471–488, 2010. doi:10.1051/ita/2011003.
2 Nathalie Aubrun and Mathieu Sablik. Simulation of effective subshifts by two-dimensional

subshifts of finite type. CoRR, abs/1602.06095:35–63, 2016. doi:10.48550/arXiv.1602.06095.
3 Manuel Blum and Carl Hewitt. Automata on a 2-dimensional tape. In 8th Annual Symposium

on Switching and Automata Theory, Austin, Texas, USA, October 18-20, 1967, pages 155–160.
IEEE, IEEE Computer Society, 1967. doi:10.1109/FOCS.1967.6.

4 Mikolaj Bojanczyk and Thomas Colcombet. Tree-walking automata do not recognize all
regular languages. In Harold N. Gabow and Ronald Fagin, editors, Proceedings of the 37th
Annual ACM Symposium on Theory of Computing, Baltimore, MD, USA, May 22-24, 2005,
pages 234–243. ACM, 2005. doi:10.1145/1060590.1060626.

5 Bruno Durand, Andrei Romashchenko, and Alexander Shen. Fixed-point tile sets and their
applications. Journal of Computer and System Sciences, 78(3):731–764, 2012. doi:10.1016/j.
jcss.2011.11.001.

https://doi.org/10.1051/ita/2011003
https://doi.org/10.48550/arXiv.1602.06095
https://doi.org/10.1109/FOCS.1967.6
https://doi.org/10.1145/1060590.1060626
https://doi.org/10.1016/j.jcss.2011.11.001
https://doi.org/10.1016/j.jcss.2011.11.001

B. Hellouin de Menibus and P. Perrotin 48:15

6 Dora Giammarresi and Antonio Restivo. Recognizable picture languages. International
Journal of Pattern Recognition and Artificial Intelligence, 6(2&3):241–256, 1992. doi:10.
1142/S021800149200014X.

7 Dora Giammarresi and Antonio Restivo. Two-dimensional languages. In Grzegorz Rozenberg
and Arto Salomaa, editors, Handbook of Formal Languages, Volume 3: Beyond Words, pages
215–267. Springer, 1997. doi:10.1007/978-3-642-59126-6_4.

8 Nataša Jonoska and Joni B. Pirnot. Finite state automata representing two-dimensional
subshifts. Theoretical computer science, 410(37):3504–3512, 2009. doi:10.1016/j.tcs.2009.
03.015.

9 Jarkko Kari and Cristopher Moore. New results on alternating and non-deterministic two-
dimensional finite-state automata. In Afonso Ferreira and Horst Reichel, editors, Annual
Symposium on Theoretical Aspects of Computer Science, volume 2010 of Lecture Notes in
Computer Science, pages 396–406. Springer, 2001. doi:10.1007/3-540-44693-1_35.

10 Jarkko Kari and Cristopher Moore. Rectangles and squares recognized by two-dimensional
automata. In Juhani Karhumäki, Hermann A. Maurer, Gheorghe Paun, and Grzegorz
Rozenberg, editors, Theory is Forever: Essays Dedicated to Arto Salomaa on the Occasion
of His 70th Birthday, volume 3113 of Lecture Notes in Computer Science, pages 134–144.
Springer, 2004. doi:10.1007/978-3-540-27812-2_13.

11 Jarkko Kari and Ville Salo. A survey on picture-walking automata. In Werner Kuich and
George Rahonis, editors, Algebraic Foundations in Computer Science – Essays Dedicated to
Symeon Bozapalidis on the Occasion of His Retirement, volume 7020 of Lecture Notes in
Computer Science, pages 183–213. Springer, 2011. doi:10.1007/978-3-642-24897-9_9.

12 Douglas Lind and Brian Marcus. An introduction to symbolic dynamics and coding. Cambridge
University Press, 1995.

13 Ville Salo. Four heads are better than three. In Hector Zenil, editor, Cellular Automata
and Discrete Complex Systems – 26th IFIP WG 1.5 International Workshop, AUTOMATA
2020, Stockholm, Sweden, August 10-12, 2020, Proceedings, volume 12286 of Lecture Notes in
Computer Science, pages 111–125. Springer, 2020. doi:10.1007/978-3-030-61588-8_9.

14 Ville Salo and Ilkka Törmä. Plane-walking automata. In Teijiro Isokawa, Katsunobu Imai,
Nobuyuki Matsui, Ferdinand Peper, and Hiroshi Umeo, editors, Cellular Automata and
Discrete Complex Systems – 20th International Workshop, AUTOMATA 2014, Himeji, Japan,
July 7-9, 2014, Revised Selected Papers, volume 8996 of Lecture Notes in Computer Science,
pages 135–148. Springer, 2014. doi:10.1007/978-3-319-18812-6_11.

15 Ville Salo and Ilkka Törmä. Group-walking automata. In Jarkko Kari, editor, Cellular Auto-
mata and Discrete Complex Systems: 21st IFIP WG 1.5 International Workshop, AUTOMATA
2015, Turku, Finland, June 8-10, 2015. Proceedings 21, volume 9099 of Lecture Notes in
Computer Science, pages 224–237. Springer, 2015. doi:10.1007/978-3-662-47221-7_17.

16 Balder ten Cate and Luc Segoufin. Transitive closure logic, nested tree walking automata,
and xpath. J. ACM, 57(3):18:1–18:41, 2010. doi:10.1145/1706591.1706598.

17 Véronique Terrier. Communication complexity tools on recognizable picture languages. The-
oretical Computer Science, 795:194–203, 2019. doi:10.1016/j.tcs.2019.05.040.

STACS 2025

https://doi.org/10.1142/S021800149200014X
https://doi.org/10.1142/S021800149200014X
https://doi.org/10.1007/978-3-642-59126-6_4
https://doi.org/10.1016/j.tcs.2009.03.015
https://doi.org/10.1016/j.tcs.2009.03.015
https://doi.org/10.1007/3-540-44693-1_35
https://doi.org/10.1007/978-3-540-27812-2_13
https://doi.org/10.1007/978-3-642-24897-9_9
https://doi.org/10.1007/978-3-030-61588-8_9
https://doi.org/10.1007/978-3-319-18812-6_11
https://doi.org/10.1007/978-3-662-47221-7_17
https://doi.org/10.1145/1706591.1706598
https://doi.org/10.1016/j.tcs.2019.05.040

Cycle Counting Under Local Differential Privacy
for Degeneracy-Bounded Graphs
Quentin Hillebrand #

The University of Tokyo, Japan

Vorapong Suppakitpaisarn # Ñ

The University of Tokyo, Japan

Tetsuo Shibuya #

The University of Tokyo, Japan

Abstract
We propose an algorithm for counting the number of cycles under local differential privacy for
degeneracy-bounded input graphs. Numerous studies have focused on counting the number of
triangles under the privacy notion, demonstrating that the expected ℓ2-error of these algorithms is
Ω(n1.5), where n is the number of nodes in the graph. When parameterized by the number of cycles of
length four (C4), the best existing triangle counting algorithm has an error of O(n1.5 +

√
C4) = O(n2).

In this paper, we introduce an algorithm with an expected ℓ2-error of O(δ1.5n0.5 + δ0.5d0.5
maxn0.5),

where δ is the degeneracy and dmax is the maximum degree of the graph. For degeneracy-bounded
graphs (δ ∈ Θ(1)) commonly found in practical social networks, our algorithm achieves an expected
ℓ2-error of O(d0.5

maxn0.5) = O(n). Our algorithm’s core idea is a precise count of triangles following
a preprocessing step that approximately sorts the degree of all nodes. This approach can be
extended to approximate the number of cycles of length k, maintaining a similar ℓ2-error, namely
O(δ(k−2)/2d0.5

maxn(k−2)/2 + δk/2n(k−2)/2) or O(d0.5
maxn(k−2)/2) = O(n(k−1)/2) for degeneracy-bounded

graphs.

2012 ACM Subject Classification Security and privacy → Privacy-preserving protocols; Theory of
computation → Graph algorithms analysis

Keywords and phrases Differential privacy, triangle counting, degeneracy, arboricity, graph theory,
parameterized accuracy

Digital Object Identifier 10.4230/LIPIcs.STACS.2025.49

Funding Quentin Hillebrand: partially supported by KAKENHI Grant 20H05965, and by JST
SPRING Grant Number JPMJSP2108.
Vorapong Suppakitpaisarn: partially supported by KAKENHI Grant 21H05845 and 23H04377.
Tetsuo Shibuya: partially supported by KAKENHI Grant 20H05967, 21H05052, and 23H03345.

Acknowledgements The authors wish to express their thanks to the anonymous reviewers whose
valuable feedback greatly enhanced the quality of this paper.

1 Introduction

In recent years, differential privacy [13, 15] has become the gold standard for providing strong
privacy guarantees while enabling meaningful data analysis. Differential privacy ensures
that the output of a computation does not significantly change when any single individual’s
data is modified, thus safeguarding individual privacy. While much of the initial work in
differential privacy focused on traditional tabular data [14, 26], there is increasing interest in
extending these privacy guarantees to graph data [31, 35], which presents its own unique set
of challenges.

© Quentin Hillebrand, Vorapong Suppakitpaisarn, and Tetsuo Shibuya;
licensed under Creative Commons License CC-BY 4.0

42nd International Symposium on Theoretical Aspects of Computer Science (STACS 2025).
Editors: Olaf Beyersdorff, Michał Pilipczuk, Elaine Pimentel, and Nguyễn Kim Thắng;
Article No. 49; pp. 49:1–49:22

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:quentin-hillebrand@g.ecc.u-tokyo.ac.jp
https://orcid.org/0000-0002-7747-4998
mailto:vorapong@is.s.u-tokyo.ac.jp
http://www.vorapong-sup.net/
https://orcid.org/0000-0002-7020-395X
mailto:tshibuya@hgc.jp
https://orcid.org/0000-0003-1514-5766
https://doi.org/10.4230/LIPIcs.STACS.2025.49
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

49:2 Cycle Counting Under Local Differential Privacy for Degeneracy-Bounded Graphs

Differential privacy has evolved into numerous variants to accommodate different scenarios,
as detailed in [8]. Of particular interest to us is the concept of local differential privacy [7, 17].
This variant is unique in that it does not rely on the assumption of a trusted central
server. Instead, users must obfuscate their private data before sharing it with an untrusted
computing entity. In the context of graph data, the most commonly adopted notion is edge
local differential privacy [29], where the sensitive information of each user pertains to their
connections with others.

A widely used obfuscation method is randomized response [33, 32]. In this approach,
users invert each bit of their adjacency vector with a certain probability. The server then
collects this distorted information to construct an obfuscated graph. Although it is possible
to publish various graph statistics from the obfuscated graph, the resulting information tends
to be imprecise. Algorithms specifically designed to publish particular statistics typically
yield more accurate and useful graph information.

Table 1 Upper and lower bounds of the expected ℓ2-error for triangle and k-cycle counting
under the local differential privacy. “Interactive” refers to a scenario in which multiple rounds of
communication between the server and the clients are permitted.

Upper Bound Lower Bound
Triangle O(n2) ([22], general graphs) Ω(n1.5) (non-interactive) [24]

O(d1.5
maxn0.5) ([16], general graphs) Ω(n1.5) (interactive) [16]

O(d0.5
maxn0.5) (this work, degeneracy-bounded graph) Ω(n2) (non-interactive) [16]

Odd length O
(
nk−1) (folklore, general graphs)

cycles Ck O
(
n(k−1)/2) (this work, degeneracy-bounded graph)

One graph statistic frequently considered by researchers in local differential privacy is the
number of subgraphs [22, 20]. Specifically, many studies have focused on the publication of
triangle counts [22, 23, 20, 16]. Theoretical analysis results on the ℓ2-error are summarized
in Table 1. Unfortunately, to date, when n is the number of nodes and dmax is the max-
imum degree of the input graphs, the best algorithm has an expected ℓ2-error of O(n2) or
O(d1.5

maxn0.5). We believe that this error is too large for many applications and should be
improved. On the other hand, it has been shown that for all locally differentially private
algorithms, there exists a class of graphs where the ℓ2-error is Ω(n1.5) [16]. This lower bound
implies that the expected ℓ2-error cannot be significantly improved.

1.1 Our Contribution
This motivates us to consider a specific class of graphs. In this paper, we specifically focus on
graphs with bounded degeneracy, as most social graphs exhibit degeneracy values that are
substantially smaller than both the number of vertices and the maximum degree. The table
in the Appendix of [12] provides statistics on a diverse range of graphs, detailing the number
of nodes, degeneracy, and maximum degree. As shown in the paper, for sufficiently large
graphs, degeneracy is consistently at least an order of magnitude smaller than the maximum
degree, and in some instances, several orders of magnitude smaller.

Additionally, several synthetic graph models commonly considered realistic naturally
produce graphs with low degeneracy. Examples include preferential attachment graphs [1]
and bounded expansion graphs [27].

Degeneracy is particularly significant in parameterizing the complexity of subgraph count-
ing algorithms, as demonstrated in [6, 2, 5]. Given the relationship between computational
complexity and estimation error in triangle counting algorithms, degeneracy is an important
parameter for characterizing accuracy.

Q. Hillebrand, V. Suppakitpaisarn, and T. Shibuya 49:3

Let the graph degeneracy be δ. We propose a locally differentially private algorithm with
an expected ℓ2-error of O

(
δ1.5n0.5 + δ0.5d0.5

maxn0.5). When the graph degeneracy is bounded
(δ = O(1)), the expected ℓ2-error becomes O(d0.5

maxn0.5) = O(n). This result implies that our
expected error for the degeneracy-bounded graphs can be smaller than the lower bound for
general graphs.

We also extend our results to count the number of cycles with odd lengths in degeneracy-
bounded graphs. To our knowledge, there are only two local differentially private algorithms
proposed for counting subgraphs of more than three nodes. The first algorithm [24] is designed
to count the number of four-length cycles but operates within the shuffle model, which is
weaker than the original local differential privacy model. The second algorithm counts the
number of walks of length k [3]. This field has limited work due to the significant noise
introduced to ensure user privacy, which accumulates as the subgraph size increases. This
accumulation results in unacceptable errors for differential privacy in larger subgraphs. For
instance, while the expected ℓ2-error from triangle counting algorithms based on randomized
response is O(n2) [24], the expected ℓ2-error for similar algorithms estimating the number
of Ck is as high as O(nk−1). In other words, the error increases by a factor of n with each
increment in cycle length.

In this work, we propose an algorithm that significantly reduces the expected ℓ2-error
to O(n(k−1)/2) in degeneracy-bounded graphs. We believe that this error is much smaller
than the actual number of cycles in most graphs. Consequently, our algorithm is the first to
publish a meaningful number of large cycles under local differential privacy.

1.2 Technical Overview

In this section, we provide an overview of the technical concepts behind our triangle counting
algorithm. The algorithm for counting odd-length cycles, for k ≥ 5, extends these ideas but
requires a more intricate and detailed analysis.

Let the input graph be G = (V = {ν1, . . . , νn}, E). In prior work [22], they apply a
randomized response mechanism that flips each bit in the adjacency matrix with a certain
probability. Let the resulting graph after applying the randomized response be G′ = (V, E′).
In the local differential privacy setting, each node νi knows whether it is connected to
another node νj (where νj ̸= νi) if {νi, νj} ∈ E. For the triangle counting method, node
νi considers (νi, νj , νκ) as a triangle if {νi, νj} ∈ E, {νi, νκ} ∈ E, and {νj , νκ} ∈ E′. Define
ei,j,κ = 1 if node νi considers (νi, νj , νκ) as a triangle, otherwise set ei,j,κ = 0. Define
Si = {(j, κ) : {νi, νj}, {νi, νκ} ∈ E and j < κ}. The estimated number of triangles for node
νi, reported by the user, is t̃i =

∑
(j,κ)∈Si

ei,j,κ. The total estimated number of triangles in

the graph is then f̃∆(G) = 1
3
∑

i t̃i = 1
3
∑

i

∑
(j,κ)∈Si

ei,j,κ, where dividing by three corrects
for the fact that each triangle is counted once by each of the three users forming it (i.e.,
triple-counted), ensuring each triangle is counted only once.

The ℓ2-error of the estimated triangle count f̃∆(G) mostly arises from the variance in the
estimation. A significant portion of this variance comes from the covariance between pairs of
variables in the summation 1

3
∑
i

∑
(j,κ)∈Si

ei,j,κ. Two variables, ei,j,κ and ei′,j′,κ′ , are dependent

if (j, κ) = (j′, κ′). The number of dependent pairs in the counting process is equivalent to
the number of tuples (νi, νj , νi′ , νκ) such that (j, κ) ∈ Si ∩ Si′ , which corresponds to the
number of 4-cycles in the input graph G. Therefore, the squared ℓ2-error is approximately
proportional to the number of 4-cycles in the graph, which is O(n4).

STACS 2025

49:4 Cycle Counting Under Local Differential Privacy for Degeneracy-Bounded Graphs

Let us assume that the indices of all users are predetermined and publicly known before
the counting process begins. Define S′

i = {(j, κ) : {νi, νj}, {νi, νκ} ∈ E and j < i < κ}.
If node i only considers the pairs (j, κ) within S′

i, then each triangle is counted exactly
once. The estimated number of triangles, f̂∆(G), can be calculated as f̂∆(G) =

∑
i t̂i, where

t̂i =
∑

(j,κ)∈S′
i

ei,j,κ. In this counting method, the number of dependent variable pairs is at

most the number of 4-cycles that contain the three nodes νi, νj , νκ with j < i < κ.
Let δ represent the degeneracy of the input graph G, and for each ν ∈ V , let d(ν)

denote the degree of ν. Assume that the degrees of all nodes are publicly known, and
the nodes are indexed in non-decreasing order of their degree, i.e., if i > j, then d(νi) ≤
d(νj). Referring to the bound established by Chiba and Nishizeki [6], which states that∑
(νi,νj)∈E

min(di, dj) ≤ O(δ · |E|), we demonstrate in this paper that the number of such cycles

is O(δ3n). Consequently, the squared ℓ2-error is reduced from O(n4) in previous work to
O(δ3n).

However, we cannot assume that the degrees of all nodes are publicly known, as this
information is sensitive. To address this issue, we use local Laplacian queries, allowing each
user to publish a noisy version of their degree. Let the noisy degree of ν ∈ V be denoted
as d̃(ν). We then assign indices to users based on these noisy degrees, such that if i > j,
then d̃(νi) ≤ d̃(νj). Afterward, we run the protocol described in the previous paragraph. We
show that even with noisy degrees, the expected number of such cycles remains bounded by
O(δ3n).

In summary, our mechanism involves two steps. First, users publish their noisy degrees
using the local Laplacian mechanism, and the server assigns indexes based on these noisy
values. In the second step, using the results of randomized response, each user νi estimates
the number of triangles (νi, νj , νκ) where j < i < κ. This method significantly reduces the
number of dependent triangle pairs in degeneracy-bounded graphs, which in turn lowers the
variance of the estimation.

1.3 Related Works
The field of graph data mining under local differential privacy is relatively new. In contrast,
differential privacy has been studied for many years by various researchers, including works
like [18, 28]. According to [22], local differential privacy typically only hides edges or
relationships, except in special cases like [36]. Differential privacy, on the other hand, can
hide whether an individual or node is part of a social network, as shown in [19, 30]. Therefore,
while both edge and node differential privacy exist, node differential privacy does not apply
in the context of local differential privacy.

Recent works have proposed methods to estimate the densest subgraph, k-core decom-
position, and degeneracy under local differential privacy [10, 9, 11]. However, since we are
focused on estimating different graph statistics in graphs, we do not use or extend the ideas
from these works. Instead, the estimation of degeneracy can be used to approximate the
ℓ2-error of our algorithm.

2 Preliminaries

2.1 Notations
For V = {ν1, . . . , νn} a set of vertices and E ⊆ V 2 a set of edges, we denote by G = (V, E)
the graph on V . We consider simple undirected graphs, meaning that for ν, ν′ ∈ V , (ν, ν) ̸∈ E

and (ν, ν′) ∈ E =⇒ (ν′, ν) ∈ E. We denote by n = |V | the size of the graph and m = |E|
its number of edges.

Q. Hillebrand, V. Suppakitpaisarn, and T. Shibuya 49:5

For each i ∈ [1, n], we introduce ai = [ai,1, . . . , ai,n], the adjacency list of user νi, where
for any j ∈ [1, n], ai,j = 1 if the edge (νi, νj) is in E and ai,j = 0 otherwise. Additionally, we
introduce di, the degree of node νi, which corresponds to the number of edges incident to νi.

We call a path of length k ∈ N, denoted Pk, any tuple (νl1 , . . . , νlk
) such that, for all

i ∈ [1, k], (νli
, νli+1) ∈ E, and, for all i ̸= j, νli

̸= νlj
. We also use #Pk(G) to refer to the

number of paths of length k in G. Similarly, a cycle of length k ∈ N, or Ck, is a tuple
(νl1 , . . . , νlk

) that forms a path and satisfies (νlk
, νl1) ∈ E. We will also use #Ck(G) to refer

to the number of cycles of length k in G.

2.2 Edge Local Differential Privacy
We say that two adjacency lists a and a′ are neighboring if they differ by one bit, i.e. if we
can go from one to the other by adding or removing an edge to node νi. If a′ is a neighbor
of a, we write that a ∼ a′. The notion of edge local differential privacy is as follows:

▶ Definition 1 (ε-edge local differentially private query). Let ε > 0. A randomized algorithm
R is a ε-edge local differentially private query on the node νi if, for all neighboring bit strings
a ∼ a′, and for all S, it holds that

P [R(a) ∈ S] ≤ eεP [R(a′) ∈ S] .

▶ Definition 2 (ε-edge local differentially private algorithm [29]). Let A be an algorithm that
generates multiple randomized queries for each user, has each user apply these queries to
their adjacency vector, and then estimates some graph statistics based on the results. We say
A is an ε-edge local differentially private algorithm if, for all users νi and for all possible
sets of queries R1, . . . ,Rk inquired to νi (where for each 1 ≤ j ≤ k, Rj is an εj-edge local
differentially private query), it holds that ε1 + · · ·+ εk ≤ ε.

2.3 Laplacian Query and Restricted Sensitivity
Next, we introduce queries that are ε-edge local differentially private. We first consider a
query which aims to give an estimate of a real number statistics of the adjacency vector.

▶ Definition 3 (Edge local Laplacian query [21]). For a function f : {0, 1}n → R on adjacency
lists, and a ∼ a′ denoting neighboring adjacency lists, the global sensitivity of f is defined as
∆f = max

a∼a′
|f(a)− f(a′)|. For ε > 0, the query that outputs f(a) + Lap(∆f /ε) is ε-edge local

differentially private, where Lap(b) represents noise drawn from the Laplacian distribution
with parameter b.

Global sensitivity in Definition 3 is designed to handle the worst-case scenario, which can
lead to large amounts of noise being added to the data when using the Laplacian mechanism.
However, if the data is known to belong to a specific set, restricted sensitivity allows us to
adjust the noise according to the sensitivity within that set, resulting in more tailored and
potentially lower noise levels.

▶ Definition 4 (Restricted sensitivity (Definition 8 of [4])). Let a = (a1, . . . , an), a′ =
(a′

1, . . . , a′
n) ∈ {0, 1}n and d(a, a′) be the Hamming distance between a and a′. The restricted

sensitivity of f over a set of possible output H is

RSf (H) = max
a,a′∈H

(
|f(a)− f(a′)|

d(a, a′)

)
.

STACS 2025

49:6 Cycle Counting Under Local Differential Privacy for Degeneracy-Bounded Graphs

We can use restricted sensitivity to publish data even if it is not initially in the set. To
do this, we first need to define a projection method to map the data to the set. In this work,
we will consider Hd, the class of adjacency list with a maximum degree of d, for calculating
restricted sensitivity. We assume that the order of all nodes is fixed, and if a node νi is
adjacent to more than d nodes, we retain only the first d nodes according to this order. The
map can be considered as an operation on each adjacency vector ai. We denote the mapping
result on ai as µd(ai).

▶ Definition 5 (Edge local Laplacian query with restricted sensitivity on Hd [4]). For any
f queried to a user i, the query that answers f(µ(ai)) + Lap(3 ·RSf (Hd)/ε) is called edge
local Laplacian query with restricted sensitivity on Hd, and provides ε-edge local differential
privacy.

2.4 Unbiased Randomized Response
In this subsection, we consider the randomized response query, which aims to publish an
obfuscated adjacency vector.

▶ Definition 6 (Randomized response query [33, 32]). For ε > 0, the randomized response
mechanism takes an adjacency list a = (a1, . . . , an) as input and outputs an obfuscated list
ã = (ã1, . . . , ãn). For i, the probability that ãi is set to 1 is given by:

P [RR(ãi) = 1] =
{

eε

1+eε if ai = 1
1

1+eε if ai = 0.

With this definition, randomized response provides ε-edge local differential privacy.

We can construct a graph G̃ based on the collection of obfuscated adjacency vectors
obtained from all users. Using the statistics of the obfuscated graph G̃, we can then publish
various information, including the number of subgraphs [34, 22, 23, 20]. However, randomized
response produces biased results, making it less suitable for counting queries. This bias can
be fixed by the subsequent definition.

▶ Definition 7 (Unbiased randomized response query [16]). Let ε > 0 and ãi be the adjacency
vector published through randomized response with budget ε by user νi. Then, for all (i, j) ∈
[1, n]2,

âi,j = eε + 1
eε − 1 ãi,j −

1
eε − 1

is an unbiased estimator of ai,j . Additionally, for (i, j) ̸= (i′, j′), âi,j is independent of âi′,j′ ,
and Var (âi,j) = eε

(eε−1)2 . We refer to a query that publishes âi as the unbiased randomized
response query. This query is ε-edge locally differentially private.

We can use the results from the unbiased randomized response query to calculate the
number of subgraphs. For example, without privacy constraints, the number of triangles can
be calculated as

∑
i<j<k

ai,j · aj,k · ak,i. To privately estimate the number of triangles, we use∑
i<j<k

âi,j · âj,k · âk,i. It is theoretically shown in [16] that the estimator
∑

i<j<k

âi,j · âj,k · âk,i

has a smaller ℓ2-error compared to the estimator obtained from the randomized response
query,

∑
i<j<k

ãi,j · ãj,k · ãk,i.

Q. Hillebrand, V. Suppakitpaisarn, and T. Shibuya 49:7

2.5 Graph Arboricity and Degeneracy
Graph arboricity and degeneracy can be defined as follows:

▶ Definition 8 (Arboricity). The arboricity of a graph G is the minimal number α(G) such
that the edges of G can be partitioned into α(G) forests.

▶ Definition 9 (Degeneracy). The degeneracy of a graph G is the smallest number δ(G) such
that any subgraph of G, contains at least one node with induced degree at most δ(G).

We observe that the variable δ is frequently used as a privacy parameter in differential
privacy. However, since we do not consider that parameter in this paper, we choose to use δ

to represent degeneracy, which is also a common convention. When the context is clear, we
will drop the G of the notation and simply write α and δ. The two quantities are linked by
the following theorem.

▶ Theorem 10 (equation 3 and lemma 2.2 of [37]). In any graph G, degeneracy and arboricity
satisfy α ≤ δ ≤ 2α− 1.

The arboricity has previously been used outside of the differential private community to
bound some graph statistics. A folklore useful result is that the number of edges in a graph
is smaller than δn. Another well known result is as follows:

▶ Theorem 11 (Chiba-Nishizeki Bound [6]). With m = |E| and di the degree of node νi, then∑
(νi,νj)∈E

min (di, dj) ≤ mα.

3 Node-Reordered Graphs and Their Properties

The first step of our mechanism is to order the vertices based on their estimated degree. The
algorithm for this step is shown in Algorithm 1. At Line 2 of the algorithm, we privately
publish the estimated degree. Under edge local differential privacy, the global sensitivity of
the degree is 1. Therefore, we can use the Laplacian query (Definition 3) with noise scaled to
1/ε0 to publish the degree, where ε0 is the privacy budget allocated to this step. We denote
the estimated degree as d̃i = di + Lap (1/ε0).

Algorithm 1 Calculate a low degree ordering of a graph with respect to the estimated
degree.

1 Function GetOrdering
Input: Graph G = (V, E), privacy budget ε0
Output: A low degree ordering ϕ of G with respect to the estimated degree

2 [User i] Calculate and send d̃i ← di + Lap(1
ε0

) to the central server
3 [Server] Let ϕ(i) = j if d̃i is the j-the largest number in d̃1, . . . , d̃n. Calculate

ϕ(i) for all i

4 return ϕ;

After publishing the estimated degrees, in Line 3, we assign an order ϕ to the nodes based
on their degrees, which we refer to as a low degree ordering. For G = ({ν1, . . . , νn}, E), we
denote the reordered graph as Gϕ = (V ϕ, Eϕ), where V ϕ = {ηi | i ∈ [1, n]} and νi = ηϕ(i)
for all i. The edge set Eϕ is defined as {(ηϕ(i), ηϕ(j)) | (νi, νj) ∈ E}. We note that G and
Gϕ are isomorphic, and thus have the same number of subgraphs. We denote by di(Gϕ) the
degree of ηi in Gϕ and d−

i (Gϕ) the number of neighbors of node ηi in the set {η1, . . . , ηi−1}.

STACS 2025

49:8 Cycle Counting Under Local Differential Privacy for Degeneracy-Bounded Graphs

Table 2 List of subgraphs analyzed in Section 3, including their representations and bounds on
their counts in the graph produced by Algorithm 1. Oriented edges indicate directionality, with an
arrow from νj to νi signifying that j > i. The bound on S∗

2 aligns with the bound on S2 presented
in [6], but it constitutes a distinct contribution as it is established for imperfectly ordered graphs.
In contrast, the result on C∗

2k is entirely novel to this work and serves as the primary result of our
proof.

Symbol S∗
2 Pk Ck C∗

2k

Representation

Bound O
(
δ2n
)

O
(

δ⌈ k
2 ⌉n⌊ k

2 ⌋+1
)
O
(

δ⌈ k
2 ⌉n⌊ k

2 ⌋
)

[25] O
(
δk+1nk−1)

In the remainder of this section, we analyze the properties of graphs produced by the
reordering. Specifically, our focus is on bounding the frequency of certain substructures
within the reordered graph. A summary of the results from this section is provided in Table 2.

▶ Definition 12 (low star). For k ∈ N∗, a low-k-star is a subgraph consisting of a central
node and k neighboring nodes, where at least one of the neighboring nodes has an index
smaller than that of the central node. We denote by S∗

k(G) the number of such subgraphs
contained in a graph G.

▶ Theorem 13. E
[
S∗

2 (Gϕ)
]
≤ O

(
δ2n
)
.

Proof. Let Ni(Gϕ) be the set of neighbors of ηi in Gϕ. We have that:

S∗
2 (Gϕ) =

n∑
i=1

d−
i (Gϕ)(di(Gϕ)− 1) ≤

n∑
i=1

di(Gϕ)× d−
i (Gϕ) =

n∑
i=1

di(Gϕ)
∑

ηj∈Ni(Gϕ)

1j<i

=
∑

(ηi,ηj)∈Eϕ

dmax(i,j)(Gϕ)

Let τi denote the noise added to the estimated degree of user i. For each edge (ηi, ηj),
their ranks can only be exchanged if the sum of the errors in both degree estimations exceeds
the gap between the two degrees. Therefore, the quantity dmax(i,j)(Gϕ) satisfies

dmax(i,j)(Gϕ) ≤ min(di, dj) + |τi|+ |τj |.

Using this inequality, we can rewrite the count of S∗
2 (Gϕ) as

S∗
2 (Gϕ) ≤

∑
(ηi,ηj)∈Eϕ

min (di, dj) +
n∑

i=1
|τi|di.

Since τi is sampled from Lap(1/ε0), we have that |τi| follows an exponential law of
expectation 1/ε0. Hence,

E
[
S∗

2 (Gϕ)
]
≤

∑
(νi,νj)∈Eϕ

min (di, dj) + m

ε0
.

Q. Hillebrand, V. Suppakitpaisarn, and T. Shibuya 49:9

Since G is isomorphic to Gϕ, α(G) = α(Gϕ) and using Theorem 11 it follows that∑
(νi,νj)∈Eϕ

min (di, dj) ≤ m · α(G).

Since m ≤ nδ and α(G) = O(δ), this gives E
[
S∗

2 (Gϕ)
]
≤ O

(
δ2n
)
. ◀

In addition to the ordered stars we just discussed, arboricity can also be used to bound
the number of paths and cycles in a graph, as demonstrated in the following lemma and
theorem. Recall that #Pk(G) is the number of paths with length k in the graph G.

▶ Lemma 14. For any positive integer k, #P2k(G) = O
(
δknk+1) , #P2k+1 = O

(
δk+1nk+1).

Proof. We first consider #P2k+1(G). Let f be a function that maps a path of length 2k + 1
to a tuple of k + 1 edges, defined as f(e1, . . . , e2k+1) = (e1, e3, . . . , e2k+1). We observe that,
for any tuple of k + 1 edges denoted by E = (e′

1, . . . , e′
k+1), f−1(E) is either a set containing

one path or an empty set. There is at most one path that uses e′
i as the (2i− 1)-th edge of

the path for all i. Thus, we can conclude that the number of paths of length 2k + 1 is at
most the number of sets of k + 1 edges, which is mk+1 = O

(
δk+1nk+1).

Next, let us consider #P2k(G). Let f be a function that maps a path of length 2k to
a tuple of k edges, defined as f(e1, . . . , e2k) = (e1, e3, . . . , e2k−1). We observe that, for any
tuple of k edges denoted by E = (e′

1, . . . , e′
k), f−1(E) is a set of size no larger than n. There

is at most one path of length 2k − 1 that uses e′
i as the (2i − 1)-th edge of the path, and

there are at most n possible ways to extend a path of length 2k − 1 to a path of length k.
Hence, #P2k(G) ≤ n ·mk = O

(
δknk+1). ◀

Recall that #Ck(G) is the number of cycles with size k in the graph G. We obtain the
following theorem.

▶ Theorem 15. For any k ≥ 1, #Ck+2(G) ≤ 2
k α(G)#Pk(G).

Proof. Let us denote #P
(i)
k the number of paths of length k that have node νi as an extremity

and #C
(i,j)
k the number of cycles of length k containing edge (νi, νj). Using these notations,

we have #Ck+2 = 1
k

∑
(νi,νj)∈E

#C
(i,j)
k+2 . Consider the number #C

(i,j)
k+2 . For a path of length k

that has a node νi as a terminal, there is at most one cycle of length k + 2 which includes
this path and the edge (νi, νj). Therefore, we conclude that #C

(i,j)
k+2 ≤ #P

(i)
k . Similarly, we

have #C
(i,j)
k+2 ≤ #P

(j)
k . Hence,

#Ck+2 ≤
1
k

∑
(νi,νj)∈E

min
(

#P
(i)
k , #P

(j)
k

)
.

For any function h : E → {1, . . . , n} such that for all e = (νi, νj) ∈ E, h(e) is equal to
either i or j, min

(
#P

(i)
k , #P

(j)
k

)
≤ #P

(h(νi,νj))
k . By definition of the arboricity, there exists

a set of disjoint forests {Fl}l=1,...,α(G) such that E =
⋃α(G)

l=1 Fl. By choosing a root for each
tree of these forests, we can introduce a function h such that each edge has its child node as
an image. In this way, each node can only be the image of one edge per forest. This leads to

#Ck+2 ≤ 1
k

α(G)∑
l=1

∑
(νi,νj)∈Fl

min
(

#P
(i)
k , #P

(j)
k

)
≤ 1

k

α(G)∑
l=1

∑
e∈Fl

#P
(h(e))
k ≤ 1

k

α(G)∑
l=1

∑
i∈V

#P
(i)
k

= 2
k

α(G)#Pk.

STACS 2025

49:10 Cycle Counting Under Local Differential Privacy for Degeneracy-Bounded Graphs

The last step is justified by the fact that each path having two extremities, the sum of all
the paths of length k starting with node νi is twice the number of paths of length k. ◀

Combining Lemma 14 and Theorem 15, we obtain the following corollary1.

▶ Corollary 16. For k ≥ 1, #C2k+2 = O
(
δk+1nk+1) and #C2k+1 = O

(
δk+1nk

)
.

Next, we focus on the number of cycles of length 2k for any k ≥ 2, in which three
consecutive vertices of the cycle exhibit monotonic ranks C∗

2k, as illustrated in Table 2.
Throughout the rest of this article, we will denote the count of such subgraphs in G by
#C∗

2k(G), omitting G from the notation when the context is clear. In the following theorem,
for simplicity, we extend the notation by assuming #P−1(G) = 1 and #P0(G) = n for every
graph G.

▶ Theorem 17. For k ≥ 2, #C∗
2k(G) ≤ 2α(G)S∗

2 (G)#P2k−5(G).

Proof. Let #C
∗(i,j)
2k (G) represent the number of subgraphs in G where three consecutive

vertices exhibit monotonic ranks, with (νi, νj) being the edge immediately following these
consecutive vertices. Also, for k ≥ 2, let the number of paths of length p with a low-2-star as
one of its extremities be denoted as #P ∗

p . Since we can construct at most one path included
in #P ∗

p where a low-2-star and a path of length p − 3 are its extremities, we obtain the
inequality #P ∗

p ≤ S∗
2 ·#Pp−3.

Let C
∗(i,j)
2k be a cycle which is counted in #C

∗(i,j)
2k . Consider the path in C

∗(i,j)
2k of length

2k − 2 starting from νi that does not pass through νj and the other path in C
∗(i,j)
2k of the

same length starting from νj that does not pass through νi. We observe that one extremity
of the two paths is a low-2-star. Hence, #C

∗(i,j)
2k ≤ min

(
#P

∗(i)
2k−2, #P

∗(j)
2k−2

)
when #P

∗(i)
p

is the number of paths in the count of #P ∗
p that have νi as an extremity. Using the same

definition of h as in the proof of Theorem 15, we have

#C∗
2k(G) ≤

∑
(νi,νj)∈E

#C
∗(i,j)
2k ≤

∑
(νi,νj)∈E

min
(

#P
∗(i)
2k−2, #P

∗(j)
2k−2

)

≤
α(G)∑
l=1

∑
(νi,νj)∈Fl

min
(

#P
∗(i)
2k−2, #P

∗(j)
2k−2

)
≤

α(G)∑
l=1

∑
e∈Fl

#P
∗(h(e))
2k−2

≤
a(G)∑
l=1

∑
i∈V

#P
∗(i)
2k−2 ≤ 2α(G)#P ∗

2k−2 ≤ 2α(G)S∗
2 #P2k−5. ◀

The next corollary follows Theorem 13, 17, and Lemma 14.

▶ Corollary 18. For k ≥ 2, E[C∗
2k(Gϕ)] = O

(
δk+1nk−1).

The next corollary considers the number of edge sets in Gϕ with specific properties.

▶ Corollary 19. For any p ∈ N, we consider edge sets E ⊆ Eϕ of size 2p such that 1) for some
c > 0, there exists a set of cycles C1, . . . , Cc in Gϕ where C1 ∪ · · · ∪ Cc = E and Ci ∩ Cj = ∅
for i ̸= j, and 2) at least one of C1, . . . , Cc contains three consecutive vertices of monotonic
index. The number of such edge sets is O

(
δp+1np−1).

1 We note that this result was independently established in [25] by a different proof. We are grateful to
the anonymous reviewer for bringing this to our attention.

Q. Hillebrand, V. Suppakitpaisarn, and T. Shibuya 49:11

Proof. Consider a partition of 2p, denoted by (p1, . . . , pc), where p1 + · · ·+ pc = 2p. The
number of such partitions is a function of p and can be considered constant. We will
demonstrate that the number of cycle sets C1, . . . , Cc satisfying the conditions in the corollary
statement, with |Ci| = pi, is at most O

(
δp+1np−1). Therefore, the number of cycle sets

satisfying the corollary statement is no more than O
(
δp+1np−1).

To prove the bound, we will consider two cases: either all the cycles have even lengths, or
at least two of them have odd lengths, given that the total number of edges is even.

If all the cycles are of even length, then, for some q > 0 one of them is of length 2q and
includes 3 consecutive vertices of monotonic index. By Corollary 18, there are O

(
δq+1nq−1)

possibilities for this cycle. For the remaining cycles, Corollary 16 tells us that the number of
admissible configurations is bounded by O (δp−qnp−q). In total, this gives a O

(
δp+1np−1)

bound. If at least two cycles have odd lengths, say 2q + 1 and 2r + 1, then by Corollary 16,
the number of possible configurations for these cycles can be bounded by O

(
δq+1nq

)
for the

first cycle and O
(
δr+1nr

)
for the second cycle, and O

(
δp−q−r−1np−q−r−1) for the remaining

cycles. Overall, this results in a bound of O
(
δp+1np−1). ◀

4 Triangle Counting Algorithm

We propose Algorithm 2 to count the number of triangles based on the ordering and properties
discussed in the previous section. First, we execute Algorithm 1 at Line 2. Next, at Line 3,
we use the randomized response query to obtain an obfuscated graph. From Lines 4 to 8,
we employ the Laplacian query with restricted sensitivity on Hd (Definition 5) to estimate
the number of triangles associated with User i. Finally, at Line 9, we sum all the estimates
and report the total as the estimated triangle count. We adopt the concept from [22] of
distributing randomized response results to all nodes and having each node estimate its
number of triangles. However, the other algorithmic ideas presented in this work are novel.
In the following theorem, we demonstrate that our algorithm is differentially private.

Algorithm 2 Our algorithm for estimating the number of triangles in degeneracy-bounded
graphs.

1 Function TriangleCounting
Input: Graph G = (V, E), privacy budget ε = ε0 + ε1 + ε2, parameter ζ

Output: Estimation of the number of triangles in G

2 [All Users and Server] ϕ← GetOrdering(G, ε0) (Algorithm 1);
3 [All Users and Server] Inquire the unbiased randomized response query with privacy

budget ε1 to all users. Let (âϕ
j,k) represent the results collected from this query. The

server then distributes (âϕ
j,k) to all users.

4 [User i] d̂ϕ
i ← d̃ϕ

i + 1
ε0

ln(n/ζ);
5 [User i] aϕ

i ← µ
d̂

ϕ
i

(aϕ
i) (The function µd is defined before Definition 5.) ;

6 [User i] Si ← {(j, k) | aϕ
i,j = aϕ

i,k = 1, j < i < k};
7 [User i] t̂i ←

∑
(j,k)∈Si

âϕ
j,k;

8 [User i] t̃i ← t̂i + 3 · Lap(eε1 +1
eε1 −1 ·

d̂
ϕ
i

ε2
);

9 [User i] Upload t̃i to the central server;
10 [Server] f̂△(G)←

∑
νi∈V

t̃i;
11 return f̂△(G);

▶ Theorem 20. Algorithm 2 provides (ε0 + ε1 + ε2)-edge local differential privacy.

STACS 2025

49:12 Cycle Counting Under Local Differential Privacy for Degeneracy-Bounded Graphs

Proof. For all possible executions of Algorithm 2, it inquires three queries to all users. They
are 1) the Laplacian query with privacy budget ε0 inside the GetOrdering function at Line
2, 2) the unbiased randomized response query with privacy budget ε1 at Line 3, and 3) the
Laplacian query with restricted sensitivity on Hd at Lines 4-8.

To prove this theorem, we only need to show that the query at Lines 4-8 is ε2-edge local
differentially private. The query aims to publish f(aϕ

i) =
∑

(j,k)∈Si
âϕ

j,k. By the unbiased
randomized response in Line 3, we have that, for any j, k, j′, k′, |âϕ

j,k − âϕ
j′,k′ | ≤ eε1 +1

eε1 −1 . It
can be shown that, for aϕ

i , a
′ϕ
i ∈ Hd̂ϕ

i
(defined in Definition 5) such that d(aϕ

i , a
′ϕ
i) ≤ d, the

number of different elements in the set Si obtained from aϕ
i ,a

′ϕ
i at Line 6 is at most d · d̂ϕ

i .
Therefore, the restricted sensitivity of the function f (denoted by RSf

(
Hd̂ϕ

i

)
in Definition 5)

is not larger than d · d̂ϕ
i · eε1 +1

eε1 −1 ·
1
d = d̂ϕ

i · eε1 +1
eε1 −1 . Hence, by Definition 5, the publication of t̃i

at Line 8 is ε2-edge local differentially private. ◀

We now discuss the accuracy of our estimation and its relation with the parameter ζ

appearing at Line 4 the algorithm. We will see that ζ controls the trade off between the bias
and the accuracy. The smaller ζ is, the smaller the average noise gets, but the larger the
probability of bias and its expected magnitude is.

In the following lemma, we discuss that the projection µϕ

d̂i
applied at Line 5 changes the

adjacency vector aϕ
i only with small probability.

▶ Lemma 21. For any ζ > 0, with probability at least 1− ζ, |d̃i − di| < (ln n
ζ)/ε0 for all i.

Proof. Using the cumulative distribution function of the Laplacian random variable, we have
P
[
|d̃i − di| ≥ ε0 ln n

ζ

]
≤ ζ

n . Thus, by taking this inequality for all i ∈ [1, n], and using the

union bound, we obtain P
[
∃i ∈ [1, n], |d̃i − di| ≥ ε0 ln n

ζ

]
≤ ζ. ◀

We show that our estimation has no bias with high probability in the subsequent theorem.

▶ Theorem 22. With probability at least 1− ζ, algorithm 2 provides an unbiased estimate of
the number of triangles in the graph, i.e. E

[
f̂△(G)

]
= #C3(G).

Proof. As discussed in Definition 7, we have that E(âϕ
j,k) = aϕ

j,k. Using Lemma 21, with
probability at least 1 − ζ, d̂ϕ

i is larger than dϕ
i for all i ∈ [1, n], and the function µd̂ϕ

i

has no effect. Consequently, Si precisely represents the set of forks centered on node νi,
encompassing all possible triangles. Therefore, t̂i is an unbiased estimate of the number of
triangles (νi, νj , νk) such that j < i < k. Given that Laplace noise is centered and triangles
can be decomposed accordingly, f̂△(G) is an unbiased estimation of f△(G). ◀

Corollary 23 ensures that even in the unlikely event of some clipping occurring, the
resulting bias would still represent only a small fraction of the actual count.

▶ Corollary 23. The expected value of the bias of Algorithm 2 is bounded by O
(

ζ
ε0n #C3

)
.

Proof. When the corrected estimated degree d̂ϕ
i is smaller than the actual degree di, di − d̂ϕ

i

edges are excluded. This exclusion introduces a bias because the potential triangles involving
these excluded edges are not counted. For each user i and their neighbor j, let t

(j)
i denote

the number of triangles counted by user i that involve the edge (νi, νj). We also define
tmax
i = maxj t

(j)
i . Then, the maximum bias resulting from a single clipped edge can be

bounded by tmax
i .

Q. Hillebrand, V. Suppakitpaisarn, and T. Shibuya 49:13

The expected number of clipped edges for user i is determined by evaluating the following
integral, where β = ln(n/ζ)

ε0
serves as the correction term for the degree:

∫ −β

−∞

ε0

2 e−ε0|x|(−x− β) dx = −ε0

2

[
x− β

ε0
e−ε0x + 1

ε2
0

e−ε0x

]∞

β

= 1
2ε0

e−ε0β = ζ

2ε0n
.

We obtain the final result by combining these elements and observing that
∑

i tmax
i ≤∑

i,j t
(j)
i ≤ 2f△(G). ◀

The accuracy of our estimation is demonstrated in the subsequent theorem.

▶ Theorem 24. When ζ ≤ ε0, the squared expected ℓ2-error of algorithm 2 is bounded by

O
(

δ3n

ε2
1

+ δdmaxn

ε2
1ε2

2
+ n ln2(n/ζ)

ε2
0ε2

1ε2
2

)
.

Proof. The squared ℓ2-error can be decomposed into the square of the bias plus the vari-
ance. We have established in Corollary 23 that the bias of the algorithm is bounded by
O
(

ζ
ε0n #C3

)
= O

(
δ2). We will now focus on bounding the variance of the algorithm. This

variance arises from two distinct sources: the randomized response query and the Laplacian
query with restrictive sensitivity.

Regarding the noise introduced by the Laplacian query with restrictive sensitivity, its
variance is simply the sum of the variances of each term, which is

9
(

eε1 + 1
eε1 − 1

)2 ∑
νi∈V

d̂2
i

ε2
2

= O
(

ε2
0δdmaxn + n ln2(n/ζ)

ε2
2ε2

1ε2
0

)
.

Next, we consider the variance from the randomized response query. In the following
equations, we use the notation N ∗

j,k to denote the set of neighbors νi of both νj and νk such
that j < i < k. Note that by including one node from N ∗

j,k along with νj and νk, a triple
in S∗

2 is formed. Similarly, including two nodes from N ∗
j,k along with νj and νk results in

a quadruplet in #C∗
4 . We also notice from Definition 7 that, for (j, k) ̸= (j′, k′), âϕ

j,k is
independent to âϕ

j′,k′ and Cov
(

âϕ
j,k, âϕ

j′,k′

)
= 0. Hence,

Var

 ∑
νi∈V ϕ

∑
(j,k)∈Si

âϕ
j,k

 =
∑

(νj ,νk)∈(V ϕ)2

 ∑
νi∈N ∗

j,k

Var
(

âϕ
j,k

)
+

∑
νi,νi′ ∈N ∗

j,k

Cov
(

âϕ
j,k, âϕ

j,k

)
= O

(
(S∗

2 + #C∗
4)/ε2

1
)

By Theorem 13 and Collorary 18, Var
(

f̂(G)
)

= O
(

δ3n
ε2

1
+ δdmaxn

ε2
1ε2

2
+ n ln2(n/ζ)

ε2
0ε2

1ε2
2

)
. ◀

In the previous work [16], the number of terms in the variance calculation is bounded
by the number of cycles of length four, which is O

(
d3

maxn
)
. We reduce that number to

#C∗
4 = O

(
δ3n
)

using the GetOrdering function in Line 2 and by including only pairs (j, k)
such that j < i < k. It is known that δ ≤ dmax and, in many practical graphs, the degeneracy
is much smaller than the maximum degree.

STACS 2025

49:14 Cycle Counting Under Local Differential Privacy for Degeneracy-Bounded Graphs

5 Odd Length Cycle Counting

In this section, we will describe how to utilize low-degree ordering to accurately count
odd-length cycles in graphs with bounded degeneracy. Some concepts are extended from
the previous section. As shown in Algorithm 3, the algorithm for estimating the number of
odd-length cycles is similar to Algorithm 2, except that the restricted sensitivity at Line 9 is
larger, and at Line 8, we replace âϕ

i,j with an estimate for the number of paths under specific
constraints. We discuss the privacy of the algorithm in the subsequent theorem. The main
challenge of the proof is to demonstrate that the Laplacian query under restricted sensitivity
at Lines 5-9 is ε2-differentially private.

Algorithm 3 Our algorithm for estimating the number of odd-length cycles in degeneracy-
bounded graphs.

1 Function OddCycleCounting
Input: Graph G = (V, E), privacy budget ε = ε0 + ε1 + ε2, k an odd number not

smaller than 5, parameter ζ

Output: Estimation of the number of k-cycles in G

2 [All Users and Server] ϕ← GetOrdering(G, ε0) (Algorithm 1);
3 [All Users and Server] Inquire the unbiased randomized response query with privacy

budget ε1 to all users.
4 [Server] Let (âϕ

i,j) represent the results collected from this query. The server then
distributes (âϕ

i,j) to all users.
5 [Server] Calculate

#P̂k−4 :=
∑

(l1,...,lk−3)∈V k−3

∏
q∈[1,k−4]

âϕ
lq ,lq+1

,

then send this information to all users;
6 [User i] d̂ϕ

i ← d̃ϕ
i + 1

ε0
ln(n/ζ);

7 [User i] aϕ
i ← µ

d̂
ϕ
i

(aϕ
i);

8 [User i] Si ← {(j, κ) | aϕ
i,j = aϕ

i,κ = 1, j < i < κ};
9 [User i] ĉi ←

∑
(j,κ)∈Si

#P̂
(i)
k−2(j, κ) when

#P̂
(i)
k−2(j, κ) =

∑
(l1,...,lk−1)∈X

(i)
k−2(j,κ)

∏
q∈[1,k−2]

âϕ
lq ,lq+1

and X
(i)
k−2(j, κ) is a set of non-repeating combination of k − 1 vertices in Gϕ with

endpoints νj and νκ, such that, for any three consecutive nodes (νq, νr, νs) in the path
with monotonic ranks, the node νi has a lower rank than νr;

10 [User i] c̃i ← ĉi + Lap
(

3 ·
(

eε1 +1
eε1 −1

)2 · d̂ϕ
i ·#P̂k−4/ε2

)
;

11 [User i] Upload c̃i to the central server;
12 [Server] f̂k(G)←

∑
νi∈V

c̃i;

13 return f̂k(G);

▶ Theorem 25. Algorithm 3 provides (ε0 + ε1 + ε2)-edge local differential privacy.

Proof. We need to demonstrate that Lines 5-9 of the algorithm, involving the Laplacian query
with restricted sensitivity on Hd̂ϕ

i
, ensure ε2-differential privacy. Following the arguments

of Theorem 20, we assert that altering d entries of aϕ
i,j changes the set Si by at most d · d̂ϕ

i

elements. A single element change in Si can alter the value of ĉi by

Q. Hillebrand, V. Suppakitpaisarn, and T. Shibuya 49:15

#P̂
(i)
k−2(j, κ) =

∑
(l1,...,lk−1)∈X

(i)
k−2(j,κ)

∏
q∈[1,k−2]

âϕ
lq,lq+1

≤
(

eε + 1
eε − 1

)2
#P̂k−4.

Therefore, the restricted sensitivity of c̃i is d · d̂ϕ
i

(
eε+1
eε−1

)2
#P̂k−4/d = d̂ϕ

i

(
eε+1
eε−1

)2
#P̂k−4.

Consequently, the publication of c̃i at Line 9 is ε2-differentially private. ◀

The bias of the algorithm is given in the following theorem.

▶ Theorem 26. With a probability of at least 1 − ζ, Algorithm 3 provides an unbiased
estimate of the number of k-cycles in any graph G for any odd integer k.

Proof. Since we publish âϕ
lq,lq+1

using the unbiased randomized response query, the publica-
tion is an unbiased estimation of aϕ

lq,lq+1
. Furthermore, as those estimators are independent

from one another, for each (j, κ) ∈ Si and {l1, . . . , lk−1} ∈ X
(i)
k−2(j, κ),

∏
q∈[1,k−2]

âϕ
lq,lq+1

is an

unbiased estimate of
∏

q∈[1,k−2]
aϕ

lq,lq+1
. It results from this that #P̂

(i)
k−2(j, κ) is an unbiased

estimator of the number of paths between j and κ with length k − 2 such that, for any three
consecutive nodes (νq, νr, νs) with monotonic ranks, the node νi has a lower rank that νr.
We denote the number of such paths as #P

(i)
k−2(j, κ).

Let us introduce C
(i)
k =

∑
(j,k)∈Si

#P
(i)
k−2(j, κ). Assuming no clipping occurs, which

happens with a probability of at least 1− ζ, we have by linearity of expectation that both ĉi

and c̃i are unbiased estimators of C
(i)
k . Therefore, all that remains to be proven is that the

number of k-cycles in G is equal to
∑

νi∈V ϕ C
(i)
k . It is evident that for each element counted

in
∑

νi∈V ϕ C
(i)
k , there is a corresponding cycle (νi, l1, . . . , lk−1) in Gϕ and, also, in G.

Conversely, consider a cycle of length k in G. Since it is also a cycle in Gϕ, we can represent
it in Gϕ as (ν1, . . . , νk). Because the cycle is of odd length, there exist three consecutive
nodes with a monotonic rank. Among all possible triplets, consider the one where the central
node has the smallest rank, denoted as (νj , νi, νκ) with j < i < κ. Furthermore, let j = l1
and κ = lk−1, and assign the indices of the other nodes in the cycle to l2 through lk−2 in
the order they appear in the cycle. Thus, the cycle is counted in

∑
νi∈V ϕ C

(i)
k . Furthermore,

if any other node in the cycle were chosen as νi, the remaining path would not be part of
X

(i)
k−2(j, κ). This ensures that each cycle is counted exactly once in

∑
νi∈V ϕ C

(i)
k . ◀

Finally, the ℓ2-error of Algorithm 3 is proven in the next theorem. The most challenging
aspect of this theorem is to bound the covariance in the summation at Lines 8 and 10. We
assert that any two dependent elements of X

(i)
k−2(j, κ) can be considered as a set containing

an even number of edges which forms multiple disjoint cycles with specific properties.
Consequently, we can utilize our results from Corollary 19 to bound the number of such
pairs. The proof of the theorem is given in the appendix of this paper.

▶ Theorem 27. When ζ ≤ ε0, the expected squared ℓ2-error of algorithm 3 is bounded by

O

(
δ3

ε2
1

(
1
ε2

1
+ δ

)k−3
nk−2 + δk−2dmaxnk−2

ε2
2ε4

1
+ δk−3nk−2 ln2(n/ζ)

ε2
2ε4

1ε2
0

)
.

Before proving Theorem 27, we demonstrate the following lemma.

▶ Lemma 28. The expected value of the bias of Algorithm 3 is bounded by O
(

ζ
ε0n #Ck

)
.

STACS 2025

49:16 Cycle Counting Under Local Differential Privacy for Degeneracy-Bounded Graphs

Proof. We have already seen the proof of Corollary 23 that the expected value of the number
of clipped edges for user i was bounded by ζ

2ε0n . We now have to bound the bias created by
one edge removal, i.e. the maximal number of cycles one edge can part of.

With c
(j)
i the number of cycles counted by i that involve edge (i, j), the maximal

bias for user i is bounded by
∑

j c
(j)
i , and the bias of the algorithm by ζ

2ε0n

∑
i,j c

(j)
i ≤

O
(

ζ
ε0n #Ck

)
. ◀

Now, we are ready to prove Theorem 27.

Proof of Theorem 27. The squared ℓ2-error can be decomposed into the square of the bias
plus the variance. In Lemma 28, we established that the bias of the algorithm is bounded
by O

(
ζ

ε0n #Ck

)
= O

(
δ

k+1
2 n

k−3
2

)
. We will now focus on bounding the variance of the

algorithm.
Let the indicator variable 1(l1,...,lp) be 1 if the path (νl1 , . . . , νlp) exists in Gϕ, and 0

otherwise. We also denote the random variable
∏

q∈[1,p] âϕ
lq,lq+1

by Z(l1,...,lp+1). Finally, we
define U(l1,...,lp+1) = Z(l1,...,lp+1) − 1(l1,...,lp+1). This random variable U(l1,...,lp+1) has the
properties that E

[
U(l1,...,lp+1)

]
= 0 and Var

(
U(l1,...,lp+1)

)
= Var

(
Z(l1,...,lp+1)

)
.

Similar to the case with triangles, the variance of Algorithm 3 arises from both the
unbiased randomized response query and the Laplacian query with restricted sensitivity.

Concerning the variance term coming from the randomized response, we have to compute
the variance of

Ĉ =
∑

νi∈V

(ĉi − ci) =
∑

νi∈V

∑
(j,κ)∈Si

∑
{l1,...,lk−1}∈X

(i)
k−2(j,κ)

U(l1,...,lk−1).

We have to take into account the term that comes from the sum of the variances of the U as
well as the one coming from the covariances between them.

To compute the sum of variances, we start with:

Var
(
U(l1,...,lk−1)

)
=

∏
q∈[1,k−2]

Var
(

âϕ
lq,lq+1

)
= O

(
1

ε2k−4
1

)
.

Additionally, for each i and (j, κ) ∈ Si, the cardinality of X
(i)
k−2(j, κ) is bounded by nk−3, and

the number of ways to choose (i, j, κ) is bounded by S∗
2 , which is O

(
δ2n
)

by Theorem 13. This
contributes a term in the variance from the sum of variances bounded by O

(
δ2nk−2/ε2k−4

1
)
.

To analyze the term arising from the covariances, we first examine the covariance between
U(l1,...,lk−1) and U(l′

1,...,l′
k−1). In the following equations, let A be the set of edges that appear

only in (l1, . . . , lk−1) or (l′
1, . . . , l′

k−1), and let B be the set of edges that appear in both.
Recall that, for any (i, j) E

[
âϕ

i,j

]
= 0 and E

[
âϕ

i,j

]
= Var

(
âϕ

i,j

)
.

Cov
(

U(l1,...,lk−1), U(l′
1,...,l′

k−1)

)
= E

 ∏
q∈[1,k−2]

âϕ
lq,lq+1

∏
q∈[1,k−2]

âϕ
l′
q,l′

q+1

− 1(l1,...,lk−1)1(l′
1,...,l′

k−1)

=
∏

(i,j)∈A

1(i,j)
∏

(i,j)∈B

Var
(

aϕ
i,j

)
−

∏
q∈[1,k−2]

1(lq,lq+1)1(l′
q,l′

q+1).

Q. Hillebrand, V. Suppakitpaisarn, and T. Shibuya 49:17

We observe that the covariance between U(l1,...,lk−1) and U(l′
1,...,l′

k−1) is zero if the paths
(νl1 , . . . , νlk−1) and (νl′

1
, . . . , νl′

k−1
) do not share at least one common edge or if the edges

present in only one of the paths are not present in the original graph. Now consider the
situation where the covariance is non-zero. We have that |B| > 0. Additionally, we will
denote νi the node responsible for counting this instance of U(l1,...,lk−1) and νi′ the one
responsible for U(l′

1,...,l′
k−1).

Let V := {νi, νl1 , . . . , νlk−1 , νi′ , νl′
1
, . . . , νl′

k−1
}, and let

E :=
⋃

1≤q≤k−2
{(νlq , νlq+1), (νl′

q
, νl′

q+1
)} ∪ {(νlk−1 , νi), (νi, νl1), (νl′

k−1
, νi′), (νi, νl′

1
)}.

In other words, the set E consists of the edges in the paths {l1, . . . , lk−1} and {l′
1, . . . , l′

k−1},
along with the additional edges (νlk−1 , νi), (νi, νl1), (νl′

k−1
, νi′), and (νi, νl′

1
). Additionally, let

A′ := A ∪ {(νlk−1 , νi), (νl′
k−1

, νi′) | (νlk−1 , νi) ̸= (νl′
k−1

, νi′)}
∪{(νi, νl1), (νi′ , νl′

1
) | (νi, νl1) ̸= (νi′ , νl′

1
)}.

Similarly, let

B′ := B ∪ {(νlk−1 , νi) | (νlk−1 , νi) = (νl′
k−1

, νi′)} ∪ {(νi, νl1) | (νi, νl1) = (νi′ , νl′
1
)}.

In other words, the sets A′ and B′ are the sets A and B extended to include the additional
edges (νi, νl1), (νlk−1 , νi), (νi′ , νl′

1
), and (νl′

k−1
, νi′).

We introduce d the difference between the cardinal of B′ and B, d := |B′| − |B|. Let
q ∈ [1, k− 2] be the cardinality of B. In this case, the covariance is O

(
1/ε2q

1

)
. We have that

|A′|+ 2|B′| = 2k, which gives |A′| = 2k − 2q − 2d.
In the next step, we will calculate the number of the pairs of paths with |A′| = 2(k−q−d).

Let us consider the degree of each node in (V, E). It is clear that the degrees are neither
greater than four nor less than two. A node has a degree of three only if one of the three
edges incident to it belongs to B′ and the other two to A′. A node has a degree of four if all
four edges incident to it are in A′, and it has a degree of two if both edges incident to it are
either in A′ or in B′. Hence, if we consider the graph (V, A′), we have a graph of degree two
or four, which is a union of multiple disjoint cycles.

Let the number of those disjoint cycles be c and the size of those cycles be r1, . . . rc. We
have that

∑c
t=1 rt = 2k − 2q − 2d, i.e. (r1, . . . , rc) is a partition of 2k − 2q − 2d. We know

that the number of such partitions is bounded by a function of k. Let suppose that the
bound is f(k).

Let us give the number of A′ with cycle size (r1, . . . , rc). We can use Corollary 16 to
show that the number of such sets A′ is O

(∏c
t=1 δrt/2nrt/2) = O

(
δk−q−dnk−q−d). When

d = 0, we know that {νi, νj} and {νi, νk} are in A′. There are three consecutive nodes with
monotonic ranks in the union of disjoint cycles (V, A′). Hence, we can use Corollary 19 to
show that the number of such sets A′ is bounded by O

(
δk−q+1nk−q−1). By combining the

two cases, we can conclude that the number of possible sets A′ with cycle size (r1, . . . , rc) is
at most O

(
δk−q+1−dnk−q−1). The number of possible A′ is then f(k) ·O

(
δk−q+1−dnk−q−1).

As k is a constant, the number is O
(
δk−q+1−dnk−q−1).

We then consider the number of configurations for B′, which consists of a union of
disjoint paths. Let the number of paths be c and their lengths be r1, . . . , rc. We have that
|r1|+ · · ·+ |rc| = q, and (r1, . . . , rc) forms a partition of q. The number of possible partitions
is bounded by a function of k, denoted as f(k). Each part must begin and end in the node set
A′, where |A′| ≤ 2k. Therefore, the number of possible paths rt is at most 4k2nrt−1, and the
number of possible sets B′ with the partition (r1, . . . , rc) is at most

∏c
t=1 4k2nrt−1 = O

(
nq−1).

Hence, the total number of possible sets B′ is f(k) · O
(
nq−1) = O

(
nq−1).

STACS 2025

49:18 Cycle Counting Under Local Differential Privacy for Degeneracy-Bounded Graphs

Consequently, for each set A′, the number of possible configurations for B′ is at most
O
(
nq−1). The number of pairs of paths {l1, . . . , lk−1} and {l′

1, . . . , l′
k−1} with |A′| = 2(k −

q − d) is then at most O
(
δk−q+1−dnk−q−1 · nq−1) = O

(
δk−q+1nk−2). Each of these pairs

contributes Var
(

âϕ
j,k

)2q

= O
(

1/ε2q
1

)
to the covariance sum.

The covariance of Ĉ can then be calculated as follows:

O

(
k−2∑
q=1

δk−q+1nk−2 1
ε2q

1

)
= O

(
nk−2δ3

ε2
1

(
δ + 1

ε2
1

)k−3
)

.

Since this bound is larger than the one for the sum of variances, we can disregard the latter.
To compute the variance resulting from the Laplacian query with restricted sensitivity,

we sum the variance of the Laplacian distribution for all nodes:

9
(

eε + 1
eε − 1

)4
E
[
#P̂ 2

k−4

] ∑
νi∈V

d̂2
i

ε2
2

= O
(

δdmaxn

ε2
2ε4

1
+ n ln2(n/ζ)

ε2
2ε4

1ε2
0

)
E
[
#P̂ 2

k−4

]
. (1)

Let us now consider the expected value

E
[
#P̂ 2

k−4

]
= E

[
#P̂k−4

]2
+ Var

(
#P̂k−4

)
= #P 2

k−4 + Var
(

#P̂k−4

)
. (2)

By Lemma 14 and the fact that k − 4 is an odd number, we have #P 2
k−4 = O

(
δk−3nk−3).

The variance can be decomposed into the sum of the variances of each path, which is bounded
by O

(
nk−3/ε2k−8

1
)
, and the sum of covariances.

The covariance is non-zero only if at least two edges are shared between the two paths
and all edges that appear only once exist in the original graph. As previously discussed, this
forms a cycle structure, except for the path extremities that do not need to be connected.
Recall the definitions of the sets A and B from the previous paragraph.

The set A consists of two paths at the extremities and multiple disjoint cycles. Suppose
the number of edges in A is 2p, the number of edges in the two paths are q1 and q2, and
the number of disjoint cycles is c, with the number of edges in these cycles being r1, . . . , rc.
This gives us 2p = q1 + q2 +

∑c
i=1 ri. In other words, (q1, q2, r1, . . . , rc) forms a partition of

2p ≤ 2k. The number of such partitions is bounded by a function of k. Let the bound be
f(k).

We now discuss the number of possible configurations of A for the partition
(q1, q2, r1, . . . , rc). From Lemma 14 and Corollary 16, the number of cycles of length q is
bounded by O

(
δq/2nq/2), and the number of paths of length q is bounded by O

(
δq/2nq/2+1).

Thus, the number of configurations for the partition (q1, q2, r1, . . . , rc) is:

O

(
δq1/2nq1/2+1 · δq2/2nq2/2+1 ·

c∏
t=1

δrt/2nrt/2

)
= O

(
δpnp+2) .

Hence, the number of possible configurations for A with 2p edges is no more than f(k) ·
O
(
δpnp+2) = O

(
δpnp+2).

The number of edges in B is (2k − 8 − 2p)/2 = k − p − 4. Using the previous ar-
gument when calculating the number of possible set B′, we obtain that the number of
configurations for B is O

(
nk−p−5). The number of configurations with |A| = 2p is

then O
(
δpnp+2 · nk−p−5) = O

(
δpnk−3). Hence, the overall number of combinations is∑k−5

p=1 O
(
δpnk−3) = O

(
δk−5nk−3).

Q. Hillebrand, V. Suppakitpaisarn, and T. Shibuya 49:19

From the previous paragraph, we observe that the covariance term outweighs the sum
of the variances, leading to Var

(
#P̂k−4

)
= O

(
δk−5nk−3). Additionally, when calcu-

lating E
[
#P̂ 2

k−4

]
in (2), it is evident that #P 2

k−4 dominates Var
(

#P̂k−4

)
, resulting in

E
[
#P̂ 2

k−4

]
= O

(
δk−3nk−3). Substituting E

[
#P̂ 2

k−4

]
with O

(
δk−3nk−3) in (1), we find

that the variance from the Laplacian mechanism is bounded by

O
(

δk−2dmaxnk−2

ε2
2ε4

1
+ δk−3nk−2 ln2(n/ζ)

ε2
2ε4

1ε2
0

)
.

We obtain the theorem result by summing the variance from the unbiased randomized
response query and the variance from the Laplacian query with restricted sensitivity. ◀

6 Conclusion

In this work, we introduced a private vertex ordering algorithm. The transformation on
the graph induced by this ordering reduces the count of specific order-sensitive motifs while
preserving the overall graph structure. Due to its reliance on the Laplacian mechanism, the
algorithm performs well even in high-privacy settings, making it an excellent preprocessing
step for subgraph counting queries.

Within this framework, we first propose a new triangle counting algorithm whose accuracy
depends on the count of specific ordered subgraphs. By combining this algorithm with the
ordering preprocessing step, we achieve an expected error of O (n) for graphs with bounded
degeneracy, compared to the O

(
n2) error seen in the current state of the art.

Subsequently, we extended the algorithm to address the more general case of odd-length
cycle counting. We propose the first purely local differentially private counting algorithm
specifically designed for cycles longer than triangles. Under the assumption of bounded
degeneracy, the algorithm achieves an error of O

(
n(k−1)/2) for cycles of length k.

Due to the constraints of local differential privacy, it might be assumed that the range
of tasks we can perform on graphs under this privacy notion is limited. However, in this
work, we demonstrate that more precise information can be published under local differential
privacy by restricting our inputs to certain types of graphs. We believe that parameterized
algorithms under local differential privacy represent an intriguing research area that can
contribute significantly to both algorithm design and information privacy.

One limitation of this method is that the relative error can become significantly large
when the number of cycles is small (or even zero), even in cases where the graph’s degeneracy
– and consequently the ℓ2-error of our algorithm – is high. Identifying a class of graphs for
which an algorithm with bounded relative error can be designed would be a direction for
future research. Another question for future investigation is determining lower bounds for
degeneracy-bounded graphs under the local differential privacy.

References
1 Albert-László Barabási and Réka Albert. Emergence of scaling in random networks. science,

286(5439):509–512, 1999.
2 Suman K. Bera, Lior Gishboliner, Yevgeny Levanzov, C. Seshadhri, and Asaf Shapira. Counting

subgraphs in degenerate graphs. ACM Journal of the ACM (JACM), 69(3):23:1–23:21, 2022.
doi:10.1145/3520240.

3 Louis Betzer, Vorapong Suppakitpaisarn, and Quentin Hillebrand. Publishing number of walks
and katz centrality under local differential privacy. In The 40th Conference on Uncertainty in
Artificial Intelligence, 2024. URL: https://openreview.net/forum?id=76UkTmdmkB.

STACS 2025

https://doi.org/10.1145/3520240
https://openreview.net/forum?id=76UkTmdmkB

49:20 Cycle Counting Under Local Differential Privacy for Degeneracy-Bounded Graphs

4 Jeremiah Blocki, Avrim Blum, Anupam Datta, and Or Sheffet. Differentially private data
analysis of social networks via restricted sensitivity. In Innovations in Theoretical Computer
Science, ITCS ’13, Berkeley, CA, USA, January 9-12, 2013, pages 87–96. ACM, 2013.
doi:10.1145/2422436.2422449.

5 Marco Bressan. Faster algorithms for counting subgraphs in sparse graphs. Algorithmica,
83(8):2578–2605, 2021. doi:10.1007/s00453-021-00811-0.

6 Norishige Chiba and Takao Nishizeki. Arboricity and subgraph listing algorithms. SIAM J.
Comput., 14(1):210–223, 1985. doi:10.1137/0214017.

7 Graham Cormode, Somesh Jha, Tejas Kulkarni, Ninghui Li, Divesh Srivastava, and Tianhao
Wang. Privacy at scale: Local differential privacy in practice. In Proceedings of the 2018
International Conference on Management of Data, SIGMOD Conference 2018, Houston, TX,
USA, June 10-15, 2018, pages 1655–1658. ACM, 2018. doi:10.1145/3183713.3197390.

8 Damien Desfontaines and Balázs Pejó. Sok: Differential privacies. Proc. Priv. Enhancing
Technol., 2020(2):288–313, 2020. doi:10.2478/popets-2020-0028.

9 Laxman Dhulipala, George Z. Li, and Quanquan C. Liu. Near-optimal differentially private
k-core decomposition. CoRR, abs/2312.07706, 2023. doi:10.48550/arXiv.2312.07706.

10 Laxman Dhulipala, Quanquan C. Liu, Sofya Raskhodnikova, Jessica Shi, Julian Shun, and
Shangdi Yu. Differential privacy from locally adjustable graph algorithms: k-core decomposi-
tion, low out-degree ordering, and densest subgraphs. In 63rd IEEE Annual Symposium on
Foundations of Computer Science, FOCS 2022, Denver, CO, USA, October 31 - November 3,
2022, pages 754–765. IEEE, 2022. doi:10.1109/FOCS54457.2022.00077.

11 Michael Dinitz, Satyen Kale, Silvio Lattanzi, and Sergei Vassilvitskii. Improved differentially
private densest subgraph: Local and purely additive. CoRR, abs/2308.10316, 2023. doi:
10.48550/arXiv.2308.10316.

12 Pål Grønås Drange, Patrick Greaves, Irene Muzi, and Felix Reidl. Computing complexity
measures of degenerate graphs. In 18th International Symposium on Parameterized and
Exact Computation, IPEC 2023, September 6-8, 2023, Amsterdam, The Netherlands, volume
285 of LIPIcs, pages 14:1–14:21. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, 2023.
doi:10.4230/LIPIcs.IPEC.2023.14.

13 Cynthia Dwork. Differential privacy. In Automata, Languages and Programming, 33rd
International Colloquium, ICALP 2006, Venice, Italy, July 10-14, 2006, Proceedings, Part
II, volume 4052 of Lecture Notes in Computer Science, pages 1–12. Springer, 2006. doi:
10.1007/11787006_1.

14 Cynthia Dwork, Frank McSherry, Kobbi Nissim, and Adam D. Smith. Calibrating noise to
sensitivity in private data analysis. In Theory of Cryptography, Third Theory of Cryptography
Conference, TCC 2006, New York, NY, USA, March 4-7, 2006, Proceedings, volume 3876 of
Lecture Notes in Computer Science, pages 265–284. Springer, 2006. doi:10.1007/11681878_14.

15 Cynthia Dwork and Aaron Roth. The algorithmic foundations of differential privacy. Found.
Trends Theor. Comput. Sci., 9(3-4):211–407, 2014. doi:10.1561/0400000042.

16 Talya Eden, Quanquan C. Liu, Sofya Raskhodnikova, and Adam D. Smith. Triangle counting
with local edge differential privacy. In 50th International Colloquium on Automata, Languages,
and Programming, ICALP 2023, July 10-14, 2023, Paderborn, Germany, volume 261 of
LIPIcs, pages 52:1–52:21. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, 2023. doi:
10.4230/LIPIcs.ICALP.2023.52.

17 Alexandre V. Evfimievski, Johannes Gehrke, and Ramakrishnan Srikant. Limiting privacy
breaches in privacy preserving data mining. In Proceedings of the Twenty-Second ACM
SIGACT-SIGMOD-SIGART Symposium on Principles of Database Systems, June 9-12, 2003,
San Diego, CA, USA, pages 211–222. ACM, 2003. doi:10.1145/773153.773174.

18 Anupam Gupta, Katrina Ligett, Frank McSherry, Aaron Roth, and Kunal Talwar. Differentially
private combinatorial optimization. In Proceedings of the Twenty-First Annual ACM-SIAM
Symposium on Discrete Algorithms, SODA 2010, Austin, Texas, USA, January 17-19, 2010,
pages 1106–1125. SIAM, 2010. doi:10.1137/1.9781611973075.90.

https://doi.org/10.1145/2422436.2422449
https://doi.org/10.1007/s00453-021-00811-0
https://doi.org/10.1137/0214017
https://doi.org/10.1145/3183713.3197390
https://doi.org/10.2478/popets-2020-0028
https://doi.org/10.48550/arXiv.2312.07706
https://doi.org/10.1109/FOCS54457.2022.00077
https://doi.org/10.48550/arXiv.2308.10316
https://doi.org/10.48550/arXiv.2308.10316
https://doi.org/10.4230/LIPIcs.IPEC.2023.14
https://doi.org/10.1007/11787006_1
https://doi.org/10.1007/11787006_1
https://doi.org/10.1007/11681878_14
https://doi.org/10.1561/0400000042
https://doi.org/10.4230/LIPIcs.ICALP.2023.52
https://doi.org/10.4230/LIPIcs.ICALP.2023.52
https://doi.org/10.1145/773153.773174
https://doi.org/10.1137/1.9781611973075.90

Q. Hillebrand, V. Suppakitpaisarn, and T. Shibuya 49:21

19 Michael Hay, Chao Li, Gerome Miklau, and David D. Jensen. Accurate estimation of the degree
distribution of private networks. In ICDM 2009, The Ninth IEEE International Conference
on Data Mining, Miami, Florida, USA, 6-9 December 2009, pages 169–178. IEEE Computer
Society, 2009. doi:10.1109/ICDM.2009.11.

20 Quentin Hillebrand, Vorapong Suppakitpaisarn, and Tetsuo Shibuya. Communication cost
reduction for subgraph counting under local differential privacy via hash functions. CoRR,
abs/2312.07055, 2023. doi:10.48550/arXiv.2312.07055.

21 Quentin Hillebrand, Vorapong Suppakitpaisarn, and Tetsuo Shibuya. Unbiased locally private
estimator for polynomials of laplacian variables. In Proceedings of the 29th ACM SIGKDD
Conference on Knowledge Discovery and Data Mining, KDD 2023, Long Beach, CA, USA,
August 6-10, 2023, pages 741–751. ACM, 2023. doi:10.1145/3580305.3599537.

22 Jacob Imola, Takao Murakami, and Kamalika Chaudhuri. Locally differentially private analysis
of graph statistics. In 30th USENIX Security Symposium, USENIX Security 2021, August
11-13, 2021, pages 983–1000. USENIX Association, 2021. URL: https://www.usenix.org/
conference/usenixsecurity21/presentation/imola.

23 Jacob Imola, Takao Murakami, and Kamalika Chaudhuri. Communication-efficient triangle
counting under local differential privacy. In 31st USENIX Security Symposium, USENIX Secur-
ity 2022, Boston, MA, USA, August 10-12, 2022, pages 537–554. USENIX Association, 2022.
URL: https://www.usenix.org/conference/usenixsecurity22/presentation/imola.

24 Jacob Imola, Takao Murakami, and Kamalika Chaudhuri. Differentially private triangle and
4-cycle counting in the shuffle model. In Proceedings of the 2022 ACM SIGSAC Conference
on Computer and Communications Security, CCS 2022, Los Angeles, CA, USA, November
7-11, 2022, pages 1505–1519. ACM, 2022. doi:10.1145/3548606.3560659.

25 George Manoussakis. Listing all fixed-length simple cycles in sparse graphs in optimal time. In
Fundamentals of Computation Theory - 21st International Symposium, FCT 2017, Bordeaux,
France, September 11-13, 2017, Proceedings, volume 10472 of Lecture Notes in Computer
Science, pages 355–366. Springer, Springer, 2017. doi:10.1007/978-3-662-55751-8_28.

26 Frank McSherry and Kunal Talwar. Mechanism design via differential privacy. In 48th
Annual IEEE Symposium on Foundations of Computer Science (FOCS 2007), October 20-
23, 2007, Providence, RI, USA, Proceedings, pages 94–103. IEEE Computer Society, 2007.
doi:10.1109/FOCS.2007.41.

27 Jaroslav Nesetril and Patrice Ossona de Mendez. Sparsity - Graphs, Structures, and Al-
gorithms, volume 28 of Algorithms and combinatorics. Springer, 2012. doi:10.1007/
978-3-642-27875-4.

28 Iyiola E. Olatunji, Thorben Funke, and Megha Khosla. Releasing graph neural networks
with differential privacy guarantees. Trans. Mach. Learn. Res., 2023, 2023. URL: https:
//openreview.net/forum?id=wk8oXR0kFA.

29 Zhan Qin, Ting Yu, Yin Yang, Issa Khalil, Xiaokui Xiao, and Kui Ren. Generating synthetic
decentralized social graphs with local differential privacy. In Proceedings of the 2017 ACM
SIGSAC Conference on Computer and Communications Security, CCS 2017, Dallas, TX, USA,
October 30 - November 03, 2017, pages 425–438. ACM, 2017. doi:10.1145/3133956.3134086.

30 Sofya Raskhodnikova and Adam D. Smith. Differentially private analysis of graphs. In Encyc-
lopedia of Algorithms, pages 543–547. Springer, 2016. doi:10.1007/978-1-4939-2864-4_549.

31 Sina Sajadmanesh and Daniel Gatica-Perez. Locally private graph neural networks. In CCS
’21: 2021 ACM SIGSAC Conference on Computer and Communications Security, Virtual
Event, Republic of Korea, November 15 - 19, 2021, pages 2130–2145. ACM, 2021. doi:
10.1145/3460120.3484565.

32 Yue Wang, Xintao Wu, and Donghui Hu. Using randomized response for differential privacy
preserving data collection. In Proceedings of the Workshops of the EDBT/ICDT 2016 Joint
Conference, EDBT/ICDT Workshops 2016, Bordeaux, France, March 15, 2016, volume 1558 of
CEUR Workshop Proceedings. CEUR-WS.org, 2016. URL: https://ceur-ws.org/Vol-1558/
paper35.pdf.

STACS 2025

https://doi.org/10.1109/ICDM.2009.11
https://doi.org/10.48550/arXiv.2312.07055
https://doi.org/10.1145/3580305.3599537
https://www.usenix.org/conference/usenixsecurity21/presentation/imola
https://www.usenix.org/conference/usenixsecurity21/presentation/imola
https://www.usenix.org/conference/usenixsecurity22/presentation/imola
https://doi.org/10.1145/3548606.3560659
https://doi.org/10.1007/978-3-662-55751-8_28
https://doi.org/10.1109/FOCS.2007.41
https://doi.org/10.1007/978-3-642-27875-4
https://doi.org/10.1007/978-3-642-27875-4
https://openreview.net/forum?id=wk8oXR0kFA
https://openreview.net/forum?id=wk8oXR0kFA
https://doi.org/10.1145/3133956.3134086
https://doi.org/10.1007/978-1-4939-2864-4_549
https://doi.org/10.1145/3460120.3484565
https://doi.org/10.1145/3460120.3484565
https://ceur-ws.org/Vol-1558/paper35.pdf
https://ceur-ws.org/Vol-1558/paper35.pdf

49:22 Cycle Counting Under Local Differential Privacy for Degeneracy-Bounded Graphs

33 Stanley L. Warner. Randomized response: A survey technique for eliminating evasive answer
bias. Journal of the American Statistical Association, 60(309):63–69, 1965.

34 Qingqing Ye, Haibo Hu, Man Ho Au, Xiaofeng Meng, and Xiaokui Xiao. Towards locally
differentially private generic graph metric estimation. In 36th IEEE International Conference
on Data Engineering, ICDE 2020, Dallas, TX, USA, April 20-24, 2020, pages 1922–1925.
IEEE, 2020. doi:10.1109/ICDE48307.2020.00204.

35 Qingqing Ye, Haibo Hu, Man Ho Au, Xiaofeng Meng, and Xiaokui Xiao. LF-GDPR: A
framework for estimating graph metrics with local differential privacy. IEEE Trans. Knowl.
Data Eng., 34(10):4905–4920, 2022. doi:10.1109/TKDE.2020.3047124.

36 Hailong Zhang, Sufian Latif, Raef Bassily, and Atanas Rountev. Differentially-private control-
flow node coverage for software usage analysis. In 29th USENIX Security Symposium, USENIX
Security 2020, August 12-14, 2020, pages 1021–1038. USENIX Association, 2020. URL:
https://www.usenix.org/conference/usenixsecurity20/presentation/zhang-hailong.

37 Xiao Zhou and Takao Nishizeki. Graph coloring algorithms. IEICE Transactions on Information
and Systems, 83(3):407–417, 2000.

https://doi.org/10.1109/ICDE48307.2020.00204
https://doi.org/10.1109/TKDE.2020.3047124
https://www.usenix.org/conference/usenixsecurity20/presentation/zhang-hailong

Designing Exploration Contracts
Martin Hoefer # Ñ

Department of Computer Science, RWTH Aachen University, Germany

Conrad Schecker #

Institute for Computer Science, Goethe University Frankfurt, Germany

Kevin Schewior # Ñ

Department of Mathematics and Computer Science, University of Cologne, Germany
University of Southern Denmark, Odense, Denmark

Abstract
We study a natural application of contract design in the context of sequential exploration problems.
In our principal–agent setting, a search task is delegated to an agent. The agent performs a sequential
exploration of n boxes, suffers the exploration cost for each inspected box, and selects the content
(called the prize) of one inspected box as outcome. Agent and principal obtain an individual value
based on the selected prize. To influence the search, the principal a-priori designs a contract with a
non-negative payment to the agent for each potential prize. The goal of the principal is to maximize
her expected reward, i.e., value minus payment. Interestingly, this natural contract scenario shares
close relations with the Pandora’s Box problem.

We show how to compute optimal contracts for the principal in several scenarios. A popular
and important subclass is that of linear contracts, and we show how to compute optimal linear
contracts in polynomial time. For general contracts, we obtain optimal contracts under the standard
assumption that the agent suffers cost but obtains value only from the transfers by the principal.
More generally, for general contracts with non-zero agent values for outcomes we show how to
compute an optimal contract in two cases: (1) when each box has only one prize with non-zero value
for principal and agent, (2) for i.i.d. boxes with a single prize with positive value for the principal.

2012 ACM Subject Classification Theory of computation → Algorithmic game theory and mechanism
design

Keywords and phrases Exploration, Contract Design, Pandora’s Box Problem

Digital Object Identifier 10.4230/LIPIcs.STACS.2025.50

Related Version Full Version: https://arxiv.org/abs/2403.02317

Funding Martin Hoefer : Supported by DFG Research Unit ADYN (project number 411362735) and
DFG grant Ho 3831/9-1 (project number 514505843).
Kevin Schewior : Supported by the Independent Research Fund Denmark, Natural Sciences, grant
DFF-0135-00018B.

1 Introduction

In many real-world situations, e.g., the search for a job candidate or house, a decision maker
is faced with the choice between different alternatives of a-priori unknown value, which can
be explored at some cost. Due to missing qualifications or time constraints, in many markets
such exploration tasks are not executed directly by the decision maker. Rather, a decision
maker (called principal P in the following) can delegate the exploration to an agent A, whose
incentives are potentially misaligned with that of P.

Indeed, suppose the principal intends to buy a house. They might know an inspection
cost and have some prior knowledge about the value of each house. However, they might not
be qualified to determine the exact market value by inspecting it. They decide to delegate
the search to a real-estate agent. The agent can have an individual valuation for each house

© Martin Hoefer, Conrad Schecker, and Kevin Schewior;
licensed under Creative Commons License CC-BY 4.0

42nd International Symposium on Theoretical Aspects of Computer Science (STACS 2025).
Editors: Olaf Beyersdorff, Michał Pilipczuk, Elaine Pimentel, and Nguyễn Kim Thắng;
Article No. 50; pp. 50:1–50:19

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:mhoefer@cs.rwth-aachen.de
https://algo.rwth-aachen.de/team/hoefer/index.en.shtml
https://orcid.org/0000-0003-0131-5605
mailto:schecker@em.uni-frankfurt.de
https://orcid.org/0000-0002-8103-1911
mailto:k.schewior@uni-koeln.de
https://sites.google.com/view/kschewior/
https://orcid.org/0000-0003-2236-0210
https://doi.org/10.4230/LIPIcs.STACS.2025.50
https://arxiv.org/abs/2403.02317
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

50:2 Designing Exploration Contracts

(e.g., a provision that is paid internally for selling the house). This individual value might
also depend on the condition of the house, which is revealed only after inspection. Similar
situations arise, e.g., when the principal wants to invest in a financial product and delegates
this search to a financial agent.

In these settings, as a consequence of delegating the search, P can merely observe the
outcome of the search, not the other actions taken by A. This leads to a possibly undesirable
outcome for P, even when they have the power to commit to accepting or rejecting certain
outcomes [5].

A natural approach to align the incentives of an agent with the goals of the principal in
such hidden-action settings are contracts. A contract allows for utility transfers to be made
from the principal to the agent as a function of the outcome of the delegated task. While
contract theory is a well-established [9] and celebrated [35] area in economics, the interest in
algorithmic contract design has surged only relatively recently, see e.g., [14, 17,20,21,27].

In this work, we initiate the study of algorithmic contract design for exploration problems.
Specifically, we consider the following problem (for a fully formal definition, see Section 2):
There are n boxes, the i-th of which contains a prize, drawn independently from a known
probability distribution, and can be opened by paying a known exploration cost ci. The
j-th prize from box i has some utilities aij and bij for A and P, respectively. Based on
that information, P commits to a contract, specifying a transfer tij for each prize, where
we assume non-negative transfers (limited liability). Given such a contract, A picks an
adaptive search strategy that allows to optimize the trade-off between value of the selected
prize (for A) and total exploration cost. A uses the strategy to sequentially open boxes
by paying the exploration cost. Depending on the observed prize, it determines the next
box to open or to stop by selecting a prize from an open box. Assuming A selects prize j

from box i, the resulting final utility of P is bij − tij . The goal is to efficiently compute a
contract that maximizes the expectation of the latter quantity. Here we assume that ties in
the optimization of A are broken in favor of P , which is a standard assumption that makes
the maximization problem well-defined.

For the problem of computing optimal contracts, there is a solution by linear programming
that runs in time polynomial in the number of outcomes and the number of actions of the
agent (cf., e.g., [20]). Note that this result does not yield a polynomial-time algorithm for our
problem since the action space is extremely succinctly represented – its size is lower-bounded
by the number of opening orders, n!.

Our Contribution. We show that, in a variety of natural cases, optimal contracts can be
computed in polynomial time (such as, e.g., optimal linear contracts, or optimal contracts
when the agent has no intrinsic value). While our results leave open the question whether
computing optimal contracts efficiently is always possible in general, our insights suggest
that doing so is a highly non-trivial task and represents one (of several) very interesting
avenue for future research.

Notably, A faces an exploration problem known in the literature as the Pandora’s Box
Problem. It was famously proposed and analyzed by Weitzman [39], who characterized
optimal search strategies by a simple greedy rule. Starting from [33], this problem has
recently received a lot of attention at the intersection of economics and computer science (see,
e.g., [6, 8, 10, 25, 26, 38] and a recent survey [7]). We reformulate Weitzman’s characterization
for A’s task: The fair cap of box i is a value such that the expected amount of aij + tij

exceeding the fair cap is precisely ci. The boxes are considered in non-increasing order of
fair caps. If the best aij + tij (initially 0) observed so far is larger than the next fair cap, the
next box is opened; if it is smaller, a corresponding prize is accepted. If neither is the case,
A is indifferent.

M. Hoefer, C. Schecker, and K. Schewior 50:3

The first observation we make is that Weitzman’s policy does not solve A’s problem
entirely. The reason is that A breaks ties in favor of P– recall that this is the standard
assumption that makes the maximization problem well-defined. Note that the number of
boxes that share some given fair cap φ may be linear in n, leading to a number of possible
ways of choosing the order that is exponential in n. Indeed, the order of such boxes may
matter to P since different orders may lead to stopping with prizes that lead to vastly
different utilities for P. A complicating factor is that ties whether to select a prize with
agent utility equal to φ have to be broken simultaneously. Interestingly, we show that the
problem of breaking ties can be reduced – in polynomial time but in a non-obvious way – to
solving different instances of the classic Pandora’s box problem.

With a solution of A’s problem at hand, the main trade-off inherent to an optimal contract
is as follows: Transfers manipulate the fair caps, the resulting exploration order, and the
acceptance decisions of A in such a way that leads to a more favorable outcome for P – but
transfers are costly for P which is unfavorable.

We start by considering linear contracts [20, 30], a class of simple and very intuitive
contracts that has received a lot of attention due to its widespread use in applications. The
agent receives a constant fraction of the principal’s revenue as commission. Formally, a linear
contract is represented by a number α ∈ [0, 1], which defines transfers tij = α · bij .

To compute linear exploration contracts, we identify a polynomial-time computable set of
critical values of α at which the set of A-optimal policies (i.e., the set of policies that satisfy
the above description) changes. By reasoning about the behavior of P ’s utility between any
two such values, we can argue that the optimal contract needs to be a critical value. This
type of argument is reminiscent of arguments from the recent literature (e.g., [16, 17, 22]),
but here it requires special care. Due to the tie breaking in favor of P , which – as discussed
above – is a key property here, we need to keep track of the set of A-optimal policies.

For standard contract design, the authors in [20] describe a class of instances in which the
restriction to linear contracts leads to a multiplicative loss of n in P ’s achievable utility, where
n is the number of actions. In this class of instances, action i with cost ci deterministically
leads to an individual outcome with value Ri. We can create one box for each action i, with
opening cost ci and a single outcome with agent utility 0 and principal utility Ri. This leads
to a straightforward one-to-one correspondence between contracts in the two instances that
preserves utilities and linearity. Thus, the multiplicative loss of n transfers to our model,
which motivates our search for optimal general exploration contracts.

We first consider general contracts under the standard assumption that aij = 0, i.e.,
that the agent has no intrinsic motivation to explore any boxes and is only motivated by
payments from P. In contract design, this assumption is usually without loss of generality,
since arbitrary intrinsic agent values aij ̸= 0 can be accounted for with action costs to obtain
an equivalent instance with agent values aij = 0. However, for the exploration contracts
we consider, such an adjustment changes the costs of exploration strategies (rather than
individual boxes). This substantially changes the structure of the problem. Indeed, as we see
below, optimal policies for the problem with non-zero agent value have substantially different
properties than the ones for zero value.

Clearly, the utility that P can extract by solving the exploration problem themselves (i.e.,
ignoring the agent and paying the cost themselves) is a straightforward baseline; no policy
can extract more value for P . Solving the problem from P ’s perspective yields fair caps φP

i .
If all aij = 0, then by transferring any value exceeding φP

i to A, the P-optimal policy is
adopted by A, without a loss in utility for P . This implies, in particular, that delegating the
exploration to A using an optimal contract yields the same utility for P as if she performed
the exploration on her own. Formally, the idea is somewhat inspired by [33] for the original
Pandora’s Box problem but different.

STACS 2025

50:4 Designing Exploration Contracts

An orthogonal special case that has been considered in the literature (see, e.g., [5]) is
that of binary boxes. That is, each box contains one of only two prizes, and one of them
has 0 value for both P and A while the other one is arbitrary. Without any payments, the
fair cap (from A’s perspective again) of each box is its basic fair cap. The principal now
faces the question of whether to lift (by transfers) the basic fair caps of favorable boxes
above (or up to) the fair caps of less favorable boxes. While the latter is true in general,
the special structure of binary boxes allows us to compute an optimal exploration contract
by considering boxes in non-increasing order of their basic fair caps and moving their fair
cap greedily. Note that this algorithm alone does not suffice to tackle more general cases.
Indeed, when boxes are not binary, it may be profitable for the principal to choose different
payments for two boxes with the same distribution and the same fair caps – a condition we
encounter in the next and final case.

The final case we consider has a more general value structure, but we compromise on the
boxes having different distributions. Specifically, we consider instances with only a single
positive prize for P , and all distributions are identical. Still, transfers can be made depending
on the box from which the prize originates. Again, the complexity is reduced by the fact that
only a single payment per box has to be decided. Through an intricate sequence of exchange
arguments and the help of continuization, we establish that there is an optimal contract
with a simple structure: (i) In a first phase, the prize with positive principal value gets
immediately accepted, and all transfers are identical; (ii) all transfers for boxes in the second
phase are also identical. These conditions allow to find the optimal contract by enumerating
a polynomial-sized set of contracts.

In this final case, we also give a family of instances in which both the above phases exist
and have substantial lengths in any optimal solution. Hence, perhaps surprisingly, such a
relatively simple case already has optimal contracts with a fairly complicated structure.

Overview. After a review of related work in the subsequent section, we formally introduce
our problem in Section 2 along with preliminary observations. Section 3 treats linear contracts.
Section 4 deals with general contracts in several special cases (no agent value in Section 4.1
and binary boxes in Section 4.2). General contracts for i.i.d. boxes with a single positive
prize are discussed in Section 4.3. Missing proofs are provided in the full version of the paper.

1.1 Related Work
Contract design has recently gained a lot of attention from a computational point of view.
Duetting et al. [20] advocated the study of linear contracts as an alternative to the more
complicated (and sometimes unintuitive) general contracts. They show robustness results
and give parameterized approximation guarantees w.r.t. optimal (general) contracts. For
settings in which the outcome space is succinctly represented, hardness results are shown
in [21]. In a similar but different approach, combinatorial contracts [17] let the agent choose
a subset of actions which stochastically determines the (binary) outcome. Important recent
work in the area of combinatorial contracts includes [22], [16]. Contracts were also studied
with multiple agents [16,18], ambiguity [19], and private types [2] with connections to classic
mechanism design [1]. More generally, contracts have been of interest in specific application
domains, such as classification in machine learning [36].

Most closely related is prior work by Postl [34], who analyzes our contract-design problem
for two boxes without intrinsic agent value. The paper provides an explicit characterization
of the chosen box in the optimal contract, but neither considers algorithmic aspects nor
the reduction to the standard Pandora’s Box problem we discover in Sec. 4.1. Concurrent

M. Hoefer, C. Schecker, and K. Schewior 50:5

to our work, Ezra et al. [23] study the special case without agent value. In this special
case, they also give a polynomial-time algorithm for linear contracts (without discussing the
issues of tie-breaking in favor of P). For general contracts, the paper studies a technical
approach when there is a constant number of prizes. Finally, the authors show NP-hardness
for correlated distributions in the boxes.

Delegation is a related approach in the principal–agent framework and also received a
lot of attention in the economics literature starting from seminal work of Holstrom [31].
Computational aspects of delegation are receiving interest recently, initiated by Kleinberg
and Kleinberg [32]. In these models, the principal P delegates a (search) task to an agent
A, again with potentially different interests, who has to inspect alternatives and propose
an observed prize to P. Instead of committing to a contract with payments, P limits the
set of prizes she is willing to accept upon proposal by A. A prominent objective is to find
good acceptance policy for P and bound their performance by the delegation gap, which
measures the multiplicative loss in utility for P in comparison to the case when P performs
the (undelegated) search problem themselves. On a technical level, there are close connections
to prophet inequalities [32] and online contention resolution schemes, which were established
in different variants, such as multiple agents [37], stochastic probing [4, 5], as an online
problem [11], or with limited information about agent utilities [13]. Perhaps most related
is a version of the problem studied in [5]. Here, a principal delegates an instance of the
Pandora’s Box problem by committing to a set of acceptable outcomes. An agent has to
perform the costly inspection of alternatives. This standard delegation setting has some
obvious limitations, e.g., the agent would never perform an inspection if his expected intrinsic
value does not cover the inspection cost. A model variant with transfers is also studied
in [5] in which the principal can reimburse the agent for exploration costs. Crucially, this is
impossible in hidden-action principal-agent settings that we consider, where P simply cannot
directly reimburse A for his expenses, since she cannot observe which inspections have been
performed by A.

In a more general context, online optimization in principal–agent settings has generated
significant interest recently, e.g., in game-theoretic versions of the Pandora box problem [15],
general optimal stopping problems [28,29], or with unknown agent utilities [3, 12,24,40].

2 Preliminaries

There are two parties, a principal P and an agent A, and n boxes. Each box i ∈ [n] has an
opening cost ci ≥ 0 and contains one of m possible prizes. Prize j ∈ [m] in box i yields a
value-pair (aij , bij), where aij ≥ 0 is the value for A and bij ≥ 0 the value for P. For each
box i ∈ [n], the prize in the box is distributed independently according to a known prior.
We denote by pij ≥ 0 the probability that prize j is in box i.
P would like to motivate A to open and inspect boxes in order to find and select a good

prize (for P). P cannot observe the actions taken by A (i.e., which boxes were opened in
which order), only the final selected box with the prize inside is revealed. Instead, P can
commit to an exploration contract (or simply, contract) T : For each selected prize (i, j), she
specifies an amount tij ∈ [0, bij]1 that she pays to A. Then the final utility of P is bij − tij .

1 We make the natural assumption that tij ≤ bij , i.e., every transfer in the contract is bounded by the
prize value of P. For all scenarios we study here (linear contracts, no agent value, binary boxes, i.i.d.
with single positive prize for P) it is straightforward to see that this assumption is w.l.o.g. – there is an
optimal contract that satisfies tij ≤ bij for all (i, j) ∈ [n] × [m]. It is a very interesting open problem to
prove that this holds beyond the cases we study here.

STACS 2025

50:6 Designing Exploration Contracts

Our model is an instance of the standard principal-agent model, where the hidden action
of the agent A is the policy to inspect and select from the boxes. Specifically, the task of
A is to open and inspect boxes to find and select at most one prize from an opened box.
Formally, a policy specifies in every situation, based on the previously seen prizes, which box
to open next, if any, or otherwise which prize to select from an opened box. Given a contract
T , she is facing the classic Pandora’s Box problem [39]: She obtains a utility of aij + tij for
the selected prize (0 if no prize is selected) minus the opening cost ci for all opened boxes.
Weitzman [39] shows that every optimal policy of A that maximizes his expected total utility
(called A-optimal policy in the following) is in the form of the following index policy: For
each box i ∈ [n] compute an index or fair cap φi such that∑

j∈[m]

pij max{0, aij + tij − φi} = ci.

The boxes are considered in non-increasing order of fair caps. Suppose box i is the next
unopened box in this order, and the best prize A has found thus far is v. If no box has been
opened, then v = 0, and otherwise v = ai′j′ + ti′j′ for some (i′, j′) where i′ is a box that has
already been opened, and prize j′ has been found in it. There are three cases: (1) v < φi:
A opens box i; (2) v = φi: A is indifferent between opening box i and stopping opening
boxes; and (3) v > φi: A stops opening boxes. Note that any box i with φi < 0 is never
opened. For each (i, j) ∈ [n] × [m] we define the capped value κi = min{aij + tij , φi}. A
policy as described above always selects the prize in box i∗ ∈ arg maxi κi, i.e., the prize with
the largest capped agent value.

Even under these conditions, there may still be several A-optimal policies. Specifically,
(i) the choice of φi is not unique when ci = 0,
(ii) the non-decreasing order of fair caps may not be unique,
(iii) in the case v = φi above, the choice of whether to stop or continue is not unique,
(iv) among the observed prizes, the prize (i, j) maximizing aij + tij may not be unique.

We assume that A breaks ties in favor of P2. Among the set of A-optimal policies, she
selects a P-optimal one, i.e., a policy that maximizes the expected utility for P . (Note that
such a policy may be vastly different from an P-optimal policy among all policies.) We call
a policy that is selected in this way an optimal policy (under contract T).

In case (iv), it is clear how to resolve the ambiguity in favor of P: Simply select (i, j)
maximizing bij − tij . The other cases, however, can give rise to a very large number of
potential policies. Interestingly, in the full version of the paper we show that it is always
possible to implement the tie-breaking in polynomial time and find an optimal policy under
contract T . We prove this result through a reduction to the original Pandora’s Box problem.

▶ Theorem 1. Given a contract T , an optimal policy can be computed in polynomial time.

We study contracts for P that steer the index policy executed by A towards good outcomes
for P. We explore both linear and general contracts. A linear contract is given by a single
number α ∈ [0, 1], and tij = α · bij . Linear contracts are popular because of their simplicity,
but they often suffer from substantial limitations of the achievable revenue. As such, we
also explore general contracts, in which we only require every payment to be non-negative
tij ≥ 0 for every i ∈ [n] and j ∈ [m]. A (linear) contract T that, among all possible (linear)
contracts, achieves maximum expected utility for P when A executes an optimal policy under
T , is called optimal (linear) contract.

2 This is a standard assumption in bi-level problems. On a technical level, it ensures that the optimization
problem of finding an optimal contract for P is well-defined.

M. Hoefer, C. Schecker, and K. Schewior 50:7

3 Optimal Linear Contracts

In this section we consider linear contracts. Recall that these are contracts characterized by
a single α ∈ [0, 1] such that tij = α · bij for all (i, j) ∈ [n]× [m]. Our result is the following.

▶ Theorem 2. An optimal linear exploration contract can be computed in polynomial time.

Let α1, α2 ∈ [0, 1] such that the set of A-optimal policies (i.e., index policies) is the same
for all α ∈ [α1, α2]. Consider the expected utility of P according to an optimal policy (i.e.,
an P-optimal policy among this set of A-optimal policies) as a function of α within the
interval [α1, α2]. The following straightforward observation implies that this function is a
linear and non-increasing function of α.

▶ Observation 3. For every policy, there exists a constant c such that the expected utility of
P as a function of α is (1− α) · c.

Hence, within [α1, α2], an optimal contract is α1. To find a polynomial-time algorithm
for computing the global optimum α, it therefore suffices to show that, in polynomial time,
one can find a partition of the interval [0, 1] into (polynomially many) subintervals such
that, in each subinterval, the set of A-optimal policies is constant. (Strictly speaking, we
will encounter a technicality at the endpoints of the subintervals.) In the following, we
will define a (polynomial-time computable) set of critical values in [0, 1] such that, in an
interval (strictly) between any two consecutive critical values, the set of A-optimal policies is
constant.

Towards this definition, for any given α ∈ [0, 1] and every (i, j) ∈ [n]× [m], let vij(α) :=
aij + α · bij denote the value of prize j in box i for A. Furthermore, let φi(α) denote the
(unique) fair cap of box i ∈ [n] with ci > 0 as a function of α, i.e., it holds that∑

j∈[m]

pij max {0, vij(α)− φi(α)} = ci

for all α ∈ [0, 1]. Note that φi(α) is a continuous function of α in [0, 1].
We call α ∈ [0, 1] a critical value if α ∈ {0, 1} or one of the following properties holds:

(a) There exist boxes i, i′ ∈ [n] with ci > 0, ci′ > 0 such that the order of their fair caps
changes at α. Formally, φi(α) = φi′(α), and there exists ε > 0 such that φi(α′) ̸= φi′(α′)
for all α′ ∈ (α− ε, α) or for all α′ ∈ (α, α + ε).

(b) There exist i, i′ ∈ [n] with ci > 0, ci′ > 0 and j ∈ [m] such that the order between the
value of prize (i, j) for A and the fair cap of box i′ changes. Formally, vij(α) = φi′(α),
and there exists ε > 0 such that vij(α′) ̸= φi′(α′) for all α′ ∈ (α − ε, α) or for all
α′ ∈ (α, α + ε).

(c) There exists i ∈ [n] with ci > 0 such that φi(α) = 0.
Observe that the critical values indeed have the property that, for any two such values αc

1, αc
2,

the set of A-optimal policies is constant within (αc
1, αc

2). Note that any A-optimal policy is
also A-optimal under both αc

1 and αc
2, but there are potentially additional A-optimal policies

under αc
1 or under αc

2. Together with Observation 3, this implies that the optimal contract
is a critical value.

The following auxiliary lemma supports the analysis of the number of critical values.

▶ Lemma 4. For each i ∈ [n] with ci > 0, the fair cap φi : [0, 1]→ R is a monotone convex
piece-wise linear function with at most 2m + 1 linear segments.

STACS 2025

50:8 Designing Exploration Contracts

α

φi(α)

vij(α)

α

φi(α)

vij(α)

Figure 1 Two cases for an intersection between vij and φi. Left: The slope of vij was less than
slope of φi before the intersection. By definition, it contributed to the weighted average slope that
defines the slope of φi. After the intersection, it does not contribute anymore, and the weighted
average only increases. Right: The slope of vij was greater than slope of φi before the intersection.
Symmetrical arguments.

Proof. For any α ∈ [0, 1], it holds
∑

j∈[m] pij max{0, vij(α)− φi(α)} = ci by definition. An
equivalent formulation would be

φi(α) =
∑

j∈Si(α) pijvij(α)− ci∑
j∈Si(α) pij

,

where Si(α) := {j ∈ [m] : vij(α) ≥ φi(α)}. Hence, φi(α) is the weighted average (minus
offset ci) of all vij(α) that are in Si(α), i.e., above φi(α). For a fixed set Si(α), this means
that the fair cap φi is linear in α, as every vij is linear in α. Therefore, the slope of φi only
changes at intersections with some vij , where the set Si(α) changes. We argue now that the
fair cap can only increase at those intersections (cf. Fig. 1).

For every (i, j) ∈ [n]× [m] and α ∈ (0, 1] with vij(α) = φi(α), but vij(α− ε) ̸= φi(α− ε)
for some ε > 0 , there are two cases:
1. vij(α − ε) > φi(α − ε). Then j ∈ Si(α − ε), but j /∈ Si(α + ε′) for some ε′ > 0. Hence

the slope of φi was greater than the slope of vij before the intersection at α. The new
weighted average of affine functions that are above the fair cap can only increase when
vij is not contributing to that average anymore.

2. vij(α − ε) < φi(α − ε). Then j /∈ Si(α − ε), but j ∈ Si(α). Hence the slope of φi was
less than the slope of vij before the intersection at α. The new weighted average of affine
functions that are above the fair cap can only increase when vij is starting to contribute
to that average.

Thus the slope of φi(α) is never decreasing when α increases, which makes φi convex. As vij

is an affine function, every vij can intersect at most twice with φi. Therefore, there are at
most 2m + 1 linear segments of φi on the interval [0, 1]. ◀

According to Lemma 4, there are at most O(n) critical values induced by case (c). By
the same lemma, there are at most O(nm) critical values for every box i ∈ [n] with ci > 0
induced by case (b), as φi is convex and there are nm affine functions vi′j , each of which
intersects φi at most twice. Thus, O(n2m) critical values in total are due to cases (b) and
(c). Similarly, each linear segment of φi can intersect with another convex function φi′ at
most twice. As there are at O(m) linear segments for α ∈ [0, 1] and n possible functions φi′ ,
there are at most O(nm) such intersections for φi. Thus, case (a) induces at most O(n2m)
critical values. Overall, the number of critical values is polynomial in n and m, and the set
of them can be computed in polynomial time.

M. Hoefer, C. Schecker, and K. Schewior 50:9

By Theorem 1, we can compute an optimal contract for any given critical value in
polynomial time. The expected utility of P under this contract can also be computed in
polynomial time. Thus, we can enumerate all critical values and take the best contract with
respect to the expected utility for P, implying Theorem 2.

4 Optimal General Contracts

4.1 No Intrinsic Agent Value
In the consideration of contract problems, it is often assumed that the agent has no intrinsic
value (only cost) and receives benefit only via transfers from the principal. In this case, we
have aij = 0 for all (i, j) ∈ [n]× [m]. We show that under this assumption, we can compute
an optimal contract in polynomial time.

▶ Theorem 5. Suppose that aij = 0 holds for all (i, j) ∈ [n] × [m]. Then an optimal
exploration contract can be computed in polynomial time.

Without any transfers from P, A has no intrinsic motivation to open any box – except
the ones with inspection cost 0. Specifically, if the agent opens box i ∈ [n], the (expected)
payments from P have to cover the inspection costs for A, i.e., it holds that

∑
j∈[m] pijtij ≥ ci.

As a direct consequence, P cannot obtain more utility from a contract with A over the one
obtained by exploring boxes and paying inspection costs by herself (she can simply imitate
A’s behavior under the contract).

▶ Definition 6. A given contract T implements a policy π if (1) π is optimal under T , and
(2)

∑
j∈[m] pijtij = ci for all i ∈ [n].

As observed above, an optimal contract cannot yield more utility for P than an optimal
policy π∗ that she can apply by herself (paying the costs herself). Hence, the next lemma
implies Theorem 5.

▶ Lemma 7. There exists a contract T ∗ that implements π∗.

Proof. Recall that the following is an optimal policy π∗ for P (when she pays the costs
herself). Define fair caps φP

i for each box i ∈ [n] such that
∑

j∈[m] pij max{0, bij − φP
i } = ci.

Then P opens boxes in non-increasing order of their fair caps as long as the best prize
observed so far does not exceed the fair cap of the next box.

A contract T ∗ that implements π∗ is given by payments tij := max {0, bij − φP
i } for all

(i, j) ∈ [n]× [m]. Clearly, we have∑
j∈[m]

pijtij = ci, for all i ∈ [n]. (1)

Consequently, A is faced with an instance of the Pandora’s Box problem where her expected
prize in each box i equals the opening cost. Thus, if A applies the (A-optimal) index policy
for the emerging instance, the fair caps for A are given by φA

i = 0 for all i ∈ [n].
This means that A is entirely indifferent about the opening order. As long as there are

only prizes with tij = 0, A is also indifferent about stopping to open further boxes and
selecting any previously observed prize at any point in time. Thus, A’s behavior under these
conditions can be assumed to be consistent with the one imposed by π∗.

STACS 2025

50:10 Designing Exploration Contracts

Restrictions only arise from the fact that A must stop immediately whenever a prize j

with tij > 0 is drawn from box i, according to A’s index policy. However, this is consistent
with the behavior of the index policy π∗ for P: Note that tij > 0 if and only if bij > φP

i .
Hence, P also stops when prize j is drawn from box i, because bij exceeds the fair cap of
box i and, thus, the fair cap of the next box in the order.

Therefore, π∗ is an optimal policy under contract T ∗. Together with (1) this shows that
T ∗ implements π∗. ◀

4.2 Binary Boxes
We study a subclass of the problem where every box i ∈ [n] contains two prizes with positive
probability. One of those prizes has value 0 for both P and A, and is called 0-prize. The
other prize (the positive prize) is denoted by the value pair (ai, bi) with ai, bi ≥ 0 and has
probability pi ∈ (0, 1]. Consequently, the 0-prize is drawn from box i with probability 1− pi.
Note that there cannot be a positive payment for the 0-prize. Thus, payments for box i are
given by a single ti ≥ 0, the payment for the positive prize.

Depending on a payment of t ≥ 0, we define the fair cap φi(t) of box i for A by

φi(t) = t + ai −
ci

pi
. (2)

▶ Lemma 8. Given a contract T , there is an optimal policy that has the following properties.
A opens boxes in order of the fair cap defined by (2). Boxes with the same fair cap are
ordered according to the value bi − ti. A accepts the first box with a positive prize (if any).

Proof. As discussed in Section 2, the fair cap for boxes is unique whenever ci > 0. For boxes
with ci = 0 we also assume that the fair cap is given as in (2). This is the smallest fair cap for
this box and defers the inspection of box i to the latest point. Clearly, the agent is indifferent
regarding this choice. Consequently, it is A-optimal to stop immediately and accept as soon
as A opens a box with a positive prize in it, since the value is ai + ti ≥ φi(ti) ≥ φi+1(ti+1).

To argue that this behavior is also P-optimal, suppose some box i∗ with ci∗ = 0 gets a
higher fair cap φi∗(ti∗) > ai∗ + ti∗ and gets opened earlier (in accordance with the resulting
index policy of A). With such fair cap for i∗, A does not stop until all subsequent boxes i

with fair cap φi(ti) > ai∗ + ti∗ are opened. As such, we can defer the opening of box i∗ until
after these boxes are opened. Now if there are several boxes with the same fair caps, it is
optimal for P if the opening is done in non-increasing order of bi − ti. This guarantees that
there is no subsequent box with the same fair cap and a prize that has a better value for
P. Conversely, any box with the same fair cap and potentially better value for P has been
inspected before. As such, using minimal fair caps for boxes with ci = 0, breaking ties w.r.t.
bi − ti, and stopping as soon as a positive prize is observed is also P-optimal. ◀

Let us define a basic fair cap of box i to be φi(0). A box with negative basic fair cap
would not be considered by A unless the payment ti is at least ci/pi − ai, in which case the
fair cap would be precisely 0. Note that boxes with prohibitively high cost pi(ai + bi) ≤ ci

are w.l.o.g. never opened by A under any contract T . In what follows, we exclude such boxes
from consideration. For the remaining boxes pi(ai + bi) > ci, and, hence, bi > ci/pi−ai =: t̃i.
Whenever t̃i > 0, the exploration cost exceeds the expected value for A in box i. As such, a
transfer of t̃i is clearly necessary to motivate A to inspect box i at all. We renormalize the
box by adjusting the value of the positive prize to (ai + t̃i, bi − t̃i). Then the basic fair cap
becomes φi(0) = 0. Indeed, assuming ti ≥ t̃i is w.l.o.g.: Consider any contract T in which
ti < t̃i for all i in some non-empty set of boxes B, and the optimal policy π under T . Note

M. Hoefer, C. Schecker, and K. Schewior 50:11

that choosing a contract T ′ where ti is increased to t̃i for such boxes does not hurt: This will
increase the fair caps in B to 0. An A-optimal policy π′ for T ′ can be obtained from π by
opening the boxes B in the end if no prize has been found yet, in any order. The resulting
utility for P in such cases is non-negative rather than 0 (as t̃i ≤ bi); the utility in all other
cases does not change.

In the remainder of the section, we consider the instance with renormalized boxes, i.e., each
box i has a basic fair cap φi(0) ≥ 0. Furthermore, we re-number the boxes and assume that
the indices are assigned in non-increasing order of basic fair caps, i.e. i < j =⇒ φi(0) ≥ φj(0)
for all i, j ∈ [n]. We break ties in the ordering w.r.t. non-increasing value of bi.

Our next observation will allow us to restrict attention to the permutation and the fair
caps in the policy of A. By (2), fair caps are linear in payments. Clearly, for an optimal
contract we strive to set smallest payments (and, hence, smallest fair caps) to induce a
behavior of A. For any given contract T , we say T implements an ordering σ of boxes if
there is an optimal policy under T that considers boxes in the order of σ. For the reverse
direction, we need a slightly more technical definition.

▶ Definition 9. For any given ordering σ of boxes, we define a contract T (σ) as follows: For
each position i (occupied with box σ(i)), let j = max(arg maxj′∈{i,i+1,...,n}{φσ(j′)(0)}) be the
latest position of any subsequent box (including σ(i) itself) with the highest basic fair cap of
the subsequent boxes. In T (σ), we assign payments to the unique positive prizes for the boxes
on positions i, i + 1, . . . , j such that they all have a fair cap of exactly φσ(j)(0). If T (σ) has
feasible payments and implements σ, we call T (σ) the canonical contract for σ.

We have the following lemma concerning whether T (σ) is the canonical contract for σ.

▶ Lemma 10. For any ordering σ, we can decide in polynomial time if T (σ) is the canonical
contract for σ (and compute it in this case). If T (σ) is not the canonical contract for σ,
then every contract T that implements σ is suboptimal for the given instance. Otherwise, the
canonical contract has point-wise minimal payments among all contracts that implement σ.

Proof. The construction of T (σ) and the subsequent feasibility check described in Definition 9
can be done in polynomial time. Note that if T (σ) is the canonical contract for σ, it uses
point-wise minimal payments for implementing σ: Having less payments for any box would
directly contradict implementation of σ, since every optimal policy considers boxes in the
order of their fair caps, which are lower bounded by the respective basic fair caps. Thus, if
T (σ) is not the canonical contract for σ due to infeasible payments, then implementing σ is
impossible with any contract, because even higher payments would be necessary. If T (σ) is
not the canonical contract for σ, but the construction in Definition 9 defines feasible payments,
it defines a canonical contract T (σ′) of some other ordering σ′ ̸= σ using point-wise minimal
payments. Note that σ′ instead of σ only emerges because of tie-breaking in favor of P , which
implies that boxes with identical fair caps have to be considered in non-increasing order of
bi − ti. Thus it could be possible to implement σ with another contract T , but additional
payments would be required to remove (some of the) ties. However, since tie-breaking was
already done in favor of P , this contract T clearly yields less utility than T (σ′) and hence is
not an optimal contract for the given instance. ◀

In the following, we will discuss how to compute the fair caps for the policy of A in
an optimal contract. By Lemma 10, the order σ that we compute in this way has to be
implemented by T (σ).

Let eP(φ1, . . . , φn) denote the expected utility for P under a contract given by fair caps
φ1, . . . , φn. Algorithm 1 computes optimal fair caps for all boxes. Initially, the fair cap of
each box is given by its basic fair cap. Then we calculate the optimal fair cap of boxes

STACS 2025

50:12 Designing Exploration Contracts

Algorithm 1 Optimal Contract for Binary Boxes.

Data: Binary boxes 1, . . . , n (non-increasing φi(0), tie-break: non-increasing bi)
Result: Contract (t1, . . . , tn)
xk ← φk(0) for all k ∈ [n] ; // Initialize with basic fair caps.
for k = 1, . . . , n do

for j = 1, . . . , k do
/* Compute expected utility for P when box k had fair cap xj */
ρ← xj ;
ej ← eP(x1, . . . , xk−1, ρ, xk+1, . . . , xn) ;

end
j∗ ← arg maxj∈{1,...,k} ej ; // Box k receives optimal fair cap xj∗.
tk ← xj∗ − φk(0) ;

end

1, . . . , n iteratively. In iteration k of the outer for-loop, we find the optimal fair cap for box
k among the fair caps of previous boxes. Crucially, it is sufficient to test which of those fair
caps yield maximum utility, even if the final fair caps of subsequent boxes are not determined
yet. Note that by (2), to raise the fair cap of any box i ∈ [n] to φ > φi(0), the required
payment ti is a constant independent of the probabilities and values in box i – more precisely,
it is exactly ti = φ− φi(0).

▶ Theorem 11. Algorithm 1 computes an optimal exploration contract for binary boxes in
polynomial time.

Proof. For the proof, we show inductively that the decision of the algorithm in each iteration
of the outer for-loop regarding box k is optimal. Formally, there is an optimal ordering of
all boxes that, when restricted to boxes 1, . . . , k, is identical to the ordering computed by
the algorithm after iteration k. By Lemma 10, this implies that the selected fair cap for
box k is optimal (and, thus, the payment in T), as boxes are numbered and considered in a
non-increasing order of their basic fair caps.

For the rest of the proof we show the following statement. For every k ∈ [n], let σk denote
the ordering of boxes after iteration k of the outer for-loop in Algorithm 1. There is an
optimal ordering σ∗ such that the relative order of boxes 1, . . . , k is identical in σ∗ and σk.

We proceed by induction. The statement is trivially true for k = 1. Now suppose the
statement holds for every of the first k− 1 iterations, and consider iteration k. Let i∗ denote
the position of box k w.r.t. boxes 1, . . . , k in σ∗, and let i denote its position σk. Note that
position i∗ corresponds to a position i∗

n ≥ i∗ in the overall ordering σ∗ (since for definition of
i∗ we ignore boxes k + 1, . . . , n). Clearly, the statement holds when i∗ = i.

For the two remaining cases (i∗ > i and i∗ < i) we show that the optimal ordering can
be changed sequentially into one that has i∗ = i without decreasing the expected value for P .
We discuss the proof for case 1: i∗ > i. The proof of the other case is very similar (as seen in
the full version of the paper).

Consider i∗ > i. Now suppose box k was brought to position i (w.r.t. first k boxes) in
σ∗. The fair cap of k must be strictly increased, since otherwise k would receive the same
payment and the same position in σk and σ∗ (due to optimal tie-breaking by the agent
in non-increasing order of principal value). Note that position i corresponds to a position
in < i∗

n in σ∗.

M. Hoefer, C. Schecker, and K. Schewior 50:13

Consider the set L of boxes located between positions in and i∗
n in σ∗. Consider the first

box r ∈ L with r > k and the position ir in σ∗. Let L1 be the boxes located before box r in
positions in, . . . , ir − 1. We use p̃1 for the combined probability of selection in L1 and b̃1 for
the combined expected value of a selected box in L1.

Let bk
r be the remaining value of box r after a payment that lifts the fair cap of r to the

basic fair cap of k. We split the analysis into two cases: bk
r ≥ bk and bk

r < bk. If bk
r ≥ bk,

consider the move of r to position in. Since there are only boxes j < k in L1, we could place
box k on position i + |L1|+ 1 in σk – right after boxes from L1, similar to the position ir of
box r in σ∗. We use ∆ir

to denote the payment required to lift the fair cap of box k from its
basic fair cap to the one required at position ir. Moreover, ∆in,ir is the additional payment
required to lift the fair cap of box k from the one at position ir to the one at in. Since the
algorithm places k at in instead of ir, we know that

pk(bk −∆ir −∆in,ir) + (1− pk)p̃1b̃1 ≥ p̃1b̃1 + (1− p̃1)pk(bk −∆ir),

which implies

bk ≥ b̃1 + ∆ir
+ ∆in,ir

/p̃1.

Suppose now we move r from ir to in, then we have the same terms with bk
r instead of

bk. Clearly, since bk
r ≥ bk we know that the move is also profitable. This means that we can

move r to position in without deteriorating the value of σ∗. Thereby we reduce the number
of boxes j ≥ k between the positions of k in σ∗ and σk.

For the second case consider bk
r < bk. We here consider two moves in σ∗ – either swap box

r right after box k, or swap box k right before box r. Neither of these moves shall maintain
the value of σ∗, and we show that this is impossible.

Let L2 be the boxes located between r and k in σ∗. We use p̃2 and b̃2 to denote selection
probability and expected value of selected box, respectively. Now if we swap box r after box
k, a strict decrease in value yields

pr(bk
r −∆i∗

n
−∆i∗

n,ir
) + (1− pr)p̃2b̃2 + (1− pr)(1− p̃2)pk(bk −∆i∗

n
)

> p̃2b̃2 + (1− p̃2)pk(bk −∆i∗
n
) + (1− p̃2)(1− pk)pr(bk

r −∆i∗
n
).

Note that ensuring the same fair cap as box k at position i∗
n is enough, since bk

r < bk and
box r is then sorted after box k. We obtain

p̃2bk
r + pk(1− p̃2)bk

r > p̃2b̃2 + pk(1− p̃2)bk + p̃2∆i∗
n

+ ∆i∗
n,ir

and, since bk
r < bk,

bk
r > b̃2 + ∆i∗

n
+ ∆i∗

n,ir
/p̃2. (3)

For the other move, we see that a strict decrease in value yields

pr(bk
r −∆i∗

n
−∆i∗

n,ir
) + (1− pr)p̃2b̃2 + (1− pr)(1− p̃2)pk(bk −∆i∗

n
)

> pk(bk −∆i∗
n
−∆i∗

n,ir
) + (1− pk)pr(bk

r −∆i∗
n
−∆i∗

n,ir
) + (1− pk)(1− pr)p̃2b̃2.

Note that ensuring the same fair cap as box r at position ir is enough, since bk
r < bk and

box k is then sorted before box r. We obtain

(−pr − p̃2 + prp̃2)bk + (1− pr)p̃2∆i∗
n

> −(1− pr)∆i∗
n,ir
− prbk

r − p̃2b̃2 + prp̃2b̃2,

STACS 2025

50:14 Designing Exploration Contracts

so

(1− pr)p̃2b̃2 + (1− pr)p̃2∆i∗
n

+ (1− pr)∆i∗
n,ir

> p̃2(1− pr)bk + pr(bk − bk
r).

This implies pr < 1, since otherwise we derive bk−bk
r < 0, a contradiction. Now, if pr ∈ (0, 1),

p̃2 ∈ (0, 1], and bk
r < bk, the above implies

b̃2 + ∆i∗
n

+ ∆2/p̃2 > bk. (4)

Equations (3) and (4) imply a contradiction with bk
r < bk.

At least one swap (either moving r right after k, or moving k right before r) must be
non-deteriorating in terms of solution value. Using this swap, we can change σ∗ and decrease
the set of agents j ≥ k between i∗

n and in without loss in value.
Now using these swaps (either the one for bk

r ≥ bk or one of the two for bk
r < bk) iteratively,

we can turn σ∗ into an ordering such that there are only boxes j < k in L. Then moving
box k from i∗

n to in is not harmful. We let pℓ denote the overall probability that a box in L

is chosen and bℓ the expected value. Let ∆i,i∗ be the additional payment required to raise
the fair cap from the one of position i∗ to the one of position i.

Indeed, our algorithm could have placed box k at position i∗, but preferred to place k in
position i < i∗. This means that

pk(bk −∆i,i∗) + (1− pk)pℓbℓ ≥ pℓbℓ + (1− pℓ)pkbk,

which also reflects the change in value if the move is executed in σ∗. This proves the inductive
step when i∗ > i. ◀

4.3 I.I.D. with Single Positive Prize for Principal
Finally, we study the subclass of the problem where all distributions are identical, with
the further restriction that there is only a single positive prize for the principal. Even this
restriction has a perhaps surprisingly complicated solution. We show the following result.

▶ Theorem 12. There exists an algorithm that computes an optimal exploration contract for
the i.i.d. case with a single positive prize for the principal in polynomial time.

We introduce some simplified notation for this subclass. All of the n boxes have an
identical distribution over prizes {0} ∪ [m] = {0, 1, . . . , m} and the same opening cost c ≥ 0.
For each prize j ∈ {0, 1, . . . , m}, the utilities for A and P are aj and bj , respectively. Without
loss of generality, prize 0 is the only prize for which P has a positive value, i.e., bj = 0 for all
j ≥ 1. The probability that prize j is drawn when a box is opened is denoted by qj ∈ [0, 1].
For the ease of notation, we define p := q0 and v := b0. For each box i ∈ [n], P defines a
(non-negative) payment of ti ≤ v for prize 0. We may assume v > 0 and p > 0 as otherwise
t1 = · · · = tn = 0 would be the unique transfers.

We make two further assumptions that are without loss of generality. First, the values aj

for j ≥ 1 are unique: If there are j1, j2 ∈ [m] with aj1 = aj2 , replace both prizes by a new
one with probability qj1 + qj2 . Second, we assume a1 ≤ a2 ≤ · · · ≤ am.

Similarly as in Section 4.2, let φ(t) be the fair cap of a box for A when payment t ≥ 0 is
made for prize 0 of that box. We call φ(0) the basic fair cap. Note that there is an optimal
contract in which each fair cap is either φ(0) or some value aj , where j ∈ [m], with aj > φ(0).
The reason is that, if that were not the case, we could decrease the payment for each box,
until that property is satisfied while keeping the policy optimal. Importantly, the agent value

M. Hoefer, C. Schecker, and K. Schewior 50:15

of outcome 0 (which is given by a0 + ti) need not be considered here: Whenever outcome 0
is drawn from a box i with φi > φ(0), the process stops immediately since, by definition of
the fair cap and the index policy, it must hold a0 + ti > φi ≥ φi+1, where φi+1 is the fair
cap of the next box.

Observe that φ(0) can be achieved with different payments t, as long as a0 + t ≤ φ(0).
This may influence the stopping behavior of A as the payment may determine the order of
a0 + t and aj for some prize j. To achieve some fair cap larger than φ(0), however, there is a
unique payment that achieves this fair cap because changing a values above the fair cap that
occurs with non-zero probability always changes the fair cap by definition.

Now consider an optimal contract. Index the boxes in the order in which they are opened,
and let φ1 ≥ φ2 ≥ · · · ≥ φn be the corresponding fair caps. We first concentrate on a
potential set of basic boxes with φ(0) in the final rounds of the process.

If a0 ≥ φ(0), then every positive payment of P would increase the fair cap to above φ(0).
Therefore, if basic boxes with fair cap φ(0) exist in an optimal contract, ti = 0 must hold for
all these boxes.

Otherwise, if a0 < φ(0), suppose j∗ ∈ [m] is the best other prize for A that is not
exceeding the basic fair cap, i.e., j∗ := arg maxj∈[m]{aj : aj ≤ φ(0)}. Observe that for
every basic box i, an optimal payment ti either fulfills a0 + ti = aj for some j ∈ [j∗], or
a0 + ti = φ(0). W.l.o.g., when prize 0 is drawn in a basic box i with a0 + ti = φ(0), the
process stops (by tie-breaking in favor of P, who cannot improve), and when an outcome
j ≥ 1 with aj = φ(0) is drawn in any round before n, the process continues (again by
tie-breaking in favor of P, who gets 0 if aj is accepted).

We next show that all basic boxes i with a0 + ti = φ(0) can be assumed to be opened
first among the set of basic boxes. The argument is an exchange argument and given in the
full version of the paper.

▶ Lemma 13. There is an optimal contract where all basic boxes ℓ with a0 + tℓ = φ(0) are
opened first among the set of basic boxes.

We now divide the process into two phases. In every round i of Phase 1, φi ≥ φ(0) and
prize 0 gets accepted by A immediately if it is found. In Phase 2, φi = φ(0) and prize 0 is
not accepted immediately (only if in the last round a prize 0 represents the best one for A).
Suppose Phase 1 contains boxes 1, . . . , k and Phase 2 boxes k + 1, . . . , n. Note that either
phase might be empty.

Before analyzing the process, we show an example that shows the perhaps counter-intuitive
fact that the optimal contract might indeed involve two such phases, each of substantial
length. Moreover, even though all boxes have the same distribution and the same fair cap,
in the optimal contract they are assigned one of two different payments depending on their
position in the inspection sequence.

▶ Example 14. Consider an instance with m = 2. Prize 0 has value a0 = 0 and b0 = 1+α for
some α > 0 determined below, as well as q0 = 1/n. The other prizes have a1 = 2, q1 = 1/n

and a2 = 0, q2 = 1− 2/n. The inspection cost is c = 1/n, and the basic fair cap is φ(0) = 1.
Clearly, if prize 1 is found in a box, then A always accepts. If prize 2 is found, A continues

to inspect further boxes. Suppose A draws a prize 0 in the first round. It is rather unlikely
that A will run through all remaining n− 1 boxes without finding a prize 1 and eventually
accept prize 0 from round 1. Specifically, this probability is (1− 1/n)n−1. Now P can set
t1 = 1 = φ(0), leading to direct acceptance by A and immediate profit of α. Alternatively,
P can decide to set t1 = 0 (and, in an optimal contract, then ti = 0 throughout) gambling
for a high profit of 1 + α in the end. The gambling strategy is unprofitable if

STACS 2025

50:16 Designing Exploration Contracts

α ≥ (1 + α) · (1− 1/n)n−1 or, equivalently, α ≥ (1− 1/n)n−1

1− (1− 1/n)n−1 .

Suppose α satisfies this inequality, then round 1 is part of Phase 1 in an optimal contract.
Via the same calculation, we can determine further rounds i of Phase 1. A accepts prizes 0
and 1 in all earlier rounds 1, . . . , i− 1, so reaching round i is only possible if prize 2 has been
found in all these rounds.

Now suppose for some k ∈ {1, . . . , n− 1}

α = (1− 1/n)k

1− (1− 1/n)k
.

Then P wants to set ti = 1 for all i ≤ k, i.e., this becomes Phase 1 with direct acceptance of
prize 0. For all rounds i ≥ k + 1, it is more profitable to gamble that no prize 1 will arrive in
the remaining rounds and P will secure a value of 1 + α. This represents Phase 2. ⌟

Turning to the analysis, we start by examining Phase 1. Using a relatively straightforward
exchange argument given in the full version of the paper, we show the following.

▶ Lemma 15. There is an optimal contract in which all boxes of Phase 1 have the same fair
cap.

In Phase 2, all boxes have fair cap φ(0), but this does not exclude the possibility of
different payments. If the first box of Phase 2, box k + 1, is about to be opened, the highest
agent value observed so far (if any) is at most φ(0). In particular, prize 0 was never observed
at that point, since this would have led to acceptance of A in an earlier round.

During Phase 2, the process only stops early when an outcome j > j∗ is drawn. In this
case, the utility for P is 0. If the process does not stop early, P receives a utility only if
outcome 0 is the best outcome for the agent among all n outcomes.
P could have different payments for different boxes as long as, for every box i, there is some

j ∈ [j∗] such that a0 +ti = aj . If an outcome from a box with payment t = aj−a0 ≤ φ(0)−a0
(for some j ∈ [j∗]) is the maximum after n rounds, then

outcome 0 must have been drawn from any number of boxes that have this payment t,
and
in all boxes with a payment of at most t, some outcome 0 ≤ j′ < j was drawn, and
in all remaining boxes, some outcome 1 ≤ j′ < j was drawn.

Let nj := |{i ∈ [n] : a0 + ti = aj}| denote the number of boxes of Phase 2 with such payment,
for every j ∈ [j∗]. Furthermore, for every j ∈ [j∗], let Qj :=

∑j
j′=1 qj′ denote the combined

probability of all outcomes (other than 0) that are not better for A, and Nj =
∑j

j′=1 nj′

denote the number of boxes with the according payment. The probability that outcome 0
with a payment of t = aj − a0 is the best outcome after n rounds is then given by

nj∑
i=1

(
nj

i

)
· pi · (p + Qj)Nj−1 ·Qn−Nj−1−i

j

=
nj∑

i=1

(
nj

i

)
· pi ·

(
p + Qj

Qj

)Nj−1

·Qn+nj−nj−i
j

=
nj∑

i=1

(
nj

i

)
· pi ·

(
p

Qj
+ 1
)Nj−1

·Qn−nj

j ·Qnj−i
j

M. Hoefer, C. Schecker, and K. Schewior 50:17

=
(

p

Qj
+ 1
)Nj−1

·Qn−nj

j ·

(
nj∑

i=0

(
nj

i

)
· pi ·Qnj−i

j −Qnj

)

=
(

p

Qj
+ 1
)Nj−1

·Qn−nj

j · ((p + Qj)nj −Qnj)

=
(

p

Qj
+ 1
)Nj−1

·Qn
j ·
((

p

Qj
+ 1
)nj

− 1
)

= Qn
j ·

((
p

Qj
+ 1
)Nj

−
(

p

Qj
+ 1
)Nj−1

)
.

Thus, the expected utility for P for Phase 2 is

j∗∑
j=1

vj ·Qn
j ·

((
p

Qj
+ 1
)Nj

−
(

p

Qj
+ 1
)Nj−1

)
.

With this at hand, we show the following lemma in the full version of the paper.

▶ Lemma 16. There is an optimal contract in which all boxes of Phase 2 have the same
payment for prize 0. There is j+ ∈ [j∗] such that nj+ = n− k (and nj = 0 for all j ̸= j+).

By the previous lemmas, it suffices to enumerate all combinations of the length of Phase
1, the fair cap in Phase 1, and the unique payment of prize 0 for Phase 2 (determined by a
prize j to be targeted, a payment of 0, or a payment resulting in value φ(0) for A for prize 0).
These are polynomially many combinations, and for each combination the expected utility of
P for the resulting contract can be computed in polynomial time. Theorem 12 follows.

References
1 Tal Alon, Paul Duetting, Yingkai Li, and Inbal Talgam-Cohen. Bayesian analysis of linear

contracts. In Proc. 24th Conf. Econ. Comput. (EC), page 66, 2023. doi:10.1145/3580507.
3597795.

2 Tal Alon, Paul Dütting, and Inbal Talgam-Cohen. Contracts with private cost per unit-of-effort.
In Proc. 22nd Conf. Econ. Comput. (EC), pages 52–69, 2021. doi:10.1145/3465456.3467651.

3 Yakov Babichenko, Inbal Talgam-Cohen, Haifeng Xu, and Konstantin Zabarnyi. Regret-
minimizing bayesian persuasion. Games Econ. Behav., 136:226–248, 2022. doi:10.1016/J.
GEB.2022.09.001.

4 Curtis Bechtel and Shaddin Dughmi. Delegated Stochastic Probing. In Proc. Symp. Innov.
Theoret. Comput. Sci. (ITCS), pages 37:1–37:19, 2021. doi:10.4230/LIPICS.ITCS.2021.37.

5 Curtis Bechtel, Shaddin Dughmi, and Neel Patel. Delegated Pandora’s box. In Proc. 23rd
Conf. Econ. Comput. (EC), pages 666–693, 2022. doi:10.1145/3490486.3538267.

6 Hedyeh Beyhaghi and Linda Cai. Pandora’s problem with nonobligatory inspection: Optimal
structure and a PTAS. In Proc. 55th Symp. Theory Comput. (STOC), pages 803–816, 2023.
doi:10.1145/3564246.3585217.

7 Hedyeh Beyhaghi and Linda Cai. Recent developments in Pandora’s Box problem: Variants and
applications. ACM SIGecom Exchanges, 21(1):20–34, 2023. doi:10.1145/3699814.3699817.

8 Hedyeh Beyhaghi and Robert Kleinberg. Pandora’s problem with nonobligatory inspection. In
Proc. 20th Conf. Econ. Comput. (EC), pages 131–132, 2019. doi:10.1145/3328526.3329626.

9 Patrick Bolton and Mathias Dewatripont. Contract Theory. MIT Press, 2005.
10 Shant Boodaghians, Federico Fusco, Philip Lazos, and Stefano Leonardi. Pandora’s box problem

with order constraints. Math. Oper. Res., 48(1):498–519, 2023. doi:10.1287/MOOR.2022.1271.

STACS 2025

https://doi.org/10.1145/3580507.3597795
https://doi.org/10.1145/3580507.3597795
https://doi.org/10.1145/3465456.3467651
https://doi.org/10.1016/J.GEB.2022.09.001
https://doi.org/10.1016/J.GEB.2022.09.001
https://doi.org/10.4230/LIPICS.ITCS.2021.37
https://doi.org/10.1145/3490486.3538267
https://doi.org/10.1145/3564246.3585217
https://doi.org/10.1145/3699814.3699817
https://doi.org/10.1145/3328526.3329626
https://doi.org/10.1287/MOOR.2022.1271

50:18 Designing Exploration Contracts

11 Pirmin Braun, Niklas Hahn, Martin Hoefer, and Conrad Schecker. Delegated online search. In
Proc. Int. Joint Conf. Artif. Intell. (IJCAI), pages 2528–2536, 2023. doi:10.24963/IJCAI.
2023/281.

12 Matteo Castiglioni, Andrea Celli, Alberto Marchesi, and Nicola Gatti. Online Bayesian
persuasion. In Proc. Conf. Adv. Neural Inf. Processing Syst. (NeurIPS), 2020.

13 Matteo Castiglioni, Alberto Marchesi, and Nicola Gatti. Bayesian agency: Linear versus
tractable contracts. In Proc. 22nd Conf. Econ. Comput. (EC), pages 285–286, 2021. doi:
10.1145/3465456.3467602.

14 Matteo Castiglioni, Alberto Marchesi, and Nicola Gatti. Designing menus of contracts
efficiently: The power of randomization. In Proc. 23rd Conf. Econ. Comput. (EC), pages
705–735, 2022. doi:10.1145/3490486.3538270.

15 Bolin Ding, Yiding Feng, Chien-Ju Ho, Wei Tang, and Haifeng Xu. Competitive information
design for pandora’s box. In Proc. Symp. Discret. Algorithms (SODA), pages 353–381, 2023.
doi:10.1137/1.9781611977554.CH15.

16 Shaddin Dughmi, Neel Bharatkumar Patel, Aditya Prasad, and Ram Deo-Campo Vuong. On
supermodular contracts and dense subgraphs. In Proc. Symp. Discret. Algorithms (SODA),
pages 109–132, 2024. doi:10.1137/1.9781611977912.6.

17 Paul Dütting, Tomer Ezra, Michal Feldman, and Thomas Kesselheim. Combinatorial contracts.
In Proc. Symp. Found. Comput. Sci. (FOCS), pages 815–826, 2021. doi:10.1109/FOCS52979.
2021.00084.

18 Paul Dütting, Tomer Ezra, Michal Feldman, and Thomas Kesselheim. Multi-agent contracts.
In Proc. Symp. Theory Comput. (STOC), pages 1311–1324, 2023. doi:10.1145/3564246.
3585193.

19 Paul Dütting, Michal Feldman, and Daniel Peretz. Ambiguous contracts. In Proc. 24th Conf.
Econ. Comput. (EC), page 539, 2023.

20 Paul Dütting, Tim Roughgarden, and Inbal Talgam-Cohen. Simple versus optimal contracts. In
Proc. 20th Conf. Econ. Comput. (EC), pages 369–387, 2019. doi:10.1145/3328526.3329591.

21 Paul Dütting, Tim Roughgarden, and Inbal Talgam-Cohen. The complexity of contracts.
SIAM J. Comput., 50(1):211–254, 2021. doi:10.1137/20M132153X.

22 Paul Dütting, Michal Feldman, and Yoav Gal Tzur. Combinatorial contracts beyond gross
substitutes. In Proc. Symp. Discret. Algorithms (SODA), pages 92–108, 2024. doi:10.1137/
1.9781611977912.5.

23 Tomer Ezra, Michal Feldman, and Maya Schlesinger. Sequential contracts. CoRR,
abs/2403.09545, 2024. doi:10.48550/arXiv.2403.09545.

24 Yiding Feng, Wei Tang, and Haifeng Xu. Online Bayesian recommendation with no regret. In
Proc. 23rd Conf. Econ. Comput. (EC), pages 818–819, 2022. doi:10.1145/3490486.3538327.

25 Hu Fu, Jiawei Li, and Daogao Liu. Pandora box problem with nonobligatory inspection:
Hardness and approximation scheme. In Proc. 55th Symp. Theory Comput. (STOC), pages
789–802, 2023. doi:10.1145/3564246.3585229.

26 Anupam Gupta, Haotian Jiang, Ziv Scully, and Sahil Singla. The markovian price of in-
formation. In Proc. Int. Conf. Integer Prog. and Comb. Opt. (IPCO), pages 233–246, 2019.
doi:10.1007/978-3-030-17953-3_18.

27 Guru Guruganesh, Jon Schneider, Joshua R. Wang, and Junyao Zhao. The power of menus
in contract design. In Proc. 24th Conf. Econ. Comput. (EC), pages 818–848, 2023. doi:
10.1145/3580507.3597735.

28 Niklas Hahn, Martin Hoefer, and Rann Smorodinsky. Prophet inequalities for Bayesian
persuasion. In Proc. Int. Joint Conf. Artif. Intell. (IJCAI), pages 175–181, 2020. doi:
10.24963/IJCAI.2020/25.

29 Niklas Hahn, Martin Hoefer, and Rann Smorodinsky. The secretary recommendation problem.
Games Econ. Behav., 134:199–228, 2022. doi:10.1016/J.GEB.2022.05.002.

30 Bengt Holmstrom and Paul Milgrom. Aggregation and linearity in the provision of intertemporal
incentives. Econometrica, 55(2):303–328, 1987.

https://doi.org/10.24963/IJCAI.2023/281
https://doi.org/10.24963/IJCAI.2023/281
https://doi.org/10.1145/3465456.3467602
https://doi.org/10.1145/3465456.3467602
https://doi.org/10.1145/3490486.3538270
https://doi.org/10.1137/1.9781611977554.CH15
https://doi.org/10.1137/1.9781611977912.6
https://doi.org/10.1109/FOCS52979.2021.00084
https://doi.org/10.1109/FOCS52979.2021.00084
https://doi.org/10.1145/3564246.3585193
https://doi.org/10.1145/3564246.3585193
https://doi.org/10.1145/3328526.3329591
https://doi.org/10.1137/20M132153X
https://doi.org/10.1137/1.9781611977912.5
https://doi.org/10.1137/1.9781611977912.5
https://doi.org/10.48550/arXiv.2403.09545
https://doi.org/10.1145/3490486.3538327
https://doi.org/10.1145/3564246.3585229
https://doi.org/10.1007/978-3-030-17953-3_18
https://doi.org/10.1145/3580507.3597735
https://doi.org/10.1145/3580507.3597735
https://doi.org/10.24963/IJCAI.2020/25
https://doi.org/10.24963/IJCAI.2020/25
https://doi.org/10.1016/J.GEB.2022.05.002

M. Hoefer, C. Schecker, and K. Schewior 50:19

31 Bengt Holmström. Moral hazard and observability. Bell J. Econ., 10(1):74–91, 1979.
32 Jon M. Kleinberg and Robert D. Kleinberg. Delegated search approximates efficient search. In

Proc. 19th Conf. Econ. Comput. (EC), pages 287–302, 2018. doi:10.1145/3219166.3219205.
33 Robert D. Kleinberg, Bo Waggoner, and E. Glen Weyl. Descending price optimally coordinates

search. In Proc. 17th Conf. Econ. Comput. (EC), pages 23–24, 2016. doi:10.1145/2940716.
2940760.

34 P. Postl. Delegated search: Procedure matters. Discussion Paper 04-17, Department of
Economics, University of Birmingham, 2004.

35 Royal Swedish Academy of Sciences. Scientific background on the 2016 nobel prize in economic
sciences, 2016.

36 Eden Saig, Inbal Talgam-Cohen, and Nir Rosenfeld. Delegated classification. In Proc. Conf.
Adv. Neural Inf. Processing Syst. (NeurIPS), 2023.

37 Suho Shin, Keivan Rezaei, and Mohammadtaghi Hajiaghayi. Delegating to multiple agents. In
Proc. 24th Conf. Econ. Comput. (EC), pages 1081–1126, 2023. doi:10.1145/3580507.3597669.

38 Sahil Singla. The price of information in combinatorial optimization. In Proc. Symp. Discret.
Algorithms (SODA), pages 2523–2532, 2018. doi:10.1137/1.9781611975031.161.

39 Martin L. Weitzman. Optimal Search for the Best Alternative. Econometrica, May, 47(3):641–
654, 1979.

40 You Zu, Krishnamurthy Iyer, and Haifeng Xu. Learning to persuade on the fly: Robustness
against ignorance. In Proc. 22nd Conf. Econ. Comput. (EC), pages 927–928, 2021. doi:
10.1145/3465456.3467593.

STACS 2025

https://doi.org/10.1145/3219166.3219205
https://doi.org/10.1145/2940716.2940760
https://doi.org/10.1145/2940716.2940760
https://doi.org/10.1145/3580507.3597669
https://doi.org/10.1137/1.9781611975031.161
https://doi.org/10.1145/3465456.3467593
https://doi.org/10.1145/3465456.3467593

Protecting the Connectivity of a Graph Under
Non-Uniform Edge Failures
Felix Hommelsheim #

University of Bremen, Germany

Zhenwei Liu #

Zhejiang University, Hangzhou, China
University of Bremen, Germany

Nicole Megow #

University of Bremen, Germany

Guochuan Zhang #

Zhejiang University, Hangzhou, China

Abstract
We study the problem of guaranteeing the connectivity of a given graph by protecting or strengthening
edges. Herein, a protected edge is assumed to be robust and will not fail, which features a non-
uniform failure model. We introduce the (p, q)-Steiner-Connectivity Preservation problem where we
protect a minimum-cost set of edges such that the underlying graph maintains p-edge-connectivity
between given terminal pairs against edge failures, assuming at most q unprotected edges can fail.
We design polynomial-time exact algorithms for the cases where p and q are small and approximation
algorithms for general values of p and q. Additionally, we show that when both p and q are part
of the input, even deciding whether a given solution is feasible is NP-complete. This hardness also
carries over to Flexible Network Design, a research direction that has gained significant attention.
In particular, previous work focuses on problem settings where either p or q is constant, for which
our new hardness result now provides justification.

2012 ACM Subject Classification Mathematics of computing → Combinatorial optimization; Theory
of computation → Design and analysis of algorithms

Keywords and phrases Network Design, Edge Failures, Graph Connectivity, Approximation Al-
gorithms

Digital Object Identifier 10.4230/LIPIcs.STACS.2025.51

Related Version Full Version: https://arxiv.org/abs/2501.04540

Funding Zhenwei Liu: Research supported in part by NSFC (No. 12271477).
Guochuan Zhang: Research supported in part by NSFC (No. 12271477).

1 Introduction

In today’s interconnected world, the robustness of infrastructures is crucial, particularly in the
face of potential disruptions. This applies to road networks, communication grids, and elec-
trical systems alike, where the ability to maintain functionality despite failures is paramount.
Resilience in critical infrastructures requires the incorporation of redundancy to withstand
unforeseen challenges. Survivable Network Design (SND) addresses the fundamental need
of ensuring not just connectivity but robust connectivity. It goes beyond the conventional
concept of linking two entities by recognizing the need for multiple, resilient connections.

Beyond its practical applications, SND is a fundamental problem in combinatorial
optimization and approximation algorithms. In its classical setting, we are given a graph
G = (V, E) with edge costs c : E → R and connectivity requirements k(s, t) for each vertex
pair s, t ∈ V . The goal is to find a minimum-cost subset of edges X ⊆ E such that H = (V, X)

© Felix Hommelsheim, Zhenwei Liu, Nicole Megow, and Guochuan Zhang;
licensed under Creative Commons License CC-BY 4.0

42nd International Symposium on Theoretical Aspects of Computer Science (STACS 2025).
Editors: Olaf Beyersdorff, Michał Pilipczuk, Elaine Pimentel, and Nguyễn Kim Thắng;
Article No. 51; pp. 51:1–51:21

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:fhommels@uni-bremen.de
https://orcid.org/0000-0003-4444-9793
mailto:lzw98@zju.edu.cn
https://orcid.org/0009-0002-4169-1349
mailto:nicole.megow@uni-bremen.de
https://orcid.org/0000-0002-3531-7644
mailto:zgc@zju.edu.cn
https://orcid.org/0000-0003-1947-7872
https://doi.org/10.4230/LIPIcs.STACS.2025.51
https://arxiv.org/abs/2501.04540
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

51:2 Protecting the Connectivity of a Graph Under Non-Uniform Edge Failures

is k(s, t)-connected for each s, t ∈ V , i.e., in H there are k(s, t) many edge-disjoint paths for
each vertex pair s, t ∈ V . This means that s and t are still connected in H after the deletion
of any k(s, t) − 1 edges of H. SND is APX-hard and the current best approximation factor
of 2 is achieved by Jain’s famous iterative rounding algorithm [32]. It is a long-standing open
question whether this factor 2 can be improved, even for many special cases of SND.

Instead of building a new network from scratch, many real-world applications as well
as the research community consider augmentation problems, in which we are already given
some network, and the task is to robustify the network to withstand failures. The most
common model is to increase the connectivity of a given network by adding more links [22,25].
However, adding new links to a real-world network may be costly or even impractical.

This motivates the investigation of the problem of increasing the connectivity of a
network by protecting or strengthening edges, as has been proposed by Abbas et al. [1] in a
practical context. In this paper, we formally introduce the problem (p, q)-Steiner-Connectivity
Preservation ((p, q)-SCP): Given an undirected graph G = (V, E), possibly with parallel
edges, nonnegative costs c : E → R+ and k terminal pairs (si, ti) ∈ V × V . The task is to
identify a minimum-cost set of edges X ⊆ E such that for any edge set F ⊆ E \ X with
|F | ≤ q, there are p edge-disjoint paths between any terminal pair (si, ti) in (V, E \ F). In
other words, the task is to protect a minimum-cost subset of the edges X ⊆ E such that,
no matter which q unprotected edges from E \ X are removed from G, there are still p

edge-disjoint paths between any terminal pair. We refer to the special case with a single
terminal pair (s, t) by (p, q)-s-t-Connectivity Preservation ((p, q)-stCP) and the other extreme
case in which each pair of vertices is a terminal pair as (p, q)-Global-Connectivity Preservation
((p, q)-GCP). Using this notion, Abbas et al. [1] considered (1, q)-GCP and proposed to
start from a minimum spanning tree and remove unnecessary edges, which does not admit
bounded approximation factors. Zhang et al. [44] used mixed-integer linear programming
to solve (1, q)-GCP and (1, q)-SCP. Bienstock and Diaz [12] considered a special case of
(1, q)-SCP, the all-pair connectivity among a set of terminals, and showed a polynomial-time
algorithm for q ≤ 2 and the NP-hardness for q = 8.

The distinction between protected and unprotected edges has a similar flavor as the
(p, q)-Flexible Network Design ((p, q)-FND) problem [2,3, 6–9,13,17]. The input is an edge-
weighted undirected graph together with a set of terminal pairs, where the edges are either
safe or unsafe. The goal is to find a minimum-cost subgraph such that any terminal pair
remains p-edge-connected after the failure of any q unsafe edges. Also here different versions
have been studied, e.g., (p, q)-GFND, the global connectivity version (each pair of vertices
is a terminal pair) or (p, q)-stFND, the s-t version (only one terminal pair). In contrast to
their model, in our setting we strengthen existing edges rather than building a network from
scratch. For p = 1, (1, q)-SCP reduces to (1, q)-FND. Given an instance of (1, q)-SCP, we
construct an instance of (1, q)-FND as follows. We use the same underlying graph but replace
each edge by two parallel edges: one unsafe edge of cost zero and one safe edge with cost
equal to the cost of protecting the edge in the instance of (1, q)-SCP. Since the unsafe edges
have cost zero, we can assume that any feasible solution includes all unsafe edges. Then, a
feasible solution to (1, q)-FND can be transformed into a feasible solution to (1, q)-SCP with
the same cost by protecting the selected safe edges and vice versa. For p > 1, however, we
are not aware of any reduction from (p, q)-SCP to (p, q)-FND.

1.1 Our Contribution
In this paper, we study Connectivity Preservation problems in terms of algorithms, complexity,
and approximability.

F. Hommelsheim, Z. Liu, N. Megow, and G. Zhang 51:3

The (1, q)-Steiner-Connectivity Preservation problem is APX-hard if q is part of the input:
When q is sufficiently large, say, larger than |E|, any feasible solution to (1, q)-SCP includes
at least one edge in any terminal-separating cut (precise definitions are given in Section 2).
Hence, it is equivalent to Steiner Forest, which is APX-hard [11]. Similarly, (p, q)-GCP is
APX-hard for any p ≥ 2, as it contains the minimum p-edge-connected spanning subgraph
problem [39] as a special case when q is sufficiently large. We strengthen this by showing
that (1, q)-GCP is also NP-hard when q is part of the input.

Motivated by the problem hardness, we first study cases when p or q is small. We obtain
polynomial-time exact algorithms for (p, 1)-SCP for any p ≥ 1 and (1, 2)-SCP as well as a
polynomial-time exact algorithm for (2, 2)-GCP. We emphasize that (p, q)-SCP generalizes
(p, q)-GCP and hence any algorithm for (p, q)-SCP also works for (p, q)-GCP.

▶ Theorem 1 (summarized). There are polynomial-time exact algorithms for (p, 1)-Steiner-
Connectivity Preservation for any p ≥ 1 and (1, 2)-Steiner-Connectivity Preservation. Further-
more, there is a polynomial-time exact algorithm for (2, 2)-Global-Connectivity Preservation.

The first result for (p, 1)-SCP is quite easily obtained by observing that a solution is only
feasible if every edge contained in some terminal-separating cut of size at most p is protected.

The polynomial-time algorithm for (1, 2)-SCP is more involved and relies on a decompos-
ition of terminal-separating cuts of size 2. We reduce the problem to the case in which G

is assumed to be 2-edge-connected. Then, it remains to protect one edge in each terminal-
separating cut of size 2. To do so, we decompose the problem into subproblems that consist
either of a 2-edge-connected component or a cycle that can be solved independently.

The polynomial-time algorithm for (2, 2)-GCP is the most involved exact algorithm. We
first show that we can assume without loss of generality that G is 3-edge-connected, which
reduces the problem to selecting a minimum-cost set of edges containing at least 2 edges from
each 3-edge-cut. Equivalently, we select a maximum-weight set of edges such that we pick at
most 1 edge from each 3-edge-cut. Using the well-known tree-representation of minimum
cuts [20], we model this problem as a multi-commodity flow problem on a tree: given a tree
and a set of weighted paths on the tree, find a maximum weighted subset of paths that are
pairwise edge-disjoint, which was first introduced in [28] for the unweighted case. We solve
the weighted problem via dynamic programming, which might be of independent interest.

We complement our exact algorithms for small p and q with hardness and approximation
results for more general cases. For (p, q)-SCP, if both p and q are part of the input, we show
that there is no polynomial-time algorithm verifying the feasibility of any given solution, unless
P=NP, even in the case of s-t-connectivity. This rules out an α-approximation algorithm for
any α. Our technique is based on a reduction from k-Clique on d-regular graphs. Note that
the corresponding solution verifying problems of (p, q)-stCP and (p, q)-stFND are essentially
the same: given sets of protected (resp. safe) and unprotected (resp. unsafe) edges, decide
whether there is an s-t-cut that has no more than p + q − 1 edges and has less than p

protected (resp. safe) edges. Hence, the hardness of verifying a solution also carries over
to (p, q)-s-t-Flexible Network Design and justifies why previous work on this problem only
discusses the cases where either p or q is constant [3, 17].

▶ Theorem 2. When both p and q are part of the input, verifying the feasibility of a solution
to (p, q)-s-t-Connectivity Preservation or (p, q)-s-t-Flexible Network Design is NP-complete,
even in perfect graphs. Hence, they do not admit an α-approximation for any α unless P = NP.

On the algorithmic side, if q is a constant, we can enumerate all “bad” edge sets whose
removal destroy the p-edge-connectivity. Since any feasible solution intersects with or hits
these “bad” sets, it reduces to the hitting set problem and admits a q-approximation. Then

STACS 2025

51:4 Protecting the Connectivity of a Graph Under Non-Uniform Edge Failures

we focus on the case where p is a constant. We first give a q-approximation for (1, q)-SCP
and extend it to (p, q)-SCP based on a primal-dual framework [29,43]. In the framework, we
iteratively protect one more edge in each critical cut (precise definition follows), which is
very similar to the problem (1, q)-SCP. We obtain the following result.

▶ Theorem 3. There is a polynomial-time O((p + q) log p)-approximation algorithm for
(p, q)-Steiner-Connectivity Preservation when p is a constant.

The global connectivity problem (p, q)-GCP has more symmetric structure, which enables
us to remove the requirement of p being constant. Hence, the above result directly carries
over to this case without the assumption on p. In addition, we design a different set-cover
based augmentation process. This algorithm relies on the fact that there is only a polynomial
number of critical cuts to be augmented, which is not true for (p, q)-SCP. Combining the
two algorithms, we obtain the following result.

▶ Theorem 4. There is a polynomial-time O(log p·min{p+q, log n})-approximation algorithm
for (p, q)-Global-Connectivity Preservation.

We obtain further results for special cases by showing reductions to known problems. Since
the Augmenting Small Cuts problem [8] generalizes (1, q)-Global-Connectivity Preservation,
we obtain a 5-approximation building on [37]. Further, we show that (1, q)-s-t-Connectivity
Preservation is equivalent to the Minimum Shared Edge problem; formally defined in Section 4.
This reduction implies, due to earlier work, a fixed-parameter tractable (FPT) algorithm
parameterized by q if the graph is undirected [23] and an XP-algorithm (slice-wise polynomial)
for directed graphs [5]. Further, for directed graphs the equivalence of the two problems implies
a strong inapproximability bound of Ω(2log1−ϵ max{q,n}), unless NP ⊆ DTIME(npolylog(n)) [38].
Since (1, q)-s-t-Connectivity Preservation is a special case of (1, q)-s-t-Flexible Network
Design, namely, (1, q)-Flexible Network Design with only a single terminal pair, this strong
hardness bound also holds for (1, q)-stFND, where the best-known lower bound on the
approximation ratio is Ω(log2−ε q) unless NP ⊆ ZTIME(npolylog(n)) [3].

1.2 Related Work
The (p, q)-Steiner-Connectivity Preservation problem generalizes many well-known problems
from survivable network design (SND), which itself generalizes a collection of connectivity
problems such as the minimum spanning tree problem, the Steiner tree and forest problem,
or the minimum k-edge-connected spanning subgraph problem (k-ECSS).

Many special cases of SND remain APX-hard. This includes many augmentation problems,
where typically the task is to increase the connectivity of a graph by at least 1. If the set of
edges to be added is unrestricted, the problem can be solved even in near-linear time [15,22],
whereas the problem is APX-hard otherwise [25, 34]. Well-studied such problems include the
Connectivity Augmentation problem [40,42] and the Tree Augmentation problem [14,41].

A problem of similar flavor was introduced by Adjiashvili, Stiller and Zenklusen [4], who
initiated the study of highly non-uniform failure models, called bulk-robustness. Therein, a
family of edge sets F is given and the goal is to find a minimum-cost spanning subgraph H

such that H\F is connected for any F ∈ F . They proposed an O(log n+log m)-approximation
algorithm for a generalized matroid setting. They also studied an s-t-connectivity variant
and obtained an O(w2 log n)-approximation algorithm, where w = maxF ∈F |F |. Recently,
Chekuri and Jain [18] considered the connectivity between multiple vertex pairs and achieved
an O(w2 log2 n)-approximation algorithm.

F. Hommelsheim, Z. Liu, N. Megow, and G. Zhang 51:5

The aforementioned Flexible Network Design problem can be viewed as a problem
between survivable network design and bulk-robustness, as it divides the edge set into
safe and unsafe edges and only q unsafe edges can fail simultaneously. Since the work by
Adjiashvili, Hommelsheim and Mühlenthaler [2] for (1, 1)-GFND, there has been a lot of work
on (p, q)-GFND. Most research focused on the case where either p or q is a small constant.
Boyd et al. [13] obtained (q + 1)-approximation for (1, q)-GFND, a 4-approximation for
(p, 1)-GFND and O(q log n)-approximation for (p, q)-GFND. Very recently, Bansal et al. [9]
showed an improved 7-approximation algorithm for (1, q)-GFND. We refer to [6, 8, 9, 17]
for a collection of results, including constant approximation for (p, 2), (p, 3)-GFND, O(q)-
approximation for (2, q)-GFND and O(p)-approximation for (p, 4)-GFND for even p. Parallel
to (p, q)-GFND, Adjiashvili et al. [3] considered the s-t-connectivity variant, to which some
results in [17] translate.

Another closely related problem is the Capacitated k-Connected Subgraph problem
(Cap-k-ECSS) [16]. In this problem, we are given an undirected graph G = (V, E) with edge
costs c : E → R+ and edge capacities u : E → Z+. The goal is to find a minimum-cost
spanning subgraph in which the capacity of any cut is at least k. Boyd et al. [13] pointed out
that (1, q)-GFND (hence also (1, q)-GCP) can be reduced to Cap-(q + 1)-ECSS by setting
the capacity of safe and unsafe edges to q + 1 and 1, respectively. For Cap-k-ECSS, the
best-known approximation algorithms are O(log n)-approximation by Chakrabarty et al. [16]
and O(log k)-approximation by Bansal et al. [9].

2 Preliminaries: Notation, Cut Formulation, Hardness

Graph notation. For an undirected graph G = (V, E) and a vertex set S ⊂ V , we use δG(S)
to denote the set of edges with exactly one endpoint in S. We write δ(S) if the underlying
graph is clear from the context. An edge cut C is a subset of edges such that G \ C has
at least 2 connected components. If |C| = 1, we call {e} = C a bridge. Further, if there
is some terminal pair (si, ti) such that si and ti are in different connected components in
G \ C, we say C is terminal-separating. Let e = (u, v) ∈ E. We use the notation of G/e to
denote the graph obtained from G by contracting e, i.e., by deleting e and identifying u, v.
Let G′ = (V ′, E′) be some subgraph of G. We slightly abuse the notation of contraction
and use G/G′ to represent the graph obtained from G by contracting all edges in E′. Let
e ∈ E(G). We use G − e to denote the graph G \ {e}. Similarly, we define G + e.

An equivalent cut formulation. Given an instance of (p, q)-Steiner-Connectivity Preserva-
tion, we define S = {S ⊂ V | ∃i, |S ∩ {si, ti}| = 1, |δ(S)| ≤ p + q − 1} as the set of critical
(terminal-separating) cuts. Our problem can be equivalently formulated as the following
cut-based integer program, in which we have to cover all critical cuts:

min
∑
e∈E

cexe

s.t.
∑

e∈δ(S)

xe ≥ p ∀S ∈ S (CutIP)

xe ∈ {0, 1} ∀e ∈ E.

▶ Proposition 5. (CutIP) characterizes the feasible solutions of (p, q)-SCP. Moreover, a
solution is feasible if and only if any critical cut contains at least p protected edges.

STACS 2025

51:6 Protecting the Connectivity of a Graph Under Non-Uniform Edge Failures

Proof. We show that an edge set X is a feasible solution if and only if for any vertex set
S ∈ S, |X ∩ δ(S)| ≥ p. Consider a feasible solution X and suppose that there is some S ∈ S
with |δ(S)| ≤ p + q − 1 and |δ(S) ∩ X| < p. Then, after removing no more than q edges from
δ(S) \ X, the remaining graph has a cut with less than p edges. Further, this cut separates
some terminal pair. Thus, X is not a feasible solution.

Suppose for all S ∈ S we have |δ(S) ∩ X| ≥ p. We show that after removing at most q

unprotected edges, the remaining graph is still p-edge-connected between any terminal pair.
For any cut δ(S) with |δ(S)| ≥ p + q, there are at least p remaining edges since we remove at
most q edges. Fix any terminal pair s, t and any edge set D ⊆ (E \ X) with |D| ≤ q. We
show that |δ(S) \ D| ≥ p for any s-t-cut S, which implies p-edge-connectivity between s, t.
If |δ(S)| ≥ p + q, then |δ(S) \ D| ≥ p. If |δ(S)| ≤ p + q − 1, then |δ(S) ∩ X| ≥ p by the
constraint of (CutIP). Thus it also holds that |δ(S) \ D| ≥ p. ◀

Given a partial solution X ⊆ E, we call a cut safe (w.r.t. X) if it is not critical or it
contains at least p edges in X. Otherwise, we call it unsafe.

NP-hardness. In addition to the aforementioned complexity observations, we now show
that (1, q)-GCP is NP-hard, even in the unweighted setting where we protect a minimum
number of edges. Observe that any spanning tree of G is a feasible solution, which implies
Opt ≤ |V |−1. However, we show that it is NP-complete to distinguish whether Opt = |V |−1
or Opt < |V | − 1, by a reduction from the largest bond problem [21]. Therein, we are given
an undirected graph G = (V, E) and an integer k ≥ 1. A bond is an edge set represented by
δ(S) for some S ⊂ V with both G[S] and G[V \ S] being connected. The task is to decide
whether there is a bond of size at least k.

We outline the idea for the hardness proof as follows. Given an instance of the largest
bond problem, we reduce it to an instance of (1, q)-GCP using the same graph with q := k −1.
If there is a bond δ(S) of size at least k = q + 1, then protecting a spanning tree of G[S]
and G[V \ S] is feasible, as the cut δ(S) is not critical, which implies Opt < |V | − 1. If
Opt < |V | − 1, then the protected edges in the optimal solution induce multiple connected
components. We can find a bond of size at least q+1 by contracting the connected components
induced by the protected edges and computing the minimum cut of the resulting graph.

▶ Theorem 6. Unweighted (1, q)-Global-Connectivity Preservation is NP-hard.

Proof. Given an instance of the largest bond problem, we construct an instance of (1, q)-
Global-Connectivity Preservation using the same graph with q = k − 1.

If there is a bond δ(S) of size at least k, then the optimal solution value of the (1, q)-
Global-Connectivity Preservation instance is no more than |V | − 2, as we can simply protect
a spanning tree of G[S] and a spanning tree of G[V \ S]), which exist since δ(S) is a bond.

If there is no bond of size at least k, we claim that the optimal solution of the instance
of (1, q)-Global-Connectivity Preservation must be a spanning tree using |V | − 1 edges.
Suppose the optimal solution is not a spanning tree, and it consists of connected components
S1, S2, . . . , St, t ≥ 2. After contracting S1, S2, . . . , St, the graph has to be k-edge-connected,
by feasibility. Let G′ be this graph. Note that in any graph there must be a minimum cut
Y ⊆ E such that G \ Y consists of exactly 2 connected component. Hence, there is also such
a minimum cut Y in G′ and this cut has size at least k, as G′ is k-edge-connected. But then
Y corresponds to a bond of size at least k in the original graph, a contradiction. ◀

F. Hommelsheim, Z. Liu, N. Megow, and G. Zhang 51:7

3 Exact Algorithms for small q

In this section we design three polynomial-time exact algorithms for different cases depending
on p and q, i.e., we prove Theorems 7, 10, and 17, which together imply Theorem 1.

3.1 (p, 1)-Steiner-Connectivity Preservation
To give some intuition, we first show a simple algorithm for (p, 1)-Steiner-Connectivity
Preservation. By Proposition 5, an instance is feasible if and only if there is no terminal-
separating cut of size less than p. Hence, from now on we assume the instance is feasible.

The set of critical cuts is given by S = {S ⊂ V | ∃i, |S ∩ {si, ti}| = 1, |δ(S)| ≤ p}.
Hence, any feasible solution must contain all edges of any critical cut. Therefore, the only
inclusion-wise minimal solution consists of all edges in any terminal-separating cut of size p

and it remains to find all such edges. To this end, we assign different capacities to protected
edges and unprotected edges such that any safe cut has a strictly larger capacity than that
of any unsafe cut. The algorithm works as follows.

Algorithm 1. Let X be the current partial solution; initially X = ∅. In each iteration, we
set the capacity of the edges to p+1

p for all e ∈ X and 1 otherwise. For every terminal pair
s, t, we solve the Minimum s-t-Cut Problem using standard polynomial-time algorithms. If
we find a terminal-separating cut of capacity less than p + 1, then this defines an unsafe
critical cut δ(S) and we protect all edges in it, i.e., we add δ(S) to X and repeat. If each
terminal-separating cut has capacity at least p + 1, output X.

▶ Theorem 7. Algorithm 1 is a polynomial-time exact algorithm for (p, 1)-Steiner-
Connectivity Preservation.

Proof. Algorithm 1 runs obviously in polynomial time. Note that we can decide the feasibility
of the given instance by enumerating terminal pairs and checking whether there is a terminal-
separating cut of size less than p. We now assume there is none and the instance is feasible.

Let X ⊆ E be a partial solution. We claim that the capacity function in Algorithm 1
distinguishes safe and unsafe cuts with respect to X. Specifically, a cut is unsafe if and only
if its capacity is strictly less than p + 1. By the feasibility of the instance, any terminal-
separating cut has at least p edges. Let C be any terminal-separating cut. If |C| > p or
C ⊆ X, then the capacity of C is at least p + 1. If |C| = p and |C ∩ X| < p, then its capacity
is smaller than p + 1. Thus we can find an unsafe terminal-separating cut by enumerating
terminal pairs s, t and computing a minimum s-t cut with respect to the capacity function.
By the preceding discussion, Algorithm 1 finds an optimum solution in polynomial time. ◀

3.2 (1, 2)-Steiner-Connectivity Preservation
In this subsection we present a polynomial-time algorithm for (1, 2)-Steiner-Connectivity
Preservation. The set of critical cuts is S = {S ⊂ V | ∃i, |S ∩{si, ti}| = 1, |δ(S)| ≤ 2}. Hence,
we distinguish between bridges and 2-edge-cuts. We first show that we can reduce to the
case that the input graph G is 2-edge-connected.

Given any bridge e of G, if e separates some terminal pair, any feasible solution has to
include e. In this case, we pay c(e) and consider the new instance defined by G/e. If there is
no such terminal pair, then any inclusion-wise minimal feasible solution should not include e,
which implies that we can delete e and consider the two connected components of G − e

individually. As a result, we can assume that the input graph G is 2-edge-connected. Note
that if the graph is 3-edge-connected, then there is no critical cut and we are done.

STACS 2025

51:8 Protecting the Connectivity of a Graph Under Non-Uniform Edge Failures

(a) The original instance: the bold lines are the
edges in the cycle and the dotted bubbles are
the 2-edge-connected components. Each pair of
rectangles is a terminal pair.

0
0

0

0

(b) Reduction to independent instances:
red edges are pseudo-edges added to the 2-
edge-connected components with zero cost.
Red rectangles are new terminals.

Figure 1 Illustration of the decomposition (Lemma 8, Lemma 9).

Given a terminal-separating 2-edge-cut {e1, e2} of G, at least one of e1 and e2 has to be
contained in any feasible solution. However, deciding which edge to protect is non-trivial.
We show how to further decompose our instance into smaller and independent instances
according to the following structural lemma. See Figure 1a for an illustration.

▶ Lemma 8. Given an undirected graph G which is 2-edge-connected but not 3-edge-connected,
and a 2-edge-cut {e1, e2} of G, there is a polynomial-time algorithm to decompose G into
disjoint 2-edge-connected subgraphs G1, . . . , Gk such that after contracting G1, . . . , Gk the
resulting graph G/

⋃k
i=1 Gi forms a cycle and e1, e2 belong to this cycle.

Proof. Consider the graph G′ := G \ {e2}, which is connected but not 2-edge-connected.
Let G′′ arise from G′ by contracting each 2-edge-connected component. Note that G′′ is
isomorphic to a tree. Since G = G′ ∪ {e2} is 2-edge-connected, G′′ must be a path. Further,
e2 connects the two end-vertices of the path and e1 is a path edge (e1 is a bridge of G′′). Let
the nodes of the path G′′ be v1, . . . , vk and for 1 ≤ i ≤ k let Gi be the 2-edge-connected
component represented by vi, respectively. We conclude that G/

⋃k
i=1 Gi forms a cycle and

e1, e2 belong to this cycle. ◀

Given a decomposition as in Lemma 8, we claim that the problem reduces to solving certain
subproblems defined by G1, . . . , Gk (plus some additional pseudo-edge for each component)
and the subproblem restricted to the cycle C. To do so, we view our problem as finding
a minimum-cost edge set that intersects all 2-edge-cuts. Observe that any inclusion-wise
minimal 2-edge-cut is either two edges on the cycle C, or two edges in Gi for some i. Hence,
we can solve our problem by solving (i) the subproblem defined by 2-edge-cuts on the cycle C

and (ii) the subproblems defined by 2-edge-cuts in each component Gi separately.
The subproblem (i) is a Steiner Forest problem on a cycle. This follows from the

observation that any feasible solution must contain a path consisting of only protected edges
between each terminal pair. We can solve the min-cost Steiner Forest problem on a cycle by
enumerating which cycle-edge is not in the optimum solution and breaking the cycle into a
path. On a path, the solution is the union of the unique paths between the terminal pairs.
Then, we recursively solve the subproblems (ii) in each Gi. However, we cannot simply
recurse on Gi since a 2-edge-cut of Gi may not be a 2-edge-cut of G. Instead, we recourse
on a new graph obtained by adding a zero-cost edge ei to Gi. This edge ei connects the two
vertices that are incident to the edges of C, which represents the connection in Gi between
these vertices via the cycle C. We formalize this idea in the following lemma (See Figure 1b).

F. Hommelsheim, Z. Liu, N. Megow, and G. Zhang 51:9

▶ Lemma 9. Given a decomposition as in Lemma 8, an optimum solution to (1, 2)-SCP can
be obtained by combining optimum solutions of the following subproblems:

(i) protect a minimum-cost edge set that intersects with any terminal-separating 2-edge-cut
on the cycle, and

(ii) for each Gi, let ui, vi ∈ V (Gi) be the two vertices incident to the two edges in the cycle.
Solve the problem on G′

i = Gi ∪ {(ui, vi)} with c(ui,vi) = 0. Keep the terminal pairs
with both terminals in Gi. For terminal pairs (si, ti) with si ∈ Gi, ti /∈ Gi, replace it
with (si, ui), (si, vi).

Proof. We first show that given any feasible solution X of G, the corresponding edges of X on
each subproblem is a feasible solution for the subproblem. For the cycle subproblem (ii) this
is trivial. For any subproblem G′

i = Gi ∪ {(ui, vi)}, we show X ∩ Gi ∪ {(ui, vi)} is a feasible
solution. Observe that any 2-edge-cut C in G′ cannot contain the edge {(ui, vi)} since Gi is
2-edge-connected. Thus, C must also be a 2-edge-cut in G. If C separates some terminal
pair in G′

i, so does it in G, which implies C ∩ X ≠ ∅. Therefore, each terminal-separating
2-edge-cut of G′

i is safe.
Given feasible solutions of the subproblems, we show how to obtain a feasible solution

of G without increasing the cost. Let X be the edges protected in the subproblems except
the new edges (ui, vi). Thus, the cost of X is at most the sum of the cost of the solutions
to the individual subproblems. It remains to argue that X is feasible for G. Let C be any
terminal-separating 2-edge-cut of G. If C is on the cycle, by the feasibility of the subproblem
on the cycle, C ∩ X ̸= ∅. If C is in Gi for some i, C must also be a terminal-separating
2-edge-cut of G′

i. Thus C ∩ X ̸= ∅. We conclude that X is feasible for G. ◀

Algorithm 2. We first protect terminal-separating bridges, contract them, and consider
the 2-edge-connected components separated by non-terminal-separating bridges individually.
This reduces to the case that G is 2-edge-connected. Then, as long as we find a terminal-
separating 2-edge-cut (which is the only type of critical cut), we decompose the problem
into a subproblem on a cycle and a collection of subproblems in smaller 2-edge-connected
components. Then we recursively solve the individual subproblems. The decomposition stops
either if G is 3-edge-connected (and hence we are done as there is no critical cut) or each
component on the cycle consists of a single vertex, i.e., if G is a cycle. The cycle case is
solved by enumerating which edge of the cycle is not contained in an optimum solution and
then solving a Steiner Forest problem on a path where the optimal solution is trivial. Among
all such solutions, we output the one with minimum cost.

▶ Theorem 10. Algorithm 2 is a polynomial-time exact algorithm for (1, 2)-Steiner-
Connectivity Preservation.

We remark that Bienstock and Diaz [12] studied a special case of (1, q)-SCP. They showed
that it is NP-hard when q = 8 and they conjectured the NP-hardness for q = 3.

Interestingly, (1, 2)-Global-Connectivity Preservation admits an easier algorithm. We
view the problem as finding a minimum-cost edge set hitting all 2-edge-cuts, which reduces
to a special case of Minimum Weighted Vertex Cover. Therein, each edge e of G corresponds
to a vertex ve in the Vertex Cover instance G′ and there is an edge between two vertices
ve and ve′ if and only if {e, e′} forms a 2-edge-cut in G. The Vertex Cover instance G′ has
a special structure with each connected component being a complete graph. To see this
observe that, if both {e1, e2} and {e1, e3} are 2-edge-cuts, then {e2, e3} is also a 2-edge-
cut ([35, Lemma 2.37]). The optimal vertex cover solution in a complete graph is trivial:
select all vertices except the largest-weighted one. We conclude with the following result.

STACS 2025

51:10 Protecting the Connectivity of a Graph Under Non-Uniform Edge Failures

G1 G2

u1

v1

u2

v2

e1

e2

(a) The original instance.

G1 G2

u1

v1

u2

v2

0 0

(b) Reduction to two sub-instances.

Figure 2 Illustration of Lemma 12: Equivalence to solving two new instances on G1 ∪ {(u1, v1)}
where (u1, v1) is an edge with zero cost and G2 ∪ {(u2, v2)} where {(u2, v2)} has zero cost.

▶ Lemma 11. The greedy algorithm that selects from each 2-edge-cut the cheaper edge solves
(1, 2)-Global-Connectivity Preservation.

3.3 (p, q)-Global-Connectivity Preservation when p, q ≤ 2
We now present a polynomial-time algorithm for (2, 2)-GCP. Note that for all other p, q ≤ 2,
our previous results imply a polynomial-time algorithm for (p, q)-GCP. We outline our
algorithm as follows. By Proposition 5, we can assume the input graph G to be 2-edge-
connected, as otherwise, the instance is infeasible. Further, a feasible solution contains at
least two edges in each 2-edge-cut and in each 3-edge-cut. We first show that if there is
some 2-edge-cut, it is equivalent to solving two smaller independent instances (Lemma 12).
Hence, we can assume that the input graph G is 3-edge-connected. Then we represent all the
3-edge-cuts using a standard tree representation [20,30] and it remains to solve a weighted
multi-commodity flow problem on the tree (introduced formally later, Lemma 14). Finally,
we solve the weighted multi-commodity flow problem via dynamic programming (Lemma 16).

Suppose G is not 3-edge-connected and there is some 2-edge-cut {e1, e2}, i.e., G \ {e1, e2}
consists of 2 connected components G1, G2. Let e1 = (u1, u2) with u1 ∈ G1 and u2 ∈ G2,
e2 = (v1, v2) with v1 ∈ G1 and v2 ∈ G2 (see Figure 2). We create two new instances: I1
on G1 ∪ {(u1, v1)} where (u1, v1) is an edge with zero cost and I2 on G2 ∪ {(u2, v2)}, where
{(u2, v2)} has zero cost. We show that it suffices to solve I1, I2 independently and combine
their solutions to get a solution to the original instance.

▶ Lemma 12. Opt(I) = c(e1) + c(e2) + Opt(I1) + Opt(I2).

Proof. Given a feasible solution X of I, we show that X1 = X ∩ E(G1) + (u1, v1) and
X2 = X ∩ E(G2) + (u2, v2) are feasible solutions for I1 and I2, respectively, implying
c(X) = c(e1) + c(e2) + c(X1) + c(X2) and Opt(I) ≥ c(e1) + c(e2) + Opt(I1) + Opt(I2). We
show feasibility for X1; the feasibility for X2 is analogous. It suffices to show that for any
critical cut in G1 + (u1, v1), at least 2 edges are protected. Consider any critical cut C of
G1 + (u1, v1). If C does not contain the new edge (u1, v1), then it is also a critical cut of G

and therefore this cut is safe. Hence, we assume that C contains the new edge (u1, v1) and
let C = {f1, f2, (u1, v1)}. Note that f2 might not exist if |C| = 2. We show that {f1, f2, e1}
is a critical cut in G. Consider G′

1 = (G1 \ {f1, f2}) + (u1, v1) and observe that (u1, v1) is a
bridge in G′

1, as C is a cut in G1 + (u1, v1). Hence, u1 and v1 are only connected in G′
1 via

the edge (u1, v1). This means that also in G \ {f1, f2}, any path connecting u1 and v1 must
use e1. Hence, e1 is a bridge in G \ {f1, f2} and therefore {f1, f2, e1} is a critical cut in G.
Thus C \ (u1, v1) + e1 contains at least 2 protected edges, which implies C \ (u1, v1) contains
at least 1 protected edge. Since (u1, v1) is protected, C has at least 2 protected edges and is
safe.

F. Hommelsheim, Z. Liu, N. Megow, and G. Zhang 51:11

On the other hand, given solutions X1 and X2 of I1 and I2, respectively, we show that
X = X1 ∪ X2 + e1 + e2 is feasible for I, implying c(X) = c(e1) + c(e2) + c(X1) + c(X2) and
Opt(I) ≤ c(e1) + c(e2) + Opt(I1) + Opt(I2). Let C be any critical cut of G. Without
loss of generality, we assume that C is inclusion-wise minimal, i.e., it does not contain any
smaller critical cut. We distinguish the following three cases. First, assume that C ⊆ G1.
Then, C must also be an edge cut of G1 ∪ (u1, u2) and therefore C is safe. The case C ⊆ G2
is analogous. For the second case, we assume that the first case does not apply and further
assume that C ∩ {e1, e2} = ∅. Hence, either |C ∩ G1| = 1 or |C ∩ G2| = 1. Without loss
of generality assume |C ∩ G1| = 1. Observe that (C ∩ G2) + (u2, v2) is a critical edge cut
in G2 + (u2, v2) and (C ∩ G1) + (u1, v1) is a critical edge cut in G1 + (u1, v1). Further,
by feasibility of X1 and X2, the only edge in C ∩ G1 and at least one of the two edges
in C ∩ G2 must be protected, which implies C contains at least 2 protected edges and is
safe. In the third and final case, we assume that none of the previous cases apply and
further assume that C contains either e1 or e2. Any cut containing both e1 and e2 is safe, as
both are protected in X. Without loss of generality assume e1 ∈ C. We claim that either
C − e1 ⊆ E(G1) or C − e1 ⊆ E(G2). Otherwise, C contains one edge e3 in G1 and one edge
e4 in G2. Observe that {e1, e3} is a 2-edge-cut of G, which contradicts the fact that C is
inclusion-wise minimal. If C − e1 ⊆ E(G1), then similar to the first part of this proof one
can show that C − e1 + (u1, v1) is a cut in G1 + (u1, v1). Hence, |X1 ∩ C| ≥ 1 and therefore,
|X ∩ C| ≥ 2, as e1 ∈ X. The case C − e1 ⊆ E(G2) is analogous and hence this concludes the
proof. ◀

By repeating the above process, we end up with a 3-edge-connected graph. The following
tree representation gives us a clear structure about all the 3-edge-cuts and it can be computed
in near-linear time [30].

▶ Definition 13 (Tree representation of min cuts [20]). Let G = (V, E) be an undirected graph
and suppose the capacity of its minimum cut is an odd number k. There is a polynomial-time
algorithm that constructs a rooted tree T = (U, F) together with a (not necessarily surjective)
mapping ϕ : V → U . Further, there is a one-to-one correspondence between any k-edge-cut
of G and f ∈ F as follows. For any f ∈ F , let Tf be the subtree of T beneath f and let
V (Tf) = {v ∈ V | ϕ(v) ∈ Tf }. Then for any tree edge f ∈ F , δG(V (Tf)) defines a k-edge-cut
of G. For any k-edge-cut C of G, there is some tree edge f ∈ F such that C = δG(V (Tf)).

Given this tree representation, we show now that our problem (2, 2)-Global-Connectivity
Preservation reduces to the weighted multi-commodity flow problem on a tree. This problem
is defined as follows: given a tree T , a set of paths P on the tree and a weight function
w : P → R, find a subset of pairwise edge-disjoint paths with maximum total weight.

▶ Lemma 14. When the input graph G is 3-edge-connected, (2, 2)-Global-Connectivity
Preservation reduces to the weighted multi-commodity flow problem on a tree.

Proof. A solution X ⊆ E is feasible if and only if it contains at least 2 edges in each 3-edge-
cut. Equivalently, for each 3-edge-cut at most one edge is unprotected. We consider this
complement problem in which we want to find a set of maximum-weight edges X̄ such that
each 3-edge-cut contains at most one edge of X̄. We use the standard tree representation [20]
of all the 3-edge-cuts of G, in which each 3-edge-cut of the original graph is represented by
an edge in the tree. Given a tree representation T = (U, F) and e = (u, v) ∈ E, define Pe as
the path on T between ϕ(u) and ϕ(v) and let the weight of Pe be the cost of e. Observe that
every 3-edge-cut containing e corresponds to a tree edge on Pe and vice versa. Therefore, a
solution X ⊆ E is feasible if and only if the set of paths {Pe | e ∈ X̄ = E \ X} are pairwise
edge-disjoint. Hence finding the optimal X reduces to finding a set of edge-disjoint paths on
T , maximizing the total weight, which is the weighted multi-commodity flow problem. ◀

STACS 2025

51:12 Protecting the Connectivity of a Graph Under Non-Uniform Edge Failures

▶ Remark 15. We can prove that Lemma 14 holds more generally for any even p: If G is
(p + 1)-edge-connected, (p, 2)-GCP reduces to the weighted multi-commodity flow problem on
a tree for any even p. However, to solve (p, 2)-GCP using this reduction, we need to reduce
the problem to the case where G is (p + 1)-edge-connected, which remains unclear for p ≥ 4.

Garg et al. [28] considered an unweighted version of multi-commodity flow problem on a
tree and obtained an exact polynomial-time greedy algorithm. However, their arguments do
not extend to the weighted case. We design a dynamic program for the weighted version.

▶ Lemma 16. The weighted multi-commodity flow problem on a tree can be solved in
polynomial time.

Proof. We root the tree at an arbitrary vertex r. Without loss of generality, we assume
there is no path that consists of only one vertex since the selected paths have to be only
edge-disjoint. For any vertex v, let Tv be the subtree rooted at vertex v. For any tree edge
e = (u, v) where u is closer to the root, we use Te to represent the subtree Tu \ Tv for short.
Define the subproblem I(Tv) in the subtree Tv as follows: From the set of paths completely
contained in Tv, select a maximum-weight subset of paths that are pairwise edge-disjoint.
Let f(Tv) be the optimal value of I(Tv). We define I(Te) and f(Te) for each e ∈ E(T)
analogously. We only show how to compute f(Tv); the computation of f(Te) is similar.

Fix some vertex v and consider the subproblem I(Tv). If v is a leaf, then f(Tv) = 0.
Otherwise, let z1, . . . , zk be the children of v. Let Pv be the set of paths intersecting v. We
say a path P occupies the subtree Tzi

if it intersects Tzi
. Our first observation is that each

subtree Tzi can be occupied by at most one selected path, as otherwise the edge (v, zi) is
contained in multiple selected paths, which is infeasible. Since a path in Pv can occupy either
two subtrees Tzi , Tzj for some 1 ≤ i < j ≤ k or only one subtree Tzi for some i, we reduce
the problem I(Tv) to an instance M(Tv) of Maximum Weighted Matching. For M(Tv), we
create an auxiliary graph G(Tv) as follows. For each i with 1 ≤ i ≤ k, we create a vertex ui

corresponding to the subtree Tzi
and a dummy vertex u′

i. For each path in Pv, if it occupies
Tzi

and Tzj
for some i, j, we create an edge between ui and uj . If it only occupies one subtree

Tzi , we create an edge between ui and u′
i. We also create an extra edge between ui and u′

i

which represents the case where no selected path occupies Tzi
. It is not hard to see that there

is a one-to-one correspondence between a feasible choice over Pv in I(Tv) and a matching on
the auxiliary graph G(Tv). It remains to properly set the weights ω of the edges of G(Tv) such
that a maximum-weight matching in G(Tv) corresponds to an optimum solution for I(Tv). To
do so, we observe that for a given fixed feasible choice over Pv, it remains to solve a collection
of subproblems represented by I(T ′

v) or I(T ′
e) for some v′, e′ ∈ Tv and combine their optimal

solutions. Formally, let P = (v1, . . . , vℓ) be a path in Pv where v = vm, 1 ≤ m ≤ ℓ. Assume
P occupies two subtrees of v, say, (v1, . . . , vm−1) ⊆ Tzi

and (vm+1, . . . , vℓ) ⊆ Tzj
. The case

P only occupies one subtree of v follows analogously. Suppose we have selected P . Then it
is still feasible to select paths completely contained in Tzi

and Tzj
, respectively, as long as

they do not intersect P . This implies that the subproblems on Tzi \ E(P) and Tzj \ E(P)
can be decomposed into Tv1 , T(v1,v2), . . . , T(vm−2,vm−1) and Tvℓ

, T(vℓ,vℓ−1), . . . , T(vm+2,vm+1),
respectively. See Figure 3 for an example. Hence, the gain of selecting P is the sum
of the optimal values of these subproblems plus the weight of P itself. That is, we set
ω((ui, uj)) := w(P) + f(Tv1) +

∑m−2
k=1 f(T(vk,vk+1)) + f(Tvℓ

) +
∑ℓ

k=m+1 f(T(vk,vk+1)). For the
extra edge between ui and u′

i, which represents no selected path occupies Tzi , we set its
weight to f(Tzi

). It now easily follows that f(Tv) = Opt(M(Tv)), which can be solved in
polynomial time using algorithms for Maximum Weighted Matching [26]. ◀

Combining Lemmas 12, 14, and 16, we conclude with the theorem.

F. Hommelsheim, Z. Liu, N. Megow, and G. Zhang 51:13

r

v

z1 zi zj zk

v2

v1

v6

v7

Tv1

Tv2 \ Tv1

Tzi
\ Tv2

Tv7

Tv6 \ Tv7

Tzj \ Tv6

Figure 3 Illustration of subproblems: consider the red path (v1, v2, v3 = zi, v4 = v, v5 = zj , v6, v7)
through v. If we select the red path, the subtrees Tzi and Tzj break into Tv1 , T(v1,v2) = Tv2 \
Tv1 , T(zi,v2) = Tzi \ Tv2 and T(zj ,v6) = Tzj \ Tv6 , T(v6,v7) = Tv6 \ Tv7 , Tv7 , respectively. They define
independent subproblems and their optimal solutions have been computed before we compute f(Tv).

▶ Theorem 17. There is a polynomial-time exact algorithm for (2, 2)-Global-Connectivity
Preservation.

4 Approximation Algorithms for large p or q

In this section we provide approximation algorithms and hardness results for large p and q.

4.1 Approximation for the cases with p = 1

We present a primal-dual algorithm for (1, q)-Steiner-Connectivity Preservation. Consider
the corresponding linear programming relaxation of (CutIP) and its dual:

min
∑
e∈E

cexe

s.t.
∑

e∈δ(S)

xe ≥ 1 ∀S ∈ S

xe ≥ 0 ∀e ∈ E

max
∑
S∈S

yS

s.t.
∑

S:S∈S,e∈δ(S)

yS ≤ ce ∀e ∈ E

yS ≥ 0 ∀S ∈ S

Algorithm 3. We start from a dual solution {yS = 0 | S ∈ S} and maintain a partial solution
X ⊆ E which is the current protected edge set. At the beginning, X := ∅. We increase
the dual variables iteratively and add edges to X whose corresponding dual constraints∑

S:S∈S,e∈δ(S) yS ≤ ce become tight. In each iteration, we pick some S ∈ S with δ(S)∩X = ∅
and increase yS . Such a vertex set S can be found by enumerating terminal pairs (s, t) and
checking whether there is an s-t-cut of value less than q + 1 with respect to the following
capacity function: set the capacity of e to q + 1 if e ∈ X and to 1, otherwise. We increase
yS until for some edge e ∈ δ(S), the dual constraint

∑
S:S∈S,e∈δ(S) yS ≤ ce is tight. Then

we add e to X and move to the next iteration until X is a feasible solution, which is the
case if any terminal-separating cut has a capacity of at least q + 1 w.r.t. the above capacity
function.

STACS 2025

51:14 Protecting the Connectivity of a Graph Under Non-Uniform Edge Failures

To bound the cost of X, we have∑
e∈X

ce =
∑
e∈X

∑
S:S∈S,e∈δ(S)

yS =
∑
S∈S

yS |δ(S) ∩ X| ≤
∑
S∈S

yS |δ(S)| ≤ q
∑
S∈S

yS ≤ q · Opt.

▶ Theorem 18. Algorithm 3 is a polynomial-time q-approximation algorithm for (1, q)-
Steiner-Connectivity Preservation.

The global connectivity variant (1, q)-GCP has more symmetry since we do not need to
distinguish whether an edge cut is terminal-separating. By exploiting the special structure
of the family S = {S ⊂ V | |δ(S)| ≤ p + q − 1}, Bansal et al. [8] obtained a primal-dual
16-approximation algorithm for the Augmenting Small Cuts problem, which generalizes
(1, q)-GCP. Recently, the factor has been reduced to 10 [37] and 5 [6] via refined analysis.

▶ Theorem 19 (follows from [6,8]). There is a polynomial-time 5-approximation algorithm
for (1, q)-Global-Connectivity Preservation.

Finally, we consider (1, q)-s-t-Connectivity Preservation. We show that this problem is
equivalent to the undirected Minimum Shared Edge problem: We are given a graph with
edge weights and two specified vertices s, t. The task is to find k s-t paths with the minimum
total weight of shared edges. Here, an edge is shared if it is contained in at least 2 paths.

▶ Proposition 20. An edge set X is a feasible solution to (1, q)-stCP if and only if there are
(q + 1) s-t-paths such that any edge shared by at least two paths belongs to X.

Proof. To show necessity, we construct a graph G = (V, E) with a capacity function u on
the edges, where the capacity u(e) of any edge e is q + 1 if e ∈ X, and 1 otherwise. Since X

is a feasible solution, by Proposition 5 the capacity of any s-t cut is at least q + 1. Thus,
there exist q + 1 s-t-paths such that edges shared by at least two paths belong to X.

As for the sufficiency, suppose we have q + 1 s-t-paths that only share edges in X. We
claim that the shared edges form a feasible solution of (1, q)-stCP. For each cut of size at
most q, at least one edge must be shared by two paths and this edge is in X. Thus, every cut
δ(S) with |δ(S)| ≤ q satisfies δ(S) ∩ X ̸= ∅. By Proposition 5, X is a feasible solution. ◀

▶ Lemma 21. An edge set X is an inclusion-wise minimal solution to (1, q)-s-t-Connectivity
Preservation if and only if there are (q + 1) s-t-paths such that the shared edges are exactly X.

We conclude that (1, q)-stCP is equivalent to the Minimum Shared Edge Problem. Hence,
Lemma 21 and the results of [5, 23,38] imply the following.

▶ Theorem 22. When parameterized by q, (1, q)-stCP admits an FPT algorithm for undirected
graphs and an XP algorithm for directed graphs. Furthermore, (1, q)-stCP on directed graphs
admits no O(2log1−ϵ max{q,n})-approximation, unless NP ⊆ DTIME(npolylog(n)).

4.2 Extension for larger p

Before presenting algorithms for more general cases, we argue that (p, q)-SCP is quite hopeless
when both p and q are part of the input. Indeed, if this is the case, there is no polynomial-time
algorithm that verifies feasibility of any given solution unless P=NP.

By Proposition 5, a given protected edge set X is infeasible if and only if there is a
terminal-separating cut δ(S) such that |δ(S)| ≤ p + q − 1 and |δ(S) ∩ X| ≤ p − 1. We
define and study the complexity of the following (A, B)-bicriteria s-t-cut problem: Given
an undirected graph with two specified vertices s, t and a subset of edges protected, decide

F. Hommelsheim, Z. Liu, N. Megow, and G. Zhang 51:15

v1

v2

v3

v5

v6

v4e1

e2

e3

e4
e6

e8

e9

e5

e7

(a) A 3-Clique instance, d = 3.

e1 e2 e3 e4 e5 e6 e7 e8 e9 Vedge

v1 v2 v3 v4 v5 v6 Vvertex

t

d + 1

s

C: clique of
size (d + 1)n

(b) The constructed (A, B)-bicriteria s-t-cut instance.

Figure 4 The reduction: the blue edges are protected edges and the black edges are unprotected.

whether there is an s-t-cut such that the number of protected edges in the cut is at most A

(= p − 1) and the total number of edges in the cut is at most B (= p + q − 1) and. Recall
that in the (p, q)-s-t-Flexible Network Design problem, verifying the feasibility of a solution
can be formulated as follows. Given an undirected graph with safe and unsafe edges, decide
whether there are p edge-disjoint paths between s and t after at most q failures of unsafe
edges. Hence verifying the feasibility is equivalent to the (A, B)-bicriteria s-t-cut problem.
We show that the (A, B)-bicriteria s-t-cut problem is NP-complete, which implies that there
is no polynomial-time approximation algorithm for (p, q)-s-t-Connectivity Preservation or
(p, q)-s-t-Flexible Network Design, unless P = NP.

▶ Theorem 2. When both p and q are part of the input, verifying the feasibility of a solution
to (p, q)-s-t-Connectivity Preservation or (p, q)-s-t-Flexible Network Design is NP-complete,
even in perfect graphs. Hence, they do not admit an α-approximation for any α unless P = NP.

Proof. We use a reduction similar to [24] from k-Clique on d-regular graphs, which is NP-
complete [27]. See Figure 4 for an illustration. In k-Clique, we are given an undirected graph
and we need to decide whether there is a clique of size k. Given an instance of k-clique with
graph G = (V, E), where G is d-regular, we construct an instance of the (A, B)-bicriteria
s-t-cut problem (G′, s, t, A, B) as follows. Let n := |V |, m := |E|. We create n vertices Vvertex
corresponding to V and m vertices Vedge corresponding to E. In the following, when we say
we connect two vertices, then they are connected by an unprotected edge by default. For each
e = (u, v) ∈ E, we connect its corresponding vertex to the two vertices corresponding to u

and v. Then we create a vertex t and connect it to each vertex in Vvertex with protected edges.
Create an auxiliary clique C of size n(d + 1) and fix an arbitrary vertex in the clique as s.
Fix d + 1 vertices in the clique other than s and fully connect them to each vertex in Vvertex,
which results in a complete bipartite subgraph Kn,d+1. Let A := k, B := (d + 1)n − k(k − 1).
We claim that G has a clique of size k if and only if the protected edges form an infeasible
solution to the instance of the (A, B)-bicriteria s-t-cut problem.

For the first direction, suppose G has a clique CL = (VCL, ECL) of size k. Let S include all
the vertices in Vvertex and Vedge corresponding to VCL, ECL, and the auxiliary clique C. We
show δ(S) defines an (A, B)-bicriteria s-t-cut. In δ(S), the only protected edges are those edges
between t and the vertices corresponding to VCL. Hence there are exactly k = A protected
edges. As for |δ(S)|, consider the edges between Vvertex and t ∪ C. Each vertex in Vvertex \ S

contributes d+1 and each vertex in Vvertex ∩S contributes 1. Now consider the edges between
Vedge and Vvertex. There are d · k edges incident to Vvertex ∩ S, among which k(k − 1) do not
contribute to |δ(S)|. Hence, |δ(S)| = (d+1)(n−k)+k+dk−k(k−1) = (d+1)n−k(k−1) = B

and δ(S) is an (A, B)-bicriteria s-t-cut.

STACS 2025

51:16 Protecting the Connectivity of a Graph Under Non-Uniform Edge Failures

For the other direction, suppose there is an (A, B)-bicriteria s-t-cut δ(S) with |δ(S)| ≤ B

such that δ(S) contains at most A protected edges. We show that S ∩ Vvertex corresponds to
the vertices of a clique of size k in G and S ∩ Vedge contains the edges of this clique. Observe
that |S ∩ Vvertex| ≤ k since there are at most A = k protected edges in δ(S). We will show
that |S ∩ Vvertex| = k and |S ∩ Vedge| ≥ k(k − 1)/2. Furthermore, these k(k − 1)/2 vertices in
S ∩ Vedge have both their neighbors in S ∩ Vvertex. Hence S ∩ Vvertex defines a clique of size
k in G.

Observe that S must include the whole auxiliary clique C, otherwise |δ(S)| would exceed
B. Let S′ = S \ Vedge and note that C ⊆ S′. We prove that |δ(S′)| = (d + 1)n > B by
considering the following process. Starting from Y := C, we add the vertices in S′ \ C one by
one to Y . During the process, |δ(Y)| does not change since each vertex in S′ \ C is connected
to exactly d + 1 vertices in C, d vertices in Vedge and t. Hence |δ(S′)| = |δ(C)| = (d + 1)n.
Now starting from Y = S′, we add the vertices in S \ S′ one by one to Y . During the
process, the only case that adding a vertex decreases |δ(Y)| (by 2) is when both its neighbors
are in S ∩ Vvertex. Therefore, we have at least k(k − 1)/2 vertices in S \ S′, each having
both their neighbors in S ∩ Vvertex, since |δ(S′)| − |δ(S)| ≥ (d + 1)n − B = k(k − 1). Hence,
|S ∩ Vvertex| ≥ k, and with the above inequality of |S ∩ Vvertex| ≤ k we have |S ∩ Vvertex| = k.
Further, for any two vertices in S ∩ Vvertex, there is some vertex in S ∩ Vedge connected to
both of them, implying that S ∩ Vvertex corresponds to the vertices of a clique in G. Hence,
G contains a clique of size k. ◀

On the positive side, if q is a constant, we can enumerate those edge sets F with |F | ≤ q

such that some terminal pair in (V, E \ F) is not p-edge-connected. For each of those sets,
we need to protect at least one edge in the set, which reduces to the hitting set problem and
admits a q-approximation where q is the largest size of the sets to be hit [10,31].

In the following, we extend algorithm for (1, q)-SCP to (p, q)-SCP with p being a constant.
The idea is to start from an empty solution and augment the current solution by iteratively
increasing the number of protected edges in each critical cut. Our algorithm consists of
p phases. In phase i, we are given a partial solution Xi−1 satisfying that each critical
cut contains at least i − 1 edges in Xi−1. We then (approximately) solve the following
augmentation problem Pi: Add to Xi−1 a minimum-cost set of edges Yi ⊆ E \ Xi−1 such
that Xi := Xi−1 ∪ Yi includes at least i edges of each critical cut. That is, find a set Yi that
includes at least one edge from each critical cut with exactly i − 1 protected edges in Xi−1.
The augmentation problem is solved similarly to the primal-dual framework for (1, q)-SCP.

Formally, let S0 = S, X0 = ∅. In phase i with 1 ≤ i ≤ p, we define Si = {S ∈ S |
|δ(S) ∩ Xi−1| = i − 1}, i.e., the critical cuts with exactly i − 1 protected edges. Next, we solve
the following problem Pi: find a minimum-cost edge set Yi ⊆ E \Xi−1 such that Yi ∩δ(S) ̸= ∅
for any S ∈ Si. Then we set Xi := Xi−1 ∪Yi and go on to the next phase. To solve Pi, we use
a primal-dual algorithm based on the following LP to compute a (p + q − 1)-approximation
solution to Pi which is essentially the same as (1, q)-Steiner-Connectivity Preservation. The
approximation ratio is bounded by p + q − 1 as the size of a critical cut is at most p + q − 1.

min
∑

e∈E\Xi−1

cexe max
∑

S∈Si

yS

s.t.
∑

e∈δ(S)\Xi−1

xe ≥ 1 ∀S ∈ Si s.t.
∑

S:S∈Si,e∈δ(S)

yS ≤ ce ∀e ∈ E \ Xi−1

xe ≥ 0 ∀e ∈ E \ Xi−1 yS ≥ 0 ∀S ∈ Si

F. Hommelsheim, Z. Liu, N. Megow, and G. Zhang 51:17

The only difference is the process of finding a violating set S ∈ Si with respect to some
partial solution X. However, finding such a violating set is non-trivial. We are only aware of
a solution when p is a constant, which we present in the following lemma.

▶ Lemma 23. Given an edge set X ⊇ Xi−1, there is a polynomial-time algorithm that
computes a set S ∈ Si such that δ(S) ∩ X = ∅ when p is a constant.

Proof. Since X ⊇ Xi−1, we have |δ(S) ∩ X| ≥ i − 1 for any S ∈ S. It suffices to find some
S ∈ S with |δ(S) ∩ X| = i − 1 ≤ p. To this end, we guess the edge set X ′ = δ(S) ∩ X. Note
that |X ′| < p. Further, for each edge e = (u, v) in X ′, we guess whether u ∈ S, v /∈ S or
u /∈ S, v ∈ S. Thus the number of possibilities is at most

(
m
p

)
· 2p, which is polynomial when

p is constant. For the edges in X ′, let the set of endpoints in S be A, and the other endpoints
be B. It reduces to finding some S ∈ S with A ⊆ S, B /∈ S and δ(S) ∩ X = X ′. This can
be achieved by identifying the vertices in A and B by a new vertex vA and vB , respectively,
contracting edges in X \ X ′, and computing a minimum vA-vB cut in the resulting graph. If
the cut has size less than p + q, then this cut belongs to Si and has i − 1 edges in X. ◀

To bound the total cost of the p phases of our algorithm, we use the following LP relaxation
and its dual for the analysis. The constraints xe ≤ 1 cannot be omitted as we do for p = 1.
Otherwise, an edge may be “protected” multiple times, which is not allowed.

min
∑
e∈E

cexe

s.t.
∑

e∈δ(S)

xe ≥ p ∀S ∈ S

0 ≤ xe ≤ 1 ∀e ∈ E

max
∑
S∈S

p · yS −
∑
e∈E

ze

s.t.
∑

S:S∈S,e∈δ(S)

yS − ze ≤ ce ∀e ∈ E

yS , ze ≥ 0 ∀S ∈ S, ∀e ∈ E

In the following lemma, we compare the optimal cost of the augmentation problem Pi to
the optimal cost of (p, q)-Steiner-Connectivity Preservation.

▶ Lemma 24. Given a feasible dual solution y(i) of Pi, we can construct a feasible dual
solution y of (p, q)-Steiner-Connectivity Preservation such that∑

S∈Si

y
(i)
S ≤ 1

p − i + 1

(∑
S∈S

p · yS −
∑
e∈E

ze

)
.

Proof. Let yS = y
(i)
S for S ∈ Si and yS = 0 for S ∈ S \ Si. Let ze = 0 for e ∈ E \ Xi−1

and ze =
∑

S:S∈Si,e∈δ(S) y
(i)
S for e ∈ Xi−1. We claim that (y, z) forms a feasible dual

solution. For any e ∈ Xi−1,
∑

S:S∈S,e∈δ(S) yS − ze = 0 by definition. For e ∈ E \ Xi−1,∑
S:S∈S,e∈δ(S) yS − ze =

∑
S:S∈S,e∈δ(S) y

(i)
S ≤ ce. Next, we compare the dual objective values

of y and y(i). We have∑
S∈S

p · yS −
∑
e∈E

ze =
∑

S∈Si

p · y
(i)
S −

∑
e∈Xi−1

∑
S:S∈Si,e∈δ(S)

y
(i)
S =

∑
S∈Si

y
(i)
S (p − |δ(S) ∩ Xi−1|).

By definition of Si, for any S ∈ Si, we have |δ(S) ∩ Xi−1| = i − 1. Thus, we conclude:∑
S∈S

p · yS −
∑
e∈E

ze = (p − i + 1)
∑

S∈Si

y
(i)
S . ◀

▶ Theorem 3. There is a polynomial-time O((p + q) log p)-approximation algorithm for
(p, q)-Steiner-Connectivity Preservation when p is a constant.

STACS 2025

51:18 Protecting the Connectivity of a Graph Under Non-Uniform Edge Failures

Proof. The algorithm consists of p phases. In phase i, we apply Lemma 23 and the primal-
dual framework for (1, q)-SCP to find a (p+q−1)-approximation solution for the augmentation
problem Pi. By Lemma 24, the cost of Yi in phase i is at most (p+q−1)·Opt(Pi) ≤ p+q−1

p−i+1 Opt.
Thus the total cost is at most

∑p
i=1 c(Yi) ≤

∑p
i=1

p+q−1
p−i+1 Opt ≤ Hp · (p + q − 1) · Opt, where

Hp is the p-th harmonic number. Using Hp ≤ log(p) + 1, we obtain the theorem. ◀

For (p, q)-Global-Connectivity Preservation, we can approximately solve the augmentation
problem without requiring p to be a constant. Indeed, we reduce finding the critical cuts to
finding certain 2-approximate minimum cuts in G, where each edge e has a capacity of p+q

i−1
if e ∈ Xi−1 and 1 otherwise. These cuts can be enumerated in polynomial time [33,36].

Algorithm 4. In phase 1, we apply the 5-approximation algorithm from [6]. That is, we
compute X1 such that for any S ∈ S0 = S, X1 ∩ δ(S) ̸= ∅. For phase i with 2 ≤ i ≤ p, we
approximately solve the augmentation problem Pi by reducing it to Set Cover. Here, we view
a set S ∈ Si as an element in the Set Cover instance and view an edge e ∈ E \ Xi−1 as a set
in the Set Cover instance. We use either the O(log N)-approximation [19] where N is the
number of elements to be covered, or the f -approximation [10,31] where f is the maximum
number of sets in which an element is contained. Note that applying Lemma 24 requires a
dual feasible solution, which is fortunately a byproduct of these Set Cover algorithms.

▶ Theorem 4. There is a polynomial-time O(log p·min{p+q, log n})-approximation algorithm
for (p, q)-Global-Connectivity Preservation.

Proof. The cost of phase 1 is no more than 5 · Opt. For phase i with 2 ≤ i ≤ p, we apply
Set Cover algorithms explicitly. We show that the number of elements to be covered is
|Si| = O(|V |4) and we can construct the Set Cover instance in polynomial time. To this end,
we assign different capacities to edges in Xi−1 and other edges such that for any S ∈ Si,
δ(S) is a 2-approximate minimum cut with respect to the capacity function. By Karger’s
bound [33], the number of 2-approximate minimum cuts is O(|V |4) and we can enumerate
them in polynomial time [36]. Formally, let the capacity of edges in Xi−1 be p+q

i−1 and the
capacity of edges in E \ Xi−1 be 1. Given any cut C, the capacity of C is at least p + q

since it either contains at least p + q edges or contains at least i − 1 edges in Xi−1. For any
S ∈ Si, the capacity of δ(S) is at most (i − 1) p+q

i−1 + p + q − 1 < 2(p + q). Thus δ(S) defines
a 2-approximate minimum cut and we can find all the sets in Si in polynomial time.

Further, in the constructed Set Cover instance, an element is contained in at most
p + q − 1 sets since |δ(S)| ≤ p + q − 1 for any S ∈ Si. Thus, we can compute an augmenting
edge set Xi \ Xi−1 whose cost is O(min{log n, p + q} ·

∑
S∈Si

y
(i)
S) where y(i) is the dual

feasible solution of Pi. Combining it with Lemma 24, we conclude that the algorithm is an
O(log p · min{log n, p + q})-approximation. ◀

5 Conclusion

We examine Connectivity Preservation from two perspectives. For small values of p and q, we
focus on polynomial-time exact algorithms. For large values of p and q, we show hardness and
devise approximation algorithms. Nonetheless, there remain some gaps between cases solvable
in polynomial time and NP-hard ones. In particular, it remains open whether (1, q)-GCP
admits any polynomial-time exact algorithm for constant q ≥ 3. Another interesting problem
is (1, q)-GCP with q being the capacity of the minimum cuts, i.e., finding a minimum-cost
edge set that intersects with all the minimum cuts. Note that for the s-t-connectivity variant,
this can be tackled via Min-cost Flow techniques.

F. Hommelsheim, Z. Liu, N. Megow, and G. Zhang 51:19

References
1 Waseem Abbas, Aron Laszka, Yevgeniy Vorobeychik, and Xenofon Koutsoukos. Improving

network connectivity using trusted nodes and edges. In 2017 American Control Conference
(ACC), pages 328–333. IEEE, 2017. doi:10.23919/ACC.2017.7962974.

2 David Adjiashvili, Felix Hommelsheim, and Moritz Mühlenthaler. Flexible graph connectivity.
Math. Program., 192(1):409–441, 2022. doi:10.1007/S10107-021-01664-9.

3 David Adjiashvili, Felix Hommelsheim, Moritz Mühlenthaler, and Oliver Schaudt. Fault-
tolerant edge-disjoint s-t paths - beyond uniform faults. In SWAT, volume 227 of LIPIcs, pages
5:1–5:19. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, 2022. doi:10.4230/LIPICS.
SWAT.2022.5.

4 David Adjiashvili, Sebastian Stiller, and Rico Zenklusen. Bulk-robust combinatorial optimiza-
tion. Math. Program., 149(1-2):361–390, 2015. doi:10.1007/S10107-014-0760-6.

5 Sepehr Assadi, Ehsan Emamjomeh-Zadeh, Ashkan Norouzi-Fard, Sadra Yazdanbod, and
Hamid Zarrabi-Zadeh. The minimum vulnerability problem. Algorithmica, 70(4):718–731,
2014. doi:10.1007/S00453-014-9927-Z.

6 Ishan Bansal. A global analysis of the primal-dual method for pliable families, 2024. arXiv:
2308.15714.

7 Ishan Bansal, Joe Cheriyan, Logan Grout, and Sharat Ibrahimpur. Algorithms for 2-connected
network design and flexible steiner trees with a constant number of terminals. In AP-
PROX/RANDOM, volume 275 of LIPIcs, pages 14:1–14:14. Schloss Dagstuhl – Leibniz-Zentrum
für Informatik, 2023. doi:10.4230/LIPICS.APPROX/RANDOM.2023.14.

8 Ishan Bansal, Joseph Cheriyan, Logan Grout, and Sharat Ibrahimpur. Improved approximation
algorithms by generalizing the primal-dual method beyond uncrossable functions. Algorithmica,
86(8):2575–2604, 2024. doi:10.1007/S00453-024-01235-2.

9 Ishan Bansal, Joseph Cheriyan, Sanjeev Khanna, and Miles Simmons. Improved approximation
algorithms for flexible graph connectivity and capacitated network design, 2024. doi:10.48550/
arXiv.2411.18809.

10 Reuven Bar-Yehuda and Shimon Even. A linear-time approximation algorithm for the weighted
vertex cover problem. J. Algorithms, 2(2):198–203, 1981. doi:10.1016/0196-6774(81)
90020-1.

11 Marshall W. Bern and Paul E. Plassmann. The steiner problem with edge lengths 1 and 2.
Inf. Process. Lett., 32(4):171–176, 1989. doi:10.1016/0020-0190(89)90039-2.

12 Daniel Bienstock and Nicole Diaz. Blocking small cuts in a network, and related problems.
SIAM J. Comput., 22(3):482–499, 1993. doi:10.1137/0222034.

13 Sylvia C. Boyd, Joseph Cheriyan, Arash Haddadan, and Sharat Ibrahimpur. Approximation
algorithms for flexible graph connectivity. Math. Program., 204(1):493–516, 2024. doi:
10.1007/S10107-023-01961-5.

14 Federica Cecchetto, Vera Traub, and Rico Zenklusen. Bridging the gap between tree and
connectivity augmentation: unified and stronger approaches. In STOC, pages 370–383. ACM,
2021. doi:10.1145/3406325.3451086.

15 Ruoxu Cen, Jason Li, and Debmalya Panigrahi. Edge connectivity augmentation in near-linear
time. In STOC, pages 137–150. ACM, 2022. doi:10.1145/3519935.3520038.

16 Deeparnab Chakrabarty, Chandra Chekuri, Sanjeev Khanna, and Nitish Korula. Ap-
proximability of capacitated network design. Algorithmica, 72(2):493–514, 2015. doi:
10.1007/S00453-013-9862-4.

17 Chandra Chekuri and Rhea Jain. Approximation algorithms for network design in non-uniform
fault models. In 50th International Colloquium on Automata, Languages, and Programming
(ICALP 2023). Schloss Dagstuhl – Leibniz-Zentrum für Informatik, 2023.

18 Chandra Chekuri and Rhea Jain. Approximation algorithms for network design in non-uniform
fault models, 2024. arXiv:2403.15547, doi:10.48550/arXiv.2403.15547.

19 Vasek Chvátal. A greedy heuristic for the set-covering problem. Math. Oper. Res., 4(3):233–235,
1979. doi:10.1287/MOOR.4.3.233.

STACS 2025

https://doi.org/10.23919/ACC.2017.7962974
https://doi.org/10.1007/S10107-021-01664-9
https://doi.org/10.4230/LIPICS.SWAT.2022.5
https://doi.org/10.4230/LIPICS.SWAT.2022.5
https://doi.org/10.1007/S10107-014-0760-6
https://doi.org/10.1007/S00453-014-9927-Z
https://arxiv.org/abs/2308.15714
https://arxiv.org/abs/2308.15714
https://doi.org/10.4230/LIPICS.APPROX/RANDOM.2023.14
https://doi.org/10.1007/S00453-024-01235-2
https://doi.org/10.48550/arXiv.2411.18809
https://doi.org/10.48550/arXiv.2411.18809
https://doi.org/10.1016/0196-6774(81)90020-1
https://doi.org/10.1016/0196-6774(81)90020-1
https://doi.org/10.1016/0020-0190(89)90039-2
https://doi.org/10.1137/0222034
https://doi.org/10.1007/S10107-023-01961-5
https://doi.org/10.1007/S10107-023-01961-5
https://doi.org/10.1145/3406325.3451086
https://doi.org/10.1145/3519935.3520038
https://doi.org/10.1007/S00453-013-9862-4
https://doi.org/10.1007/S00453-013-9862-4
https://arxiv.org/abs/2403.15547
https://doi.org/10.48550/arXiv.2403.15547
https://doi.org/10.1287/MOOR.4.3.233

51:20 Protecting the Connectivity of a Graph Under Non-Uniform Edge Failures

20 Efim A. Dinits, Alexander V. Karzanov, and Micael V. Lomonosov. On the structure of a
family of minimum weighted cuts in a graph. Studies in Discrete Optimization, pages 209–306,
1976.

21 Gabriel L Duarte, Hiroshi Eto, Tesshu Hanaka, Yasuaki Kobayashi, Yusuke Kobayashi, Daniel
Lokshtanov, Lehilton LC Pedrosa, Rafael CS Schouery, and Uéverton S Souza. Computing
the largest bond and the maximum connected cut of a graph. Algorithmica, 83:1421–1458,
2021. doi:10.1007/S00453-020-00789-1.

22 Kapali P. Eswaran and Robert Endre Tarjan. Augmentation problems. SIAM J. Comput.,
5(4):653–665, 1976. doi:10.1137/0205044.

23 Till Fluschnik, Stefan Kratsch, Rolf Niedermeier, and Manuel Sorge. The parameterized
complexity of the minimum shared edges problem. J. Comput. Syst. Sci., 106:23–48, 2019.
doi:10.1016/J.JCSS.2018.12.002.

24 Fedor V. Fomin, Petr A. Golovach, and Janne H. Korhonen. On the parameterized complexity
of cutting a few vertices from a graph. In MFCS, volume 8087 of Lecture Notes in Computer
Science, pages 421–432. Springer, 2013. doi:10.1007/978-3-642-40313-2_38.

25 Greg N. Frederickson and Joseph F. JáJá. Approximation algorithms for several graph
augmentation problems. SIAM J. Comput., 10(2):270–283, 1981. doi:10.1137/0210019.

26 Harold N. Gabow. Data structures for weighted matching and nearest common ancestors with
linking. In SODA, pages 434–443. SIAM, 1990. URL: http://dl.acm.org/citation.cfm?
id=320176.320229.

27 M. R. Garey and David S. Johnson. Computers and Intractability: A Guide to the Theory of
NP-Completeness. W. H. Freeman, 1979.

28 Naveen Garg, Vijay V. Vazirani, and Mihalis Yannakakis. Primal-dual approximation
algorithms for integral flow and multicut in trees. Algorithmica, 18(1):3–20, 1997. doi:
10.1007/BF02523685.

29 Michel X. Goemans, Andrew V. Goldberg, Serge A. Plotkin, David B. Shmoys, Éva Tardos,
and David P. Williamson. Improved approximation algorithms for network design problems.
In SODA, pages 223–232. ACM/SIAM, 1994. URL: http://dl.acm.org/citation.cfm?id=
314464.314497.

30 Zhongtian He, Shang-En Huang, and Thatchaphol Saranurak. Cactus representation of
minimum cuts: Derandomize and speed up. In SODA, pages 1503–1541. SIAM, 2024. doi:
10.1137/1.9781611977912.61.

31 Dorit S. Hochbaum. Approximation algorithms for the set covering and vertex cover problems.
SIAM J. Comput., 11(3):555–556, 1982. doi:10.1137/0211045.

32 Kamal Jain. A factor 2 approximation algorithm for the generalized steiner network problem.
Comb., 21(1):39–60, 2001. doi:10.1007/S004930170004.

33 David R. Karger. Global min-cuts in RNC, and other ramifications of a simple min-cut
algorithm. In SODA, pages 21–30. ACM/SIAM, 1993. URL: http://dl.acm.org/citation.
cfm?id=313559.313605.

34 Guy Kortsarz, Robert Krauthgamer, and James R. Lee. Hardness of approximation for
vertex-connectivity network design problems. SIAM J. Comput., 33(3):704–720, 2004. doi:
10.1137/S0097539702416736.

35 Hiroshi Nagamochi and Toshihide Ibaraki. Algorithmic Aspects of Graph Connectivity, volume
123 of Encyclopedia of Mathematics and its Applications. Cambridge University Press, 2008.
doi:10.1017/CBO9780511721649.

36 Hiroshi Nagamochi, Kazuhiro Nishimura, and Toshihide Ibaraki. Computing all small cuts
in an undirected network. SIAM J. Discret. Math., 10(3):469–481, 1997. doi:10.1137/
S0895480194271323.

37 Zeev Nutov. Improved approximation ratio for covering pliable set families, 2024. arXiv:
2404.00683, doi:10.48550/arXiv.2404.00683.

38 Masoud T. Omran, Jörg-Rüdiger Sack, and Hamid Zarrabi-Zadeh. Finding paths with minimum
shared edges. J. Comb. Optim., 26(4):709–722, 2013. doi:10.1007/S10878-012-9462-2.

https://doi.org/10.1007/S00453-020-00789-1
https://doi.org/10.1137/0205044
https://doi.org/10.1016/J.JCSS.2018.12.002
https://doi.org/10.1007/978-3-642-40313-2_38
https://doi.org/10.1137/0210019
http://dl.acm.org/citation.cfm?id=320176.320229
http://dl.acm.org/citation.cfm?id=320176.320229
https://doi.org/10.1007/BF02523685
https://doi.org/10.1007/BF02523685
http://dl.acm.org/citation.cfm?id=314464.314497
http://dl.acm.org/citation.cfm?id=314464.314497
https://doi.org/10.1137/1.9781611977912.61
https://doi.org/10.1137/1.9781611977912.61
https://doi.org/10.1137/0211045
https://doi.org/10.1007/S004930170004
http://dl.acm.org/citation.cfm?id=313559.313605
http://dl.acm.org/citation.cfm?id=313559.313605
https://doi.org/10.1137/S0097539702416736
https://doi.org/10.1137/S0097539702416736
https://doi.org/10.1017/CBO9780511721649
https://doi.org/10.1137/S0895480194271323
https://doi.org/10.1137/S0895480194271323
https://arxiv.org/abs/2404.00683
https://arxiv.org/abs/2404.00683
https://doi.org/10.48550/arXiv.2404.00683
https://doi.org/10.1007/S10878-012-9462-2

F. Hommelsheim, Z. Liu, N. Megow, and G. Zhang 51:21

39 David Pritchard. k-edge-connectivity: Approximation and LP relaxation. In WAOA, volume
6534 of Lecture Notes in Computer Science, pages 225–236. Springer, 2010. doi:10.1007/
978-3-642-18318-8_20.

40 Vera Traub and Rico Zenklusen. A better-than-2 approximation for weighted tree augmentation.
In FOCS, pages 1–12. IEEE, 2021. doi:10.1109/FOCS52979.2021.00010.

41 Vera Traub and Rico Zenklusen. Local search for weighted tree augmentation and steiner tree.
In SODA, pages 3253–3272. SIAM, 2022. doi:10.1137/1.9781611977073.128.

42 Vera Traub and Rico Zenklusen. A (1.5+ϵ)-approximation algorithm for weighted connectivity
augmentation. In STOC, pages 1820–1833. ACM, 2023. doi:10.1145/3564246.3585122.

43 David P. Williamson, Michel X. Goemans, Milena Mihail, and Vijay V. Vazirani. A primal-dual
approximation algorithm for generalized steiner network problems. Comb., 15(3):435–454,
1995. doi:10.1007/BF01299747.

44 Jianan Zhang, Eytan Modiano, and David Hay. Enhancing network robustness via shielding.
IEEE/ACM Transactions on Networking, 25(4):2209–2222, 2017. doi:10.1109/TNET.2017.
2689019.

STACS 2025

https://doi.org/10.1007/978-3-642-18318-8_20
https://doi.org/10.1007/978-3-642-18318-8_20
https://doi.org/10.1109/FOCS52979.2021.00010
https://doi.org/10.1137/1.9781611977073.128
https://doi.org/10.1145/3564246.3585122
https://doi.org/10.1007/BF01299747
https://doi.org/10.1109/TNET.2017.2689019
https://doi.org/10.1109/TNET.2017.2689019

Polynomial Kernel and Incompressibility for
Prison-Free Edge Deletion and Completion
Séhane Bel Houari-Durand #

ENS Lyon, France

Eduard Eiben #

Department of Computer Science, Royal Holloway University of London, UK

Magnus Wahlström #

Department of Computer Science, Royal Holloway University of London, UK

Abstract
Given a graph G and an integer k, the H-free Edge Deletion problem asks whether there exists a
set of at most k edges of G whose deletion makes G free of induced copies of H. Significant attention
has been given to the kernelizability aspects of this problem – i.e., for which graphs H does the
problem admit an “efficient preprocessing” procedure, known as a polynomial kernelization, where
an instance I of the problem with parameter k is reduced to an equivalent instance I ′ whose size and
parameter value are bounded polynomially in k? Although such routines are known for many graphs
H where the class of H-free graphs has significant restricted structure, it is also clear that for most
graphs H the problem is incompressible, i.e., admits no polynomial kernelization parameterized by k

unless the polynomial hierarchy collapses. These results led Marx and Sandeep to the conjecture that
H-free Edge Deletion is incompressible for any graph H with at least five vertices, unless H is
complete or has at most one edge (JCSS 2022). This conjecture was reduced to the incompressibility
of H-free Edge Deletion for a finite list of graphs H. We consider one of these graphs, which we
dub the prison, and show that Prison-Free Edge Deletion has a polynomial kernel, refuting the
conjecture. On the other hand, the same problem for the complement of the prison is incompressible.

2012 ACM Subject Classification Theory of computation → Parameterized complexity and exact
algorithms

Keywords and phrases Graph modification problems, parameterized complexity, polynomial kernel-
ization

Digital Object Identifier 10.4230/LIPIcs.STACS.2025.52

Related Version Full Version: https://arxiv.org/pdf/2501.15952

1 Introduction

Let H be a graph. A graph G is H-free if it does not contain H as an induced subgraph.
More generally, let H be a collection of graphs. A graph is H-free if it is H-free for every
H ∈ H. In the H-free Edge Editing (respectively H-free Edge Editing) problem,
given a graph G and an integer k, the task is to add or delete at most k edges from
G such that the result is H-free (respectively H-free). The Edge Deletion and Edge
Completion variants are the variants where only deletions, respectively only adding edges
is allowed. These are special cases of the much more general graph modification problem
class, where a problem is defined by a graph class G and the natural problem variants (G
Edge Editing/Deletion/Completion respectively G Vertex Deletion) are where the
input graph G is to be modified so that the result is a member of G.

As Cai [2] noted, for every finite H, the H-free graph modification problems are FPT
with a running time of O∗(2O(k)) by a simple branching algorithm. However, the question of
kernelization is much more subtle. A polynomial kernelization for a parameterized problem
is a polynomial-time procedure that takes as input an instance of the problem, for example,
I = (G, k) in the case of a graph modification problem, and outputs an instance (G′, k′) of

© Séhane Bel Houari-Durand, Eduard Eiben, and Magnus Wahlström;
licensed under Creative Commons License CC-BY 4.0

42nd International Symposium on Theoretical Aspects of Computer Science (STACS 2025).
Editors: Olaf Beyersdorff, Michał Pilipczuk, Elaine Pimentel, and Nguyễn Kim Thắng;
Article No. 52; pp. 52:1–52:17

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:sehane.bel_houari-durand@ens-lyon.fr
https://orcid.org/0009-0003-6661-5171
mailto:eduard.eiben@rhul.ac.uk
https://orcid.org/0000-0003-2628-3435
mailto:magnus.wahlstrom@rhul.ac.uk
https://orcid.org/0000-0002-0933-4504
https://doi.org/10.4230/LIPIcs.STACS.2025.52
https://arxiv.org/pdf/2501.15952
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

52:2 Kernelization for Prison-Free Edge Deletion and Completion

the same problem such that |V (G′)|, k′ ≤ p(k) for some polynomially bounded function p(k)
of k, and such that (G′, k′) is a yes-instance if and only if (G, k) is a yes-instance. If so, we
say that the problem has a polynomial kernel. This has been used as a way to capture the
notion of efficient instance simplification and preprocessing, and deep and extensive work
has been done on determining whether various parameterized problems have polynomial
kernels or not (under standard complexity-theoretical assumptions). See the book by Fomin
et al. [11].

For many graph modification problems, both those characterized by finite and infinite
families H, polynomial kernelization is known, but for many others, the question is wide
open; see the survey of Crespelle et al. on parameterized edge modification problems [5]. For
the structurally simpler case of H-free Edge Deletion, if H is a clique then the problem
reduces to d-Hitting Set for d = |E(H)| and has a polynomial kernel by the sunflower
lemma, and if |E(H) ≤ 1 then the problem is trivial. For the same reason, H-free Vertex
Deletion has a polynomial kernel for every fixed H. But in all other cases, the question is
more intricate, since deleting an edge in one copy of H in G can cause another copy of H

to occur, implying a dependency between modifications that is not present in the simpler
cases. Beyond cliques and near-empty graphs, polynomial kernels are known when H is
P3 (i.e., H-free graphs are cluster graphs) [12], P4 (i.e., H-free graphs are cographs) [13],
the paw [7] and the diamond [4] (see Figure 1). Kernels are also known for several simple
classes characterized by finite sets H. But there are significant open cases; Crespelle et
al. [5] highlight the classes of claw-free graphs and line graphs, although the case of line
graphs has since been resolved [6]. Initially, progress led Fellows et al. [9] to ask (very
speculatively) whether H-free graph modification problems have polynomial kernels for all
finite H. This was refuted by Kratsch and Wahlström [14], and after a series of lower bounds,
most importantly by Cai and Cai [3], the answer now appears to be the opposite – the
H-free graph modification problems have polynomial kernels only for particularly restrictive
choices of H. Furthermore, in all such cases the kernel depends intimately on the structural
characterization of the graph class, such as structural decomposition results. However, it
would appear unlikely that such a structural characterization of H-free graphs should exist
for any arbitrary graph H, and correspondingly, we would expect H-free edge modification
problems not to admit polynomial kernelization. For example, despite the above-mentioned
positive results, H-free Edge Deletion has no kernel for H = Pℓ where ℓ ≥ 5, for
H = Cℓ for ℓ ≥ 4 or for any H such that H or its complement is 3-connected (excepting the
trivial cases) [3]. Marx and Sandeep [15] pushed the pendulum in the other direction and
conjectured that for graphs H on at least five vertices, only the above-mentioned immediate
kernels exist, conjecturing the following.

▶ Conjecture 1 (Conjecture 2 of [15]). H-free Edge Deletion does not have a polynomial
kernel for any graph H on at least 5 vertices, unless H is complete or has at most one edge.

They showed that this conjecture is equivalent to the statement that H-free Edge
Deletion admits no polynomial kernelization if H is one of nineteen specific graphs on
five or six vertices. They also gave a corresponding conjecture for H-free Edge Editing
(where |E(H)| = 1 is no longer a trivial case), and the case of H-free Edge Completion
follows by dualization.

In this paper, we refute this conjecture. We study the graph H shown in Figure 1 (the
complement of P3 + 2K1), which we dub a prison (given that it can be drawn as the 5-vertex
“house” graph with additional crossbars added). This is the first graph in the set H in [15].
We show that Prison-free Edge Deletion has a polynomial kernel. On the other hand,
Prison-free Edge Completion admits no polynomial kernelization unless the polynomial
hierarchy collapses. We leave Prison-free Edge Editing open for future work.

S. B. Houari-Durand, E. Eiben, and M. Wahlström 52:3

1.1 Our results
As expected, our result builds on a characterization of prison-free graphs. We then derive
the kernelization and lower bound results working over this characterization.

Prison-free graphs. The start of our results is a structure theorem for prison-free graphs.
To begin with, note that the 4-vertex induced subgraphs of a prison are K4, the diamond
and the paw; see Figure 1. The structure of diamond-free and paw-free graphs are known: A
graph is diamond-free if and only if it is strictly clique irreducible, i.e., every edge of the graph
lies in a unique maximal clique [17], and a graph is paw-free if and only if every connected
component is either triangle-free or complete multipartite [16]. The structure of prison-free
graphs generalizes both.

A complete multipartite graph with classes P1, . . . , Pm is a graph whose vertex set is the
disjoint union P1 ∪ . . . ∪ Pm and with an edge uv for u ∈ Pi and v ∈ Pj if and only if i ̸= j.
Note that a clique is a complete multipartite graph where every part is a singleton. We show
the following.

▶ Theorem 2. A graph G = (V, E) is prison-free if and only if the following holds: Let
F ⊆ V be an inclusion-wise maximal set such that G[F] is complete multipartite with at least
4 parts, and let v ∈ V \ F . Then N(v) intersects at most one part of F .

Furthermore, let cmdp(G) for p ∈ N be the collection of all inclusion-wise maximal
F ⊆ V (G) such that G[F] is complete multipartite with at least p classes. We show that
cmd4(G) induces a form of partition of the cliques of G.

▶ Corollary 3. Let G = (V, E) be a prison-free graph. The following hold.
1. If F, F ′ ∈ cmd4(G) are distinct and F ∩ F ′ ≠ ∅, then F ∩ F ′ intersects only one class

C of F and C ′ of F ′, and there are no edges between F \ C ′ and F ′ \ C. In particular,
G[F ∩ F ′] is edgeless.

2. If F, F ′ ∈ cmd4(G) with F ∩ F ′ = ∅, then for every v ∈ F ′, N(v) intersects at most one
class of F

3. Let e ∈ E(G) be an edge that occurs in at least one K4 in G. Then there is a unique
F ∈ cmd4(G) such that e occurs in G[F].

In particular, every Kp in G, p ≥ 4 is contained in a unique F ∈ cmd4(G). It also follows
that cmd4(G) can be enumerated in polynomial time in prison-free graphs.

Lower bound for prison-free completion. We show that Prison-free Edge Completion
is incompressible, i.e., admits no polynomial kernel parameterized by k unless the polynomial
hierarchy collapses. Counterintuitively, this result exploits the property that minimum
solutions for the problem can be extremely expensive – we can design a sparse graph G such
that every prison-free supergraph of G contains Θ(n2) edges (for example, by ensuring that
the only possible cmd4-decomposition of a prison-free supergraph of G consists of a single
component F = V (G)). More strongly, we use this to show an additive gap hardness version
of the problem.

▶ Theorem 4. For any ε > 0, it is NP-hard to approximate Prison-free Edge Completion
up to an additive gap of g = Θ(n2−ε), even if G has an edge e such that G − e is K4-free.

With this in place, we can proceed with the lower bound using standard methods, using
the notion of cross-composition [1, 11]. We follow the method used in previous lower bounds
against kernelization of H-free edge modification problems [14, 3]. Given a list I1, . . . , It of

STACS 2025

52:4 Kernelization for Prison-Free Edge Deletion and Completion

instances of the above gap-version of Prison-Free Edge Completion with parameter
value k, our task is to produce an instance of Prison-Free Edge Completion with
parameter (k′ +log t)O(1) which corresponds to the OR of the instances Ii. For this, we define
a binary tree of height O(log t) and place the instances at the leaves of the tree. At the root
of the tree, we place a single induced prison. For the internal nodes, we design propagational
gadgets with the function that if the gadget at the node is edited, then one of the gadgets at
the children of the node must be edited as well. Finally, for every instance Ij = (Gj , k) with
an edge ej such that Gj − e is prison-free, we connect ej to the corresponding gadget at the
leaf of the tree and remove ej from Gj . This forces at least one edge ej , j ∈ [t] to be added
to the resulting graph and the original instance Ij = (Gj , k) must be solved.

The crux is that, unlike previous proofs (for example in Cai and Cai [3] when H is
3-connected) we cannot “control” the spread of the edge completion solution to be confined
to Gj . On the contrary, the solution must spread all the way to the root and incorporate
all vertices from gadgets on the root-leaf path of the binary tree into a single complete
multipartite component of the resulting graph G′. Thus, we have no tight control over the
number of edges added in the corresponding solution. However, by the strong lower bound on
gap-hardness of Theorem 4 we do not need tight control – we can simply set the additive gap
g large enough that the number of edges added outside of Gj in the resulting propagation is
a lower-order term compared to g.

▶ Theorem 5. Prison-free Edge Completion does not have a polynomial kernel para-
meterized by k unless the polynomial hierarchy collapses.

Kernel for prison-free deletion. The kernelization algorithm depends directly on the
structural characterization of prison-free graphs. We start by using the sunflower lemma to
obtain a small set P ′ of prisons in the graph G such that any set of edges of size at most
k that intersects all prisons in P ′ has to intersect all prisons in G. We let S be the set
of vertices of these prisons. Note that |S| = O(k8), and outside of S we only need to be
concerned by prisons that are created by deleting some edge from G. This lets us delete all
edges not in E(G[S]) that do not belong to a strict supergraph of a prison. In addition, if a
prison in G contains a single edge inside S, then such an edge has to be included in every
solution of size at most k, so it can be deleted and k decreased. After exhaustive application
of these two reduction rules, we show that the edges of G[V (G) \ S] can be partitioned into
maximal complete multipartite subgraphs of G[V (G) \ S] (even those which do not occur
in cmd4(G[V (G) \ S])). For each of these maximal complete multipartite subgraphs, we
can check whether it is in some larger complete multipartite subgraph F in G that is nicely
separated from the rest of G, in the sense that every x ∈ V (G) \ F neighbors vertices in
at most one class of F . For any such F , no supergraph of a prison can contain edge both
outside and inside of F and edges inside of F can be safely deleted from G. This allows us to
bound the number of maximal complete multipartite subgraphs outside of S by O(|S|3). In
addition, we show that any supergraph of a prison in G that contains an edge fully outside of
S is fully contained in S ∪ F for a single maximal multipartite subgraph F of G[V (G) \ S].
This allows us to treat these multipartite subgraphs separately. Moreover, using the fact
that for any edge e ∈ G[S], the graph G[V (G) \ (S \ e)] is still prison-free, we can show that
the interaction between S and a maximal multipartite subgraph F of G[V (G) \ S] is very
structured. This allows us to reduce the size of each of these subgraphs and we obtain the
following theorem.

▶ Theorem 6. Prison-Free Edge Deletion admits a polynomial kernel.

S. B. Houari-Durand, E. Eiben, and M. Wahlström 52:5

Figure 1 Three graphs: The prison, the paw, and the diamond (as subgraphs of the prison).

Structure of the paper. In Section 2 we derive the basic facts about prison-free graphs.
Section 3 contains the lower bound against Prison-free Edge Completion and Section 4
contains the polynomial kernel for Prison-free Edge Deletion. We conclude in Section 5.

2 Structure of prison-free graphs

We begin our study by characterizing the structure of prison-free graphs. This generalizes
two structures. The most closely related is for paw-free graphs; note that the paw is the
subgraph of the prison produced by deleting an apex vertex. Olariu [16] showed that a graph
is paw-free if and only if every connected component is either triangle-free or a complete
multipartite graph. The paw-free graph modification problems have polynomial kernels due
to Eiben et al. [7]. Second, less closely related but still relevant, the diamond K4 − e is
a subgraph of the prison produced by deleting a vertex of degree 3. It is known that a
graph is diamond-free if and only if every edge occurs in only one maximal clique [17]. The
diamond-free graph modification problems have polynomial kernels due to Cao et al. [4]. In
a sense, the structure of prison-free graphs generalizes both, as the edge-sets of cliques Kp,
p ≥ 4 in a prison-free graph G decomposes into complete multipartite induced subgraphs
of G.

We first prove Theorem 2 from the introduction, then use it to derive the more informative
Corollary 3.

▶ Lemma 7 (⋆1). Let G be a prison-free graph and let K ⊆ V (G) induce a K4 in G. Then
there is a complete multipartite graph G[F] in G with K ⊆ F . Furthermore, if F is maximal
under this condition, then for any v ∈ V (G) \ F , N(v) intersects at most one component
of F .

Inspired by this, for any graph G and p ≥ 2, define cmdp(G) to consist of all maximal
subsets F ⊆ V such that G[F] is complete multipartite with at least p parts. We refer to
cmdp(G) as the complete multipartite decomposition of G (and we will note that it is indeed
a decomposition for p ≤ 4 if G is prison-free). The following theorem is now an extension of
the previous lemma. Proofs of Theorem 2 and Corollary 3 are deferred to the full version.

▶ Theorem 2. A graph G = (V, E) is prison-free if and only if the following holds: Let
F ⊆ V be an inclusion-wise maximal set such that G[F] is complete multipartite with at least
4 parts, and let v ∈ V \ F . Then N(v) intersects at most one part of F .

We will use this to derive a more useful description of prison-free graphs.

1 Results marked with ⋆ have their proofs deferred to the full version.

STACS 2025

52:6 Kernelization for Prison-Free Edge Deletion and Completion

▶ Corollary 3. Let G = (V, E) be a prison-free graph. The following hold.
1. If F, F ′ ∈ cmd4(G) are distinct and F ∩ F ′ ̸= ∅, then F ∩ F ′ intersects only one class

C of F and C ′ of F ′, and there are no edges between F \ C ′ and F ′ \ C. In particular,
G[F ∩ F ′] is edgeless.

2. If F, F ′ ∈ cmd4(G) with F ∩ F ′ = ∅, then for every v ∈ F ′, N(v) intersects at most one
class of F

3. Let e ∈ E(G) be an edge that occurs in at least one K4 in G. Then there is a unique
F ∈ cmd4(G) such that e occurs in G[F].

In particular, the last item implies that every Kp, p ≥ 4 is contained in a unique
multipartite component F ∈ cmd4(G). Since every F ∈ cmd4(G) contains a K4, and each
maximal component F can be found greedily, cmd4(G) can be computed efficiently.

3 Incompressibility of Prison-free Edge Completion

In this section, we show that Prison-free Edge Completion admits no polynomial kernel
unless the polynomial hierarchy collapses. The proof is in two parts. First we show a strong
inapproximability result – it is NP-hard to approximate Prison-free Edge Completion
within an additive gap of g = O(n2−ε) for every ε > 0, even for graphs with prison-free
edge deletion number 1. We then use this to show a cross-composition (see below) for
Prison-free Edge Completion, thereby ruling out polynomial kernels under standard
complexity conjectures. This latter part roughly follows the outline of previous proofs of
incompressibility [14, 3].

3.1 Initial observations and support gadgets
We begin with some useful statements.

▶ Proposition 8. For a complete multipartite graph K with parts of sizes a1, a2, ..., am, the
number of edges of K is 1

2
∑

i̸=j aiaj = 1
2 (|K|2 −

∑
i
a2

i).

For a graph G = (V, E) and a set of edges A over V , we let G ∪ A denote the graph
G′ = (V, E ∪ A). A prison-free completion set for G is an edge set A over V (G) such that
G ∪ A is prison-free. A solution to (G, k) is a prison-free completion set A for G with |A| ≤ k.
The following is essential in our lower bounds.

▶ Lemma 9 (⋆). Let G be a graph with exactly one induced K4 and let A be a minimal
prison-free completion set for G. Then cmd4(G ∪ A) has exactly 1 component and A lives
within that component.

We next show a way to enforce forbidden edges, i.e., non-edges uv in G such that no
prison-free completion set for G of at most k edges contains uv.

▶ Lemma 10 (⋆). Let G be a graph, k ∈ N, and u, v ∈ V (G) with u ̸= v such that uv /∈ E(G).
There is a graph G′ on vertex set V (G′) = V (G) ∪ F such that G = G′ − F and the following
holds: the minimal solutions to (G′, k) are precisely the minimal solutions A to (G, k) such
that uv /∈ A. Furthermore, every solution A to (G′, k) satisfies uv /∈ A.

We now proceed with gadget constructions. A propagational component is a graph
containing 3 distinct non-edges e1, e2 and e3 such that for any graph G and subset A of
V (G)2, if G ∪ A is prison-free and e1 ∈ A, then e2 ∈ A or e3 ∈ A. Figure 2a shows this
component. In what follows, we will deduce gadgets from this propagation property, leaving
the proof of their prison-freeness for later.

S. B. Houari-Durand, E. Eiben, and M. Wahlström 52:7

1

2

3

45
e1

e2 e3

(a) Propagational
component.

a0 b3

c0

a1

b0

c1

a2b1

c2

a3

b2

c3

e1

e2

e3

e4

(b) Cloning component of length 4.

1 2

3 4

5
6

7

8

9

1011

e1

e2 e3

(c) Disjoint propagational component.

Figure 2 Gadgets for Section 3. Dotted lines are forbidden edges; dashed lines are named
“gadget-edges” with special semantics.

▶ Definition 11. Let l ≥ 4. A cloning component of length l is a component over the
vertices a0, ..., al−1, b0, ..., bl−1, c0, ..., cl−1 with the edges such that for all 0 ≤ i ≤ l − 1,
ai+1, ci+1, bi, ci, ai induces a propagational component with ei

1, ei
2, ei

3 = aici, ai+1ci+1, ci+1bi,
and the edge ei

3 = ci+1bi is forbidden. All arithmetic here is modulo l.

A cloning component is drawn in Figure 2b. Note that for all 0 ≤ i ≤ l − 1, if a solution
A for an instance (G, k) contains ei

1 in a cloning component, then it contains ei
2 (since ei

2 ∈ A

or ei
3 ∈ A, but ei

3 is forbidden). We inductively obtain the next property.

▶ Lemma 12 (⋆). Let l ≥ 4, k ≥ 1 and G be a graph containing an induced cloning component
X of size l with vertices named ai, bi and ci as above. Let A be a subset of non-edges such
that |A| ≤ k and G ∪ A is prison-free. Then either {aici | 0 ≤ i ≤ l − 1} ∩ A = ∅ or aici ∈ A

for every 0 ≤ i ≤ l − 1. Furthermore, in the latter case all of X is contained in a complete
multipartite component of G ∪ A.

We define one final gadget, shown in Figure 2c. This does the same job as a propagational
component – i.e., if e1 ∈ A then e2 ∈ A or e3 ∈ A – except that the edges e1, e2, e3 are
pairwise vertex-disjoint. This is the propagational gadget mentioned in the proof overview.

▶ Definition 13. A disjoint propagational component is a graph isomorphic to the graph
shown in Figure 2c, i.e., a graph on a vertex set V = {v1, . . . , v11} such that vertex sets
{v1, . . . , v5}, {v4, . . . , v8} and {v3, v5, v9, v10, v11} all induce propagational components, v1v2,
v3v5, v4v5, v6v8 and v10v11 are standard non-edges and v7v8 and v9v11 are forbidden edges.
The edge labelled e1 = v1v2 is referred to as input edge and the edges e2 = v10v11 and
e3 = v6v8 are output edges.

3.2 NP-hardness of Gap Prison-free Edge Completion
We now prove the first half of the incompressibility result for Prison-Free Edge Comple-
tion, namely that it remains NP-hard even in a strong additive gap version.

Let Gap Prison-free Edge Completion be the variant of Prison-free Edge
Completion where the input is a triple (G, k, g) and the task is to distinguish between the
following cases:
1. G has a prison-free completion set of at most k edges.
2. G has no prison-free completion set of fewer than k + g edges.

STACS 2025

52:8 Kernelization for Prison-Free Edge Deletion and Completion

For intermediate cases (where the size t of a minimum-cardinality prison-free editing set is
k < t < k + g) the output may be arbitrary. The following is the more precise version of
Theorem 4 from the introduction. We defer the construction to the full version of the paper.

▶ Theorem 14 (⋆). For any ε > 0, it is NP-hard to distinguish between yes-instances and
no-instances (G, k, g) of Gap Prison-free Edge Completion even if G contains an edge
e such that G − e is K4-free and the gap is g = Θ(n2−ε).

Proof sketch. We can only give a brief sketch here and refer to the full version for details.
The result is shown by a reduction from Vertex Cover on cubic graphs. At its heart
is the following principle. We create a graph G which has a single induced K4. Then by
Lemma 9, for any minimal prison-free completion set A of G, V (A) will be contained in a
single complete multipartite component F of G ∪ A. Using forbidden edges, we can have
tight control over the partition of F , which lets us predict |A| well. In particular, we can
ensure that the number of edges |A| added scales quadratically with |V (A)|.

Our reduction uses two gadgets: cloning components, of sufficiently large length ℓ, and
disjoint propagational components. Let (G, t) where G = (V, E) be an input instance of
Vertex Cover where G is a cubic graph. Using one initial cloning component X0 with a
single seeded active edge e, we can force the propagation of e into m = |E| disjoint activation
edges ei, one for every edge of E. For every edge ab ∈ E, associated with an edge ei of
X0, we create a disjoint propagational component with input edge ei and output edges
fa,i and fb,i associated with the vertices a and b of G. Finally, for every vertex v ∈ V we
create a very large cloning component, which contains all edges fv,j associated with it, and
whose length ℓ depends on the desired gap g. Thus, prison-free completion sets A of the
resulting graph G′ which activate the cloning components of s distinct vertices of G, lead to a
prison-free supergraph G′ ∪ A of G′ where the unique complete multipartite component F of
cmd4(G′ ∪ A) contains O(ℓs) vertices, guaranteeing that |A| = Θ((sℓ)2) for a corresponding
minimum solution A. We can now achieve the desired gap by tuning ℓ to be sufficiently
large. ◀

3.3 Compositionality of Prison-Free Edge Completion
We prove Theorem 5 by an or-composition over instances of Gap Prison-free Edge
Completion, using Theorem 4 to support the composition.

We recall some definitions [1]. A polynomial equivalence relation is an equivalence relation
on Σ∗ such that the following hold:
1. There is an algorithm that given two strings x, y ∈ Σ∗ decides in time polynomial in

|x| + |y| whether x and y are equivalent.
2. For any finite set S ⊂ Σ∗, the number of equivalence classes that S is partitioned to is

polynomially bounded in the size of the largest element of S.
Let L ⊆ Σ∗ be a language, R a polynomial equivalence relation and Q ⊆ Σ∗ × N a
parameterized language. An OR-cross-composition of L into Q (with respect to R) is an
algorithm that given t instances x1, . . . , xt ∈ Σ∗ of L belonging to the same equivalence class
of R, uses time polynomial in

∑t
i=1 |xi| and outputs an instance (y, k) of Q such that the

following hold:
1. The parameter value k is polynomially bounded in maxi |xi| + log t.
2. (y, k) is a yes-instance of Q if and only if at least one instance xi is a yes-instance of L.
If an NP-hard language L has an OR-cross-composition into a parameterized problem Q

then Q admits no polynomial kernelization, unless the polynomial hierarchy collapses [1].
We proceed to show this for Prison-free Edge Completion.

S. B. Houari-Durand, E. Eiben, and M. Wahlström 52:9

We present here a high-level sketch of the result, based directly on Theorem 4. In the
full version, we present a more careful proof with explicit parameters. Thus for simplicity,
let (Gi, ki, gi)t

i=1 be a sequence of instances of Gap Prison-free Edge Completion with
a sufficiently high gap value gi = Θ(|V (Gi)|2−ε), ε > 0, to be tuned later. Via a polynomial
equivalence relation, we may assume that |V (Gi)| = n0, |E(Gi)| = m0, ki = k0 and gi = g

holds for every input instance i. By Theorem 4, we assume that for every instance (Gi, ki, gi)
there is a single edge ei ∈ E(Gi) such that Gi −ei is prison-free; refer to this as the activation
edge of Gi an d delete it from the graph.

For the composition, let h ∈ N be such that 2h−1 < t ≤ 2h. Define a balanced binary
tree of height h whose leaves are labelled Li, i = 1, . . . , t. Please a disjoint propagational
component for every internal node x of the tree, identifying the two output edges with the
children of x and the input edge at x with the corresponding output edge of the parent of
x. Initially, all input and output edges are absent except that the input edge at the root
of the tree is present. Finally identify the output edge leading into the leaf Li with the
activation edge ei of the graph Gi. If there are any unused output edges, for example if t

is odd, make these edges forbidden. Let (G, k) be the resulting instance of Prison-free
Edge Completion where k is yet to be determined.

▶ Lemma 15 (⋆). Let A be a prison-free completion set for G. Then there is some i ∈ [t]
such that A contains the activation edge ei of the graph Gi. Furthermore, for every i ∈ [t],
any minimal prison-free edge completion set Ai for Gi +ei can be completed into a prison-free
completion set A for G which contains every output edge in the path from the root to Li but
no other output edges from the tree.

We are now ready to finish the proof.

▶ Theorem 5. Prison-free Edge Completion does not have a polynomial kernel para-
meterized by k unless the polynomial hierarchy collapses.

Proof sketch. We show that the construction above is a cross-composition into Prison-free
Edge Completion with parameter k. Consider briefly the two cases. First, if for some
i ∈ [t] the input instance (Gi, k0, g0) is positive, let Ai be a prison-free completion set for
Gi with |Ai| ≤ k. By Lemma 15 there is a prison-free completion set A ⊇ Ai for G that
modifies edges along the root-leaf path to Li of the binary tree, and does not contain any
other output edge of the tree. By Lemma 9 and minimality of A and Ai we may now assume
that A touches no vertices of the binary tree except on the root-leaf path to Li, and contains
no further edges inside Gi beyond Ai. Let nt be the number of vertices in the gadgets of
the tree incident with edges of A; since the tree has height h = O(log t) and each node is
constant size, we have nt = O(log t). Thus

|A| ≤ |Ai| + (nh + n0)nh ≤ k0 + O((n0 + log t) log t).

On the other hand, assume that for every i ∈ [t] the minimum prison-free completion set Ai

for Gi has |Ai| ≥ k0 + g0. Let A be a prison-free completion set for G. By Lemma 15 there
is some i ∈ [t] such that the activation edge ei of Gi is contained in A. Thus A contains a
prison-free completion set for Gi and |A| ≥ k0 + g0. By the construction of Theorem 4, we
can tune the parameters so that these quantities separate, and choose a parameter k where

k0 + O((n0 + log t) log t) ≤ k < k0 + g0

in which case the reduction is complete. ◀

STACS 2025

52:10 Kernelization for Prison-Free Edge Deletion and Completion

4 Polynomial kernel for Prison-free Edge Deletion

In this section we will find a polynomial kernel for Prison-Free Edge Deletion. Let
G be a graph and k ≥ 1. We will fix (G, k) throughout this section to be an instance of
Prison-Free Edge Deletion.

Throughout this section, for a graph G, and an edge e = uv of G, we call common
neighborhood of e the set NG(e) = NG(u) ∩ NG(v). In addition, given a graph G and a set
of vertices S ⊆ V (G), we denote by S̄ the set V (G) \ S, when G is clear from the context.

4.1 Finding a Small Vertex Modulator
We start by finding a small subset of vertices S such that any edgeset A ⊆ E(G) with at
most k edges that intersects all prisons in G[S] also intersects all prisons in G. While this is
not sufficient for a kernel, as deleting an edge can create a prison, outside of this set, we only
need to focus on prisons that are created by deleting an edge. To obtain this set, we will use
well known Sunflower Lemma due to Erdös and Rado [8].

A sunflower in a set family F is a subset F ′ ⊆ F such that all pairs of elements in F ′

have the same intersection called core.

▶ Lemma 16 (Sunflower Lemma, [8, 10]). Let F be a family of subsets of a universe U , each
of cardinality exactly b, and let a ∈ N. If |F| ≥ b!(a − 1)b, then F contains a sunflower F ′

of cardinality at least a. Moreover, F ′ can be computed in time polynomial in |F|.

▶ Lemma 17 (⋆). We can in in polynomial time either determine that (G, k) is no-instance
of Prison-Free Edge Deletion or compute a set S ⊆ V (G) with |S| ≤ 5 · 8! · (k + 1)8

such that for every prison P in G and every A ⊆ E(G) with |A| ≤ k, it holds that if G[S]∆A

is prison-free, then A ∩ E(G[P]) ̸= ∅.

Proof Sketch. The proof is a straightforward application of Lemma 16. Let S = {E(P) |
P is a prison in G}. Note that each set X ∈ S0 contains precisely 8 edges. We iteratively
apply Lemma 16 on S to find a sunflower of size k + 2. If the core of the sunflower S ′

is empty, then G contains k + 2 edge-disjoint prisons and (G, k) is no instance. Else any
solution of size at most k interesects the core and that is the case even if we require to hit
only k + 1 prisons of S ′, so we remove arbitrary prison from S and repeat the procedure
until no suflower of size k + 2 can be find. At that point S contains at most 8! · (k + 1)8

many prisons and any A ⊆ E(G) with |A| ≤ k that intersect all of the prisons that are left
in S intersects all prisons in G. We let S to be the set of all vertices in these prisons. ◀

For the rest of the section and of the proof, we let S be the set computed by Lemma 17.
It follows, as long as we keep G[S] as the subgraph of the reduced instance, we only need to
be concerned about the prisons that are created by removing some edge from G, as all the
prisons that were in G to start with are hit by a set A of at most A edges as long as G[S]∆A

is prison-free. Given the above, the following two reduction rules are straightforward.

▶ Reduction Rule 1 (⋆). If an edge e ∈ (E(G) \ E(G[S])) is not in a strict supergraph of a
prison, delete it.

▶ Reduction Rule 2 (⋆). For every prison P in G, if E(G[S]) ∩ P = {e}, then remove e

and decrease k by one.

Thanks to these Reduction Rules, we found a set S of vertices of size polynomial in k

such that for any subset S′ of vertices of S such that G[S′] has at most one edge, G[S̄ ∪ S′]
is prison-free. We note that we assume that all reduction rules are applied exhaustively;

S. B. Houari-Durand, E. Eiben, and M. Wahlström 52:11

that is whenever a reduction rule is applicable, we apply it and restart the process from the
beginning. Hence, in all statements in the rest of the section, we implicitely assume that
none of the reduction rules can be applied.

4.2 Consequences on the Structure of G[S̄]
Now we are able to show the following properties that will be useful for the kernel. The
following lemma gives us a stronger property than just the characterisation of prison-free
graphs.

▶ Lemma 18 (⋆). Let F ∈ cmd3(G[S̄]) be a maximal complete multipartite subgraph of G[S̄]
such that F has exactly three classes. Then there exists s ∈ S with F ⊆ N(s). Moreover,
there is a strict supergraph of a prison that contains s and an edge in F .

Proof Sketch. Since F has three classes, there are u, v, w such that uvw is a triangle in G[S̄].
Due to Reduction Rule 1, each edge of F is in a strict supergraph of a prison and hence in K4
in G. Now given a K4 (a, b, u, v) that contains uv, we conclude that w is adjacent to either
a or b, else (a, b, u, v, w) induces a prison with at most one edge in S and Reduction Rule 2
applies. Hence {u, v, w} is a subset of a K4, say (u, v, w, s). As a consequence of Lemma 7
and since G[S̄] is prison-free, one can show that F has to be fully included in the K4-free
part of G[S̄], and hence s ∈ S. Now, any vertex x ∈ F \ {u, v, w} is adjacent to exactly two
vertices in {u, v, w} and hence if sx /∈ E(G), then (u, v, w, s, x) induces a prison without an
edge in S, which is impossible due to the construction of S. ◀

▶ Lemma 19 (⋆). For all F ∈ cmd3(G[S̄]), for all x ∈ S̄ \ F , NG(x) intersects at most one
class of F .

Proof Sketch. The Lemma follows for F ∈ cmd4(G[S̄]) by Lemma 7. Hence, we can assume
F ∈ cmd3(G[S̄]) \ cmd4(G[S̄]). For the sake of contradiction, assume that for x ∈ S̄ \ F ,
we have that N(x) ∩ F contains an edge uv. Since F has three classes, for every w in the
class C that does not contain u nor v, we have that uvw is a triangle. Moreover, similarly
as in the proof of Lemma 18, one can show using Lemma 7 that (u, v, w, x) cannot be K4
and so wx /∈ E(G). Since, F is inclusion maximal, there is a ∈ F \ C such that xa /∈ E(G).
By Lemma 18, there is s ∈ S with F ⊆ N(s). But then either (u, v, w, s, x) or (u, v, a, s, x)
induces a prison with no edge in G[S] (depending on whether sx ∈ E(G) or not), which is
impossible due to the construction of S. ◀

▶ Lemma 20 (⋆). If a supergraph P of a prison of G has an edge in F ∈ cmd3(G[S̄]), then
P ⊆ S ∪ F .

Proof Sketch. For the sake of contradiction, let P be a supergraph of a prison of G that
has an edge uv in F ∈ cmd3(G[S̄]) and there is x ∈ P \ (S ∪ F). One can show that due
to Lemma 19 and application of Reduction Rule 2, P = (a, b, u, v, x) is a strict supergraph
of a prison with {a, b} ⊆ S and vx (or ux) being the only non-edge of P . Moreover, F

contains triangle uvw, as it has at least three classes and wx /∈ E(G) by Lemma 19. Due to
Reduction Rule 2, (u, v, w, a, b) cannot induce a prison, and either wa ∈ E(G) or wb ∈ E(G).
If wa ∈ E(G) (resp. wb ∈ E(G)), then (x, a, u, w, v) (resp. (x, b, u, w, v)) induces a prison in
G with at most one edge in G[S], contradicting application of Reduction Rule 2. ◀

Let’s now focus on the edges of S̄ that are not in any triangle. We show that since
Reduction Rules 1 and 2 has been exhaustively applied, even these edges can be partitioned
to maximal complete bipartite subgraphs.

STACS 2025

52:12 Kernelization for Prison-Free Edge Deletion and Completion

Let B be the set of edges of G[S̄] that are not in any triangle in G[S̄]. For all e = ab ∈
E(G[S]), we note Be = B ∩ {uv : u, v ∈ N(a) ∩ N(b)}. Note that every edge f ∈ B belongs
to a K4 in G due to the application of Reduction Rule 1. Since, f is not in any triangle in
G[S̄], it follows that it is in some Be for e ∈ E(G[S]). On the other hand, we show that if
Be1 ∩ Be2 ̸= ∅, then Be1 = Be2 , otherwise G contains a prison with at most one edge in G[S],
which gives us the following lemma.

▶ Lemma 21 (⋆). {Be | e ∈ E(G[S])} is a partition of B.

The following lemma is a straightforward consequence of Reduction Rule 2, since for every
e ∈ E(S), G[S̄ ∪ e] is prison-free and hence NG(e) ∩ S̄ is P̄3-free.

▶ Lemma 22 (⋆). For all e ∈ E(G[S]), NG(e) ∩ S̄ is complete multipartite and if Be is non
empty, NG(e) is a complete bipartite graph.

▶ Lemma 23 (⋆). Let e ∈ E(G[S]). Assume that Be is not empty. Then any induced
supergraphs of a prison P that has an edge in Be is in Be ∪ S.

Proof Sketch. Assume that there is an induced supergraphs of a prison P = (a, b, u, v, w),
where uv in Be and w ∈ S̄ \ Be. It follows from Reduction Rule 2 and the fact that uv is
not in a triangle in G[S̄] that (1) P is a strict supergraph of a prison with only non-edge
uw (resp. vw) and (2) {a, b} ⊆ S. By Lemma 21, Be = Bab. Since Be is maximal complete
bipartite subgraph of G[S̄], the class that contains v (resp. u), contains a vertex v′ (resp. u′)
with v′w /∈ E(G). But then (a, b, v, v′, w) (resp. (a, b, u, u′, w)) induces a prison in G with
only one edge inside S, which is a contradiction. ◀

It follows that we can partition the edges of G[S̄] in complete multipartite subgraphs,
where one of these complete multipartite subgraphs can intersect another in at most one class.
The following reduction rule lets us reduce the number of complete multipartite subgraphs
in this partition to |S|3 + |S|2 = O(k24). Given this bound, we will reduce size of each of
these components as well as number of isolated vertices in G[S̄] by a polynomial function in
k as well.

▶ Reduction Rule 3 (⋆). Let F ′ ∈ cmd3(G[S̄]). If F ⊆ V (G) is a maximal complete
multipartite component such that F ⊇ F ′ and for every vertex v /∈ F , N(v) intersects at most
one class of F , remove all edges of F .

Proof Sketch. It is not difficult to show that there is no supergraph of a prison in G that
contains an edge with both endpoints in F and at the same time an edge with at least one
endpoint outside of F . Given this for every A ⊆ E(G), every prison in G∆A is either all
edge in F or all edges in G − E(F), since F is complete multipartite and hence prison-free,
it suffices to hit all prisons in G − E(F). ◀

Recall that we always assume that none of the previous reduction rules can be applied,
in particular from now on we assume also that Reduction Rule 3 is not applicable.

From now on, we denote F = cmd3(G[S̄]) ∪ {Be | e ∈ E(G[S])}.

▶ Lemma 24 (⋆). The edges of G[S̄] can be partitioned into at most |S|3 + |S|2 many maximal
complete multipartite subgraphs of G[S̄].

Proof Sketch. Clearly every edge in G[S̄] is in a maximal complete multipartite subgraph
of G[S̄]. We only need to show that each edge is in precisely one such subgraph and that
their number is at most |S|3 + |S|2. First note the edges in B are partitioned into at most

S. B. Houari-Durand, E. Eiben, and M. Wahlström 52:13

|E(G[S])| ≤ |S|2 many complete bipartite graphs by Lemma 21. Hence, we only need
to consider the edges that are in some F ∈ cmd3(G[S̄]). It is a rather straightforward
consequence of Lemma 19 that any edge e in F cannot be in any other maximal complete
multipartite subgraph in cmd3(G[S̄]). It remains to show that show that |cmd3(G[S̄])| ≤ |S|3.

We will now define a function f : cmd3(G[S̄]) → cmd4(G) such that for all F ∈
cmd3(G[S̄]), it holds that (1) F ⊆ f(F) and (2) f(F) contains at least one vertex in
S. That is f is injective. We will show that every edge in G[S] is in at most |S| many
complete multipartite subgraph in the image of f and every element of the image of f

contains an edge of G[S], bounding cmd3(G[S̄]) by |E(G[S])| ≤ |S|3.
If F ∈ cmd4(G[S̄]), then since Reduction Rule 3 has been exhaustively applied, there

is v ∈ S such that N(v) intersects at least two classes of G[F], and since G[S̄ ∪ {v}] is
prison-free and F contains a K4, G[F ∪ {v}] is complete multipartite. We define f(F)
as any maximal complete multipartite component of G containing F ∪ {v}. Else, if F ∈
cmd3(G[S̄]) − cmd4(G[S̄]), then by Lemma 18, there is a vertex s ∈ S such F ⊆ N(s) and
G[F ∪ {s}] is a complete multipartite graphs with at least four parts. We define f(F) as a
maximal complete multipartite subgraph of G containing F ∪ {s}.

▷ Claim 25 (⋆). Let e = uv be an edge of G[S]. Then at most |S| elements of Im(f)
contains the vertices of e.

There are thus at most |S|3 elements of Im(f) that contains an edge in S.

▷ Claim 26 (⋆). Each element of Im(f) contains an edge in S.

So |Im(f)| ≤ |S|3. Since f is injective, |cmd3(G[S̄])| ≤ |S|3. Therefore, |F| =
|cmd3(G[S̄])| + |{Be | e ∈ E(G[S])}| ≤ |S|3 + |S|2. ◀

We will have a kernel once we have bounded the size of a maximal complete multipartite
subgraphs and the number of isolated vertices in G[S̄]. Before we show how to bound those,
let us observe the following two simple lemmas.

▶ Lemma 27 (⋆). Let F ∈ cmd3(G[S̄]) and s ∈ S. If N(s) intersects more than one class
of F , then either N(s) ∩ F = F \ C, where C is a single class in F , or N(s) ∩ F = F .

▶ Lemma 28 (⋆). Let e such that Be is non empty, and let s ∈ S. N(s) either contains Be

or it intersects at most one class of G[Be].

4.3 Marking important vertices
We will now mark some important vertices that we will keep to preserve the solutions and
afterwards argue that we can remove all the remaining vertices without changing the value of
an optimal solution. To better understand why this marking procedure works, it is useful to
recall Lemmas 20 and 23 that state that any (not necessarily strict) supergraph of a prison
that has at least one edge in some F ∈ F is fully contained in S ∪F . That is only supergraphs
of the prison that can contain vertices in more than one complete multipartite subgraph
from F are those with all edges either in S or between S and N(S). Such supergraphs
of a prison have always at most two vertices outside of S. Before we give the details of
the marking procedure, let us introduce a concept of neighborhood pattern. Let X ⊆ V (G)
and a ∈ V (G) \ X, then the neighborhood pattern of a in X is N(a) ∩ X. Moreover, for
two vertices a, b ∈ V (G) \ X, we say a and b have the same neighborhood pattern in X if
N(a) ∩ X = N(b) ∩ X.

STACS 2025

52:14 Kernelization for Prison-Free Edge Deletion and Completion

Now, let F ∈ F . By Lemmas 27 and 28, for every s ∈ S, if N(s) ∩ F ≠ ∅, then there are
only three possibities how N(s) and F can interact. Namely,
1. N(s) ∩ F ⊆ C for a single part C of F ;
2. N(s) ∩ F = F \ C for a single part C of F ;
3. N(s) ∩ F = F .
Given the above, we can split the classes C of F into two types.
Type 1. There is s ∈ S such that N(s) ∩ F ⊆ C or N(s) ∩ F = F \ C. We denote the set of

classes of Type 1. as T 1
F ;

Type 2. The rest, which we denote T 2
F .

Note that |T 1
F | ≤ |S| due to Lemmas 27 and 28 all classes C in F with C /∈ T 1

F have
exactly the same neighborhood in S.

We compute a set MF of marked vertices for the component F ∈ F as follows. We note
that whenever we say, we mark some number x of vertices with some property, we mean
that if there are more than x many vertices with that property, we mark arbitrary x many
of them, else we mark all of them. Let us start with marking vertices in a class C of Type 1.
for every C ∈ T 1

F . For each S′ ⊆ S with |S′| = 4, and for each neighborhood pattern ξ in S′,
we add to MF arbitrary 2k + 5 vertices of C with the neighborhood pattern ξ in S′. Observe
that for any S′′ with |S′′| < 4, there is S′ ⊃ S′′ with |S′| = 4 and so for any neighborhood
pattern ξ′′ in S′′, there is a neighborhood pattern in S′ that is equal to ξ′′ if restricted to
S′′. Hence, using this marking, we marked at least 2k + 5 vertices with any neighborhood
pattern in any S′ with |S′| ≤ 4 as well.

In addition, we pick arbitrary 2k + 5 classes of F that are in T 2
F and add arbitrary 2k + 5

vertices from each picked class to MF .

▶ Lemma 29 (⋆). Given the above marking procedure, for all F ∈ F , it holds that |MF | ≤
|S|5 · (2k + 5) + (2k + 5)2.

In addition to marking the set MF for each F ∈ F , we mark additional set of at most
24 ·

(|S|
4

)
· (2k +5) vertices by going over all subsets S′ of S of size 4 and for each neighborhood

pattern ξ in S′, we mark at most 2k + 5 additional vertices of V (G) \ S that are not in
any F ∈ F with the given neighborhood pattern ξ in S′. We denote this set of at most
|S|4 · (2k + 5) vertices as M∅. Additionally, observe that this way, we mark at least 2k + 5
vertices for each neighborhood pattern in any subset of S of size at most four as well.

▶ Lemma 30 (⋆). Let G′ = G[S ∪ M∅ ∪
⋃

F ∈F MF]. Then (G, k) is yes-instance of Prison-
Free Edge Deletion if and only if (G′, k) is. In addition |V (G′)| = O(k65).

Proof. The bound on the size of G′ follows from the fact that that |S| = O(k8), |F| ≤
|S|3 + |S|2, and Lemma 29. Now, G′ is an induced subgraph of G and hence for every
A ⊆ E(G), if G∆A is prison-free, then also G′∆(A ∩ E(G′)) is. Therefore, if (G, k) is
yes-instance, then so is (G′, k).

For the rest of the proof, let us assume that (G′, k) is yes-instance and let A ⊆ E(G′) be
such that |A| ≤ k and G′∆A is prison-free. We show that G∆A is also prison-free. For the
sake of contradiction, let’s assume that P = (a, b, c, d, e) induces a prison in G∆A. Let us
distinguish two cases depending on whether P contains an edge between two vertices outside
of S or not.
Case 1. All edges of P have at least one endpoint in S. Note that in this case, there are at

most two vertices of P outside of S.
If only one vertex of P , say a, is outside of S, then clearly a is the only vertex of P not in
G′. Note that this also means that none of the edges incident with a is in A. Moreover,

S. B. Houari-Durand, E. Eiben, and M. Wahlström 52:15

G′ contains at least 2k + 5 vertices with the same neighborhood pattern in {b, c, d, e},
else a would have been either in M∅ or in MF for some F ∈ F . Since |A| ≤ k, it follows
that at least one of these 2k + 5 vertices, let’s call it a′, is not incident to an edge in
A and in particular to an edge between a′ and a vertex in {b, c, d, e}. However, then
(G′∆A)[{a′, b, c, d, e}] is isomorphic to P and induces a prison, which is a contradiction
with G′∆A being prison-free.
Now assume that two vertices a and b are outside of S, and there is no edge between a

and b in G∆A. Note that the other non-edge of P share an endpoint with ab, and w.l.o.g.,
we can assume it is ac. As at least one of a and b is not in G′, ab /∈ E(G). Moreover,
ac ∈ E(G) ∩ A, else P is a prison in G and Lemma 17 implies that A intersects P . Hence,
b /∈ V (G′), by our marking procedure, there are at least 2k + 5 vertices b′ in V (G′) \ S

with {c, d, e} ⊆ N(b′) and bb′ /∈ E(G). One of these vertices is not incident on any edge in
A. For such a vertex b′, either (a, b′, c, d, e) or (a, b, b′, d, e) is a prison in G′∆A depending
on whether ab′ ∈ E(G) or ab′ /∈ E(G).

Case 2. P contains an edge in G − S. Then by Lemmas 20 and 23, it follows that there
exists F ∈ F such that P ⊆ S ∪ F . Let S′ = P ∩ S. Now, for x ∈ P \ S, If x belongs to
C ∈ T 1

F , then by construction of MF and the fact that |A| ≤ k, MF either contains x or
a vertex x′ such that (1) x′ ∈ C, (2) N(x) ∩ S′ = N(x) ∩ S′, and (3) x′ is not incident
to any edge of A. On the other hand, if some of the vertices in P ∩ F are in the classes
in T 2

F , then all such vertices have exactly same neighborhood in S, moreover, either all
their respective classes contain vertices in MF , or there are at least five classes of F that
each has 2k + 5 vertices in G′ and no vertex in these classes is incident on an edge in A.
Hence, for each vertex x in P ∩ F that belongs to a class C ∈ T 2

F , we can find C ′ ∈ T 2
F

and x′ ∈ C ′ such that (1) x′ ∈ MF , (2) x′ is not incident on any edge in A, and (3) if x

and y are in P ∩ F , then x′ and y′ are in the same class of F if and only x and y are.
Let P ′ = (a′, b′, c′, d′, e′) be a subgraph of G′ such that for all x ∈ {a, b, c, d, e}, if x ∈ G′,
then x′ = x and else x′ is computed as described above, depending on whether x ∈ T 1

F

or x ∈ T 2
F . It follows that for all x, y ∈ {a, b, c, d, e}, there is an edge xy ∈ E(G) if and

only if x′y′ ∈ E(G′). Moreover, since xy ∈ A implies that {x, y} ⊆ V (G′), it follows
that xy ∈ A if and only if x′y′ ∈ A. Therefore, P ′ induces a prison in G′, which is a
contradiction.

Hence, such prison P in G∆A cannot exist and G∆A is prison-free as well. Consequently,
(G′, k) is yes-instance of Prison-Free Edge Deletion if and only if (G, k) is and the
Lemma follows. ◀

The polynomial kernel for Prison-Free Edge Deletion then follows from Lemma 30 by
observing that all reduction rules as well as marking procedure can be applied in polynomial
time.

▶ Theorem 6. Prison-Free Edge Deletion admits a polynomial kernel.

5 Conclusions

We have showed that H-free Edge Deletion has a polynomial kernel when H is the
5-vertex graph we call the “prison” (consisting of K5 minus two adjacent edges). On the
other hand, H-free Edge Completion for the same graph H does not have a polynomial
kernel unless the polynomial hierarchy collapses. By edge complementation, this is equivalent
to the statement that H-free Edge Deletion has no polynomial kernel, where H is the
edge complement of H. The positive result refutes a conjecture by Marx and Sandeep [15],
who conjectured that H-free Edge Deletion has no polynomial kernel for any graph H

on at least five vertices except trivial cases.

STACS 2025

52:16 Kernelization for Prison-Free Edge Deletion and Completion

In [15], the conjecture is reduced to the statement that H-free Edge Deletion has
no polynomial kernel for any graph H in a list H of nineteen small graphs, via a sequence
of problem reductions. In this naming scheme, the prison is the complement of H1. The
exclusion of co-H1 from this list introduces a sequence of new minimal graphs H ′ for which
the kernelization problem is open, out of which the smallest are the prison plus a vertex v

which is (respectively) an isolated vertex; attached to a degree-3 vertex of the prison; or
attached to both a degree-3 and a degree-2 vertex of the prison (R. B. Sandeep, personal
communication, using software published along with [15]). It is at the moment not known
whether the new list H′ is finite using the methods of [15].

More broadly, the result suggests that the picture of kernelizability of H-free Edge
Modification problems could be more complex than conjectured by Marx and Sandeep. If so,
the question of precisely where the tractability line goes for polynomial kernelization seems
highly challenging, as all kernelization results so far (including ours) rely on highly case-
specific structural characterizations of H-free graphs. We leave these deeper investigations
into the problem open for future work. We also leave open the question of a polynomial
kernel for Prison-free Edge Editing.

References
1 Hans L. Bodlaender, Bart M. P. Jansen, and Stefan Kratsch. Kernelization lower bounds by

cross-composition. SIAM J. Discret. Math., 28(1):277–305, 2014. doi:10.1137/120880240.
2 Leizhen Cai. Fixed-parameter tractability of graph modification problems for hereditary

properties. Inf. Process. Lett., 58(4):171–176, 1996. doi:10.1016/0020-0190(96)00050-6.
3 Leizhen Cai and Yufei Cai. Incompressibility of H-free edge modification problems. Algorithmica,

71(3):731–757, 2015. doi:10.1007/S00453-014-9937-X.
4 Yixin Cao, Ashutosh Rai, R. B. Sandeep, and Junjie Ye. A polynomial kernel for diamond-free

editing. Algorithmica, 84(1):197–215, 2022. doi:10.1007/S00453-021-00891-Y.
5 Christophe Crespelle, Pål Grønås Drange, Fedor V. Fomin, and Petr A. Golovach. A survey

of parameterized algorithms and the complexity of edge modification. Comput. Sci. Rev.,
48:100556, 2023. doi:10.1016/J.COSREV.2023.100556.

6 Eduard Eiben and William Lochet. A polynomial kernel for line graph deletion. In Fabrizio
Grandoni, Grzegorz Herman, and Peter Sanders, editors, 28th Annual European Symposium
on Algorithms, ESA 2020, September 7-9, 2020, Pisa, Italy (Virtual Conference), volume
173 of LIPIcs, pages 42:1–42:15. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, 2020.
doi:10.4230/LIPICS.ESA.2020.42.

7 Eduard Eiben, William Lochet, and Saket Saurabh. A polynomial kernel for paw-free editing.
In IPEC, volume 180 of LIPIcs, pages 10:1–10:15. Schloss Dagstuhl – Leibniz-Zentrum für
Informatik, 2020. doi:10.4230/LIPICS.IPEC.2020.10.

8 Paul Erdös and Richard Rado. Intersection theorems for systems of sets. Journal of the
London Mathematical Society, 1(1):85–90, 1960.

9 Michael R. Fellows, Michael A. Langston, Frances A. Rosamond, and Peter Shaw. Efficient
parameterized preprocessing for cluster editing. In Erzsébet Csuhaj-Varjú and Zoltán Ésik,
editors, Fundamentals of Computation Theory, 16th International Symposium, FCT 2007,
Budapest, Hungary, August 27-30, 2007, Proceedings, volume 4639 of Lecture Notes in Computer
Science, pages 312–321. Springer, 2007. doi:10.1007/978-3-540-74240-1_27.

10 Jörg Flum and Martin Grohe. Parameterized Complexity Theory, volume XIV of Texts in
Theoretical Computer Science. An EATCS Series. Springer, Berlin, 2006. doi:10.1007/
3-540-29953-X.

11 Fedor V. Fomin, Daniel Lokshtanov, Saket Saurabh, and Meirav Zehavi. Kernelization:
Theory of Parameterized Preprocessing. Cambridge University Press, 2019. doi:10.1017/
9781107415157.

https://doi.org/10.1137/120880240
https://doi.org/10.1016/0020-0190(96)00050-6
https://doi.org/10.1007/S00453-014-9937-X
https://doi.org/10.1007/S00453-021-00891-Y
https://doi.org/10.1016/J.COSREV.2023.100556
https://doi.org/10.4230/LIPICS.ESA.2020.42
https://doi.org/10.4230/LIPICS.IPEC.2020.10
https://doi.org/10.1007/978-3-540-74240-1_27
https://doi.org/10.1007/3-540-29953-X
https://doi.org/10.1007/3-540-29953-X
https://doi.org/10.1017/9781107415157
https://doi.org/10.1017/9781107415157

S. B. Houari-Durand, E. Eiben, and M. Wahlström 52:17

12 Jens Gramm, Jiong Guo, Falk Hüffner, and Rolf Niedermeier. Graph-modeled data clustering:
Exact algorithms for clique generation. Theory Comput. Syst., 38(4):373–392, 2005. doi:
10.1007/S00224-004-1178-Y.

13 Sylvain Guillemot, Frédéric Havet, Christophe Paul, and Anthony Perez. On the (non-)existence
of polynomial kernels for Pl-free edge modification problems. Algorithmica, 65(4):900–926,
2013. doi:10.1007/S00453-012-9619-5.

14 Stefan Kratsch and Magnus Wahlström. Two edge modification problems without polynomial
kernels. Discret. Optim., 10(3):193–199, 2013. doi:10.1016/J.DISOPT.2013.02.001.

15 Dániel Marx and R. B. Sandeep. Incompressibility of H-free edge modification problems:
Towards a dichotomy. J. Comput. Syst. Sci., 125:25–58, 2022. doi:10.1016/J.JCSS.2021.11.
001.

16 Stephan Olariu. Paw-fee graphs. Inf. Process. Lett., 28(1):53–54, 1988. doi:10.1016/
0020-0190(88)90143-3.

17 W. D. Wallis and G. H. Zhang. On maximal clique irreducible graphs. J. Comb. Math. Comb.
Comput, 8:187–198, 1990.

STACS 2025

https://doi.org/10.1007/S00224-004-1178-Y
https://doi.org/10.1007/S00224-004-1178-Y
https://doi.org/10.1007/S00453-012-9619-5
https://doi.org/10.1016/J.DISOPT.2013.02.001
https://doi.org/10.1016/J.JCSS.2021.11.001
https://doi.org/10.1016/J.JCSS.2021.11.001
https://doi.org/10.1016/0020-0190(88)90143-3
https://doi.org/10.1016/0020-0190(88)90143-3

On Read-k Projections of the Determinant
Pavel Hrubeš #

Institute of Mathematics of ASCR, Czech Republic

Pushkar S. Joglekar1 #

Vishwakarma Institute of Technology, Pune, India

Abstract
We consider read-k determinantal representations of polynomials and prove some non-expressibility
results. A square matrix M whose entries are variables or field elements will be called read-k, if
every variable occurs at most k times in M . It will be called a determinantal representation of a
polynomial f if f = det(M). We show that

the n × n permanent polynomial does not have a read-k determinantal representation for
k ∈ o(

√
n/ log n) (over a field of characteristic different from two).

We also obtain a quantitative strengthening of this result by giving a similar non-expressibility for
k ∈ o(

√
n/ log n) for an explicit n-variate multilinear polynomial (as opposed to the permanent

which is n2-variate).

2012 ACM Subject Classification Theory of computation → Algebraic complexity theory

Keywords and phrases determinant, permanent, projection of determinant, VNP completeness of
permanent

Digital Object Identifier 10.4230/LIPIcs.STACS.2025.53

Related Version Full Version: https://eccc.weizmann.ac.il/report/2024/125/

Funding Pavel Hrubeš : This work was supported by Czech Science Foundation GAČR grant
25-16311S.

1 Introduction

In algebraic complexity theory, two polynomials are of central interest: the determinant
and the permanent of a square matrix. If X is an n × n matrix with indeterminates xi,j as
entries, the polynomials are defined as

detn(X) =
∑

σ

sgn(σ)
n∏

i=1
xi,σ(i) , permn(X) =

∑
σ

n∏
i=1

xi,σ(i) ,

where σ ranges over permutations of {1, . . . , n} and sgn(σ) ∈ {1, −1} is the sign of σ.
Motivated by similarity of these expressions, Pólya [9] asked whether there exists a simple
expression of the permanent in terms of the determinant. This question, which may look like
a mere mathematical curiosity, was placed into a deeper context by Valiant. In the seminal
paper [10], he defined algebraic analogues of complexity classes P and NP, which we now call
as VP and VNP. He showed that the permanent polynomial is complete for the class VNP
(if the underlying field is of characteristic different from two). Since the determinant lies
in VP, a “simple expression” of perm in terms of det would entail that the two complexity
classes coincide.

1 The author would like to thank Pavel Hrubeš for hosting him at the Institute of Mathematics of ASCR
where a part of this work was done.

© Pavel Hrubeš and Pushkar S. Joglekar;
licensed under Creative Commons License CC-BY 4.0

42nd International Symposium on Theoretical Aspects of Computer Science (STACS 2025).
Editors: Olaf Beyersdorff, Michał Pilipczuk, Elaine Pimentel, and Nguyễn Kim Thắng;
Article No. 53; pp. 53:1–53:7

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:pahrubes@gmail.com
https://orcid.org/0000-0003-4526-4934
mailto:joglekar.pushkar@gmail.com
https://orcid.org/0000-0002-6744-0604
https://doi.org/10.4230/LIPIcs.STACS.2025.53
https://eccc.weizmann.ac.il/report/2024/125/
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

53:2 On Read-k Projections of the Determinant

The precise version of Pólya’s problem arising in this context is the following: if m = m(n)
is the smallest m so that we can express

permn(X) = detm(M) , (1)

where M is a matrix with variables or scalars as entries, can m(n) be bounded by a polynomial
in n or does it grow super-polynomially? This question is intimately related to the problem
whether VP = VNP and is one of the major open problems in algebraic complexity theory.
It is generally believed that m grows exponentially with n. However, the strongest lower
bound known today – due to Mignon and Ressayre2 [7], see also [4]– is quadratic in n. More
on the fascinating story of the determinant and permanent can be found in [3, 1].

The problem can be refined in many ways. In this paper, we consider read-k representa-
tions. A matrix M whose entries are variables or field elements is read-k, if every variable
occurs at most k times in M . It will be called a determinantal representation of a polynomial
f if f = det(M). Read-k determinantal representations (or read-k projections of determinant)
were defined in [2] where it was shown that for sufficiently large n, permn does not have a
read-once determinantal representation. Note that in this setting, the question is not about
the size of M but merely about its existence. A more general model of rank-k projections was
considered in [5]. There it was shown that permn cannot be expressed as the determinant of
a matrix of the form A +

∑
i,j Bi,jxi,j with Bi,j matrices of rank at most 1.

Continuing this line of research, we will prove that permn does not have a read-k
determinantal representation for k ∈ o(

√
n/ log n). In fact, we will show that any M

satisfying (1) must have Ω(n2.5/ log n) entries containing a variable.
This result is incomparable with the quadratic lower bound on the size m(n) of a

determinantal representation. Denoting s(n) the smallest number of entries containing a
variable in a determinantal representation of permn, the two quantities are related by

m(n)/2 ≤ s(n) ≤ m(n)2

(the first inequality follows from Lemma 1 below, the latter is obvious). This does not allow
to deduce our lower bound s(n) ≥ Ω(n2.5/ log n) from the bound m(n) ≥ Ω(n2) in [7], or vice
versa. On the other hand, super-polynomial lower bounds on s(n) and m(n) are equivalent.

On a high level, our proof follows ideas of Nechiporuk [8] which were later adapted
to the algebraic setting by Kalorkoti [6]. As a technical component, which may be of an
independent interest, we identify a specific property differentiating the determinant and the
permanent. We will show that every multilinear polynomial f in n variables can be expressed
as the permanent of a read-once matrix (of an exponential size). This follows by inspecting
Valiant’s VNP-completeness proof in [10]. An analogous statement is false in the case of
the determinant: there exists such an f which requires read-k determinantal representations
with k exponential in n. This is proved by a non-constructive counting argument.

Notation and definitions

F will denote an underlying field. Unless stated otherwise, the field is arbitrary. X will
denote a set of variables.

Given a matrix M with entries from F ∪ X, its variable size is the number of entries
containing a variable. It will be called read-k if every variable appears at most k times in
M . For a polynomial f ∈ F[X], M will be called a determinantal representation of f if
f = det(M).

As usual, [n] = {1, . . . , n}.

2 In fact, the lower bound holds even if M is allowed to have affine functions as entries.

P. Hrubeš and P. S. Joglekar 53:3

2 Some properties of determinantal representations

We first show that the size of a determinantal representation can be bounded in terms of its
variable size.

▶ Lemma 1. Let M be a square matrix with entries from F ∪ X of variable size s ≥ 1.
Then there exists a 2s × 2s matrix H of variable size s with entries from F ∪ X such that
det(H) = det(M). Moreover, each variable occurs in H the same number of times as in M

and the variables appear on the main diagonal of H only.

Proof. The lemma is proved in two steps. In the first step, we transform M to a matrix M∗

with the same determinant such that every row and column of M∗ contains at most one
variable. In the second step, we reduce the dimension of M∗.

Assume that M is an m × m matrix. For the first step, suppose that M contains a
variable x in the (i, j)-th position. Let M ′ be the (m + 2) × (m + 2) matrix

M ′ :=

 M0 ei

1 x

et
j 0 1

 ,

where M0 is obtained by setting the (i, j)-th entry to zero in M , ei is the i-th unit column
vector, et

j is the j-th unit row vector, and the unspecified entries are zero. Using cofactor
expansion on the last column, we obtain det(M) = det(M ′). The number of occurrences
of variables has not changed while the displayed variable does not share a row or column
with another variable. Repeating this construction s times for each variable in M , we indeed
obtain an (m+2s)× (m+2s) matrix M∗ with f = det(M∗) whose rows and columns contain
at most one variable each.

We now proceed with the second step. Permuting rows and columns of M∗, we can write
det(M) = ± det(N) with

N =
(

A B

C D

)
,

where A, B, C, D are of dimensions s × s, s × (s + m), (s + m) × s, (s + m) × (s + m),
respectively, and variables appear on the main diagonal of A only.

Since B has s rows, it has rank at most s. We can also assume that every column of B is
a linear combination of its first s columns. Applying suitable column operations to the last
m + s columns of N , we can further convert N to the form(

A B1 0
C D1 D2

)
,

with B1 being an s × s matrix. D2 is of dimension (m + s) × m and hence has rank at most
m. Assuming that every row of D2 is a linear combination of its last m rows, we can apply
row-operations to write

det(M) = ± det

 A B1 0
C1 D′

1 0
C2 D′′

1 D′
2

 = ± det(D′
2) det

(
A B1
C1 D′

1

)
,

where D′
2 is an m × m scalar matrix. The matrix H =

(
A B1
C1 D′

1

)
is a 2s × 2s matrix

consisting of scalars except for the s variables on the diagonal of A. Since the last column of
H contains field elements only, the factor ± det(D′

2) can be moved inside H by multiplying
the last column. ◀

STACS 2025

53:4 On Read-k Projections of the Determinant

This leads to the following non-constructive lower bound on variable size of determinantal
representations.

▶ Theorem 2. For every n, there exists a multilinear polynomial f ∈ F[x1, . . . , xn] such that
every determinantal representation of f requires variable size Ω(2n/2).

Proof. Let sn be the smallest s ≥ 1 such that every multilinear polynomial f ∈ F[x1, . . . , xn]
has a determinantal representation of variable size s. Lemma 1 implies that every such f can
be expressed as f = det(C + x1D1 + · · · + xnDn) where C is a scalar matrix and D1, . . . , Dn

are diagonal matrices in F2sn×2sn . Viewing entries of C and diagonal entries of D1, . . . , Dn

as parameters, every coefficient of f is a polynomial function of these parameters. Since f

has 2n coefficients and there are k = (2sn)2 + 2snn parameters, this gives a polynomial map
G : Fk → F2n whose image contains all of F2n . This implies k ≥ 2n.

To see this, assume first that F is finite of size q. Then we must have qk ≥ q2n and
hence k ≥ 2n. If F is infinite and k < 2n, the components G1, . . . , G2n of G are algebraically
dependent over F. Then there exists a non-trivial polynomial g with g(G1, . . . , G2n) = 0 and
g therefore vanishes on all of F2n . But this is impossible: given a finite subset S of F of size
exceeding the degree of g, Schwartz-Zippel lemma implies that g does not vanish already
on S2n .

Finally, k ≥ 2n gives sn ≥ (1 − ϵ)2n/2−1 for every ϵ > 0 and n sufficiently large. ◀

3 A property of the permanent

We now show that Lemma 1 and Theorem 2 fail when the determinant is replaced with the
permanent polynomial. It follows from Valiant’s completeness results that every multilinear
polynomial in F[X] can be expressed both as permm(M) and detm(M ′) where M, M ′ are
matrices over F ∪ X of an exponential size. Hence, from the perspective of matrix size, the
two polynomials are indistinguishable. However, we show that in the case of the permanent,
the matrix M can be assumed to be read-once:

▶ Theorem 3. Let F be a field of characteristic different from two. Let f ∈ F[x1, . . . , xn]
be a multilinear polynomial. Then there exists m ≤ O(2n) and a matrix M with entries in
F ∪ {x1, . . . , xn} such that f = permm(M) and each variable xi appears in M exactly once.
Moreover, every row and column of M contains at most one variable.

We outline the proof of Theorem 3 in the rest of this section. It follows by inspection of
Valiant’s proof of VNP completeness of the permanent. We refer to [11], [3] for a detailed
exposition of Valiant’s work.

Recall that an arithmetic formula over a field F is a rooted binary tree whose leaves
are labelled with variables or field elements and other vertices are labelled with one of the
operation + or ×. As the size of a formula, we take the number of +, × operations. Every
vertex in a formula computes a polynomial in the obvious way.

The following two lemmas are paraphrased versions of Theorem 21.27 and 21.29 from [3].

▶ Lemma 4 ([3]). Let F be an arithmetic formula of size m computing a polynomial
f ∈ F[X]. Then there exists an (2m + 2) × (2m + 2) matrix M with entries from F ∪ X such
that f = perm2m+2(M) and every variable occurs in M the same number of times it occurs
in F . Moreover, every column and row of M contains at most one variable.

▶ Lemma 5 ([3]). Let F be a field of characteristic different from two. Let M be an m × m

matrix with entries from F ∪ {x1, . . . , xn, y1, . . . , yk} having in each row and column at most
one variable. Then there exists m′ ≤ 10m and an m′ × m′ matrix M ′ with entries from

P. Hrubeš and P. S. Joglekar 53:5

F ∪ {x1, . . . , xn} such that permm′(M ′) =
∑

y1,...,yk∈{0,1} permm(M) and every variable xi

occurs in M ′ the same number of times it occurs in M . Moreover, every row and column of
M ′ contains at most one variable.

We also need the following simple fact:

▶ Lemma 6. Every n-variate multilinear polynomial can be computed by an arithmetic
formula of size O(2n).

Proof. If f is a multilinear polynomial with n > 0 variables, we can write it as

f(x1, . . . , xn) = xnf1(x1, . . . , xn−1) + f0(x1, . . . , xn−1) ,

where f1, f0 are multilinear polynomials in n − 1 variables. Given formulas for f0, f1 of size
at most s, we obtain a formula for f of size ≤ 2s + 2. By induction, this gives a formula of
size O(2n). ◀

Now we are ready to prove Theorem 3.

Proof of Theorem 3. Let X be the set of variables {x1, . . . , xn}. Let f ∈ F[X] be a
multilinear polynomial

f =
∑

S⊆[n]

aS

∏
i∈S

xi.

Introduce new variables Y = {y1, . . . , yn}. Let f̂ be the polynomial

f̂(y1, . . . , yn) =
∑

S⊆[n]

aS

∏
i∈S

yi

∏
i∈[n]\S

(1 − yi) .

This guarantees that for any boolean substitution y1, . . . , yn ∈ {0, 1}, f̂(y1, . . . , yn) = aS

where S = {i | yi = 1}. We can therefore write

f =
∑

y1,...,yn∈{0,1}

f̂(y1, . . . , yn)
n∏

i=1
(xiyi + (1 − yi)) .

Note that in this expression, each xi appears exactly once. Let g be the polynomial
f̂(y1, . . . , yn)

∏n
i=1(xiyi + (1 − yi)). As f̂ is multilinear, it has a formula of size O(2n) by

Lemma 6. It follows that g has a formula of size O(2n) in which each variable from X appears
exactly once. Lemma 4 gives an m′ × m′ matrix M ′ with m′ ≤ O(2n) with entries from
F∪ X ∪ Y such that g = permm′(M ′), each variable from X appears exactly once in M ′ and
every row or column of M ′ contains at most one variable. Since f =

∑
y1,y2,...,yn∈{0,1} g(X, Y)

we can apply Lemma 5 to obtain the desired matrix M . ◀

4 Permanent versus determinant

We now prove our main result on variable size of determinantal representations of permanent.

▶ Theorem 7. Over a field of characteristic different from two, every determinantal repres-
entation of permn requires variable size Ω(n5/2/ log n).

STACS 2025

53:6 On Read-k Projections of the Determinant

Proof. Let X be the set of variables {xi,j |1 ≤ i, j ≤ n} and let X̄ be the n × n matrix with
xi,j in (i, j)-th entry. Assume that permn(X̄) = det(M) where M is a matrix with entries
from F ∪ X.

Let Z ⊆ X be a set of k variables xi1,j1 , . . . , xik,jk
where i1, . . . , ik are distinct and

j1, . . . , jk are also distinct. If k = ⌊log2 n − c⌋, where c is a suitable absolute constant,
Theorem 3 implies3 the following:

for every multilinear polynomial f ∈ F[Z], there exists a matrix X̄f obtained by setting
variables outside of Z to constants in X̄ such that f = permn(X̄f).

Since permn(X̄) = det(M), this means that also f = det(Mf) where Mf is obtained by
setting variables outside of Z to constants in M . On the other hand, Theorem 2 shows that
there exists a multilinear polynomial in F[Z] which requires determinantal representation
of variable size Ω(2k/2). Hence M must contain Ω(2k/2) entries from Z. Inside X, we can
find t = n⌊ n

k ⌋ such disjoint sets Z1, . . . , Zt. For every Zi, M contains Ω(2k/2) entries from
Zi. Since the sets are disjoint, M contains Ω(t2k/2) entries from X altogether. This gives an
Ω(n5/2/ log n) lower bound on variable size of M . ◀

If permn has a read-k determinantal representation M then M has variable size at most
n2k. This implies:

▶ Corollary 8. Over a field of characteristic different from two, every read-k determinantal
representation of permn requires k ≥ Ω(

√
n/ log n).

5 A harder multilinear polynomial

We now present an explicit multilinear polynomial Un for which we can prove a quantitatively
stronger lower bound than the one presented in Theorem 7. Another improvement is that
the lower bound holds over any field. Furthermore, Un has a polynomial-size arithmetic
formula and hence also a polynomial determinantal representation (whereas for permn this
is not known).

For an integer n ≥ 2, let r := ⌊log2 n⌋ − 1 and ℓ := ⌊n/2r⌋. Un has variables xi,j ,
i ∈ [ℓ], j ∈ [r], and yS , S ⊆ [r], indexed by subsets of [r]. The number of variables is therefore
rℓ + 2r ≤ n. Un is defined as

Un := y∅ +
∑
i∈[ℓ]

∑
∅̸=S⊆[r]

yS

∏
j∈S

xi,j .

▶ Theorem 9. Over any field, every determinantal representation of Un requires variable
size Ω(n1.5/ log n).

Proof sketch. Un is defined to have the following property: given i ∈ [ℓ] and a multilinear
polynomial f ∈ F[xi,1, . . . , xi,r] of the form

∑
S⊆[r] aS

∏
j∈S xi,j , we can set xi′,j to zero for

every i′ ≠ i and yS to aS for every S to obtain the polynomial f from Un. This is precisely
the property we used in the proof of Theorem 7, except that Un has fewer variables. The
same argument as in Theorem 7 gives that every determinantal representation of Un contains
Ω(ℓ2r/2) variables which yields the bound Ω(n1.5/ log n). ◀

3 Note that permn is invariant under permutations of rows and columns.

P. Hrubeš and P. S. Joglekar 53:7

Let us make some comments:
(i) Every read-k determinantal representation of Un requires k ≥ Ω(

√
n/ log n).

(ii) On the other hand, Un has a read-O(n) determinantal representation of variable size
O(n2).

(i) is an immediate consequence of Theorem 9. (ii) follows by, first, observing that Un has
an arithmetic formula in which every variable appears O(n) times and, second, that Lemma
4 holds also when perm2m+2 is replaced with det2m+2.

References
1 Manindra Agrawal. Determinant versus permanent. Proceedings of the International Congress

of Mathematicians, 3:985–998, July 2008.
2 N. R. Aravind and P. S. Joglekar. On the expressive power of read-once determinants. In

Fundamentals of Computation Theory - 20th International Symposium, volume 9210 of Lecture
Notes in Computer Science, pages 95–105. Springer, 2015. doi:10.1007/978-3-319-22177-9_
8.

3 P. Bürgisser, M. Clausen, and M. A. Shokrollahi. Algebraic complexity theory, volume 315 of
Grundlehren der mathematischen Wissenschaften. Springer, 1997.

4 J. Cai, X. Chen, and D. Li. A quadratic lower bound for the permanent and determinant
problem over any characteristic ̸= 2. In Proceedings of the 40th Annual ACM Symposium on
Theory of Computing, pages 491–498, 2008. doi:10.1145/1374376.1374446.

5 Ch. Ikenmeyer and J. M. Landsberg. On the complexity of the permanent in various computa-
tional models. CoRR, abs/1610.00159, 2016. arXiv:1610.00159.

6 K. Kalorkoti. A lower bound for the formula size of rational functions. SIAM J. Comput.,
14(3):678–687, 1985. doi:10.1137/0214050.

7 T. Mignon and N. Ressayre. A quadratic bound for the determinant and permanent problem.
International Mathematics Research Notices, pages 4241–4253, 2004.

8 E. I. Nechiporuk. On a boolean function. Soviet Math. Dokl., 7(4):999–1000, 1966.
9 G. Pólya. Aufgabe 424. Arch. Math. Phys., 20(271), 1913.

10 Leslie G. Valiant. Completeness classes in algebra. In Proceedings of the 11h Annual ACM
Symposium on Theory of Computing,, pages 249–261. ACM, 1979. doi:10.1145/800135.
804419.

11 Joachim von zur Gathen. Feasible arithmetic computations: Valiant’s hypothesis. J. Symb.
Comput., 4(2):137–172, 1987. doi:10.1016/S0747-7171(87)80063-9.

STACS 2025

https://doi.org/10.1007/978-3-319-22177-9_8
https://doi.org/10.1007/978-3-319-22177-9_8
https://doi.org/10.1145/1374376.1374446
https://arxiv.org/abs/1610.00159
https://doi.org/10.1137/0214050
https://doi.org/10.1145/800135.804419
https://doi.org/10.1145/800135.804419
https://doi.org/10.1016/S0747-7171(87)80063-9

Multidimensional Quantum Walks, Recursion, and
Quantum Divide & Conquer
Stacey Jeffery #

QuSoft, CWI, Amsterdam, The Netherlands
University of Amsterdam, The Netherlands

Galina Pass #

QuSoft, Amsterdam, The Netherlands
University of Amsterdam, The Netherlands

Abstract
We introduce an object called a subspace graph that formalizes the technique of multidimensional
quantum walks. Composing subspace graphs allows one to seamlessly combine quantum and classical
reasoning, keeping a classical structure in mind, while abstracting quantum parts into subgraphs
with simple boundaries as needed. As an example, we show how to combine a switching network
with arbitrary quantum subroutines, to compute a composed function. As another application,
we give a time-efficient implementation of quantum Divide & Conquer when the sub-problems are
combined via a Boolean formula. We use this to quadratically speed up Savitch’s algorithm for
directed st-connectivity.

2012 ACM Subject Classification Theory of computation → Quantum computation theory; Theory
of computation → Design and analysis of algorithms

Keywords and phrases Quantum Divide & Conquer, Time-Efficient, Subspace Graphs, Quantum
Walks, Switching Networks, Directed st-Connectivity

Digital Object Identifier 10.4230/LIPIcs.STACS.2025.54

Related Version Full Version: https://arxiv.org/abs/2401.08355

Funding Stacey Jeffery: Supported by ERC STG grant 101040624-ASC-Q, NWO Klein project
number OCENW.Klein.061. SJ is a CIFAR Fellow in the Quantum Information Science Program.
Galina Pass: Supported by the National Agenda for Quantum Technologies (NAQT), as part of the
Quantum Delta NL programme.

1 Introduction

There are a number of graphical ways of reasoning about how the steps or subroutines of
a classical algorithm fit together. For example, it is natural to think of a (randomized)
classical algorithm as a (randomized) decision tree (or branching program), where different
paths are chosen depending on the input, as well as random choices made by the algorithm.
A deterministic algorithm gives rise to a computation path, a randomized algorithm to a
computation tree. The edges of a path or tree, representing steps of computation, might be
implemented by some subroutine that is also realized by a path (or tree) – we can abstract the
subroutine’s details by viewing it as an edge, or zoom in and see those details, as convenient.
More generally, we often think of a classical randomized algorithm as a random walk on a
(possibly directed) graph, where there may be multiple parallel paths from point a to point
b, with the cost of getting from a to b being derived from the expected length of these paths.

This picture appears to break down for quantum algorithms, at least in the standard
circuit model. A quantum circuit can be thought of as a path, with edges representing its
steps, but it is unclear how to augment this reasoning with subroutines. Consider calling
subroutines with varying time complexities {Ti}i in superposition. Even if the subroutines

© Stacey Jeffery and Galina Pass;
licensed under Creative Commons License CC-BY 4.0

42nd International Symposium on Theoretical Aspects of Computer Science (STACS 2025).
Editors: Olaf Beyersdorff, Michał Pilipczuk, Elaine Pimentel, and Nguyễn Kim Thắng;
Article No. 54; pp. 54:1–54:16

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:jeffery@cwi.nl
https://orcid.org/0000-0003-0046-5089
mailto:g.pass@uva.nl
https://doi.org/10.4230/LIPIcs.STACS.2025.54
https://arxiv.org/abs/2401.08355
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

54:2 Multidimensional Quantum Walks, Recursion, and Quantum Divide & Conquer

are all classical deterministic, in the standard quantum circuit model, we tend to incur a
cost of maxi Ti if we call a superposition of subroutines, since we must wait for the slowest
subroutine to finish before we can apply the next step of the computation. This problem was
addressed in [13], where the technique of multidimensional quantum walks [15] was used to
show how to get an average in place of a max in several settings where a quantum algorithm
calls subroutines in superposition: a general setting, as well as the setting of quantum walks.
The intuition behind [13] is that a quantum walk does keep the classical intuition of parallel
paths representing a superposition of possible computations, and any quantum algorithm
can be viewed as some sort of a quantum walk on a simple underlying graph (something like
a path), but with some additional structure associated with it.

Multidimensional quantum walks, which we study more formally in this paper as an object
than has been done previously, are valuable as a way of combining quantum and classical
reasoning. A quantum algorithm can be abstracted as a graph with perhaps complicated
internal structure, but a simple boundary with an “in” and an “out” terminal (called “s” and
“t”), that can be seamlessly hooked into other graph-like structures, perhaps representing
simple classical reasoning, such as a quantum random walk, or perhaps with their own
complicated very quantum parts.

Subspace Graphs

While [15] and [13] use similar techniques, it is not formally defined what a multidimensional
quantum walk is. We formally define an object called a subspace graph (Definition 2) that
abstracts the structures in [15] and [13]. A subspace graph is simply a graph with some
subspaces associated with each edge and vertex, where the structure of the graph constrains
how the spaces can overlap. Defining what we mean, precisely, by a multidimensional
quantum walk (i.e. subspace graph) is the first step to developing a general theory of
recursive constructions of subspace graphs.

The recursive structure of subspace graphs is useful for composing quantum algorithms,
but as a design tool, it is also convenient to be able to view a subspace graph in varying
levels of abstraction. We can “zoom out” and view a complicated process as just a special
“edge”, or zoom in on that edge and understand its structure as an involved graph with
additional structure.

We cannot hope to be able to understand all quantum algorithms using purely classical
ideas – quantum computing is not classical computing. But perhaps the next best thing is a
way to seamlessly combine classical and quantum ideas, extending the classical intuition to
its limits, and then employing quantum reasoning when needed, but with the possibility of
abstracting out from it when needed as well, using a fully quantum form of abstraction.

In this work, we consider one specific kind of composition of subspace graphs called switch
composition – another type is implicit in [13] – but we would like to emphasize the potential
for more general types of recursion, which we leave for future work.

Time-Efficient Quantum Divide & Conquer

A particular type of recursive algorithm is divide & conquer, in which a problem is broken
into multiple smaller sub-problems, whose solutions, obtained by recursive calls, are combined
into a solution for the original problem. As a motivating example, consider the recursively
defined nand-tree function. Let fk,d : {0, 1}dk → {0, 1} be defined f0,d(x) = x, and for k ≥ 1,

fk,d(x) = NAND
(
fk−1,d(x(1)), . . . , fk−1,d(x(d))

)
:= 1− fk−1,d(x(1)) . . . fk−1,d(x(d)),

S. Jeffery and G. Pass 54:3

where each x(j) ∈ {0, 1}dk−1 , and x = (x(1), . . . , x(d)). There is a natural way to break an
instance x of fk,d into d sub-problems x(1), . . . , x(d) of fk−1,d, and combine the solutions
by taking the NAND (negated AND) of the d sub-problem solutions. Grover’s algorithm
computes this NAND in O(

√
d) queries, so we might hope for a speedup by recursive calls to

this quantum algorithm. Unfortunately, since we recurse to depth k, the constant in front
of
√
d is raised to the k-th power. This kills the quantum speedup completely when d is

constant (for example, the most common setting of d = 2), and that is not even touching on
the fact that we would seem to need to amplify the success probability of the subroutine,
turning those constants into log factors. On the other hand, it is known [20] that fk,d
can be evaluated in O(

√
dk) quantum queries, even though our attempt to use classical

divide-&-conquer reasoning combined with the basic Grover speedup failed.
More recently, [9] showed how to employ divide-&-conquer reasoning in the study of

quantum query complexity, in which one only counts the number of queries to the input.
They obtained their query upper bounds by composing dual adversary solutions. The key to
their results is that dual adversary solutions exhibit perfect composition: no error, no log
factors, not even constant overhead. However, their result were not constructive, as dual
adversary solutions do not fully specify algorithms, and in particular, the time complexity
analysis of their results was unknown. In this work, we use the framework of subspace graphs
to give a time-complexity version of some of the query complexity results obtained in [9]. In
particular, we show (see Theorem 16):

▶ Theorem 1 (Informal). Let {fℓ,n : Dℓ,n → {0, 1}}ℓ,n be a family of functions. Let φ be a
symmetric Boolean formula on a variables, and suppose fℓ,n = φ(fℓ/b,n, . . . , fℓ/b,n)∨ faux,ℓ,n,
for some b > 1 and some auxiliary function faux,ℓ,n with quantum time complexity Taux(ℓ, n).
Then the quantum time complexity of fℓ,n is Õ(T (ℓ, n)) for T (ℓ, n) satisfying:

T (ℓ, n) ≤
√
aT (ℓ/b, n) + Taux(ℓ, n).

Our framework also handles the case where fℓ,n = φ(fℓ/b,n, . . . , fℓ/b,n, faux,ℓ,n) for any formula
φ on a+ 1 variables, but then some extra, somewhat complicated looking costs need to be
accounted for, and there is also a scaling in the depth, although this is not an issue if the
formula has been preprocessed to be balanced [8].

Comparing this with the analogous classical statement, which would have a instead of
√
a,

we get an up to quadratic speedup over a large class of classical divide-&-conquer algorithms.
As an application, we show a quadratic speedup of Savitch’s divide-&-conquer algorithm for
directed st-connectivity [22].

To achieve these results, it is essential that we compose subspace graphs, rather than
algorithms. When we convert a subspace graph to a quantum algorithm, we get constant
factors in the complexity, and these seem necessary without at least specifying what gateset
we are working in. By first composing in the more abstract model of subspace graphs,
and then only converting to a quantum algorithm at the end, we ensure these factors only
come into the complexity once. This is similar to compositions done with other abstract
models, such as span programs (of which dual adversary solutions are a special case) [19],
and transducers [6].

Switching Networks

A switching network is a graph with Boolean variables associated with the edges that can
switch the edges on or off. Originally used to model certain hardware systems, including
automatic telephone exchanges, and industrial control equipment [23], a switching network

STACS 2025

54:4 Multidimensional Quantum Walks, Recursion, and Quantum Divide & Conquer

has an associated function f that is 1 if and only if two special vertices, s and t, are connected
by a path of “on” edges. Shannon [23, 24] showed that series-parallel switching networks
are equivalent to Boolean formulas, and Lee [16] showed that switching networks can model
branching programs. These theoretical results have given this model a place in classical
complexity theory, where they can be used to study classical space complexity and circuit
depth (see [18]).

Quantum algorithms for evaluating switching networks1 given query access to the edge
variables were given in [14], using a span program construction based heavily on [7]. Let
Rs,t(G(x)) be the effective resistance in the subgraph of “on” edges whenever f(x) = 1, and
whenever f(x) = 0, let Fx ⊆ E be the minimum weight st-cut-set consisting of only edges
that are “off”. Then there is a quantum algorithm evaluating the switching network using√

max
x∈f−1(1)

Rs,t(G(x)) max
x∈f−1(0)

∑
e∈Fx

we,

queries, with matching time complexity assuming we can implement a certain reflection
related to the particular switching network in unit time. From this it follows that if we
can query the variable associated with an edge e in time Te, we can evaluate the switching
network in time√

max
x∈f−1(1)

Rs,t(G(x)) max
x∈f−1(0)

∑
e∈Fx

we.max
e∈E

Te.

Here we improve this to:√
max

x∈f−1(1)
Rs,t(G(x)) max

x∈f−1(0)

∑
e∈Fx

weT 2
e .

This is analogous to results of [13], which showed a similar statement, but for quantum
walks rather than switching networks2. Because switching networks perfectly model Boolean
formulas, without the constant overhead we get when we convert to a quantum algorithm,
they can be used as a building block for our divide-&-conquer results.

Application to DSTCON

Quantum algorithms for st-connectivity on undirected graphs, which are closely related
to evaluating switching networks, are well studied [10, 7, 14, 12, 3], including quantum
algorithms that achieve optimal time- and space-complexity simultaneously, in both the
edge-list access model, and the adjacency matrix access model.3 In contrast, quantum
algorithms for directed st-connectivity (dstcon) – the problem of deciding if there is a
directed path from s to t in a directed graph – is less well understood. The algorithm
of [10] also applies to directed graphs, deciding connectivity in Õ(n) time and space4. This
algorithm has optimal time complexity, whereas its space complexity is far from optimal.

1 Switching networks have never been directly referred to in prior work on quantum algorithms, as far as
we are aware, but the “st-connectivity problems” referred to in [14] are, in fact, switching networks.

2 Both our result, and the one for quantum walks in [13] include variable-time quantum search [2] as a
special case.

3 We do not make a distinction between various access models, because they can simulate one another in
poly(n) time and log(n) space, so our result, which includes a 2O(log n) term, is the same in all models.

4 In the edge-list access model.

S. Jeffery and G. Pass 54:5

Directed st-connectivity, also called reachability, is a fundamental problem in classical
space complexity. In particular, understanding if this problem can be solved in log(n) space
by a quantum algorithm would resolve the relationship between quantum logspace complexity
and NL, as dstcon is NL-complete.

The best known classical (deterministic) space complexity of dstcon is O(log2(n)), using
Savitch’s algorithm. We apply quantum divide & conquer (Theorem 1) to give a quadratic
speedup to Savitch’s algorithm, achieving 2 1

2 log2(n)+O(log(n)) time, while still maintaining
O(log2(n)) space (see Theorem 18).

Model of Computation
We work in the same model as [15], where we allow not only arbitrary quantum gates, but
also assume subroutines are given via access to a unitary that applies the subroutine’s t-th
gate controlled on the value t in some time register. This is possible, for example, with
quantum random access gates.

Related Work
While writing this manuscript, we became aware of an independent work that also achieves
time-efficient quantum divide & conquer [1] when either (1) φ is an OR (equivalently, an AND)
or (2) φ is a minimum or maximum. OR is a Boolean formula, while minimum/maximum is
not. In that sense, our results are incomparable. Ref. [1] applies their framework to problems
that are distinct from ours. The framework of [1] also differs from our work in that they
explicitly treat the complexity of computing sub-instances (the cost of the “create” step),
whereas we assume sub-instances are computable in unit cost. In one of the applications
of [1], this cost is not negligible, and is even the dominating cost, so our framework, as stated,
would not handle this application. This is not an inherent limitation of our techniques – it
would be possible to take this cost into account in our framework as well.

We also mention that Ref. [9] analyzes the quantum query complexity of divide & conquer
where φ is an arbitrary Boolean formula, as well as in settings where the function combining
the sub-problems is more general. While our techniques do apply to composing quantum
algorithms for arbitrary functions (already studied in [13]), an issue is a poor scaling in
the error of subroutines. If we start with a bounded-error quantum algorithm for some
function, we need to amplify the success probability, as it will be called many times, incurring
logarithmic factors. This becomes a serious problem if the function is called recursively to
depth more than constant. We get around this in the case of Boolean formulas by using a
switching network construction (from which a quantum algorithm could be derived) rather
than a bounded-error quantum algorithm for evaluating the formula. Our techniques would
thus also readily apply to functions for which there is an efficient quantum algorithm derived
from a switching network.

2 Technical Overview

Here we give a technical overview of our results, with full details available in the full version
of the paper.

2.1 Subspace Graphs
Multidimensional quantum walks were introduced as such in [15], although they generalize
various quantum algorithms that have appeared previously, including [25, 21, 4, 5, 11]. We
wish to consider very general kinds of composition of multidimensional quantum walks, and
in order to be clear about the precise types of objects we are composing, we give a more
formal definition than has appeared previously.

STACS 2025

54:6 Multidimensional Quantum Walks, Recursion, and Quantum Divide & Conquer

▶ Definition 2 (Subspace Graph). A subspace graph consists of a (undirected) graph G =
(V,E), a boundary B ⊆ V , and the following subspaces of a space H = HG:
Edge and Boundary Spaces We assume H can be decomposed into a direct sum of spaces

as follows: H =
⊕

e∈E Ξe ⊕
⊕

u∈B Ξu.
Edge and Boundary Subspaces For each e ∈ E ∪ B, let ΞAe and ΞBe be subspaces of Ξe.

These need not be orthogonal, and they may each be {0}, all of Ξe, or something in
between.

Vertex Spaces and Boundary Space For each u ∈ V , let Vu ⊆
⊕

e∈E(u) Ξe be pairwise
orthogonal spaces. Let VB ⊆

⊕
u∈B Ξu.

Then we define

AG =
⊕

e∈E∪B
ΞAe and BG =

⊕
u∈V
Vu + VB +

⊕
e∈E∪B

ΞBe .

To motivate this perhaps complicated-looking definition, we mention some concrete
examples of subspace graphs that already exist in the quantum algorithms literature:
1. A discrete-time quantum walk in Szegedy’s framework [25], or the more general electric

network framework [4] is a subspace graph.
2. The span programs for st-connectivity in [14], based on [7], are subspace graphs. These

are actually precisely switching networks, which we will discuss more shortly (although
the basis constructions for Boolean switching networks in this work are new).

3. In [13], certain subspaces are defined from any quantum algorithm, and these actually
make up a subspace graph (see Section 2.2.3).

We will allow subspace graphs to implicitly depend on some input, and associate them
with a computation. Specifically, if we fix some initial state |ψ0⟩ ∈ HG, then this, along
with AG and BG, define a phase estimation algorithm that decides if |ψ0⟩ ∈ AG + BG by
doing phase estimation of (2ΠAG

− I)(2ΠBG
− I), where ΠAG

is the orthogonal projector
onto AG, and similarly for BG. With this in mind, we say a subspace graph that depends
on some input x, computes a function f (with respect to |ψ0⟩) if f(x) = 0 if and only if
|ψ0⟩ ∈ AG + BG. Let us give some intuition. The quantum algorithm corresponding to a
subspace graph described above distinguishes between two cases:
Negative Case: |ψ0⟩ ∈ AG + BG
Positive Case: |ψ0⟩ has a (large) component, called a positive witness in (AG + BG)⊥ =
A⊥G ∩ B⊥G

Then we can see all the vectors in AG and BG as linear constraints on the initial state – it
must have a large component orthogonal to all of them in the positive case. AG and BG are
each decomposed into sums of subspaces, representing subsets of constraints. The graph
structure of G restricts how the different sets of constraints are allowed to overlap – the
constraints associated with vertex v only overlap constraints associated with edges that are
incident to v. This graph structure can then be used to help analyse the algorithm. For
example, a positive witness is related to a flow on G.

Though it is possible to consider more general states |ψ0⟩, throughout this paper, we will
assume G has a pair of special “terminal” vertices s and t, and let |ψ0⟩ = 1√

2 (|s⟩ − |t⟩).
To implement the phase estimation algorithm, we need a pair of orthogonal bases for

AG and BG that are easily generated, in order to implement their respective reflections. We
therefore always assume we have such a basis pair associated with G, which we call the
working bases.

S. Jeffery and G. Pass 54:7

To analyze a phase estimation algorithm, we need to exhibit positive and negative
witnesses, which have a particular form in the case G has a property called canonical
st-boundary (see Definition 8), as will always be the case in this paper. In particular,
st-boundary implies that

⊕
u∈B Ξu = Ξs ⊕ Ξt has four degrees of freedom, which we denote

|s⟩, | ←, s⟩, |t⟩, | →, t⟩.

▶ Definition 3 (Positive Witness for a Graph). We say |ŵ⟩ ∈ ΞE is a positive witness for G if

|s⟩ − | ←, s⟩+ |ŵ⟩+ | →, t⟩ − |t⟩ ∈ A⊥G ∩ B⊥G .

We let Ŵ+(G) be an upper bound (over some implicit input) on the minimum ∥|ŵ⟩∥2 of any
positive witness for G.

A negative witness for a phase estimation algorithm is a vector |wA⟩ ∈ A such that
|wB⟩ := |ψ0⟩ − |wA⟩ ∈ B, which exists if and only if |ψ0⟩ ∈ AG + BG. For a subspace graph,
a negative witness is defined as follows.

▶ Definition 4 (Negative Witness for a Graph). We say |ŵA⟩ ∈ AG is a negative witness for
G if |ŵA⟩+ | ←, s⟩ − | →, t⟩ ∈ BG. We let Ŵ−(G) be an upper bound (over some implicit
input) on the minimum ∥|ŵA⟩∥2 of any negative witness for G.

This leads to the following theorem associating a quantum algorithm to a subspace graph.

▶ Theorem 5. Let G be a subspace graph that computes f : {0, 1}n → {0, 1}, with working
bases that can be generated in time T . Then there exists a quantum algorithm that decides f

in time complexity O
(
T

√
Ŵ+(G)Ŵ−(G)

)
and space O(log dimHG + log(Ŵ+(G)Ŵ−(G))).

This justifies defining Ĉ(G) :=
√
Ŵ+(G)Ŵ−(G) as the complexity of a subspace graph.

Switches and Switching Networks

Next, we introduce switching networks. In the classical model of switching networks, a
switching network is a graph with a literal (variable or negated variable) φ(e) associated
with each edge e, and two terminals s, t ∈ V . A switching network computes a function
f : {0, 1}E → {0, 1} if for any x ∈ {0, 1}E , f(x) = 1 if and only if s and t are connected in
G(x), the subgraph consisting only of edges e such that xe = 1 if φ(e) is a positive literal,
and xe = 0 otherwise – that is, edges labelled by literals that are true when the variables
are set according to x. Here, we let “switching network” refer to a special kind of subspace
graph, but this subspace graph implements the switching network, in the sense that the
algorithm referred to in Theorem 5 decides if s and t are connected in G(x).

We first define what it means for an edge to be a switch. For a vertex u ∈ V , we let E(u)
denote the edges incident to u, which we divide into E→(u) – edges “coming out of” u – and
E←(u) – edges “going into” u. As G is an undirected graph, these edge directions can be
chosen arbitrarily.

▶ Definition 6 (Switch Edge). Fix a subspace graph G. We call an edge e ∈ E a switch
(or switch edge) if there is some value φ(e) ∈ {0, 1} associated with that edge (implicitly
depending on the input), such that

Ξe = span{| →, e⟩, | ←, e⟩},

ΞAe = span{| →, e⟩ − (−1)φ(e)| ←, e⟩} and ΞBe = span{| →, e⟩+ | ←, e⟩},

and moreover, if e ∈ E→(u)∩E←(v), (that is, e = (u, v)), then Vu ∩Ξe = span{| →, e⟩} and
Vv ∩ Ξe = span{| ←, e⟩}.

STACS 2025

54:8 Multidimensional Quantum Walks, Recursion, and Quantum Divide & Conquer

The idea behind a switch edge is that if φ(e) = 0, ΞAe +ΞBe = Ξe, and so Ξ⊥e = {0}. Recall
that a positive witness is some |ŵ⟩ such that |w⟩ := |s⟩−| ←, s⟩+ |ŵ⟩+ | →, t⟩−|t⟩ ∈ A⊥G∩B⊥G .
If Ξ⊥e = {0}, then |w⟩ can have no overlap with Ξe, so e is essentially blocked from use, so
we say the edge is switched off. In switching networks, defined shortly, the positive witness
is an st-flow, and it is restricted to edges in the subgraph G(x) of edges that are switched
on. Even in subspace graphs that are not switching networks, we can often think of |w⟩
intuitively as a kind of flow.

We next define simple vertices, which are the type of vertices of switching networks, and
also quantum walks.

▶ Definition 7 (Simple Vertex). Fix a subspace graph G with associated edge weights {we}e∈E.
For u ∈ V , define

|ψ⋆(u)⟩ :=
∑

e∈E→(u)

√
we| →, e⟩+

∑
e∈E←(u)

√
we| ←, e⟩.

A vertex u ∈ V is simple if for all e ∈ E→(u), | →, e⟩ ∈ Ξe, for all e ∈ E←(u), | ←, e⟩ ∈ Ξe,
and if u ∈ V \B Vu = span{|ψ⋆(u)⟩}; and if u ∈ B, either | →, u⟩ ∈ Ξu and Vu = span{| →
, u⟩+ |ψ⋆(u)⟩} or | ←, u⟩ ∈ Ξu and Vu = span{| ←, u⟩+ |ψ⋆(u)⟩}.

Let us motivate this definition. In a random walk on a weighted graph, in order to take
a step from a vertex u ∈ V to a neighbour, the random walker chooses an edge e ∈ E(u)
to traverse, with probability we/(

∑
e′∈E(u) we′). This is precisely the distribution obtained

by measuring |ψ⋆(u)⟩/ ∥|ψ⋆(u)⟩∥. The states |ψ⋆(u)⟩ correspond to quantum walk states –
alternating a reflection around these with a reflection around the states {| →, e⟩+ | ←, e⟩}e∈E
implements a discrete-time quantum walk, as in [25, 17, 4].5

Another important notion is that of canonical st-boundary for which we require the
boundary to consist only of two vertices s and t with additional requirements on their
subspaces.

▶ Definition 8 (Canonical st-boundary). We say a subspace graph G has canonical st-boundary
if B = {s, t}, where:

Ξs = span{|s⟩, | ←, s⟩}, ΞAs = span{|s⟩+ | ←, s⟩} and ΞBs = {0}, where Vs only overlaps
| ←, s⟩.
Ξt = span{| →, t⟩, |t⟩}, ΞAt = span{| →, t⟩+ |t⟩} and ΞBt = {0}, where Vt only overlaps
| →, t⟩.
| ←, s⟩+ | →, t⟩ ∈ BG.

▶ Definition 9 (Switching Network). A switching network is a subspace graph with canonical
st-boundary in which all edges are switches (Definition 6), and all vertices are simple
(Definition 7).

Two more important definitions for the composition results are those of composable bases
and st-composable subspace graph (Definition 10). The first one specifies conditions on
working bases so that they can be smoothly composed with each other. We leave the rigorous
definition to the full version of the paper since it is quite technical.

5 In some previous works, it is assumed that the graph is bipartite, and then the walk is implemented by
alternating reflections around the states |ψ⋆(u)⟩ of the two parts of the bipartition. We are actually
doing the same thing here, we have just ensured the graph is bipartite by inserting a vertex in the
middle of each edge.

S. Jeffery and G. Pass 54:9

...

s

e1

e2

ed

t

Figure 1 The graph Gor. The dashed lines represent dangling boundary “edges”.

▶ Definition 10. We say a subspace graph G is st-composable if:
1. G has canonical st-boundary (Definition 8);
2. G is equipped with composable working bases;
3. for each e ∈ E \ E, ΞBe = {0}, where E is the set of edges that are switches.

An st-composable subspace graph is a generalization of a switching network to allow for
more complicated structures, such as arbitrary quantum algorithms. The main technical
contribution of this paper (the composition theorem in Section 2.3) is to generalize a natural
way that switching networks compose, as graphs, to any st-composable subspace graph.

2.2 Examples
We first give two examples of switching networks – one for computing the OR of d bits
(Section 2.2.1) and one for the AND of d bits (Section 2.2.2) – which are also important
building blocks for our later results. At a high level, these are quite simple to understand.
The switching network for OR is just d parallel edges from s to t (see Figure 1) – s and
t are connected if at least one of the edges is present. The switching network for AND is
just a path of length d from s to t (see Figure 2) – s and t are connected if all of the edges
are present. One can build up a graph that represents any formula by compositions where
an edge is replaced by a graph whose terminals s and t are identified with the endpoints
of the replaced edge (see also Figure 4). Our main composition theorem (see Section 2.3)
generalizes this type of composition to apply to any st-composable subspace graph.

2.2.1 Switching network for OR
A switching network that computes the OR of d Boolean variables consists of two vertices
connected by d parallel switch edges. The idea is that there is no flow if all the edges are
blocked, that is all the variables take value 0, an there is a flow otherwise. Therefore, a
negative witness corresponds to a cut in the graph, and a positive witness corresponds to a
flow.

▶ Lemma 11. For any d ≥ 1, and positive weights {wi}i∈[d], there is a switching network
Gor,d that computes

∨d
i=1 φ(ei) with dimHGor,d

= 2d+ 4 such that:
1. Gor,d has st-composable working bases that can be generated in O(log d) time, assuming

the state proportional to
∑d
i=1
√wi|i⟩ can be generated in time O(log d);

2. if φ(ei) = 1 for some i ∈ [d], Gor,d has positive witness |ŵ⟩ = 1√wi
(| →, i⟩ − | ←, i⟩); and

3. if φ(ei) = 0 for all i ∈ [d], Gor,d has negative witness |ŵA⟩ =
∑d
i=1
√wi(| →, i⟩− | ←, i⟩).

We remark that if wi = 1 for all i, then Lemma 11 implies Ŵ+(Gor,d) = 2 and
Ŵ−(Gor,d) = 2d, so by Theorem 5, there is a quantum algorithm for evaluating d-bit
OR with time complexity Õ(

√
d), which is optimal. This is a good sanity check, but we will

mostly be interested in this construction as a building block, rather than in its own right.

STACS 2025

54:10 Multidimensional Quantum Walks, Recursion, and Quantum Divide & Conquer

Let G = Gor,d be defined, as shown in Figure 1 by:

V = {s, t} and E = {ei : i ∈ [d]}

where each ei has endpoints s and t, so E(s) = E→(s) = E and E(t) = E←(t) = E. Since G
is a switching network, it has boundary B = V = {s, t}. We will let the graph be weighted,
with weights wei

= wi. The only reason to let these vary in i is for later when we replace an
edge with a gadget by composition, but for the sake of intuition, the reader may wish to
imagine wi = 1 for all i. Since G is a switching network, every edge is a switch, which fixes
the following spaces (we simplify notation by using i to label the edge ei):

∀i ∈ [d], Ξei
= span{| →, i⟩, | ←, i⟩},

ΞAei
= span{| →, i⟩ − (−1)φ(ei)| ←, i⟩}, and ΞBei

= span{| →, i⟩+ | ←, i⟩}.

Furthermore, as a switching network has canonical st-boundary, the following spaces are
fixed:

Ξs = span{|s⟩, | ←, s⟩}, ΞAs = span{|s⟩+ | ←, s⟩}, and ΞBs = {0}
Ξt = span{| →, t⟩, |t⟩}, ΞAt = span{| →, t⟩+ |t⟩}, and ΞBt = {0}.

Finally, since all vertices are simple, the following spaces are fixed:

Vs = span
{
| ←, s⟩+

d∑
i=1

√
wi| →, i⟩︸ ︷︷ ︸
|ψ⋆(s)⟩

}
and Vt = span

{
d∑
i=1

√
wi| ←, i⟩︸ ︷︷ ︸
|ψ⋆(t)⟩

+| →, t⟩
}
.

Then we have:

AG =
⊕

e∈E∪B

ΞA
e = span{| →, i⟩ − (−1)φ(ei)| ←, i⟩ : i ∈ [d]} ∪ {|s⟩+ | ←, s⟩, |t⟩+ | →, t⟩}

and BG = Vs ⊕ Vt +
⊕
e∈E

ΞB
e = Vs ⊕ Vt + span{| →, i⟩+ | ←, i⟩ : i ∈ [d]}. (1)

We prove the second and the third items of Lemma 11 in the full version of the paper. It
remains to find working bases that can be generated efficiently. We show in the full version
that there is an st-composable working basis for AG that can be generated in unit time and
there is a st-composable working basis for BG that can be generated in O(log d) time.

2.2.2 Switching network for AND
In this section, we describe a switching network that computes the AND of d Boolean
variables. This switching network consists of two boundary vertices connected by a path of
switch-edges of length d. If at least one edge is blocked, that is at least one of the variables
takes value 0, then there is no flow, and there is a flow otherwise.

▶ Lemma 12. For any d ≥ 1, and positive weights {wi}i∈d, there is a switching network
Gand,d that computes

∧d
i=1 φ(ei) with dimHGand,d

= 2d+ 4 such that:
1. Gand,d has st-composable working bases that can be generated in O(log d) time, assuming

the state proportional to
∑d
i=1

1√wi
|i⟩ can be generated in time O(log d);

2. if φ(ei) = 1 for all i ∈ [d], Gand,d has positive witness |ŵ⟩ =
∑d
i=1

1√wi
(| →, i⟩ − | ←, i⟩);

and

S. Jeffery and G. Pass 54:11

. . .
u0 e1 u1 e2 u2 ud

Figure 2 The graph Gand. The dashed lines represent dangling boundary “edges”.

. . .

. . .

v→1 e→2 v→3 e→4 v→5 v→T−1

e↔T
v←1 e←2 v←3 e←4 v←5 v←T−1

Figure 3 The graph representing a quantum computation with T steps. The top part should be
thought of as computing a bit into the phase, and the bottom should be thought of as uncomputing.
The dashed lines represent dangling boundary “edges”.

3. if φ(ei) = 0 for some i ∈ [d], Gand,d has negative witness |ŵA⟩ = √wi(| →, i⟩ − | ←, i⟩).
As with the OR switching network, a corollary of this lemma is that there is a quantum
algorithm for evaluating AND in optimal time Õ(

√
d).

Let G = Gand,d be the graph in Figure 2, defined by

V = {s = u0, u1, . . . , ud = t} and E = {ei = (ui−1, ui) : i ∈ [d]},

so E(s) = E→(s) = {e1}, E(t) = E←(t) = {ed}, and for all i ∈ [d− 1], E←(ui) = {ei} and
E→(ui) = {ei+1}. Since G is a switching network, it has boundary B = {s, t}. We will let
the graph be weighted, with weights wei = wi. Since G is a switching network: every edge
is a switch, which fixes Ξei

, ΞAei
and ΞBei

for all i ∈ [d]; G has canonical st-boundary, which
fixes Ξs, ΞAs , ΞBs , Ξt, ΞAt , and ΞBt ; and every vertex is simple, which fixes the spaces Vui for
i ∈ {0, . . . , d}. In particular, letting w0 = wd+1 = 1, s = 0, t = d+ 1, and i ∈ [d] label ei, we
must have:

∀i ∈ {0, . . . , d}, Vui = span {
√

wi| ←, i⟩+√wi+1| →, i+ 1⟩} .

This fully defines

AG =
⊕

e∈E∪B
ΞAe and BG =

d⊕
i=0
Vui

+
⊕
e∈E

ΞBe .

We prove the second and the third items of Lemma 12 in the full version of the paper. It
remains to find working bases that can be generated efficiently. We show in the full version
that there is an st-composable working basis for AG that can be generated in unit time and
there is a st-composable working basis for BG that can be generated in O(log d) time.

2.2.3 Any Quantum Algorithm
Ref. [13] deals with composing arbitrary quantum algorithms, implicitly using subspace
graphs for the task. It is shown how to define certain subspaces from an arbitrary quantum
algorithm, where the overlap between these various spaces gives rise to a graph as in Figure 3.
In the full version of the paper, we show that these subspaces are precisely a subspace graph,
so that the following follows from [13].

▶ Lemma 13. From any quantum algorithm computing some f : {0, 1}n → {0, 1} in time T
with S qubits, we can derive an st-composable subspace graph (Definition 10) G that computes
f with dimHG = O(2ST), Ŵ+(G) ≤ 2T and Ŵ−(G) ≤ 2T ; with st-composable working
bases that can be generated in time O(log(T)).

STACS 2025

54:12 Multidimensional Quantum Walks, Recursion, and Quantum Divide & Conquer

G

s

e1

e2

t

Ge1

s t

Ge2

s

t

G◦

s t

Figure 4 An example of replacing edges e1 and e2 in G with graphs Ge1 and Ge2 to obtain G◦.
Boundary “edges” are represented by dashed lines. Switching networks already lend themselves
to this type of recursion: we can replace an edge with a 2-terminal graph, and then the “edge” is
traversable if and only if the terminals are connected. The difference with the more general recursion
in Theorem 14 is that the subspace graphs used to replace edges (as well as other parts of G) might
have more complicated structure than just their graph structure; for example, they might encode
quantum algorithms like in Section 2.2.3.

2.3 Composition
Subspace graphs lend themselves well to very general kinds of recursion. We can compose
subspace graphs by identifying some of the vertices on their boundaries. In full generality,
this may result in a subspace graph that is difficult to analyze. For example, if we replace
two parallel edges with subspace graphs derived from quantum algorithms, “flow” along these
edges may have complex phases that interfere on the other side. Our nice classical intuition of
flows breaks down in the fully general case, which is not surprising, since quantum algorithms
are not classical. However, an important question is in which special cases, and to what
extent, we can compose subspace graphs and keep enough classical intuition to analyze them.

One special case is implicit in [13], and here we present another special case, which we
call switch composition. Switch composition generalizes a very simple kind of recursion that
can be done in switching networks. Since an st-path (or more generally, flow) is allowed
to use an edge if and only if φ(e) = 1, we can replace it with a switching network Ge for
some function fe, which will have an st-path from one endpoint to the other if and only if
fe(x) = 1. We can view this as removing e from the graph, and then adding its endpoints to
the boundary, to then be identified with the boundary {se, te} of Ge. By applying this type
of composition, the OR and AND switching networks in Section 2.2.1 and Section 2.2.2 can
be combined to make switching networks for any Boolean formula [14].

Here we investigate how to compose subspace graphs with specific properties that gener-
alize switching networks – st-composable subspace graphs (Definition 10) – into the switches
of a graph G. Specifically, if E is the set of edges of G that are switches, we will replace
e ∈ E with an st-composable graph Ge. We can assume without loss of generality that we
replace every e ∈ E with some Ge, since letting Ge be the graph consisting of a single edge
from se to te is just like not replacing e.

S. Jeffery and G. Pass 54:13

▶ Theorem 14. Let G be an st-composable subspace graph with st-composable working bases
that can be generated in time T . For each e ∈ E, the set of switches of G, let Ge be an
st-composable subspace graph with st-composable working bases that can be generated in
time at most T ′. Then there exists an st-composable subspace graph G◦ with dimHG◦ ≤
dimHG − 2|E|+

∑
e∈E dimHGe such that:

G◦ has st-composable working bases that can be generated in time T + T ′ +O(1).
If |ŵ⟩ is a positive witness for G (Definition 3), and for each e ∈ E such that ⟨ →, e|ŵ⟩ ̸= 0,
|ŵe⟩ is a positive witness for Ge, then

|ŵ◦⟩ =
∑
e∈E

⟨ →, e|ŵ⟩|ŵe⟩+ ΠE\E |ŵ⟩

is a positive witness for G◦.
If |ŵA⟩ is a negative witness for G (Definition 4), and for each e ∈ E such that
⟨ →, e|ŵA⟩ ̸= 0, |ŵeA⟩ is a negative witness for Ge, then

|ŵ◦A⟩ =
∑
e∈E

⟨ →, e|ŵA⟩|ŵeA⟩+ ΠE\E |ŵA⟩

is a negative witness for G◦.

Informally, we obtain G◦ from G by, for each e ∈ E, removing the edge e, and identifying
its endpoints with the vertices s = se and t = te of the graph Ge. This is illustrated in
Figure 4. The subspaces associated with G◦ are mostly inherited from G and Ge, except for
those on the glued boundaries. There, intuitively, we replace | →, e⟩ with the edges incident
to s = se in Ge, and | ←, e⟩ with the edges incident to t = te in Ge.

Note that the witnesses in the composed subspace graph have a very logical form. We
obtain a positive witness |ŵ◦⟩ by taking a positive witness for G, and replacing the edge
| →, e⟩+ | ←, e⟩ with a positive witness, and similarly for negative witnesses.

Next, we apply the composition construction of Theorem 14 to compose the switching
networks for AND and OR in Section 2.2.2 and Section 2.2.1 with other st-composable
subspace graphs computing some functions fσ to get a subspace graph computing the
composed function φ ◦ (fσ)σ∈Σ when φ is a Boolean formula on {0, 1}Σ. This is the function
obtained by computing the value of each variable xσ of the formula φ as fσ of some input.
Subspace graphs for φ can be obtained simply by composing the switching networks for OR
and AND (see [14]). Our composition theorem, Theorem 14, generalizes this simple switching
network composition.

A formula is a rooted tree, where each internal node represents an AND or an OR gate,
and each leaf represents a literal. We let Σ \ Σ denote the set of internal nodes, and for each
σ ∈ Σ \ Σ, dσ is the number of children of σ.

A family of formulas is balanced if there is a constant c such that for every internal node
σ, if its subtree has N leaves, then the sub-tree of each of its dσ children has at most cN/dσ
leaves.

▶ Lemma 15. Let φ be a balanced formula on {0, 1}Σ. Let {fσ}σ∈Σ be Boolean functions,
and for each σ ∈ Σ, let Gσ be an st-composable subspace graph (Definition 10) computing fσ,
with working bases that can be generated in time at most T , and log dimHGσ

≤ S.
For each σ ∈ Σ, let Cσ be a known upper bound on Ĉ(Gσ). Then there is an st-composable

subspace graph G◦ computing φ ◦ (fσ)σ∈Σ with log dimHG◦ = S +O(log |Σ|) and

Ĉ(G◦)2 ≤
∑
σ∈Σ

C2
σ,

STACS 2025

54:14 Multidimensional Quantum Walks, Recursion, and Quantum Divide & Conquer

as long as for each σ ∈ Σ\Σ, a superposition proportional to
∑
i∈[dσ]

√
C±σ,i|i⟩ can be generated

in O(log dσ) complexity, for certain values C±σ,i related to the bounds {Cσ}σ∈Σ. Furthermore,
the working bases of G◦ can be generated in time T +O(log |Σ|).

2.4 Quantum Divide & Conquer
In this section, we state our time-efficient quantum divide & conquer results. The following
is a time-efficient version of Strategy 1 in [9], restricted to symmetric formulas.

▶ Theorem 16. Fix a function family fℓ,n : Dℓ,n → {0, 1}. Fix unit-time-computable
functions λ1, λ2 : N→ N, and a formula φ on {0, 1}a+1 such that φ = φ′(z1, . . . , za) ∨ za+1
for some symmetric formula φ′. Suppose {Paux,ℓ,n}ℓ,n∈N is a family of quantum algorithms
such that:
Paux,ℓ,n decides some faux,ℓ,n : Dℓ,n → {0, 1} with time and space complexities Taux(ℓ, n)
and Saux(ℓ, n);
if ℓ ≤ ℓ0, fℓ,n(x) = faux,ℓ,n(x);
if ℓ > ℓ0, fℓ,n(x) = φ ◦ (fi)i∈[a+1] where each fi for i ∈ [a] is such that fi(x) =
fλ1(ℓ),λ2(n)(xi) for some unit-time-computable instance xi of fλ1(ℓ),λ2(n), and fa+1 =
faux,ℓ,n.

Then there is a bounded-error quantum algorithm that decides fℓ,n with time complexity
Õ(T (ℓ, n)), and space complexity O(Saux(ℓ, n) + log T (ℓ, n)), where for all ℓ > ℓ0:

T (ℓ, n) :=
√
aT (λ1(ℓ), λ2(n))2 + 4Taux(ℓ, n)2 ≤

√
aT (λ1(ℓ), λ2(n)) + 2Taux(ℓ, n)

and for ℓ ≤ ℓ0, T (ℓ, n) = 2Taux(ℓ, n).

To prove Theorem 16, we make a subspace graph that computes fℓ,n = φ ◦ (fi)i using
Lemma 15, which allows us to combine subspace graphs for fλ1(ℓ),λ2(n) – built up inductively
– and faux,ℓ,n – built by turning the quantum algorithm Paux,ℓ,n into a subspace graph using
Lemma 13. Note that Lemma 15 applies to any balanced formula φ, but in the special case
we consider in Theorem 16, the values C±σ,i referred to in Lemma 15 are well behaved.

2.5 Application to DSTCON
In this section we consider the directed st-connectivity problem.

▶ Problem 17 (dstcon). Given access to a directed graph G = (V,E) via the oracle OG,
and two vertices s, t ∈ V , decide whether there is a directed path from s to t in G.

There is a classical recursive algorithm for dstcon that operates in the low-space regime
due to Savitch [22] that decides dstcon in time O((2n)logn = 2log2 +O(logn)) and space
O(log2 n). The algorithm recursively calls a subroutine that decides a function fℓ,n(G, u, v),
which is 1 if and only if there is a path of length at most ℓ from u to v in G. We can express
fℓ,n recursively, in terms of a symmetric formula φ′ in a = 2n variables:

fℓ,n(G, u, v) =
∨
w∈V

(fℓ/2,n(G, u,w) ∧ fℓ/2,n(G,w, v))︸ ︷︷ ︸
φ′

.

We show a quantum speedup for Savitch’s algorithm via application of Theorem 16, which
gives us the recursion

T (ℓ, n) =
√

2nT (ℓ/2, n) +O(1)

S. Jeffery and G. Pass 54:15

from which we get:

T (n, n) =
√

2n
logn

+O(log n) = 2 1
2 log2(n)+O(logn),

which is the complexity of computing fn,n(G, s, t) = dstcon(G). This yields the following.

▶ Theorem 18. Let G = (V,E) be a directed graph, |V | = n. Then there exists a recursive
quantum algorithm that decides dstcon on G with bounded error in time Õ((

√
2n)logn) =

2 1
2 log2 n+O(logn) and space O(log2 n).

References
1 Jonathan Allcock, Jinge Bao, Aleksandrs Belovs, Troy Lee, and Miklos Santha. On the

quantum time complexity of divide and conquer. arXiv:2311.16401, 2023.
2 Andris Ambainis. Quantum search with variable times. Theory of Computing Systems,

47:786–807, 2010. arXiv:quant-ph/0609168 doi:10.1007/s00224-009-9219-1.
3 Simon Apers, Stacey Jeffery, Galina Pass, and Michael Walter. (No) Quantum Space-Time

Tradeoff for USTCON. In 31st Annual European Symposium on Algorithms (ESA 2023), pages
10:1–10:17, 2023. doi:10.4230/LIPIcs.ESA.2023.10.

4 Aleksandrs Belovs. Quantum walks and electric networks. arXiv:1302.3143, 2013.
5 Aleksandrs Belovs, Andrew M. Childs, Stacey Jeffery, Robin Kothari, and Frédéric Magniez.

Time-efficient quantum walks for 3-distinctness. In Proceedings of the 40th International
Colloquium on Automata, Languages, and Programming (ICALP), pages 105–122, 2013.
doi:10.1007/978-3-642-39206-1_10.

6 Aleksandrs Belovs, Stacey Jeffery, and Duyal Yolcu. Taming quantum time complexity.
arXiv:2311.15873, 2023. doi:10.48550/arXiv.2311.15873.

7 Aleksandrs Blovs and Ben W. Reichardt. Span programs and quantum algorithms for st-
connectivity and claw detection. In Proceedings of the 20th Annual European Symposium on
Algorithms (ESA), pages 193–204, 2012. doi:10.1007/978-3-642-33090-2_18.

8 M. L. Bonet and S. R. Buss. Size-depth tradeoffs for boolean formulae. Information Processing
Letters, 49:151–155, 1994. doi:10.1016/0020-0190(94)90093-0.

9 Andrew M. Childs, Robin Kothari, Matt Kovacs-Deak, Aarthi Sundaram, and Daochen Wang.
Quantum divide and conquer. arXiv:2210.06419, 2022.

10 Christoph Dürr, Mark Heiligman, Peter Høyer, and Mehdi Mhalla. Quantum query complexity
of some graph problems. SIAM Journal on Computing, 35(6):1310–1328, 2006. Earlier version
in ICALP’04. arXiv:quant-ph/0401091 doi:10.1137/050644719.

11 Tsuyoshi Ito and Stacey Jeffery. Approximate span programs. Algorithmica, 79:2158–2195,
2019. doi:10.1007/S00453-018-0527-1.

12 Michael Jarret, Stacey Jeffery, Shelby Kimmel, and Alvaro Piedrafita. Quantum algorithms
for connectivity and related problems. In Proceedings of the 26th Annual European Symposium
on Algorithms (ESA), pages 49:1–49:13, 2018. doi:10.4230/LIPIcs.ESA.2018.49.

13 Stacey Jeffery. Quantum subroutine composition. arXiv:2209.14146, 2022.
14 Stacey Jeffery and Shelby Kimmel. Quantum algorithms for graph connectivity and formula

evaluation. Quantum, 1(26), 2017.
15 Stacey Jeffery and Sebastian Zur. Multidimensional quantum walks and application to k-

distinctness. In Proceedings of the 55th ACM Symposium on the Theory of Computing (STOC),
pages 1125–1130, 2023. arXiv:2208.13492

16 C. Y. Lee. Representation of switching functions by binary decision programs. Bell Systems
Technical Journal, 38(4):985–999, 1959. doi:10.1002/j.1538-7305.1959.tb01585.x.

17 Frédéric Magniez, Ashwin Nayak, Jérémie Roland, and Miklos Santha. Search via quantum
walk. SIAM Journal on Computing, 40(1):142–164, 2011. Earlier version in STOC’07.
arXiv:quant-ph/0608026 doi:10.1137/090745854.

STACS 2025

https://arxiv.org/abs/2311.16401
https://arxiv.org/abs/quant-ph/0609168
https://doi.org/10.1007/s00224-009-9219-1
https://doi.org/10.4230/LIPIcs.ESA.2023.10
https://arxiv.org/abs/1302.3143
https://doi.org/10.1007/978-3-642-39206-1_10
https://arxiv.org/abs/2311.15873
https://doi.org/10.48550/arXiv.2311.15873
https://doi.org/10.1007/978-3-642-33090-2_18
https://doi.org/10.1016/0020-0190(94)90093-0
https://arxiv.org/abs/2210.06419
https://arxiv.org/abs/quant-ph/0401091
https://doi.org/10.1137/050644719
https://doi.org/10.1007/S00453-018-0527-1
https://doi.org/10.4230/LIPIcs.ESA.2018.49
https://arxiv.org/abs/2209.14146
https://arxiv.org/abs/2208.13492
https://doi.org/10.1002/j.1538-7305.1959.tb01585.x
https://arxiv.org/abs/quant-ph/0608026
https://doi.org/10.1137/090745854

54:16 Multidimensional Quantum Walks, Recursion, and Quantum Divide & Conquer

18 Aaron H. Potechin. Analyzing monotone space complexity via the switching network model.
PhD thesis, Massachusetts Institute of Technology, 2015.

19 Ben W. Reichardt. Span programs and quantum query complexity: The general adversary
bound is nearly tight for every Boolean function. In Proceedings of the 50th IEEE Symposium
on Foundations of Computer Science (FOCS), pages 544–551, 2009. arXiv:0904.2759 doi:
10.1109/FOCS.2009.55.

20 Ben W. Reichardt. Faster quantum algorithm for evaluating game trees. In Proceedings
of the 22nd ACM-SIAM Symposium on Discrete Algorithms (SODA), pages 546–559, 2011.
doi:10.5555/2133036.2133079.

21 Ben W. Reichardt and Robert Špalek. Span-program-based quantum algorithm for evaluating
formulas. Theory of Computing, 8(13):291–319, 2012. doi:10.4086/toc.2012.v008a013.

22 Walter J Savitch. Relationships between nondeterministic and deterministic tape complexities.
Journal of computer and system sciences, 4(2):177–192, 1970. doi:10.1016/S0022-0000(70)
80006-X.

23 Claude E. Shannon. A symbolic analysis of relay and switching networks. Transactions of the
American Institute of Electrical Engineers, 57(12):713–723, 1938. doi:10.1109/T-AIEE.1938.
5057767.

24 Claude E. Shannon. The synthesis of two-terminal switching circuits. Bell System Technical
Journal, 28(1):59–98, 1949. doi:10.1002/j.1538-7305.1949.tb03624.x.

25 Mario Szegedy. Quantum speed-up of Markov chain based algorithms. In Proceedings of
the 45th IEEE Symposium on Foundations of Computer Science (FOCS), pages 32–41, 2004.
arXiv:quant-ph/0401053 doi:10.1109/FOCS.2004.53.

https://arxiv.org/abs/0904.2759
https://doi.org/10.1109/FOCS.2009.55
https://doi.org/10.1109/FOCS.2009.55
https://doi.org/10.5555/2133036.2133079
https://doi.org/10.4086/toc.2012.v008a013
https://doi.org/10.1016/S0022-0000(70)80006-X
https://doi.org/10.1016/S0022-0000(70)80006-X
https://doi.org/10.1109/T-AIEE.1938.5057767
https://doi.org/10.1109/T-AIEE.1938.5057767
https://doi.org/10.1002/j.1538-7305.1949.tb03624.x
https://arxiv.org/abs/quant-ph/0401053
https://doi.org/10.1109/FOCS.2004.53

Modal Separation of Fixpoint Formulae
Jean Christoph Jung #

TU Dortmund University, Germany

Jędrzej Kołodziejski #

TU Dortmund University, Germany

Abstract
Modal separability for modal fixpoint formulae is the problem to decide for two given modal fixpoint
formulae φ,φ′ whether there is a modal formula ψ that separates them, in the sense that φ |= ψ and
ψ |= ¬φ′. We study modal separability and its special case modal definability over various classes of
models, such as arbitrary models, finite models, trees, and models of bounded outdegree. Our main
results are that modal separability is PSpace-complete over words, that is, models of outdegree ≤ 1,
ExpTime-complete over unrestricted and over binary models, and 2-ExpTime-complete over models
of outdegree bounded by some d ≥ 3. Interestingly, this latter case behaves fundamentally different
from the other cases also in that modal logic does not enjoy the Craig interpolation property over
this class. Motivated by this we study also the induced interpolant existence problem as a special
case of modal separability, and show that it is coNExpTime-complete and thus harder than validity
in the logic. Besides deciding separability, we also investigate the problem of efficient construction of
separators. Finally, we consider in a case study the extension of modal fixpoint formulae by graded
modalities and investigate separability by modal formulae and graded modal formulae.

2012 ACM Subject Classification Theory of computation → Modal and temporal logics

Keywords and phrases Modal Logic, Fixpoint Logic, Separability, Interpolation

Digital Object Identifier 10.4230/LIPIcs.STACS.2025.55

1 Introduction

For given logics L,L+, the L-separability problem for L+ is to decide given two L+-formulae
φ,φ′ whether there is an L-formula ψ that separates φ and φ′ in the sense that φ |= ψ and
ψ |= ¬φ′. Obviously, a separator can only exist when φ and φ′ are mutually exclusive, and
the problem is only meaningful when L is less expressive than L+. Intuitively, a separator
formulated in a “simpler” logic L explains a given inconsistency in a “complicated” logic L+.
Note that, for logics L+ closed under negation, L-separability generalizes the L-definability
problem for L+: decide whether a given L+-formula is equivalent to an L-formula. Indeed,
φ ∈ L+ is equivalent to an L-formula iff φ and ¬φ are L-separable. Since separability is more
general than definability, solving it requires an even better understanding of the logics under
consideration. Both separability and definability are central problems with many applications
in computer science. As seminal work let us only mention definability and separability of
regular word languages by first-order logic [26, 29, 9].

In this paper we study definability and separability of formulae of the modal µ-calculus
µML [27, 20] by formulae in propositional modal logic ML. µML is the extension of ML with
fixpoints that encompasses virtually all specification languages such as PDL [12] and LTL
and CTL [3]. Let us consider an example.

▶ Example 1. Consider the following properties P1, P2, P3 of vertex-labelled trees:
P1: there is an infinite path starting in the root on which each point satisfies a;
P2: on every path there are only finitely many points satisfying a;
P3: on every path at most two points satisfy a.

The properties are expressible in µML but not in ML, and both P1, P2 and P1, P3 are mutually
exclusive. The properties P1, P3 are separated by the ML-formula ψ = a ∧3(a ∧3a) which

© Jean Christoph Jung and Jędrzej Kołodziejski;
licensed under Creative Commons License CC-BY 4.0

42nd International Symposium on Theoretical Aspects of Computer Science (STACS 2025).
Editors: Olaf Beyersdorff, Michał Pilipczuk, Elaine Pimentel, and Nguyễn Kim Thắng;
Article No. 55; pp. 55:1–55:20

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:jean.jung@tu-dortmund.de
https://orcid.org/0000-0002-4159-2255
mailto:jedrzej.kolodziejski@tu-dortmund.de
https://orcid.org/0000-0001-5008-9224
https://doi.org/10.4230/LIPIcs.STACS.2025.55
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

55:2 Modal Separation of Fixpoint Formulae

Table 1 Overview of our results. All complexity results are completeness results.

all models words binary trees d-ary trees, d ≥ 3
ML-definability ExpTime [24] PSpace ExpTime [24] ExpTime [24]
ML-separability ExpTime PSpace ExpTime 2-ExpTime

separator construction double exp. single exp. double exp. triple exp.
ML interpolant existence always always always coNExpTime

expresses that there is a path starting with three points satisfying a. On the other hand,
no ML-formula separates P1, P2. The intuitive reason for this is that any ML-formula ψ

only sees trees up to depth |ψ|, and one can find two trees with properties P1, P2 which
nonetheless look the same up to depth |ψ|. ◀

We explore the definability and separability problems over several classes of models
relevant for computer science: all models, words, trees of bounded or unbounded outdegree;
as well as restrictions of all these classes to finite models. On top of analyzing the decision
problems, we also address the problem of constructing efficient definitions and separators
whenever they exist. The starting point for our research is the seminal paper of Otto [24],
where he solves modal definability over models of bounded and unbounded outdegree. In
this paper, we continue this line of research and establish a fairly complete and interesting
picture. Table 1 summarizes our results. We now explain its content further.

The first line essentially repeats Otto’s results; we only add the observation that ML-
definability over words is PSpace-complete. Interestingly, separability is substantially more
difficult. The case of words is the easiest one, both in terms of computational complexity
and required arguments. Next come the cases of binary and of unrestricted trees. These two
classes possess some nice structural properties which (although true for different reasons)
enable a common algorithmic treatment. Finally, the cases of trees with outdegree bounded
by a number d ≥ 3 enter the stage. These trees lack the good properties essential for previous
constructions which results in higher computational complexity. The hardness result for
d ≥ 3 is interesting for two reasons. First, as it is entirely standard to encode trees of higher
outdegree into binary ones, one could expect the ternary (and higher) case to have the
same complexity as the binary one. And second, even though there are known cases when
separation is provably harder than definability (regularity of visibly pushdown languages is
decidable [23, Theorem 19] but regular separability thereof is not [19, Theorem 2.4]), to the
best of our knowledge our results are the only such case known in logic.

The complexity landscape for deciding separability is also reflected in the maximal sizes of
the separators that we construct. Relying on the well-known connection of µML to automata,
we provide effective constructions for the cases of all models, words, and binary trees. It
is worth mentioning that equally effective constructions for definability over all models are
given in [22], but they do not work for separability. The ternary case follows from a general
argument. Our construction of separators over words is optimal. Under mild assumptions
(there are at least two modalities) the constructions over binary and over unrestricted trees
are optimal as well, but we leave it open whether these assumptions are needed for the lower
bounds. In the case of ternary and higher outdegree trees we only conjecture optimality of
the constructed separators.

Finally, we observe that ML lacks the Craig interpolation property over trees of outdegree
bounded by d ≥ 3. Recall that a Craig interpolant for φ |= φ′ in some logic L is a formula
ψ ∈ L only using the common symbols of φ and φ′ and such that φ |= ψ |= φ′. A logic
satisfies the Craig interpolation property (CIP) if a Craig interpolant of φ |= φ′ always exists.

J. C. Jung and J. Kołodziejski 55:3

It is known that ML enjoys CIP over all models and over words [15] and it follows from
our techniques that this transfers to binary trees. In contrast and as mentioned above, over
ternary and higher-arity trees ML lacks the CIP. It is worth mentioning that modal logic over
frames of arity bounded by some d has been studied under the name K⊕altd [4]. Our results
imply that K⊕ altd enjoys CIP iff d ≤ 2. Motivated by the lack of CIP over higher-arity
trees, we study the induced interpolant existence problem – determining whether two given
ML-formulae φ,φ′ admit a Craig interpolant – as a special case of separability. We show it to
be coNExpTime-complete over higher arity trees, and thus harder than validity. Interpolant
existence has recently been studied for other logics without CIP [18, 1].

As an application of our results for d-ary trees with d ≥ 3 we additionally present a case
study: separability in the graded setting in which we allow counting modalities saying “there
are at least k children such that [...]” [11]. Counting modalities are a standard extension
of modal logic that is especially relevant in applications in knowledge representation for
conceptual modeling [2]. We show that ML-separability of graded µML is 2-ExpTime-
complete, while it is ExpTime-complete if we allow counting modalities also in the separator.
The intuitive reason for the hardness in the former case is that trees of bounded arity are
definable in graded µML. This former case is also related with a recent study about separating
logics supporting counting quantifiers by logics without these [21].

It is worth to mention that ML-definability of µML-formulae generalizes the boundedness
problem which asks whether a formula with a single fixpoint is equivalent to a modal formula.
Boundedness has been studied for other logics such as monadic-second order logic [6],
datalog [16], and the guarded fragment of first-order logic [5]. Our paper is an extension of
the preliminary paper [17].

The paper is organized as follows. After this introduction 1, we set notation and recall
basic facts in the preliminary Section 2. Next, we introduce some topic-specific terminology,
discuss a relevant construction of Otto, and solve the case of all models in Section 3. In the
following Sections 4 and 5 we deal with unary and binary trees, and in Section 6 we solve the
most challenging case of trees of outdegree bounded by d ≥ 3. Section 7 applies our results to
the case with graded modalities. The last Section 8 contains conclusions and final remarks.

2 Preliminaries

We recall the main notions about modal logic ML and the modal µ-calculus µML. For the
rest of this paper fix disjoint, countably infinite sets Prop of atomic propositions and Var of
variables. The syntax of µML is given by the rule

φ ::= τ | ¬τ | φ ∨ φ | φ ∧ φ | 3φ | 2φ | x | µx.φ | νx.φ

where τ ∈ Prop and x ∈ Var. We assume that formulae of µML are in a normal form such that
every x ∈ Var appears at most once in a formula, and if it does appear then its appearance
has a unique superformula ψ beginning with µx or νx. Modal logic ML is defined as the
fragment of µML with no fixpoint operators µ and ν nor variables. Both in ML and µML, we
use abbreviations like ⊤ (for a ∨ ¬a for some a ∈ Prop), 3nφ (for a formula 3 . . .3φ with n
leading 3’s), and ¬φ. We denote with sig(φ) the set of propositions that occur in φ, and
recall that the modal depth of an ML formula is the maximal nesting of 3,2. With MLn we
denote the class of all ML-formulae of modal depth at most n, and with MLn

σ we denote its
subclass restricted to signature σ. The size |φ| of a formula φ is the length of φ represented
as a string. This choice of the simplest possible measure of size does not matter for most of
our results. We will briefly discuss alternative notions of size in the concluding Section 8.

STACS 2025

55:4 Modal Separation of Fixpoint Formulae

Both ML and µML are interpreted in pointed Kripke structures. More formally, a
model M is a quadruple M = (M,vI ,→, val) consisting of a set M called its universe, a
distinguished point vI ∈ M called the root, an accessibility relation → ⊆ M ×M , and a
valuation val : M → P(Prop).

The semantics of µML can be defined in multiple equivalent ways. The one most convenient
for us is through parity games (see [32] for an introduction). Given a modelM and a formula
φ ∈ µML we define a semantic game G(M, φ) played between players ∃ve and ∀dam. The
positions are M ×SubFor(φ). The moves depend on the topmost connective. From a position
of the shape (v, ψ ∨ ψ′) or (v, ψ ∧ ψ′) it is allowed to move to either (v, ψ) or (v, ψ′). From
(v,3ψ) and (v,2ψ) the allowed moves lead to all (w,ψ) such that v → w. In position
(v, τ) or (v,¬τ) the game stops and ∃ve wins iff v satisfies the formula component τ or ¬τ ,
respectively. From (v, µx.ψ) and (v, µx.ψ) the game moves to (v, ψ), and from (v, x) to (v, ψ)
where ψ is the unique superformula of x beginning with µx or νx. ∃ve owns positions whose
formula component has ∨ or 3 as the topmost connective and ∀dam owns all other positions.
∃ve wins an infinite play π if the outermost subformula seen infinitely often in π begins with
ν. We say that M, v satisfies φ and write M, v |= φ if ∃ve wins the game G(M, φ) from
position (v, φ). Since M is by definition pointed, we abbreviate M, vI |= φ with M |= φ.

The same symbol denotes entailment: φ |= ψ means that every model of φ is a model of
ψ. In the case only models from some fixed class C are considered we talk about satisfiability
and entailment over C. Let L be a subset of µML such as ML or MLn

σ. If two models M
and N satisfy the same formulae of L then we call them L-equivalent and write M≡L N .

In the paper we will study models of bounded and unbounded outdegree. The outdegree
of a point w ∈ M in a model M = (M,vI ,→, val) is the number of successors of w in the
underlying directed graph GM = (M,→). We say that M has finite outdegree if every point
has finite outdegree and bounded outdegree if there is a finite uniform upper bound d on the
outdegree of its points. In the latter case, we will call M d-ary, and binary or ternary if
d = 2 or d = 3. If d = 1, then we call M a word. A d-ary model is full if each of its nodes is
either a leaf (i.e. has no children) or has precisely d children. A modelM is a tree if GM is a
(directed) tree with root vI . We denote with Td the class of all d-ary tree models. Both ML
and µML are invariant under bisimulation, and every (d-ary) model is bisimilar to a (d-ary)
tree. Hence, we do not loose generality by only looking at tree models.

A prefix of a tree is a subset of its universe closed under taking ancestors. When no
confusion arises we identify a prefix N ⊆M with the induced subtree N of M that has N
as its universe. The depth of a point is the distance from the root. The prefix of depth n

(or just n-prefix) is the set of all points at depth at most n and is denoted by M|n
(and the

corresponding subtree by M|n
).

Bisimulations

We define bisimulations and bisimilarity for trees, assuming for convenience that bisimulations
only link points at the same depth. Let M,M′ be trees and Z ⊆M ×M ′ a relation between
M and M ′ that relates only points of the same depth. Then, Z is a bisimulation between M
and M′ if it links the roots vIZv

′
I , and for every wZw′ the following conditions are satisfied:

(atom) val(w) = val′(w′),
(forth) for every v ∈M with w → v there is a v′ ∈M ′ with w′ → v′ and vZv′, and
(back) for every v′ ∈M ′ with w′ → v′ there is a v ∈M with w → v and vZv′.
A functional bisimulation (also known as bounded morphism) is a function whose graph is a
bisimulation. If Z is a functional bisimulation fromM toM′ then we write Z :M bis→M′ and
callM′ a bisimulation quotient ofM. The bisimilarity quotient ofM is a quotientM′ ofM

J. C. Jung and J. Kołodziejski 55:5

such that if Z ′ :M′ →M′′ then M′ =M′′. It follows from analogous results for arbitrary
models that every tree M ∈ Td has a unique (up to isomorphism) bisimilarity quotient
M′ ∈ Td and that two trees are bisimilar iff their bisimilarity quotients are isomorphic.

Further, for every n ∈ N and every subset σ ⊆ Prop of the signature we consider a
restricted variant of bisimulations called (σ, n)-bisimulations. In a (σ, n)-bisimulation the
atom condition is only checked with respect to σ and the back and forth conditions only for
points at depth smaller than n. Formally, a relation Z ⊆ M ×M ′ is a (σ, n)-bisimulation
if it is a bisimulation between the n-prefixes of the σ-reducts of M,M′. We call a (σ, n)-
bisimulation between M,M′ a (σ, n)-isomorphism if it is bijective on the n-prefixes of
M,M′. We write M -n

σ M′ if there exists a (σ, n)-bisimulation between M and M′ and
M∼=n

σ M′ if there is a (σ, n)-isomorphism between them. Crucially, over every class C of
models and for every finite σ the equivalences ≡MLn

σ
and -n

σ coincide, for every n.

Automata

We exploit the well-known connection of µML and automata that read tree models. A
nondeterministic parity tree automaton (NPTA) is a tuple A = (Q,Σ, qI , δ, rank) where Q is
a finite set of states, qI ∈ Q is the initial state, Σ = P(σ) for some finite set σ ⊆ Prop, rank
assigns each state a priority, and δ is a transition function of type:

δ : Q× Σ→ P(Q≤d),

where Q≤d denotes the set of all tuples over Q of length at most d. A run of A on a tree
M is an assignment ρ : M → Q sending the root of the tree to qI and consistent with
δ in the sense that (ρ(v1), ..., ρ(vk)) ∈ δ(ρ(v), val(v) ∩ σ) for every point v with children
v1, ..., vk. On occasion when considering trees of unbounded outdegree we will use automata
with transition function of type δ : Q × Σ → P(P(Q)). Then, consistency of ρ with δ

means that {ρ(v′) | v′ ∈ V } ∈ δ(ρ(v), val(v) ∩ σ) for every v with a set V of children. In
either case, we call the run ρ accepting if for every infinite path v0, v1 . . . in M the sequence
rank(ρ(v0)), rank(ρ(v1)), . . . satisfies the parity condition. We write M |= A in case A has an
accepting run on M. An automaton that is identical to A except that the original initial
state is replaced with q is denoted A[qI ←[q]. The size of an automaton A is the number of
its states and is denoted by |A|.

An NPTA A is equivalent to a formula φ ∈ µML over a class C of trees when M |= φ iff
M |= A for every tree M∈ C. We rely on the following classical result (see for example the
discussion in [31] and the well-presented Dealternation Theorem 5.7 in [7]):

▶ Theorem 2. For every µML-formula φ and class C of trees, we can construct an NPTA
with exponentially many states equivalent to φ over C. The construction takes exponential
time when C ⊆ Td for some d, and doubly exponential time in the unrestricted case.

3 Foundations of Separability

We start with recalling the notion of separability and discuss some of its basic properties.

▶ Definition 3. Assume a subset L of all µML formulae. Given φ,φ′ ∈ µML, an L-separator
of φ,φ′ is a formula ψ ∈ L with φ |= ψ and ψ |= ¬φ′. If additionally sig(ψ) ⊆ σ for some
signature σ, ψ is called an Lσ-separator.

STACS 2025

55:6 Modal Separation of Fixpoint Formulae

The L-separability problem is to determine, given formulae φ,φ′ ∈ µML and a signature σ, if
they admit an Lσ-separator ψ. L-definability is the special case of L-separability in which
φ′ = ¬φ, since an L-separator of φ,¬φ is equivalent to φ. All notions can be relativized to a
class C of models by considering entailment over that class. We investigate ML-separability
and ML-definability over different classes of models. The reader may have expected the
problems to be defined without restrictions on σ, but in fact such versions of the problems
are special instances of our problems with σ = sig(φ) ∪ sig(φ′). Conversely, all lower bounds
already hold for such special instances.

We start with observing that, by the tree model property and the finite model property
of µML, ψ is an MLσ-separator of φ,φ′ (over all models) iff ψ is an MLσ-separator of φ,φ′

over trees iff ψ is an MLσ-separator of φ,φ′ over finite models. Thus, separability coincides
over all these classes. Moreover, with the help of the µML-formula θ∞ = νx.3x expressing
the existence of an infinite path originating in the root, ML-separability over finite trees
reduces to ML-separability over all models. More formally:

▶ Lemma 4. Let φ,φ′ ∈ µML and ψ ∈ ML. Then ψ is an MLσ-separator of φ,φ′ over finite
trees iff ψ is an MLσ-separator of φ ∧ ¬θ∞, φ

′ ∧ ¬θ∞. This is also true inside Td, for d ∈ N.

This lemma allows us to transfer all upper bounds obtained in the paper also to the restrictions
of the classes to finite models. The lower bounds do not follow from this lemma, but analyzing
the proofs yields that they actually work as well. Thus, in the rest of the paper we focus on
the classes of all models and Td, for d ∈ N.

The starting point for the technical developments in the paper are model-theoretic char-
acterizations for separability. Similar to what has been done in the context of interpolation,
see for example [28], they are given in terms of joint consistency, which we introduce next.
Let R be a binary relation on some class of models, such as (σ, n)-isomorphism ∼=n

σ or
MLn

σ-equivalence ≡MLn
σ
. We call two formulae φ,φ′ joint consistent up to R (in short joint

R-consistent) if there are models M |= φ and M′ |= φ′ with R(M,M′). For technical
reasons we will sometimes also talk about joint consistency of automata A,A′ in place of
formulae φ,φ′. Joint R-consistency over a class C of models is defined by only looking at
models from C. Clearly, if R′ ⊆ R and C′ ⊆ C then joint R′-consistency over C′ implies
joint R-consistency over C. We use the following standard equivalence:

φ,φ′ are not MLn
σ-separable over C ⇐⇒ φ,φ′ are joint -n

σ-consistent over C. (Base)

for every φ,φ′ ∈ µML, n ∈ N, finite σ, and class C. The implication from right to left is
immediate. The opposite one follows from the observation that for every n ∈ N and finite σ
there are only finitely many equivalence classes of -n

σ, and each such class is fully described
with a single modal formula.

Let us illustrate how Equivalence (Base) is used to solve ML-separability. Let φ1 and φ2 be
µML-formulae expressing the respective properties P1 and P2 from Example 1. Let M be an
infinite path in which every point satisfies a, and letMn be a finite path of length n in which
every point satisfies a. Then, for each n the models M,Mn witness joint -n-consistency of
φ1, φ2. By Equivalence (Base) this means that φ1, φ2 are not MLn-separable for any n, and
thus not ML-separable at all.

Definability is a special case of separability. Since the tools used for solving definability
are a starting point for our work, we recall them now.

J. C. Jung and J. Kołodziejski 55:7

Modal Definability: A Recap

In his seminal paper [24] Otto showed that ML-definability of µML-formulae is ExpTime-
complete over all models and over Td for every d ≥ 2.

▶ Theorem 5 ([24, Main Theorem and Proposition 5]). Over the class of all models, as well
as over Td for every d ≥ 2, ML-definability of µML-formulae is ExpTime-complete.

We start by recalling and rephrasing Otto’s construction and fixing a small mistake in the
original proof. The lower bound follows by an immediate reduction from satisfiability of
µML-formulae. We look at the upper bound. The first step is the following lemma, which is
the heart of [24, Lemma 2].

▶ Lemma 6. For every φ ∈ µML and n, d ∈ N the following are equivalent:
1. φ,¬φ are joint -n

σ-consistent over Td.
2. φ,¬φ are joint ∼=n

σ-consistent over Td.
The lemma is true, but its proof in [24] is mistaken. The problem there is that the construction
duplicates subtrees and hence may turn d-ary models into ones with outdegree greater than d.
We present an easy alternative proof.

Proof. Only the implication 1 ⇒ 2 is nontrivial. To prove it assume d-aryM |= φ, N |= ¬φ
with M -n

σ N and assume towards contradiction that φ,¬φ are not ∼=n
σ-consistent over Td.

We haveM∼=n
σ Mσ

|n
-M′ whereMσ is the σ-reduct ofM, andM′ ∈ Td is the bisimilarity

quotient of its n-prefix Mσ
|n

. By the assumption that φ,¬φ are not joint ∼=n
σ-consistent,

M |= φ implies Mσ
|n
|= φ. By invariance of φ under -, this in turn implies M′ |= φ. We

construct N ′ |= ¬φ symmetrically. By definition, M -n
σ N means that Mσ

|n
and N σ

|n
are

bisimilar, which is equivalent to saying that their bisimilarity quotients M′ and N ′ are
isomorphic, and hence (σ, n)-isomorphic. Thus,M′,N ′ witness joint ∼=n

σ-consistency of φ,¬φ
over Td, a contradiction. ◀

Using automata-based techniques we to decide if Item 2 in Lemma 6 holds for all n.

▶ Proposition 7. For every parity automata A,A′ and d ∈ N: A,A′ are joint ∼=n
σ-consistent

over Td for all n ∈ N iff A,A′ are joint ∼=m
σ -consistent over Td for m = |A|+ |A′|+ 1. The

latter condition can be checked in time polynomial in |A|+ |A′|.

Proof (Sketch). Due to well-known relativization techniques we do not loose generality by
only running A,A′ on full d-ary trees with no leaves. Let L be a language of finite full d-ary
trees over σ such that M ∈ L iff M is a prefix of a reduct of a model of A. Let L′ be an
analogous language for A′. The tallness of a finite tree is the minimal distance from the root
to a leaf. Observe that A,A′ are ∼=n

σ-consistent over Td iff L ∩ L′ contains a tree of tallness
n. Thus, it suffices to check if L ∩ L′ contains trees of arbitrarily high tallness. To that
end construct an automaton B recognizing L ∩ L′ of size polynomial in |A|+ |A′|. An easy
pumping argument shows that the language L ∩ L′ of B contains trees of arbitrarily high
tallness iff it contains a tree of tallness m = |B|+ 1. To test the latter condition it is enough
to inductively compute a sequence S1 ⊇ S2 ⊇ ... ⊇ S|B|+1 of subsets of states of B, where Si

is the set of all states q such that B[qI ←[q] recognizes a tree of tallness at least i. ◀

We are ready to solve ML-definability over Td in exponential time. Assume µML-formula
φ. For every n, we know by Equivalence (Base) that φ is equivalent over Td to some ψ ∈ MLn

σ

iff φ,¬φ are not joint -n
σ-consistent over Td. By Lemma 6 this is equivalent to the lack of

joint ∼=n
σ-consistency of φ,¬φ over Td. By Theorem 2 we can compute exponentially-sized

STACS 2025

55:8 Modal Separation of Fixpoint Formulae

automata A, A′ equivalent to φ and ¬φ over Td. It follows that φ is not MLσ-definable
over Td iff A,A′ are joint ∼=n

σ-consistent over Td for every n. The last condition is decided
using Proposition 7. The runtime of our algorithm is polynomial in |A| + |A′|, and thus
exponential in |φ|. This proves the part of Theorem 5 about Td. The remaining part
concerning unrestricted models is a special case of Theorem 9, which we will prove next.

Modal Separation: the Unrestricted Case

Over unrestricted models, separability turns out to be only slightly more complicated than
definability. Lemma 6 becomes false if ¬φ is replaced with arbitrary φ′ (which would be the
statement relevant for separability). We have the following lemma, however.

▶ Lemma 8. For every φ,φ′ ∈ µML and n ∈ N the following are equivalent:
1. φ,φ′ are joint -n

σ-consistent over all models.
2. φ,φ′ are joint ∼=n

σ-consistent over Td, where d = |φ|+ |φ′|.

Proof. The implication (1)⇐(2) is immediate. To prove the other one (1)⇒(2) consider an
intermediate property:

φ,φ′ are joint ∼=n
σ-consistent over all models. (1.5)

The implication (1)⇒(1.5) can be read off from Otto’s original proof. The remaining one
(1.5)⇒(2) is a special case of a stronger claim which we prove later: the implication (3)⇒(4)
of Lemma 27. ◀

Lemma 8 allows us to solve ML-separability in exponential time.

▶ Theorem 9. Over all models, ML-separability of µML-formulae is ExpTime-complete.

Proof. The proof is almost the same as our proof of Theorem 5. The only difference is that
we consider an arbitrary φ′ in place of ¬φ, and hence use Lemma 8 in place of Lemma 6. ◀

Apart from deciding separability we also construct separators when they exists. Given a
subset L of µML formulae, φ ∈ µML, and ψ ∈ L, we call ψ an L-uniform consequence of φ if
ψ |= θ for every θ ∈ L such that φ |= θ. The notion relativizes to a fixed class C of models
by only considering entailment over that class. Observe that if φ,φ′ are L-separable and ψ

is an L-uniform consequence of φ then ψ is an L-separator for φ,φ′. The same is true over
any class C.

Note that it follows from the proof of Theorem 9 that if φ,φ′ are ML-separable then
they admit a separator of modal depth n at most exponential in |φ| + |φ′|. It follows
that constructing an MLσ-separator for φ,φ′ boils down to constructing an MLn

σ-uniform
consequence of φ. A naive construction which always works is to take the disjunction of all
MLn

σ-types consistent with φ over C. Here, by an MLn
σ-type we mean a maximal consistent

subset of MLn
σ. Since up to equivalence there are only finitely many formulae in MLn

σ, each
MLn

σ-type can be represented as a single MLn
σ-formula and the mentioned disjunction ψ is

well-defined. This construction is non-elementary in n over all models and doubly exponential
in n over models of bounded outdegree.

We present an efficient construction of MLn
σ-uniform consequences. The construction

works over unrestricted models, over T1 and over T2 but not over Td for d ≥ 3. Since in the
following Section 4 we will provide a more efficient construction for T1, now we only look at
the unrestricted and binary case. For convenience, we construct MLn

σ-uniform consequences
of automata instead of formulae, with definition adapted in an obvious way.

J. C. Jung and J. Kołodziejski 55:9

▶ Proposition 10. Let C be the class of all models or T2. Assume an NPTA A over C, a
signature σ and n ∈ N. An MLn

σ-uniform consequence of A over C can be constructed in
time |A|O(n·|A|) if C is the class of all models and in time 2O(n·|A|) if C = T2.

Proof. Let A be an NPTA. Let B = (Q,Σ, qI , δ, rank) be an automaton of the same size
recognizing σ-reducts of models of A. A formula ψ is an MLn

σ-uniform consequence of A over
C iff it is an MLn-uniform consequence of B over C. Thus, it suffices to construct the latter.

We construct ψn,q for every q ∈ Q and n ∈ N by induction on n ∈ N. For the base case
we put:

ψ0,q =
∨
{c ∈ Σ | there is N ∈ C with N |= B[qI ←[q] and N |= c}

For the induction step define:

ψn+1,q =
∨
c∈Σ

∨
S∈δ(q,c)

c ∧∇{ψn,p | p ∈ S}

where ∇Φ is an abbreviation for
∧

θ∈Φ 3θ ∧ 2
∨

θ∈Φ θ. Assume C is either the class of all
models or T2. The construction preserves the following invariant:

M |= ψn,q ⇐⇒ there exists N ∈ C with N |= B[qI ←[q] and M -n N (1)

for every structure M∈ C. Hence, ψn,qI
is an MLn

σ-uniform consequence of A over C. It is
routine to check that in either case the formula has the right size.

The proof of (1) proceeds by an easy induction, with slightly different details for the cases
of binary and of unrestricted models. It is worth to point out, however, that the implication
⇒ from left to right would not be valid over Td with d ≥ 3. ◀

Given the exponential construction of automata from Theorem 2 and the exponential
upper bound on modal depth n of separators, Proposition 10 yields an efficient construction
of separators.

▶ Theorem 11. If φ,φ′ are MLσ-separable, then one can compute an MLσ-separator in time
doubly exponential in |φ|+ |φ′|.

It is not difficult to show that, in the presence of at least two accessibility relations 31,32,
the construction is optimal: one can express in µML that the model embeds a full binary
tree of depth 2n and in which each inner node has both a 31- and a 32-successor. Using
standard techniques, one can show that any modal formula expressing this property is of
doubly exponential size [13]. Whether having two accessibility relations is necessary for this
lower bound is an interesting question which we leave open.

It is interesting to note that the separators we compute are not the logically strongest
separators and, in fact, strongest separators do not even have to exist.

▶ Example 12. Consider φ = θ∞ from before and φ = 2⊥ For every n ∈ N, the modal
formula 3n⊤ separates φ from φ′, and 3m⊤ |= 3n⊤ whenever m ≥ n.

The remaining open cases are the problems of ML-separability (and separator construction)
over Td for d ≥ 1. We investigate the cases of unary (d = 1), binary (d = 2), and higher
maximal outdegree (d ≥ 3) in turn. We emphasize that the outdegree d is not a part of the
input but rather a property of the considered class of models.

STACS 2025

55:10 Modal Separation of Fixpoint Formulae

4 Unary Case

We first investigate ML-separability over T1, that is, models that are essentially words. Note
that satisfiability of µML over words is PSpace-complete (an upper bound follows, e.g., via
the translation to automata and the lower bound is inherited from LTL [30, Theorem 4.1])
which suggests that also definability and separability could be easier. Indeed, we show:

▶ Theorem 13. ML-definability and ML-separability of µML-formulae is PSpace-complete
over T1.

Proof. The lower bound is by a reduction from satisfiability, and applies to definability.
Given formulae φ,φ′ ∈ µML and a subset of the signature σ, consider the set of finite

words L = {W ∈ P(σ)∗ | W is a σ-reduct of a prefix V of some model U of φ}. Let L′ be
a similar language defined for φ′. Two unary models are bisimilar iff they are identical.
Hence, by Equivalence (Base) the formulae φ,φ′ ∈ µML are not MLσ-separable over T1 iff
L ∩ L′ is infinite. It is standard to define a finite automaton A recognizing L ∩ L′ and check
if its language is infinite (which is equivalent to checking if L∩L′ contains input longer than
|A|). To do it in polynomial space, we nondeterministically guess the long input, letter by
letter, and only remember the current state and a binary counter measuring the length of
the input guessed so far. ◀

We conclude this section with proving that MLσ-separators can be constructed in ex-
ponential time and are thus of at most exponential size. Note that this is optimal, since
over T1, µML is exponentially more succinct than ML. Indeed, it is standard to implement
an exponential counter using a polynomially sized µML-formula.

▶ Theorem 14. If φ,φ′ ∈ µML are MLσ-separable over T1, then one can compute an
MLσ-separator in time exponential in |φ|+ |φ′|.

As argued in the previous section, it suffices to construct an MLn-uniform consequence of
the NPTA equivalent to φ, which we do next.

▶ Proposition 15. Let A be an NPTA over T1 with ℓ states, n ∈ N, and σ a signature. An
MLn

σ-uniform consequence of A over T1 can be constructed in time polynomial in n, σ, and ℓ.

Proof. As argued in the previous section, it suffices to construct an MLn-uniform consequence
of the NPTA B which recognizes precisely the σ-reducts of models of A. Let B have states Q.
By construction of B, we have |Q| = ℓ. As an auxiliary step, we define for every p, q ∈ Q and
m ≤ n a formula ψm

p,q ∈ MLn
σ such that for every M∈ T1:

M |= ψm
p,q ⇐⇒ there is a run of B from p to q over the m-prefix of M. (2)

The ψm
pq are defined inductively with the base cases (m ≤ 1) read off from B, and using

divide and conquer in the inductive step (m > 1), to keep the formulae small. More formally,
we define ψm

pq for m > 1 and all p, q ∈ Q by taking:

ψm
pq =

∨
q′∈Q

(
ψ

⌊m/2⌋
pq′ ∧3⌊m/2⌋ψ

⌈m/2⌉
q′q

)
It is routine to verify that ψm

pq satisfies (2) and is of size |ψm
pq| ∈ O(|Q| ·m2). Based on the

ψm
pq, one can define a formula ψn that describes all possible prefixes of length ≤ n of models

of B, and thus is the sought MLσ-uniform consequence of B. One can think of ψn as the
disjunction of formulae ψn

q0q for q0 the initial state of B, but the full construction is slightly
more involved since models accepted by B might be also shorter than n. ◀

J. C. Jung and J. Kołodziejski 55:11

5 Binary Case

We next handle the binary case T2. The key observation here is that, between full binary
trees, bisimilarity entails isomorphism.

▶ Proposition 16. Assume full binary trees M,M′ ∈ T2. If M and M′ are σ-bisimilar
then they are σ-isomorphic.

Proof. By definition a σ-bisimulation between two models is a bisimulation between their
reducts to σ, and σ-isomorphism is such a bisimulation which is additionally bijective. It
therefore suffices to show that if M,M′ are full binary trees and Z is a bisimulation between
them then there is a bijective bisimulation Z ′ ⊆ Z. We pick such Z ′ inductively starting
with the pair of roots (vI , v

′
I). The key observation is that if v has children v1, v2 and w has

children w1, w2 and vZw then either (i) v1Zw1 and v2Zw2 or (ii) v1Zw2 and v2Zw1 (the
cases are not exclusive). ◀

Proposition 16 can be used to prove the Craig interpolation property of ML over T2 and
implies the following separability-variant of Lemma 6 over T2.

▶ Lemma 17. For every φ,φ′ ∈ µML and n ∈ N the following are equivalent:
1. φ,φ′ are joint -n

σ-consistent over T2.
2. φ,φ′ are joint ∼=n

σ-consistent over T2.

Proof. We show only the nontrivial implication 1 ⇒ 2. Assume binary M |= φ, M′ |= φ′

with M -n
σ M′. Let N |= φ and N ′ |= φ′ be full binary trees obtained from M and M′ by

duplicating subtrees. By Proposition 16, N ∼=n
σ N ′ which proves 2. ◀

Similarly to the definability case, Lemma 17 combined with Equivalence (Base) and Proposi-
tion 7 immediately give an exponential procedure for separability. Since the lower bound is
inherited from definability, we get the following result.

▶ Theorem 18. ML-separability and ML-definability of µML-formulae is ExpTime-complete
over T2.

With the same argument as for Theorem 11 we use Proposition 10 to conclude:

▶ Theorem 19. If φ,φ′ are MLσ-separable over T2, then one can compute an MLσ-separator
in time doubly exponential in |φ|+ |φ′|.

6 Ternary and Beyond

In this section we address the case of models with outdegree bounded by a number d ≥ 3.
We illustrate that this case behaves differently as it lacks the Craig interpolation property.

▶ Example 20. Consider ML-formulae φ = 3(a∧b)∧3(a∧¬b) and φ′ = 3(¬a∧c)∧3(¬a∧¬c).
Clearly, φ |= ¬φ′ over T3. Observe that models M,M′ in Figure 1 witness that φ,φ′ are
joint -{a}-consistent and thus joint -n

{a}-consistent for every n ∈ N. By Equivalence (Base)
there is no ML{a}-separator, which is nothing else than a Craig interpolant. ◀

Motivated by the lack of the Craig interpolation property, we study the ML-interpolant
existence problem: given φ,φ′ ∈ ML and signature σ, decide whether there is an MLσ-
separator of φ,¬φ′, that is, ψ ∈ MLσ with φ |= ψ |= φ′. Craig ML-interpolant existence is
the special case in which σ = sig(φ) ∩ sig(φ′). Observe that ML-interpolant existence is the

STACS 2025

55:12 Modal Separation of Fixpoint Formulae

M M′

vI

a, b a,¬b ¬a

v′
I

¬a, c ¬a,¬c a

Figure 1 Witness of joint consistency: dashed lines and colors indicate the {a}-bisimulation.

special case of ML-separability of µML-formulae in which the input to the separability is
restricted to ML-formulae. We show that already ML-interpolant existence over T3 is harder
than ML-separability of µML-formulae over arbitrary models.

▶ Theorem 21. For d ≥ 3, ML-interpolant existence over Td is coNExpTime-complete.
Hardness already applies to Craig ML-interpolant existence over Td.

Proof. The upper bound is easy to establish based on the observation that φ,¬φ′ of modal
depth at most m do not admit an MLσ-separator over Td iff they are joint -m

σ -consistent
over Td. The witness M,M′ of joint -m

σ -consistency of φ,¬φ′ can assumed to be of depth
m. Such models are of exponential size (they have at most dm points) and can thus be
guessed by a non-deterministic exponential time bounded Turing machine.

The lower bound is more intriguing and relies on an extension of Example 20. Reconsider-
ing the example it is important to note that in every witnessM,M′ of joint -n

{a}-consistency
of φ,φ′, there are two successors of vI that are bisimilar to the same successor of v′

I . We
extend the idea and enforce exponentially many bisimilar points. More precisely, consider
families (ψi)i∈N, (ψ′

i)i∈N of modal formulae inductively defined as follows:

ψ0 = ψ′
0 = ⊤

ψi+1 = 3(a ∧ bi) ∧3(a ∧ ¬bi) ∧2
(
a→ (ψi ∧ (bi →

∧
j<i 2

jbi) ∧ (¬bi →
∧

j<i 2
j¬bi))

)
ψ′

i+1 = 3(¬a ∧ c) ∧3(¬a ∧ ¬c) ∧3(a ∧ ψ′
i)

Clearly, the size of ψi, ψ
′
i is polynomial in i. Moreover, by induction on i, it is readily verified

that for every i ∈ N, for every M,M′ ∈ T3 with M |= ψi, M |= ψ′
i, and every ({a}, i)-

bisimulation S witnessingM -i
{a} M

′, there are points w0, . . . , w2i−1 in depth i inM and a
point ŵ in depth i inM′ such that (wj , ŵ) ∈ S for all j and such that distinct wj , wk can be
distinguished by some proposition in b0, . . . , bi−1. Intuitively, this means that ψi, ψ

′
i enforce

in joint -i
{a}-consistent modelsM,M′ thatM contains 2i points w0, . . . , w2i−1 which are all

linked to the same point ŵ in M′. We exploit this link to synchronize information between
the wj , following a strategy that has recently been used to show coNExpTime-hardness for
interpolant existence in some description logics [1].

We reduce a NExpTime-complete tiling problem [14]: Given a set ∆ of tile types and
horizontal and vertical compatibility relations H,V ⊆ ∆ × ∆, and some n ∈ N in unary,
decide whether one can tile the 2n × 2n torus with tiles from ∆ complying with H,V . Given
∆, H, V, n, we define formulae φn = ψ2n ∧22nχn, φ′

n = ψ′
2n ∧22nχ′

n of modal depth m and
with common signature σ = sig(φn) ∩ sig(φ′

n) such that

∆, H, V, n has a solution ⇔ φn, φ
′
n are joint -m

σ -consistent.

To explain the idea, let M,M′ witness joint -m
σ -consistency of φn, φ

′
n. The gadget formulae

ψ2n, ψ
′
2n enforce 22n points w0, . . . , w22n−1 in depth 2n in M which are all linked via the

bisimulation to a single point ŵ in M′. These 22n points shall represent the 2n × 2n cells

J. C. Jung and J. Kołodziejski 55:13

of the torus. The intended solution of the tiling problem is represented via propositions
pd ∈ σ, for each d ∈ ∆. To synchronize them we proceed as follows. Using the 2n
propositions b0, . . . , b2n−1 (which are not in σ), we can associate coordinates (xi, yi) ∈
{0, . . . , 2n− 1}× {0, . . . , 2n− 1} to each point wi in the torus. To understand the purpose of
χn, χ

′
n, suppose for a moment that the outdegree of the points ŵ and the wi is at most 22n

(instead of 3). Then we could proceed by enforcing (via χn) below each wi with coordinates
(xi, yi) three successors v1

i , v
2
i , v

3
i such that

v1
i , v2

i , v3
i have coordinates (xi, yi), (xi, yi + 1), and (xi + 1, yi), respectively;

the coordinates of the vj
i are made visible using propositions in σ;

v1
i , v

2
i , v

3
i satisfy pd1 , pd2 , pd3 for d1, d2, d3 ∈ ∆ such that (d1, d2) ∈ V and (d1, d3) ∈ H.

These three successors stipulate bisimilar successors of ŵ. Since each point in the torus is
stipulated three times as successor of some wi and since the outdegree of ŵ is restricted to
22n, the three copies of the same point satisfy the same proposition pd. By the last item
above, the selected propositions comply with V,H and thus represent a solution to the tiling
problem. Now, since the outdegree below ŵ is at most 3 (and not 22n as assumed), the
χn, χ

′
n have to be a bit more complicated, but the idea remains the same. ◀

We show next that the situation for the full separability problem is even worse.

▶ Theorem 22. For every d ≥ 3, ML-separability of µML-formulae over Td is 2-ExpTime-
complete.

Thus, over Td for d ≥ 3, ML-separability is provably harder than ML-definability, c.f.
Theorem 5. Both the upper and the lower bound of Theorem 22 are non-trivial; we provide
proof sketches in the following two subsections. Before doing that let us conclude this part
with separator construction.

▶ Theorem 23. If φ,φ′ are MLσ-separable over Td, d ≥ 3, then one can compute an
MLσ-separator in time triply exponential in |φ|+ |φ′|.

Proof. (Sketch) It follows from the upper bound proof of Theorem 22 that, if φ,φ′ admit
an MLσ-separator, then they admit one of modal depth bounded doubly exponentially in
|φ|+ |φ′|. Observe that over the signature of φ and φ′ there are only triple exponentially
many trees of fixed outdegree d and double exponential depth, and that each such tree is
characterized by a modal formula of triply exponential size. The sought separator is then
the disjunction of all such formulae consistent with φ. ◀

6.1 Lower Bound for Theorem 22
We reduce the word problem of exponentially space bounded alternating Turing machines
(ATMs), which is known to be 2-ExpTime-complete [8]. Informally, the states of such
ATMs are partitioned into universal states Q∀ and existential states Q∃. Configurations of
ATMs are defined as usual, but computations are not sequences of configurations but trees of
configurations such that an existential configuration has exactly one successor labeled with a
universal configuration and a universal configuration has exactly two successors labeled with
existential configurations. A computation tree for an input w is a tree whose root is labeled
with the initial configuration and such that successor nodes contain successor configurations.
w is accepted if there is a computation tree in which each path is infinite (this acceptance
condition is slightly non-standard, but eases the proof).

STACS 2025

55:14 Modal Separation of Fixpoint Formulae

universal conf.

existential conf. universal conf.wi . . .
2n − i

. . .

. . .

2n − i
.

2n − i
. . .

. . .

. . .

. . .
2n − i

.
2n − i

. . .

. . .

. . .

Figure 2 Computation tree of A below some wi (drawn horizontally for space constraints).

The reduction relies on the same gadget formulae (ψi)i∈N, (ψ′
i)i∈N as used in the proof

of Theorem 21 and additionally uses ideas for showing 2-ExpTime-hardness for recently
studied interpolant existence problems for description logics [1]. For a given ATM A and
input w of length n, we construct formulae φn = ψn ∧2nχ, φ′

n = ψ′
n ∧ χ′ such that

φn, φ
′
n are joint -m

σ -consistent for every m ∈ N iff A accepts w.

This suffices by Equivalence (Base). The signature σ will consist of a, z, and propositions cα

for every possible cell content α of A, that is, α ∈ Γ ∪ (Q× Γ). Additionally, φn and φ′
n will

use auxiliary propositions, e.g., to encode counters. The only purpose of χ′ is to mention the
propositions in σ; the main work is done by ψn, ψ

′
n, χ.

To explain the idea, let us consider witnesses M,M′ for joint -m
σ -consistency of φn, φ

′
n

for sufficiently large m. By the properties of ψn, ψ
′
n, we find 2n points w0, . . . , w2n−1 in

depth n in M which are bisimilar to a single point ŵ in depth n in M′. Recall that in
every wi, we have access to its index i via a counter using propositions b0, . . . , bn. Now, χ is
a µML-formula with the following properties, see also Figure 2 for illustration.

χ enforces the “skeleton” of a computation tree for A, in which each configuration is
modeled by a path of length 2n (using an exponential counter), and in which universal
and existential configurations alternate.
χ also enforces that each point of the skeleton is labeled with some cell content via
σ-propositions cα, but without any synchronization except the initial configuration.
χ makes sure that below wi the positions 2n−i of successor configurations are coordinated.

The key point is that this enforces (due to bisimilarity) a computation tree below ŵ in which,
due to the last item above, all positions of configurations are coordinated.

We remark that the hardness also holds when σ is not part of the input: one can reduce
separability of φ,φ′ by MLσ-formulae to separability of φ,φ′ by (arbitrary) ML-formulae.

6.2 Upper Bound for Theorem 22
We show that over models of outdegree at most d, ML-separability of fixpoint formulae can
be solved in doubly exponential time. Let us start with establishing a technical but useful
fact. For every language of d-ary trees L ⊆ Td denote the language:

bisQuot(L) = {M ∈ Td | there is N ∈ L and a functional bisimulation Z : N bis→M}

of bisimulation quotients of trees from L.

▶ Proposition 24. For every NPTA A, an NPTA B recognizing bisQuot(L(A)) can be
computed in time exponential in the size of A.

J. C. Jung and J. Kołodziejski 55:15

Proof. Fix an NPTA A = (Q,Σ, qI , δ, rank). For every M∈ Td, we characterize existence of
d-ary N |= A with N bis→M with the following parity game GbisQuot(M,A). The game has
the set M ×Q as positions. The pair (vI , qI) consisting of the root vI of M and qI is the
initial position. From a position (v, q) first ∃ve chooses S ∈ δ(q, val(c)) and a surjective map
h : S → {v1, ..., vk} where {v1, ..., vk} is the set of children of v. Then ∀dam responds with a
choice of p ∈ S and the next round starts in position (h(p), p). The game is a parity game:
the ranks are inherited from A in the sense that the rank of (v, q) equals rank(q). It is easy
to show that:

∃ve wins GbisQuot(M,A) ⇐⇒ M ∈ bisQuot(L(A)) (3)

for every M∈ Td. Using (3) we prove Proposition 24. It suffices to construct an automaton
B which accepts M iff ∃ve wins GbisQuot(M,A). To that end, using standard techniques
we encode ∃ve’s positional strategies for GbisQuot(M,A) as colorings of M with P(Q × Q)
and construct, in time exponential in |Q|, an automaton B+ recognizing models labelled
with such winning positional strategies. We then obtain B recognizing bisQuot(L(A)) by
projecting out the additional colors P(Q×Q) from B+. ◀

With the help of Proposition 24 we prove Theorem 22. Fix d, µML-formulae φ and φ′ and
signature σ. By Equivalence (Base), it suffices to check if φ and φ′ are jointly -n

σ-consistent
over Td for every n. However, unlike with definability or in the binary case, we cannot
conclude joint ∼=n

σ-consistency from joint -n
σ-consistency. Instead, we use Proposition 24 to

directly decide joint -n
σ-consistency for all n. For a language L ⊆ Td, define the language:

QPL(L) = {N ∈ Td | there is M∈ L, finite prefix M0 of M and Z :M0
bis→ N}

of finite d-ary trees which are bisimulation quotients of finite prefixes of models from L. By
Proposition 24 and the closure properties of parity automata, for every A one can construct
in exponential time an automaton B recognizing QPL(L(A)).

We prove the upper bound from Theorem 22. Using Theorem 2 compute automata
A,A′ accepting σ-reducts of models of φ,φ′. Compute B,B′ recognizing QPL(L(A)) and
QPL(L(A′)). Recall that any two trees are bisimilar iff they have isomorphic bisimulation
quotients. It follows that φ,φ′ admit a MLn

σ-separator over Td iff A,A′ are joint -n-consistent
iff B,B′ are joint ∼=n consistent. By Proposition 7, the latter condition holds for all n ∈ N iff
it holds for n = |B|+ |B′|+ 1 and this can be tested in time polynomial in |B|+ |B′|. Since
A,A′ are exponential, and B,B′ are doubly exponential in the size of φ,φ′, this gives the
upper bound from Theorem 22.

7 Case Study: Graded Modalities

In this section we apply our techniques and results to the case with graded modal operators.
Formally, we extend µML with formulae of the shape 3∼gψ and 2∼gψ, where ∼ ∈ {≤,≥}
and the grade g ∈ N is a natural number. Intuitively, 3≥gψ is true in a point w if w
has at least g successors satisfying ψ and dually, 2≤gψ is true in w if all but at most g
successors satisfy ψ [11, 25]. We denote with grML and grµML the extension of ML and µML,
respectively, with such graded modalities. Clearly, for any d ∈ N, Td is grµML-definable by
the formula θd = νx.(3≤d⊤ ∧ 2x), which is an additional motivation to study grML and
grµML.

Indeed, using the results and techniques from the previous section one can easily prove
that ML-separability of grµML-formulae (defined as expected) is 2-ExpTime-complete.

STACS 2025

55:16 Modal Separation of Fixpoint Formulae

▶ Theorem 25. ML-separability of grµML-formulae is 2-ExpTime-complete.

Proof. For the lower bound, we reduce ML-separability of µML-formulae over T3 in spirit
similar to Lemma 4. Since the former problem is 2-ExpTime-hard by Theorem 22, the
latter is as well. Recall the formula θ3 defining T3. Then, for any µML-formulae φ,φ′ and
ψ ∈ ML, we have that ψ is an MLσ-separator of φ,φ′ over T3 iff ψ is an MLσ-separator of
φ ∧ θd, φ

′ ∧ θd.
Towards the upper bound, suppose φ,φ′ ∈ grµML. Using standard arguments, one can

show that φ,φ′ are ML-separable over all models iff they are ML-separable over Td, where
d = g × (|φ|+ |φ′|) and g is the greatest grade occurring in φ,φ′. We then construct NPTA
A,A′ equivalent to φ,φ′ over d-ary trees via (an analogue for grµML of) Theorem 2 and
proceed with A,A′ as described in the upper bound proof of Theorem 22. ◀

Interestingly, the problem becomes easier if we allow grades in the separating formula.

▶ Theorem 26. grML-separability of grµML-formulae is ExpTime-complete.

The lower bound follows by the usual reduction from satisfiability. We thus focus on
the upper bound. Similarly to the non-graded case, we establish first a model-theoretic
characterization, based on the appropriate notion of bisimilarity that characterizes the
expressive power of grML [10]. A relation Z between models is a graded bisimulation if it
satisfies (atom) and graded variants of the (back) and (forth) conditions of bisimulations.
The graded (forth) condition says that if vZw then for every k ∈ N and pairwise different
children v1, ..., vk of v, there are pairwise different children w1, ..., wk of w satisfying viZwi

for all i ≤ k. The graded (back) condition is symmetric. It is a g-graded bisimulation if
the graded (forth) and (back) conditions need to be satisfied only for k ≤ g. We denote
with M -grd M′ (resp., M -g M′) the fact that there is a graded bisimulation (resp., a
g-graded bisimulation) between M and M′ that relates their roots. Variants with bounded
depth n and/or given signature σ are defined and denoted as expected.

▶ Lemma 27. For every φ,φ′ ∈ grµML with maximal grade gmax, signature σ, and n ∈ N,
the following are equivalent:
1. φ,φ′ are not grMLn

σ-separable (over all models).
2. φ,φ′ are joint -n

grd,σ-consistent (over all models).
3. φ,φ′ are joint ∼=n

σ-consistent (over all models).
4. φ,φ′ are joint ∼=n

σ-consistent over Td for d = gmax × (|φ|+ |φ′|).
Using Lemma 27, one can solve grML-separability of grµML formulae in exponential time,
following the approach described in Section 3. More precisely, given φ,φ′, we construct
NPTA A,A′ equivalent to φ,φ′ over d-ary trees, d as in Lemma 27, and decide whether
A,A′ are joint ∼=n

σ-consistent over Td for all n via Proposition 7.
Let us provide some details on the proof of the central Lemma 27.

Proof. We show the implications 1 ⇒ 2 ⇒ 3 ⇒ 4 ⇒ 1 in turn. The implication 4 ⇒ 1 is
immediate.

For 1⇒ 2, suppose φ,φ′ are not grMLn
σ-separable. Hence, for every g ∈ N there is a pair

of models Mg |= φ and M′
g |= φ′ with Mg -n

g,σ M′
g. One can encode with an FO-sentence

θ that two models M and M′ are depth-n trees, M is a prefix of some M+ |= φ and M′

of some M′
+ |= φ′. If Z is a fresh binary symbol, then it is also possible to encode with an

(infinite) set T of FO-sentences that Z is a graded bisimulation between M and M′. Every
finite fragment of {θ} ∪ T only mentions finitely many grades and hence by assumption
is satisfiable. Thus, by compactness of FO, the entire {θ} ∪ T is satisfiable. This gives us
M -n

grd,σ M′ with extensions M+ |= φ and M′
+ |= φ′.

J. C. Jung and J. Kołodziejski 55:17

For 2⇒ 3, fix witnesses M,M′ of joint -n
grd,σ-consistency, that is, M -n

grd,σ M′ and
there are extensions M+,M′

+ of M,M′ with M+ |= φ and M′
+ |= φ′. By the Löwenheim-

Skolem property of FO we may assume that both models are at most countable. It remains
to apply the known fact that countable trees N and N ′ satisfy N -grd N ′ iff N and N ′ are
isomorphic. For the sake of completeness, we add a brief justification of this latter statement.
Assume w ∈ N and w′ ∈ N with respective children w1, w2, ... = w and w′

1, w
′
2, ... = w′ such

that w -grd w
′. For every -grd-equivalence class X of w the corresponding equivalence class

{w′
i | ∃j≤k. wj -grd w

′
i} = X ′ has the same cardinality as X. This is immediate for finite

X, and for infinite X it follows because in countable models every two infinite subsets have
the same cardinality. This allows us to inductively pick a bijective subrelation Z of -grd
between N and N ′ which is still a graded bisimulation.

For 3⇒ 4, fix witnesses M,M′ of joint ∼=n
σ-consistency, that is, M∼=n

σ M′ and there are
extensionsM+,M′

+ ofM,M′ withM+ |= φ andM′
+ |= φ′. We trimM+ andM′

+ so that
the outdegree becomes at most d. Without loosing generality we assume that the prefixes of
M+ and M′

+ are not only isomorphic but identical. The semantics of every ψ ∈ µML in
a model N is captured by a parity game whose positions are N × SubFor(ψ). We extend
the definition of the game to µMLgrd. The set of positions N × SubFor(ψ) and the winning
condition are defined as in the classical case, and so are the moves for all the positions with
topmost connective other than the graded modalities. In the classical game, from (v,3θ)
∃ve chooses a child v′ of v and the next position is (v′, θ). In (v,3≥kθ), first ∃ve chooses a
subset v1, ..., vk of size k of children of v, then ∀dam chooses one of these children vi and
the next round starts at (vi, θ). Dually, in (v,2≤kθ) first ∃ve picks a subset v1, ..., vk of at
most k v’s children, then ∀dam responds with a choice of some v′ not in v1, ..., vk and the
next position is (v′, θ). It is tedious but straightforward to check that ∃ve wins the game
from v, ψ iff ψ is true at v, as in the classical case. Note that if we take a submodel N0 of
N which contains at least the root and all 3-witnesses (that is, points chosen by a winning
strategy ζ in for positions of shape (v,3≥kθ)) then (the restriction of) ζ to N0 is a winning
strategy for G(N0, ψ).

Let ζ and ζ ′ be positional winning strategies for ∃ve in the semantic games G(M+, φ) and
G(M′

+, φ
′). We take submodel M0 |= φ of M+ as follows. In the n-prefix we take the root

and all 3-witnesses for both ζ and ζ ′. In the rest of the model we only take 3-witnesses for
ζ. A submodel M′

0 of M′
+ is defined symmetrically. It follows that M0 |= φ and M′

0 |= φ′.
Recall that g is the maximal grade appearing in φ and φ′. Since the respective sets

of positions of G(M+, φ) and G(M′
+, φ

′) are M+ × SubFor(φ) and M ′
+ × SubFor(φ′), for

every point v there are at most g × |φ| 3-witnesses chosen by ζ from a position which has
v on the first coordinate. Consequently, the outdegree of M0 and M′

0 is not greater than
d = g × (|φ|+ |φ′|). This proves Lemma 27. ◀

8 Conclusion

We have presented an in-depth study of modal separation of µML-formulae over different
classes of structures. For us, the most interesting results are the differences that are obtained
over classes of bounded outdegree for different bounds d = 1, d = 2, d ≥ 3. Without much
effort our results on trees of bounded outdegrees can be transferred to infinite words and to
ranked trees, via reductions similar to Lemma 4.

Throughout the paper we used the simplest possible measure of formula size: the length
of a formula written as a string. Alternative more succinct measures, such as the number of
non-isomorphic subformulae (DAG-size), are also interesting. Thus, a natural question is

STACS 2025

55:18 Modal Separation of Fixpoint Formulae

to what extent our results depend on the choice of size measure. In principle, using a more
succinct measure makes the problems of definability and separability harder. However, all our
decision procedures, with an exception of Theorem 21, are automata-based. Consequently,
these procedures carry over with unchanged complexity to any size measure for which the
translation from logic to nondeterministic automata has the same complexity as in Theorem 2.
In the remaining case of Theorem 21 a weaker assumption suffices: the modal depth of a
formula is at most polynomial in its size. Both the mentioned assumptions are arguably
modest.

A place where the choice of size measure matters a little more is the construction of modal
definitions and separators. In the cases of unrestricted, unary (T1), and high outdegree
models (Td for d ≥ 3) the constructed formulae have DAG-size essentially the same as size:
doubly, singly, and triply exponential, respectively. Interestingly, however, in the binary case
T2 our formulae have only singly exponential DAG-size, which is easily seen to be optimal
and contrasts with their doubly exponential size. This demonstrates that the lower bounds
for size of modal definitions over T2 cannot work for DAG-size. The same lower bound
construction fails for DAG-size over unrestricted models, although there the exact DAG-size
complexity of optimal separators remains unknown.

We mention some interesting open problems. First, the relative succinctness of µML over
ML is to the best of our knowledge open in the setting with only one accessibility relation.
Second, as we have mentioned in Section 3, the separators we compute are not necessarily
the logically strongest ones. The logically strongest separators of φ,φ′ are precisely the
ML-uniform consequences of φ (if they exist) and are a natural object of study. Clearly,
modal definability of φ is a sufficient condition, but not a necessary one. Let φ = ψ ∧ ¬θ∞
and φ′ = ψ for some ψ ∈ ML. Then φ is not equivalent to a modal formula, but ψ is
a strongest separator. In the context of grµML, open questions are ML-definability (and
separability) and µML-definability (and separability) of grµML-formulae. We conjecture
them to be easier than 2-ExpTime. Finally, let us mention that definability of µML-formulae
by safety formulae has been studied in [22]. It would be natural to investigate separability
there as well.

References

1 Alessandro Artale, Jean Christoph Jung, Andrea Mazzullo, Ana Ozaki, and Frank Wolter.
Living without Beth and Craig: Definitions and interpolants in description and modal logics
with nominals and role inclusions. ACM Trans. Comput. Log., 24(4):34:1–34:51, 2023. doi:
10.1145/3597301.

2 Franz Baader, Ian Horrocks, Carsten Lutz, and Ulrike Sattler. An Introduction to Description
Logic. Cambridge University Press, 2017. URL: http://www.cambridge.org/de/academic/
subjects/computer-science/knowledge-management-databases-and-data-mining/
introduction-description-logic?format=PB#17zVGeWD2TZUeu6s.97.

3 Christel Baier and Joost-Pieter Katoen. Principles of model checking. MIT Press, 2008.
4 Fabio Bellissima. On the lattice of extensions of the modal logics KAltn. Arch. Math. Log.,

27(2):107–114, 1988. doi:10.1007/BF01620760.
5 Michael Benedikt, Balder ten Cate, Thomas Colcombet, and Michael Vanden Boom. The

complexity of boundedness for guarded logics. In 30th Annual ACM/IEEE Symposium
on Logic in Computer Science, LICS, pages 293–304. IEEE Computer Society, 2015. doi:
10.1109/LICS.2015.36.

6 Achim Blumensath, Martin Otto, and Mark Weyer. Decidability results for the boundedness
problem. Log. Methods Comput. Sci., 10(3), 2014. doi:10.2168/LMCS-10(3:2)2014.

https://doi.org/10.1145/3597301
https://doi.org/10.1145/3597301
http://www.cambridge.org/de/academic/subjects/computer-science/knowledge-management-databases-and-data-mining/introduction-description-logic?format=PB#17zVGeWD2TZUeu6s.97
http://www.cambridge.org/de/academic/subjects/computer-science/knowledge-management-databases-and-data-mining/introduction-description-logic?format=PB#17zVGeWD2TZUeu6s.97
http://www.cambridge.org/de/academic/subjects/computer-science/knowledge-management-databases-and-data-mining/introduction-description-logic?format=PB#17zVGeWD2TZUeu6s.97
https://doi.org/10.1007/BF01620760
https://doi.org/10.1109/LICS.2015.36
https://doi.org/10.1109/LICS.2015.36
https://doi.org/10.2168/LMCS-10(3:2)2014

J. C. Jung and J. Kołodziejski 55:19

7 Mikołaj Bojańczyk and Wojciech Czerwiński. Automata Toolbox. University of Warsaw, 2018.
URL: https://www.mimuw.edu.pl/~bojan/papers/toolbox.pdf.

8 Ashok K. Chandra, Dexter Kozen, and Larry J. Stockmeyer. Alternation. J. ACM, 28(1):114–
133, 1981. doi:10.1145/322234.322243.

9 Sang Cho and Dung T. Huynh. Finite-automaton aperiodicity is PSpace-complete. Theor.
Comput. Sci., 88(1):99–116, 1991. doi:10.1016/0304-3975(91)90075-D.

10 Maarten de Rijke. A note on graded modal logic. Stud Logica, 64(2):271–283, 2000. doi:
10.1023/A:1005245900406.

11 Kit Fine. In so many possible worlds. Notre Dame J. Formal Log., 13(4):516–520, 1972.
doi:10.1305/NDJFL/1093890715.

12 Michael J. Fischer and Richard E. Ladner. Propositional dynamic logic of regular programs.
J. Comput. Syst. Sci., 18(2):194–211, 1979. doi:10.1016/0022-0000(79)90046-1.

13 Tim French, Wiebe van der Hoek, Petar Iliev, and Barteld P. Kooi. On the succinctness of
some modal logics. Artif. Intell., 197:56–85, 2013. doi:10.1016/j.artint.2013.02.003.

14 Martin Fürer. The computational complexity of the unconstrained limited domino problem
(with implications for logical decision problems). In Logic and Machines: Decision Problems and
Complexity, Proceedings of the Symposium "Rekursive Kombinatorik", volume 171 of Lecture
Notes in Computer Science, pages 312–319. Springer, 1983. doi:10.1007/3-540-13331-3_48.

15 Dov M. Gabbay. Craig’s interpolation theorem for modal logics. In Conference in Mathematical
Logic — London ’70, pages 111–127, Berlin, Heidelberg, 1972. Springer Berlin Heidelberg.

16 Gerd G. Hillebrand, Paris C. Kanellakis, Harry G. Mairson, and Moshe Y. Vardi. Undecidable
boundedness problems for datalog programs. J. Log. Program., 25(2):163–190, 1995. doi:
10.1016/0743-1066(95)00051-K.

17 Jean Christoph Jung and Jędrzej Kołodziejski. Modal separability of fixpoint formulae. In
Proceedings of the 37th International Workshop on Description Logics (DL 2024), volume
3739 of CEUR Workshop Proceedings. CEUR-WS.org, 2024. URL: https://ceur-ws.org/
Vol-3739/paper-5.pdf.

18 Jean Christoph Jung and Frank Wolter. Living without Beth and Craig: Definitions and
interpolants in the guarded and two-variable fragments. In Proceedings of Annual ACM/IEEE
Symposium on Logic in Computer Science (LICS), pages 1–14. IEEE, 2021. doi:10.1109/
LICS52264.2021.9470585.

19 Eryk Kopczynski. Invisible pushdown languages. In Proceedings of the 31st Annual ACM/IEEE
Symposium on Logic in Computer Science (LICS), pages 867–872. ACM, 2016. doi:10.1145/
2933575.2933579.

20 Dexter Kozen. Results on the propositional mu-calculus. Theor. Comput. Sci., 27:333–354,
1983. doi:10.1016/0304-3975(82)90125-6.

21 Louwe Kuijer, Tony Tan, Frank Wolter, and Michael Zakharyaschev. Separating counting
from non-counting in fragments of two-variable first-order logic (extended abstract). In Proc.
of DL 2024, 2024.

22 Karoliina Lehtinen and Sandra Quickert. Deciding the first levels of the modal mu alternation
hierarchy by formula construction. In Proceedings of Annual Conference on Computer Science
Logic CSL, volume 41 of LIPIcs, pages 457–471. Schloss Dagstuhl – Leibniz-Zentrum für
Informatik, 2015. doi:10.4230/LIPICS.CSL.2015.457.

23 Christof Löding and Christopher Spinrath. Decision problems for subclasses of rational
relations over finite and infinite words. Discrete Mathematics & Theoretical Computer Science,
Vol. 21 no. 3, January 2019. doi:10.23638/DMTCS-21-3-4.

24 Martin Otto. Eliminating recursion in the µ-calculus. In Proceedings of 16th Annual Symposium
on Theoretical Aspects of Computer Science (STACS), volume 1563 of Lecture Notes in
Computer Science, pages 531–540. Springer, 1999. doi:10.1007/3-540-49116-3_50.

25 Martin Otto. Graded modal logic and counting bisimulation. CoRR, abs/1910.00039, 2019.
arXiv:1910.00039.

STACS 2025

https://www.mimuw.edu.pl/~bojan/papers/toolbox.pdf
https://doi.org/10.1145/322234.322243
https://doi.org/10.1016/0304-3975(91)90075-D
https://doi.org/10.1023/A:1005245900406
https://doi.org/10.1023/A:1005245900406
https://doi.org/10.1305/NDJFL/1093890715
https://doi.org/10.1016/0022-0000(79)90046-1
https://doi.org/10.1016/j.artint.2013.02.003
https://doi.org/10.1007/3-540-13331-3_48
https://doi.org/10.1016/0743-1066(95)00051-K
https://doi.org/10.1016/0743-1066(95)00051-K
https://ceur-ws.org/Vol-3739/paper-5.pdf
https://ceur-ws.org/Vol-3739/paper-5.pdf
https://doi.org/10.1109/LICS52264.2021.9470585
https://doi.org/10.1109/LICS52264.2021.9470585
https://doi.org/10.1145/2933575.2933579
https://doi.org/10.1145/2933575.2933579
https://doi.org/10.1016/0304-3975(82)90125-6
https://doi.org/10.4230/LIPICS.CSL.2015.457
https://doi.org/10.23638/DMTCS-21-3-4
https://doi.org/10.1007/3-540-49116-3_50
https://arxiv.org/abs/1910.00039

55:20 Modal Separation of Fixpoint Formulae

26 Thomas Place and Marc Zeitoun. Separating regular languages with first-order logic. Log.
Methods Comput. Sci., 12(1), 2016. doi:10.2168/LMCS-12(1:5)2016.

27 Vaughan R. Pratt. A decidable mu-calculus: Preliminary report. In Proceedings of 22nd Annual
Symposium on Foundations of Computer Science (FOCS), pages 421–427. IEEE Computer
Society, 1981. doi:10.1109/SFCS.1981.4.

28 Abraham Robinson. A result on consistency and its application to the theory of definition.
Journal of Symbolic Logic, 25(2):174–174, 1960. doi:10.2307/2964240.

29 Marcel Paul Schützenberger. On finite monoids having only trivial subgroups. Inf. Control.,
8(2):190–194, 1965. doi:10.1016/S0019-9958(65)90108-7.

30 A. Prasad Sistla and Edmund M. Clarke. The complexity of propositional linear temporal
logics. J. ACM, 32(3):733–749, 1985. doi:10.1145/3828.3837.

31 Moshe Y. Vardi. Reasoning about the past with two-way automata. In Proceedings of
International Colloquium Automata, Languages and Programming (ICALP), volume 1443 of
Lecture Notes in Computer Science, pages 628–641. Springer, 1998. doi:10.1007/BFB0055090.

32 Yde Venema. Lectures on the modal µ-calculus, 2020.

https://doi.org/10.2168/LMCS-12(1:5)2016
https://doi.org/10.1109/SFCS.1981.4
https://doi.org/10.2307/2964240
https://doi.org/10.1016/S0019-9958(65)90108-7
https://doi.org/10.1145/3828.3837
https://doi.org/10.1007/BFB0055090

Transforming Stacks into Queues:
Mixed and Separated Layouts of Graphs
Julia Katheder #

Wilhelm-Schickard-Institut für Informatik, Universität Tübingen, Germany

Michael Kaufmann #

Wilhelm-Schickard-Institut für Informatik, Universität Tübingen, Germany

Sergey Pupyrev #

Menlo Park, CA, USA

Torsten Ueckerdt #

Institute of Theoretical Informatics, Karlsruhe Institute of Technology, Germany

Abstract
Some of the most important open problems for linear layouts of graphs ask for the relation between
a graph’s queue number and its stack number or mixed number. In such, we seek a vertex order and
edge partition of G into parts with pairwise non-crossing edges (a stack) or with pairwise non-nesting
edges (a queue). Allowing only stacks, only queues, or both, the minimum number of required parts
is the graph’s stack number sn(G), queue number qn(G), and mixed number mn(G), respectively.

Already in 1992, Heath and Rosenberg asked whether qn(G) is bounded in terms of sn(G), that
is, whether stacks “can be transformed into” queues. This is equivalent to bipartite 3-stack graphs
having bounded queue number (Dujmović and Wood, 2005). Recently, Alam et al. asked whether
qn(G) is bounded in terms of mn(G), which we show to also be equivalent to the previous questions.

We approach the problem by considering separated linear layouts of bipartite graphs. In this
natural setting all vertices of one part must precede all vertices of the other part. Separated stack
and queue numbers coincide, and for fixed vertex orders, graphs with bounded separated stack/queue
number can be characterized and efficiently recognized, whereas the separated mixed layouts are
more challenging. In this work, we thoroughly investigate the relationship between separated and
non-separated, mixed and pure linear layouts.

2012 ACM Subject Classification Mathematics of computing → Graph theory; Mathematics of
computing → Combinatorics

Keywords and phrases Separated linear Layouts, Stack Number, Queue Number, mixed Number,
bipartite Graphs

Digital Object Identifier 10.4230/LIPIcs.STACS.2025.56

Related Version Full Version: https://doi.org/10.48550/arXiv.2409.17776 [21]

Funding Julia Katheder : The work of J. Katheder is supported by DFG grant Ka 812-18/2.
Michael Kaufmann: The work of M. Kaufmann is supported by DFG grant Ka 812-18/2.
Torsten Ueckerdt: The work of T. Ueckerdt is supported by DFG - 520723789.

1 Introduction

In this paper we study linear layouts of graphs1. That is, for a graph G = (V, E), we consider
a total order σ of its vertex set V , while σ defines the relative position of its edges. In
particular, we investigate for a graph G its well-known parameters stack number, sn(G), and
its queue number, qn(G), as well as their common generalization called its mixed number,
mn(G). Their precise definitions go as follows.

1 Throughout, all graphs in this paper are simple, undirected, finite, and have at least one edge.

© Julia Katheder, Michael Kaufmann, Sergey Pupyrev, and Torsten Ueckerdt;
licensed under Creative Commons License CC-BY 4.0

42nd International Symposium on Theoretical Aspects of Computer Science (STACS 2025).
Editors: Olaf Beyersdorff, Michał Pilipczuk, Elaine Pimentel, and Nguyễn Kim Thắng;
Article No. 56; pp. 56:1–56:18

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:julia.katheder@uni-tuebingen.de
https://orcid.org/0000-0002-7545-0730
mailto:mk@informatik.uni-tuebingen.de
https://orcid.org/0000-0001-9186-3538
mailto:spupyrev@gmail.com
https://orcid.org/0000-0003-4089-673X
mailto:torsten.ueckerdt@kit.edu
https://orcid.org/0000-0002-0645-9715
https://doi.org/10.4230/LIPIcs.STACS.2025.56
https://doi.org/10.48550/arXiv.2409.17776
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

56:2 Transforming Stacks into Queues: Mixed and Separated Layouts of Graphs

Stack, Queue, and Mixed Numbers. Given a vertex order σ, two edges (u, v) and (x, y) in
E are said to cross in σ if any order of their endvertices symmetric to u <σ x <σ v <σ y is
prescribed by σ. Roughly speaking, for the stack number of G, we want a vertex order σ in
which not many edges pairwise cross. Formally, for an integer s ≥ 1, an s-stack layout of
G = (V, E) is a total order σ of V together with a partition of E into subsets E1, . . . , Es,
called stacks, such that no two edges in the same stack cross. The minimum number s of
stacks needed for a stack layout of graph G is called its stack number and denoted by sn(G).
Stack numbers were first investigated by Bernhart and Kainen [6] in 1979, building on Kainen
and Ollman [20,24]2.

As a concept “dual” to s-stack layouts, for an integer q ≥ 1, a q-queue layout of G = (V, E)
is a total order σ of V together with a partition of E into subsets E1, . . . , Eq, called queues,
such that no two edges in the same queue nest; that is, there are no edges (u, v) and (x, y)
in a queue with u <σ x <σ y <σ v (or any symmetric order). The minimum number q of
queues needed for a queue layout of graph G is called its queue number and denoted by
qn(G). Queue numbers were introduced by Heath and Rosenberg [18] in 1992.

Stack and queue layouts are generalized through the notion of a mixed layout. For integers
s, q ≥ 1, an s-stack q-queue layout of G = (V, E) is a total order σ of V together with a
partition of E into s stacks and q queues. The minimum value of s + q needed for an s-stack
q-queue layout of graph G is called its mixed number and denoted by mn(G). Mixed layouts
were already considered by Heath and Rosenberg [18] in 1992, while a thorough study started
only recently [16, 22, 26]. In contrast to mixed layouts, we call a layout pure if only stacks or
only queues are being used.

Comparing Stack, Queue, and Mixed Numbers. Besides their similar definitions, there
are more similarities between k-stack graphs, k-queue graphs, and k-mixed graphs, where
a k-(stack, queue, mixed) graph is defined as a graph admitting a k-(stack, queue, mixed)
layout. For example, in each case we have sparse graphs with only O(kn) edges for n

vertices [6,18,25]. Moreover, stack, queue, and mixed numbers are all bounded for planar
graphs [5,8,14,30] and for bounded treewidth graphs [1,9,15,28]. On the other hand, neither
stack nor queue number is bounded for 3-regular graphs [3, 29]. Already in 1992, Heath,
Leighton, and Rosenberg [17] investigated the relationship between stack and queue layouts;
in particular whether stack layouts and queue layouts can be transformed into each other.
They introduced the following fundamental question, which remains unanswered despite a
wealth of studies on linear graph layouts.

▶ Open Problem 1 (Heath, Leighton, and Rosenberg [17], see also [7, 11,13]).
Do graphs with bounded stack number have bounded queue number?

We emphasize that a companion question (“do graphs with bounded queue number have
bounded stack number?”) has been recently resolved in the negative by Dujmović et al. [7].
One attempt to resolve Open Problem 1 was made by Dujmović and Wood [11] who showed
that the problem is equivalent to the question of whether bipartite 3-stack graphs have
bounded queue number. Note that 1-stack graphs and 2-stack graphs are planar, and hence,
they have a bounded queue number [8], but the question remains open for 3-stack graphs.

Turning to mixed layouts, it follows from the definition of the mixed number that for
every graph G we have mn(G) ≤ sn(G) and mn(G) ≤ qn(G). However for some graphs
G, their mixed number mn(G) is strictly less than sn(G) and qn(G); for example, for the

2 We remark that s-stack layouts are also known as s-page book embeddings, where stacks are then called
pages. Similarly, the stack number sn(G) is sometimes called the book thickness or page number of G.

J. Katheder, M. Kaufmann, S. Pupyrev, and T. Ueckerdt 56:3

Figure 1 Linear layouts of K6 verifying that sn(K6) ≥ 3 due to a 3-twist (left), qn(K6) ≥ 3 due
to a 3-rainbow (middle), and mn(K6) ≤ 2 due to a 1-stack 1-queue layout (right).

complete graph K6 it holds that sn(K6) = qn(K6) = 3 but mn(K6) = 2, as illustrated in
Figure 1. In particular, graphs with bounded mixed number potentially form a strictly larger
class than those of bounded stack number. Thus, the following problem of Alam et al. [22]
asks for something (potentially) stronger than Open Problem 1.

▶ Open Problem 2 (Alam et al. [22]).
Do graphs with bounded mixed number have bounded queue number?

As one of our results (cf. Theorem 4), we shall show that Open Problems 1 and 2 are in
fact equivalent. That is, either both questions have a Yes-answer or both have a No-answer.
In that sense, it is easier to prove a No-answer by finding graphs of unbounded queue number
but bounded mixed number (instead of bounded stack number). As a second result, also
in Theorem 4, we shall prove that it indeed suffices to look for graphs of mixed number 2;
specifically, graphs that admit 1-stack 1-queue layouts. That is, Open Problems 1 and 2 have
a Yes-answer if and only if all 1-stack 1-queue graphs have bounded queue number.

Separated Linear Layouts. Since Open Problems 1 and 2 are likely very challenging in
their full generality, we investigate a special case for separated mixed layouts of bipartite
graphs. A vertex order σ of a bipartite graph G with bipartition3 (A, B) is separated if all
vertices in A precede all vertices in B (or vice versa). This naturally gives rise to separated
k-stack, separated k-queue, and separated s-stack q-queue layouts of bipartite graphs G, as
well as the corresponding separated stack number sn(G), separated queue number qn(G),
and separated mixed number mn(G).

Observe that a separated s-stack q-queue layout can be transformed into a separated
q-stack s-queue layout by reversing the vertex order of one of the parts. It follows that
sn(G) = qn(G) for every bipartite graph G. Furthermore, every separated vertex order σ

of G = (V, E) with bipartition (A, B) induces an injective mapping of the edges of G to
points of the |A| × |B| integer grid; see Figure 2. This grid is sometimes referred to as a
reduced adjacency matrix of G. One can easily verify that a subset S ⊆ E of edges forms a
queue (resp. a stack) if and only if the corresponding points form a monotonically increasing
(resp. decreasing) subset in the |A| × |B| grid. The stack-queue transformation mentioned
above then corresponds to mirroring the grid along the x-axis or along the y-axis.

This separated setting has been widely studied (sometimes, implicitly) under different
names, such as 2-track layouts [10,27] or 2-layer drawings [2, 12,23]. For the present paper,
let us introduce the following special variant of Open Problem 2.

▶ Open Problem 3.
Do bipartite graphs with bounded separated mixed number have bounded queue number?

3 (A, B) is a bipartition if A ∩ B = ∅, A ∪ B = V , and both induced subgraph G[A], G[B] are edgeless.

STACS 2025

56:4 Transforming Stacks into Queues: Mixed and Separated Layouts of Graphs

u1 u2 u3 u4 v0 v1 v2 v3u0 v4

(a) Separated layout.

u1 u2 u3 u4

v1 v2 v3 v4

u0

v0

(b) 2-layer drawing.

u0

v0
u1 u2 u3 u4

v1

v2

v3

v4

(c) Grid representation.

Figure 2 Various representations of a separated 1-stack 1-queue bipartite graph.

Our Contributions. We make progress towards the resolution of Open Problems 1 and 2, as
well as our new Open Problem 3. Each of these problems asks whether graphs with low stack
number (Open Problem 1), low mixed number (Open Problem 2), or low separated mixed
number (Open Problem 3) have also low queue number. Formally, we say that the queue
number is bounded by stack number (similarly, bounded by mixed number, and bounded by
separated mixed number) if for every graph G with stack number sn(G) and queue number
qn(G), it holds that qn(G) ≤ f(sn(G)) for some function f (independent of G). The question
of whether such functions, f , exist are Open Problems 1–3.

Clearly, a function f that bounds the queue number in terms of the stack number exists if
and only if for all k ∈ N there is a constant C = Ck such that every k-stack graph has queue
number at most C. Surprisingly, it is enough to consider just one particular value for k. In
fact, Dujmović and Wood [11] show that Open Problem 1 is equivalent to the existence of a
constant C such that every 3-stack graph has queue number at most C. (It is known that
1-stack and 2-stack graphs have queue number at most 2 [17] and at most 42 [4], respectively.)

Here, we extend the list to four equivalent statements, showing in particular that Open
Problems 1 and 2 are equivalent, and that it is enough to consider 1-stack 1-queue graphs.

▶ Theorem 4. The following are equivalent:
(1) every s-stack graph has queue number at most f(s) for some function f

(“queue number is bounded by stack number”);
(2) every 3-stack graph has queue number at most C for some constant C;
(3) every 1-stack 1-queue graph has queue number at most C for some constant C;
(4) every s-stack q-queue graph has queue number at most f(s, q) for some function f

(“queue number is bounded by mixed number”).

Turning to separated layouts of (necessarily bipartite) graphs, our main contribution
is also a list of four equivalent statements, one of which, namely (1), is Open Problem 3.
Statements (3) and (4) show that it is enough to consider 1-stack q-queue graphs, respectively
even only 1-stack 6-queue graphs, for solving Open Problem 3. Additionally, we discuss
a natural approach for Open Problem 3 where we start with the grid representation of a
separated s-stack q-queue layout, and then permute the rows and columns so as to obtain a
separated f(s, q)-queue layout. Another surprising contribution is that it is always enough
to apply the same permutation to the rows and the columns, which is statement (2).

▶ Theorem 5. The following are equivalent:
(1) every separated s-stack q-queue graph G has queue number at most f(s, q) for some

function f (“queue number is bounded by mixed number”);

J. Katheder, M. Kaufmann, S. Pupyrev, and T. Ueckerdt 56:5

∃f ∀G : qn(G) ≤ f(sn(G))
“queue number is

bounded by stack number”

∃C : sn(G) = 3 ⇒ qn(G) ≤ C

“3-stack graphs have
bounded queue number”

∃C : mn(G) = 2 ⇒ qn(G) ≤ C

“2-mixed graphs have
bounded queue number”

∃f ∀G : qn(G) ≤ f(mn(G))
“queue number is

bounded by mixed number”

∃f ∀G : qn(G) ≤ f(mn(G))
“queue number is bounded by

separated mixed number”

∃C : mn(G) = 7 ⇒ qn(G) ≤ C

“separated 7-mixed graphs have
bounded queue number”

Open Problem 1. Open Problem 2.

Open Problem 3.

Figure 3 An overview of the new and known relationships between different linear layouts.

(2) every separated s-stack q-queue layout of a graph G = (A ∪ B, E) with |A| = |B| can be
transformed into a separated f(s, q)-queue layout for some function f by applying the
same permutation to A and B;

(3) every separated 1-stack q-queue graph has queue number at most f(q) for some function f ;
(4) every separated 1-stack 6-queue graph has queue number at most C for some constant C.

Finally, let us discuss the connections between non-separated and separated layouts.
Standard techniques for queue layouts (which we present in Section 2) easily give that Open
Problem 2 implies Open Problem 3. In fact, Corollary 7 states that for every bipartite graph
G we have qn(G) ≤ 2 qn(G). However, it remains open whether Open Problem 3 implies
Open Problem 2 (or equivalently Open Problem 1). The situation is summarized in Figure 3.

2 Preliminaries

In this section we collect several facts about manipulating vertex orders in linear layouts,
which keep the stack and/or queue numbers within a constant factor from each other.

▶ Lemma 6 (Riffle-Lemma). Let G = (V, E) be a graph with a given q-queue layout using σ

as the vertex order and V1, . . . , Vk be a partition of V . Then, for any vertex order σ′ where
for vertices u, v ∈ Vi it holds that u <σ′ v whenever u <σ v:
(1) G admits a k2 · q-queue layout.
(2) G admits a 2 ·ℓ · (k −ℓ) ·q-queue layout if G is bipartite,

⋃ℓ
i=1 Vi = A and

⋃k
j=ℓ+1 Vj = B.

Proof. We show that every queue Q ⊆ E for σ can be split into k2 queues for σ′; see
Figure 4a. Overall, this results in the desired k2 · q-queue layout. For i, j ∈ [k] let Ei,j ⊆ Q

contain all edges (u, v) ∈ Q such that u <σ v and u ∈ Vi and v ∈ Vj . This partitions Q into
k2 many edge sets Ei,j , and we claim that each Ei,j is a queue for σ′. For i = j, the relative
order of any u, v ∈ Vi is unchanged in σ′, and hence Ei,i is a queue for σ′. For i ̸= j, let
e1 = (u1, v1) and e2 = (u2, v2) be two edges in Ei,j with u1, u2 ∈ Vi and v1, v2 ∈ Vj . Without
loss of generality assume that u1 <σ′ u2 (hence u1 <σ u2) and assume for a contradiction that
e1 nests e2 in σ′, that is, u1 <σ′ u2 <σ′ v2 <σ′ v1 or v2 <σ′ v1 <σ′ u1 <σ′ u2. In either case,

STACS 2025

56:6 Transforming Stacks into Queues: Mixed and Separated Layouts of Graphs

2 3 4 5 6 7 8 91 10

23 4 56 7 891 10

(a)

2 3 4 5 6 7 81

64 1 32 785

(b)

Figure 4 (a) Illustrating Lemma 6 (1) and its tightness for k = 2 (b). Edge colors illustrate the
partition of the edges with respect to V1 (black) and V2 (white). The black lines signify the orders
within V1 (dotted) and V2 (dashed).

it follows that v2 <σ′ v1 and hence v2 <σ v1. Together with u2 <σ v2 (as (u2, v2) ∈ Ei,j)
this yields u1 <σ u2 <σ v2 <σ v1 and e1 nests e2 in σ – a contradiction to Q being a queue.
It follows that each Ei,j requires at most one queue in the layout with vertex order σ′, which
concludes the first case of the proof.

In the bipartite case, for each queue Q in the original layout, let e = (u, v) be an edge in
Q with u ∈ Vi with i ≤ ℓ and v ∈ Vj with ℓ < j ≤ k. As there are ℓ · (k − ℓ) combinations of
i and j, and we require two queues, namely Ei,j and Ej,i, for each combination, the resulting
layout with vertex order σ′ requires 2 · ℓ · (k − ℓ) · q-queues in total. ◀

Applying the lemma to bipartite graphs with ℓ = 1 and k = 2 such that V1 = A and
V2 = B yields the following (well-known) fact; see [25] for an alternative proof.

▶ Corollary 7. Every q-queue graph with bipartition (A, B) has a separated 2q-queue layout.

The next two results concern graph subdivisions. A subdivision of a graph G is a graph
obtained from G by replacing each edge (u, v) in G by a path with one or more edges. Internal
vertices on such a path are called division vertices.

▶ Lemma 8 (Lemma 2 in [11]). Let G = (V, E) be a graph and G′ = (V ′, E′) be a subdivision
of G with at most one division vertex per edge. If G admits a q-queue layout with vertex
order σ, then G′ with bipartition V and V ′ \ V admits a separated (q + 1)-queue layout in
which V is ordered as in σ.

A converse operation to a subdivision is a (path-)contraction. We use a more general
transformation here. An r-shallow minor is a restricted form of a graph minor in which each
(connected) subgraph that is contracted to form the minor has radius at most r, where the
radius is defined as the minimum of the eccentricities of its vertices. For an s-stack q-queue
graph G, we will combine the following result with finding an s′-stack q′-queue subdivision
H where s′ ≤ s and q′ ≤ q, which has G as an r-shallow minor in order to prove equivalence
statements in Theorem 4 and Theorem 5.

▶ Lemma 9 (Lemma 12 in [19]). For every graph G and H, where G is a r-shallow minor
of H, it holds that qn(G) ≤ (2r + 1)

(
2 qn(H)

)2r+1.

J. Katheder, M. Kaufmann, S. Pupyrev, and T. Ueckerdt 56:7

3 Non-Separated Layouts

In this section we explore Open Problem 2. Dujmović and Wood [11] studied graph subdivi-
sions of stack and queue layouts. They proved that every s-stack graph has

(i) a 3-stack subdivision with 2⌈log2 s⌉ − 2 division vertices per edge, and
(ii) a 1-stack 1-queue subdivision with 4⌈log2 s⌉ division vertices per edge.

Similarly, every q-queue graph has
(i) a 3-stack subdivision with 2⌈log2 q⌉ + 1 division vertices per edge, and
(ii) a 2-queue subdivision with 2⌈log2 q⌉ + 1 division vertices per edge, and
(iii) a 1-stack 1-queue subdivision with 4⌈log2 q⌉ + 2 division vertices per edge.

Notice some asymmetry in the statements of the two results: It is not always possible to
subdivide an s-stack graph with f(s) division vertices per edge (for an arbitrary function
f) such that the result admits an O(1)-queue layout. Otherwise, such a subdivision com-
bined with Lemma 9 would imply that every s-stack graph admits an O(1)-queue layout,
contradicting the main result of Dujmović et al. [7].

The crux of the contributions of Dujmović and Wood [11] is a technical construction,
which we formalize next. Let T be a rooted tree with nodes V (T) and edges E(T). Given
a graph G = (V, E), a T -partition of G is a pair

(
T, {Tx : x ∈ V (T)}

)
consisting of a tree

T and a partition of V into sets {Tx : x ∈ V (T)}, such that for every edge (u, v) ∈ E one
of the following holds: (i) u, v ∈ Tx for some x ∈ V (T), or (ii) there is an edge (x, y) of T

with u ∈ Tx and v ∈ Ty. The sets Tx, x ∈ V (T) are called the bags of the T -partition. A
T -layout of a graph G is a T -partition of G in which the bags are ordered, that is, <x is a
total order of vertices in Tx; see Figure 5a for an example. The vertex orders are described
in terms of two functions, S : V (T) → N0 and Q : V (T) → N0, defined for the nodes of T .
We prescribe each bag to contain either only stacks or only queues formed by intra-bag edges.
Here S(x) (respectively, Q(x)) denotes the stack (queue) number of the intra-bag edges on
Tx under vertex order <x such that if Tx is prescribed to contain stacks, i.e., if S(x) > 0
then Q(x) = 0, and if Tx is a bag containing queues, then Q(x) > 0 and S(x) = 0. Similarly,
for the edges of T , K(x, y) : E(T) → N0 is the minimum number of edge sets E1, . . . , EK(x,y)
needed to partition the inter-bag edges of G between Tx and Ty such that they are pairwise
non-crossing. Under the concatenation of the orders <x and <y, each Ei, 1 ≤ i ≤ K(x, y)
will form a queue, while each Ei forms a stack when concatenating <x and >y. The leaf
nodes of a tree T are denoted Ṽ (T).

In this paper, we work with simple T -layouts, where
for every non-leaf node x ∈ V (T) \ Ṽ (T), bag Tx forms an independent set in G, that is,
S(x) = Q(x) = 0;
for every leaf node x ∈ Ṽ (T), bag Tx admits a 1-stack or a 1-queue layout under <x, that
is, S(x) = 1, Q(x) = 0 or S(x) = 0, Q(x) = 1;
for every edge (x, y) ∈ E(T), it holds that K(x, y) = 1.

In all our constructions of tree-partitions, we utilize a binary tree, that is, a rooted tree
in which every node has at most two children. The following result provides a subdivision
and a tree-layout for a given graph.

▶ Lemma 10 (a special case of Lemma 21 in [11]). Let G be a graph that admits a k-stack
(respectively, k-queue) layout with vertex order σ, and T be a binary tree of height h with k

or more leaves. Then G has a subdivision, D, with an even number of division vertices per
edge such that D has a simple T -layout in which S(x) = 1 (respectively, Q(x) = 1) for every
leaf node x ∈ Ṽ (T). The number of division vertices per edge is at most 2h, or exactly 2h

STACS 2025

56:8 Transforming Stacks into Queues: Mixed and Separated Layouts of Graphs

if all the leaves of T are at depth h. Moreover, the vertices of G correspond to vertices in
the root bag of T and their order in the T -layout is σ, whereas all other bags contain only
division vertices.

In what follows we consider a (not necessarily proper) 2-coloring of edges of a tree
using colors blue and red, i.e., we allow edges with the same color at a common endvertex.
Throughout, we associate blue colors with stacks, and red colors with queues. The set of
blue edges is Es(T) ⊆ E(T) and the set of red edges is Eq(T) ⊆ E(T).

▶ Lemma 11 (a special case of Lemma 22 in [11]). Let G be a graph with a T -layout for
some tree T . Suppose that edges of T are 2-colored in red and blue, and its nodes, V (T), are
ordered by σ such that the blue edges, Es, form a stack and the red edges, Eq, form a queue.
Let

λs = max
x∈V (T)

(
S(x) +

∑
(y,x)∈Es : y<σx

K(y, x) +
∑

(x,y)∈Es : x<σy

K(x, y)
)

, and

λq = max
x∈V (T)

(
Q(x) + max

y∈V (T) : y≤σx

∑
(y,z)∈Eq : x≤σz

K(y, z)
)

.

Then G admits a mixed λs-stack λq-queue layout. Furthermore, the order of vertices in
the root bag of the T -layout is preserved in the mixed layout.

Now we can state the new results of the section.

▶ Lemma 12. Let G be an s-stack q-queue graph. Then G has a 3-stack subdivision with at
most 2⌈log2(max(s, q))⌉ + 3 division vertices per edge.

Proof. First we show how to obtain a tree-layout for an s-stack q-queue graph G = (V, E)
with the vertex order σ. Denote h = ⌈log2(max(s, q))⌉ so that max(s, q) ≤ 2h. Assume that
E = S1 ∪ · · · ∪ Ss ∪ Q1 ∪ · · · ∪ Qq, where Si, 1 ≤ i ≤ s are stacks and Qi, 1 ≤ i ≤ q are queues.

Consider the subgraph of G induced by all stack edges, Gs = (V, S1 ∪ · · · ∪ Ss). Let Ts be
a binary tree of height h + 1 in which the root node has a single child, each internal non-root
node has exactly two children, and all leaves are at the same depth. By Lemma 10, there
exists a subdivision of Gs, denoted Ds, with exactly 2(h + 1) division vertices per edge and
a simple Ts-layout of Ds. It holds that S(x) = 1, Q(x) = 0 for x ∈ Ṽ (Ts), S(x) = Q(x) = 0
for x ∈ V (Ts) \ Ṽ (Ts), and K(x, y) = 1 for (x, y) ∈ E(Ts); see Figure 5.

Next consider the subgraph of G induced by the queue edges, Gq = (V, Q1 ∪ · · · ∪ Qq).
Start with a binary tree of height h + 1, denoted T ′

q, which is a copy of Ts (that is, the
root node has one child and each internal non-root node has two children). There exists
a subdivision of Gq with exactly 2h + 2 subdivision vertices and its simple T ′

q-layout by
Lemma 10. We modify the subdivision and the tree-layout as follows. Consider a leaf
node x′ ∈ Ṽ (T ′

q) and let Gx′ be the graph induced by vertices in Tx′ and the corresponding
intra-bag edges. Observe that Q(x′) = 1 in the T ′

q-layout, and hence, qn(Gx′) = 1 with <x′

as the vertex order. Now, we apply Lemma 8 by subdividing every edge of Gx′ once and let
Gx be the resulting graph. This results in a 2-queue layout of the subdivision Gx in which
the vertices of Gx′ are separated from the new division vertices and are ordered as in the
T ′

q-layout. Thus, we can build a new tree, denoted Tq, by appending a child, x, to every
node x′ ∈ Ṽ (T ′

q). This results in a (non-simple) Tq-layout for Gq, where the leaf nodes of
Tq contain the division vertices in the order given by Lemma 8. Since the queue number of
Gx is at most 2, the inter-bag edges between Gx′ and Gx can be partitioned into two sets
of pairwise non-crossing edges, i.e., we have that K(x′, x) = 2 for all (x′, x) ∈ E(Tq), where
x ∈ Ṽ (Tq); see Figure 5a for an illustration.

J. Katheder, M. Kaufmann, S. Pupyrev, and T. Ueckerdt 56:9

(a) A tree-layout of the subdivision of a 2-stack 2-
queue graph. Edge colors in the tree-layout corre-
spond to the original queues and stacks of G shown
above the root node.

A

D

A

B C

E F G

H I

A DA B CE F G IH

Ts Tq

(b) A tree-partition and a 1-stack layout of
the corresponding binary tree, Tsq , where the
blue edge color corresponds to Lemma 11.

Figure 5 An illustration for Lemma 12: Subdividing a 2-stack 2-queue graph G with at most
2⌈log2(max(s, q))⌉ + 3 = 5 division vertices per edge to obtain a 3-stack graph.

By Lemma 10, the root bags of the Ts-layout and the Tq-layout contain the same vertices,
V , both ordered by σ. Thus, we can merge the two tree-layouts into a joint one, called
Tsq-layout; see Figure 5b. The corresponding subdivision of G, denoted Dsq, has stack edges
subdivided 2h + 2 times and queue edges subdivided 2h + 3 times. To apply Lemma 11 for
the Tsq-layout, we color all the edges of Tsq blue and find a 1-stack layout of the tree via a
depth-first search traversal such that every node precedes its children in the order. Let us
argue that the result of applying Lemma 11 is a 3-stack layout, that is, λs = 3 and λq = 0.

Note that Q(x) = 0 for all nodes of Tsq and the tree contains no red edges; thus, λq = 0.
For the stack number, consider four disjoint groups of nodes of Tsq:

for x ∈ Ṽ (Ts), it holds that S(x) = 1 and K(y, x) = 1 for (y, x) ∈ Es;
for x ∈ V (Ts) \ Ṽ (Ts) and x ∈ V (T ′

q) \ Ṽ (T ′
q), it holds that S(x) = 0, there exists one

edge (y, x) ∈ Es with K(y, x) = 1 and two edges (x, y) ∈ Es with K(x, y) = 1;
for x ∈ Ṽ (T ′

q), it holds that S(x) = 0, K(y, x) = 1 for a single edge (y, x) ∈ Es, and
K(x, y) = 2 for a single edge (x, y) ∈ Es;
for x ∈ Ṽ (Tq), it holds that S(x) = 0, and K(y, x) = 2 for a single edge (y, x) ∈ Es.

Combining everything together, we get

λs = max
x∈V (Tsq)

(
S(x) +

∑
(y,x)∈Es

K(y, x) +
∑

(x,y)∈Es

K(x, y)
)

≤ 3.

Therefore, subdivision Dsq of G admits a 3-stack layout by Lemma 11. ◀

With a similar technique we can find a 1-stack 1-queue subdivision (Lemma 13) instead
of a 3-stack subdivision (Lemma 12). The proof of the next result is given in [21].

▶ Lemma 13. Let G be an s-stack q-queue graph. Then G has a 1-stack 1-queue subdivision
with at most 4⌈log2(max(s, q))⌉ + 6 division vertices per edge.

We now prove Theorem 4, in particular that Open Problems 1 and 2 are equivalent.

STACS 2025

56:10 Transforming Stacks into Queues: Mixed and Separated Layouts of Graphs

▶ Theorem 4. The following are equivalent:
(1) every s-stack graph has queue number at most f(s) for some function f

(“queue number is bounded by stack number”);
(2) every 3-stack graph has queue number at most C for some constant C;
(3) every 1-stack 1-queue graph has queue number at most C for some constant C;
(4) every s-stack q-queue graph has queue number at most f(s, q) for some function f

(“queue number is bounded by mixed number”).

Proof. It is immediate that (4) implies (1), (2), and (3). That (1) ⇐⇒ (2) is proven by
Dujmović and Wood [11].

Now we show that (2) ⇒ (4). Assume that every 3-stack graph has a bounded queue
number, C ∈ O(1). Let G be an s-stack q-queue graph. By Lemma 12, G admits a 3-stack
subdivision, D, with at most k = 2⌈log2(max(s, q))⌉ + 3 division vertices per edge. By the
assumption, qn(D) ≤ C. Note that G is an r-shallow minor of D for r = (k + 1)/2 =
⌈log2(max(s, q))⌉ + 2. By Lemma 9, we get

qn(G) ≤ (2r + 1)
(
2 qn(D)

)2r+1 = (2⌈log2(max(s, q))⌉ + 5)
(
2C

)2⌈log2(max(s,q))⌉+5
,

which proves that G has a bounded queue number, as long as s, q and C are constants.
Similarly we show that (3) ⇒ (4). Suppose that every 1-stack 1-queue graph has queue

number at most C ∈ O(1). Let G be an s-stack q-queue graph. By Lemma 13, G admits a
1-stack 1-queue subdivision, D, with k = 4⌈log2(max(s, q))⌉ + 6 division vertices per edge.
By the assumption, qn(D) ≤ C, and G is an r-shallow minor of D for r = ⌈(k + 1)/2⌉. Again
by Lemma 9, we get

qn(G) ≤ (2r + 1)
(
2 qn(D)

)2r+1 = (4⌈log2(max(s, q))⌉ + 8)
(
2C

)4⌈log2(max(s,q))⌉+8
,

which shows that G has a bounded queue number, as long as s, q and C are constants. ◀

4 Separated Layouts

In this section we investigate separated mixed layouts of bipartite graphs and Open Problem 3.
Recall that a vertex order σ of a bipartite graph G = (V, E) with bipartition (A, B) is separated
if all vertices of A precede all vertices of B in σ (or vice versa).

▶ Observation 14. Every separated s-stack q-queue layout of a bipartite graph G = (V, E)
with bipartition (A, B) can be transformed to a separated q-stack s-queue layout by reversing
the order of all vertices in A (or alternatively all vertices in B).

Reversing the order of some consecutive vertices (as in Observation 14) is the simplest
modification we could do to a given layout. It turns out that this is already enough to show
that graphs with separated 1-stack 1-queue layouts have a constant queue number.

▶ Theorem 15. Every separated 1-stack 1-queue graph admits a separated 4-queue layout.

Proof. Let G = (V, E) be a bipartite graph with bipartition (A, B) admitting a separated
1-stack 1-queue layout with vertex order σ. Consider the reduced adjacency matrix M with
columns A = (a1, . . . , am) and rows B = (b1, . . . , bn) ordered according to σ. The edges
S ⊂ E in the stack form a monotonically weakly decreasing subset of |A| × |B|. The edges
Q ⊂ E in the queue form a monotonically weakly increasing subset of |A| × |B|. Without
loss of generality we can assume (by adding edges to the graph) that S and Q correspond to
inclusion-maximal such subsets; see Figure 6.

J. Katheder, M. Kaufmann, S. Pupyrev, and T. Ueckerdt 56:11

⇒

a1 ai· · · am· · ·
b1

bj

bn

...

...

ai a1· · · am· · ·
bj

b1

bn

...

...

Figure 6 Obtaining a separated 4-queue layout from a separated 1-stack 1-queue layout by
reversing column and row orders. The blue edge color of the transformed stack edges is preserved
for clarity.

Let (ai, bj) ∈ A × B be a point/edge that is contained in both, S and Q. Now consider
the vertex order ai, . . . , a1, ai+1, . . . , am of the columns obtained by reversing the order of
a1, . . . , ai. Similarly, consider the vertex order bj , . . . , b1, bj+1, . . . , bn of the rows obtained
by reversing the order of b1, . . . , bj . Let σ′ denote the resulting separated vertex order of G.
Now the edges in Q incident to a1, . . . , ai form a queue Q1 in σ′. Also the remaining edges
in Q, incident to ai+1, . . . , am form a queue Q2 in σ′. Similarly, the edges in S incident to
b1, . . . , bj form a queue Q3 in σ′. Also the remaining edges in S, incident to bj+1, . . . , bm

form a queue Q4 in σ′; see again Figure 6. This is a separated 4-queue layout of G. ◀

Note that by applying Observation 14, separated 1-stack 1-queue graphs also admit a
separated 4-stack layout. However, we do not know whether the bound of 4 in Theorem 15
is best-possible and remark that K3,3 admits a separated 1-stack 1-queue layout but its
separated stack/queue number is 3.

The simple operation of reversing the order of some consecutive vertices can be employed
in a “checkerboard” fashion. Consider a given separated mixed layout (e.g., with s stacks
and q queues). Assume we have partitioned the reduced adjacency matrix by means of
a superimposed grid with a checkerboard odd-even pattern, in such a way that odd grid
cells contain no stack edges and even grid cells contain no queue edges. Then, the vertex
order of every second row and column can be reversed to derive a separated pure queue
layout. Finding such a grid refinement is always possible, that is, down to individual rows
and columns, however the derived sn and qn are dependent on the grid granularity and thus
may not be bounded by mn. An example for specific separated s-stack q-queue layouts with
bounded qn number are grids where each cell contains either an increasing or decreasing
diagonal. In this case, grid columns and rows can be halved in order to apply the checkerboard
approach; see Figure 7.

However there exist graphs, where such operations do not suffice and more involved
row and column permutations are necessary. In [21] we provide as a challenging example a
subcubic bipartite graph that admits a separated 1-stack 2-queue layout and a fairly simple
4-queue pure layout. However, the grid granularity has to be super-constant in order to
transform the mixed into the pure layout. We conclude that even for low-degree graphs with
mn(G) = 3, it is not obvious how to transform a separated mixed layout into a separated
pure layout, say with few queues.

STACS 2025

56:12 Transforming Stacks into Queues: Mixed and Separated Layouts of Graphs

a1 · · · am
b1

bn

...

(a) (b) (c) (d)

Figure 7 Transforming a separated mixed layout of a grid with diagonals (a) into a separated
pure layout (d) by halving columns and rows (b) and reversing every second row and column (c).
The blue edge color of the transformed stack edges is preserved for clarity.

While we do not know how to generalize Theorem 15 even just to separated 1-stack
2-queue layouts, we can narrow down the difficult case of Open Problem 3. If Open Problem 3
is answered positively, we can find an f(s, q)-queue layout for any bipartite graph admitting
a separated s-stack q-queue layout. In Theorem 5 we show three equivalent formulations of
this problem. In the challenging example presented in our preprint [21], the transformation
from the separated mixed to the separated pure layout applies the same column and row
permutation. Now, Theorem 5 states that we may always assume that rows and columns
are identically permuted when transforming a separated mixed layout into a separated pure
layout.

Further, we show in Lemma 17 that every separated s-stack q-queue layout can be
transformed into a separated 1-stack f(s, q)-queue layout, while this transformation does
not change the separated queue number by too much. This implies that one can restrict the
attention to separated 1-stack q-queue layouts, for solving Open Problem 3.

▶ Theorem 5. The following are equivalent:
(1) every separated s-stack q-queue graph G has queue number at most f(s, q) for some

function f (“queue number is bounded by mixed number”);
(2) every separated s-stack q-queue layout of a graph G = (A ∪ B, E) with |A| = |B| can be

transformed into a separated f(s, q)-queue layout for some function f by applying the
same permutation to A and B;

(3) every separated 1-stack q-queue graph has queue number at most f(q) for some function f ;
(4) every separated 1-stack 6-queue graph has queue number at most C for some constant C.

Proof. Observe that (1) immediately implies (3), which implies (4). That (2) implies (1)
is also immediate, when adding isolated vertices to guarantee |A| = |B|. The proofs of the
other directions are deferred, in particular see Lemma 16 for (1) ⇒ (2) and Lemma 17 for
(3) ⇒ (1). For (4), we show equivalence by proving that (4) implies (3) in Lemma 18. ◀

▶ Lemma 16. If there is a function f such that every separated s-stack q-queue graph admits
a separated f(s, q)-queue layout, then every separated s-stack q-queue layout of a bipartite
graph G = (A ∪ B, E) with |A| = |B| can be transformed into a separated 2f(s, q + 1)2-queue
layout by applying the same permutation to A and B.

In other words, Lemma 16 proves that (1) implies (2) in Theorem 5.

Proof. Let u1, . . . , un and v1, . . . , vn be the order of A and B in the given separated s-stack
q-queue layout of G. We add the “identity” queue Q, where for each i, 1 ≤ i ≤ n, there is the
edge (ui, vi) (if not already present in G). Let G′ = (A ∪ B, E ∪ Q) be the resulting bipartite

J. Katheder, M. Kaufmann, S. Pupyrev, and T. Ueckerdt 56:13

(a) (b) (c)

Figure 8 Illustration of the proof of Lemma 16: Adding the identity queue (a), obtaining a
separated queue layout (b), and restoring the identity queue (c).

graph. By assumption, there exists a separated f(s, q + 1)-queue layout of G′ with vertex
order σ0. We are looking for another vertex order σ such that, compared to the initial order,
A and B are permuted the same, that is, the columns and rows in the reduced adjacency
matrix are identically permuted. Since we added the identity queue Q to obtain G′ in the
beginning, this is equivalent to restoring Q to the diagonal in the matrix; see Figure 8.

To that end, we shall apply Lemma 6 to change only the order of vertices in A, which
corresponds to permuting the columns in the matrix. Let k = f(s, q + 1) and E1, . . . , Ek be
the queues in the f(s, q +1)-queue layout of G′ and Ai = {u ∈ A | (u, v) ∈ Q∩Ei}, 1 ≤ i ≤ k.
We want to apply the Riffle-Lemma (Lemma 6-(2)) with the partition of V into A1, . . . , Ak

and B. To this end, we keep the order of B (the rows), and restore Q as a diagonal by simply
sorting the columns according to their row in Q. Since each Ei is a queue, the relative order
within each Ai is kept intact, as required by Lemma 6. Hence, by Lemma 6-(2), the resulting
layout has at most 2 · f(s, q + 1) · f(s, q + 1) queues in total. ◀

▶ Lemma 17. Let G be a bipartite graph with a separated s-stack q-queue layout. Then there
exists another bipartite graph H admitting a separated 1-stack (s + q − 1)-queue layout, where
G is a 1-shallow minor of H, such that qn(G) ∈ O(qn(H)3).

If (3) of Theorem 5 holds, then the separated 1-stack (s + q − 1)-queue layout of H has
bounded queue number, i.e, qn(G) ∈ O(qn(H)3) ≤ f(s + q − 1) for some function f . Hence
qn(G) ≤ f ′(s, q) = f(s + q − 1), implying (1) of Theorem 5.

Proof. Assume we have a bipartite graph G, that admits a separated s-stack q-queue layout.
We will build a new bipartite graph H , such that H has a separated 1-stack (s + q − 1)-queue
layout. We will then show that for the separated queue numbers of G and H, it holds that
qn(G) ∈ O(qn(H)3). That is, a small queue number of H implies a small queue number
of G. Next we make the argument formal.

Let G = (A ∪ B, E), |A| = n, |B| = m, S1, . . . , Ss be the stacks and Q1, . . . , Qq be the
queues in the separated s-stack q-queue layout. We build H as follows. The vertices of H

are A ∪ (
⋃

k Uk) ∪ B ∪ (
⋃

k V k), where A = {a1, . . . , an} and B = {b1, . . . , bm} are copied
from G, while Uk ⊆ {uk

1 , . . . , uk
n} and V k ⊆ {vk

1 , . . . , vk
m} for any 1 ≤ k ≤ s − 1 are new.

Uk contains a vertex uk
i for each vertex ai incident to an edge (ai, bj) ∈ Sk. Likewise, V k

contains a vertex vk
j for each such bj . Vertices in A and B that are not incident to an edge in

Sk are omitted in Uk and V k. (Note that for each stack Sk, the new vertices in Uk and V k

are added to construct parts of the graph H starting from G, while the last stack Ss is left
as is.) In the reduced adjacency matrix of H, the new vertices are represented by additional

STACS 2025

56:14 Transforming Stacks into Queues: Mixed and Separated Layouts of Graphs

a1 a9· · ·
b1

b9

...

(a)

ai bj

ai uk
i u1

i bjv1j vkj

.

⇓

(b)

b1

a1

u1
9

u2
9

U1

U2

V 1 V 2

B

A

b2

b3

b4

b5

b6

b7

b9
b8

a2 a3 a4 a5 a6 a7 a8 a9

u1
8

u1
7

u1
6

u1
4

u1
3

u2
8

u2
7

u2
5

u2
4

u2
2

v12 v13 v16 v17 v18 v26 v27 v28 v29

(c)

Figure 9 Transforming a separated 3-stack 2-queue layout into a separated 1-stack 4-queue layout:
The initial graph G (a), modifying a stack edge (ai, bj) (b), the constructed graph H (c).

blocks of nk consecutive rows for each Uk and mk consecutive columns for each V k, where
nk (mk) is the number of vertices of A (B) having an edge in Sk. Row blocks of Uk and
column blocks of Vk are subsequent for k = 1, . . . , s − 1. Intuitively, we move the stack Sk

from A × B to Uk × V k, k = 1, . . . , s − 1. We leave the last stack Ss with all q initial queues
in A × B. Finally, we put one new queue each in A × Uk and V k × B, k = 1, . . . , s − 1.
Figure 9 shows the construction and in particular the order of the rows U1, . . . , U s−1 and
columns V 1, . . . , V s−1.

More formally, for every edge (ai, bj) ∈ Q1 ∪ . . .∪Qq, there is an edge (ai, bj) in H . For ev-
ery stack edge, (ai, bj) of stack Sk, 1 ≤ k ≤ s−1, there are three edges (ai, uk

i), (uk
i , vk

j), (vk
j , bj)

in H. (In case of multiple edges between a pair of vertices, we keep only one instance.) It
is easy to verify that H admits a separated 1-stack (s + q − 1)-queue layout, as for every
original stack Sk, 1 ≤ k ≤ s − 1 the edges (ai, uk

i) and (vk
j , bj) for every (ai, bj) ∈ Sk form a

queue respectively, due to the increasing column and row indices of each block Uk and V K

starting from the bottom left of the matrix. In fact, edges between vertices in A and Uk and
edges between vertices in B and V k fit in a single queue, since the former lie below and to
the left of the latter in the matrix. The original queues remain, yielding q + s − 1 queues in
total. For a stack Sk, the edges (ai, bj) ∈ Sk are a decreasing subset in A × B and due to
the increasing ordering of indices in every column and row block of the matrix, the edges
(uk

i , vk
j) in Uk × V k have the same property. The ordering of the row blocks Uk and column

blocks V k, where A × B and Uk × V k, 1 ≤ k ≤ s − 1 are positioned diagonally from the top
left to the bottom right of the matrix, then allows to combine the s stacks of G into one
single stack in H.

J. Katheder, M. Kaufmann, S. Pupyrev, and T. Ueckerdt 56:15

Finally, we show that qn(G) ∈ O(qn(H)3). To this end, consider a qn(H)-queue layout
of H. Now, contract for each i = 1, . . . , n the vertex ai with its neighbors of the form uk

i ,
1 ≤ k ≤ s − 1. Similarly, contract for each j = 1, . . . , m the vertex bj with its neighbors
of the form vk

j , 1 ≤ k ≤ s − 1. The result is a 1-shallow minor of H, and most crucially,
the result is exactly the initial graph G. Hence, Lemma 9 with radius r = 1 gives that
qn(G) ≤ (2r + 1)(2 qn(H))2r+1 = 24 · qn(H)3. ◀

Using the techniques from Section 3, we can provide the final missing piece of Theorem 5.

▶ Lemma 18. Let G be a bipartite graph with a separated 1-stack q-queue layout. Then G

has a subdivision D with at most 2⌈log2 q⌉ division vertices per edge that admits a separated
1-stack 6-queue layout.

In other words, Lemma 18 proves that (4) implies (3) in Theorem 5, as applying Lemma 9
for the r-shallow minor G of D with k = 2⌈log2 q⌉ and r = ⌈(k + 1)/2⌉ implies bounded
queue number of G for a function f(q).

qn(G) ≤ (2r + 1)
(
2 qn(D)

)2r+1 = (2⌈log2 q⌉ + 2)
(
12)2⌈log2 q⌉+2

Proof. Let G = (V, Es ∪E1 ∪· · ·∪Eq) be a bipartite graph that admits a separated 1-stack q-
queue layout such that Es is a stack and Ei, 1 ≤ i ≤ q are queues. Denote h = ⌈log2 q⌉ so that
q ≤ 2h. We consider the subgraph of G induced by the queue edges, Gq = (V, E1 ∪ · · · ∪ Eq).
Let T be a complete binary tree of height h. By Lemma 10, there exists a subdivision of
Gq, denoted Dq, and a simple T -layout of Dq in which S(x) = 0, Q(x) = 1 for all x ∈ Ṽ (T),
S(x) = Q(x) = 0 for all non-leaf nodes x ∈ V (T)\Ṽ (T), and K(x, y) = 1 for all (x, y) ∈ E(T).
Note that Dq contains exactly 2h division vertices per edge and it is bipartite; see Figure 10.

Now, color all edges of T red and find a 1-queue layout of T via a breadth-first search
traversal such that every node precedes its children in the order. By Lemma 11 applied to
graph Gq and its simple T -layout, we obtain a linear layout of Dq. Let us argue that this
result is in fact a 3-queue layout of Dq, i.e., that λs = 0 and λq ≤ 3 as defined in Lemma 11.
On the one hand, S(x) = 0 for all the nodes of T and there are no blue edges in T . Thus, we
have λs = 0. On the other hand, every node x ∈ V (T) has at most two outgoing edges in
the layout of T , i.e., the set {(y, z) ∈ Eq | y ≤σ x ≤σ z} contains at most two edges. Hence,

λq = max
x∈V (T)

(
Q(x) + max

y∈V (T) : y≤σx

∑
(y,z)∈Eq : x≤σz

K(y, z)
)

≤ max
x∈V (T)

(
1 + max

y∈V (T) : y≤σx
2
)

≤ 3.

The final step is to convert the 3-queue layout of Dq into a separated layout. This
is accomplished by Corollary 7, which in worst case doubles the number of queues. The
transformations of Lemma 11 and Corollary 7 keep the relative order of the original vertices
V unchanged. Thus, the resulting layout of Dq can be joined with the stack edges Es to
finally yield a subdivision D of G (in which the stack edges are not subdivided) with a
separated 1-stack 6-queue layout. ◀

5 Conclusions and Open Questions

We have explored the relation between mixed and pure stack or queue layouts, in the
separated as well as in the non-separated setting. An interesting (and somewhat surprising)
result is the equivalence of Open Problems 1 and 2, which we believe sheds some light on
the famous open problem, whether bounded stack number always implies bounded queue
number. Let us highlight a few intriguing questions and possible directions in the area.

STACS 2025

56:16 Transforming Stacks into Queues: Mixed and Separated Layouts of Graphs

(a) A tree-layout of the subdivision of a separated 1-stack
8-queue graph G. Colors of edges and division vertices in
the tree-layout correspond to the original queues and stack
of G shown above the root node, while vertex outline colors
in non-root nodes correspond to the vertex partitions in G.

AA

B C

D E F G

H I J K L M N O

AA B C D E F G H I J K L M N O

(b) A tree-partition and a layout of the
corresponding binary tree T , where the red
edge color corresponds to Lemma 11.

Figure 10 An illustration for Lemma 18: Subdividing a separated 1-stack 8-queue graph G with
at most 2⌈log2 q⌉ = 6 division vertices per edge to obtain a mixed 1-stack 6-queue graph.

1. Do graphs with (non-separated) 1-stack 1-queue layouts have a constant queue number?
This might be hard in general, but one could for example start with subcubic graphs.

2. Do graphs with separated 1-stack 2-queue layouts have a constant queue number? Lem-
mas 16 and 18 combined show that separated 1-stack 6-queue graphs are as hard as the
general case, and we feel that the same holds for separated 1-stack 2-queue graphs. On
the other hand, Theorem 15 solves the separated 1-stack 1-queue case.

3. Is there a constant C such that every bipartite 1-stack 1-queue graph admits a separated
C-stack C-queue layout? A positive answer would imply that Open Problems 1–3 are all
equivalent.

References
1 Jawaherul Md Alam, Michael A Bekos, Martin Gronemann, Michael Kaufmann, and Sergey

Pupyrev. Queue layouts of planar 3-trees. Algorithmica, pages 1–22, 2020. doi:10.1007/
s00453-020-00697-4.

2 Patrizio Angelini, Giordano Da Lozzo, Henry Förster, and Thomas Schneck. 2-layer k-
planar graphs density, crossing lemma, relationships and pathwidth. The Computer Journal,
67(3):1005–1016, April 2023. doi:10.1093/comjnl/bxad038.

3 János Barát, Jirí Matousek, and David R. Wood. Bounded-degree graphs have arbitrarily large
geometric thickness. The Electronic Journal of Combinatoric, 13(1), 2006. doi:10.37236/1029.

4 Michael A. Bekos, Martin Gronemann, and Chrysanthi N. Raftopoulou. On the queue number of
planar graphs. In International Symposium on Graph Drawing and Network Visualization, pages
271–284, Berlin, Heidelberg, 2021. Springer-Verlag. doi:10.1007/978-3-030-92931-2_20.

https://doi.org/10.1007/s00453-020-00697-4
https://doi.org/10.1007/s00453-020-00697-4
https://doi.org/10.1093/comjnl/bxad038
https://doi.org/10.37236/1029
https://doi.org/10.1007/978-3-030-92931-2_20

J. Katheder, M. Kaufmann, S. Pupyrev, and T. Ueckerdt 56:17

5 Michael A. Bekos, Michael Kaufmann, Fabian Klute, Sergey Pupyrev, Chrysanthi N.
Raftopoulou, and Torsten Ueckerdt. Four pages are indeed necessary for planar graphs.
Journal of Computational Geometry, 11(1):332–353, 2020. doi:10.20382/jocg.v11i1a12.

6 Frank Bernhart and Paul C. Kainen. The book thickness of a graph. Journal of Combinatorial
Theory, Series B, 27(3):320–331, 1979. doi:10.1016/0095-8956(79)90021-2.

7 Vida Dujmović, David Eppstein, Robert Hickingbotham, Pat Morin, and David R Wood.
Stack-number is not bounded by queue-number. Combinatorica, pages 1–14, 2021. doi:
10.1007/s00493-021-4585-7.

8 Vida Dujmović, Gwenaël Joret, Piotr Micek, Pat Morin, Torsten Ueckerdt, and David R
Wood. Planar graphs have bounded queue-number. Journal of the ACM, 67(4):1–38, 2020.
doi:10.1145/3385731.

9 Vida Dujmović, Pat Morin, and David R Wood. Layout of graphs with bounded tree-width.
SIAM Journal on Computing, 34(3):553–579, 2005. doi:10.1137/S0097539702416141.

10 Vida Dujmović, Attila Pór, and David R Wood. Track layouts of graphs. Discrete Mathematics
& Theoretical Computer Science, 6(2):497–522, 2004. doi:10.46298/DMTCS.315.

11 Vida Dujmović and David R Wood. Stacks, queues and tracks: Layouts of graph subdivisions.
Discrete Mathematics and Theoretical Computer Science, 7:155–202, 2005. doi:10.46298/
dmtcs.346.

12 Peter Eades and Nicholas C Wormald. Edge crossings in drawings of bipartite graphs.
Algorithmica, 11(4):379–403, 1994. doi:10.1007/BF01187020.

13 David Eppstein, Robert Hickingbotham, Laura Merker, Sergey Norin, Michał T Seweryn, and
David R Wood. Three-dimensional graph products with unbounded stack-number. Discrete &
Computational Geometry, pages 1–28, 2023. doi:10.1007/s00454-022-00478-6.

14 Henry Förster, Michael Kaufmann, Laura Merker, Sergey Pupyrev, and Chrysanthi N.
Raftopoulou. Linear layouts of bipartite planar graphs. In Pat Morin and Subhash Suri, editors,
Algorithms and Data Structures - 18th International Symposium, WADS 2023, Montreal, QC,
Canada, July 31 - August 2, 2023, Proceedings, volume 14079 of Lecture Notes in Computer
Science, pages 444–459. Springer, 2023. doi:10.1007/978-3-031-38906-1_29.

15 Joseph L. Ganley and Lenwood S. Heath. The pagenumber of k-trees is O(k). Discrete Applied
Mathematics, 109(3):215–221, 2001. doi:10.1016/S0166-218X(00)00178-5.

16 Deborah Haun, Laura Merker, and Sergey Pupyrev. Forbidden patterns in mixed linear layouts.
In 42nd International Symposium on Theoretical Aspects of Computer Science (STACS 2025),
2024. doi:10.48550/arXiv.2412.12786.

17 Lenwood S Heath, Frank Thomson Leighton, and Arnold L Rosenberg. Comparing queues and
stacks as machines for laying out graphs. SIAM Journal on Discrete Mathematics, 5(3):398–412,
1992. doi:10.1137/0405031.

18 Lenwood S Heath and Arnold L Rosenberg. Laying out graphs using queues. SIAM Journal
on Computing, 21(5):927–958, 1992. doi:10.1137/0221055.

19 Robert Hickingbotham and David R. Wood. Shallow minors, graph products, and beyond-
planar graphs. SIAM Journal on Discrete Mathematics, 38(1):1057–1089, 2024. doi:10.1137/
22M1540296.

20 Paul C. Kainen. Some recent results in topological graph theory. In Ruth A. Bari and Frank
Harary, editors, Graphs and Combinatorics, pages 76–108, Berlin, Heidelberg, 1974. Springer
Berlin Heidelberg. doi:10.1007/BFb0066436.

21 Julia Katheder, Michael Kaufmann, Sergey Pupyrev, and Torsten Ueckerdt. Transforming
stacks into queues: Mixed and separated layouts of graphs. CoRR, abs/2409.17776, 2024.
doi:10.48550/arXiv.2409.17776.

22 Jawaherul Md. Alam, Michael A. Bekos, Martin Gronemann, Michael Kaufmann, and Sergey
Pupyrev. The mixed page number of graphs. Theoretical Computer Science, 931:131–141,
2022. doi:10.1016/j.tcs.2022.07.036.

STACS 2025

https://doi.org/10.20382/jocg.v11i1a12
https://doi.org/10.1016/0095-8956(79)90021-2
https://doi.org/10.1007/s00493-021-4585-7
https://doi.org/10.1007/s00493-021-4585-7
https://doi.org/10.1145/3385731
https://doi.org/10.1137/S0097539702416141
https://doi.org/10.46298/DMTCS.315
https://doi.org/10.46298/dmtcs.346
https://doi.org/10.46298/dmtcs.346
https://doi.org/10.1007/BF01187020
https://doi.org/10.1007/s00454-022-00478-6
https://doi.org/10.1007/978-3-031-38906-1_29
https://doi.org/10.1016/S0166-218X(00)00178-5
https://doi.org/10.48550/arXiv.2412.12786
https://doi.org/10.1137/0405031
https://doi.org/10.1137/0221055
https://doi.org/10.1137/22M1540296
https://doi.org/10.1137/22M1540296
https://doi.org/10.1007/BFb0066436
https://doi.org/10.48550/arXiv.2409.17776
https://doi.org/10.1016/j.tcs.2022.07.036

56:18 Transforming Stacks into Queues: Mixed and Separated Layouts of Graphs

23 Hiroshi Nagamochi. An improved bound on the one-sided minimum crossing number in
two-layered drawings. Discrete & Computational Geometry, 33(4):569–591, 2005. doi:10.
1007/S00454-005-1168-0.

24 L Taylor Ollmann. On the book thicknesses of various graphs. In Proc. 4th Southeastern
Conference on Combinatorics, Graph Theory and Computing, volume 8, page 459. Utilitas
Math., 1973.

25 Sriram Venkata Pemmaraju. Exploring the powers of stacks and queues via graph layouts.
PhD thesis, Virginia Polytechnic Institute and State University, 1992.

26 Sergey Pupyrev. Mixed linear layouts of planar graphs. In International Symposium on
Graph Drawing and Network Visualization, pages 197–209. Springer, 2017. doi:10.1007/
978-3-319-73915-1_17.

27 Sergey Pupyrev. Improved bounds for track numbers of planar graphs. Journal of Graph
Algorithms and Applications, 24(3):323–341, 2020. doi:10.7155/JGAA.00536.

28 Veit Wiechert. On the queue-number of graphs with bounded tree-width. The Electronic
Journal of Combinatorics, 24(1):P1.65, 2017. doi:10.37236/6429.

29 David R. Wood. Bounded-degree graphs have arbitrarily large queue-number. Discrete
Mathematics and Theoretical Computer Science, 10(1), 2008. doi:10.46298/DMTCS.434.

30 Mihalis Yannakakis. Embedding planar graphs in four pages. Journal of Computer and System
Sciences, 38(1):36–67, 1989. doi:10.1016/0022-0000(89)90032-9.

https://doi.org/10.1007/S00454-005-1168-0
https://doi.org/10.1007/S00454-005-1168-0
https://doi.org/10.1007/978-3-319-73915-1_17
https://doi.org/10.1007/978-3-319-73915-1_17
https://doi.org/10.7155/JGAA.00536
https://doi.org/10.37236/6429
https://doi.org/10.46298/DMTCS.434
https://doi.org/10.1016/0022-0000(89)90032-9

Approximate Minimum Tree Cover in All
Symmetric Monotone Norms Simultaneously
Matthias Kaul #

Hamburg University of Technology, Institute for Algorithms and Complexity, Hamburg, Germany
University of Bonn, Germany

Kelin Luo #

University of Bonn, Germany
University at Buffalo, NY, USA

Matthias Mnich #

Hamburg University of Technology, Institute for Algorithms and Complexity, Hamburg, Germany

Heiko Röglin #

Universität Bonn, Germany

Abstract
We study the problem of partitioning a set of n objects in a metric space into k clusters V1, . . . , Vk.
The quality of the clustering is measured by considering the vector of cluster costs and then
minimizing some monotone symmetric norm of that vector (in particular, this includes the ℓp-norms).
For the costs of the clusters we take the weight of a minimum-weight spanning tree on the objects
in Vi, which may serve as a proxy for the cost of traversing all objects in the cluster, for example in
the context of Multirobot Coverage as studied by Zheng, Koenig, Kempe, Jain (IROS 2005), but
also as a shape-invariant measure of cluster density similar to Single-Linkage Clustering.

This problem has been studied by Even, Garg, Könemann, Ravi, Sinha (Oper. Res. Lett.,
2004) for the setting of minimizing the weight of the largest cluster (i.e., using ℓ∞) as Min-Max
Tree Cover, for which they gave a constant-factor approximation algorithm. We provide a careful
adaptation of their algorithm to compute solutions which are approximately optimal with respect to
all monotone symmetric norms simultaneously, and show how to find them in polynomial time. In
fact, our algorithm is purely combinatorial and can process metric spaces with 10,000 points in less
than a second.

As an extension, we also consider the case where instead of a target number of clusters we are
provided with a set of depots in the space such that every cluster should contain at least one such
depot. One can consider these as the fixed starting points of some agents that will traverse all
points of a cluster. For this setting also we are able to give a polynomial-time algorithm computing
a constant-factor approximation with respect to all monotone symmetric norms simultaneously.

To show that the algorithmic results are tight up to the precise constant of approximation
attainable, we also prove that such clustering problems are already APX-hard when considering only
one single ℓp norm for the objective.

2012 ACM Subject Classification Theory of computation → Approximation algorithms analysis

Keywords and phrases Clustering, spanning trees, all-norm approximation

Digital Object Identifier 10.4230/LIPIcs.STACS.2025.57

Related Version Full Version: https://arxiv.org/abs/2501.05048 [18]

Funding Matthias Kaul: Most work done while at the Hamburg University of Technology.
Kelin Luo: Funded by the Deutsche Forschungsgemeinschaft (DFG, German Research Foundation) –
390685813.
Heiko Röglin: Funded by the Deutsche Forschungsgemeinschaft (DFG, German Research Foundation)
– 459420781 and by the Lamarr Institute for Machine Learning and Artificial Intelligence lamarr-
institute.org.

© Matthias Kaul, Kelin Luo, Matthias Mnich, and Heiko Röglin;
licensed under Creative Commons License CC-BY 4.0

42nd International Symposium on Theoretical Aspects of Computer Science (STACS 2025).
Editors: Olaf Beyersdorff, Michał Pilipczuk, Elaine Pimentel, and Nguyễn Kim Thắng;
Article No. 57; pp. 57:1–57:18

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:mkaul@uni-bonn.de
https://orcid.org/0000-0003-0124-0789
mailto:kelinluo@buffalo.edu
https://orcid.org/0000-0003-2006-0601
mailto:matthias.mnich@tuhh.de
https://orcid.org/0000-0002-4721-5354
mailto:roeglin@cs.uni-bonn.de
https://orcid.org/0009-0006-8438-3986
https://doi.org/10.4230/LIPIcs.STACS.2025.57
https://arxiv.org/abs/2501.05048
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

57:2 Approximate All-Norm Tree Cover in All Symmetric Monotone Norms

1 Introduction

A typical clustering problem takes as input a set of n objects in a metric space (V, d),
and seeks a partition of these objects into k clusters V1, . . . , Vk, so as to optimize some
objective function. For example, we might try to place k facilities onto the nodes of an
edge-weighted graph with node set V , and then assign each remaining node to some facility.
To model the cost of serving these nodes from their facility, one can use the cost of a
minimum-weight spanning tree Ti on the subgraph induced by them. For i = 1, . . . , k, let
w(Ti) =

∑
e∈E(Ti) w(e) be the weight of tree Ti. Historically, these kinds of problems have

been studied for two different objectives. On the one hand, in the Min-Sum Tree Cover
problem one might want to find k trees T1, . . . , Tk to cover all nodes in V , while minimizing
the total length of the service network, i.e., the sum

∑
i∈[k] w(Ti) of the weights of the

spanning trees. On the other hand, it is desirable that each facility does not serve too large of
a network, so we can instead minimize the weight maxi∈[k] w(Ti) of the heaviest tree, which
leads to the Min-Max Tree Cover problem [10, 19].

Many fundamental clustering problems were studied under this min-sum objective and
min-max objective. These objectives can equivalently be considered as that of minimizing
the 1-norm, or the ∞-norm, of the clustering. Examples include the k-median problem
and the minimum-load k-facility location problem. These two problems are siblings in that
they both deal with the assignment of points (or clients) to k centers (or facilities), with
the costs of connecting those points to respective centers. Each point v is then assigned
to one of these open centers, denoted as c(v). The cost costc for each center c, which also
reflects the cost associated with each facility, is calculated as the sum of distances between
the center and all the points allocated to it, i.e, costc =

∑
v∈V :c(v)=c d(v, c). In the k-median

problem [14, 7, 21, 2], the objective is to minimize the ℓ1-norm of {costc}c, i.e.,
∑

c costc,
which represents the total cost of all clusters; whereas the minimum-load k-facility location
problem [1] seeks to minimize the maximum load of an open facility, symbolised by the
ℓ∞-norm function of {costc}c, i.e., maxc costc.

There is a diverse array of cost functions that could be applicable to a variety of problem
domains, and often, efficient algorithms are crafted to suit each specific objective. However,
it is crucial to note that an optimal solution for one objective may not perform well for
another. For instance, a solution for an instance of the Tree Cover that minimizes the
ℓ1-norm might be particularly inefficient when it comes to minimizing the ℓ∞-norm, and
vice versa (see examples in Figure 1a and Figure 1b). Therefore, one may wonder what the
“generally optimal” solution would be for a given problem. Finding such a generally optimal
solution is the task of the following problem:

▶ Definition 1 (All-norm clustering problem). An all-norm clustering problem takes as input
a metric space (V, d), a cost function w : P(V) → R≥0, and a positive integer k. The goal is
to partition V into clusters V1, . . . , Vk which minimize

α = max
p∈R≥1∪{∞}

(
∑

i (w(Vi))p)1/p

OPTp
,

where OPTp denotes the value of an optimal solution for the k-clustering problem under the
ℓp-norm objective. Here, α is referred to as the all-norm approximation factor.

Our focus in this paper is the all-norm clustering problem where the cost w(Vi) of each
cluster is the cost of a minimum-weight spanning tree on Vi with respect to the metric d. We
call this problem the All-Norm Tree Cover problem in line with the naming convention

M. Kaul, K. Luo, M. Mnich, and H. Röglin 57:3

in the literature, and denote its instances by (V, d, w, k). (Note that, for simplicity, we
only consider ℓp-norms here. However, the proofs turn out to work for any norm which is
monotone and symmetric, cf. Ibrahimpur and Swamy [16] for a detailed introduction to such
norms.) Observe that the number k of clusters is part of the input, i.e., it is not fixed.

The choice of the cost of a minimum-weight spanning tree might appear to be somewhat
arbitrary here, but spanning trees are the key connectivity primitive in network design
problems. Any constant-factor approximation for All-Norm Tree Cover will, for example,
transfer to a constant-factor approximation for the all-norm version of the Multiple
Traveling Salesperson Problem [5] where we ask to cover a metric space by k cycles
instead of trees. This use of spanning trees as a proxy for the traversal times of the clusters
was a key ingredient for by Zheng et al. [24] to partition a floorplan into similar-size areas to
be served by different robots.

Let us observe that solving the All-Norm Tree Cover problem is non-trivial, as
a solution which is good for one objective (i.e., for one particular norm ℓp) may be bad
for another objective (i.e., for another norm ℓp′), and vice versa. For examples of this
phenomenon, see Figure 1.

v1 v2 vnvk... ...

1 + ε 1

(a) The path forms a metric where any two neigh-
boring nodes in the set {v1, . . . , vk} have distance
1 + ε, while the distance of all other edges is 1. In
this case, the optimal solution under the ℓ1-norm
involves removing all edges with distance 1 + ε, res-
ulting in an ℓ∞-norm objective cost n−k. However,
the optimal solution cost for the ℓ∞-norm is less
than n(1 + ε)/k.

v1 v2k−3

v2
v3

v4

v2(k−1)

v2k−1

v2k
v2k+L−2

. . .

. . .

1

L

L L

1 1

v2(k−2)

(b) The spider graph includes 2k + L − 1 nodes.
All edges connecting a node v2i−3 (where i =
1, . . . , k) and vi (where i = 2k − 1, . . . , 2k + L − 2)
to the center have distance 1, and all edges
{v2i−1, v2i}i=1,...,k−1 have distance a large in-
teger L. In this case, the optimal solution under
the ℓ∞-norm involves removing all edges connected
to the nodes {v2i−1}i=1,...,k−1, resulting in an ℓ1-
norm objective cost of kL. However, the optimal
solution for the ℓ1 norm has cost k + L − 1.

Figure 1 Two instances of the All-Norm Tree Cover problem. Figure 1a is an instance where
an optimal ℓ1-norm solution does not return a good approximation in the ℓ∞-norm; Figure 1b is an
instance where an optimal ℓ∞-norm solution does not return a good approximation in the ℓ1-norm.

The All-Norm Tree Cover problem, alongside the related path cover and cycle cover
problems, involves covering a specified set of nodes of a(n edge-weighted) graph with a limited
number of subgraphs. These problems have attracted significant attention from the operations
research and computer science communities due to their practical relevance in fields like
logistics, network design, and data clustering. For instance, these problems are naturally
applicable in scenarios such as vehicle routing, where the task involves designing optimal
routes to service a set of customers with a finite number of vehicles. Different optimization
objectives could be considered depending on the specific requirements. One could aim to
minimize the maximum waiting time for any customer, an objective that is equivalent to
the ℓ∞-norm of the cost function associated with each vehicle. This ensures fairness, as it
attempts to prevent any single customer from waiting excessively long. Alternatively, one
could aim to minimize the total travel time or cost, which corresponds to the ℓ1-norm of

STACS 2025

57:4 Approximate All-Norm Tree Cover in All Symmetric Monotone Norms

the cost function across all vehicles [6, 4]. This objective seeks overall efficiency, making
it beneficial from an operational perspective as it reduces fuel consumption and allows for
more customers to be serviced within the same time frame [11, 4, 10, 19]. Understanding
these problems in an all-norm setting thus enables the development of routing strategies that
are adaptable to different priorities, including customer satisfaction, operational efficiency,
or a balance between the two. Given that minimum spanning trees provide constant-factor
approximations to traveling salesperson tours [8], we explore the possibility of covering the
nodes of a graph with k trees.

In a scenario where each vehicle already has an assigned station, and the task is limited to
the assignment of nodes to the vehicles, we are confronted with a variation of the All-Norm
Tree Cover problem known as the All-Norm Tree Cover with Depots problem
(also commonly referred to as the Rooted All-Norm Tree Cover problem), denoted
by (V, d, w, D) where D ⊆ V is a set of depots [10]. These problems under all norms will be
formally defined and addressed in the subsequent sections of this paper.

1.1 Our contributions
Computing optimal tree covers is NP-hard even for the single ℓ∞-norm; for this norm,
it admits a constant-factor approximation in polynomial time. Our goal in this paper is
thus to design constant-factor approximations for All-Norm Tree Cover, that is, for
all monotone symmetric norms simultaneously. Building upon the example in Figure 1,
it becomes clear that a constant-factor approximation for one norm objective does not
necessarily guarantee a constant approximation for another norm. Meanwhile, achieving an
all-norm approximation factor better than 3/2 within polynomial time is infeasible, as a
lower bound of 3/2 on the approximability of the Tree Cover problem under the ℓ∞-norm
has been demonstrated by Xu and Wen [23] (assuming P ̸= NP). In previous work, Even
et al. [10] proposed a 4-approximation algorithm for the Min-Max Tree Cover problem,
which is representative of the ℓ∞-norm. That algorithm was subsequently refined by Khani
and Salavatipour [19], who devised a 3-approximation. However, these existing algorithms
fail to guarantee a constant approximation factor for optimal solutions under other norms,
proving to be unbounded specifically, this holds even for the ℓ1-norm (for an example, see
Figure 3 in Section 3).

Our first main contribution is a polynomial-time constant-factor approximation algorithm
for the All-Norm Tree Cover problem. Our algorithm amalgamates the strategies of
suitable algorithms for both the ℓ1-norm and the ℓ∞-norm. It is well-understood that an
optimal solution for the ℓ1-norm objective involves successively eliminating the heaviest
edges until precisely k components remain. Conversely, the algorithm for ℓ∞-norm objective
concludes when the number of trees generated by the edge-decomposition with respect to
a guessed optimal value R is about to exceed k [10]. Our proposed method continually
approximates the decomposed trees towards an ideal state. So in that sense the algorithm
proposed by Even et al. [10] is effectively refined to solve other norm problems. Notably, our
algorithm produces a feasible solution that is at most double the optimal solution for the
ℓ1-norm and four times the optimal solution for the ℓ∞-norm simultaneously.

▶ Theorem 2. There exists a polynomial-time O(1)-approximation algorithm for the All-
Norm Tree Cover problem.

We next consider the more involved All-Norm Tree Cover problem with depots.
For All-Norm Tree Cover with depots, each tree in a tree cover solution is rooted at
a specific depot. The special problem case of the single ℓ∞-norm is the Min-Max Tree

M. Kaul, K. Luo, M. Mnich, and H. Röglin 57:5

B

B

B

B

B + ε B − ε/2

ε

ε

ε

B

B

B

B − ε/2

B

v1

v3

v5

v7

v2

v4

v6

v8

v9

Figure 2 Example instance where the algorithm of Even et al. [10] does not return a good
approximation in the ℓ1-objective. The left figure is an example of the graph metric when k = 4 and
the right figure is the final solution obtained by the rooted-tree-cover algorithm by Even et al. [10].

Cover problem with depots, for which Even et al. [10] devised a 4-approximation algorithm.
Subsequently, Nagamochi [22] enhanced this framework by offering a (3− 2

k+1)-approximation
algorithm under the restriction that all depots are located at the same node. However, neither
of those algorithms can assure any constant approximation factor for the ℓ1-norm objective
(refer to the example in Figure 2).

Our key contribution extends the O(1)-approximation algorithm for All-Norm Tree
Cover from Theorem 2 to the problem with depots:

▶ Theorem 3. There exists a polynomial-time O(1)-approximation algorithm for the All-
Norm Tree Cover with Depots problem.

Our methodology comprises three stages:
1. Initially, we partition the nodes according to their distances to the depots, where partition

class i contains all nodes at distance between 2i−1 and 2i.
2. We then apply a version of the algorithm of Even et al. [10] in each class separately to

find a good “pre-clustering” of the nodes. This is simplified by the previous partitioning
since it allows us to assume that all nodes are at the same distance to the depots, up to
a factor of 2.

3. Finally, we assign the clusters from the second step to the depots by iteratively computing
matchings of clusters to depots, considering ever larger clusters, and allowing them to
be matched to ever more distant depots. In this way, we essentially maintain a running
estimate of the necessary tree weights, updating it when the matching process does not
succeed in assigning all nodes to some depot. If it does succeed, we can show that (up to
constant factors) no cluster is larger than the estimate, and that the estimate is correct,
i.e., every solution has trees at least as large as predicted by the estimate.

Note that both the depot and non-depot algorithms will require only very simple al-
gorithmic primitives such as minimum spanning trees and bipartite matchings. Thus, our
algorithms can be implemented to run very quickly using purely combinatorial techniques,
in particular without resorting to linear programming which can be impractically slow (see
also Davies at al. [9] for recent work on combinatorial clustering algorithms). In fact, an
implementation of our algorithm can process metric spaces with 10,000 points in less than a
second, see Section 6 for details.

STACS 2025

57:6 Approximate All-Norm Tree Cover in All Symmetric Monotone Norms

Our final contribution complements the algorithmic result from Theorem 3 by a complexity-
theoretic lower bound: we show that one cannot expect polynomial-time approximation
schemes to exist, even in the presumably easier setting ℓp-Tree Cover with Depots where
we only want to approximate the optimum with respect to one specific ℓp-norm:

▶ Theorem 4. For every p ∈ (1, ∞] there exists a constant c such that ℓp-Tree Cover
with Depots is NP-hard to approximate within a factor c. The NP-hardness holds under
randomized reductions.

Specifically, we show that ℓp-Tree Cover is NP-hard to approximate to a factor

[(106 − 1
4 + ε

2)3p + (1
8 − ε

4)(2p + 4p)
(106 − 2ε)3p + ε(2p + 4p)

]1/p

> 1,

for any choice of ε > 0.

2 Preliminaries

We set up some formal definitions. We will identify metric spaces and metrically edge-weighted
graphs to allow for an easier treatment of connectedness, trees, and similar graph-theoretic
objects. For any such graph G, we always keep in mind the underlying metric space V

induced by the shortest-path metric on G. We also assume that the metrics used are integral,
for ease of presentation. Our results extend to rational metrics by rescaling the metric.

We here concern ourselves with tree covers of graphs, which are to be defined as follows:

▶ Definition 5 (Tree cover). For a graph G , a tree cover is a collection {T1, . . . , Tk} of trees
for which

⋃
i V (Ti) = V . We call k the size of such a tree cover.

▶ Definition 6 (Tree cover with depots). For a graph G and a depot set D ⊆ V , a tree
cover with depots is a tree cover {T1, . . . , T|D|} of G, where each Ti contains a unique depot
from D.

Notice in particular that there is no expectation of disjointness for the trees. If disjointness
is required, we may assign every node to exactly one of the trees currently containing it
and recompute minimum-weight spanning trees for each of the resulting clusters. This
increases the cluster weights by at most a factor of 2 due to the gap between Steiner trees and
minimum-weight spanning trees (see Lemma 9). For any connected subgraph H of a graph G,
we use w(H) to denote the weight of a minimum-weight spanning tree in the subgraph H . It
is important to note that this weight can differ from the sum of the weight of the edges of H .
We then use the p-norm (p ≥ 1) as a measure of the quality of a tree cover. Specifically, the
cost of a tree cover {T1, . . . , Tk} is defined as the p-norm of the corresponding tree weights,

that is, wp =
(∑

i∈[k] (w(Ti))p
)1/p

.
There are two natural optimization questions for tree covers (and for tree covers with

depots) which have been considered in the literature: The ℓ1-Tree Cover problem, where
the aim is to minimize the sum of the weights of the k trees, and the ℓ∞-Tree Cover
problem in which the objective is to minimize the weight of the heaviest tree within the
cover. The ℓ1-Tree Cover problem admits a polynomial-time algorithm, regardless of the
presence of depots; in contrast, the ℓ∞-Tree Cover problem is APX-hard, again regardless
of whether depots are present or not.

We consider the interpolation between these two problems by allowing arbitrary ℓp norms:

M. Kaul, K. Luo, M. Mnich, and H. Röglin 57:7

▶ Definition 7 (ℓp-Tree Cover (resp. ℓp-Tree Cover with Depots)). Given a graph G =
(V, d) and some integer k (resp. depots D ⊆ V) and a p ∈ [1, ∞), find a tree cover {T1, . . . , Tk}

(resp. with depots) which minimizes the expression OPTp,k :=
(∑k

i=1(w(Ti))p
)1/p

.

We will usually omit k if it is clear from context. All of the ℓp-variants (except p = 1)
are NP-hard, as the proof of hardness for the ℓ∞-case works for all values of p > 1 [23].

▶ Definition 8 (All-Norm Tree Cover Problem (resp. All-Norm Tree Cover
Problem with Depots)). Given a graph G = (V, d) and some integer k (resp. depots
D ⊆ V), find a tree cover {T1, . . . , Tk} (resp. with depots) which minimizes

max
p∈[1,∞)

(∑k
i=1(w(Ti))p

)1/p

OPTp
.

To distinguish the problem versions for a fixed norm p from those for all p simultaneously,
we denote by (ℓp, k) (or (ℓp, D) for problems involving depots) the tree cover problem for a
specific value of p. Meanwhile, we use (ℓp∈[1,∞), k) (or (ℓp∈[1,∞), D) when depots are involved)
to represent the All-Norm Tree Cover problem that encompasses all values of p ∈ [1, ∞).
We omit naming the underlying metric space (V, d), unless explicitly stated otherwise.

We will state a result about the relationship between the cost of minimum-weight Steiner
trees and minimum-weight spanning trees, as we will harness this argument repeatedly:

▶ Lemma 9 (Kou et al. [20]). Let (V, d) be a metric space with some terminal set F ⊆ V ,
let T̂ be a minimum-weight (Steiner) tree containing all nodes from F , and let T be a
minimum-weight spanning tree of (F, d

∣∣
F

). Then w(T) ≤ (2 − 2/|F |) · w(T̂).

Proof. An easy way to obtain the result is to take T̂ and use the tree-doubling heuristic to
compute a traveling salesperson tour T of F in (V, d), costing at most 2 ·w(T̂). Removing the
heaviest edge of T yields a (perhaps not yet minimal) spanning tree T ′ in (F, d

∣∣
F

) of weight
at most (2 − 2/|F |)w(T̂), allowing us to conclude that w(T) ≤ w(T ′) ≤ (2 − 2/|F |)w(T̂). ◀

Lemma 9 will prove useful as we occasionally want to forget about some nodes of our instance.
This may actually increase overall costs, since certain Steiner trees become unavailable.
However, the lemma ensures that the increase in cost is bounded.

3 Simultaneous Approximations for the All-Norm Tree Cover Problem

First, to provide some some good intuition of the key techniques for the general case, we
show in detail that the Tree Cover algorithm of Even et al. [10] gives a constant-factor
approximation to the ℓp-tree cover problem without depots provided that it returns k trees.
Indeed, we show that the argument will work for all monotone symmetric norms. The original
algorithm works as follows, for a given graph G = (V, d):
1. Guess an upper bound R on the optimum value of the ℓ∞-norm tree cover problem for

instance G, where initially R = 1.
2. Remove all edges with weight larger than R from G, and compute a minimum-weight

spanning tree Ti for each connected component of the resulting graph.
3. Check that

∑
⌊ w(Ti)+2R

2R ⌋ = k; otherwise, reject R and go to step 1 with R := 2R.
4. Call a spanning tree Ti small if w(Ti) < 2R.

STACS 2025

57:8 Approximate All-Norm Tree Cover in All Symmetric Monotone Norms

H1 H2 Hn

R

R

R

R

R

R

R

R

R

R

R

R
2R

Figure 3 Example instance where the algorithm of Even et al. does not return a good approx-
imation in the ℓ1-objective. The instance consists of n identical copies Hi of the 4-star where all
edges have length R and the copies are pairwise at distance 2R. For k = 5n − 1, the instance has
OP T∞ = OP T1 = R, but the algorithm will return 2n trees, each of weight 2R. Observe that the
partition requirement in Step 5 would also be fulfilled if the trees are not further partitioned and
kept at size 4R, however the algorithm of Even et al. produces the former solution. Both solutions
do not achieve a good approximation in the ℓ1 objective.

5. Call a spanning tree Ti large if w(Ti) ≥ 2R. Decompose each such tree into edge-disjoint
subtrees T̃j such that 2R ≤ w(T̃j) ≤ 4R for all but one residual T̃j in each component1.

6. Output the family of all small spanning trees, as well as all subtrees T̃j created in Step 5.

Even at al. show that this procedure will output at most k trees if OPT∞ ≤ R, although
they relax the condition in Step 3 to

∑
⌊ w(Ti)+2R

2R ⌋ ≤ k. For technical reasons, however, we
need the equality in this spot. Since every tree has weight most 4R, the algorithm evidently
gives a 4-approximation in the ℓ∞-norm if the correct value of R = OPT∞,k is guessed.
Otherwise, one can use binary search to find, in polynomial time, the smallest R for which
one gets at most k trees.

In general, however, we notice that this algorithm will sometimes compute fewer than k

trees, causing it to not return a good approximation for the other ℓp-norms, not even for the
ℓ1-norm (see Figure 3).

For this reason, we need the strengthened property in Step 3. Then, however, notice that
such a value R does not necessarily exist; for example, for the instance in Figure 3 this is the
case. We will describe later how to avoid this issue of non-existence; for now, we assume
that such a value R exists and can be computed in polynomial time.

So suppose that the algorithm has returned k trees T1, . . . , Tk, where we simply remove
some edges should the algorithm return fewer than k trees. This removal only improves the
objective value, so we will assume – without loss of generality – that the algorithm already
returned k trees. As a warm-up, we will start by considering only the case that p = 1, i.e.,
we show that this algorithm computes a solution that is a good approximation for (ℓ1, k)
tree cover.

▶ Lemma 10. Let {T1, . . . , Tk} be the set of trees returned by the algorithm for some fixed
value of R. Then we have

∑
w(Ti) ≤ 2OPT1,k .

Proof. We observe first that an optimal solution for (ℓ1, k) tree cover can be computed by
removing iteratively the heaviest edge as long as this does not cause the graph to decompose
into more than k components, as this procedure is equivalent to running Kruskal’s algorithm.
As the optimal solution contains no edges of weight greater than R, we consider the graph
G′ := G − {e | d(e) > R}. Let ks be the number of small spanning trees Si computed by

1 This can be done with a simple greedy procedure, cutting of subtrees of this weight. For the details of
this algorithm, we refer to Even et al. [10].

M. Kaul, K. Luo, M. Mnich, and H. Röglin 57:9

the algorithm, and let kℓ be the number of large spanning trees Li. Then we certainly have∑
w(Ti) ≤

∑
w(Si) +

∑
w(Li), since the trees computed by the algorithm are edge-disjoint

subtrees of the initial spanning trees. Further, we have

OPT1,k ≥
∑

w(Si) +
∑

w(Li) − (k − ks − kℓ)R,

because the optimal solution will remove k − ks − kℓ edges from within the spanning trees
computed by the algorithm, each of weight at most R. But notice that we can use Step 3 to
obtain

k =
∑ ⌊

w(Si)
2R

+ 1
⌋

+
∑ ⌊

w(Li)
2R

+ 1
⌋

≤ ks + kl +
∑ w(Li)

2R
,

which implies that (k − ks − kℓ)2R ≤
∑

w(Li). This inequality allows us to conclude that

OPT1,k ≥
∑

w(Si) +
∑

w(Li) − 1
2

∑
w(Li)

≥ 1
2(

∑
w(Si) +

∑
w(Li))

≥ 1
2

∑
w(Ti) . ◀

Notice that the strengthened version of Step 3 is indeed necessary here.
We can use a similar technique to show that the solution computed by the algorithm is a

constant-factor approximation for (ℓp, k) tree cover for any choice of p, and with a constant of
approximation independent of p. The key argument will be to show that an optimal solution
to (ℓp, k) tree cover must, as in Lemma 10, have a total weight comparable to that of the
solution computed by the algorithm. In a second step, one can then show that the algorithm
distributes the total weight of its trees fairly evenly, because the large trees all have weight
between 2R and 4R.

Meanwhile, for the small trees we can demonstrate that choosing them differently from
the algorithm will incur some cost of at least R. Thus, either the algorithms’ solution has
correctly chosen the partition on these small trees, or the optimal solution actually has a
heavy tree not in the algorithms’ solution, which we can use to pay for one of the large trees
that the algorithm has, but the optimal solution does not. Notice that, if the algorithm
achieves an equal distribution of some total weight that is comparable to the total weight of
an optimal solution under the ℓp-norm, it also achieves a good approximation of OPTp due
to convexity of the ℓp-norms.

To start with, we will only give a rough analysis of the quality of the solution returned
by the algorithm, although it already shows a constant factor of approximation. The full
version on arXiv gives a more detailed proof that achieves a better constant [18].

Let us fix some p ∈ [1, ∞) and any (ℓp, k) tree cover solution {T̂1, . . . , T̂k} (you may
imagine that it is optimal). Then let ks be the number of connected components computed
by the algorithm that had a small spanning tree, and call those components S1, . . . , Sks .
Similarly, for the large spanning trees, let there be kℓ components L1, . . . , Lkℓ

. Now we
denote by Eℓ the set of edges that are both contained in some T̂i and in the cut induced by
some Sj or Lj . In particular, all these edges have weight at least R. We count separately
the small Ti incident to some edge from Eℓ, say there are ks,1 of them. We will also denote
by ks,2 the number of Si for which one of the T̂j is a minimum-weight spanning tree, and
denote the set of these T̂j as T =. Note that any small component not counted by ks,1 or ks,2
is split into at least two components by the T̂i. For an illustration of this setting, we refer to
Figure 4.

STACS 2025

57:10 Approximate All-Norm Tree Cover in All Symmetric Monotone Norms

S1 S2 S3 S4

L1 L2

ks,1ks,2

ks

kℓ

Eℓ

≥ R

Figure 4 Illustration of how the algorithm’s solution and some optimal solution can align against
each other. The algorithm’s partition of the graph into connected component is indicated by solid
zones, the further subdivision of the large components by dotted zones. The trees of the optimal
solution are drawn, and all edges crossing the boundary of a connected component are dashed.

We can now start to measure the total sum of edge weights in the T̂j , i.e.,
∑

j w(T̂j). We
begin by relating it to the small trees of the algorithm’s solution that do not agree with the
optimal solution.

▶ Observation 11. It holds that
∑

j w(T̂j) −
∑

T̂i∈T = w(T̂i) ≥ ks,1
R
2 .

Proof. We have ks,1 pairwise disjoint node sets in G, each incident to at least one edge of
weight at least R present in Eℓ, so we get |Eℓ| ≥ ks,1/2 from the handshake lemma, and thus∑

j

w(T̂j) −
∑

T̂i∈T =

w(T̂i) ≥ |Eℓ|R ≥ ks,1

2 R,

noting that the trees in T = do not contain any of the edges from Eℓ. ◀

To compare the total weight against the number of large trees, we can use a similar argument as
in Lemma 10. We again note that the initial spanning trees have weight at least (k−kℓ−ks)2R,
and any tree cover cannot remove too many edges from them. The second part of this
argument is no longer true though, since it is now possible for a solution to have many edges
between the components of G − {e | d(e) ≥ R}, allowing it to remove many edges within the
components However, a careful analysis will show that this case does not pose a problem,
since such inter-component edges are themselves heavy.

▶ Observation 12. We have
∑

j w(T̂j) ≥ (k − kℓ − ks,1 − ks,2)R +
∑

T̂i∈T = w(T̂i).

Proof. Suppose we delete from the T̂j all edges from Eℓ. This will yield k + |Eℓ| trees. We
will count only those trees that lie in a large component Li, of which there are at most
k+ |Eℓ|−2ks +ks,1 +ks,2. This is because every small component contains at least 2 of the T̂j ,
except for ks,1 +ks,2 many. Now observe that to get a (k + |Eℓ|−2ks +ks,1 +ks,2)-component
spanning forest of minimum weight for the Li, we start with the initial minimum spanning
trees in each component (which have weight at least (k − ks − kℓ)2R) and remove at most
(k + |Eℓ| − kℓ − 2ks + ks,1 + ks,2) edges, each of weight at most R. The total remaining
weight is (k − ks − kℓ)2R − (k + |Eℓ| − kℓ − 2ks + ks,1 + ks,2) = (k − kℓ − ks,1 − ks,2 − |Eℓ|)R.

M. Kaul, K. Luo, M. Mnich, and H. Röglin 57:11

Thus, we can measure the total weight of edges which are part of some T̂i and lie in a large
component as being at least the total weight the spanning trees of the Li, minus the weight
of the edges that may have been removed, and obtain∑

j

w(T̂j) −
∑

T̂i∈T =

w(T̂i) − |Eℓ|R ≥ (k − kℓ − ks,1 − ks,2 − |Eℓ|)R.

=⇒
∑

j

w(T̂j) −
∑

T̂i∈T =

w(T̂i) ≥ (k − kℓ − ks,1 − ks,2)R . ◀

Notice that with these two observations, we can almost show some result along the lines
of OPT1,k ≥ c · k · R for some c ∈ R, since either there are many large trees, in which case
Observation 12 gives us the desired result, or there are many small trees in which case we
can use Observation 11, unless ks,2 is large. However, the case that ks,2 is large, i.e., we
have computed many of the trees that are present in the optimal solution, should also be
beneficial, so we maintain a separate record of ks,2 in the analysis to obtain:

▶ Lemma 13. It holds that
∑

j w(T̂j) ≥ R
6 (k − ks,2) +

∑
T̂i∈T = w(T̂i).

Proof. We combine Observation 12 and Observation 11 convexly with coefficients 1/3, 2/3
to obtain ∑

j

w(T̂j) ≥ 1
3 [(k − kℓ − ks,1 − ks,2)R] + 2

3

[
ks,1

R

2

]
+

∑
T̂i∈T =

w(T̂i)

⇐⇒
∑

j

w(T̂j) ≥ R

3 (k − kℓ − ks,2) +
∑

T̂i∈T =

w(T̂i)

=⇒
∑

j

w(T̂j) ≥ R

6 (k − ks,2) +
∑

T̂i∈T =

w(T̂i),

where the final inequality follows from the following reasoning:

k =
∑ ⌊

w(Si) + 2R

2R

⌋
+

∑ ⌊
w(Li) + 2R

2R

⌉
≥ ks + 2kℓ,

and thus k − kℓ − ks,2 ≥ k − k−ks

2 − ks,2 = k
2 + ks

2 − ks,2 ≥ k−ks,2
2 . ◀

The upshot of Lemma 13 is then that any tree cover using k trees with some ks,2 trees in
common with the algorithm’s solution will have the property that the other k − ks,2 trees
have an average weight of Ω(R).

▶ Theorem 14. If the algorithm of Even et al. returns k trees T1, . . . , Tk, then we have[
k∑

i=1
(w(Ti)p)

]1/p

≤ 24
[

k∑
i=1

(w(T̂i)p)
]1/p

for any p and for any tree cover {T̂1, . . . , T̂k} of G with k trees.

Proof. From Lemma 13 we obtain
k∑

i=1
(w(T̂i)p) ≥ (k − ks,2)

(
R

6

)p

+
∑

T̂i∈T =

w(T̂i)p,

using convexity of |x|p for any p ≥ 1. At the same time, from the algorithm it is clear that
k∑

i=1
(w(Ti)p) ≤ (k − ks,2)(4R)p +

∑
T̂i∈T =

w(T̂i)p,

STACS 2025

57:12 Approximate All-Norm Tree Cover in All Symmetric Monotone Norms

because every tree is either identical to one of the T̂j , or has weight at most 4R. Putting
these inequalities together yields the statement of the theorem:∑k

i=1(w(Ti)p)∑k
i=1(w(T̂i)p)

≤
(k − ks,2)(4R)p +

∑
T̂i∈T = w(T̂i)p

(k − ks,2)
(

R
6

)p +
∑

T̂i∈T = w(T̂i)p
≤ (k − ks,2)(4R)p

(k − ks,2)
(

R
6

)p ≤ 24p . ◀

The whole proof, in particular the result of Lemma 13 can be reinterpreted to give an
even stronger result: namely, that the tree cover returned by the algorithm is approximately
“strongly optimal”, a concept introduced by Alon et al. [3] for analysing all-norm scheduling
algorithms. The point is to show a strong version of lexicographic minimality of the
constructed solution. Formally, let {T1, . . . , Tk} be the solution computed by the algorithm
for a given instance (ℓp∈[1,∞), k) and T̂1, . . . , T̂k any other tree cover for (ℓp∈[1,∞), k). Further,
let the trees be sorted non-increasingly by weight as w(T1) ≥ w(T2) ≥ . . . and w(T̂1) ≥
w(T̂2) ≥ Then {T1, . . . , Tk} is strongly optimal if for any j we have

j∑
i=1

w(Ti) ≤
j∑

i=1
w(T̂i) .

Similarly, one can speak of c-approximate strongly optimality if for some c ∈ R≥1 we have

j∑
i=1

w(Ti) ≤ c

j∑
i=1

w(T̂i) .

This property was also considered as “global c-balance” by Goel and Meyerson [12].
Approximate strong optimality suffices for our purposes, since a solution that is c-

approximate strongly optimal is also a c-approximation with respect to any p-norm; in
fact, we obtain a stronger result here, since c-approximate strongly optimality implies a
c-approximation with respect to any convex symmetric function, including all monotone
symmetric norms. This fact is the backbone of many all-norm approximation algorithms,
for example those by Golovin, Gupta, Kumar and Tangwongsan [13] for set cover variants.
Thus, we will obtain a 24-approximation from this analysis not only for all p-norms, but for
all monotone symmetric norms.

▶ Lemma 15. Let {T1, . . . , Tk} be the solution computed by the algorithm for a given
instance (ℓp∈[1,∞), k), and let {T̂1, . . . , T̂k} be any other tree cover for (ℓp∈[1,∞), k), where
w(T1) ≥ w(T2) ≥ . . . and w(T̂1) ≥ w(T̂2) ≥ Then

∑j
i=1 w(Ti) ≤ 24

∑j
i=1 w(T̂i) for

j = 1, . . . , k.

Proof. We obtain an upper bound for the values
∑j

i=1 w(Ti) by assuming that all trees
which are not accounted for by the ks,2 small component trees shared between the Ti and
the T̂i have weight exactly 4R. This will ensure that the shared trees are Tk−ks,2+1, . . . , Tk.
Similarly, we obtain a lower bound

∑j
i=1 w(T̂i) by allowing a non-descending permutation of

the T̂i. That is, we reorder the T̂i such that the first k − ks,2 trees are not the shared small
component trees with the Ti.

It then follows directly that

j∑
i=1

w(Ti) ≤ j · 4R = 24(j · R

6) ≤ 24
j∑

i=1
w(T̂i) for j ≤ k − ks,2,

M. Kaul, K. Luo, M. Mnich, and H. Röglin 57:13

as well as

k−ks,2∑
i=1

w(Ti) +
j∑

i=1+k−ks,2

w(Ti) ≤ 24
k−ks,2∑

i=1
w(T̂i) +

j∑
i=1+k−ks,2

w(T̂i)

=⇒
j∑

i=1
w(Ti) ≤ 24

j∑
i=1

w(T̂i) for j > k − ks,2 . ◀

3.1 Ensuring k trees

Recall that the previous analysis of the approximation factor relies on the algorithm being
able to find some R such that Step 3 holds, which is not generally true as per Figure 3. We
now demonstrate how to modify the algorithm in such a way that this is avoided. Consider a
list e1, . . . , em of the edges of G, such that d(ei) ≤ d(ej) if i ≤ j, i.e., they are sorted by length
with ties broken arbitrarily. Then we consider separately the graphs Gj := (V, {ei | i ≤ j})
for all j = 0, . . . , m and try to find for each Gj an R ∈ [d(ej−1), d(ej)] that is accepted by
the algorithm, where we set d(e0) := 0, and allow the larger interval [d(em),

∑
i d(ei)] for Gm.

Note that the intervals can potentially only contain a single node, but they are not empty.
Now observe that for G0 with R = 0, the algorithm would only accept this choice of R if

k = |V |. Similarly, for Gm and R =
∑

i d(ei), the algorithm would require k = 1. We can
then show that the k changes by at most one as we change R or keep R and move from Gj

to Gj+1. Let k(Gj , R) denote the value of k that would be accepted by the algorithm. Thus

▶ Observation 16. It holds that k(Gj−1, d(ej)) − k(Gj , d(ej)) ≤ 1.

Proof. Between Gj−1 and Gj , only the presence of ej changes. If this does not change the
connected components, we have k(Gj−1, d(ej)) = k(Gj , d(ej)). Otherwise, there is exactly
one connected component C in Gj that is split into two parts C1, C2 by removing ej . We
then see that⌊

w(C1) + 2d(ej)
2d(ej)

⌋
+

⌊
w(C2) + 2d(ej)

2d(ej)

⌋
≤ 2 +

⌊
w(C1)
2d(ej) + w(C2)

2d(ej)

⌋
≤ 1 +

⌊
w(C) + 2d(ej)

2d(ej)

⌋
. ◀

To see that changing R by a sufficiently small amount also only changes k(Gj , R) by at
most one, consider that there are only finitely many critical nodes where k(Gj , R) changes at
all, and they can be computed in polynomial time. They are all of the form R = w(Ci)/2ℓ

for some connected component Ci of Gj and ℓ ∈ 1, . . . , n. At these nodes, w(Ci)/2R will be
an integer, so ⌊w(Ci)/2R⌋ = 1 + ⌊(w(Ci) − ε)/2R⌋. If all critical nodes are pairwise different,
we can just iterate over them to find some Gj and R with k(Gj , R) = k.

If on the other hand a node is critical for multiple different components, assign to each
component a distinct weight which can be taken to be arbitrarily small, ensuring that all
critical nodes are now different. In effect, this is equivalent to taking all components where
w(Ci)+2R

2R is an integer and allowing the expression ⌊ w(Ti)+2R
2R ⌋ to also take the value w(Ti)

2R .
One may check that this does not impact the analysis, since in the analysis we only need
that each component has a minimum spanning tree of weight at least ⌊ w(Ti)

2R ⌋ · 2R. However,
for legibility reasons we will suppress this and generally assume that some R can be found
with k(Gj , R) = k. Combining with Theorem 14, this completes the proof of Theorem 2.

STACS 2025

57:14 Approximate All-Norm Tree Cover in All Symmetric Monotone Norms

4 All-norm tree cover problem with depots

The algorithm for the All-Norm Tree Cover problem with depots is considerably more
involved, in particular because the simple lower bound for the depot-less algorithm of
assuming an even distribution of the total weight can no longer work: it might be necessary
to have unbalanced cluster sizes, for instance if some depots are extremely far from all nodes.

Instead our algorithm constructs a c-approximately (here, c is a constant) strongly optimal
solution by also maintaining some (implicit) evidence that the optimum solution contains
large trees if it decides to create a large tree itself. More concretely we do the following:
1. First, we partition the node set V into layers Li such that all nodes in Li have distance

between 2i−1 and 2i to the depots.
2. Then we consider separately the nodes in the odd and even layers; this implies that nodes

in different layers have a large distance to each other. Computing separate solutions
for these two subinstances loses at most a factor 2 in the approximation factor due to
Lemma 9.

3. Next, we partition the nodes in each layer Li using the non-depot algorithm with R = 2i.
This yields a collection of subtrees in Li such that the cost of connecting such a subtree
to its nearest depot is in Θ(2i). This allows us to treat them basically identically, loosing
only the constant in the Θ. Indeed, we can show explicitly that this prepartitioning into
subtrees can be assumed to be present in an optimal solution, up to a constant factor
increase in the weight of each tree. For the full reasoning refer to the full version on
arXiv [18].

4. To assign these trees to the depots, we iteratively maintain an estimate of the largest tree
necessary in any solution as 2i. We then collect all trees of weight Θ(2i) and compute
a maximum matching between them and the depots at distance Θ(2i) to them. All
unmatched trees are then combined to form trees of weight Θ(2i+1), and we update our
estimate to 2i+1.

To analyse the output of this algorithm, it will suffice to show that the estimate was
correct up to a constant factor. That is, if in round i some trees (suppose ki trees) of weight
2i were assigned, we will be able to prove that any tree-cover solution must also have some
family of at most ki trees with total weight at least ki · 2i.

From this we are then able to conclude c-approximate strong optimality for some value
of c < 106. This is a rather large upper bound on the approximation factor, however, we
conjecture that the actual constant achieved by the algorithm is much smaller. For the
purposes of a clean presentation, we did not try to optimize the constant. The complete
proof can be found in the full version on arXiv [18].

5 Computational Hardness

To complement our algorithmic results, we establish hardness results for all-norm tree cover
problems and discuss on what kind of algorithmic improvements (to our algorithms) are
potentially possible in light of these complexity results. Specifically, we show:
1. For any p ∈ (1, ∞], problem ℓp-Tree Cover with Depots is weakly NP-hard, even

with only 2 trees.
2. For any p ∈ (1, ∞], problem ℓp-Tree Cover with Depots with k trees is (strongly)

W[1]-hard parameterized by depot size |D|.
3. For any p ∈ (1, ∞] there exists some ε > 0 such that ℓp-Tree Cover with Depots is

NP-hard to approximate within a factor < 1 + ε under randomized reductions.

M. Kaul, K. Luo, M. Mnich, and H. Röglin 57:15

Results 1 and 2 were already essentially presented by Even et al. [10], but we restate them
for completeness. Note that, given these complexity results, numerous otherwise desirable
algorithmic outcomes become unattainable. For instance, there cannot be polynomial-
time approximation schemes for ℓp-Tree Cover with Depots, nor can we expect fixed-
parameter algorithms (parameterized by the number of depots) finding optimal solutions,
unless established hardness hypotheses (P ̸=NP, FPT ̸= W[1]) fail. Further, the reduction of
Item 1 yields bipartite graphs of tree-depth 3, so parameterization by the structure of the
graph supporting the input metric also appears out of reach.

The result in Item 3 follows by a direct gadget reduction from Max-Sat for 3-ary linear
equations modulo 2 (MAX-E3LIN2), which was shown to be APX-hard by Håstad [15]. We
show that one can transform such equations into an instance of ℓp-Tree Cover with
Depots where every unsatisfied equation will correspond roughly to a tree of above average
weight. This allows us to recover approximately the maximum number of simultaneously
satisfiable constraints of such systems of equations.

Formally, we reduce from 3R{2, 3}L2, a modification of MAX-E3LIN2 where every
variable occurs in exactly 3 equations, and for which hardness of approximation was shown by
Karpinski et al. [17]. From an instance of 3R{2,3}L2 we construct an instance of ℓp-Tree
Cover with Depots by introducing gadgets for the variables and clauses:

For every variable x, introduce three nodes x̂, x0, and x1, as well as edges x̂, xi for i = 0, 1
with weight 3. Add the xi’s as depots.
For every ternary clause C, introduce nodes Ĉ, C000, C110, C101, and C011 with edges
{Ĉ, Ci} of weight 3. Add the Ci’s as depots.
For every binary clause C = x ⊕ y = 0, introduce nodes Ĉ, C00, and C11 with edges
{Ĉ, Ci} of weight 2. Add the Ci’s as depots. Further add nodes Ĉ00 and Ĉ11 where Ĉi is
connected only to Ci by an edge of weight 1.
For every binary clause C = x ⊕ y = 1, introduce nodes Ĉ, C01, and C10 with edges
{Ĉ, Ci} of weight 2. Add the Ci’s as depots. Further add nodes Ĉ01 and Ĉ10 where Ĉi is
connected only to Ci by an edge of weight 1.

We connect the gadgets as follows:
For every clause C = x ⊕ y ⊕ z = 0 we connect Cb1b2b3 to xb1 , yb2 , and zb3 with a path of
length 2 where both edges have weight 1.
For every clause C = x ⊕ y = b we connect Cb1b2 to xb1 , yb2 with a path of length 2 where
both edges have weight 1.

Intuitively, there is a depot for every way a clause could be satisfied, and the depots
for a clause have a joint neighbour that is expensive to connect. The depot absorbing this
neighbour should correspond to the way in which the clause is satisfied. Similarly there are
two depots for each variable representing the two possible assignments to the variable. In
this case the depot that does not get assigned the joint neighbour corresponds to the chosen
assignment.

There are then additional vertices between the clause and vertex depots which can be
assigned to the clause depots, unless the adjacent clause depot corresponds to the satisfying
assignment of that clause. In that case they need to be assigned to an adjacent variable
depot, which is to say the variables of the clause will have to be assigned in such a way that
the clause is satisfied.

One can quickly check that a satisfying assignment to the clauses will allow us to compute
a tree cover where every tree has size 3. Meanwhile every non-satisfied clause will push at
least one unit of excess weight to a tree of size at least 3. Quantifying this relationship then
permits us to compute approximately the maximum number of satisfiable clauses in such a
system of equations.

STACS 2025

57:16 Approximate All-Norm Tree Cover in All Symmetric Monotone Norms

6 Computational Experiments

To illustrate the practical performance achievable by our clustering algorithms, we implemen-
ted the algorithm from Section 3 for the setting without depots in C++ and tested it on
instances proposed by Zheng et al. [24]. Those instances model real-world terrain, which is
to be partitioned evenly so that a fixed number robots can jointly traverse it. They consist
of a grid where either random cells are set to be obstacles, i.e., inaccessible, or a grid-like
arrangement of rooms is superimposed with doors closed at random. A metric is induced on
the accessible cells of the grid by setting the distance of neighbouring cells to be 1.

For all instances on grids of size 200 by 200 (ca. 40,000 nodes), our implementation was
able to compute a clustering in less than 200ms on an Intel i5-10600K under Windows with
48GB of available memory (although actual memory usage was negligible). The resulting
partitions are illustrated in Figure 5. Note that we make two small heuristic changes to the
original algorithm, which are, however, not amenable to be analyzed formally:

First, we adapt the partitioning of the large trees in Step 5 to try to cut the trees
into subtrees of weight at least 2R rather than 4R. Note that the choice of 4R captures
a worst-case scenario where the instance contains edges of size almost R that are to be
included in a solution. If the heaviest edges are considerably smaller than R, the necessary
cutoff approaches 2R rather than 4R. Thus, we run the partitioning algorithm with 2R

rather than 4R, and resort to the higher cutoff only in the case that this fails. Yet, for the
considered instances this was not necessary.

Second, we post-process the computed solution to ensure that it has exactly k components.
It is in principle possible that the algorithm computes a solution with fewer than k trees; in
this case, we iteratively select the largest tree and split it into two parts of as similar a size
as possible until we obtain exactly k components.

The clusterings obtained in this way in Figure 5 are all at least 3-approximately strongly
optimal when compared to a hypothetical solution that distributes the total weight perfectly
evenly on the k clusters.

(a) Output of the algorithm on a
200 × 200 grid with walls partitioned
into 8 clusters. The cluster sizes are
2433, 5516, 9528, 4550, 5271, 3985, 2482 and
4240; consequently the solution is at least
2.01-approximately strongly optimal.

(b) Output of the algorithm on a 200 × 200
grid with walls partitioned into 6 clusters. The
cluster sizes are 7993, 4774, 6390, 8004, 5267, and
6638; consequently, the solution is at least 1.61-
approximately strongly optimal.

Figure 5 Visualizations of the results of our implementation of the non-depot tree cover algorithm.
Inaccessible sections of the grid are marked in black; other colors represent the computed clusters.

M. Kaul, K. Luo, M. Mnich, and H. Röglin 57:17

References
1 Sara Ahmadian, Babak Behsaz, Zachary Friggstad, Amin Jorati, Mohammad R Salavatipour,

and Chaitanya Swamy. Approximation algorithms for minimum-load k-facility location. ACM
Trans. Algorithms, 14(2):1–29, 2018. doi:10.1145/3173047.

2 Sara Ahmadian, Ashkan Norouzi-Fard, Ola Svensson, and Justin Ward. Better guarantees for
k-means and Euclidean k-median by primal-dual algorithms. SIAM J. Comput., 49(4):FOCS17–
97, 2019. doi:10.1137/18M1171321.

3 Noga Alon, Yossi Azar, Gerhard J. Woeginger, and Tal Yadid. Approximation schemes
for scheduling on parallel machines. J. Sched., 1(1):55–66, 1998. doi:10.1002/(SICI)
1099-1425(199806)1:1<55::AID-JOS2>3.0.CO;2-J.

4 Cristina Bazgan, Refael Hassin, and Jérôme Monnot. Approximation algorithms for some
vehicle routing problems. Discrete Appl. Math., 146(1):27–42, 2005. doi:10.1016/J.DAM.2004.
07.003.

5 Tolga Bektas. The multiple traveling salesman problem: an overview of formulations and
solution procedures. Omega, 34(3):209–219, 2006. doi:10.1016/j.omega.2004.10.004.

6 Mandell Bellmore and Saman Hong. Transformation of multisalesman problem to the standard
traveling salesman problem. J. ACM, 21(3):500–504, 1974. doi:10.1145/321832.321847.

7 Jarosław Byrka, Thomas Pensyl, Bartosz Rybicki, Aravind Srinivasan, and Khoa Trinh. An
improved approximation for k-median and positive correlation in budgeted optimization. ACM
Trans. Algorithms, 13(2):1–31, 2017. doi:10.1145/2981561.

8 Nicos Christofides. Worst-case analysis of a new heuristic for the travelling salesman problem.
Technical report, Carnegie-Mellon Univ Pittsburgh Pa Management Sciences Research Group,
1976.

9 Sami Davies, Benjamin Moseley, and Heather Newman. Fast combinatorial algorithms for
min max correlation clustering. In Proc. ICML 2023, pages 7205–7230, 2023.

10 Guy Even, Naveen Garg, Jochen Könemann, Ramamoorthi Ravi, and Amitabh Sinha. Min–max
tree covers of graphs. Oper. Res. Lett., 32(4):309–315, 2004. doi:10.1016/J.ORL.2003.11.010.

11 Greg N. Frederickson, Matthew S. Hecht, and Chul E. Kim. Approximation algorithms for
some routing problems. In Proc. SFCS 1976, pages 216–227, 1976. doi:10.1109/SFCS.1976.6.

12 Ashish Goel and Adam Meyerson. Simultaneous optimization via approximate majoriza-
tion for concave profits or convex costs. Algorithmica, 44:301–323, 2006. doi:10.1007/
S00453-005-1177-7.

13 Daniel Golovin, Anupam Gupta, Amit Kumar, and Kanat Tangwongsan. All-norms and
all-ℓp-norms approximation algorithms. In Proc. FSTTCS 2008, volume 2 of Leibniz Int. Proc.
Informatics, pages 199–210, 2008. doi:10.4230/LIPICS.FSTTCS.2008.1753.

14 Sudipto Guha and Samir Khuller. Greedy strikes back: Improved facility location algorithms.
J. Algorithms, 31(1):228–248, 1999. doi:10.1006/JAGM.1998.0993.

15 Johan Håstad. Some optimal inapproximability results. J. ACM, 48(4):798–859, 2001.
doi:10.1145/502090.502098.

16 Sharat Ibrahimpur and Chaitanya Swamy. Approximation algorithms for stochastic minimum-
norm combinatorial optimization. In Proc. FOCS 2020, pages 966–977, 2020. doi:10.1109/
FOCS46700.2020.00094.

17 Marek Karpinski, Michael Lampis, and Richard Schmied. New inapproximability bounds for
TSP. J. Comput. Syst. Sci., 81(8):1665–1677, 2015. doi:10.1016/J.JCSS.2015.06.003.

18 Matthias Kaul, Kelin Luo, Matthias Mnich, and Heiko Röglin. Approximate minimum tree
cover in all symmetric monotone norms simultaneously, 2025. doi:10.48550/arXiv.2501.
05048.

19 M Reza Khani and Mohammad R Salavatipour. Improved approximation algorithms for the
min-max tree cover and bounded tree cover problems. Algorithmica, 69(2):443–460, 2014.
doi:10.1007/S00453-012-9740-5.

20 L. Kou, G. Markowsky, and L. Berman. A fast algorithm for Steiner trees. Acta Informatica,
15(2):141–145, 1981. doi:10.1007/BF00288961.

STACS 2025

https://doi.org/10.1145/3173047
https://doi.org/10.1137/18M1171321
https://doi.org/10.1002/(SICI)1099-1425(199806)1:1<55::AID-JOS2>3.0.CO;2-J
https://doi.org/10.1002/(SICI)1099-1425(199806)1:1<55::AID-JOS2>3.0.CO;2-J
https://doi.org/10.1016/J.DAM.2004.07.003
https://doi.org/10.1016/J.DAM.2004.07.003
https://doi.org/10.1016/j.omega.2004.10.004
https://doi.org/10.1145/321832.321847
https://doi.org/10.1145/2981561
https://doi.org/10.1016/J.ORL.2003.11.010
https://doi.org/10.1109/SFCS.1976.6
https://doi.org/10.1007/S00453-005-1177-7
https://doi.org/10.1007/S00453-005-1177-7
https://doi.org/10.4230/LIPICS.FSTTCS.2008.1753
https://doi.org/10.1006/JAGM.1998.0993
https://doi.org/10.1145/502090.502098
https://doi.org/10.1109/FOCS46700.2020.00094
https://doi.org/10.1109/FOCS46700.2020.00094
https://doi.org/10.1016/J.JCSS.2015.06.003
https://doi.org/10.48550/arXiv.2501.05048
https://doi.org/10.48550/arXiv.2501.05048
https://doi.org/10.1007/S00453-012-9740-5
https://doi.org/10.1007/BF00288961

57:18 Approximate All-Norm Tree Cover in All Symmetric Monotone Norms

21 Shi Li. A 1.488 approximation algorithm for the uncapacitated facility location problem. Inf.
Comput., 222:45–58, 2013. doi:10.1016/J.IC.2012.01.007.

22 Hiroshi Nagamochi. Approximating the minmax rooted-subtree cover problem. IEICE Trans.
Fund. Electr., Comm. Comp. Sci., 88(5):1335–1338, 2005. doi:10.1093/IETFEC/E88-A.5.
1335.

23 Zhou Xu and Qi Wen. Approximation hardness of min–max tree covers. Oper. Res. Lett.,
38(3):169–173, 2010. doi:10.1016/J.ORL.2010.02.004.

24 Xiaoming Zheng and Sven Koenig. Robot coverage of terrain with non-uniform traversability.
In Proc. IEEE/RSJ Intl. Conf. Intell. Robots Syst.2007, pages 3757–3764, 2007. doi:10.1109/
IROS.2007.4399423.

https://doi.org/10.1016/J.IC.2012.01.007
https://doi.org/10.1093/IETFEC/E88-A.5.1335
https://doi.org/10.1093/IETFEC/E88-A.5.1335
https://doi.org/10.1016/J.ORL.2010.02.004
https://doi.org/10.1109/IROS.2007.4399423
https://doi.org/10.1109/IROS.2007.4399423

Violating Constant Degree Hypothesis
Requires Breaking Symmetry
Piotr Kawałek #

TU Wien, Austria
Jagiellonian University in Kraków, Poland

Armin Weiß #

University of Stuttgart, Germany

Abstract
The Constant Degree Hypothesis was introduced by Barrington et. al. [5] to study some extensions
of q-groups by nilpotent groups and the power of these groups in a computation model called
NuDFA (non-uniform DFA). In its simplest formulation, it establishes exponential lower bounds for
MODq ◦ MODm ◦ ANDd circuits computing AND of unbounded arity n (for constant integers d, m

and a prime q). While it has been proved in some special cases (including d = 1), it remains wide
open in its general form for over 30 years.

In this paper we prove that the hypothesis holds when we restrict our attention to symmetric
circuits with m being a prime. While we build upon techniques by Grolmusz and Tardos [23], we
have to prove a new symmetric version of their Degree Decreasing Lemma and use it to simplify
circuits in a symmetry-preserving way. Moreover, to establish the result, we perform a careful
analysis of automorphism groups of MODm ◦ ANDd subcircuits and study the periodic behaviour of
the computed functions. Our methods also yield lower bounds when d is treated as a function of n.

Finally, we present a construction of symmetric MODq ◦ MODm ◦ ANDd circuits that almost
matches our lower bound and conclude that a symmetric function f can be computed by symmetric
MODq ◦MODp ◦ANDd circuits of quasipolynomial size if and only if f has periods of polylogarithmic
length of the form pkqℓ.

2012 ACM Subject Classification Theory of computation → Circuit complexity; Theory of compu-
tation → Complexity classes

Keywords and phrases Circuit lower bounds, constant degree hypothesis, permutation groups,
CC0-circuits

Digital Object Identifier 10.4230/LIPIcs.STACS.2025.58

Related Version Full Version: https://arxiv.org/abs/2311.17440 [32]

Funding Piotr Kawałek: This research was funded in whole or in part by National Science Centre,
Poland #2021/41/N/ST6/03907. For the purpose of Open Access, the author has applied a CC-BY
public copyright licence to any Author Accepted Manuscript (AAM) version arising from this
submission. Funded by the European Union (ERC, POCOCOP, 101071674). Views and opinions
expressed are however those of the author(s) only and do not necessarily reflect those of the European
Union or the European Research Council Executive Agency. Neither the European Union nor the
granting authority can be held responsible for them.
Armin Weiß: Partially funded by German DFG Grant WE 6835/1-2.

1 Introduction

Establishing strong lower bounds for general Boolean circuits represents one of the paramount
and yet unattained objectives in the field of Computational Complexity Theory. Whenever
such lower bounds can be obtained, it is usually in some very restricted setting. One of
the standard limitations imposed on circuits in this context is the restriction of their depth.
Some strong results were obtained when the circuits have depth bounded by a constant h

© Piotr Kawałek and Armin Weiß;
licensed under Creative Commons License CC-BY 4.0

42nd International Symposium on Theoretical Aspects of Computer Science (STACS 2025).
Editors: Olaf Beyersdorff, Michał Pilipczuk, Elaine Pimentel, and Nguyễn Kim Thắng;
Article No. 58; pp. 58:1–58:21

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:piotr.kawalek@tuwien.ac.at
https://orcid.org/0000-0003-3592-1697
mailto:armin.weiss@fmi.uni-stuttgart.de
https://orcid.org/0000-0002-7645-5867
https://doi.org/10.4230/LIPIcs.STACS.2025.58
https://arxiv.org/abs/2311.17440
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

58:2 Violating Constant Degree Hypothesis Requires Breaking Symmetry

and are built of unbounded fan-in Boolean AND/OR gates and unary ¬ gates (so-called
AC0 circuits). By a classical result of Furst, Saxe and Sipser [19], proved independently by
Ajtai [1], polynomial-size AC0 circuits cannot compute the PARITY function (i.e., the sum
of the input bits modulo 2). In fact, a followup paper by Yao [38] strengthens the lower
bound for n-ary PARITY to be of the form 2Ω(nc), with a final result of Håstad [26] finding
a precise c = 1

h−1 . Interestingly, extending the AC0 lower bounds from PARITY to MODm

(i.e. the characteristic function of addition modulo an arbitrary integer m) can be achieved
by the very same proof as in [26]. For a precise formulation and even more general results in
this direction, see the subsequent work by Smolensky [36].

Here, a natural dual question arises: can modulo counting gates represent the n-ary
Boolean ANDn function in the bounded-depth setting? To be more precise, a CCh[m] circuit
is a circuit of depth h using only (unbounded fan-in) MODR

m gates. Each such gate sums
the inputs modulo m and outputs 1 if the sum belongs to the set R (we allow different
R ⊆ [m] for different gates), otherwise it outputs 0. Thus, the question is, after fixing h and
m, what size does a CCh[m] circuit require to compute ANDn? Is there a polynomial-size
construction for ANDn, making the class ACC0 collapse to CC0 (where CC0 =

⋃
h,m CCh[m])?

The first question has a trivial answer when m is a prime power, as then CCh[m] circuits can
express only bounded-arity AND (see [5] or [29] for more details). Surprisingly, for m having
multiple prime divisors, only slightly super-linear lower bounds are known [12] and only for
the number of wires – even more: to the best of our knowledge it is consistent with the
current understanding that NP ⊆ CC2[6]. At the same time, the current best construction
for ANDn has size 2O(nc) [11, 29] for some constant c depending on h and m.

This huge gap between lower and upper bounds suggests that the problem of establishing
lower bounds in this context is very difficult. Hence, one can consider simpler computational
models before answering the above more general questions. Interestingly, group theory
outlines in-between steps which can be considered in this context. Barrington, Straubing
and Thérien [5] studied a model of non-uniform DFA (NuDFA) over finite groups (or, more
generally, monoids), which they used to recognize Boolean languages. They discovered that,
if a group is an extension of a p-group by an abelian group, then its corresponding NuDFA
can recognize all languages (however, most of them in exponential size). Nevertheless, such
NuDFAs cannot compute ANDn unless they have size at least 2Ω(n) [5]. Later this result
was restated in a circuit language, saying that, if m is an integer and q is a prime, then any
2-level MODq ◦ MODm circuit computing ANDn requires size 2Ω(n) [23, 22, 37] (here, as
usual, the circuits have to be read that the MODq gate is the output gate – other than e.g.
in [29]). The equivalence of the two statements is due to the fact that these (solvable) groups
have an internal structure based on modulo counting. The authors of [5] conjectured that
this 2Ω(n) lower bound generalizes to NuDFAs over extensions of nilpotent groups by p-groups.
This again can be reformulated to a 2Ω(n) lower bound for MODq ◦ MODm ◦ ANDd circuits
computing ANDn (see [23]). This conjecture is known as Constant Degree Hypothesis (CDH
for short), whose name corresponds to adding a layer of constant-arity ANDd gates on the
input level to a MODq ◦ MODm circuit. Interestingly enough, recently in [30] it was proven
that all the other groups (which do no correspond to CDH) do not admit this lower bound,
i.e. one can construct ANDn of size 2O(nc) for some c < 1 using NuDFAs (or corresponding
circuits) over these groups. In particular, it follows from [30] as well as the related work
[3, 29] that the only MODm′ ◦ MODm ◦ ANDd circuits (where m, m′ are arbitrary integers)
for which subexponential constructions of ANDn are not known are either the ones described
by CDH (i.e., m, m′ prime) or such circuits with m = pα, m′ = pαqβ , where pα, qβ are powers
of different primes. However, in the latter case, replacing m′ = pαqβ with just qβ does not

P. Kawałek and A. Weiß 58:3

meaningfully change the expressive power of the related circuits (based on [29]). As a result,
MODq ◦ MODm ◦ ANDd circuits are really the only (algebraically) natural subclass of CC0

circuits for which these strong 2Ω(n) lower bounds remain to be proven (or disproven).
Low-level CC0 circuits have many surprising connections. For instance, the techniques

used in the construction of relatively small CC0 circuits for the ORn function (equivalently,
ANDn) found in [3] are useful in constructing small explicit Ramsey-type graphs [21, 20].
These constructions are also used to produce better locally-decodable error-correcting codes
[17, 15], private information retrieval schemes [16], and secret sharing schemes [33]. The
lower bounds for codes considered in [17] imply lower bounds for certain CC0 circuits. On
the contrary, good lower bounds for low-level CC0 circuits imply faster algorithms for solving
equations in solvable groups [30], faster algorithms for certain algebraic versions of circuit
satisfiability problems [28] and also faster algorithms for some variants of the Constraint
Satisfaction Problem with Global Constraints [8].

These diverse interconnections encourage to put even more effort to find the correct
sizes for optimal modulo-counting circuits computing ANDn. In this pursue, proving (or
disproving) CDH plays a central role. The hypothesis is already proven in several special
cases: in particular, the case d = 1 was confirmed in the very same paper the hypothesis
was defined. Moreover, if there is a bound on the number of ANDd gates that are wired to
each MODm gate, the desired lower bound is also true [23]. More precisely, the number of
such connections is required to be o(n2

log n). The technique used in this case is based on the
so-called Degree Decreasing Lemma, whose name corresponds to gradually decreasing the
degree d, which eventually leads to the d = 1 case. The Degree Decreasing Lemma can also
be used when the polynomials over Zm corresponding to the MODm ◦ ANDd part of the
circuit can be written using a sublinear number of binary multiplications [21].

In many studies of different circuit complexity classes, symmetry seems to play an
important role. In this context both symmetric circuits, as well as symmetric functions were
considered. Here, symmetry for a circuit/function means that permuting its inputs/variables
does not change the considered circuit/function. Let us here mention the recent results on
lower bounds for symmetric arithmetic circuits for the permanent and also a construction of
short symmetric circuits for the determinant [13] as well as the lower bound from [27] for
computing a certain entry in a product of matrices (here, symmetry means invariance under
permuting rows and columns of matrices).

Symmetry seems to play also a special role for CCh[m] circuits. The remarkable con-
struction of relatively small circuits for ANDn in [3] uses symmetric polynomials as an
intermediate object before translating them to circuits. This translation, when done carefully,
leads also to symmetric circuits. Similarly, some of the newer, more optimal constructions
of two level CC2[m] circuits for ANDn can be performed fully symmetrically [11, 29]. Ad-
ditionally, [23, 22, 37] analyze the periodic behaviour of the symmetric functions that can
be represented by small (not necessarily symmetric) MODq ◦ MODm circuits. A value of
a symmetric Boolean function f(x1, . . . , xn) is determined by the number of ones among
x1, . . . , xn. Hence, for an integer 0 ≤ m ≤ n, we can naturally define f(m) as f(1m0n−m)
and say that an integer r is a period of f whenever f(m + r) = f(m) for all 0 ≤ m ≤ n − r.
It follows from [23, 37] that the only symmetric functions that have representations as
MODq ◦ MODm circuits of subexponential size must have periods of the form m · qk with
m · qk ≤ n. In particular, ANDn must have exponential-size circuits.

The dual question, namely the behaviour of symmetric functions computed by small AC0

circuits, has been studies quite a lot: In [14], polynomial-size symmetric AC0 circuits of arity
n are shown to represent only functions that are constant on the interval {nε, . . . , n − nε}
(for large enough n).

STACS 2025

58:4 Violating Constant Degree Hypothesis Requires Breaking Symmetry

The same result has been obtained in [18] also showing that, if a symmetric function f is
constant on the interval {logk n, . . . , n − logk n} (for some k and for large enough n), then it
is in AC0. Soon after, [9] showed that the latter condition is actually an if and only if.

These results were extended to AC0[p] circuits of quasipolynomial size by Lu [34]: f =
(fn)n∈N is symmetric with f ∈ qAC0[p] if and only if fn has period pt(n) = logO(1) n except at
both ends of length logO(1) n. Here, for a function f : {0, 1}∗ → {0, 1}, we write f = (fn)n∈N
where fn : {0, 1}n → {0, 1} is the restriction of f to {0, 1}n. As usual we say that f is
computed by a family of circuits if for each n there is a circuit computing fn.

For further results in this direction allowing threshold or majority gates see [4, 24, 39].
Recently, a new technique called torus polynomials were introduced [6] as a possible method
to separating TC0 from ACC0 and was shown that MAJORITY cannot be approximated by
small-degree symmetric torus polynomials.

Contribution. In this paper we prove that symmetric MODq ◦ MODp ◦ ANDd circuits
computing ANDn have exponential size. A key to the proof is to analyze the periodic
behaviour of the functions computed by such circuits. Our techniques work also when d is
unbounded and is considered as a function of n. The following theorem characterizes the
periodic behaviour of such functions.

▶ Theorem 1. Let p and q be primes and n ≥ 13 and let 1 ≤ d ≤ n. Then any function
computed by an n-input symmetric MODq ◦ MODp ◦ ANDd circuit of size s < 2n/9 has a
period pkpqkq given that pkp > d and qkq > log s + 1.

To fully understand the periodic behaviour of MODq ◦ MODp ◦ ANDd circuits, we would
also like to construct relatively small circuits given a function f with period of the form pkpqkq .
We present such a construction below in Proposition 19. The most interesting consequence
of this construction is that we get a tight characterization of the periodic behaviour of
functions computed by quasipolynomial-size MODq ◦ MODp ◦ ANDd circuits (recall that a
quasipolynomial is a function of the form 2logk n for some constant k).

▶ Corollary 2. Let p ̸= q be primes and d : N → N with d(n) ≤ n/2 for all n. A
function f = (fn)n∈N (with fn : {0, 1}n → {0, 1}) can be computed by symmetric MODq ◦
MODp ◦ ANDd(n) circuits of quasipolynomial size if and only if, for each n, fn has a period
pkp(n)qkq(n) ∈ logO(1)(n) for some functions kp, kq : N → N.

Next let us consider the case of the ANDn function more carefully. The following theorem
is a careful application of Theorem 1.

▶ Theorem 3. Let p and q be primes, let n be a large enough integer, and let d ≤
√

n. Then
every symmetric MODq ◦ MODp ◦ ANDd circuit computing the ANDn function has size at
least 2n/(2dpq).

Note that the restriction d ≤
√

n still includes the most interesting case. Indeed, for√
n ≤ d ≤ n −

√
n we get an almost trivial lower bound of 2

√
n (see Theorem 21). Moreover,

Theorem 3 suggests an interesting trade-of between the degree and the size at d ≈
√

n. Then
we can reach a lower bound for the size of the form 2Ω(

√
n).

As a direct consequence of Theorem 3 we get the desired result for ANDn.

▶ Corollary 4. For constant d, and primes p, and q every symmetric MODq ◦MODp ◦ANDd

circuit for ANDn has size at least 2Ω(n). Thus, CDH holds for symmetric circuits with p

being prime.

P. Kawałek and A. Weiß 58:5

Before we go to the more technical part, let us briefly mention an opposite perspective
on the results of this paper. Although current evidence seems to support CDH and lower
bounds for ANDn for general CCh[m] circuits, it is known that CCh[m] circuits using O(log n)
random bits are able to compute ANDn in polynomial size [25]. This was even improved
in [31], by showing that MODq ◦ MODp circuits can also be used for representing ANDn

in this probabilistic model. This might be interpreted as a argument against lower bounds,
because now it is enough to derandomize the construction for MODq ◦ MODp circuits. We
already understand these 2-level circuits relatively well (to the point that we can prove strong
lower bounds for them for the ANDn function itself). Our Corollary 4 implies that one
cannot construct ANDn with polynomial-size symmetric MODq ◦ MODp ◦ ANDd circuits.
Hence, to make short deterministic constructions one needs to either go beyond the symmetric
setting or consider larger depths.

Outline. The paper is organized as follows: in Section 2 we fix our notation on circuits
as well as hypergraphs and group actions. These notions are essential in the later study
of the symmetric structure of circuits. In Section 3, we describe how to rewrite a circuit
into a nicer form that we use throughout the paper. Then in Section 4 we present our key
lemmas including proofs or short proof sketches and show how to derive our main results.
The missing proofs can be found in the full version on arXiv [32]. In Section 5 we add some
discussion of our results.

2 Preliminaries

Hypergraphs. For d ∈ N we write [d] for the set of integers {1, . . . , d}. For a set X we
denote its power set by P(X). A hypergraph on a set of vertices V is a pair (V, E) with
E ⊆ P(V) {∅}. A Fp-labeled hypergraph is a pair G = (V, λ) where λ : (P(V) {∅}) → Fp.
We obtain an (unlabeled) hypergraph by setting E = {e ⊆ V | λ(e) ̸= 0} and call each e

with λ(e) ̸= 0 an edge of G. Thus, an Fp-labeled hypergraph is indeed a hypergraph where
we assign to each edge a number from Fp {0}. Moreover, (V, λ) is called an Fp-labeled
d-hypergraph if for all e ∈ P(V) with |e| > d we have λ(e) = 0. We write Hd

p(V) for the set
of Fp-labeled d-hypergraphs on V . For C ⊆ V we write C = V C for the complement of C.

If G = (V, λ) and H = (V, ζ) are Fp-labeled hypergraphs on the same set of vertices V , we
define G + H (resp. G − H) as (V, λ + ζ) (resp. (V, λ − ζ)) where λ + ζ denotes the point-wise
addition. We interpret any subset E ⊆ P(V) {∅} as a hypergraph by setting λ(e) = 1 if
e ∈ E and λ(e) = 0 otherwise (be aware of the slight ambiguity as V is not uniquely defined
by E – but it always will be clear from the context). Thus, we have defined the addition
G + E (resp. G − E). We extend this to G + e = G + {e}.

Permutation groups. For any set V we denote the group of permutations on V by Sym(V)
(i.e., the symmetric group). For an integer n we write Sym(n) or Sn for the abstract
symmetric group acting on any n-element set. Any subgroup Γ ≤ Sym(V) acts faithfully
on V and is called a permutation group. A subset U ⊆ V is called an orbit of the action
of Γ on V if U = G · x for some x ∈ V . If there is only one orbit, the action of Γ on V is
called transitive. Clearly, the orbits form a partition of V ; moreover, if U1, . . . , Uk ⊆ V are
the orbits of the action of Γ ≤ Sym(V) on V , then Γ ≤ Sym(U1) × · · · × Sym(Uk) where ×
denotes the direct product of groups.

Finally, let Γ′ ≤ Γ be a subgroup. A left-transversal (in the following simply transversal)
of Γ′ in Γ is a subset R ⊆ Γ such that R is a system of representatives of Γ/Γ′ – in other words,
if RΓ′ = Γ and rΓ′ ∩ sΓ′ = ∅ for r, s ∈ R with r ̸= s. For further details on permutation
groups, we refer to [10].

STACS 2025

58:6 Violating Constant Degree Hypothesis Requires Breaking Symmetry

Actions on hypergraphs. Given an action of Sym(V) on V , it induces an action on P(V).
Moreover, this extends to an action on Hd

p(V) where a permutation π ∈ Sym(V) maps (V, λ)
to π((V, λ)) = (V, πλ) for πλ defined by (πλ)(e) = λ(π−1(e)). Be aware that the −1 is not
by accident but rather guarantees that if some e ∈ P(V) has label γ = λ(e), then π(e) has
label πλ(π(e)) = λ(e). Note that two labeled hypergraphs with vertices V are isomorphic if
and only if they are in the same orbit under Sym(V). A permutation π ∈ Sym(V) is called
an automorphism of G = (V, λ) if π(G) = G – with other words, if λ(π(e)) = λ(e) for all
e ∈ P(V). For a labeled hypergraph G, we denote its group of automorphisms by Aut(G).

Circuits. A circuit is usually defined as a directed acyclic graph with labels on its vertices
that inform what kind of operation (like for instance ∧, ∨, ¬, MODR

p) a given vertex (gate)
computes. We allow multiple edges between any pair of gates. A depth-d circuit of arity n

is a circuit that consists of n inputs gates x1, . . . , xn and d layers (or levels) G1, . . . , Gd of
inner gates (we do not count the input gate as a level). Between neighbour layers Gi−1 and
Gi there is a layer of wires Wi which contains directed edges between g ∈ Gi−1 and h ∈ Gi

(where G0 = {x0, . . . , xn}). We allow for multiple (directed) edges between the same pair of
gates. Moreover, gates are labeled with necessary information which allows to compute a
function they represent. In our case we use MODR

p gates where p is a prime and R ⊆ Fp.
A MODR

p with inputs y1, . . . , yk outputs 1 if and only if the sum of its inputs modulo p

is contained in R. A circuit is called an expression if it is a tree when removing the input
layer. A subexpression of an expression is a subgraph containing for every gate also all its
predecessors (towards the input gates). For circuits C, D with n inputs we write C ≡ D if
for all inputs b ∈ {0, 1}n they evaluate to the same value. We define the size of a circuit as
its number of non-input gates.

In this article we consider MODq ◦ MODp ◦ ANDd circuits: such a circuit consist of
3-levels. On level 1 there are ANDd gates each of which receives inputs from at most d

input gates. The second level G2 consists of MODR
p gates – each of them is labeled with

an accepting set R ⊆ {0, . . . , p − 1}. The output layer G3 contains only one MODR
q gate,

which sums all the wires from W3 modulo q.
We say that a circuit C is symmetric if no permutation of the input wires changes the

circuit. Note that here the word symmetric refers to a syntactic structure of a circuit, rather
than a semantic property of the function computed by it. More formally, a circuit C on
inputs x1, . . . , xn is called symmetric if for any π ∈ Sym({x1, . . . , xn}) there is a permutation
π′ on the set of gates extending π (meaning that π(xi) = π′(xi) for all i ∈ [n]) such that
there are k wires connecting gate i to gate j if and only if there are k wires connecting gates
π′(i) to gate π′(j).

3 Preparation: Circuits, Expressions and Hypergraphs

For a simpler notation of expressions, let us denote MODR
p with inputs y1, . . . , yk instead by

b(
∑k

i=1 yi; R) for R ⊆ Fp, where b computes the function

b(y; R) =
{

1 if y ∈ R

0 if y ̸∈ R.

Be aware that we use b for different domains, i.e. as a function Fp → {0, 1} and Fq → {0, 1}.
The domain will be clear from the context.

P. Kawałek and A. Weiß 58:7

From circuits to expressions. Any 2-level MODp ◦ANDd circuit corresponds to polynomial
over the field Fp. Indeed, the ANDd gates act like a multiplications on the two element
domain {0, 1} ⊆ Fp and the MODR

p gate sums the results and checks whether the sum
belong to the accepting set R. Because our circuits are of constant-depth, we can unfold the
circuits to obtain expressions. This means, if a gate g has an outgoing wire to several other
gates, we create multiple copies of g, so that each gate has only a single output wire. Note
that this might lead to a polynomial blow-up in size (more precisely, a circuit with size s and
depth bounded by h is converted to an expression of size at most sh−1 – thus, in our case s2).
Moreover, note that unfolding the circuit does not destroy the property of being symmetric.
Hence, every symmetric MODq ◦ MODp ◦ ANDd circuit yields also a symmetric expression

b
(l∑

i=0
αi b(pi(x); Ri); R

)
(1)

for suitable αi ∈ Fq, Ri ⊆ Fp and polynomials pi of degree bounded by d for i ∈ {1, . . . , l}
and R ⊆ Fq which computes the same function. Here, l is the number of MODp gates used
in the MODq ◦ MODp ◦ ANDd circuit, while αi tells us how many times a given MODp

gate is wired to the MODq gate. Let us take a closer look at what being symmetric means
for an expression of the form (1): for each π ∈ Sym(n) there exist π′ ∈ Sl such that for all
i ∈ {1, . . . , l} we have αi = απ′(i), Ri = Rπ′(i), and pi(x1, . . . , xn) = pπ′(i)(xπ(1), . . . , xπ(n))
(here = refers to equality in the polynomial ring Fp[x1, . . . , xn]).

Next, observe that if we omit the outer b of the expression (1), the function computed
by the resulting expression certainly does not have any new (smaller) periods than the one
of the complete expression. Therefore, as we are aiming for an upper bound on the periods
of the considered symmetric circuits, we will now concentrate on the symmetric expressions
of the form

f =
l∑

i=0
αi b(pi(x); Ri) (2)

with Ri ⊆ Fp, αi ∈ Fq and polynomials pi of degree bounded by d. Indeed, every period of f
is a period of b(f), so for proving lower bounds, it is enough to consider the periods of f . An
expression of the form (2) is called a Σq ◦ MODp ◦ ANDd expression and each b(pi(x); Ri)
is an elementary subexpression of f .

In the following, let us write b(p(x); r) for b(p(x); {r}). Using this notation we have
b(p(x); R) =

∑
r∈R b(p(x); r). Moreover, we always assume that for i ̸= j we have (pi, ri) ̸=

(pj , rj) as otherwise we can replace αi b(pi(x); ri) + αj b(pi(x); rj) by αij b(pi(x); ri) where
αij = αi + αj . Thus, using pol(n, d) to denote the set of multilinear polynomials in
Fp[x1, . . . , xn] with degree bounded by d, we rewrite f in (2) as

f =
∑

p∈pol(n,d)

∑
r∈Fp

αp,r b(p(x); r). (3)

Note that to compute the size of f we only need to count the non-zero αp,r (plus the number
of AND gates computing the polynomials p).

Polynomials and hypergraphs. Let us take a closer look at the MODp ◦ ANDd part of
a Σq ◦ MODp ◦ ANDd circuit or expression. As any such expression is represented by a
polynomial of degree d, we will need to deal with these polynomials and their symmetries.
Notice that without loss of generality, we can assume that the polynomial corresponding to
a MODp ◦ ANDd circuit is multi-linear since, because the values of variables are restricted
to {0, 1} each occurrence of a higher power xk of a variable x can be simply replaced by x.

STACS 2025

58:8 Violating Constant Degree Hypothesis Requires Breaking Symmetry

In order to deal better with the combinatorics and symmetries of polynomials, we think
of polynomials as hypergraphs. A multilinear polynomial p ∈ Fp[x1, . . . , xn] with the degree
bounded by d can be naturally identified with an Fp-labeled d-hypergraph G = (V, λ) as
follows:
1. Treat each variable xi in p(x1, . . . , xn) as a vertex in the graph Gp. Thus, V =

{x1, . . . , xn}, which we also identify with the set [n].
2. Each monomial γ · x1 · . . . · xd is represented by a hyperedge with a label γ, i.e., we have

λ({x1, . . . , xd}) = γ.

Thus, we get a one-to-one correspondence between multilinear polynomials over Fp of
degree at most d and Fp-labeled d-hypergraphs. This means that we can also do the reverse –
for each labeled graph G we can create its corresponding polynomial pG. Moreover, note that
also the arithmetic operations we defined on hypergraphs as well as the group actions agree
with those on polynomials. Therefore, in the following, we use polynomials and hypergraphs
interchangeably.

Now, we can use our graph notation for polynomials in a more general setting and denote
each expression b(p(x); r) by b(Gp; r) or simply b(G; r) (when we start with a hypergraph
representing a given polynomial). Thus, we can reformulate any expression of the form (3)
as

∑
p∈pol(n,d)

∑
r∈Fp

αp,r b(Gp; r) =
∑

G∈Hd
p(V)

∑
r∈Fp

αG,r b(G; r).

Symmetric expressions induced by hypergraphs. Now we define several notions, useful in
analysing symmetric expressions. For G = (V, λ) and π ∈ Sym(V), let us write bπ(G; R) for
b(πG; R). The action of Sym(V) on V now extends naturally to an action on expressions of
the form f =

∑
G∈Hd

p(V)
∑

r∈Fp
αG,r b(G; r) by setting

π(f) =
∑

G∈Hd
p(V)

∑
r∈Fp

αG,r bπ(G; r).

Now, f being symmetric can be simply expressed as the fact that for each π ∈ Sym(V) we
have π(f) = f .

▶ Definition 5. Let G = (V, λ) be a labeled d-hypergraph. Let Aut(G) be its group of
automorphisms and let π1, . . . , πk be a transversal of Sym(V)/ Aut(G). For a given r ∈ Fp,
define s(G; r) to be the following Σq ◦ MODp ◦ ANDd expression

s(G; r) =
k∑

i=0
bπi(G, r). (4)

One needs to check that the above definition does not depend on the choice of the transversal,
as there is a choice in picking the specific traversal π1, . . . , πk which we use to create
s(G; r). However, as G is invariant under its automorphisms, no matter how we choose
the specific π1, . . . , πk, we get the same expression in the end. In fact, every symmetric
Σq ◦MODp ◦ANDd expression containing b(G; r) as subexpression, must also contain s(G; r)
as subexpression. So s(G; r) is a symmetric closure of the basic expression b(G; r). Let us
summarize this as follows:

▶ Remark 6. For every labeled d-hypergraph G and every r ∈ Fp, the expression s(G; r) is
symmetric. Moreover, it is the smallest symmetric expression that contains b(G; r) as an
elementary subexpression.

P. Kawałek and A. Weiß 58:9

▶ Fact 7. Every symmetric Σq ◦ MODp ◦ ANDd expression f can be written as a sum

f(x) =
∑

G∈Hd
p(V)

∑
r∈Fp

βG,r · s(G; r)

for βG,r ∈ Fq (recall that Hd
p(V) denotes the set of labeled d-hypergraphs on V).

Proof. If a symmetric f has some β · b(G, r) as an elementary subexpression, it must also
have β · s(G; r) as a subexpression (see Remark 6). But now f − β · s(G; r) is a symmetric
expression which is shorter than f , and hence we can use induction to prove the desired
decomposition for f(x), by adding β · s(G; r) to the decomposition of f − β · s(G; r). ◀

4 Description of the Proof

We now start with an expression as in Fact 7 and prove our main theorems. For this, we
need several definitions and intermediate results. For some of these intermediate results, the
full proofs are deferred to the full version [32]; instead, we present short proof sketches, give
some high-level ideas how the respective results are used, and then, in Section 4.4, show how
our main results follow from the intermediate results. As every symmetric expression f is
decomposed into an appropriate sum of elements of the form α · s(G; r), we need a deeper
understanding of each s(G; r). We investigate these expressions s(G; r) in three main steps:
1. we analyze the symmetries of G to find a large so-called fully symmetric set (see

Lemma 10),
2. we process the hypergraph G further to make it symmetry purified (see Definition 13

and Lemma 14) applying two versions of the Degree Decreasing Lemma (Lemma 11 and
Lemma 12),

3. we analyze the periods of the resulting expressions s(G; r) (see Theorem 16).

4.1 Symmetries of Hypergraphs
Recall that one of our goals is to prove exponential lower bounds on the size of symmetric
circuits/expressions computing ANDn. In Lemma 10 we are going to show that, if in an
expression f we find a very asymmetric graph G, we know that the size of f must be relatively
large. This is because the automorphism group of G is small and, hence, the length of the
expression of the form (4) induced by G, i.e. s(G; R), must be large (more precisely, k as
defined above is large). On the other hand, for highly symmetric graphs G, we can find a
big, very regular substructure of G, which we will call a pseudo-clique.

▶ Definition 8. Let G be an Fp-labeled hypergraph G = (V, λ) (i.e. λ : P(V) {∅} → Fp).
We say that a subset C ⊆ V is fully symmetric, if for each pair of subsets e1, e2 ⊆ V with
|e1| = |e2| and e1 ∩ C = e2 ∩ C we have λ(e1) = λ(e2).

Moreover, an Fp-labeled hypergraph G = (V, λ) is called a pseudo-clique if Aut(G) =
Sym(V) – or, equivalently, if for each d ∈ [n] there is some λd such that λ(e) = λd all e ⊆ V

with |e| = d.

Note that an induced subgraph on a fully symmetric subset of vertices is a pseudo-clique.
We obtain the following easy observations.

▶ Fact 9. Let G be an Fp-labeled hypergraph G = (V, λ).
A subset C ⊆ V is fully symmetric if and only if Sym(C) ≤ Aut(G).
If C, D ⊆ V are fully symmetric sets with C ∩ D ̸= ∅, then so is C ∪ D.
If C ⊆ V is a maximal fully symmetric set with |C| > |V | /2, then Aut(G) = Sym(C) × Γ
for some Γ ≤ Sym(C).

STACS 2025

58:10 Violating Constant Degree Hypothesis Requires Breaking Symmetry

Now, we are ready to present a key lemma, which allows us to restrict our attention only
to very symmetric hypergraphs.

▶ Lemma 10. Let 0 < ε < 1/8. Every Fp-labeled hypergraph G = (V, λ) with n = |V | ≥ 13
has either

a fully symmetric subset on at least n − ⌊εn⌋ vertices, or
its automorphism group satisfies | Sym(V)/ Aut(G))| > 2⌊εn⌋.

Proof. Let us write Γ = Aut(G). We say that Γ is small if |Γ| ≤ n!/2⌊εn⌋. Let us first show
that either Γ is small or G contains a pseudo-clique on at least n − ⌊εn⌋ vertices (in a second
step, we will show that this pseudo-clique, indeed, is fully symmetric).

We start by observing that Γ is a subgroup of Sym(k1) × · · · × Sym(km), where ki are the
sizes of the orbits of the action on G. If ki < n − ⌊εn⌋ for all i, then |Γ| < (n − ⌊εn⌋)! · ⌊εn⌋!
and Γ is small because of

n!
|Γ|

>
n!

(n − ⌊εn⌋)! · ⌊εn⌋! =
(

n

⌊εn⌋

)
≥

(
n

⌊εn⌋

)⌊εn⌋

> 2⌊εn⌋.

So from now on there is one orbit C ⊆ V consisting of at least n − ⌊εn⌋ vertices. Then
we have Γ ≤ Sym(C) × Sym(C) and we denote by φ : Γ → Sym(C) the projection to the
first coordinate.

Suppose Γ̃ = φ(Γ) does not act primitively on C meaning that there is an Γ̃-invariant
partition of C with r classes each of which consists of 1 < m < |C| vertices (as Γ̃ acts
transitively on C, it must acts transitively on the classes; hence, they all have the same size).
Thus, Γ̃ is isomorphic to a subgroup of the wreath product Sym(m) ≀ Sym(r) with rm = |C|
(see [10, Theorem 1.8]). Hence,

|C|!
|Γ̃|

≥ |C|!
(m!)r · r! = 1 · . . . · m · . . . · |C|

(1 · · · m) · 1 · (1 · · · m) · 2 · . . . · (1 · · · m) · r
=

∏r−1
i=1

∏m−1
j=1 (im + j)

((m − 1)!)r−1

≥ 2(m−1)(r−1) ≥ 2|C|/4 ≥ 2⌊εn⌋.

Here the last inequality is because ε < 1/8 (in particular 1 − ε ≥ 1/2), the second last
inequality is due to the assumption ε ≤ 1/4 and m − 1 ≥ m/2 and r − 1 ≥ r/2. The third
last inequality is because

(∏m−1
j=1 (im + j)

)
/(m − 1)! =

∏m−1
j=1 (im + j)/j ≥ 2m−1 as i ≥ 1.

Since the index of Γ in Sym(V) is at least the index of Γ̃ = φ(Γ) in Sym(C), again Γ is small.
Hence, it remains to consider the case that φ(Γ) ≤ Sym(C) acts primitively on C. Thus,

writing k = |C| , according to [7, 35] (see also [2]), there are three possibilities: φ(Γ) is either
Ak (the alternating group on k elements) or Sk

∼= Sym(C) or |φ(Γ)| ≤ 4k. First, let us
consider the last case. As n ≥ 13, we have k ≥ n − ⌊εn⌋ ≥ 11. Therefore, we conclude that
we have |φ(Γ)| ≤ 4k ≤ k!/2k/4 (which holds for all k ≥ 11) and, as above, the index of Γ in
Sym(V) is at least 2k/4 ≥ 2(n−⌊εn⌋)/4 ≥ 2⌊εn⌋, meaning that Γ is small.

In the former two cases (i.e., that φ(Γ) is Ak or Sk), φ(Γ) acts set-transitively on C

(meaning that for each pair of subsets A, B ⊆ C with |A| = |B| there is a permutation π

mapping A to B); hence, C is a pseudo-clique.
To see that C is, indeed, fully symmetric if Γ is not small, we proceed as follows: Now,

let N ≤ Γ denote the kernel of the projection Γ → Sym(C) to the second component (i.e.
the pointwise stabilizer of C). Then we have φ(N) = N (when identifying Sym(C) with the
corresponding subgroup of Sym(C) × Sym(C)). As Ak is simple and the index of N is at
most (n − k)! in φ(Γ) (which is either Ak or Sk), we have N = Ak or N = Sk (as N is also
normal in φ(Γ)). In both cases N acts set-transitively on C and; hence, C is fully symmetric
(which, by Fact 9, also excludes the case N = Ak). ◀

P. Kawałek and A. Weiß 58:11

4.2 Reduction Based on the Degree Decreasing Lemma
One of the few examples of lower bounds for circuits using modulo counting are due to
Grolmusz and Tardos [23, 22]. The authors prove lower bounds for MODq ◦ MODp ◦ ANDd

circuits with restrictions put on connections between ANDd layer and MODp gates. More
precisely, [22] shows that if the number of multiplications needed to compute the polynomial
corresponding to each MODp ◦ ANDd subcircuit is bounded by cn for small enough c, then
a MODq ◦ MODp ◦ ANDd circuit requires exponential size to compute ANDn. One of their
key tools is the so-called Degree Decreasing Lemma:

▶ Lemma 11 (Degree Decreasing Lemma). Let p ̸= q be prime numbers. Then every function
f : F3

p 7→ Fq represented by a 3-ary Σq ◦ MODp ◦ AND2 expression b(γ · z1 · z2 + y; t) can be
also represented by an expression of the form∑

(j1,j2,j3)∈F3
p

∑
r∈Fp

β
(r)
j1,j2,j3

· b(j1z1 + j2z2 + j3y; r)

where β
(r)
j1,j2,j3

are some coefficients from Fq (also depending on γ and t).

The Lemma is a consequence of the result by Grolmusz [22, Lemma 6] (note that the
statement there does not include the factor γ, so formally, to obtain Lemma 11, one needs to
apply [22, Lemma 6] several times). One can also see it as a consequence of [29, Fact 3.3].
This very simple lemma allows us to navigate through the space of different representations
for a given function f by allowing a local change of its corresponding expression. The power
of the lemma comes from the fact that we can substitute arbitrary polynomials for z1, z2, y

and obtain many different equivalences.
We will need a more regular version of the Degree Decrasing Lemma when the multipli-

cation inside b has bigger arity. The price we pay for a nicer form is that the represented
function has a smaller (partially Boolean) domain, which slightly reduces the scope of appli-
cability of the lemma (as we cannot substitute any polynomial for the variables); however, it
still suffices for our purposes.

▶ Lemma 12 (Symmetric Degree Decreasing Lemma). Let p ̸= q be prime. Let γ ∈ Fp {0}.
Then every function f : {0, 1}d × Fp 7→ Fq represented by a d + 1-ary Σq ◦ MODp ◦ ANDd

expression

b(γ · x1 · . . . · xd + y; t)

can be also represented by an expression

h(x, y; t) = b(y; t) +
∑
r∈Fp

βt,r

∑
S⊆[d]

α|S| · b(γ ·
∑
s∈S

s + y; r)

for α|S| = (−1)|S| and some coefficients βt,r ∈ Fq.

The key property of the formula h is that it is invariant under permutations of the
variables x1, . . . , xd, which is not the case for original Degree Decreasing Lemma of [22]. The
next step in the proof is to apply the Symmetric Degree Decreasing Lemma (Lemma 12)
to expressions generated by highly-symmetric hypergraphs in order to obtain an even nicer
representation defined as follows:

▶ Definition 13. We call an Fp-labeled d-hypergraph G = (V, λ) symmetry-purified with
respect to C ⊆ V if
1. C is fully symmetric in G,

STACS 2025

58:12 Violating Constant Degree Hypothesis Requires Breaking Symmetry

2. if λ(e) ̸= 0, then e is completely contained either in C or in C (i.e., every edge e is fully
contained either in C or in C,

3. if λ(e) ̸= 0 and e ⊆ C, then |e| = 1 (i.e., every edge e with e ∩ C = ∅ satisfies |e| = 1).

Moreover, if the graph satisfies only conditions 1 and 2, we will call it partially symmetry
purified. We write sp(V, C) for the set of all symmetry-purified d-hypergraphs with respect to
C ⊆ V and psp(V, C) for the set of partially symmetry-purified d-hypergraphs with respect to
C ⊆ V (note that d and p are implicitly defined from the context for sp(V, C) and psp(V, C)).

The next crucial lemma allows us to restrict our attention only to expressions s(G; u) over
symmetry-purified graphs, which have a very regular and much easier to analyze structure.
This enables a later combinatorial analysis of the periodic behaviour of such s(G; u). The
proof of the lemma relies on carefully applying both Lemma 11 and Lemma 12 to alter the
graphs while preserving the symmetry of the corresponding expression.

▶ Lemma 14. Let p ≠ q be prime numbers, let u ∈ Fp, and let G = (V, λ) be an Fp-labeled
d-hypergraph. Moreover, let C ⊆ V be a maximal fully symmetric subset with |C| > |V | /2.
Then there are constants βH,r ∈ Fq such that

s(G; u) ≡
∑

H∈sp(V,C)

∑
r∈Fp

βH,r s(H, r).

Proof sketch. We will first represent a function computed by s(G; u) by a sum of expressions
s(H, r) for H being partially symmetry purified. Let e be an edge in G, such that eC =
e ∩ C ̸= ∅ and eC = e ∩ C ̸= ∅. We would like to remove the edge e from G. To do so,
we apply Lemma 11 to replace e by a linear combination of eC and eC . However, if we do
this only for e we may destroy the symmetry of the resulting expression. For this reason,
we pick not only e but its entire orbit O = Aut(G) · e = {e1, . . . , eℓ} and apply Lemma 11
simultaneously to it. Indeed, setting P = Aut(G) · eC and Q = Aut(G) · eC , since C is fully
symmetric, we have

e1 + · · · + eℓ = (
∑
w∈P

w)(
∑
v∈Q

v).

Since all the ei must have the same label γ, we have

s(G; u) = s(γ(e1 + · · · + eℓ) + G′; u) = s(γ · z1 · z2 + G′; u)

where z1 =
∑

w∈P w, z2 =
∑

v∈Q v and G′ = G − γ · (e1 + · · · + eℓ). Thus, after applying
Lemma 11 to each summand of s (as in the formula (4)), we get a symmetric expression
which is a linear combination of subexpressions of the form bπi(j1z1 + j2z2 + j3G′; r). Hence,
we have replaced s(G, u) with a sum

∑
H,r s(H, r), where each graph H does not contain the

edge e anymore and has no new edges intersecting both C and C non-trivially. We apply
this reasoning recursively for s(H, r) as long as there is any edge in any graph in the sum
that intersects non-trivially with C and C. At the very end there are no such edges left, so
we managed to represent s(G, u) as a sum of expressions s(H, r) over partially symmetry
purified graphs H.

Next, assume that G is already partially symmetry purified with respect to C but not
yet symmetry purified. Pick an edge e ⊆ C of size at least 2 and denote its orbit as
Aut(G) · e = {e1, e2, . . . , eℓ}. We have

s(G, u) =
k∑

i=1
bπi(γ · e1 + · · · + γ · eℓ + G′; u).

P. Kawałek and A. Weiß 58:13

Now by applying Lemma 12 subsequently to the edges e1, . . . , eℓ, we can replace all these
edges with linear combinations of its vertices. Because the formula in Lemma 12 is symmetric,
we end up with a symmetric expression at the end. So we have replaced s(G, u) by a sum of
s(H, r), but now each H has less bad edges. We apply this reasoning recursively to write
s(G, u) as a sum of s(H, r) where each H is symmetry purified. ◀

4.3 Period of Symmetry-Purified Expressions
For a fixed input b ∈ {0, 1}n and an n-ary symmetric expression f , we can compute the
value f(b) only knowing the Hamming weight of the input, i.e. the number of 1s in b. This
means that f represents not only a function {0, 1}n → D, but we can also view it as a
function {0, 1, . . . , n} → D. It turns out that a relatively small Σq ◦ MODp ◦ ANDd circuit
can compute only functions with a relatively small period. Here, by a period of f we mean
an integer r ∈ N {0} that satisfies f(m + r) = f(m) for all m in the range [0, n − r]. Note
that all functions have periods > n, so we are mainly interested in finding periods in the
range [1, n]. Note that the ANDn function, which is of our particular interest, does not
have any period (less than n + 1). Thus, proving an upper bound for a period of a function
computed by a relatively short expression will give us a lower bound for the length of
representation of ANDn. This is in line with some of the previous research [3, 22, 37]. As any
Σq ◦ MODp ◦ ANDd can be transformed into a symmetric expression over symmetry-purified
graphs, we only need to concentrate on these special graphs. Indeed, any common period
among all the elements of the sum, transfers to the sum itself.

For the following theorem, we need a careful analysis how an expression s(G; u) for some
symmetry purified graph G is computed. We rely on the fact that, for fixed s ∈ N, the
function m 7→

(
m
s

)
mod p is periodic with period pk for each k ∈ N such that pk > s (see

for instance [29, Proof of Fact 3.4]). Recall that a multinomial coefficient
(

n
s1,...,sl

)
counts

the number of ordered partition of n elements set into sequences of disjoint subsets of sizes
s1, . . . , sl. More formally, for s1 + · · · + sl = n we have(

n

s1, . . . , sl

)
=

(
s1

s1

)
·
(

s1 + s2

s2

)
· . . . ·

(
s1 + · · · + sl

sl

)
. (5)

▶ Lemma 15. Let p be a prime. Let s1, . . . sl−1 be a sequence of integers. Let k be such that
pk > s1 + · · · + sl−1. Then the function

f(n) =
(

n

s1, . . . , sl(n)

)
mod p

is periodic with period pk where sl(n) = n − (s1 + s2 + · · · + sl−1).

Proof. We use the formula (5) for computing multinomial coefficient. Note that the first
l − 1 factors of the above product are constants, while the last one satisfies(

s1 + · · · + sl

sl(n)

)
=

(
n

sl(n)

)
=

(
n

n − sl(n)

)
=

(
n

s1 + · · · + sl−1

)
.

So, periodicity of multinomial coefficient comes from periodicity of the binomial coefficients.
◀

▶ Theorem 16. Let p ̸= q be prime numbers, r ∈ Fp and let G be an Fp-labeled d-hypergraph
on n vertices that is symmetry purified with respect to a maximal fully symmetric subset of
vertices C of size |C| > n/2. Then pkp · qkq is a period of s(G; r) where kp is the smallest
integer satisfying pkp > d and kq is the smallest integer satisfying qkq > n − |C|.

STACS 2025

58:14 Violating Constant Degree Hypothesis Requires Breaking Symmetry

Note that, if pkp · qkq > n, Theorem 16 establishes no non-trivial periods.

Proof. Note that the induced subgraph on the set C is a pseudo-clique. Moreover, as
|C| > |V |

2 , we can reconstruct the graph G up to isomorphism having the following information
1. the size lC of the largest pseudo-clique C in G,
2. the type t = (t1, . . . , td) ∈ Fd

p of the pseudo-clique, where ti is the label of every i-ary
edge in the pseudo-clique

3. sizes l0, l1, . . . , lp−1, where li is the number of vertices j that are not in the pseudo-clique
C and have a unary edge with label i = λ({j}). Vertices corresponding to label i in G

will be denoted Li (thus, li = |Li|).

Using this characterization of a symmetry purified hypergraph G = (V, λ), we obtain

▶ Fact 17. Aut(G) = Sym(C) × Sym(L0) × · · · × Sym(Lp−1)

In particular, we have at most p + 1 orbits under the automorphism groups (note that we
have less than p + 1 orbits if some of the li are 0)

Now we evaluate s(G; r) on some integer m (and denote this by s(G; r)(m)). In order to
do it, pick b which has ones on the first m coordinates, i.e b = 1m · 0n−m. Hence,

s(G; r)(m) = s(G; r)(b) =
k∑

i=1
b(πi(G); r)(b)

where, as before, π1, . . . , πk is a transversal of Sym(V)/ Aut(G). Each summand b(πi(G); r)(b)
evaluates to 1 or 0, depending on the mapping πi. Being more precise, if πi maps s0 elements
of L0 to [1..m], . . . , and sp−1 elements of Lp−1 to [1..m], then πi(G)(b) evaluates to

d∑
j=1

tj ·
(

sC(m)
j

)
+

q−1∑
j=1

j · sj (mod p). (6)

where sC(m) denotes the number of elements of C mapped to [1..m], which is computed
according to formula sC(m) = m − (s0 + · · · + sp−1). Recall that b(πi(G); r)(b) = 1 if and
only if πi(G)(b) = r.

Let χ[G; r](m) denote the set of s = (s0, . . . , sp−1) that make the sum (6) evaluate to
r. Observe that we have natural inequalities 0 ≤ si ≤ li for all i ∈ {0, . . . , p − 1} and
0 ≤ sC(m) ≤ lC . Hence, the feasible s ∈ Np can be described by

s ∈ χ[G; r](m) ⇐⇒

∑d

j=1 tj ·
(

sC (m)
j

)
+

∑p−1
j=1 j · sj (mod p) = r

0 ≤ si ≤ li for i ∈ {0, . . . , p − 1}
0 ≤ sC(m) ≤ lC .

(7)

Moreover, let #[s](m) denote the number of permutations in {π1, . . . , πk} that map sC(m)
elements of C to [m] and si elements of Li to [m] (for i = 0, . . . , p − 1). Hence, we have

s[G; r](m) =

 ∑
(s)∈χ[G;r](m)

#[s](m)

 (mod q).

Next, let us determine #[s](m). Note that each permutation πi in {π1, . . . , πk}
maps each of the sets L0, . . . , Lp−1, C to some subsets L′

0, . . . , L′
p−1, C ′ ⊆ [n] with |L′

0| =
|L0|, . . . , |L′

p−1| = |Lp−1|, and |C ′| = |C|. Now, if two mappings πi, πj output the same
image πiL0 = πjL0, . . . , πiLp−1 = πjLp−1, πiC = πjC, then πiG = πjG and hence πi and

P. Kawałek and A. Weiß 58:15

πj must belong to the same coset of Aut(G) in Sym(V). Since {π1, . . . , πk} were chosen to
be a transversal of Sym(V)/ Aut(G), this is only possible when πi = πj . So, the mapping
πi 7→ (L′

0, . . . , L′
p−1, C ′) is injective.

In fact, the mapping is also surjective as for any particular (L′
0, . . . , L′

p−1, C ′) with
|L′

0| = |L0|, . . . , |L′
p−1| = |Lp−1|, |C ′| = |C| we can find some π ∈ {π1, . . . , πk} which maps

π(Li) = L′
i and π(C) = C ′. Indeed, just pick any σ ∈ Sym(V) satisfying σ(Li) = L′

i for all
i and σ(C) = C ′ and take its representative in the equivalence class modulo Aut(G) as πi.
So we have a bijective mapping between permutations (πi)i=1..p−1 and ordered partitions
(L′

0, . . . , L′
p−1, C ′) of [n] satisfying |L′

0| = |L0|, . . . , |L′
p−1| = |Lp−1|, and |C ′| = |C|.

Thus, if we want to count #(s), we need to count the number of proper partitions
satisfying |L′

1 ∩ [1..m]| = s1, . . . , |L′
p−1 ∩ [1..m]| = sp−1, and |C ′ ∩ [1..m]| = sC(m). In other

words, we partition an m-element set into disjoint subsets of sizes s0, s1, . . . , sp−1, sC(m) and
an n − m-element set into disjoint subsets of sizes l0 − s0, . . . , lp−1 − sp−1, lC − sC(m); this
leads to the following formula

#[s](m) =
(

m

s0, . . . , sp−1, sC(m)

)
·
(

n − m

l0 − s0, . . . , lp−1 − sp−1, lC − sC(m)

)
. (8)

Now, when fixing s0, . . . , sp−1, we will use Lemma 15 to show that the function m 7→
#[s](m) mod q is periodic with period qkq in the interval {0, . . . , n} where kq is the smallest
integer such that qkq > l0 + · · · + lp−1 = n − |C|. The periodicity is immediate for the first
element of the product by Lemma 15. Let s′

i = l0 − s0. One can see that the values of the
second element of the product produce, in the interval [0..n], a reversed sequence compared
to the one produced by(

m

s′
0, . . . , s′

p−1, m − (s′
0 + · · · + s′

p−1)

)
Indeed, lC −sC(m) = n−(l0 + · · ·+ lp−1)−(m−(s0 + · · ·+sp−1)) = (n−m)−(s′

0 + · · ·+s′
p−1)

and n − m plays the role of m in the reversed sequence. As periodicity of any given sequence
on the interval [0..n] is preserved under reversing, and as qkq > l0 + · · ·+ lp−1 ≥ s′

0 + · · ·+s′
p−1,

we get the desired periodicity of #[s](m) (as the period transfers to the product).
Now, one could argue that then the sum

s[G; r](m) =

 ∑
(s)∈χ[G;r](m)

#[s](m)

 (mod q)

must be periodic, as it is just a sum of elements that are periodic. Unfortunately, χ[G; r](m)
selects elements of the sum depending on m (i.e. the si depend on m). We need to address
this issue.

Note that in (7) we can drop the condition 0 ≤ sC(m) ≤ lC because whenever sC(m) < 0
or sC(m) > lC the formula (8) returns value 0 anyway (as multinomial coefficient takes value
0 whenever s0 + · · · + sp−1 > m or s′

0 + · · · + s′
p−1 > m). So we can effectively get rid of

sC(m) in χ to get an updated definition

s ∈ χ′[G; r](m) ⇐⇒

{∑d
j=1 tj ·

(
sC (m)

j

)
+

∑q−1
j=1 j · sj (mod p) = r

0 ≤ si ≤ li for i ∈ {0, . . . , p − 1}
(9)

and maintain the value of the sum, i.e. ∑
(s)∈χ′[G;r](m)

#[s](m)

 =

 ∑
(s)∈χ[G;r](m)

#[s](m)

 .

STACS 2025

58:16 Violating Constant Degree Hypothesis Requires Breaking Symmetry

Let K be the smallest integer satisfying pK > max(l0 + l1 + · · · + lp−1, d). We further modify
the definition of χ′ to create χ∗ in the following way

s ∈ χ∗[G; r](m) ⇐⇒

{∑d
j=1 tj ·

(
sC (m)+pK

j

)
+

∑q−1
j=1 j · sj (mod p) = r

0 ≤ si ≤ li for i ∈ {0, . . . , p − 1}
(10)

We claim that for all m ∑
(s)∈χ′[G;r](m)

#[s](m)

 (mod q) =

 ∑
(s)∈χ∗[G;r](m)

#[s](m)

 (mod q)

There are 2 cases we need to consider.
1. When some fixed s belongs to both χ′[G; r](m) and χ∗[G; r](m), then #[s](m) cancels

out from both sides of the equation. Similarly if s does not belong to either of the sets,
we do not have #[s](m) on either of sides of the equation.

2. If s ∈ χ′[G; r](m) and s ̸∈ χ∗[G; r](m) or s ̸∈ χ′[G; r](m) and s ∈ χ∗[G; r](m), there
must be some j such that

(
sC (m)

j

)
̸=

(
sC (m)+pK

j

)
. This can only be the case if sC(m) is

negative: otherwise, because pK > d ≥ j, from the periodicity of function a 7→
(

a
j

)
mod p

(for natural numbers a ≥ 0), we would get that
(

sC (m)
j

)
=

(
sC (m)+pK

j

)
mod p and, hence,

the conditions for χ′[G; r](m) and χ∗[G; r](m) would be identical from the perspective of
s. But when sC(m) < 0, then #[s](m) is zero due to definition of multinomial coefficient,
so it does not contribute to any of the sides anyway.

So we obtain that

s(G; r)(m) =

 ∑
(s)∈χ∗[G;r](m)

#[s](m)

 (mod q).

But now the formula (10) gives ranges 0 ≤ sj ≤ lj for j ∈ {0, . . . , p−1}; thus, we conclude
that sC(m)+pK is always positive (since sC(m)+pK = m+pK − (s0 + · · ·+sp−1) ≥ m ≥ 0).
So m 7→

(
sC (m)+pK

j

)
mod p is periodic with period pkp > d where kp is the smallest integer

with pkp > d. Looking at the definition of χ∗ we conclude:

▶ Fact 18. Let s ∈ Np. For m ≥ 0 we have

s ∈ χ∗[G; r](m) ⇐⇒ s ∈ χ∗[G; r](m + pkp)

Hence, the condition s ∈ χ∗(G; r) depends not really on m, but on the remainder of m

modulo pkp . So now, for all integers j ∈ {0, . . . , pkp − 1} we define χ∗
j [G; r] as χ∗[G; r](j)

in order to obtain that χ∗[G; r](m) = χ∗
j [G; r] for j = m mod pkp . Now we can see that

s(G; r)(m) is periodic with period pkp · qkq :

s(G; r)(m + pkp · qkq) =
∑

(s)∈χ∗
j

[G;r]

#[s](m + pkp · qkq)

=
∑

(s)∈χ∗
j

[G;r]

#[s](m)

= s(G; r)(m) (mod q).

The first and the third equality comes from periodicity of the condition χ∗ and the fact
that m and m + pkp · qkq give the same rest modulo pkp and the second one comes from the
equality of rests modulo qkq and periodicity of #(s)(m). ◀

P. Kawałek and A. Weiß 58:17

4.4 Main Theorems
Now we have all the necessary components to prove our main theorems.

Proof of Theorem 1. As discussed in Section 3, any MODq ◦ MODp ◦ ANDd circuit has a
corresponding symmetric Σq ◦ MODp ◦ ANDd expression f with no periods smaller than the
circuit we started with (note that there can happen some blow-up in size, but this does not
matter as we argue below). By Fact 7, f can be written as a sum of expressions of the form
s(G; r). Hence, from now on let us consider one of these expressions s(G; r).

We choose ε such that 2s = 2ε·n (meaning that ε · n = log s + 1 and ε < 1/8). If G does
not contain a fully symmetric set |C| of size at least n − ⌊εn⌋, by Lemma 10, it satisfies
|Sym([n])/ Aut(G)| ≥ 2⌊εn⌋. Thus, writing s(G; r) =

∑k
i=0 bπi(G, r) as in Equation (4), it

follows that k ≥ 2⌊εn⌋. As all the different terms in this sum get their inputs from different
graphs πi(G), also for each term in the sum there must have been a different gate in the
original circuit we started with. This is a contradiction as 2⌊εn⌋ > s.

Hence, all the subexpressions s(G; r) contain a fully symmetric set C of size at least
n − ⌊εn⌋. Now, Lemma 14 tells us that we can write f as a sum of expressions of the form
s(G; r) where G is symmetry-purified with respect to C. Then, Theorem 16 implies that
each such s(G; r) has a period pkp · qkq , where kp is the smallest integer such that pkp > d

and kq is the smallest integer such that qkq > n − |C| = ⌊εn⌋. As f is a sum of different
s(G; r), which all share the period pkp · qkq , it itself has period pkp · qkq . ◀

The following result shows that the estimate of size which can be derived from Theorem 1
is asymptotically (almost) precise.

▶ Proposition 19. Let p ̸= q be primes. Let kp, kq be natural numbers. For every symmetric
function f with a period pkp · qkq there is a symmetric MODq ◦ MODp ◦ ANDd circuit of
size O(d ·

(
n
d

)
+ d · l2 ·

(
n
l

)
) which computes f , where d = pkp − 1 and l = qkq − 1 and d, l < n

2 .

The proof, which is a rather straightforward application of known facts, can be found in the
full version on arXiv.

▶ Corollary 20. Let p ̸= q be primes and d : N → N with d(n) ≤ n/2 for all n. A
function f = (fn)n∈N (with fn : {0, 1}n → {0, 1}) can be computed by a family of symmetric
MODq ◦ MODp ◦ ANDd(n) circuits of quasipolynomial size if and only if, for each n, fn has
a period pkp(n)qkq(n) ∈ logO(1)(n) for some functions kp, kq : N → N.

Moreover, if d = pkp − 1 is a constant, then f can be computed by symmetric MODq ◦
MODp ◦ ANDd circuits of quasipolynomial size if and only if, for each n, fn has a period
pkpqkq(n) ∈ logO(1)(n) for some function kq : N → N.

Proof. If fn has period pkp(n)qkq(n) ∈ logO(1)(n), by Proposition 19, fn is computed by
a MODq ◦ MODp ◦ ANDd circuit of size O(d ·

(
n
d

)
+ d · l2 ·

(
n
l

)
) where l = qkq . As(

n
logO(1)(n)

)
⊆ 2logO(1)(n), it follows that f can be computed by a family of quasipolynomial-

size MODq ◦ MODp ◦ ANDd(n) circuits. In the case that d ∈ {pk − 1 | k ∈ N} is a constant,
Proposition 19 still can be applied with the same outcome.

On the other hand, if f is computed by a family of quasipolynomial-size MODq ◦MODp ◦
ANDd(n) circuits, we first observe that without loss of generality d(n) ∈ logO(1)(n). Indeed,
if for some n the circuits use an ANDd gate for some d ≥ logk(n), then the size of the circuit,
because of the symmetry property, is at least

(
n
d

)
≥ (n

d)d ≥ 2d ≥ 2logk(n). If this holds
for every k ∈ N and infinitely many n, then the circuit family is not of quasipolynomially
bounded size.

STACS 2025

58:18 Violating Constant Degree Hypothesis Requires Breaking Symmetry

Now, it remains to apply Theorem 1, which tells us that fn has period pkpqkq where kp

is the smallest integer with pkp > d(n) and kq is the smallest integer with qkq > log s(n) + 1
where s(n) ∈ 2logO(1)(n) is the size of the n-input circuit. As pkpqkq ∈ logO(1)(n), both parts
of the corollary follow (for the second part, observe that pkp is the smallest p-power greater
than d). ◀

Instead of directly proving Theorem 3, let us derive the following slightly more explicit
and general variant of the theorem:

▶ Theorem 21. Let p ̸= q be primes and let n ≥ max{13, 4p2q2} and d ≤ n −
√

n. Then
every symmetric MODq ◦ MODp ◦ ANDd circuit computing the ANDn function has size at
least 2max{n/(2dpq),

√
n}.

Proof. Let us write V = {x1, . . . , xn}. First consider the case that d ≥
√

n and there is
actually an ANDk gate v with n −

√
n ≥ k ≥

√
n inputs. Since for any π ∈ Sym(V) also

π(v) must be a gate in the circuit, we obtain different ANDk gates for each k-element subset
of V . As there are

(
n
k

)
≥ max{(n/k)k, (n/(n − k))n−k} ≥ 2

√
n ≥ 2n/d many such subsets,

the theorem holds in this case (almost trivially).
Therefore, in the following, we assume d <

√
n ≤ n/(2pq) and consider an arbitrary

n-input MODq ◦ MODp ◦ ANDd circuit C of size s ≤ 2n/(2pqd). By Theorem 1, the function
computed by C has period pkpqkq where kp is the smallest integer with pkp > d and kq

is the smallest integer with qkq > log s + 1 ≥ n/(2pqd) + 1. Notice that pkp ≤ d · p and
qkq ≤ (n/(2pqd) + 1) · q and, hence, we have

pkp · qkq ≤ d · p · (n/(2pqd) + 1) · q = n/2 + dpq < n.

Thus, C does not compute the ANDn function as ANDn does not have any non-trivial
period. ◀

5 Further Perspectives

Arguably one of the strongest applications of the Degree Decreasing Lemma is Theorem
4 in [22]. It implies that, if all the polynomials over Fp that compose the top levels of
a MODq ◦ MODp ◦ ANDd-circuit can be written with a sublinear number of (binary)
multiplications, then the circuit can be replaced with a MODq ◦ MODp circuit with only a
subexponential blow-up in size. We argue that this kind of theorem cannot be applied in the
context of our proof.

Note that a large pseudo-clique in the symmetry-purified expressions are (arbitrary)
symmetric polynomials. Most of symmetric polynomials over Fp require at least a linear
number of multiplications in any formula (circuit) defining them. To see it, consider the
example p(x) =

∑
i<j xi · xj as a polynomial over F2. One can easily check that it represents

a function with smallest period 4. But now, if it could be written with a sub-linear number
of multiplications, by Theorem 4 in [22], it could be represented by a sub-exponential size
MOD3 ◦ MOD2 circuit. However, this contradicts [23, Theorem 2.4] as subexponential size
MOD3 ◦ MOD2 circuits can only represent periodic functions with period of the form 2 · 3k.
This shows that that the Degree Decreasing Lemma cannot be used in this context, as it
puts the limitations on its own applicability, by providing arithmetic circuit lower bounds.
Such lower bounds can be proved for all non-trivial symmetric polynomials over Fp with
d ≥ p using a similar period analysis. Thus, our symmetry purification technique as well
as combinatorial analysis contained in the proof of Theorem 16 constitute a substantial
improvement over the Degree Decreasing Lemma and its accompanying techniques.

P. Kawałek and A. Weiß 58:19

The results of the present paper indicate what type of symmetric functions might be
computable by small, but not necessarily symmetric, MODq ◦ MODp ◦ ANDd circuits. It
is natural to believe that the optimal (or nearly optimal) representation of the symmetric
function should also be symmetric. Thus, we state the following

▶ Conjecture 22. For fixed d, p, q, the only symmetric functions that can be represented
by MODq ◦ MODp ◦ ANDd circuits of subexponential size have to be periodic with some
period of the form pkp · qkq , for kp being the smallest integer with pkp ≥ d and kq be such
that pkp · qkq ≤ n.

References

1 Miklós Ajtai. Σ1
1-formulae on finite structures. Annals of Pure and Applied Logic, 24(1):1–48,

1983. doi:10.1016/0168-0072(83)90038-6.
2 László Babai. Primitive coherent configurations and the order of uniprimitive permutation

groups, 2018. URL: https://people.cs.uchicago.edu/~laci/papers/uni-update.pdf.
3 David A. Mix Barrington, Richard Beigel, and Steven Rudich. Representing Boolean functions

as polynomials modulo composite numbers. Computational Complexity, 4:367–382, 1994.
doi:10.1007/BF01263424.

4 David A. Mix Barrington and Howard Straubing. Complex polynomials and circuit lower
bounds for modular counting. Computational Complexity, 4:325–338, 1994. doi:10.1007/
BF01263421.

5 David A. Mix Barrington, Howard Straubing, and Denis Thérien. Non-uniform automata over
groups. Information and Computation, 89(2):109–132, 1990. doi:10.1016/0890-5401(90)
90007-5.

6 Abhishek Bhrushundi, Kaave Hosseini, Shachar Lovett, and Sankeerth Rao. Torus polynomials:
An algebraic approach to ACC lower bounds. In 10th Innovations in Theoretical Computer
Science Conference, ITCS 2019, volume 124 of LIPIcs, pages 13:1–13:16. Schloss Dagstuhl –
Leibniz-Zentrum für Informatik, 2019. doi:10.4230/LIPIcs.ITCS.2019.13.

7 Alfred Bochert. Ueber die Zahl der verschiedenen Werthe, die eine Function gegebener
Buchstaben durch Vertauschung derselben erlangen kann. Mathematische Annalen, 33(4):584–
590, 1889. doi:10.1007/BF01444035.

8 Joshua Brakensiek, Sivakanth Gopi, and Venkatesan Guruswami. Constraint satisfaction prob-
lems with global modular constraints: Algorithms and hardness via polynomial representations.
SIAM Journal on Computing, 51(3):577–626, 2022. doi:10.1137/19m1291054.

9 Bettina Brustmann and Ingo Wegener. The complexity of symmetric functions in bounded-
depth circuits. Information Processing Letters, 25(4):217–219, 1987. doi:10.1016/
0020-0190(87)90163-3.

10 Peter J. Cameron. Permutation Groups. London Mathematical Society Student Texts.
Cambridge University Press, 1999. doi:10.1017/CBO9780511623677.

11 Brynmor Chapman and Ryan Williams. Smaller ACC0 circuits for symmetric functions. In
13th Innovations in Theoretical Computer Science Conference, ITCS 2022, volume 215 of
LIPIcs, pages 38:1–38:19. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, 2022. doi:
10.4230/LIPIcs.ITCS.2022.38.

12 Arkadev Chattopadhyay, Navin Goyal, Pavel Pudlak, and Denis Therien. Lower bounds for
circuits with MODm gates. In 47th Annual IEEE Symposium on Foundations of Computer
Science, FOCS 2006, pages 709–718, 2006. doi:10.1109/FOCS.2006.46.

13 Anuj Dawar and Gregory Wilsenach. Symmetric arithmetic circuits. In 47th International
Colloquium on Automata, Languages, and Programming, ICALP 2020, volume 168 of LIPIcs,
pages 36:1–36:18. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, 2020. doi:10.4230/
LIPIcs.ICALP.2020.36.

STACS 2025

https://doi.org/10.1016/0168-0072(83)90038-6
https://people.cs.uchicago.edu/~laci/papers/uni-update.pdf
https://doi.org/10.1007/BF01263424
https://doi.org/10.1007/BF01263421
https://doi.org/10.1007/BF01263421
https://doi.org/10.1016/0890-5401(90)90007-5
https://doi.org/10.1016/0890-5401(90)90007-5
https://doi.org/10.4230/LIPIcs.ITCS.2019.13
https://doi.org/10.1007/BF01444035
https://doi.org/10.1137/19m1291054
https://doi.org/10.1016/0020-0190(87)90163-3
https://doi.org/10.1016/0020-0190(87)90163-3
https://doi.org/10.1017/CBO9780511623677
https://doi.org/10.4230/LIPIcs.ITCS.2022.38
https://doi.org/10.4230/LIPIcs.ITCS.2022.38
https://doi.org/10.1109/FOCS.2006.46
https://doi.org/10.4230/LIPIcs.ICALP.2020.36
https://doi.org/10.4230/LIPIcs.ICALP.2020.36

58:20 Violating Constant Degree Hypothesis Requires Breaking Symmetry

14 Larry Denenberg, Yuri Gurevich, and Saharon Shelah. Definability by constant-depth
polynomial-size circuits. Information and Control, 70(2/3):216–240, 1986. doi:10.1016/
S0019-9958(86)80006-7.

15 Zeev Dvir, Parikshit Gopalan, and Sergey Yekhanin. Matching vector codes. SIAM Journal
on Computing, 40(4):1154–1178, 2011. doi:10.1137/100804322.

16 Zeev Dvir and Sivakanth Gopi. 2-server PIR with sub-polynomial communication. In
Proceedings of the Forty-Seventh Annual ACM on Symposium on Theory of Computing, STOC
2015, pages 577–584. ACM, 2015. doi:10.1145/2746539.2746546.

17 Klim Efremenko. 3-query locally decodable codes of subexponential length. SIAM Journal on
Computing, 41(6):1694–1703, 2012. doi:10.1137/090772721.

18 Ronald Fagin, Maria M. Klawe, Nicholas Pippenger, and Larry J. Stockmeyer. Bounded-depth,
polynomial-size circuits for symmetric functions. Theoretical Computer Science, 36:239–250,
1985. doi:10.1016/0304-3975(85)90045-3.

19 Merrick Furst, James B. Saxe, and Michael Sipser. Parity, circuits, and the polynomial-time
hierarchy. Mathematical systems theory, 17:13–27, 1984. doi:10.1007/BF01744431.

20 Parikshit Gopalan. Constructing Ramsey graphs from Boolean function representations.
Combinatorica, 34:173–206, 2014. doi:10.1007/s00493-014-2367-1.

21 Vince Grolmusz. Superpolynomial size set-systems with restricted intersections mod 6 and
explicit Ramsey graphs. Combinatorica, 20(1):71–86, 2000. doi:10.1007/s004930070032.

22 Vince Grolmusz. A degree-decreasing lemma for (MODp-MODm) circuits. Discrete Mathe-
matics and Theoretical Computer Science, 4(2):247–254, 2001. doi:10.46298/dmtcs.289.

23 Vince Grolmusz and Gábor Tardos. Lower bounds for (MODp-MODm) circuits. SIAM Journal
on Computing, 29(4):1209–1222, 2000. doi:10.1137/S0097539798340850.

24 Kristoffer Arnsfelt Hansen. Computing symmetric boolean functions by circuits with few exact
threshold gates. In Computing and Combinatorics, 13th Annual International Conference,
COCOON 2007, Proceedings, volume 4598 of Lecture Notes in Computer Science, pages
448–458. Springer, 2007. doi:10.1007/978-3-540-73545-8_44.

25 Kristoffer Arnsfelt Hansen and Michal Koucký. A new characterization of ACC0 and probabilis-
tic CC0. Computational Complexity, 19(2):211–234, 2010. doi:10.1007/s00037-010-0287-z.

26 Johan Håstad. Computational limitations for small depth circuits. PhD thesis, Massachusetts
Institute of Technology, 1986.

27 William He and Benjamin Rossman. Symmetric formulas for products of permutations. In
14th Innovations in Theoretical Computer Science Conference, ITCS 2023, volume 251 of
LIPIcs, pages 68:1–68:23. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, 2023. doi:
10.4230/LIPIcs.ITCS.2023.68.

28 Paweł M. Idziak, Piotr Kawałek, and Jacek Krzaczkowski. Intermediate problems in modular
circuits satisfiability. In Proceedings of 35th Annual ACM/IEEE Symposium on Logic in
Computer Science, LICS 2020, pages 578–590, 2020. doi:10.1145/3373718.3394780.

29 Pawel M. Idziak, Piotr Kawalek, and Jacek Krzaczkowski. Complexity of modular circuits.
In Proceedings of 37th Annual ACM/IEEE Symposium on Logic in Computer Science, LICS
2022, pages 32:1–32:11, 2022. doi:10.1145/3531130.3533350.

30 Paweł M. Idziak, Piotr Kawałek, Jacek Krzaczkowski, and Armin Weiß. Satisfiability Prob-
lems for Finite Groups. In 49th International Colloquium on Automata, Languages, and
Programming, ICALP 2022, volume 229 of LIPIcs, pages 127:1–127:20. Schloss Dagstuhl –
Leibniz-Zentrum für Informatik, 2022. doi:10.4230/LIPIcs.ICALP.2022.127.

31 Pawel M. Idziak and Jacek Krzaczkowski. Satisfiability in multivalued circuits. SIAM Journal
on Computing, 51(3):337–378, 2022. doi:10.1137/18m1220194.

32 Piotr Kawalek and Armin Weiß. Violating constant degree hypothesis requires breaking
symmetry. CoRR, abs/2311.17440, 2023. doi:10.48550/arXiv.2311.17440.

33 Tianren Liu and Vinod Vaikuntanathan. Breaking the circuit-size barrier in secret sharing. In
Proceedings of the 50th Annual ACM SIGACT Symposium on Theory of Computing, STOC
2018, pages 699–708, 2018. doi:10.1145/3188745.3188936.

https://doi.org/10.1016/S0019-9958(86)80006-7
https://doi.org/10.1016/S0019-9958(86)80006-7
https://doi.org/10.1137/100804322
https://doi.org/10.1145/2746539.2746546
https://doi.org/10.1137/090772721
https://doi.org/10.1016/0304-3975(85)90045-3
https://doi.org/10.1007/BF01744431
https://doi.org/10.1007/s00493-014-2367-1
https://doi.org/10.1007/s004930070032
https://doi.org/10.46298/dmtcs.289
https://doi.org/10.1137/S0097539798340850
https://doi.org/10.1007/978-3-540-73545-8_44
https://doi.org/10.1007/s00037-010-0287-z
https://doi.org/10.4230/LIPIcs.ITCS.2023.68
https://doi.org/10.4230/LIPIcs.ITCS.2023.68
https://doi.org/10.1145/3373718.3394780
https://doi.org/10.1145/3531130.3533350
https://doi.org/10.4230/LIPIcs.ICALP.2022.127
https://doi.org/10.1137/18m1220194
https://doi.org/10.48550/arXiv.2311.17440
https://doi.org/10.1145/3188745.3188936

P. Kawałek and A. Weiß 58:21

34 Chi-Jen Lu. An exact characterization of symmetric functions in qAC0[2]. Theoretical
Computer Science, 261(2):297–303, 2001. doi:10.1016/S0304-3975(00)00145-6.

35 Cheryl E. Praeger and Jan Saxl. On the orders of primitive permutation groups. The Bulletin
of the London Mathematical Society, 12(4):303–307, 1980. doi:10.1112/blms/12.4.303.

36 Roman Smolensky. Algebraic methods in the theory of lower bounds for Boolean circuit
complexity. In Proceedings of the 19th Annual ACM Symposium on Theory of Computing,
STOC 1987, pages 77–82. ACM, 1987. doi:10.1145/28395.28404.

37 Howard Straubing and Denis Thérien. A note on MODp-MODm circuits. Theory of Computing
Systems, 39(5):699–706, 2006.

38 Andrew Chi-Chih Yao. Separating the polynomial-time hierarchy by oracles (preliminary
version). In 26th Annual Symposium on Foundations of Computer Science, FOCS 1985, pages
1–10. IEEE Computer Society, 1985. doi:10.1109/SFCS.1985.49.

39 Zhi-Li Zhang, David A. Mix Barrington, and Jun Tarui. Computing symmetric functions with
AND/OR circuits and a single MAJORITY gate. In Proceedings of 10th Annual Symposium
on Theoretical Aspects of Computer Science, STACS 1993, volume 665 of Lecture Notes in
Computer Science, pages 535–544. Springer, 1993. doi:10.1007/3-540-56503-5_53.

STACS 2025

https://doi.org/10.1016/S0304-3975(00)00145-6
https://doi.org/10.1112/blms/12.4.303
https://doi.org/10.1145/28395.28404
https://doi.org/10.1109/SFCS.1985.49
https://doi.org/10.1007/3-540-56503-5_53

Online Matching with Delays and Size-Based Costs
Yasushi Kawase # Ñ

The University of Tokyo, Japan

Tomohiro Nakayoshi #

The University of Tokyo, Japan

Abstract
In this paper, we introduce the problem of Online Matching with Delays and Size-based Costs
(OMDSC). The OMDSC problem involves m requests arriving online. At any time, a group can be
formed by matching any number of requests that have been received but remain unmatched. The
cost associated with each group is determined by the waiting time for each request within the group
and size-dependent cost. The size-dependent cost is specified by a penalty function. Our goal is
to partition all the incoming requests into multiple groups while minimizing the total associated
cost. This problem is an extension of the TCP acknowledgment problem proposed by Dooly et al.
(J. ACM, 2001). It generalizes the cost model for sending acknowledgments. This study reveals the
competitive ratios for a fundamental case, in which the penalty function takes only values of either 0
or 1. We classify such penalty functions into three distinct cases: (i) a fixed penalty of 1 regardless
of the group size, (ii) a penalty of 0 if and only if the group size is a multiple of a specific integer
k, and (iii) other situations. The problem in case (i) is equivalent to the TCP acknowledgment
problem, for which Dooly et al. proposed a 2-competitive algorithm. For case (ii), we first show
that natural algorithms that match all remaining requests are Ω(

√
k)-competitive. We then propose

an O(log k/ log log k)-competitive deterministic algorithm by carefully managing the match size
and timing, and prove its optimality. For any penalty function in case (iii), we demonstrate the
non-existence of a competitive online algorithm. Additionally, we discuss competitive ratios for other
typical penalty functions that are not restricted to take values of 0 or 1.

2012 ACM Subject Classification Theory of computation → Online algorithms

Keywords and phrases Online matching, competitive analysis, delayed service

Digital Object Identifier 10.4230/LIPIcs.STACS.2025.59

Related Version Full Version: https://arxiv.org/abs/2408.08658 [22]

Funding Yasushi Kawase: JST ERATO Grant Number JPMJER2301, JST PRESTO Grant Number
JPMJPR2122, JSPS KAKENHI Grant Number JP20K19739, and Value Exchange Engineering, a
joint research project between Mercari, Inc. and the RIISE.

Acknowledgements The authors thank anonymous reviewers for useful comments.

1 Introduction

In online gaming platforms, the challenge of matching players for an optimal gaming experience
lies in balancing minimal waiting times and high match quality. For instance, consider an
online gaming platform hosting a k-player game, such as chess (k = 2), Mahjong (k = 4),
or battle royal-style shooting games (e.g., k = 60 for Apex Legends). On such platforms,
players enter a waiting queue sequentially, and the platform selects k players from the queue
to start a match. To address scenarios with an insufficient number of players, the platform
may opt to fill in groups with computer (AI) players. Although this approach ensures prompt
matchmaking, it potentially compromises the quality of the gaming experience. Conversely,
waiting to gather the full quota of the required k players may significantly increase the
waiting time, potentially reducing player satisfaction.

© Yasushi Kawase and Tomohiro Nakayoshi;
licensed under Creative Commons License CC-BY 4.0

42nd International Symposium on Theoretical Aspects of Computer Science (STACS 2025).
Editors: Olaf Beyersdorff, Michał Pilipczuk, Elaine Pimentel, and Nguyễn Kim Thắng;
Article No. 59; pp. 59:1–59:18

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:kawase@mist.i.u-tokyo.ac.jp
https://yambi.jp/
https://orcid.org/0000-0001-5626-779X
mailto:nakayoshi-tomohiro@g.ecc.u-tokyo.ac.jp
https://orcid.org/0009-0008-7176-8048
https://doi.org/10.4230/LIPIcs.STACS.2025.59
https://arxiv.org/abs/2408.08658
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

59:2 Online Matching with Delays and Size-Based Costs

Motivated by the above challenge, we introduce the Online Matching with Delays and
Size-based Costs (OMDSC) problem. In this problem, requests (corresponding to players)
are presented sequentially in real time. At any moment, it is possible to match a group
composed of any number of previously received but unmatched requests. The total cost
associated with each match is defined by the waiting time for each request within the group
and the cost that depends on the group size. The penalty function specifies the cost based
on the size of the group.

The OMDSC problem has applications beyond gaming. For instance, in online shopping
services, product orders arrive sequentially, and the products can be dispatched together at
any time. While it is preferable to dispatch as many orders as possible to minimize costs,
customers may become frustrated if their wait times are too long. This situation can also
be modeled as an OMDSC problem, where the waiting time and the size of each dispatch
jointly determine the total cost.

Notably, our problem is closely related to the TCP acknowledgment problem [14], the
online weighted cardinality Joint Replenishment Problem (JRP) with delays [12], and the
online Min-cost Perfect Matching with Delays (MPMD) [16]. The TCP acknowledgment
problem (without look-ahead) is equivalent to the OMDSC problem with a constant penalty
function. Various generalizations of the TCP acknowledgment problem partially capture the
OMDSC problem. Specifically, the online weighted cardinality JRP with delays considers
the costs dependent on the (weighted) cardinality of each group. In these generalizations,
the penalty function is assumed to be monotonically nondecreasing. However, the OMDSC
problem treats penalty functions as nonmonotonic. In the MPMD problem, requests arrive
on a metric space, and matching is restricted to groups of exactly size 2. The online Min-cost
Perfect k-way Matching with Delays (k-MPMD) [27] extends the group size to k. For further
details, please refer to Section 1.2.

1.1 Our Results
In this study, we determine the competitive ratios of the OMDSC problem for fundamental
and critical scenarios in which the penalty function takes only values of either 0 or 1. In
the OMDSC problem, dividing a group into multiple smaller groups can reduce penalties.
Therefore, it is sufficient to consider a modified penalty function obtained by optimally
dividing a group into subgroups. With this modification, we classify penalty functions into
three cases: (i) always 1, (ii) 0 if the size is a multiple of k, and (iii) all other scenarios.

In case (i), the OMDSC problem is equivalent to the TCP acknowledgment problem.
Dooly et al. [14] proposed a 2-competitive online algorithm that matches all remaining
requests when the total waiting cost increases by 1. For case (ii), we first examine natural
algorithms that match all the remaining requests whenever a match incurs a positive cost,
which we refer to as match-all-remaining algorithms. We demonstrate that every match-
all-remaining algorithm is Ω(

√
k)-competitive (Theorem 6). Consequently, to obtain an

o(
√

k)-competitive algorithm, we must consider both the timing and size of the requests to
be matched. By carefully managing remaining requests, we propose an O(log k/ log log k)-
competitive online algorithm (Theorem 8). We also prove that this competitive ratio is the
best possible (Theorem 15). It is worth mentioning that the competitive ratio for case (ii)
with k = 1 is trivial (Theorem 3) and that with k = 2 can be obtained from the results of
Emek et al. [17]. For any penalty function in case (iii), we prove that no competitive online
algorithm exists (Theorem 2). The results are summarized in Table 1. Furthermore, the
competitive ratios for other typical penalty functions that are not restricted to take values of
0 or 1 are discussed in Section 2.3.

Y. Kawase and T. Nakayoshi 59:3

Table 1 Competitive ratios for the OMDSC problem.

Penalty function (with modification) Competitive ratio Reference

(i) always 1 2 Dooly et al. [14]
k = 1 1 Theorem 3

(ii) 0 if the size is a multiple of k k = 2 3 Emek et al. [17]
general k Θ (log k/ log log k) Theorems 8 and 15

(iii) other scenarios unbounded Theorem 2

1.2 Related Work
An online version of the matching problem was first introduced by Karp et al. [21]. In
their study, arriving requests are matched immediately upon arrival, primarily focusing on
bipartite matching. Additionally, research has been conducted to minimize matching costs,
both in settings where vertices have determined costs and in settings that consider distances
in a metric space. Mehta et al. [26] proposed an application to AdWords. Other applications,
such as food delivery, have also been considered. For further details, please refer to [15,25].

In applications such as online game matchmaking and ride-sharing services, service
providers can delay user matches. Emek et al. [16] modeled this scenario as an MPMD
problem. In this setting, the requests can be retained by incurring waiting costs. Several online
algorithms have been proposed for solving the MPMD problem [1,3,8]. Subsequently, Melnyk
et al. [27] extended the MPMD problem to the k-MPMD problem, which requires exactly
matching the size k. To address this problem, deterministic and randomized algorithms have
been proposed [19,27].

Dooly et al. [14] introduced the TCP acknowledgment problem that involves acknowledging
TCP packets. In this problem, the aim is to minimize the sum of the acknowledgment costs and
the costs of delaying TCP packets. Optimal deterministic and randomized algorithms were
proposed by Dooly et al. [14] and Karlin et al. [20], respectively. The TCP acknowledgment
problem is equivalent to the OMDSC problem, where the penalty function falls under case (i).
Conversely, the OMDSC problem can be viewed as a generalization of the acknowledgment
cost of the TCP acknowledgment problem.

Various extensions of the TCP acknowledgment problem have been proposed [2,5–7,9–12,
29]. In particular, Chen et al. [12] introduced the problem of an online weighted cardinality
JRP with delays. Their model can handle penalties based on the size of the match. However,
unlike in our study, their penalty function is restricted to monotonically nondecreasing. They
proposed a constant-competitive algorithm to solve this problem.

The objectives of the MPMD and k-MPMD problems are to pair requests and form
groups of exact size k, respectively. In contrast, the proposed OMDSC problem does not
impose constraints on the number of requests in each group. Emek et al. [16] introduced a
problem called MPMDfp, which allows the clearance of a request at a cost. The MPMDfp
problem on a single source is equivalent to the OMDSC problem where the penalty function
corresponds to case (ii) with k = 2. Additionally, the MPMDfp problem on a single source
can be reduced to an MPMD problem using two sources [16]. For MPMD on two sources,
Emek et al. [17] proposed a deterministic algorithm, and He et al. [18] proposed a randomized
algorithm (see Section 4 for more details).

Another approach to extend the MPMD problem is to modify waiting costs. Liu et al. [23]
generalized the waiting costs from linear to convex. Other variations of waiting costs have
also been studied [4,13,24]. Pavone et al. [28] investigated Online Hypergraph Matching with

STACS 2025

59:4 Online Matching with Delays and Size-Based Costs

Deadlines problem. Although hypergraph matching does not impose constraints on group
size, it differs from the OMDSC problem in that it employs deadlines instead of delays, and
requests arrive at one at each unit of time.

2 Preliminaries

We denote the set of real numbers, nonnegative real numbers, integers, nonnegative integers,
and positive integers by R, R+, Z, Z+, and Z++, respectively. In addition, for a positive
integer k ∈ Z++, we define Zk as the set of integers from 0 to k − 1.

2.1 Problem Settings
In this section, we formally define the OMDSC problem. An instance of the problem is
specified by a penalty function f : Z++ → R+ and m requests V = {v1, v2, . . . , vm} that
arrive in real time. Each request vi arrives at time ti, where 0 ≤ t1 ≤ t2 ≤ · · · ≤ tm is
assumed.

An online algorithm initially knows only the function f ; it does not have prior knowledge
of the arrival times or the total number of requests. Each request vi is revealed at time ti.
At each time τ , the algorithm can match any subset Sj of requests that appeared by time τ

and have not yet been matched. The cost of matching requests in Sj at time τj is defined as

f(|Sj |) +
∑

i: vi∈Sj
(τj − ti) ,

where the first term represents the size cost and the second term represents the waiting cost.
In addition, the waiting cost at time τ is defined as

∑
i: vi∈V ′(τ − ti), where V ′ is the set of

unmatched but previously presented requests at that time.
The objective is to design an online algorithm that matches all requests while minimizing

the total cost. We use the competitive ratio to evaluate the performance of the online
algorithm. For a given instance σ, let ALG(σ) represent the cost incurred by the online
algorithm and let OPT(σ) denote the optimal cost with prior knowledge of all requests in
the instance. The competitive ratio of ALG for an instance σ is defined as ALG(σ)/OPT(σ),
interpreting 0/0 as 1. In addition, the competitive ratio of ALG for a problem is defined as
the supremum of the competitive ratios over all instances, that is, supσ ALG(σ)/OPT(σ).
We call an online algorithm ρ-competitive if the competitive ratio of that algorithm is ρ.

The competitive ratio defined above is the strict competitive ratio. We can also define
the asymptotic competitive ratio as lim supALG(σ)→∞ ALG(σ)/OPT(σ). However, in our
problem, the strict and asymptotic competitive ratios of the optimal algorithm coincide.
Indeed, if an algorithm is strictly ρ-competitive, then it is also asymptotically at most
ρ-competitive by definition. Moreover, if no strictly ρ-competitive algorithm exists, we can
construct an instance for each algorithm in which the strict competitive ratio is at least ρ.
Thus, by repeatedly constructing and providing such instances, we can conclude that no
algorithm has an asymptotic competitive ratio better than ρ. Hence, we only consider the
strict competitive ratio hereafter.

2.2 Binary Penalty Function
This study focuses primarily on penalty functions that take values only of either 0 or 1. We
discuss other penalty functions in Section 2.3. For such a binary penalty function f , we may
be able to match n requests with size cost 0, even if f(n) = 1, by appropriately partitioning
the requests. For instance, if f(2) = f(3) = 0 and f(7) = 1, we can match 7 requests with a
size cost of 0 by partitioning them into groups of sizes 2, 2, and 3. We introduce a notation
for the set of numbers of requests that can be matched with a size cost of 0 as follows:

Y. Kawase and T. Nakayoshi 59:5

▶ Definition 1. For the penalty function f : Z++ → {0, 1}, we define the zero-penalty set Bf

as a set of quantities that can be matched with a size cost of 0 by optimally dividing requests
into subsets and matching them. Formally,

Bf :=
{

n ∈ Z++

∣∣∣∣∣ ∃s ∈ Z++, ∃n1, . . . , ns ∈ Z++ s.t.
s∑

i=1
ni = n, f(n1) = · · · = f(ns) = 0

}
.

For example, if f(1) = 0, then Bf = Z++. Alternatively, if f(1) = 1 and f(2) = f(3) = 0,
then Bf = Z++ \ {1}. We can interpret the size cost of matching n requests as 0 if n ∈ Bf

and 1 if n ̸∈ Bf .
We classify binary penalty functions into the following three types: (i) Bf = ∅, (ii)

Bf = {kn | n ∈ Z++} for some k ∈ Z++, and (iii) all other scenarios. Case (i) is the situation
in which the penalty for matching requests is always 1 (i.e., f(n) = 1 for all n ∈ Z++).
Case (ii) is a situation in which a set of requests can be matched without a size cost only
if the size is a multiple of k = min{n ∈ Z++ | f(n) = 0} (i.e., f(k) = 0 and f(n) = 1 for
all n ∈ Z++ \ {kn′ | n′ ∈ Z++}). This case is applicable in the context of an online gaming
platform that hosts a k-players game, as described in Introduction.

2.3 Other Penalty Functions
If the range of the penalty function is {0, µ} with a positive real µ, it can be treated
as a binary penalty function by scaling the increase rates of the waiting costs µ times
slower. This is because the cost of matching requests in Sj at time τj can be expressed as
µ ·

(
f(|Sj |)/µ +

∑
i: vi∈Sj

(τj/µ − ti/µ)
)
. For example, if µ = 60 and the unit time is one

minute in the original problem, the range of the penalty function can be treated as {0, 1} by
adjusting the unit time to one hour. Let µ, λ ∈ R with 0 < µ ≤ λ and consider a penalty
function that takes values of 0 or within the range [µ, λ]. By applying our ρ-competitive
algorithm to the problem while treating positive penalties as if they were µ, we can obtain
a (ρ · λ/µ)-competitive algorithm. In addition, our impossibility result for case (iii) can be
transferred in the same manner.

Another interesting penalty function is f(n) = ⌈n/k⌉ for a specific integer k. This penalty
function appears when a service can process up to k requests simultaneously, and each
processing costs a fixed amount. For this penalty function, an algorithm similar to that in (i)
is 2-competitive for any k ≥ 2. We also prove that this competitive ratio is best possible for
every k ≥ 2 (see the full version [22]). For k = 1, the algorithm that matches each request
upon its arrival is 1-competitive.

3 Zero-penalty Set is Nonempty and Non-representable as Multiples

In this section, we examine case (iii), where the penalty function f satisfies Bf ̸= ∅ and
Bf ̸= {kn | n ∈ Z++} for any k ∈ Z++. We demonstrate that, in this case, no algorithm has
a finite competitive ratio.

To illustrate this intuitively, let us consider the case where f(1) = 1 and f(2) = f(3) = 0,
representing a poker table for at least two players. Imagine two players arriving initially,
followed potentially by a third. If we match the first two players immediately upon their
arrival, matching the subsequent player incurs a cost. Alternatively, if we wait to match the
first two, an unnecessary waiting cost is incurred when no additional player appears. We can
construct similar instances for every penalty function in case (iii).

STACS 2025

59:6 Online Matching with Delays and Size-Based Costs

▶ Theorem 2. For the OMDSC problem with a penalty function f that satisfies both Bf ̸= ∅
and Bf ̸= {kn | n ∈ Z++} for every k ∈ Z++, the competitive ratio of any randomized
algorithm is unbounded against an oblivious adversary.

Proof. Let k∗ := min Bf , where such a value must exist by the assumption that Bf ̸= ∅.
Additionally, let ℓ := min(Bf \ {k∗n | n ∈ Z++}), where such a value must exists because
{k∗n | n ∈ Z++} ⊆ Bf and Bf ̸= {k∗n | n ∈ Z++}. We fix an arbitrary online algorithm
ALG and take a sufficiently small ε > 0. Consider an instance where k∗ requests are given at
time 0, and afterward, there may be arrivals of ℓ − k∗ additional requests at time ε depending
on the behavior of ALG. Suppose that ALG matches all the initial requests before ε with
probability p.

If p ≥ 1/2, consider an instance where ℓ − k∗ additional requests are given at time ε.
Since ℓ − k∗ /∈ Bf , ALG incurs an expected size cost of at least p (≥ 1/2). In contrast, the
minimum total cost is k∗ε by matching all k∗ + (ℓ − k∗) = ℓ requests at time ε. Thus, the
competitive ratio is at least p/(k∗ε) ≥ 1/(2k∗ε).

Conversely, if p < 1/2, consider the instance where no additional requests are presented.
Then, the (expected) waiting cost for ALG is at least (1 − p)k∗ε > k∗ε/2, while the offline
optimal cost is 0 by matching all requests at time 0. Hence, the competitive ratio is
unbounded.

Therefore, in both scenarios, the competitive ratio is unbounded as ε goes to 0, proving
that the competitive ratio for any online algorithm is unbounded. ◀

4 Zero-penalty Set is Multiples of an Integer

In this section, we investigate the case (ii), where the penalty function f satisfies Bf = {kn |
n ∈ Z++} for some k ∈ Z++.

When k = 1 (i.e., Bf = Z++), we have f(1) = 0. Thus, the algorithm that immediately
matches each request individually upon its arrival incurs a cost of 0 and is 1-competitive.

▶ Theorem 3. For the OMDSC problem with a penalty function f such that f(1) = 0, there
exists a 1-competitive deterministic online algorithm.

For the case k = 2, the OMDSC problem is equivalent to the problem of MPMDfp in
a metric space consisting of a single point. It is known that the MPMDfp problem can be
reduced to the MPMD problem by doubling the number of points on the metric space [16].
By this reduction, the OMDSC problem with k = 2 can be reduced to the problem of MPMD
on two sources by setting the distance between two sources to 2 and giving requests for two
sources simultaneously when a request is given in the OMDSC problem. A matching across
two sources in the MPMD problem corresponds to a matching of a single request in the
OMDSC problem. The optimal cost of the reduced MPMD problem is twice that of the
original OMDSC problem.

Emek et al. [17] provided a 3-competitive online algorithm for the online MPMD problem
on two sources and demonstrated that this is best possible. In their instances constructed for
the proof of the lower bound, requests are always given to two sources simultaneously, which
can be reduced to the OMDSC problem with k = 2. Therefore, we obtain the following
theorem.

▶ Theorem 4 (Emek et al. [17]). For the OMDSC problem with a penalty function f such
that Bf = {2n | n ∈ Z++}, there exists a 3-competitive deterministic algorithm. Moreover,
no deterministic online algorithm has a competitive ratio smaller than 3.

Y. Kawase and T. Nakayoshi 59:7

He et al. [18] proposed a 2-competitive randomized algorithm against an oblivious adversary
for the MPMD problem on two sources. Thus, this leads to a 2-competitive randomized
algorithm for the OMDSC problem with Bf = {2n | n ∈ Z++}.

In the remainder of this section, we conduct an asymptotic analysis with respect to k.
Firstly, we define a type of algorithm as below and demonstrate the difficulty of case (ii)

compared to case (i).

▶ Definition 5. We call an algorithm for the OMDSC problem match-all-remaining if,
whenever it makes a match, it matches all remaining requests or the size is in Bf .

For case (i), where a penalty to match requests is always 1, a match-all-remaining algorithm
achieves the optimal competitive ratio. However, for case (ii), we show that every match-all-
remaining algorithm has a competitive ratio of Ω(

√
k), where the proof can be found in the

full version [22].

▶ Theorem 6. For the OMDSC problem with a penalty function f that satisfies Bf = {kn |
n ∈ Z++}, every match-all-remaining algorithm has a competitive ratio of Ω(

√
k).

In Section 4.1, we provide an O(log k/ log log k)-competitive algorithm by utilizing par-
tial matchings of remaining requests. Thus, no match-all-remaining algorithm is optimal.
Subsequently, in Section 4.2, we establish the lower bound of Ω(log k/ log log k).

Before proceeding, we introduce some notations. Recall that Zk = {0, 1, . . . , k − 1}.

▶ Definition 7. We write x ∈ Zk to represent the remainder of x ∈ Z when divided by k.
Additionally, for ℓ, r ∈ Z+, we define the cyclic interval

Jℓ, rKk :=
{

{x ∈ Zk | ℓ ≤ x ≤ r} = {ℓ, ℓ + 1, . . . , r} (if ℓ ≤ r),
{x ∈ Zk | x ≤ r or ℓ ≤ x} = {ℓ, ℓ + 1, . . . , k − 1, 0, 1, . . . , r} (if ℓ > r).

With this notation, a ≡ b (mod k) can be expressed as a = b. Note that we have
∣∣Jℓ, rKk

∣∣ =
r − ℓ + 1 if ℓ ≤ r and

∣∣Jℓ, rKk

∣∣ = k + r − ℓ + 1 if ℓ > r.
Let α be a real number such that αα = k. Then, we have α = Θ(log k/ log log k) because

the ratio α
log k/ log log k = α

log αα/ log log αα = log α+log log α
log α approaches 1 as k → ∞ (i.e., α → ∞).

Thus, our task is to provide upper and lower bounds of O(α) and Ω(α), respectively.

4.1 Upper Bound
The objective of this subsection is to prove the following theorem.

▶ Theorem 8. For the OMDSC problem with a penalty function f that satisfies Bf = {kn |
n ∈ Z++}, there exists an O(log k/ log log k)-competitive deterministic online algorithm.

According to Theorem 6, an O(α) (= O(log k/ log log k))-competitive algorithm must
consider both the timing and the size of requests to be matched. To address this requirement,
we propose an algorithm that references the costs of other algorithms. The execution of the
algorithm is divided into phases. In each phase, the goal is to ensure that any competing
algorithm incurs a cost of at least 1, while our algorithm’s cost remains at most O(α). We
categorize competing algorithms based on the number of unmatched requests they carry over
from the previous phase. As for the current phase, we assume that algorithms only perform
matches of sizes that are multiples of k, since otherwise, their cost immediately reaches at
least 1. Furthermore, it is sufficient to focus on “greedy” algorithms that immediately match
k requests whenever at least k unmatched requests exist.

The first phase starts at the beginning. In each phase, our algorithm runs with the
following k + 2 variables.

STACS 2025

59:8 Online Matching with Delays and Size-Based Costs

▶ Definition 9. At each time t within each phase, the variables W0(t), W1(t), . . . , Wk−1(t),
s(t), and a(t) are defined as follows:

Wi(t) (i ∈ Zk): the waiting cost incurred by time t within the phase on the algorithm
that greedily performs matches with no size cost, assuming (k − i) unmatched requests are
carried over to the current phase.
s(t): the number of requests given by time t in the phase.
a(t): the number of requests that our algorithm has matched up to, but not including,
time t during the phase.

We will omit the argument t when there is no confusion.
Note that, if (k−i) unmatched requests are carried over to the current phase, the optimum

cost incurred thus far within the phase is at least min{1, Wi}. At the end of the phase, our
algorithm ensures Wi ≥ 1 for all i ∈ Zk. This means that any algorithm incurs a cost of at
least 1 per phase because matching a number of requests that is not a multiple of k results
in a cost of 1.

During each phase, our algorithm recursively processes a subroutine recurring(Jp, qKk, l),
which takes as parameters a cyclic interval Jp, qKk and an integer l. When the subroutine
is called, it ensures that Wi ≥ 1 for all i ̸∈ Jp, qKk and Wi ≥ l/α for all i ∈ Jp, qKk. In each
iteration of the subroutine, the interval size

∣∣Jp, qKk

∣∣ is reduced by a factor of Θ(1/α) or l is
increased by one, with incurring cost at most O(1). As a result, all Wi reach at least 1 after
O(α) recursions by αα = k.

At the beginning of each phase, the variables W0, W1, . . . , Wk−1, s, and a are 0 and
recurring(J0, k − 1Kk, 0) is called. Throughout the phase, the algorithm updates the values
of W0, W1, . . . , Wk−1, s, and a, appropriately. Moreover, if at least k unmatched requests
exist (i.e., s − a ≥ k), it immediately matches k of them.

1

l
α

l+1
α

p q

ā

(a) Line 1.

1

l
α

l+1
α

p q

ā

(b) Lines 5 and 8.

1

l
α

l+1
α

p qp′ q′

ā

(c) Line 6.

1

l
α

l+1
α

p qp′ q′

ā

(d) Line 9.

1

l
α

l+1
α

p qp′ q′

ā

(e) Line 11.

1

l
α

l+1
α

p qp′ q′

ā

(f) Line 13.

1

l
α

l+1
α

p qp′ q′

ā

(g) Line 14.

1

l
α

l+1
α

p qp′ q′

ā

ri β

(h) Line 17.

Figure 1 Lower bounds of Wi at each line of Algorithm 1. Gray areas indicate lower bounds of
Wi at the beginning of recurring(Jp, qKk, l). Red areas illustrate increments earlier than the last
wait in recurring(Jp, qKk, l). Pink areas represent increments during the last wait.

We now describe the subroutine recurring(Jp, qKk, l). See Algorithm 1 for a formal
description. Figure 1 illustrates lower bound of each Wi at each line.

When recurring(Jp, qKk, l) is called, it is guaranteed that p, q ∈ Zk, l ∈ {0, 1, . . . , ⌈α⌉},
Wi ≥ 1 for all i /∈ Jp, qKk, Wi ≥ l/α for all i ∈ Jp, qKk, and a = p (recall that a ∈ Zk is the
remainder of a when divided by k, see also Figure 1a). The recursion ends (line 3) when∣∣Jp, qKk

∣∣ equals to 1 or when l is at least α. Then, it matches all remaining requests and
proceeds to the next phase.

Y. Kawase and T. Nakayoshi 59:9

Algorithm 1 The pseudo-code of recurring(Jp, qKk, l).

/* W0, W1, . . . , Wk−1, s, a are variables that change as defined in Definition 9 */

1 def recurring(Jp, qKk, l):
/* Ensure: p, q ∈ Zk, l ∈ Z+, Wi ≥ 1 (∀i /∈ Jp, qKk), Wi ≥ l

α (∀i ∈ Jp, qKk), a = p */

2 Wait until Wa (= Wp) increases by 2; // Cost: 2

3 if
∣∣Jp, qKk

∣∣ = 1 or l ≥ α then
4 Match all remaining requests and Proceed to the next phase; // Cost: ≤ 1

5 if Wi ≥ l+1
α for all i ∈ Jp, qKk then call recurring(Jp, qKk, l + 1);

6 Let Jp′, q′Kk ⊆ Jp, qKk be the smallest cyclic interval where Wi ≥ l+1
α for all

i /∈ Jp′, q′Kk;
7 Wait until s ∈ Jp′, p − 1Kk or Wa (= Wp) increases by 1/α; // Cost: ≤ 1
8 if Wa (= Wp) increased by 1/α at line 7 then call recurring(Jp, qKk, l + 1);
9 Match p′ − p requests; // Cost: 1

10 Wait until Wa (= Wp′) increases by 2; // Cost: 2

11 if Wi ≥ l+1
α for all i ∈ Jp′, q′Kk then

12 Wait until s ∈ Jp, p′ − 1Kk or Wa (= Wp′) increases by 1; // Cost: ≤ 1
13 if Wa (= Wp′) increased by 1 at line 12 then call recurring(Jp′, qKk, l + 1);
14 Match p − p′ requests; // Cost: ≤ 1
15 Call recurring(Jp, qKk, l + 1);
16 else
17 Let Jp′, rKk ⊆ Jp′, qKk be the smallest cyclic interval where Wi ≥ 1 for all

i /∈ Jp′, rKk;
18 Call recurring(Jp′, rKk, l);

Jp′, p − 1Kk

p

a

qp′ q′ Zk

(a) Situation at line 7.

Jp, p′ − 1Kk

p qp′ q′

a
Zk

(b) Situation at line 12.

Figure 2 Relative positions of p, q, p′, q′, and a in Algorithm 1.

At the beginning of each recursion, the algorithm waits until Wa increases by 2 (line 2).
Afterward, if Wi ≥ (l + 1)/α for all i ∈ Jp, qKk, it calls recurring(Jp, qKk, l + 1) (Figure 1b).
Now, assume that Wi < (l + 1)/α for some i ∈ Jp, qKk. In this case, there exists a smaller
interval Jp′, q′Kk (⊆ Jp, qKk) such that Wi ≥ (l + 1)/α for all i ∈ Jp, qKk \ Jp′, q′Kk (Figure 1c).
The algorithm picks the smallest such cyclic interval Jp′, q′Kk (line 6).

Next, it attempts to change a from p to p′ by matching p′ − p requests. To achieve
this, it waits to satisfy s ∈ Jp′, p − 1Kk (see Figure 2a) until Wa (= Wp) increases by 1/α

(line 7). If Wa increases by 1/α, then Wi ≥ (l + 1)/α holds for every i ∈ Jp, qKk as we will
show later (Figure 1b). Consequently, the algorithm calls recurring(Jp, qKk, l + 1) (line 8).
Now, suppose that s in Jp′, p − 1Kk at some point. In that case, it changes a from p to p′ by
matching p′ − p requests (line 9 and see Figure 1d).

Then, the algorithm waits until Wa (= Wp′) increases by 2 (line 10). We consider two
cases: (♠) Wi ≥ (l + 1)/α for all i ∈ Jp′, q′Kk (Figure 1e) and (♡) Wi < (l + 1)/α for some
i ∈ Jp′, q′Kk (Figure 1h). In case (♠), the algorithm attempts to move a from p′ to p to call
recurring(Jp, qKk, l + 1). To do this, the algorithm waits until s ∈ Jp, p′ − 1Kk (see Figure 2b)

STACS 2025

59:10 Online Matching with Delays and Size-Based Costs

or until Wa (= Wp′) increases by 1 (line 12). If Wp′ increases by 1, then Wi ≥ 1 holds for
every i ∈ Jp, p′Kk as we will show later (Figure 1f). Then, it calls recurring(Jp′, qKk, l + 1)
(line 18). Otherwise, the algorithm changes a from p′ to p by matching p − p′ requests (line 14
and see Figure 1g). Consequently, it calls recurring(Jp, qKk, l + 1) (line 15). In case (♡),
Wi becomes at least 1 for i in not a cyclic interval Jp′, rKk (Figure 1h). Then, the algorithm
calls recurring(Jp′, rKk, l) (line 18).

After completing the call of recurring, we have Wi ≥ 1 for all i ∈ Zk. Then, the
algorithm moves to the next phase.

To analyze the competitive ratio of this algorithm, we present several lemmas. The value
of Wi changes continuously within each phase, and its rate of increase over time is given by
dWi(t)/dt = s(t) − i. The increase rate of Wi for each i is illustrated in Figure 3.

s ip q

s − p s − i

Zk

(a) s ∈ Jp, i − 1Kk.

sip q

s − p s − i

Zk

(b) s ∈ Ji, p − 1Kk.

Figure 3 The increase rates dWp/dt = s − p and dWi/dt = s − i.

We demonstrate that if Wp increases significantly while Wi increases only slightly, then
Wp increases significantly during periods when s − i is small.

▶ Lemma 10. Let p, q ∈ Zk and i ∈ Jp + 1, qKk. For two times x, y (x < y) in the same
phase, suppose that Wp(y) − Wp(x) ≥ 2 and Wi(y) − Wi(x) < 1/α. Then, the increment of
Wp in time t with x ≤ t ≤ y and s(t) ∈ Ji, p − 1Kk ∩ Ji, i + ⌈(i − p)/(α − 1)⌉ − 1Kk is more
than 1.

Proof. Let β ∈ Zk be the index such that Ji, βKk = Ji, p − 1Kk ∩ Ji, i + ⌈(i − p)/(α − 1)⌉ − 1Kk.
Define T :=

{
t | x ≤ t ≤ y and s(t) ∈ Ji, βKk

}
and T̂ :=

{
t | x ≤ t ≤ y and s(t) ̸∈ Ji, βKk

}
.

Fix t ∈ T̂ . Then, we have either s(t) /∈ Ji, p − 1Kk or s(t) − i ≥ ⌈(i − p)/(α − 1)⌉. If
s(t) /∈ Ji, p − 1Kk, then dWi(t)

dt ≥ dWp(t)
dt . Otherwise (i.e. s(t) ∈ Ji, p − 1Kk and s(t) − i ≥

⌈(i − p)/(α − 1)⌉), we have

dWi(t)
dt

= (s(t) − i) = (s(t)−i)+(α−1)·(s(t)−i)
α ≥ (s(t)−i)+(i−p)

α = (s(t)−p)
α = 1

α
· dWp(t)

dt
.

Thus, in either case, dWp(t)/dt ≤ α · dWi(t)/dt .
Suppose to the contrary that the increment of Wp within t ∈ T is at most 1. Under

this condition, Wp must increase by at least 1 within t ∈ T̂ because Wp(y) − Wp(x) ≥ 2.
Therefore, we have

1
α

· 1 ≤ 1
α

·
∫

T̂

dWp(t)
dt

dt ≤
∫

T̂

dWi(t)
dt

dt ≤
∫ y

x

dWi(t)
dt

dt = Wi(y) − Wi(x),

where the second inequality holds by dWp(t)/dt ≤ α · dWi(t)/dt for t ∈ T̂ . This contradicts
the assumption that Wi(y) − Wi(x) < 1/α. Therefore, the increment of Wp within t ∈ T is
more than 1. ◀

Next, by using Lemma 10, we show that Wi increases by at least 1/α except for some
small interval after Wp increases by 2. This indicates that

∣∣Jp′, q′Kk

∣∣ is small in the situation
depicted in Figure 1c.

Y. Kawase and T. Nakayoshi 59:11

▶ Lemma 11. Let p, q ∈ Zk. For two times x, y (x < y) in the same phase, suppose
that Wp(y) − Wp(x) = 2. Then, there exist some p′, q′ ∈ Zk such that Jp′, q′Kk ⊆ Jp, qKk,∣∣Jp′, q′Kk

∣∣ ≤
⌈
|Jp, qKk|/α

⌉
, and Wi(y) − Wi(x) ≥ 1/α for all i ∈ Jp, qKk \ Jp′, q′Kk.

Proof. If Wi(y) − Wi(x) ≥ 1/α for all i ∈ Jp, qKk, then the conditions are satisfied by setting
p′ = q′ = p. Hence, in what follows, we assume that Wi(y)−Wi(x) < 1/α for some i ∈ Jp, qKk.
Define Jp′, q′Kk (⊆ Jp, qKk) to be the minimum cyclic interval such that Wi(y) − Wi(x) ≥ 1/α

for all i ∈ Jp, qKk \ Jp′, q′Kk.
What is left is to show that

∣∣Jp′, q′Kk

∣∣ ≤
⌈
|Jp, qKk|/α

⌉
. Let βi ∈ Zk be the index such that

Ji, βiKk = Ji, p−1Kk ∩Ji, i+⌈(i − p)/(α−1)⌉−1Kk and Ti := {t | x ≤ t ≤ y and s(t) ∈ Ji, βiKk}
for i ∈ {p′, q′}. Then, by Lemma 10, the increments of Wp within t ∈ Tp′ and t ∈ Tq′ are
more than 1, respectively. Since the total increment of Wp is 2, the intervals Jp′, βp′Kk and
Jq′, βq′Kk must overlap. Thus, we have q′ ∈ Jp′, βp′Kk (see Figure 4).

Jq′, βq′KkJp′, βp′Kk

p qp′ q′
βp′ Zk

Figure 4 Relative positions of p, q, p′, q′, and βp′ in Lemma 11.

Now, we are ready to prove
∣∣Jp′, q′Kk

∣∣ ≤
⌈
|Jp, qKk|/α

⌉
. If p′ − p ≤ (α − 1) ·

∣∣Jp, qKk

∣∣/α,
then we have

∣∣Jp′, q′Kk

∣∣ ≤
∣∣Jp′, βp′Kk

∣∣ ≤
⌈
(p′ − p)/(α − 1)

⌉
≤

⌈
|Jp, qKk

∣∣/α⌉. Otherwise (i.e.,
p′ − p > (α − 1) ·

∣∣Jp, qKk

∣∣/α), we have∣∣Jp′, q′Kk

∣∣ ≤
∣∣Jp′, qKk

∣∣ =
∣∣Jp, qKk

∣∣ −
∣∣Jp, p′ − 1Kk

∣∣ =
∣∣Jp, qKk

∣∣ − (p′ − p)
<

∣∣Jp, qKk

∣∣ − (α − 1) ·
∣∣Jp, qKk

∣∣/α =
∣∣Jp, qKk

∣∣/α ≤
⌈
|Jp, qKk|/α

⌉
. ◀

Now, we demonstrate that recurring satisfies desired properties.

▶ Lemma 12. When recurring(Jp, qKk, l) is called, the following three conditions are satisfied:
(i) Wi ≥ 1 for all i /∈ Jp, qKk, (ii) Wi ≥ l/α for all i ∈ Jp, qKk, and (iii) a = p. Moreover, if
recurring(Jp̂, q̂Kk, l̂) is called next, it satisfies either (a) |Jp̂, q̂Kk| ≤ |Jp, qKk| and l̂ = l + 1, or
(b) |Jp̂, q̂Kk| ≤ ⌈|Jp, qKk|/(α − 1)⌉ and l̂ = l.

Proof. We prove these by induction.
Initially, when recurring(J0, k−1Kk, 0) is called at the beginning of a phase, the conditions

are satisfied as Wi = 0 ≥ 0/α for all i ∈ J0, k − 1Kk and a = p = 0.
As an induction hypothesis, suppose the conditions are satisfied when recurring(Jp, qKk, l)

is called. Our goal is to show that these conditions continue to be satisfied at the next
recursive call. We analyze this based on where the recursive call is made in the conditional
branching of Algorithm 1. We denote by L the cardinality of Jp, qKk.

If the condition of line 5 is true and recurring(Jp, qKk, l + 1) is called Conditions (i) and
(iii) are satisfied as a = p. Condition (ii) is also satisfied since the condition of line 5 is
true (see Figure 1b). Moreover, the next call satisfies conditions (a).

If the condition of line 5 is false Since the proposed algorithm waits until Wa increases by
2 at line 2, the interval Jp′, q′Kk chosen at line 6 satisfies

∣∣Jp′, q′Kk

∣∣ ≤ ⌈L/α⌉ by Lemma 11
(see Figure 1c).

STACS 2025

59:12 Online Matching with Delays and Size-Based Costs

If the condition of line 8 is true and recurring(Jp, qKk, l + 1) is called Conditions (i) and
(iii) are satisfied as a = p. As Wp increases by 1/α while s ∈ Jp, p′ −1Kk, Wi also increases
by at least 1/α for all i ∈ Jp′, p − 1Kk by s − i ≥ s − p (see Figure 1c). Thus, for all
i ∈ Jp′, q′Kk, Wi increases by 1/α, and hence condition (ii) is also satisfied (see Figure 1b).
Additionally, the next call satisfies condition (a).

If the condition of line 8 is false Since s ∈ Jp′, p − 1Kk, the proposed algorithm can match
(p′ − a) = (p′ − p) requests at line 9 (see Figure 1d). This match results in a = p′.

If the condition of line 11 is true In this scenario, recurring(Jp′, qKk, l + 1) at line 13 or
recurring(Jp, qKk, l + 1) at line 15 is called. In both cases, condition (a) is satisfied. In
the first case, Wa (= Wp′) increases by 1 at line 12, which indicates s ∈ Jp′, p − 1Kk during
the increase. Thus, for any i ∈ Jp, p′ − 1Kk, Wi increases by at least 1, and a = p′ (see
Figure 1f). Then, it calls recurring(Jp′, qKk, l + 1) at line 13. In the second case, s is in
Jp, p′ − 1Kk and the proposed algorithm can match (p − a) = (p − p′) requests, making
a = p (see Figure 1g). Then, it calls recurring(Jp, qKk, l + 1) at line 15. These calls
satisfy conditions (i) and (iii) in both cases and condition (ii) is satisfied because the
condition of line 11 is true.

If the condition of line 11 is false and recurring(Jp′, rKk, l) is called There exists an in-
dex i ∈ Jp′, q′Kk such that Wi increases by less than 1/α at line 10 (Figure 1h). Let β ∈ Zk

be the index such that Ji, βKk = Ji, p−1Kk∩Ji, i+⌈(i − p)/(α−1)⌉−1Kk. Lemma 10 ensures
that Wp′ increases by more than 1 during s ∈ Ji, βKk. Therefore, for all j ∈ Jβ +1, p′ −1Kk,
Wj also increases by at least 1. As (i − p′) ≤ (q′ − p′) =

∣∣Jp′, q′Kk

∣∣ − 1 ≤ L/α, we obtain

Jp′, βKk ⊆
q
p′, i +

⌈
(i − p′)/(α − 1)

⌉
− 1

y
k

⊆
q
p′, p′ + (i − p′) +

⌈ 1
α−1 · (i − p′)

⌉
− 1

y
k

=
q
p′, p′ + ⌈ α

α−1 · (i − p′)⌉ − 1
y

k
⊆

q
p′, p′ + ⌈L/(α − 1)⌉ − 1

y
k
.

As Jp′, rKk ⊆ Jp′, βKk, we have |Jp′, rKk| ≤ ⌈L/(α − 1)⌉ and condition (b) is satisfied. Since
a = p′, conditions (i) and (iii) are satisfied, and by the induction hypothesis, condition
(ii) is also satisfied. ◀

We can bound the number of recursions called by the proposed algorithm from Lemma 12,
giving us the upper bound of the cost incurred by the proposed algorithm during each phase.

▶ Lemma 13. The proposed algorithm incurs a cost of O(α) per phase.

Proof. It is not difficult to see that the cost incurred by the algorithm in each recursive call
is no more than 8. Thus, it is sufficient to prove that the number of recursions is at most
O(α) in each phase.

As our goal is asymptotic evaluation, we may assume that α ≥ 4, which implies α ≤
(α − 1)2. By Lemma 12, each call of recurring(Jp, qKk, l) either increments l by 1 or reduces
the number of elements in Jp, qKk to at most

⌈
|Jp, qKk|/(α − 1)

⌉
. Recall that the recursion

starts with |Jp, qKk| = k (= αα) and l = 0 and ends when |Jp, qKk| = 1 or l ≥ α.
Let Ln be the number of elements in Jp, qKk after the interval reduction has occurred n

times. Then, we have Ln ≤ ⌈Ln−1/(α − 1)⌉ ≤ Ln−1/(α − 1) + 1, which implies(
Ln − α−1

α−2

)
≤ 1

α − 1 ·
(

Ln−1 − α−1
α−2

)
≤ · · · ≤ 1

(α − 1)n
·
(

L0 − α−1
α−2

)
≤ L0

(α − 1)n
.

Thus, the number of elements in the interval after 2⌈α⌉ + 1 iterations is at most

L2⌈α⌉+1 ≤ αα

(α − 1)2α+1 + α − 1
α − 2 ≤ 1

α − 1 + α − 1
α − 2 = 1 + 1

α − 1 + 1
α − 2 < 2,

Y. Kawase and T. Nakayoshi 59:13

where the second inequality holds by α ≤ (α − 1)2 and the third inequality holds by
1/(α − 1) < 1/(α − 2) ≤ 1/2 from the assumption that α ≥ 4. Consequently, the number of
elements in Jp, qKk is reduced to 1 or l increases to ⌈α⌉ in at most 3⌈α⌉ = O(α) iterations.
Thus, the number of recursive calls is O(α). ◀

Next, we provide a lower bound on the cost incurred by any algorithm during each phase.

▶ Lemma 14. At the end of a phase, the cost incurred within the phase by any algorithm is
at least 1 (if we treat the waiting costs as imposed sequentially at each moment, rather than
at the time of matching).

Proof. Recall that, if (k − i) unmatched requests are carried over to a phase, the optimum
cost incurred thus far within the phase is at least min{1, Wi}. Thus, it is sufficient to prove
that Wi ≥ 1 for all i ∈ Zk at the end of the phase.

The phase ends at line 4. At this point, we have
∣∣Jp, qKk

∣∣ = 1 or l ≥ α, according to
the condition at line 3. If

∣∣Jp, qKk

∣∣ = 1, then we have p = q, and Wi ≥ 1 for all i ̸= p by
Lemma 12. Since Wp ≥ 1 due to the wait performed at line 2, it follows that Wi ≥ 1 for
all i ∈ Zk. Conversely, if l ≥ α, we have Wi ≥ 1 for all i /∈ Jp, qKk and Wi ≥ l/α ≥ 1 for all
i ∈ Jp, qKk by Lemma 12. Thus, in either case, we obtain Wi ≥ 1 for all i ∈ Zk at the end of
the phase. This proves the lemma. ◀

Based on the lemmas above, we now prove Theorem 8.

Proof of Theorem 8. Suppose that the proposed algorithm completes p (≥ 1) phases for
the given instance. Then, the cost for the proposed algorithm is at most (p + 1) · O(α) by
Lemma 13, while the cost for any algorithm is at least p by Lemma 14. Therefore, the
competitive ratio for this instance is at most (p + 1) · O(α)/p = O(α).

Conversely, suppose that the instance ends during the first phase. If the optimal offline
algorithm incurs a cost of at least 1, then the competitive ratio is at most O(α), as the
cost incurred by the proposed algorithm during the first phase is O(α). If the cost incurred
by the optimal offline algorithm is less than 1, then only waiting costs are incurred, as no
requests are carried over to the first phase. This means that the total cost of the optimal
offline algorithm is equal to W0. Since the proposed algorithm continues to wait until W0
reaches 2 at line 2, the total cost of the proposed algorithm is also equal to W0, resulting in
a competitive ratio of 1 for such an instance.

Therefore, the proposed algorithm is O(α) (= O(log k/ log log k))-competitive. ◀

4.2 Lower Bound
In this subsection, we prove the following lower bound of the competitive ratio.

▶ Theorem 15. For the OMDSC problem with a penalty function f that satisfies Bf = {kn |
n ∈ Z++}, every deterministic online algorithm has a competitive ratio of Ω(log k/ log log k).

Recall that α is a positive real such that αα = k. We fix an arbitrary online algorithm
ALG and construct an adversarial instance according to the behavior of ALG, denoted as
σALG. The instance σALG is composed of Θ(α) rounds. To construct σALG, we introduce
variables similar to Definition 9.

▶ Definition 16. For the instance σALG and time t, the variables W0(t), W1(t), . . . , Wk−1(t),
s(t), and a(t) are defined as follows:

Wi(t) (i ∈ Zk): the waiting cost incurred by time t for an algorithm that initially matches
(i − 1) requests (i.e, leaving (k − i) requests) at time 0 and subsequently performs matches
of size k immediately for every k unmatched requests accumulated.

STACS 2025

59:14 Online Matching with Delays and Size-Based Costs

s(t): the number of requests given by time t.
a(t): the number of requests matched by ALG up to, but not including, time t.

We will omit the argument t when there is no confusion.
The instance σALG contains k − 1 requests with arrival time at 0. For σALG and any

i ∈ Zk, there exists an offline algorithm that incurs a cost of at most 2 + Wi(xn∗), where
xn∗ is the time when the last requests are given in σALG. This can be achieved by matching
(i − 1) requests at time 0, greedily matching a multiple of k requests in the middle, and
matching all the remaining requests at time xn∗ . For each round n, the starting time is
xn, and there is a (non-empty) cyclic interval Jpn, qnKk such that Wi(xn) ≤ 2α/n for every
i ∈ Jpn, qnKk. As rounds progress, the interval is gradually narrowed, and ALG incurs a cost
of Ω(1) per round. The instance σALG consists of Θ(α) rounds. This implies that while there
exists an offline algorithm with a cost of O(1), ALG incurs a cost of Ω(α), indicating that
the competitive ratio of ALG is Ω(α) = Ω(log k/ log log k).

Initially, the instance gives k − 1 requests at time 0 (i.e. a(0) = 0 and s(0) = k − 1). Let
n be the variable that indicates the round, initialized to 0. Define p0 = 0, q0 = k − 1, and
x0 = 0.

For the nth round (n ≥ 0), if
∣∣Jpn, qnKk

∣∣ < α2, set n∗ to be n and finalize the instance.
Otherwise, the round continues until time xn+1 = xn +1/(s(xn) − a(xn)). Requests in round
n are provided at time xn+1 based on the number of remaining requests immediately before
time xn+1 (i.e., s(xn) − a(xn+1)).

Let hn be
⌈
|Jpn, qnKk|/α2⌉

. If a(xn+1) /∈ Jqn − hn + 1, qnKk, then set (pn+1, qn+1) to be
(qn − hn + 1, qn) and give no requests. Otherwise, let (pn+1, qn+1) = (qn − 2hn + 1, qn − hn),
and give qn+1 − qn requests so that s(xn+1) = qn+1 at time xn+1 (see Figure 5). Then,
increase round count n by 1 and proceed to the next round.

This instance ensures that (i) k/α2n ≤ |Jpn, qnKk| ≤ k/αn, (ii) Wi(xn) ≤ 2n/α for all
i ∈ Jpn, qnKk, and (iii) a(xn) ∈ Jqn + 1, pnKk and s(xn) = qn.

Jq + 1, pKk Jq−2h+1, q−hKk Jq−h+1, qKk

p q
s

q−2h+1 Zk

Figure 5 Relative positions of the cyclic intervals.

i

q − i

j

q − j

p q
s

q−2h+1 Zk

Figure 6 Increment rates dWi/dt = q − i and dWj/dt = q − j.

Now, we show a lemma that establishes a lower bound on the number of elements in a
cyclic interval where the increment of Wi in the interval is at most 2/α times the increment
of Wj for specific j.

▶ Lemma 17. For a cyclic interval Jp, qKk, let L :=
∣∣Jp, qKk

∣∣ and h :=
⌈
L/α2⌉

. Suppose that
L ≥ α2 and α ≥ 4. Then, for any i ∈ Jq + 1, pKk and j ∈ Jq − 2h + 1, qKk, the increment of
Wj is at most 2/α times the increment of Wi in the state where s = q.

Y. Kawase and T. Nakayoshi 59:15

Proof. Figure 6 depicts the increment rates dWi/dt = q − i and dWj/dt = q − j. By the
assumption that L ≥ α2 and α ≥ 4, we have

2
α

· (L − 1) −
(

2L

α2 + 1
)

= 2L

α
·
(

1 − 1
α

)
− 2

α
− 1 ≥ 2α2

α
·
(

1 − 1
4

)
− 2

4 − 1 > 0. (1)

Therefore, for any i ∈ Jq + 1, pKk and j ∈ Jq − 2h + 1, qKk, we get

dWj

dt
= q − j ≤ 2 ·

⌈
L

α2

⌉
− 1 ≤ 2 · L

α2 + 1 ≤ 2
α

· (L − 1) = 2
α

· q − p = 2
α

· dWi

dt
,

where the third inequality follows from (1). Since the rate of increase is constant while s = q,
the increment of Wj is at most 2/α times the increment of Wi. ◀

By using this lemma, we bound the number of elements in Jp, qKk after n rounds from
below and bound the values of Wi for all i ∈ Jp, qKk from above.

▶ Lemma 18. Let n ∈ {0, 1, 2, . . . , n∗} and suppose that α ≥ 4. At time xn, the following
three conditions are satisfied: (i) k/α2n ≤

∣∣Jpn, qnKk

∣∣ ≤ k/αn, (ii) Wi(xn) ≤ 2n/α for all
i ∈ Jpn, qnKk, and (iii) a(xn) ∈ Jqn + 1, pnKk and s(xn) = qn.

Proof. We prove this by induction on n.
At time x0 = 0, we have Jp0, q0Kk = J0, k − 1Kk = k = k/α0, and Wi(x0) = 0 ≤ 2 · 0/α

for all i ∈ J0, k − 1Kk = Jp0, q0Kk. In addition, we have a(x0) = 0 ∈ J0, 0Kk = Jk, 0Kk and
s(x0) = k − 1. Thus, conditions (i), (ii), and (iii) are satisfied.

Let n′ ∈ {0, 1, 2, . . . , n∗ − 1}. Suppose that conditions (i), (ii), and (iii) are satisfied for
n = n′. We show that these conditions are also satisfied for n = n′ + 1.

Recall that hn =
⌈∣∣Jpn, qnKk

∣∣/α2⌉
. Then, there are two cases where (pn+1, qn+1) is set to

be (qn − hn + 1, qn) or (qn − 2hn + 1, qn − hn). In both cases, we prove the inductive step by
using Lemma 17. Note that

∣∣Jpn+1, qn+1Kk

∣∣ = hn, a(xn+1) /∈ Jpn+1, qn+1Kk and s(xn+1) =
qn+1 in both cases by the definition of the procedure. Thus, the condition (iii) is met. By
the induction hypothesis, we have k/α2n ≤

∣∣Jpn, qnKk

∣∣ ≤ k/αn and a(xn) ∈ Jqn + 1, pnKk.
Also, as n < n∗, we have

∣∣Jpn, qnKk

∣∣ ≥ α2. Thus, we have

∣∣Jpn+1, qn+1Kk

∣∣ =
⌈∣∣Jpn, qnKk

∣∣
α2

⌉
≥

⌈
k/α2n

α2

⌉
≥ k

α2n+2 .

Also, we have

∣∣Jpn+1, qn+1Kk

∣∣ =
⌈∣∣Jpn, qnKk

∣∣
α2

⌉
≤ 1 +

∣∣Jpn, qnKk

∣∣
α2 ≤

2
∣∣Jpn, qnKk

∣∣
α2 ≤

∣∣Jpn, qnKk

∣∣
α

≤ k

αn+1 ,

where the second inequality holds by
∣∣Jpn, qnKk

∣∣ ≥ α2 and the third inequality holds by α ≥ 4.
Thus, the condition (i) is satisfied in both cases. Moreover, we have

Wpn
(xn+1) − Wpn

(xn) = (xn+1 − xn) · (s(xn) − pn) = (s(xn)−pn)
(s(xn)−a(xn))

≤ 1,

because s(xn) = qn and a(xn) ∈ Jqn + 1, pnKk (see Figure 6). Thus, the increment of Wj

is less than 2/α for all j ∈ Jpn+1, qn+1Kk ⊆ Jqn − 2hn + 1, qnKk by Lemma 17 with setting
(p, q) = (pn, qn) and i = pn. Therefore, combining with the induction hypothesis, we obtain
Wj(xn+1) ≤ 2(n + 1)/α for all j ∈ Jpn+1, qn+1Kk. This means that the condition (ii) is
satisfied.

Therefore, the conditions (i), (ii), and (iii) are satisfied for n = n′ + 1. This completes
the proof by induction. ◀

STACS 2025

59:16 Online Matching with Delays and Size-Based Costs

In what follows, we bound the cost incurred by any online algorithm ALG on σALG is at
least Ω(α) and the cost for the optimal offline algorithm on σALG is at most a constant. As
our goal is asymptotic evaluation, we assume that α ≥ 4 in the following.

▶ Lemma 19. The number of rounds n∗ is Θ(α).

Proof. For n ∈ {0, 1, 2, . . . , n∗}, let Ln =
∣∣Jpn, qnKk

∣∣. From Lemma 18, we have k/α2n ≤
Ln ≤ k/αn. By the termination condition, we have Ln∗ < α2 and Ln∗−1 ≥ α2. As
α2 > Ln∗ ≥ k/α2n∗ = αα−2n∗ , we have n∗ ≥ (α − 2)/2 = α/2 − 1. In addition, as
α2 ≤ Ln∗−1 ≤ k/αn∗−1 = αα−n∗+1, we have n∗ ≤ α − 1 ≤ α. Therefore, we obtain
α/2 − 1 ≤ n∗ ≤ α, and hence n∗ = Θ(α). ◀

From Lemma 19, we can prove the following lemmas.

▶ Lemma 20. For any deterministic online algorithm ALG, there exists an offline algorithm
that incurs a cost of at most a constant for the instance σALG.

Proof. Let i∗ be an arbitrary element in Jpn∗ , qn∗Kk. Consider the algorithm that initially
matches (i∗ − 1) requests at time 0, subsequently performs matches of size k immediately for
every k unmatched requests accumulated, and finally matches all the remaining unmatched
requests at xn∗ . Then, the total waiting cost of this algorithm is at most Wi∗(xn∗) ≤
2n∗/α ≤ 2 by Lemmas 18 and 19. Moreover, the total size cost is at most 2, as it matches
at most twice with sets of requests of size not a multiple of k. Therefore, The total cost
incurred by this algorithm is at most 4. ◀

▶ Lemma 21. ALG(σALG) = Ω(α) for any deterministic online algorithm ALG.

Proof. For the nth round, we divide into two cases in which ALG matches a non-multiple of
k requests during a period [xn, xn+1) or not. If ALG matches a non-multiple of k requests,
it incurs a size cost of 1. Otherwise, a(t) = a(xn) for all t ∈ [xn, xn+1), leading to that the
increment of W

a(xn) during [xn, xn+1) is 1 because xn+1 − xn = 1/(s(xn) − a(xn)) and its
increase rate is (s(xn) − a(xn)). In both cases, the algorithm incurs at least a cost of 1 in
each round.

Therefore, the total cost incurred over the instance is at least 1 · n∗ = Ω(α) by Lemma 19.
◀

Now, we are ready to prove Theorem 15.

Proof of Theorem 15. By combining Lemmas 20 and 21, the competitive ratio of ALG is
at least

sup
σ

ALG(σ)
OPT(σ) ≥ ALG(σALG)

OPT(σALG) ≥ Ω(α)
O(1) = Ω(α) = Ω

(
log k

log log k

)
. ◀

References
1 Yossi Azar, Ashish Chiplunkar, and Haim Kaplan. Polylogarithmic bounds on the com-

petitiveness of min-cost perfect matching with delays. In Proceedings of the 2017 An-
nual ACM-SIAM Symposium on Discrete Algorithms (SODA 2017), pages 1051–1061, 2017.
doi:10.1137/1.9781611974782.67.

2 Yossi Azar, Ashish Chiplunkar, Shay Kutten, and Noam Touitou. Set cover with delay –
Clairvoyance is not required. In Proceedings of the 28th Annual European Symposium on
Algorithms (ESA 2020), pages 8:1–8:21, 2020. doi:10.4230/LIPIcs.ESA.2020.8.

https://doi.org/10.1137/1.9781611974782.67
https://doi.org/10.4230/LIPIcs.ESA.2020.8

Y. Kawase and T. Nakayoshi 59:17

3 Yossi Azar and Amit Jacob Fanani. Deterministic min-cost matching with delays. Theory
Comput. Syst., 64(4):572–592, 2020. doi:10.1007/s00224-019-09963-7.

4 Yossi Azar, Runtian Ren, and Danny Vainstein. The min-cost matching with concave delays
problem. In Proceedings of the 2021 Annual ACM-SIAM Symposium on Discrete Algorithms
(SODA 2021), pages 301–320, 2021. doi:10.1137/1.9781611976465.20.

5 Yossi Azar and Noam Touitou. General framework for metric optimization problems with delay
or with deadlines. In Proceedings of the 2019 IEEE 60th Annual Symposium on Foundations
of Computer Science (FOCS 2019), pages 60–71, 2019. doi:10.1109/FOCS.2019.00013.

6 Marcin Bienkowski, Martin Böhm, Jaroslaw Byrka, Marek Chrobak, Christoph Dürr, Luk’avs
Folwarczn’y, Lukasz Jez, Jiri Sgall, Kim Thang Nguyen, and Pavel Veselý. Online algorithms
for multi-level aggregation. In Proceedings of the 24th Annual European Symposium on
Algorithms (ESA 2016), pages 12:1–12:17, 2016. doi:10.4230/LIPIcs.ESA.2016.12.

7 Marcin Bienkowski, Jaroslaw Byrka, Marek Chrobak, Lukasz Jez, Dorian Nogneng, and Jirí
Sgall. Better approximation bounds for the joint replenishment problem. In Proceedings of
the 2014 Annual ACM-SIAM Symposium on Discrete Algorithms (SODA 2014), pages 42–54,
2014. doi:10.1137/1.9781611973402.4.

8 Marcin Bienkowski, Artur Kraska, Hsiang-Hsuan Liu, and Pawel Schmidt. A primal-dual
online deterministic algorithm for matching with delays. In Proceedings of the 16th Workshop
on Approximation and Online Algorithms (WAOA 2018), pages 51–68, 2018. doi:10.1007/
978-3-030-04693-4_4.

9 Niv Buchbinder, Moran Feldman, Joseph S. Naor, and Ohad Talmon. O(depth)-competitive
algorithm for online multi-level aggregation. In Proceedings of the 2017 Annual ACM-SIAM
Symposium on Discrete Algorithms (SODA 2017), pages 1235–1244, 2017. doi:10.1137/1.
9781611974782.80.

10 Niv Buchbinder, Tracy Kimbrel, Retsef Levi, Konstantin Makarychev, and Maxim Sviridenko.
Online make-to-order joint replenishment model: Primal-dual competitive algorithms. Oper.
Res., 61(4):1014–1029, 2013. doi:10.1287/opre.2013.1188.

11 Rodrigo A. Carrasco, Kirk Pruhs, Cliff Stein, and José Verschae. The online set aggregation
problem. In Proceedings of the 13th Latin American Symposium on Theoretical Informatics
(LATIN 2018), pages 245–259, 2018. doi:10.1007/978-3-319-77404-6_19.

12 Ryder Chen, Jahanvi Khatkar, and Seeun William Umboh. Online weighted cardinality
joint replenishment problem with delay. In Proceedings of the 49th International Colloquium
on Automata, Languages, and Programming (ICALP 2022), pages 40:1–40:18, 2022. doi:
10.4230/LIPIcs.ICALP.2022.40.

13 Lindsey Deryckere and Seeun William Umboh. Online matching with set and concave
delays. In Proceedings of the Approximation, Randomization, and Combinatorial Optimization.
Algorithms and Techniques (APPROX/RANDOM 2023), pages 17:1–17:17, 2023. doi:10.
4230/LIPIcs.APPROX/RANDOM.2023.17.

14 Daniel R. Dooly, Sally A. Goldman, and Stephen D. Scott. On-line analysis of the TCP
acknowledgment delay problem. J. ACM, 48(2):243–273, 2001. doi:10.1145/375827.375843.

15 Federico Echenique, Nicole Immorlica, and Vijay V. Vazirani. Online and Matching-Based
Market Design. Cambridge University Press, 2023. doi:10.1017/9781108937535.

16 Yuval Emek, Shay Kutten, and Roger Wattenhofer. Online matching: Haste makes waste! In
Proceedings of the Forty-Eighth Annual ACM Symposium on Theory of Computing (STOC
2016), pages 333–344, 2016. doi:10.1145/2897518.2897557.

17 Yuval Emek, Yaacov Shapiro, and Yuyi Wang. Minimum cost perfect matching with delays
for two sources. Theor. Comput. Sci., 754:122–129, 2019. doi:10.1016/j.tcs.2018.07.004.

18 Kun He, Sizhe Li, Enze Sun, Yuyi Wang, Roger Wattenhofer, and Weihao Zhu. Randomized
algorithm for MPMD on two sources. In Proceedings of the 19th Conference On Web And
InterNet Economics (WINE 2023), pages 348–365, 2023. doi:10.1007/978-3-031-48974-7_
20.

STACS 2025

https://doi.org/10.1007/s00224-019-09963-7
https://doi.org/10.1137/1.9781611976465.20
https://doi.org/10.1109/FOCS.2019.00013
https://doi.org/10.4230/LIPIcs.ESA.2016.12
https://doi.org/10.1137/1.9781611973402.4
https://doi.org/10.1007/978-3-030-04693-4_4
https://doi.org/10.1007/978-3-030-04693-4_4
https://doi.org/10.1137/1.9781611974782.80
https://doi.org/10.1137/1.9781611974782.80
https://doi.org/10.1287/opre.2013.1188
https://doi.org/10.1007/978-3-319-77404-6_19
https://doi.org/10.4230/LIPIcs.ICALP.2022.40
https://doi.org/10.4230/LIPIcs.ICALP.2022.40
https://doi.org/10.4230/LIPIcs.APPROX/RANDOM.2023.17
https://doi.org/10.4230/LIPIcs.APPROX/RANDOM.2023.17
https://doi.org/10.1145/375827.375843
https://doi.org/10.1017/9781108937535
https://doi.org/10.1145/2897518.2897557
https://doi.org/10.1016/j.tcs.2018.07.004
https://doi.org/10.1007/978-3-031-48974-7_20
https://doi.org/10.1007/978-3-031-48974-7_20

59:18 Online Matching with Delays and Size-Based Costs

19 Naonori Kakimura and Tomohiro Nakayoshi. Deterministic primal-dual algorithms for online
k-way matching with delays. In Proceedings of the 29th International Computing and Combina-
torics Conference (COCOON 2023), pages 238–249, 2023. doi:10.1007/978-3-031-49193-1_
18.

20 Anna R. Karlin, Claire Kenyon, and Dana Randall. Dynamic TCP acknowledgement and
other stories about e/(e − 1). In Proceedings of the 33rd Annual ACM Symposium on Theory
of Computing (STOC 2001), pages 502–509, 2001. doi:10.1145/380752.380845.

21 Richard M. Karp, Umesh V. Vazirani, and Vijay V. Vazirani. An optimal algorithm for
on-line bipartite matching. In Proceedings of the 22nd Annual ACM Symposium on Theory of
Computing (STOC 1990), pages 352–358, 1990. doi:10.1145/100216.100262.

22 Yasushi Kawase and Tomohiro Nakayoshi. Online matching with delays and size-based costs.
arXiv:2408.08658, 2024. doi:10.48550/arXiv.2408.08658.

23 Xingwu Liu, Zhida Pan, Yuyi Wang, and Roger Wattenhofer. Impatient online matching. In
Proceedings of the 29th International Symposium on Algorithms and Computation (ISAAC
2018), pages 62:1–62:12, 2018. doi:10.4230/LIPIcs.ISAAC.2018.62.

24 Xingwu Liu, Zhida Pan, Yuyi Wang, and Roger Wattenhofer. Online matching with convex
delay costs. arXiv:2203.03335, 2022. doi:10.48550/arXiv.2203.03335.

25 Aranyak Mehta. Online matching and ad allocation. Found. Trends Theor. Comput. Sci.,
8(4):265–368, 2013. doi:10.1561/0400000057.

26 Aranyak Mehta, Amin Saberi, Umesh V. Vazirani, and Vijay V. Vazirani. AdWords and
generalized online matching. J. ACM, 54(5):22:1–22:19, 2007. doi:10.1145/1284320.1284321.

27 Darya Melnyk, Yuyi Wang, and Roger Wattenhofer. Online k-way matching with delays and
the H-metric. arXiv:2109.06640, 2021. doi:10.48550/arXiv.2109.06640.

28 Marco Pavone, Amin Saberi, Maximilian Schiffer, and Matthew W. Tsao. Technical note—
online hypergraph matching with delays. Oper. Res., 70(4):2194–2212, 2022. doi:10.1287/
opre.2022.2277.

29 Noam Touitou. Nearly-tight lower bounds for set cover and network design with deadlines/delay.
In Proceedings of the 32nd International Symposium on Algorithms and Computation (ISAAC
2021), pages 53:1–53:16, 2021. doi:10.4230/LIPIcs.ISAAC.2021.53.

https://doi.org/10.1007/978-3-031-49193-1_18
https://doi.org/10.1007/978-3-031-49193-1_18
https://doi.org/10.1145/380752.380845
https://doi.org/10.1145/100216.100262
https://doi.org/10.48550/arXiv.2408.08658
https://doi.org/10.4230/LIPIcs.ISAAC.2018.62
https://doi.org/10.48550/arXiv.2203.03335
https://doi.org/10.1561/0400000057
https://doi.org/10.1145/1284320.1284321
https://doi.org/10.48550/arXiv.2109.06640
https://doi.org/10.1287/opre.2022.2277
https://doi.org/10.1287/opre.2022.2277
https://doi.org/10.4230/LIPIcs.ISAAC.2021.53

Modular Counting CSP: Reductions and
Algorithms
Amirhossein Kazeminia #

Simon Fraser University, Burnaby, Canada

Andrei A. Bulatov #

Simon Fraser University, Barnaby, Canada

Abstract
The Constraint Satisfaction Problem (CSP) is ubiquitous in various areas of mathematics and
computer science. Many of its variations have been studied including the Counting CSP, where
the goal is to find the number of solutions to a CSP instance. The complexity of finding the exact
number of solutions of a CSP is well understood (Bulatov, 2013, and Dyer and Richerby, 2013)
and the focus has shifted to other variations of the Counting CSP such as counting the number of
solutions modulo an integer. This problem has attracted considerable attention recently. In the case
of CSPs based on undirected graphs Bulatov and Kazeminia (STOC 2022) obtained a complexity
classification for the problem of counting solutions modulo p for arbitrary prime p. In this paper we
report on the progress made towards a similar classification for the general CSP, not necessarily
based on graphs.

We identify several features that make the general case very different from the graph case such
as a stronger form of rigidity and the structure of automorphisms of powers of relational structures.
We provide a solution algorithm in the case p = 2 that works under some additional conditions and
prove the hardness of the problem under some assumptions about automorphisms of the powers of
the relational structure. We also reduce the general CSP to the case that only uses binary relations
satisfying strong additional conditions.

2012 ACM Subject Classification Theory of computation → Problems, reductions and completeness;
Theory of computation → Constraint and logic programming

Keywords and phrases Constraint Satisfaction Problem, Modular Counting

Digital Object Identifier 10.4230/LIPIcs.STACS.2025.60

Related Version Full Version: https://arxiv.org/abs/2501.04224 [29]

Funding Andrei A. Bulatov: NSERC Discovery Grant.

1 Introduction

Counting problems in general have been intensively studied since the pioneering work by
Valiant [34, 33]. One of the most interesting and well studied problems in this area is the
Counting Constraint Satisfaction Problem (#CSP), which provides a generic framework for a
wide variety of counting combinatorial problems that arise frequently in multiple disciplines
such as logic, graph theory, and artificial intelligence. The counting CSP also allows for
generalizations including weighted CSPs and partition functions [2, 7] that yield connections
with areas such as statistical physics, see, e.g. [27, 32]. While the complexity of exact counting
solutions of a CSP is now well-understood [13, 3, 14, 12], modular counting such as finding
the parity of the number of solutions remains widely open.

Homomorphisms and the Constraint Satisfaction Problem. The most convenient way to
introduce CSPs is through homomorphisms of relational structures. A relational signature σ

is a collection of relational symbols each of which is assigned a positive integer, the arity of
the symbol. A relational structure H with signature σ is a set H and an interpretation RH

© Amirhossein Kazeminia and Andrei A. Bulatov;
licensed under Creative Commons License CC-BY 4.0

42nd International Symposium on Theoretical Aspects of Computer Science (STACS 2025).
Editors: Olaf Beyersdorff, Michał Pilipczuk, Elaine Pimentel, and Nguyễn Kim Thắng;
Article No. 60; pp. 60:1–60:18

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:amirhossein_kazeminia@sfu.ca
mailto:abulatov@sfu.ca
https://doi.org/10.4230/LIPIcs.STACS.2025.60
https://arxiv.org/abs/2501.04224
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

60:2 Modular Counting CSP

of each R ∈ σ, where RH is a relation or a predicate on H whose arity equals that of R. The
set H is said to be the base set or the universe of H. We will use the same letter for the
base set as for the structure, only in the regular font. A structure with signature σ is often
called a σ-structure. Structures with the same signature are called similar.

Let G, H be similar structures with signature σ. A homomorphism from G to H is a
mapping φ : G → H such that for any R ∈ σ, say, of arity r, if RG(a1, . . . , ar) is true
for a1, . . . , ar ∈ G, then RH(φ(a1), . . . , φ(ar)) is also true. The set of all homomorphisms
from G to H is denoted Hom(G, H). The cardinality of Hom(G, H) is denoted by hom(G, H).
A homomorphism φ is an isomorphism if it is bijective and the inverse mapping φ−1 is
a homomorphism from H to G. A homomorphism of a structure to itself is called an
endomorphism, and an isomorphism to itself is called an automorphism.

Following Feder and Vardi [17], in a CSP, the goal is, given similar relational structures
G, H, to decide whether there is a homomorphism from G to H. The restricted problem in
which H is fixed and only G is given as an input is denoted by CSP(H). The complexity of
such problems is well understood [4, 35].

Counting CSP. In the (exact) Counting CSP the goal is to find the number hom(G, H)
of homomorphisms from a structure G to a similar structure H. Restricted versions of the
Counting CSP can be introduced in the same way as for the decision one. In the counting
version of CSP(H) denoted #CSP(H) the goal is to find hom(G, H) for a given structure Gas
an input.

The complexity class the Counting CSP belongs to is #P, the class of problems of counting
accepting paths of polynomial time nondeterministic Turing machines. There are several
ways to define reductions between counting problems, but the most widely used ones are
parsimonious reductions and Turing reductions. A parsimonious reduction from a counting
problem #A to a counting problem #B is an algorithm that, given an instance I of #A

produces (in polynomial time) an instance I ′ of #B such that the answers to I and I ′ are
equal. A Turing reduction is a polynomial time algorithm that solves #A using #B as an
oracle. Completeness in #P is then defined in the standard way. This paper and all the
papers we cite predominantly use Turing reductions.

A complexity classification of counting CSPs of the form #CSP(H) was obtained by
Bulatov [3] and was further improved and simplified by Dyer and Richerby [14]. Bulatov’s
proof makes heavy use of techniques of universal algebra. Dyer and Richerby’s proof, on
the other hand, uses combinatorial and structural properties of relational structures. The
more general version of the counting CSP, the weighted CSP, has also been thoroughly
studied. Cai and Chen [10] obtained a complexity classification for weighted CSP, where each
homomorphism has a complex weight. One of the main features of counting with complex
weights is the phenomenon of cancellation, when complex weights of homomorphisms cancel
each other rather than add up. This, of course, never happens in exact unweighted counting
problems, but is frequently encountered in modular counting.

Modular Counting. Another natural variation of counting problems is counting modulo
some integer. In this paper we consider the problem of computing the number of solutions of
a CSP modulo a prime number p. If a relational structure H is fixed, this problem is denoted
#pCSP(H). More precisely, in #pCSP(H) the objective is, given a relational structure G, to
find the number of homomorphisms from G to H modulo p.

There are several complexity classes related to modular counting. The more established
type of classes is ModkP, the class of problems of deciding whether the number of accepting
paths of a polynomial time nondeterministic Turing machine is not divisible by k, [11, 25].

A. Kazeminia and A. A. Bulatov 60:3

In particular, if k = 2 then ModkP is the class ⊕P. However, problems of counting accepting
paths naturally belong to classes of the form #kP, introduced by Faben in [15] that contain
problems of counting accepting paths modulo k. The standard notion of reduction is again
Turing reduction. Faben in [15] studied the basic properties of such classes, in particular, he
identified several #kP-complete problems.

In the case of the CSP, the research has mostly been focused on graph homomorphisms.
The only exceptions we are aware of are a result of Faben [15], who characterized the
complexity of counting the solutions of a Generalized Satisfiability problem modulo an
integer, and a generalization of [15] to problems with weights by Guo et al. [21]. The study
of modular counting of graph homomorphisms has been much more vibrant.

Before discussing the existing results on modular counting and the results of this study,
we need to mention some features of the automorphism group of a relational structure. The
automorphisms of a relational structure H form a group with respect to composition denoted
Aut(H). The order of an automorphism π ∈ Aut(H) is the smallest number k such that πk is
the identity permutation. An element a ∈ H is a fixed point of π ∈ Aut(H) if π(a) = a. The
set of all fixed points of π is denoted by Fix(π).

A systematic study of counting homomorphisms in graphs was initiated by Faben and
Jerrum in [15]. They observed that the automorphism group Aut(H), particularly the auto-
morphisms of order p, plays a crucial role in the complexity of the problem #pHom(H). This
insight extends to relational structures, as discussed in [9]. Specifically, for a homomorphism
φ from a relational structure G to H, composing φ with an automorphism from Aut(H)
yields another homomorphism from G to H. Thus, any automorphism of H acts on the
set Hom(G, H) of all homomorphisms from G to H. If Aut(H) contains an automorphism π

of order p, the size of the orbit of φ is divisible by p unless π ◦ φ = φ, making this orbit
contribute 0 modulo p to the total homomorphism count from G to H. If π ◦φ = φ, the range
of φ lies within the set of fixed points Fix(π) of π. This observation motivates the following
construction: let Hπ denote the substructure of H induced by Fix(π). We write H →p H′
there exists π ∈ Aut(H) such that H′ is isomorphic to Hπ. Furthermore, we write H →∗p H′
if there exist structures H1, . . . , Hk such that H is isomorphic to H1, H′ is isomorphic to
Hk, and H1 →p H2 →p · · · →p Hk.

Relational structures without order p automorphisms will be called p-rigid.

▶ Lemma 1 ([9, 16]). Let H be a relational structure and p a prime. Then
(a) Up to an isomorphism there exists a unique p-rigid structure H∗p such that H →∗p H∗p.
(b) For any relational structure G it holds that hom(G, H) ≡ hom(G, H∗p) (mod p).
By Lemma 1 it suffices to determine the complexity of #pCSP(H) for p-rigid structures H.

The existing results on modular counting. As we mentioned before, the research in modular
counting CSPs has mostly been aimed at counting graph homomorphisms. The complexity
of the problem #pHom(H) of counting homomorphism to a fixed graph H modulo a prime
number p has received significant attention in the last ten years. Faben and Jerrum in
[16] posed a conjecture that up to order p automorphism reduction →p the complexity of
this problem is the same as that for exact counting. More precisely, they conjectured that
#pHom(H) is solvable in polynomial time if and only if Hom(H∗p) is. By the result of Dyer
and Greenhill [13] #pHom(H) is solvable in polynomial time if and only if every connected
component of H∗p is a complete graph with all loops present or a complete bipartite graph.
Therefore, proving that if a p-rigid H does not satisfy these conditions then #pHom(H) is
#pP -hard suffices to confirm the conjecture of Faben and Jerrum. Over several years the
hardness of #pHom(H) was established for various graph classes [16, 22, 19, 20, 28, 18, 31].
Finally, it was proved for arbitrary graphs in [9].

STACS 2025

60:4 Modular Counting CSP

▶ Theorem 2 ([9]). For any prime p and any graph H the problem #pHom(H) is solvable
in polynomial time if and only if Hom(H∗p) is solvable in polynomial time. Otherwise it is
#pP-complete.

Our Results. In this paper we begin a systematic study of the problem #pCSP(H) for
general relational structures H. Note that to the best of our knowledge, it is the first paper
attempting at such a general modular counting problem. The ultimate goal is to obtain a
complexity classification similar to Theorem 2 for arbitrary relational structures. The full
version of the paper can be found in [29].

The contribution of the paper is twofold. First, we analyse the existing techniques such
as those from [9], and the methods used in exact counting [3, 14, 10], and their applicability
to the general case. We conclude that few of them work. More specifically, Theorem 2 asserts
that the complexity of modular counting for p-rigid graphs is the same as of exact counting.
We, however, suggest a relational structure, a digraph Tp, that is p-rigid, its exact counting
problem is hard, but modular counting is easy, see Example 18. Another important ingredient
of the proof of Theorem 2 is a structural theorem on automorphisms of products of graphs
[24]. No such result exists for products of relational structures. Moreover, in Example 18
in Section 6 we suggest an example (again, a digraph) showing that nothing similar to
such a structural result can be true. Some of the standard techniques in counting CSPs
involve properties of relations and relational structures such as rectangularity, permutability,
balancedness, the presence of a Mal’tsev polymorphism. In the case of exact counting
these concepts are closely related to each other and make efficient algorithms possible.
Unfortunately, these concepts are of little help for modular counting. We introduce their
modular equivalents, but then a series of examples show that no tight connections are possible
in this case. This makes algorithm design very difficult.

On the positive side, we obtain some results to somewhat remedy the situation. The first
step is to convert the problem into a richer framework of multi-sorted relational structures
and CSPs. The main idea is, given a CSP instance G, to try to identify the possible images
of each vertex of G, and then treat vertices with different ranges as having different types
and map them to different disjoint domains. In Section 4 we call this process refinement
and propose two types of refinement, one is based on local propagation techniques, and the
other on solving the decision version of the problem. The main benefit of using multi-sorted
structures and CSPs is the richer structure of their automorphisms. This often allows stronger
reductions than single-sorted structures do. In particular, if the digraph Tp mentioned above
is subjected to this process, it results in a multi-sorted structure that is no longer p-rigid, the
corresponding reduced structure is very simple and can easily be solved. We are not aware
of any examples of a structure whose multi-sorted refinement is p-rigid, but that would give
rise to an easy modular counting problem.

In the next line of research we follow the approach of [9] to expand the relational structure
H by adding relations to H that are primitive positive (pp-)definable in H, that is, relations
that can be derived from the relations of H using equality, conjunction and existential
quantifiers. However, expanding the general relational structure by pp-definable relations
does not work as well as for graphs. To overcome this obstacle, we introduce a new form of
expansion which uses p-modular quantifiers instead of regular existential quantifiers. The
semantics of a p-modular quantifier is “there are non-zero modulo p values of a variable”
rather than “there exists at least one value of a variable” as the regular existential quantifier
asserts. Every relational structure is associated with a relational clone ⟨H⟩ that consists of all
relations pp-definable in H. The new concept gives rise to new definitions of pp-formulas and

A. Kazeminia and A. A. Bulatov 60:5

relational clones. If regular existential quantifiers in pp-formulas are replaced with p-modular
quantifiers, we obtain p-modular primitive positive formulas (p-mpp-formulas, for short).
Then, similar to pp-definitions, a relation R is said to be p-mpp-definable in a structure
H if there is a p-mpp-formula in H expressing R. The p-modular clone ⟨H⟩p associated
with H is the set of all relations p-mpp-definable in H. We show in Theorem 10 (see also
Theorem 7) that, similar to the result of Bulatov and Dalmau [6], expanding a structure by
a p-mpp-definable relation does not change the complexity of the problem #pCSP(H).

▶ Theorem 3. Let p be a prime number and H a p-rigid relational structure. If R is
p-mpp-definable in H, then #pCSP(H + R) is polynomial time reducible to #pCSP(H).

In the remaining part of the paper we identify a number of conditions under which it
is possible to design an algorithm or to prove the hardness of the problem. One such case
is #2CSP(H) when H satisfies both 2-rectangularity and the usual strong rectangularity
conditions (or, equivalently, has a Mal’tsev polymorphism). It starts with applying the
known techniques [5, 14] to find a concise representation or a frame of the set of solutions of
a given CSP. However, such a representation cannot be used directly to find the parity of
the number of solutions. The algorithm performs multiple recomputations of the frame to
exclude the parts that produce an even number of solutions. Unfortunately, this algorithm
does not generalize to larger p even under very strong assumptions, because the structure of
finite fields start playing a role.

While studying the structure of automorphisms of products of relational structures such
as Aut(Hn) may be a difficult problem, in Section 7 we make a step forward by reducing the
class of structures H for which such structural results are required. More precisely, for any
relational structure H = (H;R1, . . . ,Rk) we construct its binarization b(H) whose relations
are binary and rectangular. This makes such structures somewhat closer to graphs and the
hope is that it will be easier to study the structure of Aut(b(H)n) than Aut(Hn) itself. We
prove that H and b(H) share many important properties.

▶ Theorem 4. Let H be a relational structure. Then H is strongly rectangular (p-strongly
rectangular, p-rigid, has a Mal’tsev polymorphism) if and only if b(H) is strongly rectangular
(p-strongly rectangular, p-rigid, has a Mal’tsev polymorphism).

2 Preliminaries

Let [n] denote the set {1, 2, . . . , n}. Let Hn be the Cartesian product of the set H with
itself n times and H1 × · · · × Hn the Cartesian product of sets H1, . . . , Hn. We denote the
members of Hn and H1 × · · · × Hn using bold font, a ∈ Hn, a ∈ H1 × · · · × Hn. The i-th
element of a is denoted by a[i] or ai.

For I = {i1, . . . , ik} ⊆ [n] we use prIa to denote (ai1 , . . . , aik
); and for R ⊆ H1 × · · · × Hn

we use prIR to denote {prIa | a ∈ R}. For a ∈ Hs by #extR(a) we denote the number of
assignments b ∈ Hn−s such that (a, b) ∈ R. (Note that the order of elements in a and b and R

might differ, hence we slightly abuse the notation here.) We denote the number of assignments
mod p by #pext

R
(a). Moreover, prp

IR denotes the set {prIa|a ∈ R and #pext
R

(prIa) ̸= 0}.
Often, we treat relations R ⊆ H1 × · · · × Hn as predicates R : H1 × · · · × Hn → {0, 1}.

2.1 Multi-Sorted Sets and Relational Structures
We begin with introducing multi-sorted or typed sets. Let H = {Hi}i∈[k] = {H1, . . . , Hk} be
a collection of sets. We will assume that the sets H1, . . . , Hk are disjoint.

STACS 2025

60:6 Modular Counting CSP

The cardinality of a multi-sorted set H equals |H| =
∑

i∈[k] |Hi|. A mapping φ between
two multi-sorted sets G = {Gi}i∈[k] and H = {Hi}i∈[k] is defined as a collection of mappings
φ = {φi}i∈[k], where φi : Gi → Hi, that is, φi maps elements of the sort i in G to elements of
the sort i in H. A mapping φ = {φi}i∈[k] from {Gi}i∈[k] to {Hi}i∈[k] is injective (bijective),
if for all i ∈ [k], φi is injective (bijective).

A multi-sorted relational signature σ over a set of types {1, . . . , k} is a collection of
relational symbols, a symbol R ∈ σ is assigned a positive integer ℓR, the arity of the symbol,
and a tuple (i1, . . . , iℓR) ⊆ [k]ℓR , the type of the symbol. A multi-sorted relational structure
H with signature σ is a multi-sorted set {Hi}i∈[k] and an interpretation RH of each R ∈ σ,
where RH is a relation or a predicate on Hi1 × ... × HiℓR

. The multi-sorted structure H is
finite if H and σ are finite. All structures in this paper are finite. The set H is said to be
the base set or the universe of H. For the base set we will use the same letter as for the
structure, only in the regular font. Multi-sorted structures with the same signature and type
are called similar.

Let G, H be similar multi-sorted structures with signature σ. A homomorphism φ from
G to H is a collection of mappings φi : Gi → Hi, i ∈ [k], from G to H such that for any
R ∈ σ with type (i1, . . . , iℓR), if RG(a1, . . . , aℓR) is true for (a1, . . . , ar) ∈ Gi1 × ... × GiℓR

,
then RH(φi1(a1), . . . , φiℓR

(aℓR)) is true as well. The set of all homomorphisms from G to
H is denoted Hom(G, H). The cardinality of Hom(G, H) is denoted by hom(G, H). For a
multi-sorted structure H, the corresponding counting CSP, #pCSP(H), is the problem of
computing hom(G, H) modulo a prime number p for a given structure G. A homomorphism
φ is an isomorphism if it is bijective and the inverse mapping φ−1 is a homomorphism from
H to G. If H and G are isomorphic, we write H ∼= G. A homomorphism of a structure to
itself is called an endomorphism, and an isomorphism to itself is called an automorphism. As
is easily seen, automorphisms of a structure H form a group denoted Aut(H).

The direct product of multi-sorted σ-structures H, G, denoted H × G is the multi-sorted
σ-structure with the base set H × G = {Hi × Gi}i∈[k], the interpretation of R ∈ σ is given
by RH×G((a1, b1), . . . , (ak, bk)) = 1 if and only if RH(a1, . . . , ak) = 1 and RG(b1, . . . , bk) = 1.
By Hℓ we will denote the ℓth power of H, that is, the direct product of ℓ copies of H.

For a prime number p we say that π has order p if π is not the identity in Aut(H) and
has order p in Aut(H). In other words, each of the πj ’s is either the identity mapping or has
order p, and at least one of the πj ’s is not the identity mapping. Structure H is said to be
p-rigid if it has no automorphism of order p. Similar to regular relational structures we can
introduce reductions of multi-sorted structures by their automorphisms of order p.

A substructure H′ of H induced by a collection of sets {H ′i}i∈[k], where H ′i ⊆ Hi is the
relational structure given by ({H ′i}i∈[k];R′1, . . . ,R′m), where R′j = Rj ∩ (H ′i1

× · · · × H ′iℓ
)

and (i1, . . . , iℓ) is the type of Rj . By Fix(π) we denote the collection {Fix(πi)}j∈[k] of sets
of fixed points of the πi’s. Let Hπ denote the substructure of H induced by Fix(π). We
write H →p H′ if there is π ∈ Aut(H) of order p such that H′ is isomorphic to Hπ. We also
write H →∗p H′ if there are structures H1, . . . , Ht such that H is isomorphic to H1, H′ is
isomorphic to Ht, and H1 →p H2 →p · · · →p Ht. Let also H∗p be a p-rigid structure such
that H →∗p H∗p.

▶ Proposition 5. Let H be a multi-sorted structure and p a prime. Then up to an isomorphism
there exists a unique p-rigid multi-sorted structure H∗p such that H →∗p H∗p. Moreover, for
any relational structure G it holds hom(G, H) ≡ hom(G, H∗p) (mod p).

The proof of Proposition 5 follows the same lines as the analogous statement in the single-
sorted case.

A. Kazeminia and A. A. Bulatov 60:7

We complete this section with a definition of polymorphisms. Let R ⊆ Hn be a relation
over a set H. A k-ary polymorphism of R is a mapping f : Hk → H such that for any
choice of a1, . . . , ak ∈ R, it holds that f(a1, . . . , ak) ∈ R (computed component-wise). The
mapping f is a polymorphism of a (single-sorted) relational structure H = (H,R1, . . . ,Rm)
if it is a polymorphism of each relation R1, . . . ,Rm. In the multi-sorted case the definitions
are a bit more complicated. Let R ⊆ H1 × · · · × Hn be a multi-sorted relation. Instead
of a single mapping we consider a family of mappings f = {fi}i∈[n], fi : Hk

i → Hi. The
family f is said to be a polymorphism of R if it satisfies the same condition: for any choice
of a1, . . . , ak ∈ R, it holds that f(a1, . . . , ak) ∈ R, only in this case the mapping fi is
applied in the ith coordinate position, i ∈ [n]. A polymorphism of a multi-sorted structure
H = ({Hi}i∈[q];R1, . . . ,Rm) is again a family f = {fi}i∈q : Hk

i → Hi such that for each
j ∈ [m], f (or rather its appropriate subfamily) is a polymorphism of Rj . For a complete
introduction into polymorphisms the reader is referred to [1].

The following special type of polymorphisms often occurs in the study of counting
CSPs. For a set H a mapping φ : H3 → H is said to be a Mal’tsev operation if for any
a, b ∈ H it satisfies the conditions f(a, a, b) = f(b, a, a) = b. In the multi-sorted case a
family f = {fi}i∈[n] is Mal’tsev, if every fi is Mal’tsev. A Mal’tsev operation (or a family of
operations) that is a polymorphism of a relation R or a relational structure H is said to be a
Mal’tsev polymorphism of R or H.

2.2 Expansion of relational structures
One of the standard techniques when studying constraint problems is to identify ways to
expand the target relational structure or constraint language with additional relations without
changing the complexity of the problem.

Let H be a relational structure with signature σ and H= its expansion by adding a binary
relational symbol = interpreted as =H , the equality relation on H. The following reduction
is straightforward.

▶ Lemma 6 ([9]). For any relational structure H and any prime p, #pCSP(H=) ≤T

#pCSP(H).

A constant relation over a set H is a unary relation Ca = {a}, a ∈ H. For a relational
structure H by Hc we denote the expansion of H by all the constant relations Ca, a ∈ H.
Theorem 7 was proved for exact counting in [6], for modular counting of graph homomorphisms
in [16, 19, 20], and for general modular counting CSP in [9].

▶ Theorem 7 ([9]). Let H be a p-rigid σ-structure. Then #pCSP(Hc) is polynomial time
reducible to #pCSP(H).

Lemma 6 and Theorem 7 can be generalized to the multi-sorted case. Let H = {Hi}i∈[k]
be a multi-sorted structure with signature σ and H= its expansion by adding a family of
binary relational symbols =Hi

(one for each type) interpreted as the equality relation on Hi,
i ∈ [k].

A constant relation over a set {Hi}i∈[k] is a unary relation Ca = {a}, a ∈ Hi, i ∈ [k]
(such a predicate can only be applied to variables of type i). For a structure H by Hc we
denote the expansion of H by all the constant relations Ca, a ∈ Hi, i ∈ [k].

▶ Theorem 8. Let H be a multi-sorted relational structure and p prime.
(1) #pCSP(H=) is Turing reducible to #pCSP(H);
(2) Let H be p-rigid. Then #pCSP(Hc) is Turing reducible to #pCSP(H).

STACS 2025

60:8 Modular Counting CSP

Yet another way to expand a relational structure is by primitive positive definable (pp-
definable for short) relations. Primitive-positive definitions have played a major role in the
study of the CSP. It has been proved in multiple circumstances that expanding a structure
with pp-definable relations does not change the complexity of the corresponding CSP. This
has been proved for the decision CSP in [26, 8] and the exact Counting CSP [6]. The reader
is referred to [1] for details about pp-definitions and their use in the study of the CSP.

Conjunctive definitions are a special case of pp-definitions that do not use quantifiers.
Let H be a structure with signature σ. A conjunctive formula Φ over variables {x1, . . . , xk}
is a conjunction of atomic formulas of the form R(y1, . . . , yℓ), where R ∈ σ is an (ℓ-ary)
symbol and y1, . . . , yℓ ∈ {x1, . . . , xk}. A k-ary predicate Q is conjunctive definable by Φ if
(a1, . . . , ak) ∈ Q if and only if Φ(a1, . . . , ak) is true.

▶ Lemma 9 ([9]). Let H be a relational structure with signature σ, R be conjunctive definable
in H, and H + R denote the expansion of H by a predicate symbol R that is interpreted as
the relation R in H. Then #pCSP(H + R) ≤T #pCSP(H).

We now extend the concept of primitive-positive definability to the multi-sorted case.
Let H be a multi-sorted relational structure with the base set H. As before primitive
positive (pp-) formula in H is a first-order formula ∃y1, . . . , ysΦ(x1, . . . , xk, y1, . . . , ys), where
Φ is a conjunction of atomic formulas of the form z1 =H z2 or R(z1, . . . , zℓ), z1, . . . , zℓ ∈
{x1, . . . , xk, y1, . . . , ys}, and R is a predicate of H. However, every variable in Φ is now
assigned a type τ(xi), τ(yj) in such a way that for every atomic formula z1 =H z2 it holds
that τ(z1) = τ(z2), and for any atomic formula R(z1, . . . , zℓ) the sequence (τ(z1), . . . , τ (zℓ))
matches the type of R. We say that H pp-defines a predicate Q if there exists a pp-formula
such that

Q(x1, . . . , xk) = ∃y1, . . . , ysΦ(x1, . . . , xk, y1, . . . , ys).

For a ∈ R by #extΦ(a) we denote the number of assignments b ∈ Hτ(y1) × · · · × Hτ(ys) to
y1, . . . , ys such that Φ(a, b) is true. We denote the number of such assignments mod p by
#pextΦ(a).

While when H is a graph it is possible to prove a statement similar to Lemma 9 for
pp-definable relations [9], we will later see that it is unlikely to be true for general relational
structures.

Finally, for a relational structure H (single- or multi-sorted) ⟨H⟩ denotes the relational
clone of H, that is, the set of all relations pp-definable in H

2.3 Modular Expansion of Relational Structures
We follow the approach of [9] by expanding the relational structure H by adding pp-definable
relations, but doing in a manner friendly to modular counting.

We introduce a new form of expansion which is using p-modular quantifiers instead of
regular existential quantifiers. The semantics of a p-modular quantifier is “there are non-zero
modulo p values of a variable” rather than “there exists at least one value of a variable” as
the regular existential quantifier asserts. The new concept gives rise to new definitions of
pp-formulas. If regular existential quantifiers in pp-formulas are replaced with p-modular
quantifiers, we obtain p-modular primitive positive formulas (p-mpp-formulas, for short).
The p-modular quantifier is denoted ∃≡p, and so p-mpp-formulas have the form

∃≡py1, . . . , yℓ1 . . . ∃≡pyℓ1+···+ℓs−1+1, . . . , ykΦ(z1, . . . , zm).

A. Kazeminia and A. A. Bulatov 60:9

Note the more complicated form of the quantifier prefix: modular quantification is not
as robust as the regular one and quantifying variables away in groups or one-by-one may
change the result. For example, let R = {(1, 0, 0), (1, 1, 0), (1, 1, 1), (2, 2, 2)} be a relation on
{0, 1, 2}. Then formulas ∃≡3y∃≡3z R(x, y, z) and ∃≡3y, z R(x, y, z) define sets {1, 2} and
{2}, respectively.

Every relational structure is associated with a relational clone ⟨H⟩ that consists of all
relations pp-definable in H. Then, similar to pp-definitions, a relation R is said to be p-mpp-
definable in a structure H if there is a p-mpp-formula in H expressing R. The p-modular
clone ⟨H⟩p associated with H is the set of all relations p-mpp-definable in H. Similar to the
result of Bulatov and Dalmau [6], expanding a structure by a p-mpp-definable relation does
not change the complexity of the problem #pCSP(H).

▶ Theorem 10. Let H be a be a σ-structure, and p a prime. Let R be a relation that is
defined by R(x1, . . . , xk) = ∃≡py1, . . . , yℓΦ(x1, . . . , xk, y), then #pCSP(H + R) is polynomial
time reducible to #pCSP(H).

3 Structural Properties for Counting

3.1 Rectangularity, Permutability, and Friends
The key properties of relational structures heavily exploited in [3, 14, 10] to obtain characteriza-
tions of the complexity of exact counting are rectangularity, balancedness, congruence
permutability, and the presence of a Mal’tsev polymorphism. Indeed, according to [14]
#CSP(H) is polynomial time solvable if and only if H is strongly balanced. However, in
order for the solution algorithm to work, it requires a Mal’tsev polymorphism to be applied
over and over again to construct a frame, that is, a compact representation of the set of
solutions, [3, 14].

Using modular pp-definitions, we can modify these properties’ definitions accordingly
to obtain the properties of strong p-rectangularity, p-balancedness, and p-permutability.
Modular-pp-definitions preserve the complexity of modular problems, however, they destroy
the connections between the concepts above.

p-Rectangularity. Recall that a binary relation R ⊆ H1 × H2 is said to be rectangular
if (a, c), (a, d), (b, c) ∈ R implies (b, d) ∈ R for any a, b ∈ H1, c, d ∈ H2. A relation R ⊆
H1 × · · · × Hn for n ≥ 2 is rectangular if for every I ⊊ [n], the relation R is rectangular when
viewed as a binary relation, a subset of prIR × pr[n]−IR. A relational structure H is strongly
rectangular if every relation R ∈ ⟨H⟩ of arity at least 2 is rectangular. Finally, a relational
structure H is said to be strongly p-rectangular, if every R ∈ ⟨H⟩p is rectangular.

p-Balancedness. An n-by-m matrix M is said to be a rank-1 block matrix if by permuting
rows and columns it can be transformed to a block-diagonal matrix (not necessarily square),
where every nonzero diagonal block has rank at most 1. Note that the rank can also be
computed in Zp, in which case we use the term rank-1 block matrix modulo p.

Let R(x, y, z) be a ternary relation, a subset of H1 × H2 × H3. We call R balanced if the
matrix MR ∈ Z|H1|×|H2|, where MR[x, y] = |{z ∈ H3 : (x, y, z) ∈ R}| such that x ∈ H1 and
y ∈ H2 is a rank-1 block matrix. It is p-balanced if MR is a rank-1 block matrix modulo p.
A relation R of arity n > 3 is balanced if every representation of R as a ternary relation, a
subset of Hk × Hℓ × Hn−k−ℓ, is balanced. Similarly, A relation R on H of arity n > 3 is
p-balanced if every representation of R as a ternary relation, a subset of Hk × Hℓ × Hn−k−ℓ,
is p-balanced.

STACS 2025

60:10 Modular Counting CSP

A relational structure H is called strongly balanced if every relation R ∈ ⟨H⟩ is balanced.
Similarly, a relational structure H is called strongly p-balanced if every relation R ∈ ⟨H⟩p is
p-balanced.

p-Permutability. A congruence of a relational structure H is an equivalence relation θ on
H that is pp-definable in H. More generally, let R ∈ ⟨H⟩ be a k-ary relation. A congruence
of R is a 2k-ary relation pp-definable in H that is an equivalence relation on R. We denote
the set of all congruences of H (of R) by Con(H) (respectively, by Con(R)). By ◦ we denote
the product of binary relations: (a, b) ∈ R ◦ Q if and only if there is c such that (a, c) ∈ R

and (c, b) ∈ Q. We say H is congruence permutable if for all α, β ∈ Con(R), where R ∈ ⟨H⟩,
it holds that α ◦ β = β ◦ α.

Congruence p-permutability is defined as follows: A p-congruence of H or of R ∈ ⟨H⟩p is
an equivalence relation on H or R, respectively, that is p-mpp-definable in H. We denote
the set of all p-congruences of H (R) by Conp(H) (Conp(R)). By ⃝p we denote the product of
binary relations: (a, b) ∈ R⃝pQ if and only if the number of elements c such that (a, c) ∈ R

and (c, b) ∈ Q is not a multiple of p. We say that H is congruence p-permutable if for
all α, β ∈ Conp(R), where R ∈ ⟨H⟩p, we have α⃝p β = β⃝p α. Figure 1 demonstrates the
connection between congruence permutabililty, strong rectangularity, the existence of a
Mal’tsev polymorphism, strong balancedness and their modular counterparts. A collection
of statements and examples proving these connections or lack thereof will be given in the
full version of the paper. Below we give one such example showing that the existence of a
Mal’tsev polymorphism does not guarantee 2-rectangularity.

Congruence Permutable Strongly Rectangular

Mal’tsev Polymorphism Strongly Balanced

(a) Congruence Permutability, Strong Rectangularity, and Mal’tsev polymorphism are equavalent (See
[23, 14, 3]). Also, Strong Balancedness implies Strong Rectangularity(See [14]).

Congruence p-Permutable Strongly p-Rectangular

Mal’tsev Polymorphism Strongly p-Balanced

p = 2

(b) The only connection that is preserved for the modular case is Congruence p-Permutability implies
Strong p-rectangularity. Also, Strong 2-rectangularity is equivalence to Strong 2-Balancedness.

Figure 1 The connection between 4 properties is shown above. Figure (1a) shows the connection
for the exact counting. Figure (1b) shows the the connection for the modular counterparts.

▶ Example 11. Let H = {0, 1, 2}, p = 2, and H = (H;R), where R is the following ternary
relation, (triples are written vertically), R = {(0, 0, 0), (0, 1, 1), (1, 0, 1), (1, 0, 2), (1, 1, 0)}. As
is easily see, ∃≡2zR(x, y, z) is the relation {(0, 0), (0, 1), (1, 1)}, which is not rectangular,
and so, H is not strongly 2-rectangular. We now show that H is strongly rectangular by
presenting a Mal’tsev polymorphism of H. Let f(x, y, z) = x + y + z, where addition is
modulo 2, is an operation on {0, 1}. For a = (a1, a2, a3) ∈ H3, let also a′ ∈ {0, 1}3 denote
the triple obtained by replacing 2’s with 1’s. Then let g(x, y, z) be given by

g(a) =
{

2, if a ∈ {(2, a, a), (a, a, 2) | a ∈ H},

f(a′) otherwise.

It is straightforward that g is a Mal’tsev operation and is a polymorphism of H.

A. Kazeminia and A. A. Bulatov 60:11

4 Rigitity and Multi-sorted Structures

We start with applying a well-known framework of multi-sorted relational structures to
modular counting. While multi-sorted structures is a standard tool in the study of decision
CSPs, it usually only used to simplify arguments and streamline algorithms. Here we use this
framework in a more fundamental way, to strengthen the main (hypothetical) tractability
condition.

The classification result in Theorem 2 asserts that #pHom(H) for a p-rigid graph H is
hard whenever the exact counting problem is hard. In the following example, we briefly show
that this is no longer the case for general relational structures.

▶ Example 12. Let p be a prime number and Tp = {0, . . . , p − 1, p, p + 1}. A relational
structure Tp has the base set Tp and predicates R, C0, . . . , Cp+1, where Ca is the constant
relation {(a)} and R = T 2

p − {(0, p), . . . , (p − 1, p)}. The structure Tp is p-rigid as it contains
all the constant relations and every automorphism must preserve them, implying that every
element of Tp is a fixed point. By [4, 35] the decision CSP(Tp) is solvable in polynomial
time, while the exact counting problem #CSP(Tp) is #P-complete by [6], as it does not
have a Mal’tsev polymorphism and R is not rectangular (see below). However, if G is a
structure similar to Tp and there is a homomorphism φ : G → Tp such that some vertex v of
G is mapped to a ∈ {0, . . . , p − 1} then, unless v is bound by Ca, the mapping that differs
from φ only at v by sending it to any b ∈ {0, . . . , p − 1} is also a homomorphism. Since
|{0, . . . , p − 1}| = p, this means that the elements 0, . . . , p − 1 can be effectively eliminated
from Tp, and the resulting structure is somewhat trivial. Therefore #pCSP(Tp) can be solved
in polynomial time.

We introduce a different concept of rigidity that is stronger than the one used before. In
particular, it will explain the tractability of the problem from Example 12.

While Proposition 5 allows one to reduce CSPs over non-p-rigid structures, it is sometimes
possible to go further and reduce a CSP to one with a richer structure, and a richer set of
automorphisms. Let H = ({Hi}i∈[k];R1, . . . ,Rm) be a multi-sorted relational structure. We
say that a structure G is a refinement of H if it satisfies the following conditions:
(a) G = ({Gi}i∈[q];Q1, . . . ,Qt), where the Gi’ are pairwise disjoint,
(b) for every i ∈ [q], there is an injective mapping ξi : Gi → Hi′ for some i′ ∈ [k],
(c) for every j ∈ [t] there is j′ ∈ [m] with Rj′ ⊆ Hi1 ×· · ·×Hiℓ

and Qj = {(a1, . . . , aℓ) ∈ Gi′
1
×

· · · × Gi′
ℓ

| (ξi′
1
(a1), . . . , ξi′

ℓ
(aℓ)) ∈ Rj′}, where Gi′

r
is such that ξi′

r
(Gi′

r
) ⊆ Hir

∩ prrRj′ .
Condition (a) is required because the domains of a multi-sorted structure have to be disjoint.
Condition (b) basically says that Gi consists of copies of some elements of Hi′ . Condition
(c) amounts to saying that Qj ⊆ Rj′ , except it uses copies of the elements of H. In the
notation of item (c) we use ξ(a1, . . . , aℓ) to denote (ξi′

1
(a1), . . . , ξi′

ℓ
(aℓ)), we use ξ(Qj) to

denote {ξ(a1, . . . , aℓ) | (a1, . . . , aℓ) ∈ Qj}, and ξ−1(Rj′) for {(a1, . . . , aℓ) ∈ Gi′
1

× · · · × Gi′
ℓ

|
ξ(a1, . . . , aℓ) ∈ Rj′}.

It is possible that while H is p-rigid, its refinement is not and Proposition 5.
In order to relate refinement structures with reductions between counting problems we

introduce two special types of refinement. First of all, we will need an alternative approach
to pp-definitions based on homomorphisms, see [17, 30].

▶ Lemma 13 ([17, 30]). A predicate R(x1, . . . , xk) is pp-definable in a multi-sorted structure
H containing the equality predicate if and only if there exists a similar structure GR containing
vertices x1, . . . , xk such that for any (a1, . . . , ak) ∈ R it holds that (a1, . . . , ak) ∈ R if and
only if there is a homomorphism from GR to H that maps xi to ai, i ∈ [k]. We will say that
GR defines R in H.

STACS 2025

60:12 Modular Counting CSP

Let H = ({Hi}i∈[k];R1, . . . ,Rm) be a multi-sorted relational structure. The Gaifman
graph of H is the graph G(H) = (V, E), where V =

⋃
i∈[k] Hi and (a, b) ∈ E if and only if

there is j ∈ [m] and a ∈ Rj such that a[s] = a, a[t] = b for some coordinate positions s, t of
Rj . The structure H has treewidth d if G(H) has treewidth d.

We say that a refinement G = ({Gi}i∈[q];Q1, . . . ,Qt) of H is width d definable if for every
i ∈ [q] there is a structure Gi of treewidth at most d that defines ξi(Gi) in H. In a similar
way, we say that G is a definable refinement if for every i ∈ [q] the set ξi(Gi) is pp-definable in
H. Finally, we say that G is the full width d definable refinement (respectively, full definable
refinement) if it satisfies the following conditions.

(1) It is a width d definable refinement (respectively, a definable refinement).

(2) For every unary relation U definable in H by a structure of treewidth at most d

(respectively, pp-definable unary relation) there is i ∈ [q] such that ξi(Gi) = U .

(3) For every relation S obtained from some relation Rj by restricting it to domains definable
by structures of width d (respectively by pp-definable domains), there is Qj′ such that
ξ(Qj′) = S.

Since the original domains Hi, i ∈ [k], have trivial pp-definitions, they (or rather their copies)
are always among the Gj ’s, and copies of the original relations are also among the Qj ’s,
although they may be over different, smaller domains than the Ri’s.

Next, we extend refinements to CSP instances. Let G = ({Gi}i∈[q];Q1, . . . ,Qt) be a
refinement of H and P = (V, C) an instance of CSP(H). Recall that every variable v ∈ V

is assigned a sort σ(v) ∈ [k]. Let σ′ : V → [q] be such that ξσ′(v) : Gσ′(v) → Hσ(v) for each
v ∈ V . The instance Pσ′ = (V, Cσ′) is said to be a refinement for G of P with the sort
function σ′ if it satisfies the following two conditions

(a) every v ∈ V is assigned the sort σ′(v);

(b) for every C = ⟨s,R⟩ ∈ C, s = (v1, . . . , vℓ), it holds that ξσ′(v)(Gσ′(vi)) ⊆ priR, i ∈ [ℓ],
and there is C ′ = ⟨s, ξ−1(R)⟩ ∈ Cσ′ .

The refinement Pσ′ is lossless if for every solution φ of P the mapping ξ−1 ◦ φ is a solution
of Pσ′ . Suppose G is full pp-definable. The refinement Pσ′ is minimal lossless if it is lossless
and for each v ∈ V , σ′(v) is minimal (with respect to inclusion of ξσ′(v)(Gσ′(v)) in the original
domain). If G is full of treewidth d, the definition is bit more complicated. The instance P
can also be viewed as a structure F with vertex set V and such that the solutions of P are
exactly the homomorphisms from F to H, see [17]. Then Pσ′ is minimal lossless of width d

if it is lossless and for every v ∈ V , ξσ′(v)(Gσ′(v)) is minimal with respect to inclusion among
unary relations defined by a structure Gv of treewidth d with a designated variable x and
such that there is a homomorphism from Gi to F mapping x to v. In fact, a minimal lossless
of width d structure Pσ′ is produced from P by applying an appropriate local propagation
algorithm [30].

▶ Proposition 14. Let H be a multi-sorted relational structure.

(1) Let G be the full width d definable refinement of H. For any instance P of CSP(H), its
minimal lossless refinement of width d for G can be found in polynomial time.

(2) Let H be a relational structure containing all the constant relations and such that CSP(H)
is solvable in polynomial time, and G the full definable refinement of H. Then for any
instance P of CSP(H), its minimal lossless refinement for G can be found in polynomial
time.

A. Kazeminia and A. A. Bulatov 60:13

5 An Algorithm for Parity

In this section we outline an algorithm that solves #2CSP(H), that is, finds the parity of
the number of homomorphisms to H, provided the structure H satisfies some additional
conditions.

▶ Theorem 15. Let H be a 2-rigid, strongly 2-rectangular, and ⟨H⟩2 has a Mal’tsev poly-
morphism1. Then #2CSP(H) can be solved in time polynomial time.

In order to prove Theorem 15 we apply some of the existing techniques such as compact
representations of relations with a Mal’tsev polymorphism, but in a novel way that is very
different from its original use.

Frames and Witness Functions. Suppose that R is an n-ary relation with a Mal’tsev
polymorphism φ. For each i ∈ [n] we define the following relation ∼i on priR: a ∼i b if there
exist tuples x ∈ Hi−1 and ya, yb ∈ Hn−i such that (x, a, ya) ∈ R and (x, b, yb) ∈ R. For
the case i = 1, we have a ∼1 b for all a, b ∈ pr1R because they share the common empty
prefix ε. The relations ∼i will be called frame relations. The following observations are
straightforward corollaries of the rectangularity of R and were used in [14].

▶ Lemma 16 (Folklore). Let R be a relation with a Mal’tsev polymorphism.
(1) ∼i is an equivalence relation for all i ∈ [n].
(2) If a ∼i b and x ∈ R with xi = a, then there is a y ∈ R with yi = b and pr[i−1]x = pr[i−1]y.

A mapping ω : [n] × H → Hn ∪ {⊥} is called a witness function of R if
(i) For any i ∈ [n] and a ∈ H − priR, ω(i, a) = ⊥;
(ii) For any i ∈ [n] and a ∈ priR, ω(i, a) ∈ R is a witness for (i, a), i.e., priω(i, a) = a;
(iii) For any i ∈ [n] and a, b ∈ priR with a ∼i b, we have pr[i−1]ω(i, a) = pr[i−1]ω(i, b).

A witness function ω provides a concise representation of R. Let F = {ω(i, a) | i ∈ [n], a ∈
priR}. Such a set of tuples is called a frame of R. A witness function (or a frame) can be
found in polynomial time given a conjunctive definition (i.e. a CSP instance) of a relation
in a relational structure with a Mal’tsev polymorphism. This is the property that makes
them essential for solving CSPs. The following transformations of frames can be performed
in polynomial time.

▶ Proposition 17 ([5, 14]). Let H be a relational structure with a Mal’tsev polymorphism
and a relation R has a conjunctive definition R(x1, . . . , xn) =

∧
i∈[m] Ri(xi1 , . . . , xit

) in H.
(1) A frame and a witness function for R can be computed in O(mn4).
(2) Let I ⊆ [n]. Given a frame F for R, a frame for R(x1, x2, ..., xn) ∧ (

∧
s∈I Cas

(xs)) (i.e.,
xs is the constant as ∈ H, s ∈ I) can be constructed in O(n3) time.

(3) Given a frame F for R, a frame for Q(x1, x2..., xn−1) = ∃yR(x1, ..., xn−1, y), can be
constructed in O(n) time.

Overview of the algorithm. The exact counting algorithm in [14] first finds a frame of a
conjunctive defined relation (a.k.a. the set of solutions of a CSP instance), and then uses the
frame and the condition of balancedness to compute the number of solutions. Unfortunately,
this approach does not work in our case, because according to the results of Section 3.1 the
property of 2-balancedness that we need here does not correlate well with the existence of a
Mal’tsev polymorphism. We therefore choose a different approach.

1 Note that the latter condition does not follow from H having a Mal’tsev polymorphism, because
2-mpp-definitions do not preserve polymorphisms.

STACS 2025

60:14 Modular Counting CSP

Let H be a structure satisfying the conditions of Theorem 15 and R ∈ ⟨H⟩2. Since
⟨H⟩2 has a Mal’tsev polymorphism, a frame for R can be computed in polynomial time by
Proposition 17(1). Suppose that R is n-ary. It is not hard to see that

|R| ≡ |∃≡2yR(x1, . . . , xn−1, y)| (mod 2).

Therefore, if it is possible to find a frame of R̃ = ∃≡2yR(x1, . . . , xn−1, y), we could repeat
this process n − 1 times eventually obtaining a unary relation R′ such that |R′| ≡ |R|
(mod 2) and then just count the elements in R′ using its frame. Unfortunately, it is not that
straightforward, because Proposition 17(3) does not work for modular quantifiers. Instead,
we use a more convoluted method.

Let PARR(x, y) = R(x, y) ∧ (∃≡2z R(x, z)). This relation contains essentially the same
tuples as R̃, except it also keeps their extensions to the last coordinate position. This means
that R̃ = ∃yPARR(x, y), and if we know a frame of PARR(x, y), a frame of R̃ can be found
by Proposition 17(3). Finding a frame for PARR(x, y) is the crux of the algorithm.

Finding a frame for PARR(x, y). Let ∼i and ω be frame relations and a witness function
(a frame) of the relation R found in the previous step. Let Ei denote the collection of the
equivalence classes of ∼i, and Ei = {Ei,1, . . . , Ei,ℓi}, Ei,j ⊆ priR, where j ∈ [ℓi]. We often
refer to these classes as frame classes. By ∼′i, ω′, and E ′i , i ∈ [n], we denote yet unknown
frame relations, witness function, and frame classes of PARR (clearly, the number of classes
in E ′i may differ from that of Ei).

First, we observe that by definition a tuple (x, a) ∈ R belongs to PARR if and only if
there is a class En,s ∈ En, s ∈ [ℓn], such that a ∈ En,s and |En,s| ≡ 1 (mod 2). This makes
finding ∼′n and ω′(n, ∗) easy, they are just restrictions of ∼n and ω(n, ∗) on the union of odd
classes from En. For k ∈ [n − 1] and a ∈ prkR we use Proposition 17(2) to find a witness
function ωk←a and frame classes Ek←a

i of R(x1, x2, ..., xn) ∧ Ca(xk). We examine Ek←a
n,s for

s ∈ [|Ek←a
n |]. We check whether there exists s ∈ [|Ek←a

n |] such that |Ek←a
n,s | ≡ 1 mod 2.

If we find such an s, we select b ∈ Ek←a
n,s and set ω′(k, a) = ωk←a(n, b). By construction

prkω′(k, a) = prkωk←a(n, b) = a, and by the observation above ω′(k, a) ∈ PARR. Finally,
in order to check whether for some b ∈ prkR it holds that a ∼′k b it suffices to complete
the following steps. Use use Proposition 17(2) to compute a witness function ω′′ and frame
classes of

R(x1, . . . , xn) ∧ Cb(xk) ∧ (
k−1∧
s=1

Cds(xs)),

where (d1, . . . , dn) = ωk←a(k, a). It can be shown that a ∼′k b if and only if there exists
t ∈ [|E ′′n |] such that |E ′′n,t| ≡ 1 (mod 2).

This completes the outline of the algorithm.

6 Hardness and Automorphisms of Direct Products of Structures

Another crucial component of Theorem 2 is the structure of automorphisms of direct
products of graphs [24]. It essentially asserts that every automorphism of a direct product
H1 × · · · × Hn can be thought of as a composition of a permutation of factors in the product
and automorphisms of those factors. In the following example we show that this breaks down
already for digraphs.

A. Kazeminia and A. A. Bulatov 60:15

▶ Example 18. let H = (V, E) be a directed graph where V = {a, b, c, d} with (directed)
edge set E = {(b, a), (b, c), (c, d)}. This digraph is rigid. However, the automorphism group
of H2, see Figure 2, has a complicated structure. As is easily seen H2 has a large number of
automorphisms of order 2 and 3, not all of which have a simple representation mentioned
above.

H

H

H×H

a b c d

a

b

c

d

Figure 2 The structure of H and H2.

In [9] one of the important applications of the structural theorem for automorphisms of
graph products is that it allows one to prove that #pHom(H + R), where H + R denotes the
expansion of H by a relation R pp-definable in H, is polynomial time reducible to #pHom(H).
The example above indicates that this result may no longer be true for general relational
structures.

Next, we explore what implications of a structural result similar to that in [24] that
is used in [9] about Aut(Hn) can be. A rectangularity obstruction is a violation of the
rectangularity or p-rectangularity property, that is, a (n-ary) relation R pp- or p-mpp-
definable in a structure H, k ∈ [n], and tuples a, b ∈ pr[k]R, c, d ∈ pr[n]−[k]R such that
(a, c), (a, d), (b, d) ∈ R, but (b, c) ̸∈ R. A generalized rectangularity obstruction are the
relation R and sets A1,1, A1,2 ⊆ pr[k]R, A2,1, A2,2 ⊆ pr[n]−[k]R such that A1,1 ∩ A1,2 = ∅,
A2,1 ∩ A2,2 = ∅, and any a ∈ A1,1, b ∈ A1,2, c ∈ A2,1, d ∈ A2,2 form a rectangularity
obstruction.

At the first glance, if such an obstruction exists, it should be possible to prove the
hardness of #pCSP(H). Indeed, R can be viewed as a bipartite graph KR, whose parts
of the bipartition are pr[k]R and pr[n]−[k]R, and as the rectangularity obstruction shows,
this graph is not complete bipartite implying that #Hom(KR) is #P-complete. However,
the hardness of #pHom(KR) also involves the requirement that KR is p-rigid. p-rigidity is
achieved by restricting the problem to induced subgraphs of KR as in Lemma 1. However,
such a subgraph may avoid the (generalized) rectangularity obstruction rendering it useless.

The obstruction A1,1, A1,2 ⊆ pr[k]R, A2,1, A2,2 ⊆ pr[n]−[k]R is said to be protected in R if,
after applying a p-reduction to R under a sequence of p-automorphisms from Aut(R), for the
resulting relation R̃ it holds that pr[k]R̃∩ A1,1, pr[k]R̃∩ A1,2 ≠ ∅, pr[n]−[k]R̃∩ A2,1, pr[n]−[k]R̃∩
A2,2 ≠ ∅. In fact, Theorem 4.2 [9] implies, although implicitly, that any p-rigid graph that is
not a complete bipartite graph contains a protected rectangularity obstruction. One case
of a protected rectangularity obstruction is when it is protected in KR, that is, survives
p-reductions of KR itself. In this case we say that the obstruction is graph-protected.

▶ Proposition 19. Let H be a (multi-sorted) relational structure and p a prime number.
If H has a graph protected generalized rectangularity obstruction modulo p, #pCSP(H) is
#pP -complete.

STACS 2025

60:16 Modular Counting CSP

We consider a special case of graph-protected generalized rectangularity obstructions,
standard hardness gadgets, that have to satisfy the additional condition A1,1 ∪ A1,2 =
pr[k]R, A2,1 ∪ A2,2 = pr[n]−[k]R. It is can be proved that a standard hardness gadget is indeed
a graph-protected obstruction.

Standard hardness gadgets provide a fairly limited condition for the hardness of #pCSP(H).
In fact, it is possible to prove that #pCSP(H) is #pP -complete whenever H has any protected
rectangularity obstruction, not necessarily a standard gadget. However, it cannot be done
using Theorem 2 as a black box, and is outside of the scope of this paper.

7 Binarization

While studying the structure of Aut(Hk) for a relational structure H and an integer k may be
a difficult problem, in this Section we make a step forward by reducing the class of structures
H for which such a characterization is required. In particular, we show that it suffices to
obtain a characterization for structures with only binary rectangular relations. More precisely,
for any relational structure H = (H ;R1, . . . ,Rk) we construct its binarization b(H) as follows.
The structure b(H) is multi-sorted, and the domains are the relations R1, . . . ,Rk viewed as
sets of tuples, thus, b(H) has k domains. For every pair i, j ∈ [k] (i, j are allowed to be equal)
and any s ∈ [ℓi], t ∈ [ℓj], where ℓi, ℓj are the arities of Ri,Rj , the structure b(H) contains a
binary relation Q

ij
st = {(a, b) | a ∈ Ri, b ∈ Rj , a[s] = b[t]}. We show that H and b(H) share

many important properties.

▶ Theorem 20. Let H be a relational structure. Then H is strongly rectangular (p-strongly
rectangular, p-rigid, has a Mal’tsev polymorphism) if and only if b(H) is strongly rectangular
(p-strongly rectangular, p-rigid, has a Mal’tsev polymorphism).

In addition to Theorem 20 every relation of b(H) is binary and rectangular. This makes
such structures somewhat closer to graphs and the hope is that it will be easier to study the
structure of Aut(b(H)n) than Aut(Hn) itself.

References
1 Libor Barto, Andrei Krokhin, and Ross Willard. Polymorphisms, and how to use them. In

Dagstuhl Follow-Ups, volume 7. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, 2017.
doi:10.4230/DFU.VOL7.15301.1.

2 Alexander I. Barvinok. Combinatorics and Complexity of Partition Functions, volume 30 of
Algorithms and combinatorics. Springer, 2016. doi:10.1007/978-3-319-51829-9.

3 Andrei A. Bulatov. The complexity of the counting constraint satisfaction problem. J. ACM,
60(5):34:1–34:41, 2013. doi:10.1145/2528400.

4 Andrei A. Bulatov. A dichotomy theorem for nonuniform CSPs. In Chris Umans, editor,
FOCS, pages 319–330, 2017. doi:10.1109/FOCS.2017.37.

5 Andrei A. Bulatov and Víctor Dalmau. A simple algorithm for Mal’tsev constraints. SIAM J.
Comput., 36(1):16–27, 2006. doi:10.1137/050628957.

6 Andrei A. Bulatov and Víctor Dalmau. Towards a dichotomy theorem for the counting
constraint satisfaction problem. Information and Computation, 205(5):651–678, 2007. doi:
10.1016/J.IC.2006.09.005.

7 Andrei A. Bulatov and Martin Grohe. The complexity of partition functions. Theor. Comput.
Sci., 348(2-3):148–186, 2005. doi:10.1016/J.TCS.2005.09.011.

8 Andrei A. Bulatov, Peter Jeavons, and Andrei A. Krokhin. Classifying the complexity of
constraints using finite algebras. SIAM J. Comput., 34(3):720–742, 2005. doi:10.1137/
S0097539700376676.

https://doi.org/10.4230/DFU.VOL7.15301.1
https://doi.org/10.1007/978-3-319-51829-9
https://doi.org/10.1145/2528400
https://doi.org/10.1109/FOCS.2017.37
https://doi.org/10.1137/050628957
https://doi.org/10.1016/J.IC.2006.09.005
https://doi.org/10.1016/J.IC.2006.09.005
https://doi.org/10.1016/J.TCS.2005.09.011
https://doi.org/10.1137/S0097539700376676
https://doi.org/10.1137/S0097539700376676

A. Kazeminia and A. A. Bulatov 60:17

9 Andrei A. Bulatov and Amirhossein Kazeminia. Complexity classification of counting graph
homomorphisms modulo a prime number. In STOC, pages 1024–1037. ACM, 2022. doi:
10.1145/3519935.3520075.

10 Jin-Yi Cai and Xi Chen. Complexity of counting CSP with complex weights. J. ACM, 64(3),
June 2017. doi:10.1145/2822891.

11 Jin-yi Cai and Lane A. Hemachandra. On the power of parity polynomial time. In Burkhard
Monien and Robert Cori, editors, STACS, volume 349 of Lecture Notes in Computer Science,
pages 229–239. Springer, 1989. doi:10.1007/BFB0028987.

12 Víctor Dalmau and Peter Jonsson. The complexity of counting homomorphisms seen from the
other side. Theor. Comput. Sci., 329(1-3):315–323, 2004. doi:10.1016/J.TCS.2004.08.008.

13 M. Dyer and C. Greenhill. The complexity of counting graph homomorphisms. Random
Structures and Algorithms, 17:260–289, 2000. doi:10.1002/1098-2418(200010/12)17:3/4\
%3C260::AID-RSA5\%3E3.0.CO;2-W.

14 Martin Dyer and David Richerby. An effective dichotomy for the counting constraint satisfaction
problem. SIAM J. on Comp, 42(3):1245–1274, 2013. doi:10.1137/100811258.

15 John Faben. The complexity of counting solutions to generalised satisfiability problems modulo
k, 2008. arXiv:0809.1836.

16 John Faben and Mark Jerrum. The complexity of parity graph homomorphism: an initial
investigation. arXiv preprint arXiv:1309.4033, 2013. arXiv:1309.4033.

17 Tomás Feder and Moshe Y. Vardi. The computational structure of monotone monadic SNP
and constraint satisfaction: A study through datalog and group theory. SIAM J. Comput.,
28(1):57–104, 1998. doi:10.1137/S0097539794266766.

18 Jacob Focke, Leslie Ann Goldberg, Marc Roth, and Stanislav Zivný. Counting homomorphisms
to k4-minor-free graphs, modulo 2. In Dániel Marx, editor, SODA, pages 2303–2314. SIAM,
2021. doi:10.1137/1.9781611976465.137.

19 Andreas Göbel, Leslie Ann Goldberg, and David Richerby. Counting homomorphisms to
square-free graphs, modulo 2. ACM Transactions on Computation Theory (TOCT), 8(3):1–29,
2016. doi:10.1145/2898441.

20 Andreas Göbel, J. A. Gregor Lagodzinski, and Karen Seidel. Counting homomorphisms to
trees modulo a prime. In MFCS, volume 117, pages 49:1–49:13, 2018. doi:10.4230/LIPICS.
MFCS.2018.49.

21 Heng Guo, Sangxia Huang, Pinyan Lu, and Mingji Xia. The Complexity of Weighted Boolean
#CSP Modulo k. In STACS), volume 9, pages 249–260, 2011. doi:10.4230/LIPICS.STACS.
2011.249.

22 Andreas Göbel, Leslie Ann Goldberg, and David Richerby. The complexity of counting
homomorphisms to cactus graphs modulo 2. ACM Trans on Comp Th, 6(4):1–29, 2014.
doi:10.1145/2635825.

23 J. Hagemann and A. Mitschke. On n-permutable congruences. Algebra Universalis, 3:8–12,
1973.

24 Richard Hammack, Wilfried Imrich, and Sandi Klavzar. Handbook of Product Graphs, Second
Edition. CRC Press, Inc., USA, 2nd edition, 2011.

25 Ulrich Hertrampf. Relations among mod-classes. Theor. Comput. Sci., 74(3):325–328, 1990.
doi:10.1016/0304-3975(90)90081-R.

26 Peter Jeavons. On the algebraic structure of combinatorial problems. Theoretical Computer
Science, 200(1-2):185–204, 1998. doi:10.1016/S0304-3975(97)00230-2.

27 Mark Jerrum and Alistair Sinclair. Polynomial-time approximation algorithms for the Ising
model. SIAM J. Comput., 22(5):1087–1116, 1993. doi:10.1137/0222066.

28 Amirhossein Kazeminia and Andrei A Bulatov. Counting homomorphisms modulo a prime
number. In MFCS. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, 2019.

29 Amirhossein Kazeminia and Andrei A. Bulatov. Modular counting csp: Reductions and
algorithms, 2025. arXiv:2501.04224.

STACS 2025

https://doi.org/10.1145/3519935.3520075
https://doi.org/10.1145/3519935.3520075
https://doi.org/10.1145/2822891
https://doi.org/10.1007/BFB0028987
https://doi.org/10.1016/J.TCS.2004.08.008
https://doi.org/10.1002/1098-2418(200010/12)17:3/4%3C260::AID-RSA5%3E3.0.CO;2-W
https://doi.org/10.1002/1098-2418(200010/12)17:3/4%3C260::AID-RSA5%3E3.0.CO;2-W
https://doi.org/10.1137/100811258
https://arxiv.org/abs/0809.1836
https://arxiv.org/abs/1309.4033
https://doi.org/10.1137/S0097539794266766
https://doi.org/10.1137/1.9781611976465.137
https://doi.org/10.1145/2898441
https://doi.org/10.4230/LIPICS.MFCS.2018.49
https://doi.org/10.4230/LIPICS.MFCS.2018.49
https://doi.org/10.4230/LIPICS.STACS.2011.249
https://doi.org/10.4230/LIPICS.STACS.2011.249
https://doi.org/10.1145/2635825
https://doi.org/10.1016/0304-3975(90)90081-R
https://doi.org/10.1016/S0304-3975(97)00230-2
https://doi.org/10.1137/0222066
https://arxiv.org/abs/2501.04224

60:18 Modular Counting CSP

30 Phokion G Kolaitis. Constraint satisfaction, complexity, and logic. In Hellenic Conference on
Artificial Intelligence, pages 1–2. Springer, 2004. doi:10.1007/978-3-540-24674-9_1.

31 J. A. Gregor Lagodzinski, Andreas Göbel, Katrin Casel, and Tobias Friedrich. On counting
(quantum-)graph homomorphisms in finite fields of prime order. CoRR, abs/2011.04827, 2021.
arXiv:2011.04827.

32 E.H. Lieb and A.D. Sokal. A general Lee-Yang theorem for one-component and multicomponent
ferromagnets. Communications in Mathematical Physics, 80(2):153–179, 1981.

33 L. Valiant. The complexity of computing the permanent. Theoretical Computing Science,
8:189–201, 1979. doi:10.1016/0304-3975(79)90044-6.

34 L. Valiant. The complexity of enumeration and reliability problems. SIAM Journal on
Computing, 8(3):410–421, 1979. doi:10.1137/0208032.

35 Dmitriy Zhuk. A proof of the CSP dichotomy conjecture. J. ACM, 67(5):30:1–30:78, 2020.
doi:10.1145/3402029.

https://doi.org/10.1007/978-3-540-24674-9_1
https://arxiv.org/abs/2011.04827
https://doi.org/10.1016/0304-3975(79)90044-6
https://doi.org/10.1137/0208032
https://doi.org/10.1145/3402029

Efficiently Computing the Minimum Rank of a
Matrix in a Monoid of Zero-One Matrices
Stefan Kiefer #

Department of Computer Science, University of Oxford, UK

Andrew Ryzhikov #

Department of Computer Science, University of Oxford, UK

Abstract
A zero-one matrix is a matrix with entries from {0, 1}. We study monoids containing only such
matrices. A finite set of zero-one matrices generating such a monoid can be seen as the matrix
representation of an unambiguous finite automaton, an important generalisation of deterministic
finite automata which shares many of their good properties.

Let A be a finite set of n × n zero-one matrices generating a monoid of zero-one matrices, and
m be the cardinality of A. We study the computational complexity of computing the minimum
rank of a matrix in the monoid generated by A. By using linear-algebraic techniques, we show
that this problem is in NC and can be solved in O(mn4) time. We also provide a combinatorial
algorithm finding a matrix of minimum rank in O(n2+ω + mn4) time, where 2 ≤ ω ≤ 2.4 is the
matrix multiplication exponent. As a byproduct, we show a very weak version of a generalisation of
the Černý conjecture: there always exists a straight line program of size O(n2) describing a product
resulting in a matrix of minimum rank.

For the special case corresponding to complete DFAs (that is, for the case where all matrices
have exactly one 1 in each row), the minimum rank is the size of the smallest image of the set of
states under the action of a word. Our combinatorial algorithm finds a matrix of minimum rank in
time O(n3 + mn2) in this case.

2012 ACM Subject Classification Theory of computation → Formal languages and automata theory;
Computing methodologies → Symbolic and algebraic manipulation

Keywords and phrases matrix monoids, minimum rank, unambiguous automata

Digital Object Identifier 10.4230/LIPIcs.STACS.2025.61

Funding Andrew Ryzhikov: Supported by the European Research Council (ERC) under the European
Union’s Horizon 2020 research and innovation programme (Grant agreement No. 852769, ARiAT).

Acknowledgements We thank the anonymous reviewers for their helpful comments that improved
the presentation of the paper.

1 Introduction

Matrix monoids are a rich and versatile object used in formal verification, program analysis,
dynamical systems and weighted automata. However, many of their properties are in general
undecidable. One such example is the well-studied matrix mortality problem. Given a finite
set A of n × n matrices, it asks if the monoid generated by A (that is, the set of all products
of matrices from A) contains the zero matrix. This problem is undecidable already for 3 × 3
integer matrices [40], and was studied for several decidable special cases, see e.g. [16, 6, 47].

Even if A is a set of zero-one matrices (that is, matrices with entries in {0, 1}), matrix
mortality is PSPACE-complete [47]. We thus restrict our attention to the case where the
whole monoid generated by A consists of zero-one matrices; in this case, matrix mortality
becomes decidable in polynomial time [34]. We call such monoids zero-one matrix monoids.
Intuitively, when multiplying any two matrices from such a monoid, we never get 1 + 1 as
a subexpression. Zero-one matrix monoids have a rich structure while still admitting good

© Stefan Kiefer and Andrew Ryzhikov;
licensed under Creative Commons License CC-BY 4.0

42nd International Symposium on Theoretical Aspects of Computer Science (STACS 2025).
Editors: Olaf Beyersdorff, Michał Pilipczuk, Elaine Pimentel, and Nguyễn Kim Thắng;
Article No. 61; pp. 61:1–61:22

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:stefan.kiefer@cs.ox.ac.uk
https://orcid.org/0000-0003-4173-6877
mailto:ryzhikov.andrew@gmail.com
https://orcid.org/0000-0002-2031-2488
https://doi.org/10.4230/LIPIcs.STACS.2025.61
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

61:2 Minimum Rank of a Matrix in a Monoid of Zero-One Matrices

algorithmic properties. They correspond precisely to unambiguous finite automata, and find
applications in formal verification [3], variable-length codes [9] and symbolic dynamics [38].
They are also an interesting special case of finite monoids of rational matrices (studied in,
e.g., [39, 28, 1, 13]), monoids of nonnegative matrices (studied in, e.g., [41, 10, 51, 22]), and,
in the case where they do not contain the zero matrix, of matrix monoids with constant
spectral radius [42].

In this paper, we consider a problem that can be seen as a natural generalisation of
matrix mortality: given a finite set A generating a zero-one monoid, find the minimum real
rank of a matrix in this monoid. By the real rank of a matrix we mean the dimension of
the subspace generated by its columns over the reals. Clearly, this rank is zero if and only
if the monoid contains the zero matrix. The minimum real rank of a matrix in a zero-one
matrix monoid is a much more tractable problem than deciding other similar properties: for
example, checking if a zero-one matrix monoid contains a matrix of a given real rank was
shown to be NP-hard1 [24].

The goal of our paper is threefold. Firstly, we present efficient algorithms for analysing
monoids of zero-one matrices and unambiguous finite automata. Secondly, to obtain these
algorithms, we provide new structural properties of such monoids and automata that might
be interesting on their own. Thirdly, we strengthen the connections between the areas of
synchronising automata, weighted automata and matrix semigroups by transferring methods
and tools between them. We also highlight open problems in the intersection of these areas.

2 Existing results and our contributions

Throughout the paper, we always assume that matrix monoids are defined by sets of
generators, and all matrices are square zero-one unless stated otherwise.

Complete DFAs

An n × n zero-one matrix with exactly one 1 in every row can be equivalently seen as a
transformation of a set Q of size n. A set of such matrices generates a zero-one matrix
monoid, and can be seen as a complete deterministic finite (semi-)automaton2 (complete
DFA) A = (Q, Σ, δ). Here, Σ is a finite alphabet whose letters correspond to the generating
matrices, and δ : Q × Σ → Q is the transition function defined in such a way that for
each a ∈ Σ, δ(_, a) is the transformation of Q induced in the natural way by the matrix
corresponding to a. Thus, words over Σ correspond to products of the generating matrices.

The rank of a word w in A is the size of the image of Q under the transformation
corresponding to w. Equivalently, it is the real rank of the matrix corresponding to w. The
rank of a complete DFA is the minimum among the ranks of all its words. This concept was
studied from the perspectives of automata theory [43, 30] and the theory of transformation
semigroups [48, 31]. It is the subject of the rank conjecture (called the Černý-Pin conjecture
in [43]), which states that every complete DFA of rank r admits a word of rank r having length
at most (n − r)2. The Černý conjecture, one of the oldest open problems in combinatorial
automata theory [50], is a special case with r = 1. We refer to surveys [49, 4, 30, 50] for the
vast literature on the Černý conjecture. Underlying digraphs of complete DFAs of a given
rank were studied in [12, 4] in the context of the road colouring problem.

1 In fact, it is PSPACE-complete, which follows directly from [8, Theorem 3]: add a fresh state and define
all yet undefined transitions to lead to this state.

2 In this paper, all automata are semi-automata, meaning that they do not have any initial or accepting
states, and do not recognise any languages. Following the usual conventions (as in, e.g., [9]), we omit
“semi-”, in particular because it would make abbreviations like DFA less recognisable.

S. Kiefer and A. Ryzhikov 61:3

The rank of an n-state complete DFA over an alphabet of size m can be found in O(m4n4)
time [43, Theorem 1]. In contrast, for any fixed r ≥ 2, the problem of checking if a complete
DFA admits a word of rank r is NP-hard [24]. Checking if an n-state complete DFA over
an alphabet of size m has rank one is NL-complete [26, 50], and can be done in O(mn2)
time [20, 49]. For each complete DFAs of rank r, there exists a word of rank r of length
at most (n−r)3

6 + O((n − r)2) [37], and if r = 1, finding a word of rank one can be done in
O(n3 + mn2) time and O(n2) space [20].

Unambiguous finite automata

Generalising the case of complete DFAs, a set A of n × n zero-one matrices generating a
zero-one matrix monoid can be equivalently seen as an unambiguous nondeterministic finite
(semi-)automaton (UFA). Let Q = {q1, . . . , qn} be its set of states. To each matrix in A we
again associate a letter in the alphabet Σ, and the transition relation ∆ ⊆ Q × Σ × Q is
defined so that (qi, a, qj) ∈ ∆ if and only if the entry (i, j) in the matrix corresponding to a

is equal to one. Just as in the complete DFA case, words over Σ naturally correspond to
products of matrices from A.

The obtained NFA then has the property that is sometimes called diamond-free: for every
two states p, q and every word w, there is at most one path from p to q labelled by w. A
simple reachability argument shows that the length of a shortest word labelling two such
paths, if it exists, is at most quadratic in the dimension of the matrices. Hence, deciding
whether an NFA is a UFA (and thus whether a set of zero-one matrices generates a zero-one
monoid) is in coNL = NL. It is actually NL-complete as described in the next subsection.

A UFA is called complete if it does not admit a word whose matrix is the zero matrix.
For an n-state UFA the length of such a word if it exists is at most n5 [34]. The best known
lower bound is quadratic in n, and is achieved by a series of DFAs [44]. For UFAs, the
quadratic upper bound was conjectured to be tight [43, Conjecture 2]. Checking if a UFA is
complete can be done in NC2 [34].

The real rank of a UFA is the minimum among the real ranks of the matrices corresponding
to words. It was shown in [14] that for an n-state UFA of real rank r ≥ 1 there always exists
a word of minimum rank of length O(rn3). For n-state strongly connected Eulerian UFAs of
rank one, a subclass with remarkably nice properties, there always exists a word of length
at most (n − 1)2 of rank one [15, Corollary 4]. All mentioned constructions also provide
polynomial time algorithms that construct words with the required properties (in particular,
with a length within the stated bounds).

Applications to variable-length codes

A variable-length code (or simply a code) is a set X of finite words over an alphabet Σ such
that every finite word over Σ has at most one factorisation over X. In other words, a code is
a basis of a free submonoid of Σ∗.

The definitions of both UFAs and codes rely, intuitively, on the uniqueness of certain
representations. In fact, UFAs and codes are tightly related. Let us illustrate this relationship.
If the cardinality of a code X is finite, one can construct its flower automaton, which is a UFA
with a chosen state s such that, for each word from X, there is a separate cycle containing s

and labelled by this word, see Figure 1 (left) for an example. More generally, codes that are
regular languages correspond precisely to strongly connected UFAs in a similar way, see [9,
Chapter 4] for the details.

STACS 2025

61:4 Minimum Rank of a Matrix in a Monoid of Zero-One Matrices

12

3 4

5

6

789

a
a

a

a

b
a

b
a

a

ba

b

a b a b a

b a b a b a a b a

Figure 1 The flower automaton of the code X = {aa, aab, aba, abab} (left), two adjacent inter-
pretations of ababa over X (top right), and two disjoint interpretations of bababaaba over X (bottom
right). Note that this code is not complete, but still illustrates all the discussed properties.

A useful corollary of the construction of the flower automaton is the fact that deciding if
a set of zero-one matrices generates a zero-one monoid is NL-hard. Indeed, a finite set of
words is a code if and only if its flower automaton is unambiguous [9]. Deciding if a finite set
of words is a code is NL-complete [45], and the flower automaton can be constructed in AC0.

A code X over Σ is called complete if every word over Σ is a factor of a concatenation of
codewords, that is, for every word w ∈ Σ∗ there exist u, v ∈ Σ∗ with uwv ∈ X∗. A code that
is a regular language is complete if and only if the corresponding UFA is complete [9]. For
complete codes that are regular languages, the real rank of the corresponding UFA is equal
to a natural and important parameter called the degree of a code [9, Proposition 9.6.1].

Let us explain the intuition behind the notion of degree, see [9, Chapter 9.6] for the
formal definitions. For each word w we can consider all possible factorisations over X of all
its extensions uwv ∈ X∗ with u, v ∈ Σ∗, called interpretations of w. Two such interpretations
either match in at least one position (as in Figure 1 (top right) between the second and the
third letter), or do not match in any position (as in Figure 1 (bottom right)), in which case
they are called disjoint. The degree of a word is the number of pairwise disjoint interpretations
of this word. The degree of a code X is the minimum nonzero degree of all words w ∈ Σ∗.

A particularly important case is when a complete code has degree one. Then there exists
a word w ∈ X∗ (called a synchronising word) such that for any concatenation of codewords
uwwv ∈ X∗ with u, v ∈ Σ∗ we have uw, wv ∈ X∗. Intuitively, this means that the two halves
uw and wv can be decoded separately and independently.

Computational complexity classes

In this paper, we characterise the computational complexity of problems by showing that
they belong to the classes NL ⊆ NC2 ⊆ NC ⊆ P, see [2, 23] for their formal definitions. NL is
the class of problems solvable in nondeterministic logarithmic time. NCk is the class of
problems solvable by O((log n)k)-depth polynomial-size bounded fan-in Boolean circuits,
and NC is the union of these classes for all k ≥ 1. The class NC represents problems that
have efficient parallel algorithms, and is a subclass of problems solvable in polylogarithmic
space [2]. Intuitively, NC is the class of problems that can be solved using local computations,
as opposed to P-complete problems, which are inherently sequential and thus require storing
the entire structure in the memory unless NC = P. Showing that a problem is in NC also
allows to obtain a polynomial space algorithm for the case of exponential-size input computed
by a PSPACE-transducer (as done, e.g., in [3]), which is not necessarily true for arbitrary
problems solvable in polynomial time.

S. Kiefer and A. Ryzhikov 61:5

NC2 is an especially important class in computational algebra. To quote [23, page 468],
“NC2 is the habitat of most natural problems in linear algebra”. Indeed, matrix multiplication,
computing the determinant, inverse and rank of a matrix belong to NC2 [11, 18, 7, 19].

Our contributions

The known results about reachability properties of zero-one matrix monoids (including the
special case of complete DFAs), such as [14, 20, 46, 34], mostly construct a product of
minimum rank iteratively, with each iteration decreasing the number of different rows or the
rank of a matrix. Such an approach is inherently sequential, since the matrix in the new
iteration has to depend on the previous one, which thus has to be constructed explicitly.
In particular, this requires matrix multiplication at every step, which heavily increases the
time complexity. In this paper, we take a different direction by strongly relying on linear
algebra. While linear-algebraic arguments are used widely in the synchronising automata
literature, they mostly serve to decrease the number of iterations in the iterative scheme
described above. Our approach is to instead relate the rank of a zero-one matrix monoid to
efficiently computable linear-algebraic properties, without explicitly constructing a matrix of
minimum rank.

Our first main result is that computing the rank of a zero-one matrix monoid provided in
the input by a generating set of m matrices of dimension n (or, equivalently, by a UFA with n

states and m letters) is in NC2 (Theorem 18) and can be done in time O(mn4) (Theorem 22).
Previously, it was not known that this problem is in NC, not even for complete DFAs or
finite complete codes. Moreover, the naive implementation of the polynomial time algorithm
from the literature works in time O(n4+ω + mn4) [14].

These results rely on a new concept of weight of the matrices in a complete zero-one
monoid. This theory of matrix weight, which we develop in Section 4, is our main technical
contribution. Matrix weight is a natural generalisation of an existing notion of weight of
columns of matrices in complete DFAs, which was used, e.g., in connection with the road
colouring problem [21, 29, 25]. We show that all matrices in a zero-one matrix monoid have
the same weight, and that this weight is tightly related to both the rank of the monoid and
to the maximal weight of the columns and rows of its matrices (Section 4.3). This connection
allows us to reduce the computation of the monoid rank to the computation of maximal
column and row weight. Then we show that we can instead compute the weight of “maximal
pseudo-columns” and “maximal pseudo-rows”, as they have the same weight as maximal
columns and rows, respectively (Section 4.4). Finally, we transfer linear-algebraic techniques
from the literature on weighted automata to compute those weights, and thus the rank of
the monoid, efficiently (Section 5 and Section 6.2).

We complement the linear-algebraic algorithms with a combinatorial algorithm, our
second main contribution. While the latter has higher time complexity of O(n2+ω + mn4) in
the general case (Theorem 23), it also constructs a matrix of minimum rank in addition to
computing the rank of the monoid. For complete DFAs, our combinatorial algorithm runs
in time O(n3 + mn2) (Theorem 24), thus outmatching the linear-algebraic counterpart and
improving upon the O(m4n4) algorithm known before [43]. The two key technical ingredients
of our combinatorial algorithm are explained in the beginnings of Section 6.3 and Section 6.4.
Our results on the time complexity of computing the rank are summarised in the table below.

class previous best linear-algebraic algorithm combinatorial algorithm
UFA O(n4+ω + mn4) [14] O(mn4) (Theorem 22) O(n2+ω +mn4) (Theorem 23)
complete DFA O(m4n4) [43] O(mn3) (see Section 6.2) O(n3 + mn2) (Theorem 24)

STACS 2025

61:6 Minimum Rank of a Matrix in a Monoid of Zero-One Matrices

3 Main definitions

Let Q be a finite set, which we view as a set of states. For S ⊆ Q we write [S] for the column
vector x ∈ {0, 1}Q such that x(q) = 1 if and only if q ∈ S. We may write [q] for [{q}]. For a
column vector x ∈ {0, 1}Q we write xT for the transpose, a row vector. For two column vectors
x1, x2 ∈ RQ we write x1 ≥ x2 if the inequality holds component-wise. We view the elements
of RQ×Q (and similar sets) as matrices. Vector and matrix addition and multiplication are
defined in the usual way (over R). We denote by ⟨X⟩ the span of a set X of vectors, i.e., the
set of all linear combinations of X with real coefficients. The real rank of a matrix A ∈ RQ×Q

is, as usual, the dimension of the column space of A over the field of the reals (which equals
the dimension of the row space); i.e., rankR(A) = dim ⟨A[q] | q ∈ Q⟩ = dim ⟨[q]T A | q ∈ Q⟩.

Let A = {A1, . . . , Am} be a set of matrices from {0, 1}Q×Q, and Σ = {a1, . . . , am} be
a finite alphabet. We associate the letters with the matrices by setting M(ai) = Ai for
1 ≤ i ≤ m. Throughout this paper, when speaking about computational complexity, we
assume that the input is the function M : Σ → {0, 1}Q×Q from letters to zero-one matrices.
We can extend M : Σ → {0, 1}Q×Q naturally (and often implicitly) to M : Σ∗ → ZQ×Q

≥0 by
defining M(a1 · · · ak) = M(a1) · · · M(ak). Thus, M is a monoid homomorphism from Σ∗ to
the matrix monoid M(Σ∗) generated by A = M(Σ). Note that M(ε) = I, where ε denotes
the empty word and I the Q × Q identity matrix. In this paper, we consider only monoid
morphisms M : Σ∗ → ZQ×Q

≥0 that are unambiguous, i.e., M : Σ∗ → {0, 1}Q×Q. If M is
unambiguous, A = M(Σ) generates a finite matrix monoid M(Σ∗) ⊆ {0, 1}Q×Q.

Viewing the matrices as transition matrices of an automaton, we obtain a nondeterministic
finite (semi-)automaton (NFA) (Q, Σ, ∆) with transition relation ∆ = {(p, a, q) ∈ Q×Σ×Q |
[p]T M(a)[q] = 1}. Recall that in this paper automata do not have dedicated initial or
accepting states, see footnote 2 on page 2. We can extend ∆ from letters to words in the
usual way so that we have ∆ = {(p, w, q) ∈ Q×Σ∗ ×Q | [p]T M(w)[q] ≥ 1}. An NFA (Q, Σ, ∆)
is unambiguous (or diamond-free) if for every two states p, q and for every two words w1, w2
there exists at most one t ∈ Q with (p, w1, t) ∈ ∆ and (t, w2, q) ∈ ∆; see Figure 2 for an
illustration of the forbidden configuration. We denote unambiguous NFAs as UFAs. Recall
from the previous section that deciding if an NFA is unambiguous is NL-complete. In the
following, we often identify M : Σ∗ → {0, 1}Q×Q with the corresponding UFA (Q, Σ, ∆). In
particular, a monoid homomorphism is unambiguous if and only if the corresponding NFA is
unambiguous.

p

t1

q

t2

w1 w2

w1 w2

Figure 2 The configuration that is forbidden in a UFA.

When M (or, equivalently, ∆) is clear from the context, we may write p · w = {q ∈ Q |
(p, w, q) ∈ ∆}. Then [p ·w]T = [p]T M(w). Similarly, we may write w · q = {p ∈ Q | (p, w, q) ∈
∆}, so that [w · q] = M(w)[q]. We call M strongly connected if for all p, q ∈ Q there is w ∈ Σ∗

with p · w ∋ q. We call M complete if 0 ̸∈ M(Σ∗), where 0 is the zero matrix. The real
rank of M (and of M(Σ∗)) is rankR(M) := min{rankR(M(w)) | w ∈ Σ∗}. Note that M is
complete if and only if rankR(M) ̸= 0.

Suppose that |p · a| = 1 holds for every p ∈ Q and a ∈ Σ, or, equivalently, that every
matrix in A has exactly one 1 in each row. Then |p · w| = 1 holds for every p ∈ Q and
w ∈ Σ∗. We call such UFAs complete deterministic finite (semi-)automata (complete DFAs)

S. Kiefer and A. Ryzhikov 61:7

and we may write δ instead of ∆ to highlight that it is a transition function δ : Q × Σ → Q

instead of a transition relation. A complete DFA (Q, Σ, δ) is complete in the sense defined
above (i.e., 0 ̸∈ M(Σ∗)), and for any w ∈ Σ∗ we have that rankR(M(w)) is the number of
nonzero columns in M(w).

4 Main concepts and the linear algebra toolbox

In this section, we introduce the main tools that we will use for both linear-algebraic and
combinatorial algorithms in later sections. Until Section 4.5, we fix an unambiguous, complete,
and strongly connected monoid morphism M . In Section 4.5 we will show that the case
where M is not strongly connected can be easily reduced to the strongly connected case.

4.1 Columns, rows and the structure of minimum rank matrices
The concept of maximum columns and rows plays a crucial role in dealing with reachability
problems in unambiguous monoid morphisms. Abusing language slightly in the following, by
column we refer to column vectors of the form [w · q] = M(w)[q] ∈ {0, 1}Q where w ∈ Σ∗

and q ∈ Q. Similarly, a row is of the form [q · w]T = [q]T M(w). See Figure 3 for an example.
In the case of complete DFAs, all rows are of the form [q]T . This fact makes complete DFAs
significantly simpler to deal with than general complete UFAs.

M(a) =

1 0 1 0
1 0 1 0
0 0 0 0
0 0 0 0

 M(b) =

0 0 0 0
0 0 0 0
0 1 0 1
0 1 0 1

 1

2

3

4

a
a

a
a

b

b

b

b

Figure 3 [a · 3] = M(a)[3] = [{1, 2}] is a column; [2 · a]T = [2]T M(a) = [{1, 3}]T is a row.

A column [C] is called maximal if there is no column [C ′] such that [C ′] ̸= [C] and
[C ′] ≥ [C] (that is, C ⊂ C ′). Maximal rows are defined in the same way. Recall that the
inequalities are taken component-wise.

Let A ∈ {0, 1}m×n be a zero-one matrix. One can view rankR(A) as the least number r such
that there are matrices C ∈ Rm×r and R ∈ Rr×n with A = CR. Define the unambiguous
rank rankun(A) as the least number r such that there are matrices C ∈ {0, 1}m×r and
R ∈ {0, 1}r×n such that A = CR. Analogously to rankR(M), define also rankun(M) :=
min{rankun(M(w)) | w ∈ Σ∗}. Clearly, rankR(A) ≤ rankun(A), and the inequality can be
strict, but in Corollary 2 below we show that rankR(M) = rankun(M). The reason we are
interested in the unambiguous rank is that Theorem 1 below implies that there is always a
matrix with a very simple structure such that its unambiguous rank is equal to its real rank
and both ranks are minimum.

In the following let us write r := rankun(M) when M is understood. A word u ∈ Σ∗ is of
minimum unambiguous rank if rankun(M(u)) = r. If u ∈ Σ∗ is of minimum unambiguous
rank then so is vuw for all v, w ∈ Σ∗.

Words of unambiguous rank one, known as synchronising words, play an especially
important role due to their applications in the theory of codes, as explained in Section 2. It
is easy to see that a word w has unambiguous rank one if and only if there exist C, R ⊆ Q

such that w maps a state p to a state q if and only if p ∈ C and q ∈ R. For complete DFAs,
we moreover have that C = Q and R has cardinality one.

STACS 2025

61:8 Minimum Rank of a Matrix in a Monoid of Zero-One Matrices

▶ Theorem 1 (Césari [17]). Let u ∈ Σ∗ be of minimum unambiguous rank. There are pairwise
disjoint sets C1, . . . , Cr ⊆ Q and pairwise disjoint sets R1, . . . , Rr ⊆ Q such that

M(u) =
r∑

i=1
[Ci][Ri]T .

Moreover, each [Ci] and [Ri]T is, respectively, a maximal column and a maximal row.

This theorem will play a central role. A proof can be found in [5, Proposition 4]. In the
case of a complete DFA, R1 is a singleton and Theorem 1 is fairly obvious.

In Theorem 1, since the Ci are pairwise disjoint and the Ri are pairwise disjoint, each
[Ci][Ri]T forms, intuitively, a “combinatorial rectangle”, and no such rectangle shares
a row or a column with any other rectangle. The column vectors [Ci] are exactly the
nonzero columns of M(u) and linearly independent, and the row vectors [Ri]T are exactly
the nonzero rows of M(u) and linearly independent. Thus, r is the number of distinct
nonzero columns and also the number of distinct nonzero rows in M(u). It follows that
r = rankun(M(u)) = rankR(M(u)). Thus we have:

▶ Corollary 2. We have r = rankun(M) = rankR(M).

We can thus define rank(M) as rankun(M) = rankR(M). For words w ∈ Σ∗ that are not
of minimum unambiguous rank, we may have rankR(M(w)) < rankun(M(w)), but the rank
of such matrices will rarely play a role in the following. In what follows, we call words of
minimum unambiguous rank simply words of minimum rank. Since we never refer to the
real rank of words below, this will not lead to any confusion.

4.2 The weight of columns and rows
The results in this subsection, about the column and row vectors that appear in the
matrices M(w), are mostly due to [17]; see also [5, Section 3]. Since a notion of column and
row weight will be crucial for us in the later development, we phrase and prove the results
around these concepts, but we do not view the lemmas of this subsection as novel.

Define A = 1
|Σ|

∑
a∈Σ M(a) ∈ [0, 1]Q×Q. Since M is strongly connected, A is irreducible.

Since M is unambiguous, the spectral radius of A is at most 1, and since M is complete,
it is at least 1. Thus, the spectral radius of A equals 1. Since A is irreducible, it follows
from basic Perron-Frobenius theory that A has an eigenvalue 1 and every right eigenvector
with eigenvalue 1 is a multiple of a strictly positive vector, say β ∈ RQ

>0. Since A has
only rational entries, we can assume β ∈ QQ

>0. Similarly for left eigenvectors. Therefore,
there are α, β ∈ QQ

>0 with αT A = αT and Aβ = β. Without loss of generality, we assume
that αT β = 1.

In the complete DFA case, since M(a)[Q] = [Q] for all a ∈ Σ, we have A[Q] = [Q] and so
it is natural to take β = [Q]. In that case, αT [Q] = αT β = 1 means that αT = αT A is the
(unique) stationary distribution of the Markov chain whose transition probabilities are given
by the row-stochastic matrix A; intuitively, in this Markov chain a letter a ∈ Σ is picked
uniformly at random in every step.

Define the weight of a column y and of a row xT by αT y ∈ R and xT β ∈ R, respectively.
Denote the maximum column weight and the maximum row weight by mcw and mrw,
respectively, i.e.,

mcw := max{αT y | y is a column} and mrw := max{xT β | xT is a row} .

S. Kiefer and A. Ryzhikov 61:9

A column y is called of maximum weight if αT y = mcw, and analogously for rows. In
the complete DFA case, every row is of the form [q]T for some q ∈ Q, hence every row is of
maximum weight.

▶ Lemma 3. A column (respectively, row) is maximal if and only if it is of maximum weight.

An important property that we will need later is that the set of maximal columns is
closed under left multiplication by matrices from the monoid, as stated in the following
lemma. Note that this is no longer true without the completeness assumption, and is the key
reason why the case of complete matrix monoids is easier to deal with.

▶ Lemma 4. Let v ∈ Σ∗ and q ∈ Q be such that [v · q] is a maximal column. Then [uv · q] is
a maximal column for all u ∈ Σ∗.

The following lemma will be useful later to construct minimum rank matrices from
maximal columns and rows.

▶ Lemma 5. Let w ∈ Σ∗ be such that all non-zero columns and rows in M(w) are maximal.
Then ww is of minimum rank.

4.3 Weight preservation property and minimum rank
Every word w of minimum rank in a complete DFA induces a partition of the state set into
subsets of states mapped by w to the same state (that is, into columns). It was observed by
Friedman in [21] that all sets of such a partition have the same weight. This observation has
many applications to variations of the road colouring problem [21, 29, 25, 30]. Moreover, it
was proved in [25, Theorem 6], again in connection with road colouring, that for every w

the weights of all columns in M(w) sum up to 1 (assuming β = [Q] as suggested previously).
This can be seen as a weight preservation property: the total weight of columns in the matrix
of a word is preserved under multiplication by any matrix from the monoid. As a result we
get that 1 = r · mcw, and hence r = 1

mcw . The proof of the weight preservation property for
complete DFAs is quite simple and relies on the fact that for a state q and a word w the
set q · w is always a singleton. For complete UFAs this is no longer true; in particular, q · w

can be the empty set, thus permanently “losing” some weight collected in q. Hence, a more
refined property is required. The following result provides such a property. It also turns out
that its proof requires more sophisticated techniques than in the complete DFA case.

▶ Theorem 6. For all w ∈ Σ∗ we have 1 = αT M(w)β = r · mcw · mrw.

Similarly to the complete DFA case, this result allows us to reduce computing r to
computing mcw and mrw, which we will use later in our algorithms. Recall that we have
defined αT and β so that αT β = 1.

Towards a proof of Theorem 6 we first prove the following lemma.

▶ Lemma 7. Let u ∈ Σ∗ be of minimum rank. Then αT M(u)β = r · mcw · mrw.

Proof. Let M(u) =
∑r

i=1[Ci][Ri]T be as in Theorem 1. Each [Ci] and each [Ri] is of
maximum weight. Thus,

αT M(u)β =
r∑

i=1
αT [Ci][Ri]T β =

r∑
i=1

mcw · mrw = r · mcw · mrw . ◀

We also need the following proposition.

STACS 2025

61:10 Minimum Rank of a Matrix in a Monoid of Zero-One Matrices

▶ Proposition 8. Let x ∈ RQ and c ∈ R be such that xT M(u)β = c holds for all u ∈ Σ∗ of
minimum rank. Then xT M(w)β = c holds for all w ∈ Σ∗.

Proof. Let w ∈ Σ∗. Let u ∈ Σ∗ be of minimum rank. Recall that every word that contains u

as a factor is of minimum rank. For every k ≥ 0, partition Σk into sets W0(k) and W1(k)
so that W0(k) = Σk ∩ (Σ∗uΣ∗) and W1(k) = Σk \ (Σ∗uΣ∗); i.e., W0(k), W1(k) are the sets
of length-k words that do or do not contain u as a factor, respectively. For all v ∈ W0(k)
both v and wv are of minimum rank. Thus, we have xT M(wv)β = c for all v ∈ W0(k). It
follows that∑

v∈W0(k)

xT M(wv)β
|W0(k)| = c for all k ≥ 0. (1)

Let d > 0 be such that |xT Aβ| ≤ d for all A ∈ {0, 1}Q×Q. Then we have∑
v∈W1(k)

|xT M(wv)β|
|W1(k)| ≤ d for all k ≥ 0. (2)

Let m ≥ 0. Define p1(m) := |W1(m|u|)|
|Σ|m|u| . We can view p1(m) as the probability of picking

a word in W1(m|u|) when a word of length m|u| is picked uniformly at random. We have
p1(m) ≤

(
1 − 1

|Σ||u|

)m

, as in order to avoid u as a factor, it has to be avoided in each of the
m consecutive blocks of length |u|. Thus, limm→∞ p1(m) = 0. We have

xT M(w)β = xT M(w)Aβ = xT M(w)Am|u|
β = 1

|Σ|m|u|

∑
v∈Σm|u|

xT M(wv)β

= |W0(m|u|)|
|Σ|m|u|

∑
v∈W0(m|u|)

xT M(wv)β
|W0(m|u|)| + |W1(m|u|)|

|Σ|m|u|

∑
v∈W1(m|u|)

xT M(wv)β
|W1(m|u|)|

= (1 − p1(m)) · c + p1(m) ·
∑

v∈W1(m|u|)

xT M(wv)β
|W1(m|u|)| (by Equation (1)).

With Equation (2) it follows that |xT M(w)β − c| ≤ p1(m)(|c| + d) . Since this holds for all
m ≥ 0 and limm→∞ p1(m) = 0, we conclude that xT M(w)β = c. ◀

Now we prove Theorem 6.

Proof of Theorem 6. It follows from Lemma 7 and Proposition 8 that

αT M(w)β = r · mcw · mrw for all w ∈ Σ∗.

With w = ε we obtain 1 = αT β = αT M(ε)β = r · mcw · mrw, as required. ◀

4.4 Maximal pseudo-columns
In this subsection, we define maximal pseudo-columns, which are vectors that can be seen
as a relaxation of the notion of maximal columns. We show that the weight of a maximal
pseudo-column is equal to the weight of a maximal column, and a maximal pseudo-column is
a solution of a system of linear equations, and thus can be computed efficiently. By invoking
Theorem 6, this will allow us to efficiently compute r.

Denote by MCol ⊆ {0, 1}Q the set of maximal columns. By Theorem 1 (bearing in mind
also Corollary 2), the vector space spanned by all maximum columns, ⟨MCol⟩, is at least
r-dimensional:

S. Kiefer and A. Ryzhikov 61:11

▶ Proposition 9. We have r ≤ dim ⟨MCol⟩.

One might hypothesise that r = dim ⟨MCol⟩ or even that all minimum-rank matrices have
the same r nonzero (hence, maximum) columns. The following example shows that neither
is the case in general, not even for complete DFAs.

▶ Example 10. Consider the complete DFA with Σ = {a, b} and

M(a) =

1 0 0 0
0 0 1 0
0 0 1 0
1 0 0 0

 M(b) =

0 1 0 0
0 1 0 0
0 0 0 1
0 0 0 1

1 2

34

a b

ab

b

a

b

a

By symmetry, we have αT =
(1

4
1
4

1
4

1
4
)
. Since no word maps states 1 and 3 to

the same state, we have r = 2; i.e., a and b are both minimum rank. Further, MCol
consists exactly of the four nonzero columns in M(a) and M(b). Their span ⟨MCol⟩ is
3-dimensional, as

(
1 −1 1 −1

)
is orthogonal to each maximum column. Thus, r = 2 <

3 = dim ⟨MCol⟩ < 4 = |MCol|.

Define the vector space U := ⟨αT M(w) − αT | w ∈ Σ∗⟩. Intuitively, it is the set of all
differences of weight distributions over the states before and after a word is applied. Notice
that for all w1, w2 ∈ Σ∗ we have αT M(w1)−αT M(w2) ∈ U . Later (see the proof of Lemma 19
below) we show that U is closed under post-multiplication with M(a) for all a ∈ Σ. Such
“forward spaces” play an important role in weighted automata; see, e.g., [32]. Denote the
orthogonal complement of U by U⊥; i.e., U⊥ = {y ∈ RQ | ∀ w ∈ Σ∗ : αT M(w)y = αT y}.
Intuitively, it is the set of vectors whose weight does not change under pre-multiplication
with M(w) for any w (where by the weight of a vector y we understand αT y). Clearly,
dim U + dim U⊥ = |Q|. The following proposition follows immediately from Lemma 4.

▶ Proposition 11. We have MCol ⊆ U⊥.

It follows that ⟨MCol⟩ is a subspace of U⊥. With Proposition 9, we have r ≤ dim ⟨MCol⟩ ≤
dim U⊥. One might hypothesise that ⟨MCol⟩ = U⊥. The following example shows that this
is not the case in general, not even for complete DFAs.

▶ Example 12. Consider the DFA with Σ = {a, b, c} and

M(a) =

1 0 0 0
1 0 0 0
0 0 1 0
0 0 1 0

 , M(b) =

0 1 0 0
0 1 0 0
0 0 0 1
0 0 0 1

 , M(c) =

0 0 1 0
0 0 0 1
1 0 0 0
0 1 0 0

 .

1 2

3 4

a b

a b

a

b

a

b
cc cc

STACS 2025

61:12 Minimum Rank of a Matrix in a Monoid of Zero-One Matrices

We have Mer(1) = Mer(2) = {1, 2} and Mer(3) = Mer(4) = {3, 4}. Thus, MCol =
{
(
1 1 0 0

)T
,
(
0 0 1 1

)T }. Hence, dim ⟨MCol⟩ = 2.
On the other hand, by symmetry we have αT =

(1
4

1
4

1
4

1
4
)
. For any w ∈ Σ∗,

αT M(w) =

(

1
4

1
4

1
4

1
4

)
if w ∈ {c}∗(

1
2 0 1

2 0
)

if the last non-c letter in w is a(
0 1

2 0 1
2

)
if the last non-c letter in w is b .

It follows that U = ⟨
(
1 −1 1 −1

)
⟩. Thus, dim U⊥ = 4 − 1 = 3 > 2 = dim ⟨MCol⟩, and

⟨MCol⟩ is a strict subspace of U⊥. For example, the vector
(
1 0 0 1

)T is in U⊥ but not
in ⟨MCol⟩.

Although the dimension of U⊥ does not generally equal r, the vector space U⊥ turns out
useful for computing r. Recall that, by Theorem 6, we can obtain r by computing mcw (and,
symmetrically, mrw). For q ∈ Q define

Mer(q) := {q′ ∈ Q | ∃ S ⊇ {q, q′} such that [S] is a column} .

Intuitively, Mer(q) consists of the states that can “appear” in a column together with q, or,
equivalently, the states that are “mergeable” with q (that is, can be mapped to the same
state by a word). Note that q ∈ Mer(q). We will need the following lemma which is easy to
prove.

▶ Lemma 13. Let v ∈ Σ∗ and q ∈ Q be such that [v · q] is a maximal column. Then v · q′ = ∅
holds for all q′ ∈ Mer(q) \ {q}.

We call a vector y ∈ U⊥ a maximal pseudo-column if there is q ∈ Q with y(q) = 1 and
y(q′) = 0 for all q′ ̸∈ Mer(q). This notion, which is closely related to the “pseudo-cuts”
from [35], can be seen as a relaxation of the notion of a maximal column: clearly, every
maximal column is a maximal pseudo-column, but the converse is not true, since a maximal
pseudo-column is not necessarily a vector over {0, 1}, let alone a column in the strict sense,
i.e., of the form [w · p]. The following lemma however shows that the weight of a maximal
pseudo-column is equal to the weight of a maximal column. We will later show that computing
the former can be done in NC2.

▶ Lemma 14. Let y be a maximal pseudo-column. Then αT y = mcw.

Proof. Let q ∈ Q be such that y(q) = 1 and y(q′) = 0 for all q′ ̸∈ Mer(q). Let w ∈ Σ∗ be
such that [w · q] is a maximal column. We have

αT y = αT M(w)y (y ∈ U⊥)

=
∑
q′∈Q

y(q′)αT [w · q′]

=
∑

q′∈Mer(q)

y(q′)αT [w · q′] (y(q′) = 0 for q′ ̸∈ Mer(q))

= αT [w · q] +
∑

q′∈Mer(q)\{q}

y(q′)αT [w · q′] (y(q) = 1)

= αT [w · q] (Lemma 13)
= mcw (by the choice of w, q). ◀

S. Kiefer and A. Ryzhikov 61:13

▶ Example 15. We continue Example 10. We have U = ⟨
(
1 −1 1 −1

)
⟩ and Mer(2) =

{1, 2, 3}. Let y =
(
4/3 1 −1/3 0

)T . Then y ∈ U⊥. Since y(2) = 1 and y(4) = 0, vector y

is a maximal pseudo-column. Thus, by Lemma 14, mcw = αT y =
(1

4
1
4

1
4

1
4
)

y = 1
2 .

▶ Theorem 16. Let Γ be a basis of U , and let q ∈ Q. Then the following linear system for
y ∈ RQ has a solution, and all its solutions are maximal pseudo-columns:

γT y = 0 for all γT ∈ Γ
y(q) = 1

y(q′) = 0 for all q′ ̸∈ Mer(q) .

Proof. By Proposition 11, any maximal column solves the linear system. Let y ∈ RQ be a
solution of the linear system. The equations on the first line guarantee that y ∈ U⊥. Then,
the equations on the second and third line guarantee that y is a maximal pseudo-column. ◀

4.5 Dealing with the non-strongly connected case
The following lemma shows that in order to compute the minimum rank we can focus on the
strongly connected case.

▶ Proposition 17. Let M : Σ → {0, 1}Q×Q be an unambiguous matrix monoid morph-
ism. Suppose that Q1 ∪ Q2 = Q is a partition of Q such that for all w ∈ Σ∗ it holds
that [Q2]T M(w)[Q1] = 0; i.e., for all w ∈ Σ∗ matrix M(w) has the block form M(w) =(

M1(w) M12(w)
0 M2(w)

)
, where M1(w) ∈ {0, 1}Q1×Q1 and M12(w) ∈ {0, 1}Q1×Q2 and M2(w) ∈

{0, 1}Q2×Q2 . We have rankR(M) = rankR(M1) + rankR(M2) and rankun(M) = rankun(M1) +
rankun(M2).

By a straightforward induction it follows from Proposition 17 that the minimum rank of
an unambiguous matrix monoid is the sum of the minimum ranks of its strongly connected
components (where “incomplete” components count as having rank 0).

5 Computing the rank in NC2

In this section, we prove our first main result, which is as follows.

▶ Theorem 18. The problem of computing the (real) rank of an unambiguous matrix monoid
is in NC2.

In order to use Theorem 16, we need the following lemma. We use the notation defined
in the previous section. Recall that we defined U := ⟨αT M(w) − αT | w ∈ Σ∗⟩.

▶ Lemma 19. If M is strongly connected, one can compute a basis of U in NC2.

For each a ∈ Σ define M ′(a) := M(a)−I ∈ {−1, 0, 1}Q×Q and extend M ′ to M ′ : Σ∗ → ZQ×Q

by defining M ′(a1 · · · ak) = M ′(a1) · · · M ′(ak). Define U ′ := ⟨αT M ′(w) | w ∈ Σ+⟩. Note
that here w ranges over Σ+, i.e., nonempty words, only. By definition, U ′ is closed under
right multiplication by M ′(a) for all a ∈ Σ. We first show the following lemma.

▶ Lemma 20. We have U = U ′.

STACS 2025

61:14 Minimum Rank of a Matrix in a Monoid of Zero-One Matrices

Proof. For the inclusion U ⊆ U ′, we prove by induction on i ≥ 0 that for all length-i
words w ∈ Σi we have αT (M(w) − I) ∈ U ′. Concerning the induction base, i = 0, we have
αT (M(ε) − I) = 0 ∈ U ′. Concerning the induction step, let i ≥ 0, and let w ∈ Σi and a ∈ Σ.
We have

αT (M(wa) − I) = αT (M(w) − I)M(a) + αT (M(a) − I)
= αT (M(w) − I)(M(a) − I) + αT (M(w) − I) + αT (M(a) − I)
= αT (M(w) − I)M ′(a) + αT (M(w) − I) + αT M ′(a) .

It holds that αT M ′(a) ∈ U ′, and, by the induction hypothesis, αT (M(w) − I) ∈ U ′. It
follows that αT (M(wa) − I) ∈ U ′.

For the converse, U ′ ⊆ U , we proceed similarly by induction. Concerning the induction
base, i = 1, for all a ∈ Σ we have αT M ′(a) = αT (M(a) − I) ∈ U . Concerning the induction
step, let i ≥ 1, and let w ∈ Σi and a ∈ Σ. By the induction hypothesis there are n ≤ |Q| and
w1, . . . , wn ∈ Σ∗ and λ1, . . . , λn ∈ R such that αT M ′(w) =

∑n
i=1 λiα

T (M(wi) − I). Thus,
we have

αT M ′(wa) = αT M ′(w)(M(a) − I) =
n∑

i=1
λiα

T (M(wi) − I)(M(a) − I)

=
n∑

i=1
λiα

T
(
(M(wia) − I) − (M(a) − I) − (M(wi) − I)

)
∈ U ,

as required. ◀

Proof of Lemma 19. For each a ∈ Σ define U ′
a := ⟨αT M ′(a)M ′(w) | w ∈ Σ∗⟩. Using the

technique from [33, Section 4.2] (see [32, Proposition 5.2] for a clearer explanation), for each
a ∈ Σ one can compute3 a basis of U ′

a in NC2. The union of these bases, say Γ = {γT
1 , . . . , γT

n }
for some n ≤ |Σ||Q|, spans U ′, which equals U by Lemma 20. To shrink Γ to a basis
of U , for each i ∈ {1, . . . , n} include γT

i in the basis if and only if dim ⟨γT
1 , . . . , γT

i−1⟩ <

dim ⟨γT
1 , . . . , γT

i ⟩. The latter (rank) computation can be done in NC2 [27]. ◀

Now we can prove Theorem 18.

Proof of Theorem 18. Let M : Σ → {0, 1}Q×Q be an unambiguous monoid morphism. Its
strongly connected components can be computed in NL ⊆ NC2. It follows from the proof
of [34, Proposition 3] that one can check each component for completeness in NC2, since a
zero-one monoid contains the zero matrix if and only if the joint spectral radius of the set of
its generators is strictly less than one [34]. Therefore, using Proposition 17, we can assume
in the rest of the proof that M is complete and strongly connected.

We use the fact that one can compute a solution of a possibly singular linear system of
equations in NC2 [11, Section 5]. First, compute in NC2 vectors α, β ∈ QQ

>0 with αT A = αT

and Aβ = β and αT β = 1. Using Lemma 19 compute in NC2 a basis of U . Choose an
arbitrary q ∈ Q and compute Mer(q) in NL ⊆ NC2 with a reachability analysis. Then, solve
the linear system from Theorem 16 to compute in NC2 a maximal pseudo-column y ∈ QQ.
Hence, using Lemma 14, we can compute mcw = αT y in NC2. Symmetrically, we can
compute mrw in NC2. Finally, by Theorem 6, we can compute r = 1

mcw·mrw in NC2. ◀

3 In [33, 32] only membership in NC is claimed, but the bottleneck computations are matrix powering
and rank computation, which can in fact be done in DET ⊆ NC2; see [18]. The computations in [32,
Proposition 5.2] are on polynomially larger matrices, but this does not impact the membership in NC2,
as log2(poly(n)) = O(log2(n)).

S. Kiefer and A. Ryzhikov 61:15

▶ Example 21. We continue Examples 10 and 15. Since M is a complete DFA, it is natural
to take β = [Q]. Note that αT β = 1. Since every row is of the form [q]T for some q, we
have mrw = 1. Recall from Example 15 that mcw = 1

2 . With Theorem 6 we conclude that
r = 1

mcw·mrw = 2, as observed in Example 10.

6 Time and space complexity

In this section, we study the time and space complexity of computing the rank of a zero-one
matrix monoid and finding a matrix of minimum rank in it. We provide two approaches. The
first one relies on the linear-algebraic tools developed in Section 4. It turns out to be faster
than the second, combinatorial, approach, but is limited to only computing the rank. This is
due to the fact that we never explicitly construct a maximal column in this approach, which is
required in order to find a matrix of minimum rank by Theorem 1. Moreover, it is not known
if one can find a maximal column in NC. In contrast, the combinatorial approach explicitly
constructs a matrix of minimum rank step by step. In a way, this is exactly the reason why
it is slower than the linear-algebraic approach, since this requires performing a large number
of matrix multiplications. In the complete DFAs case, where direct matrix multiplication
can be avoided due to the special shape of transformation matrices, it becomes much more
efficient, and outmatches its linear-algebraic counterpart by a factor of the alphabet size.

The three main results of this section are as follows.

▶ Theorem 22. The (real) rank of an n-state UFA over an alphabet of size m can be
computed in O(mn4) time and O(n2) space.

▶ Theorem 23. A matrix of minimum (real) rank in an n-state UFA over an alphabet of
size m can be found in O(n2+ω + mn4) time and O(n3) space.

▶ Theorem 24. A matrix of minimum (real) rank in an n-state complete DFA over an
alphabet of size m can be found in O(n3 + mn2) time and O(n2) space.

Until the end of the section, fix a strongly connected complete UFA A = (Q, Σ, ∆).
Denote n = |Q|, m = |Σ|. Section 4.5 shows that strong connectivity can be assumed without
loss of generality.

6.1 Square automaton and square digraph

We will need the construction of the square automaton of an NFA. The square automaton
A(2) = (Q(2), Σ, ∆(2)) of A is defined as follows. Let Q(2) = {(p, q) | p, q ∈ Q}, and for
p, q ∈ Q and a ∈ Σ, the transitions are defined component-wise, that is,

∆(2) = {((p, q), a, (p′, q′)) ∈ Q(2) × Σ × Q(2) | (p, a, p′), (q, a, q′) ∈ ∆}.

Note that the square automaton of a complete DFA is also a complete DFA.
We call states of the form (q, q) in A(2) singletons. Observe that the restriction of A(2)

to singletons is equal to A. We denote by G(2) = (V (2), E(2)) the underlying digraph of A(2)

obtained by forgetting the labels of the transitions. Note that |E(2)| = O(mn4), and there
exists an infinite series of complete UFAs over a two-letter alphabet with |E(2)| = Θ(n4) [36,
Appendix A]. If A is a complete DFA, then |E(2)| = mn2.

STACS 2025

61:16 Minimum Rank of a Matrix in a Monoid of Zero-One Matrices

6.2 Minimum rank in O(mn4) time
We now perform the steps of the linear-algebraic algorithm described in Section 5, but
implement them efficiently in terms of time and space complexity.

▶ Lemma 25. For a state p, the set Mer(p) can be computed in O(mn4) time and O(n2)
space.

Proof. Perform a multi-source backwards digraph search starting from all singletons in G(2)

and label all states q ∈ Q such that (p, q) or (q, p) is visited during this search. This search
can be performed in time linear in the number of edges of |E(2)|, and |E(2)| = O(mn4).
Observe that only the vertices of this digraph have to be stored in the memory explicitly,
since the edges can be computed on the fly from the input without increasing the time
complexity, hence the space complexity of the algorithm is O(n2). ◀

▶ Lemma 26. A maximal pseudo-column can be found in O(mn4) time and O(n2) space.

Proof. To use Theorem 16 we first need to set up the linear system of equations described
there. The average matrix A can be computed in time O(mn2). The weight vectors α, β ∈ QQ

can then be computed in time O(n3) by solving a system of linear equations. Then, using
Lemma 25, we compute in O(mn4) time the set Mer(p) for some state p. We also need to
compute a basis of the vector space U defined in Section 4.4. As in the proof of Lemma 19,
we compute a basis of U = U ′ = ⟨αT M ′(w) | w ∈ Σ+⟩, which is the smallest vector space
that contains αT M(a) for all a ∈ Σ and is closed under post-multiplication with M(a) for
all a ∈ Σ. This can be done in O(mn3) time and O(n2) space using a worklist algorithm
and keeping a basis in echelon form using Gaussian elimination, as described, e.g., in [32,
Section 2]. Finally, we solve the system of linear equations from Theorem 16, which can be
done in O(n3) time. Each step requires at most O(n2) space. ◀

By Lemma 14, we thus get that mcw and mrw can be computed in O(mn4) time and
O(n2) space, which together with Theorem 6 proves Theorem 22. We remark that for
complete DFAs the proof of Lemma 26 gives O(mn3) time for computing the rank. The
combinatorial algorithm provided below will improve it to O(n3 + mn2) (see Section 6.5),
while additionally finding a matrix of minimum rank.

6.3 Efficiently constructing a maximal column
We now consider a more general problem of finding a matrix of minimum rank in a zero-one
matrix monoid. As mentioned above, by Theorem 1 we have to explicitly construct a maximal
column for that, which turns out to be a more difficult task in terms of the time complexity.
We will see in the next subsection that we only need one maximal column (together with a
word constructing it) to get a matrix of minimum rank. The goal of this subsection is thus
to show how to efficiently compute a short representation of a word constructing a maximal
column, since the word itself may be longer than the time complexity we are aiming for. We
do so by reusing repeating subwords in such a word, and describing their occurrences with a
straight line program.

In [20, Section 5], an algorithm for constructing a word of rank one in complete DFAs in
O(m3 + mn2) time and O(n2) space was suggested. Our approach for finding a maximal
column and a word constructing it follows a similar direction, with a few key differences.
Firstly, we observe that it is enough to only compute words merging states with one chosen
state p, instead of finding all pairs of mergeable states. This both simplifies the algorithm

S. Kiefer and A. Ryzhikov 61:17

(in [20] an additional step is required to decrease the space complexity from O(n3) to O(n2),
which we get for free) and allows to present our results in terms of straight line programs,
giving a better insight into the regularities present in the constructed word of minimum rank.

We define set straight line programs (set-SLPs), which are just SLPs with multiple initial
symbols, and thus encode a set of words instead of one word. Formally, a set-SLP is a tuple
(V, Σ, R, S), where V and Σ are disjoint finite sets of nonterminal and terminal symbols
respectively, R : V → (V ∪ Σ)∗ is a function defining a derivation rule for each nonterminal
symbol, and S ⊆ V is a set of initial symbols. For v ∈ V, we write R(v) as v → w with
w ∈ (V ∪ Σ)∗, and we call v and w the left- and right-hand sides of this derivation rule
respectively. The length of a set-SLP is the total length of the right-hand sides of all the
derivation rules. The semantics of a set-SLP is defined as follows. Given an initial symbol
s ∈ S, we recursively replace each symbol in R(s) with the right-hand side of its derivation
rule until we obtain a word over Σ, which is called the word encoded by s. We require that
each initial symbol produces a unique word over Σ as a result of such derivation. Namely, we
require that there exists a total linear order ≤ on the set V such that for all v with v → w, w

does not contain v′ ∈ V with v′ ≤ v. The (multi-)set of words encoded by all initial symbols
is called the set of words encoded by a set-SLP.

▶ Example 27. Consider a set-SLP ({w1, w3, w5, u1, u2, u3}, {a, b}, R, {w1, w3, w5}) with

w1 → u1, w3 → u3u2, w5 → u2, u1 → aab, u2 → aab, u3 → aaba.

This set-SLP encodes the (multi-)set {aab, aabaaab, aab}, and illustrates the reason why we
are using set-SLPs: they allow to construct sets of words out of smaller “pieces” without
having to explicitly repeat these “pieces” multiple times (in our example, we are reusing u2).
Note that the set-SLPs that we construct below only encode sets of words whose total length
is polynomial in the size of the set-SLPs.

▶ Lemma 28. Given a state p, a set-SLP of length O(n2) defining a set {wq | q ∈ Mer(p)},
where wq is a word with p ∈ p · wq and p ∈ q · wq, can be computed in O(mn4) time and
O(n2) space.

Proof sketch. Call vertices (p, q) with q ∈ Mer(p) merging. The idea is to construct, by a
digraph search of G(2), a directed tree T rooted in (p, p) and containing a path from each
merging vertex to the root, and then use the joint subpaths of these paths in the tree to
obtain a short set-SLP describing these paths. See Figure 5 for an example. ◀

▶ Lemma 29. For a given state p of A, an SLP of length O(n2) encoding a word w such
that [w · p] is a maximal column can be computed in O(n2+ω + mn4) time and O(n3) space.

Proof sketch. Compute the matrices of the words encoded by the set-SLP from Lemma 28.
We rely on the property, already used in some form in [14], that if for all q ∈ Mer(p), q ̸= p,
the vector [w · q] is zero, then [w · p] is a maximal column. To construct a word with this
property, we iteratively concatenate the words wq depending on nonzero columns in the
matrix in each iteration. The number of iterations is bounded by n. ◀

6.4 Finding a matrix of minimum rank
We now use the results of the previous section to construct a matrix of minimum rank. The
key idea is as follows: since the set of maximal columns is stable under left multiplication by
matrices from the monoid, we can iteratively make each column of the matrix maximal or

STACS 2025

61:18 Minimum Rank of a Matrix in a Monoid of Zero-One Matrices

1

2 3

4

5

67

8

a

a, b

a, b

a, b

a, b

b

a, b

a, b

b

a

4, 4 1, 3

3, 1

2, 4 3, 5

4, 6

5, 7

6, 87, 1

8, 2

1, 5 2, 6

7, 38, 4

3, 3

a

aa

a

b

a

b a

a

b

Figure 5 An example of A (left), and a part of the underlying digraph G(2) of its square automaton
(right). Merging vertices are doubly circled. The edges of T for p = 7 are represented by dotted edges,
and these edges are labelled with one of the letters labelling the corresponding transition in A(2).
Furthermore, we have ρ1 = (7, 1) → (8, 2) → (1, 3) → (4, 4), ρ2 = (5, 7) → (6, 8) → (3, 1) → (4, 4),
ρ3 = (7, 3) → (8, 4) → (1, 5) → (4, 6) → (5, 7). A set-SLP encoding the labels of these path is
presented in Example 27, with ui labelling the path ρi, i ∈ {1, 2, 3}.

zero by, intuitively, applying the same word (together with a short “reachability” word) to a
state in each column. This simple observation significantly decreases the time complexity of
our algorithm compared to the naive implementation of the algorithm from [14] constructing
a word of minimum rank. Indeed, in the approach of [14], the word is constructed letter by
letter, and requires to know the result of applying the last letter at every step. Since the
constructed word has length O(rn3) = O(n4), where n is the number of states and r is the
rank, this results in O(n4+ω) time complexity. By efficiently constructing only one maximal
column (as described in the previous section) and reusing it for the whole set of states (as
described in this section), we decrease the time complexity to O(n2+ω).

▶ Proposition 30. An SLP of length O(n2) encoding a word w of minimum rank can be
computed in O(n2+ω + mn4) time and O(n3) space.

Proof sketch. Compute the matrix of the word w encoded by the SLP from Lemma 29.
Iteratively, for each q ∈ Q, concatenate w with a word of length at most n mapping p to a
state corresponding to a nonzero element of the row in the current iteration. Denote by wn

the resulting word, which has the property that all nonzero columns of M(wn) are maximal.
Symmetrically compute w′

n for rows. Then by Lemma 5 the word wnw′
nwnw′

n matrix has
minimum rank. ◀

Given an SLP of length O(n2) encoding a word w, we can compute the matrix of w by
computing the matrices of words occurring in the derivation of w from bottom to top in time
O(n2+ω). Thus we prove Theorem 23. We also get the following result, which can be seen as
a proof of a very weak version of the Černý conjecture generalised from rank one words in
complete DFAs to minimum rank words in complete UFAs.

▶ Theorem 31. For every n-state complete UFA, there exists an SLP of length O(n2)
encoding a word of minimum rank.

We remark that the length of the word encoded by the constructed SLP asymptotically
matches the best known upper bound for words of minimum rank: O(n4) for complete
UFAs [14] and O(n3) for complete DFAs [37]. In particular, one can efficiently compute
words of minimum rank within these bounds.

S. Kiefer and A. Ryzhikov 61:19

6.5 Complete DFAs
For complete DFAs, we follow the same algorithms as in the proof of Theorem 23, but exploit
the fact that elementary matrix operations can be performed more efficiently. Namely, if A
is a complete DFA, then each word defines a transformation on Q. By storing matrices of
words as transformations, we get that matrix multiplication can be performed in O(n) time,
and each matrix requires O(n) space. Moreover, we have |E(2)| = mn2. By taking these
improvements into account, we get the proof of Theorem 24.

7 Conclusions and open problems

We list a few open questions that follow directly from our work.
In [20], it was asked if a word of rank one for a complete DFA can be found in NC.
Similarly, can a matrix of minimum rank for a complete DFA be computed in NC?
Given an unambiguous morphism M : Σ → {0, 1}Q×Q and a vector α ∈ QQ

>0, can a basis
of ⟨αT M(w) | w ∈ Σ∗⟩ be computed faster than in O(|Q|3) time? This would improve
algorithms for several fundamental problems for weighted automata [32]. Similarly, for
complete DFAs, computing a basis of U from Section 4.4 in subcubic time (see the proof
of Lemma 26) would allow to compute the minimum rank of a complete DFA faster than
in cubic time.
The bottleneck in the time complexity in Theorem 22 is the very first step, computing
Mer(q) via digraph search in the square digraph of A. The number of edges of this digraph
can be quadratic in the number of its vertices [36, Appendix A], hence of order |Q|4. Can
Mer(q) be computed faster than in time O(|Q|4)? Very little seems to be known about
general properties of square automata of DFAs or UFAs.
One of the bottlenecks of the combinatorial algorithm is performing matrix multiplication.
Can it be done faster for matrices from a zero-one matrix monoid? If not, are there any
subclasses of UFAs (other than DFAs) where it can be done more efficiently?

References

1 Jorge Almeida and Benjamin Steinberg. Matrix mortality and the Černý-Pin conjecture. In
Volker Diekert and Dirk Nowotka, editors, Developments in Language Theory, pages 67–80,
Berlin, Heidelberg, 2009. Springer Berlin Heidelberg. doi:10.1007/978-3-642-02737-6_5.

2 Sanjeev Arora and Boaz Barak. Computational complexity: a modern approach. Cambridge
University Press, 2009.

3 Christel Baier, Stefan Kiefer, Joachim Klein, David Müller, and James Worrell. Markov chains
and unambiguous automata. Journal of Computer and System Sciences, 136:113–134, 2023.
doi:10.1016/J.JCSS.2023.03.005.

4 M.-P. Béal and D. Perrin. Synchronised automata. In Valérie Berthé and Michel Rigo, editors,
Combinatorics, Words and Symbolic Dynamics, Encyclopedia of Mathematics and its Applic-
ations, pages 213–240. Cambridge University Press, 2016. doi:10.1017/CBO9781139924733.
008.

5 Marie-Pierre Béal, Eugen Czeizler, Jarkko Kari, and Dominique Perrin. Unambiguous automata.
Math. Comput. Sci., 1(4):625–638, 2008. doi:10.1007/S11786-007-0027-1.

6 Paul C. Bell, Igor Potapov, and Pavel Semukhin. On the mortality problem: From multiplicative
matrix equations to linear recurrence sequences and beyond. Information and Computation,
281:104736, 2021. doi:10.1016/J.IC.2021.104736.

7 Stuart J. Berkowitz. On computing the determinant in small parallel time using a small
number of processors. Information Processing Letters, 18(3):147–150, 1984. doi:10.1016/
0020-0190(84)90018-8.

STACS 2025

https://doi.org/10.1007/978-3-642-02737-6_5
https://doi.org/10.1016/J.JCSS.2023.03.005
https://doi.org/10.1017/CBO9781139924733.008
https://doi.org/10.1017/CBO9781139924733.008
https://doi.org/10.1007/S11786-007-0027-1
https://doi.org/10.1016/J.IC.2021.104736
https://doi.org/10.1016/0020-0190(84)90018-8
https://doi.org/10.1016/0020-0190(84)90018-8

61:20 Minimum Rank of a Matrix in a Monoid of Zero-One Matrices

8 Mikhail V. Berlinkov. On two algorithmic problems about synchronizing automata (short
paper). In Arseny M. Shur and Mikhail V. Volkov, editors, Developments in Language
Theory – 18th International Conference, DLT 2014, Ekaterinburg, Russia, August 26-29, 2014.
Proceedings, volume 8633 of Lecture Notes in Computer Science, pages 61–67. Springer, 2014.
doi:10.1007/978-3-319-09698-8_6.

9 Jean Berstel, Dominique Perrin, and Christophe Reutenauer. Codes and automata, volume
129. Cambridge University Press, 2010.

10 Vincent D. Blondel, Raphaël M. Jungers, and Alex Olshevsky. On primitivity of sets of
matrices. Automatica, 61:80–88, 2015. doi:10.1016/J.AUTOMATICA.2015.07.026.

11 Allan Borodin, Joachim von zur Gathen, and John E. Hopcroft. Fast parallel matrix and GCD
computations. Information and Control, 52(3):241–256, 1982. doi:10.1016/S0019-9958(82)
90766-5.

12 Greg Budzban and Philip Feinsilver. The generalized road coloring problem and periodic
digraphs. Applicable Algebra in Engineering, Communication and Computing, 22:21–35, 2011.
doi:10.1007/S00200-010-0135-Z.

13 Georgina Bumpus, Christoph Haase, Stefan Kiefer, Paul-Ioan Stoienescu, and Jonathan
Tanner. On the size of finite rational matrix semigroups. In Artur Czumaj, Anuj Dawar,
and Emanuela Merelli, editors, 47th International Colloquium on Automata, Languages, and
Programming, ICALP 2020, July 8-11, 2020, Saarbrücken, Germany (Virtual Conference),
volume 168 of LIPIcs, pages 115:1–115:13. Schloss Dagstuhl – Leibniz-Zentrum für Informatik,
2020. doi:10.4230/LIPICS.ICALP.2020.115.

14 Arturo Carpi. On synchronizing unambiguous automata. Theoretical Computer Science,
60:285–296, 1988. doi:10.1016/0304-3975(88)90114-4.

15 Arturo Carpi and Flavio D’Alessandro. Strongly transitive automata and the Černý conjecture.
Acta Informatica, 46(8):591–607, 2009. doi:10.1007/S00236-009-0106-7.

16 Julien Cassaigne, Vesa Halava, Tero Harju, and François Nicolas. Tighter undecidability
bounds for matrix mortality, zero-in-the-corner problems, and more. CoRR, abs/1404.0644,
2014. arXiv:1404.0644.

17 Yves Césari. Sur l’application du théorème de Suschkewitsch à l’étude des codes rationnels com-
plets. In Jacques Loeckx, editor, Automata, Languages and Programming, 2nd Colloquium, Uni-
versity of Saarbrücken, Germany, July 29 - August 2, 1974, Proceedings, volume 14 of Lecture
Notes in Computer Science, pages 342–350. Springer, 1974. doi:10.1007/3-540-06841-4_73.

18 Stephen A. Cook. A taxonomy of problems with fast parallel algorithms. Inf. Control.,
64(1-3):2–21, 1985. doi:10.1016/S0019-9958(85)80041-3.

19 Laszlo Csanky. Fast parallel matrix inversion algorithms. SIAM Journal on Computing,
5(4):618–623, 1976. doi:10.1137/0205040.

20 David Eppstein. Reset sequences for monotonic automata. SIAM Journal on Computing,
19(3):500–510, 1990. doi:10.1137/0219033.

21 Joel Friedman. On the road coloring problem. Proceedings of the American Mathematical
Society, 110(4):1133–1135, 1990.

22 Balázs Gerencsér, Vladimir V. Gusev, and Raphaël M. Jungers. Primitive sets of nonnegative
matrices and synchronizing automata. SIAM Journal on Matrix Analysis and Applications,
39(1):83–98, 2018. doi:10.1137/16M1094099.

23 Oded Goldreich. Computational Complexity: A Conceptual Perspective. Cambridge University
Press, 2008. doi:10.1017/CBO9780511804106.

24 Pavel Goralčík and Václav Koubek. Rank problems for composite transformations. In-
ternational Journal of Algebra and Computation, 05(03):309–316, 1995. doi:10.1142/
S0218196795000185.

25 Vladimir V. Gusev and Elena V. Pribavkina. On synchronizing colorings and the eigenvectors of
digraphs. In Piotr Faliszewski, Anca Muscholl, and Rolf Niedermeier, editors, 41st International
Symposium on Mathematical Foundations of Computer Science, MFCS 2016, August 22-26,
2016 - Kraków, Poland, volume 58 of LIPIcs, pages 48:1–48:14. Schloss Dagstuhl – Leibniz-
Zentrum für Informatik, 2016. doi:10.4230/LIPICS.MFCS.2016.48.

https://doi.org/10.1007/978-3-319-09698-8_6
https://doi.org/10.1016/J.AUTOMATICA.2015.07.026
https://doi.org/10.1016/S0019-9958(82)90766-5
https://doi.org/10.1016/S0019-9958(82)90766-5
https://doi.org/10.1007/S00200-010-0135-Z
https://doi.org/10.4230/LIPICS.ICALP.2020.115
https://doi.org/10.1016/0304-3975(88)90114-4
https://doi.org/10.1007/S00236-009-0106-7
https://arxiv.org/abs/1404.0644
https://doi.org/10.1007/3-540-06841-4_73
https://doi.org/10.1016/S0019-9958(85)80041-3
https://doi.org/10.1137/0205040
https://doi.org/10.1137/0219033
https://doi.org/10.1137/16M1094099
https://doi.org/10.1017/CBO9780511804106
https://doi.org/10.1142/S0218196795000185
https://doi.org/10.1142/S0218196795000185
https://doi.org/10.4230/LIPICS.MFCS.2016.48

S. Kiefer and A. Ryzhikov 61:21

26 Markus Holzer and Sebastian Jakobi. On the computational complexity of problems related
to distinguishability sets. Information and Computation, 259(2):225–236, 2018. doi:10.1016/
J.IC.2017.09.003.

27 Oscar H. Ibarra, Shlomo Moran, and Louis E. Rosier. A note on the parallel complexity of
computing the rank of order n matrices. Information Processing Letters, 11(4/5):162, 1980.
doi:10.1016/0020-0190(80)90042-3.

28 Gérard Jacob. Un algorithme calculant le cardinal, fini ou infini, des demi-groupes de matrices.
Theoretical Computer Science, 5(2):183–204, 1977. doi:10.1016/0304-3975(77)90006-8.

29 Jarkko Kari. A counter example to a conjecture concerning synchronizing words in finite
automata. Bulletin of the EATCS, 73:146, 2001.

30 Jarkko Kari, Andrew Ryzhikov, and Anton Varonka. Words of minimum rank in deterministic
finite automata. In Piotrek Hofman and Michal Skrzypczak, editors, Developments in Language
Theory – 23rd International Conference, DLT 2019, Warsaw, Poland, August 5-9, 2019,
Proceedings, volume 11647 of Lecture Notes in Computer Science, pages 74–87. Springer, 2019.
doi:10.1007/978-3-030-24886-4_5.

31 Nasim Karimi. Reaching the minimum ideal in a finite semigroup. Semigroup Forum, 94(2):390–
425, 2017.

32 Stefan Kiefer. Notes on equivalence and minimization of weighted automata. https://arxiv.
org/abs/2009.01217, 2020. arXiv:arXiv:2009.01217.

33 Stefan Kiefer, Ines Marusic, and James Worrell. Minimisation of multiplicity tree automata.
Logical Methods in Computer Science, 13(1), 2017. doi:10.23638/LMCS-13(1:16)2017.

34 Stefan Kiefer and Corto N. Mascle. On nonnegative integer matrices and short killing words.
SIAM Journal on Discrete Mathematics, 35(2):1252–1267, 2021. doi:10.1137/19M1250893.

35 Stefan Kiefer and Cas Widdershoven. Efficient analysis of unambiguous automata using matrix
semigroup techniques. In Peter Rossmanith, Pinar Heggernes, and Joost-Pieter Katoen, editors,
44th International Symposium on Mathematical Foundations of Computer Science, MFCS
2019, August 26-30, 2019, Aachen, Germany, volume 138 of LIPIcs, pages 82:1–82:13. Schloss
Dagstuhl – Leibniz-Zentrum für Informatik, 2019. doi:10.4230/LIPICS.MFCS.2019.82.

36 Stefan Kiefer and Cas Widdershoven. Efficient analysis of unambiguous automata using matrix
semigroup techniques. CoRR, abs/1906.10093, 2019. arXiv:1906.10093.

37 A.A. Klyachko, I.K. Rystsov, and M.A. Spivak. An extremal combinatorial problem associated
with the bound on the length of a synchronizing word in an automaton. Cybernetics, 23(2):165–
171, 1987.

38 Douglas A. Lind and Brian Marcus. An introduction to symbolic dynamics and coding.
Cambridge university press, 2021.

39 Arnaldo Mandel and Imre Simon. On finite semigroups of matrices. Theoretical Computer
Science, 5(2):101–111, 1977. doi:10.1016/0304-3975(77)90001-9.

40 Mike Paterson. Unsolvability in 3 × 3 matrices. Studies in Applied Mathematics, 49:105–107,
1970.

41 Vladimir Yu. Protasov. Analytic methods for reachability problems. Journal of Computer
and System Sciences, 120:1–13, 2021. doi:10.1016/J.JCSS.2021.02.007.

42 Vladimir Yu. Protasov and Andrey S. Voynov. Matrix semigroups with constant spectral
radius. Linear Algebra and its Applications, 513:376–408, 2017.

43 Igor Rystsov. Rank of a finite automaton. Cybernetics and Systems Analysis, 28(3):323–328,
1992.

44 Igor K. Rystsov. Reset words for commutative and solvable automata. Theoretical Computer
Science, 172(1-2):273–279, 1997. doi:10.1016/S0304-3975(96)00136-3.

45 Wojciech Rytter. The space complexity of the unique decipherability problem. Information
Processing Letters, 23(1):1–3, 1986. doi:10.1016/0020-0190(86)90121-3.

46 Andrew Ryzhikov. Mortality and synchronization of unambiguous finite automata. In
Robert Mercas and Daniel Reidenbach, editors, Combinatorics on Words – 12th International
Conference, WORDS 2019, Loughborough, UK, September 9-13, 2019, Proceedings, volume
11682 of Lecture Notes in Computer Science, pages 299–311. Springer, 2019. doi:10.1007/
978-3-030-28796-2_24.

STACS 2025

https://doi.org/10.1016/J.IC.2017.09.003
https://doi.org/10.1016/J.IC.2017.09.003
https://doi.org/10.1016/0020-0190(80)90042-3
https://doi.org/10.1016/0304-3975(77)90006-8
https://doi.org/10.1007/978-3-030-24886-4_5
https://arxiv.org/abs/2009.01217
https://arxiv.org/abs/2009.01217
https://arxiv.org/abs/arXiv:2009.01217
https://doi.org/10.23638/LMCS-13(1:16)2017
https://doi.org/10.1137/19M1250893
https://doi.org/10.4230/LIPICS.MFCS.2019.82
https://arxiv.org/abs/1906.10093
https://doi.org/10.1016/0304-3975(77)90001-9
https://doi.org/10.1016/J.JCSS.2021.02.007
https://doi.org/10.1016/S0304-3975(96)00136-3
https://doi.org/10.1016/0020-0190(86)90121-3
https://doi.org/10.1007/978-3-030-28796-2_24
https://doi.org/10.1007/978-3-030-28796-2_24

61:22 Minimum Rank of a Matrix in a Monoid of Zero-One Matrices

47 Andrew Ryzhikov. On shortest products for nonnegative matrix mortality. In Laura Kovács
and Ana Sokolova, editors, Reachability Problems – 18th International Conference, RP 2024,
Vienna, Austria, September 25-27, 2024, Proceedings, volume 15050 of Lecture Notes in
Computer Science, pages 104–119. Springer, 2024. doi:10.1007/978-3-031-72621-7_8.

48 Sujin Shin and Jisang Yoo. A note on the rank of semigroups. Semigroup Forum, 81(2):335–343,
2010.

49 Mikhail V. Volkov. Synchronizing automata and the Černý conjecture. In Carlos Martín-Vide,
Friedrich Otto, and Henning Fernau, editors, Language and Automata Theory and Applications,
Second International Conference, LATA 2008, Tarragona, Spain, March 13-19, 2008. Revised
Papers, volume 5196 of Lecture Notes in Computer Science, pages 11–27. Springer, 2008.

50 Mikhail V. Volkov. Synchronization of finite automata. Russian Mathematical Surveys,
77(5):819–891, 2022. doi:10.4213/rm10005e.

51 Yaokun Wu and Yinfeng Zhu. Primitivity and Hurwitz primitivity of nonnegative matrix
tuples: A unified approach. SIAM Journal on Matrix Analysis and Applications, 44(1):196–211,
2023. doi:10.1137/22M1471535.

https://doi.org/10.1007/978-3-031-72621-7_8
https://doi.org/10.4213/rm10005e
https://doi.org/10.1137/22M1471535

Faster Algorithms on Linear Delta-Matroids
Tomohiro Koana #

Utrecht University, The Netherlands
Research Institute for Mathematical Sciences, Kyoto University, Japan

Magnus Wahlström #

Royal Holloway, University of London, UK

Abstract
We present new algorithms and constructions for linear delta-matroids. Delta-matroids are gen-
eralizations of matroids that also capture structures such as matchable vertex sets in graphs and
path-packing problems. As with matroids, an important class of delta-matroids is given by linear
delta-matroids, which generalize linear matroids and are represented via a “twist” of a skew-symmetric
matrix. We observe an alternative representation, termed a contraction representation over a skew-
symmetric matrix. This representation is equivalent to the more standard twist representation up
to O(nω)-time transformations (where n is the dimension of the delta-matroid and ω < 2.372 the
matrix multiplication exponent), but it is much more convenient for algorithmic tasks. For instance,
the problem of finding a max-weight feasible set now reduces directly to finding a max-weight basis in
a linear matroid. Supported by this representation, we provide new algorithms and constructions for
linear delta-matroids. In particular, we show that the union and delta-sum of linear delta-matroids
are again linear delta-matroids, and that a representation for the resulting delta-matroid can be
constructed in randomized time O(nω) (or more precisely, in O(nω) field operations, over a field of
size at least Ω(n · (1/ε)), where ε > 0 is an error parameter). Previously, it was only known that
these operations define delta-matroids. We also note that every projected linear delta-matroid can
be represented as an elementary projection. This implies that several optimization problems over
(projected) linear delta-matroids, including the coverage, delta-coverage, and parity problems, reduce
(in their decision versions) to a single O(nω)-time matrix rank computation. Using the methods of
Harvey, previously applied by Cheung, Lao and Leung for linear matroid parity, we furthermore show
how to solve the search versions in the same time. This improves on the O(n4)-time augmenting
path algorithm of Geelen, Iwata and Murota, albeit with randomization. Finally, we consider the
maximum-cardinality delta-matroid intersection problem (equivalently, the maximum-cardinality
delta-matroid matching problem). Using Storjohann’s algorithms for symbolic determinants, we
show that such a solution can be found in O(nω+1) time. This provides the first (randomized)
polynomial-time solution for the problem, thereby solving an open question of Kakimura and
Takamatsu.

2012 ACM Subject Classification Mathematics of computing → Matroids and greedoids

Keywords and phrases Delta-matroids, Randomized algorithms

Digital Object Identifier 10.4230/LIPIcs.STACS.2025.62

Related Version Full Version: https://arxiv.org/abs/2402.11596

Funding Tomohiro Koana: Supported by the European Research Council (ERC) under the European
Union’s Horizon 2020 research and innovation programme (project CRACKNP under grant agreement
No. 853234). Supported by JSPS KAKENHI Grant Number JP20H05967.

1 Introduction

Matroids are important unifying structures in many parts of computer science and discrete
mathematics, abstracting and generalizing notions from linear vector spaces and graph theory;
see, e.g., Oxley [30] and Schrijver [32]. Formally, a matroid is a collection of independent sets,
subject to particular axioms (see below). A maximum independent set is a basis. Among

© Tomohiro Koana and Magnus Wahlström;
licensed under Creative Commons License CC-BY 4.0

42nd International Symposium on Theoretical Aspects of Computer Science (STACS 2025).
Editors: Olaf Beyersdorff, Michał Pilipczuk, Elaine Pimentel, and Nguyễn Kim Thắng;
Article No. 62; pp. 62:1–62:19

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:tomohiro.koana@gmail.com
https://orcid.org/0000-0002-8684-0611
mailto:Magnus.Wahlstrom@rhul.ac.uk
https://orcid.org/0000-0002-0933-4504
https://doi.org/10.4230/LIPIcs.STACS.2025.62
https://arxiv.org/abs/2402.11596
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

62:2 Faster Algorithms on Linear Delta-Matroids

other things, matroids are a very useful source of algorithmic meta-results, since there are
many problems on matroids which admit efficient, general-purpose algorithms – such as the
greedy algorithm for finding a max-weight basis, generalizing algorithms for max-weight
spanning trees; or Matroid Intersection, the problem of finding a maximum common
feasible set in two given matroids, which generalizes bipartite matching.

An important class of matroids are linear matroids, where independence in the matroid
is represented by the column space of a matrix. Linear matroids enjoy many properties not
shared by generic matroids. For example, the famous Matroid Parity problem, which
generalizes the matching problem in general graphs, is known to be intractable in the general
case but efficiently solvable over linear matroids [26]. In addition, linear representations,
as a compact representation of combinatorial information, have seen many applications
in parameterized complexity for purposes of sparsification and kernelization [24, 25], and
algebraic algorithms over linear matroids have proven a very useful general-purpose tool in
FPT algorithms [14, 12] (cf. [8, 15]).

Delta-matroids are a generalization of matroids, where, informally, the notion of bases is
replaced by the notion of feasible sets, which satisfy an exchange axiom similar to matroid
bases but need not all have the same cardinality. Delta-matroids were introduced by Bouchet
(although similar structures were independently defined by others), and have connections
to multiple areas of computer science such as structural and topological graph theory [28],
constraint satisfaction problems [13, 22], matching and path-packing problems and more.
Like with matroids, there is also a notion of linear delta-matroids, where the feasible sets are
represented through a skew-symmetric matrix. These generalize linear matroids, although
this fact (or indeed the fact that skew-symmetric matrices define delta-matroids) is not
elementary [17]. Delta-matroids (linear or otherwise) are remarkably flexible structures, in
that there are many ways to modify or combine given delta-matroids into new delta-matroids,
including twisting (partial dualization), contraction and deletion, existential projection, and
unions and delta-sums of delta-matroids (all described below).

Similarly to matroids, there is also a range of generic problems that have been considered
over delta-matroids, including delta-matroid intersection, partition, and parity problems.
Unfortunately, due to the generality of delta-matroids, these problems are all intractable in the
general case, since they generalize matroid parity. However, they are tractable on linear delta-
matroids, where Geelen et al. [17] gave an algorithm (and a corresponding min-max theorem)
with a running time of O(n4), and O(nω+1) using fast matrix multiplication. However, other
variants remain open. Kakimura and Takamatsu [21] considered the maximum cardinality
version of delta-matroid parity (as opposed to the result of Geelen et al. [17], which is more
of a feasibility or minimum error version). They gave a solution for a restricted class of
linear and projected linear delta-matroid, but left the general case open. Furthermore, the
natural weighted optimization variants of the above appear completely open.

In this paper, we show new constructions of linear delta-matroids and new and faster
randomized algorithms for the aforementioned problems on linear and projected linear delta-
matroids. In particular, we show a new representation variant for linear delta-matroids –
dubbed contraction representation, as opposed to the standard twist representation – which
appears more amenable to efficient algorithms. Using this representation, we show for the first
time that unions and delta-sums of linear delta-matroids (represented over a common field
F) define linear delta-matroids, and that a representation can be constructed in randomized
polynomial time. We also show new algorithmic results, including solving the search version of
Linear Delta-Matroid Parity (Linear DM Parity for short) in O(nω) field operations1

1 Throughout, we give our running times as field operations. If the field has size nO(1), as in most
applications, then this is just polylogarithmic overhead.

T. Koana and M. Wahlström 62:3

and giving the first (randomized) polynomial-time algorithm for the maximum cardinality
version of the problem in O(nω+1) field operations, thereby settling an open question from
Kakimura and Takamatsu [21].

1.1 Introduction to delta-matroids
Before we describe our results in detail, let us review some background on delta-matroids.
For more material, we refer to the survey by Moffatt [28].

Like matroids, delta-matroids are formally defined as set systems satisfying particular
axioms. Formally, a delta-matroid is a pair D = (V, F) where V is a ground set and F ⊆ 2V

a non-empty collection of subsets of V , referred to as feasible sets in D, subject to the
following symmetric exchange axiom:

For all F1, F2 ∈ F and x ∈ F1∆F2 there exists y ∈ F1∆F2 such that F1∆{x, y} ∈ F ,

where ∆ denotes symmetric difference.
It should be enlightening to compare this to the definition of matroids. Formally, a

matroid is most commonly defined as a collection of independent sets; i.e., a matroid is
defined as a pair M = (V, I) where V is the ground set and I ⊆ 2V is a collection of sets,
referred to as independent sets in M , subject to (1) ∅ ∈ I; (2) if B ∈ I and A ⊂ B then
A ∈ I; and (3) if A, B ∈ I with |A| < |B| then there exists an element x ∈ B \ A such that
A + x ∈ I. The second condition encodes that (V, I) is an independence system. However,
matroids can also be equivalently defined from just the collection of maximal independent
sets, known as bases. Under this definition, a matroid is a pair M = (V, B) where B ⊆ 2V is
a non-empty collection of bases, subject to the basis exchange property:

For all A, B ∈ B and x ∈ A \ B there exists y ∈ B \ A such that A∆{x, y} ∈ B.

In particular, all bases of a matroid have the same cardinality. Thus, delta-matroids can
be seen as the relaxation of matroids where the feasible sets (analogous to the bases) need
not all have the same cardinality. In fact, a delta-matroid where all feasible sets have the
same cardinality is precisely a matroid (represented as a set of bases). A similar statement
holds for independent sets – the independent sets of a matroid form the feasible sets of a
delta-matroid, and a delta-matroid which is an independence system is precisely a matroid
in this sense – but the formulation from the set of bases is standard and more convenient.

As a further illustration, consider the case of graph matchings. Let G = (V, E) be a
graph. The matching matroid of G is a matroid over ground set V where a set B ⊆ V is a
basis if and only if it is the set of endpoints of a maximum matching of G. Correspondingly,
the independent sets S ⊆ V of the matching matroid are vertex sets that can be covered by a
matching. On the other hand, the matching delta-matroid over G is the delta-matroid where
a set S ⊆ V is feasible if and only if G[S] has a perfect matching. Thus, the maximal feasible
sets of the matching delta-matroid form the bases of the matching matroid, but clearly, the
matching delta-matroid captures more of the structure of G than the matching matroid does.

Linear delta-matroids. As with matroids, an important class of delta-matroids are linear
delta-matroids. A matrix A is skew-symmetric if AT = −A. Let A be a skew-symmetric matrix
with rows and columns indexed by a set V . Then A defines a delta-matroid D(A) = (V, F)
where for S ⊆ V we have S ∈ F if and only if the principal submatrix of A indexed by
S, denoted by A[S], is non-singular. We refer to D(A) as a directly represented linear
delta-matroid. More generally, the twist of a delta-matroid D = (V, F) by a set S ⊆ V ,
denoted D∆S, is the delta-matroid with feasible sets

F∆S := {F∆S | F ∈ F}.

STACS 2025

62:4 Faster Algorithms on Linear Delta-Matroids

It is easy to check that D∆S is a delta-matroid. The twisting operation is also known as
partial dualization, since the twist D∗ := D∆V corresponds to the dualization M∗ of a
matroid M . A general representation of a linear delta-matroid is given as D = D(A)∆S for
some skew-symmetric matrix A and twisting set S. A delta-matroid D is even if all feasible
sets have the same cardinality modulo 2; all linear delta-matroids are even. In addition, we
consider projected linear delta-matroids, which is a delta-matroid D = (V, F) defined via
existential projection over a set X from a larger linear delta-matroid D′ = D(A)∆S over
ground set V ∪ X. We denote this D = D′|X, where D has the feasible set

F = {F \ X | F ∈ F(D′)}.

As a canonical example, the matching delta-matroid of a graph G is directly represented by
the Tutte matrix over G. The set of bases of a linear matroid forms a linear delta-matroid,
and the independent sets form a projected linear delta-matroid, under natural representations
(see Section 3.1 of the full version of the paper).

Underpinning algorithms on linear delta-matroids are a number of fundamental operations
on skew-symmetric matrices. For a skew-symmetric matrix A indexed by V and a set S ⊆ V

such that A[S] is non-singular, there is a pivoting operation that constructs a new skew-
symmetric matrix A′ = A ∗ S such that for any U ⊆ V , A′[U] is non-singular if and only
if A[S∆U] is. Via this operation, linear delta-matroids are closed under the contraction
operation D/T as well as deletion D \ T (see Section 2 for the definitions). Another
fundamental property of skew-symmetric matrices is the Pfaffian, defined as follows. Let A

be a skew-symmetric matrix with rows and columns indexed by V . The support graph of A

is the graph G = (V, E) where uv ∈ E if and only if A[u, v] ̸= 0. Then the Pfaffian of A is
defined as

Pf A =
∑
M

σ(M)
∏

e∈M

A[u, v],

where M ranges over all perfect matchings in G and σ(M) ∈ {1, −1} is a sign term. It holds
that det A = (Pf A)2, thus A is non-singular if and only if Pf A ̸= 0. Via this connection to
matchings, the Pfaffian forms a link between the combinatorial and algebraic aspects of linear
delta-matroids, in a way that is often exploited in this paper. The Pfaffian also enjoys some
useful algebraic properties, such as the Pfaffian sum formula and the Ishikawa-Wakayama
formula, with clear combinatorial interpretations. See Section 2 for details.

1.2 Our results
We show a range of results regarding the representation and construction of linear delta-
matroids, and new and faster algorithms for computational problems over them. We discuss
these in turn.

Representations and constructions. Our first result, which supports the others, is the
introduction of a new representation for linear delta-matroids. Recall that a linear delta-
matroid D = (V, F) is represented as D = D(A)∆S for a skew-symmetric matrix A with
rows and columns indexed by V . We refer to this as a twist representation. Although this
representation is intimately connected to the structure of delta-matroids, it is less convenient
for algorithmic purposes. For this, we introduce the contraction representation, representing
a linear delta-matroid D = (V, F) as D = D(A)/T for a skew-symmetric matrix A indexed
by V ∪ T . Thus, a set F ⊆ V is feasible in D if and only if A[F ∪ T] is non-singular.

T. Koana and M. Wahlström 62:5

We show that the representations are equivalent, and given a representation in one form,
we can efficiently and deterministically construct one in the other; see Section 3.1. Thus
contraction representations do not change the class of representable delta-matroids; however,
we find that the contraction representation is more compatible with the algorithmic methods
of linear algebra.

Next, we consider two methods of composing linear delta-matroids. Let D1 = (V, F1)
and D2 = (V, F2) be given delta-matroids (padding the ground sets with dummy elements if
necessary so that they are defined over the same ground set V). The union D1 ∪ D2 is the
delta-matroid D = (V, F) where

F = {F1 ∪ F2 | F1 ∈ F1, F2 ∈ F2, F1 ∩ F2 = ∅},

i.e., the feasible sets in D are the disjoint unions of feasible sets in D1 and D2. Additionally,
the delta-sum D1∆D2 is defined as the delta-matroid D = (V, F) with feasible sets

F = {F1∆F2 | F1 ∈ F1, F2 ∈ F2},

where ∆ denotes symmetric difference. Bouchet [2] and Bouchet and Schwärzler [4] showed
that D1∪D2 and D1∆D2 are delta-matroids. Using properties of Pfaffians and the contraction
representation, we show that furthermore, the union and delta-sum of linear delta-matroids
are linear delta-matroids.

The construction is randomized, and takes an error parameter ε > 0 which controls the
size of the field that the output delta-matroid is represented over. For this purpose, we say
that an algorithm constructs an ε-approximate representation of a delta-matroid D = (V, F)
if it constructs a representation of a delta-matroid D′ = (V, F ′) where F ′ ⊆ F and for every
F ∈ F the probability that F ∈ F ′ is at least 1 − ε. Setting ε = O(1/2n) where n = |V |
gives a representation that with good probability is correct for all subsets. However, this
leads to a prohibitive field size, with significant overhead cost per field operation. Thus, for
algorithmic applications, a smaller value of ε may be faster and sufficient.

▶ Theorem 1. Let D1 and D2 be delta-matroids represented over a common field F, and let
ε > 0 be given. Let F′ be an extension field of F with at least n·⌈1/ε⌉ elements. Then the delta-
matroid union D1 ∪ D2 and delta-sum D1∆D2 are linear, and ε-approximate representations
over F′ can be constructed in O(n2) respectively O(nω) field operations.

Algorithms. As a warm-up, we first consider the problem of finding a max-weight feasible
set in a given delta-matroid D = (V, F) with element weights w : V → R. Note that the
weights may be negative, and since not all feasible sets have the same cardinality, unlike
in matroids, they cannot simply be raised to be non-negative. Bouchet [3, 1] showed that
there is a variant of greedy algorithm that solves this problem using only separation oracle
calls. However, this requires O(n) separation oracle calls, each of which requires O(nω) field
operations in linear representation. We show that, using the contraction representation, the
max-weight feasible set problem in a linear delta-matroid reduces to finding a max-weight
column basis of an O(n) × O(n) matrix, which can be done significantly faster.

▶ Theorem 2. Let D = (V, F) be a linear or projected linear delta-matroid. In O(nω) field
operations, we can find a max-weight feasible set in D.

For more intricate questions, the literature contains a range of problems over delta-
matroids [3, 17, 29]. The most important are arguably the following.

STACS 2025

62:6 Faster Algorithms on Linear Delta-Matroids

DM Intersection: Given delta-matroids D1 = (V, F1) and D2 = (V, F2), find a
common feasible set F ∈ F1 ∩ F2.
DM Parity: Given a delta-matroid D = (V, F) and a partition Π of V into pairs, is
there a feasible set in D which is the union of pairs? More generally, find a feasible set
F ∈ F to minimize the number of broken pairs, i.e., the number of pairs p ∈ Π with
|p ∩ F | = 1.

Recall that the matroid versions differ in complexity; Matroid Intersection is tractable
in the oracle model while Matroid Parity is intractable in general but tractable for
linear matroids. However, due to the flexibility of delta-matroids, DM Intersection and
DM Parity are equivalent under efficient transformations [17], hence both intractable in
general. Given an instance (D1, D2) of DM Intersection, a reduction to DM Parity
is immediate by constructing the disjoint union of D1 and D2 [17]. In the other direction,
given a delta-matroid D = (V, F) and a partition Π of V into pairs, let DΠ be the matching
delta-matroid of the graph with edge set Π. Thus the feasible sets of DΠ are precisely the
sets S ⊆ V with no broken pairs, and the DM Parity instance (D, Π) has a perfect solution
– i.e., one with no broken pairs – if and only if D and DΠ have a common feasible set. For
linear-delta-matroids the problems are solvable in O(nω+1) time due to Geelen et al. [17].

Additionally, the following problems have been considered. Again, due to the flexibility
of delta-matroids, these problems are related to one another; see [17, 29]. The previously
fastest algorithm for all of them is by Geelen et al. [17] at O(nω+1) time. Let D1 = (V, F1)
and D2 = (V, F2) be given delta-matroids.

DM Covering: Given D1 and D2, find F1 ∈ F1, F2 ∈ F2 with F1 ∩ F2 = ∅ to maximize
|F1 ∪ F2|
DM Delta-Covering: Given D1 and D2, find F1 ∈ F1, F2 ∈ F2 to maximize |F1∆F2|
DM Partition: Given D1 and D2, find a partition V = P ∪ Q such that P ∈ F1 and
Q ∈ F2

The variant of DM Covering where the disjointness constraint is dropped reduces to
Matroid Union, since the maximal feasible sets of a delta-matroid form a matroid, hence
is of less interest for delta-matroids.

Using the methods of the previous subsection, the decision versions of the above for linear
and projected linear delta-matroids all reduce to computing the rank of an O(n) × O(n)
skew-symmetric matrix. Indeed, consider DM Delta-Covering. Assume that D1 and
D2 are given in some linear representation and let D = D(A)/T = D1∆D2. Then a set
F ⊆ V is a solution F = F1∆F2 to the delta-covering problem if and only if F ∪ T is a
basis of A. Similarly, DM Covering reduces to finding a maximum feasible set in D1 ∪ D2.
DM Intersection and DM Partition are asking whether ∅ is feasible in D1∆D2 and
D1 ∪ D2, respectively. For DM Parity, as above let the input be (D, Π) and construct
the delta-matroid DΠ. Then DM Parity reduces to finding the rank of D∆DΠ (or indeed
D ∪ DΠ). Thus the decision versions of all the above problems can be solved by a randomized
algorithm using O(nω) field operations given linear representations of D resp. D1 and D2
thanks to Theorem 2.

For general delta-matroids, these problems are as hard as Matroid Parity: Clearly,
DM Parity is as hard as Matroid Parity. Given an instance (D, Π) of DM Parity, let
D1 = D and D2 = DΠ. Then, the following is equivalent:

The instance (D, Π) has a perfect solution for DM Parity
(D1, D2) has a solution of cardinality V (D) for DM Covering
(D1, D2) has a solution of cardinality V (D) for DM Delta-Covering
(D1, D2) is a yes-instance of DM Partition

T. Koana and M. Wahlström 62:7

This shows that these problems are all intractable in the oracle model. For linear delta-
matroids, achieving O(nω) time is arguably the best possible.

For the search versions, the situation changes slightly. Although these problems can be
reduced to straightforward questions about non-singularity or rank of a skew-symmetric
matrix A the resulting solution (e.g., a basis of A) provides only limited insight into the
solution of the original problem. For example, if (D, Π) is an instance of DM Parity,
then the rank of D∆DΠ tells us the number of broken pairs in an optimal solution (and a
maximum feasible set tells us the set of broken pairs in such a solution), it does not give
us the feasible set F ∈ F(D) that is the “actual” solution. Similarly, for DM Covering
and DM Delta-Covering the above reduction gives us the set F = F1 ∪ F2 respectively
F = F1∆F2 but not the pair (F1, F2). We refer to this (the set F for DM Parity and the
pair (F1, F2) for the other four problems) as the witness.

The algorithm of Geelen et al. [17] actually computes the witness for Linear DM Parity,
and can be implemented in O(nω+1) field operations. Applying self-reducibility over the
above-mentioned representation to find a witness would reproduce the same running time.
Using methods of Harvey [18] we show the following improved result. These methods also
underpin the currently fastest algorithm for linear matroid parity [6]. The condition of field
size is for simplicity; given representations over a common field F we can easily move to a
large enough extension field of F.

▶ Theorem 3. Let D1 = (V, F1) and D2 = (V, F2) be (projected) linear delta-matroids over
a common field with Ω(n3) elements. For a feasible set F ⊆ V in D1∆D2, we can, with high
probability, find feasible sets F1 ∈ F1 and F2 ∈ F2 with F1∆F2 = F in O(nω) field operations.

Via the reductions given above, this lets us find a witness for all problems considered.
For Linear DM Covering, we would first find the optimal set F = F1 ∪ F2 as above, then
solve Linear DM Partition for the instance induced by F ; for the remaining problems
the solution is straightforward. See the full version of the paper for details.

▶ Corollary 4. The following search problems can be solved in O(nω) field operations with high
probability, given (projected) linear delta-matroids on ground sets of n elements represented
over a common field with Ω(n3) elements: DM Covering; DM Delta-Covering; DM
Intersection; DM Partition; and DM Parity.

Finally, we consider the weighted versions of the above problems. Again, the picture
becomes slightly different. For DM Partition, there is no sensible weighted version. For DM
Covering and DM Delta-Covering, the natural weight is the weight of the solution set F ,
in which case the problem is solved in strongly polynomial time of O(nω) field operations
using Theorem 2 and 3. For DM Parity, we would attach weights to the pairs, and consider
two weighted versions. In the first version, we want to minimize the weight of the broken
pairs; this problem is solved in O(nω) field operations using Theorem 2 and 3. For the
more interesting version, we assume that there exists a perfect delta-matroid parity solution,
and we wish to maximize the weight of such a set. This version, finally, is equivalent to
the weighted version of DM Intersection, which we focus on, and directly generalizes
Weighted Matroid Parity. We use the matrix representation of the problem to construct
a solution via algebraic methods.

As a special case, even the unit weight version, Maximum Linear DM Intersection,
is an interesting problem which up to now has had no polynomial-time solution. Kakimura
and Takamatsu [21] asked this as an open problem, and provided algorithms for some special
cases of it. We solve the general case with a randomized algorithm.

STACS 2025

62:8 Faster Algorithms on Linear Delta-Matroids

▶ Theorem 5. Let D1 = (V, F1) and D2 = (V, F2) be (projected) linear delta-matroids over
a common field with Ω(n2) elements and let w : V → {1, . . . , W } be element weights. In
O(Wnω) field operations we can find with high probability the maximum weight of a common
feasible set F ∈ F1 ∩ F2. In particular, we can find the maximum cardinality of |F | in O(nω)
field operations with high probability.

By self-reducibility, the search version can thus be solved by a factor O(n) overhead.

▶ Corollary 6. Maximum Linear DM Intersection can be solved with high probability
in O(nω+1) field operations. Weighted Linear DM Intersection and Weighted
Perfect DM Parity with maximum element weight W can be solved with high probability
in O(Wnω+1) field operations.

Removing the overhead on this result appears significantly harder. Indeed, a similar
overhead exists for algorithms for weighted linear matroid parity [6], and even removing the
overhead for Weighted Perfect Matching was significantly non-trivial [9]. We leave
this as a (challenging) open question.

Applications. We now review some applications of the results. Not all of these results are
new, but they serve to demonstrate the applicability of the setting.

One area of application is graph matching and factor problems. In the general factor
problem, we are given a graph G = (V, E), and a set of integers f(v) ⊆ N for each vertex
v ∈ V . The task is to find a spanning subgraph H = (V, F) such that degH(v) ∈ f(v) for
every vertex v ∈ V . Cornuéjols [7] showed that this problem is polynomial-time solvable if
each f(v) has gaps of length at most 1, but becomes NP-hard otherwise.

For each v ∈ V , let δ(v) be the set of edges incident with v and define Fv = {S ⊆ δ(v) |
|S| ∈ f(v)}. Under the gap-1 condition, Dv = (δ(v), Fv) forms a delta-matroid for every
v ∈ V . We refer to Dv as a symmetric delta-matroid.

The general factor problem can be reformulated as a DM Intersection problem. We
define two delta-matroids on the ground set E2 = {(e, v) | e ∈ E, v ∈ e}, where each edge
uv ∈ E is represented by (uv, u) and (uv, v). Let DE be the matching delta-matroid of G′,
where G′ is the graph on E2 with edges between the pairs (uv, u) and (uv, v) for each edge
uv ∈ E. Furthermore, let Df be the direct sum of symmetric delta-matroids Dv = (∂v, Fv)
with ∂v = {(uv, v) | uv ∈ E} and Fv = {S ⊆ ∂v | |S| ∈ f(v)}. Then the intersection of DE

and Df captures the general factor problem.2
When the symmetric delta-matroids correspond to cases where f(v) = {a, a + 2, . . . , b}

and f(v) = {a, a+1, . . . , b}, they are linear and projected linear, respectively. The associated
factor problems are known as parity (a, b)-factors and (a, b)-factors. Thus, these problems
can be reduced to Linear DM Intersection, and solved via Corollary 4 (although a
naive formulation gives only time O(mω) here). The algebraic formulation of Gabow and
Sankowski [16] for the f -factor problem, where |f(v)| = 1 for all v ∈ V , can essentially
be derived from this method in a generic way using the Ishikawa-Wakayama formula (see
Lemma 10), as the corresponding systems form matroids. See also recent work on weighted
general factors [10, 23].

2 We find it interesting that in this formulation, the General Factor problem is tractable if and only if
every set system Dv , v ∈ V forms a delta-matroid. For more such occurrences, see the Boolean Edge
CSP [13, 22] and Boolean Planar CSP [11, 22] problems, both of which appear (roughly speaking)
to be interestingly tractable if and only if the constraints form delta-matroids in natural ways.

T. Koana and M. Wahlström 62:9

For another example, let G = (V, E) be a graph and T ⊆ V a set of terminals. Let S
be a partition of T . An S-path packing is a vertex-disjoint packing of paths where every
path has endpoints in distinct parts of S and internal vertices disjoint from T . A classical
theorem of Mader shows a min-max theorem characterizing the maximum number of paths
in an S-path packing, generalizing Menger’s theorem and the Tutte-Berge formula; see
Schrijver [32]. Wahlström [36] recently showed the following. Let a set F ⊆ T be feasible
if there is an S-path packing whose set of endpoints is precisely F . Then D = (T, F) is
a linear delta-matroid. Then, via Linear DM Intersection as above, we can solve the
following “S-factor” problem: Given G, S and a prescribed set of degrees f(Ti) ∈ N, Ti ∈ S,
is there an S-path packing in (G, S) where precisely f(Ti) paths have an endpoint in Ti?
The generalizations to (a, b)-factors and (a, b)-parity factors can be handled similarly.

Structure of the paper. Section 2 contains all definitions. Section 3 gives results about
new representations, and Section 4 gives the algorithmic results. Section 5 concludes the
paper. For missing proofs (for results marked with ⋆) and additional results, including a
more extensive related work review, see the full version of the paper.

2 Preliminaries

For two sets A, B, we let A∆B = (A \ B) ∪ (B \ A) denote their symmetric difference.
For a matrix A and a set of rows S and columns T , we denote by A[S, T] the submatrix

containing rows S and columns T . If S contains all rows (T contains all columns), then
we use the shorthand A[·, T] (A[S, ·], respectively). The n × m zero matrix and the n × n

identity matrix is denoted by On×m and In, respectively. We often drop the subscript when
clear from context.

Delta-matroids. A delta-matroid is a pair D = (V, F) where V is a ground set and F ⊆ 2V

a collection of feasible sets, subject to the rule

∀A, B ∈ F , x ∈ A∆B ∃y ∈ A∆B : A∆{x, y} ∈ F .

This is known as the symmetric exchange axiom. For D = (V, F) we let V (D) = V and
F(D) = F . A delta-matroid is even if all feasible sets have the same parity. Note that in
this case we must have x ̸= y in the symmetric exchange axiom, although this does not
necessarily hold in general.

A separation oracle for a delta-matroid D = (V, F) is an oracle that, given a pair (S, T)
of disjoint subsets of V , reports whether there is a set F ∈ F such that S ⊆ F and F ∩ T = ∅.
If so, the pair (S, T) is separable. A delta-matroid is tractable if it has a polynomial-time
separation oracle.

For a delta-matroid D = (V, F) and S ⊆ D, the twisting of D by S is the delta-matroid
D∆S = (V, F∆S) where F∆S = {F ∆S | F ∈ F}. This generalizes some common operations
from matroid theory. The dual delta-matroid of D is D∆V (D). For a set S ⊆ V (D), the
deletion of S from D refers to the set system D \ S = (V \ S, {F ∈ F | F ⊆ V \ S}). The
contraction of S refers to D/S = (D∆S) \ S = (V \ S, {F \ S | F ∈ F , S ⊆ F}).

Skew-symmetric matrices. A square matrix A is skew-symmetric if A = −AT . In the case
that A is over a field of characteristic 2, we will additionally assume that it has zero diagonal,
unless stated otherwise. For a skew-symmetric matrix A with rows and columns indexed by
a set V = [n], the support graph of A is the graph G = (V, E) where E = {uv | A[u, v] ̸= 0}.
A fundamental tool for working with skew-symmetric matrices is the Pfaffian, defined for a
skew-symmetric matrix A as Pf A =

∑
M σ(M)

∏
e∈M A[u, v], where M ranges over all perfect

STACS 2025

62:10 Faster Algorithms on Linear Delta-Matroids

matchings of the support graph of A and σ(M) ∈ {1, −1} is the sign of the permutation:(
1 2 · · · n − 1 n

v1 v′
1 · · · vn/2 v′

n/2

)
, where M = {viv

′
i | i ∈ [n/2]} with vi < v′

i for all i ∈ [n/2]. It is

known that det A = (Pf A)2, hence in particular Pf A ̸= 0 if and only if A is non-singular.
However, for many algorithms it will be more convenient to work directly with the Pfaffian.
In fact, Pfaffian generalizes the notion of determinants as follows.

▶ Lemma 7. For an n × n-matrix M , it holds that det M = (−1)n(n−1)/2 Pf
(

O M

−MT O

)
.

An important operation on skew-symmetric matrices is pivoting. Let A ∈ Fn×n be
skew-symmetric and let S ⊆ [n] be such that A[S] is non-singular. Order the rows and

columns of A so that A =
(

B C

−CT D

)
, where A[S] = B. Then the pivoting of A by S

is A ∗ S =
(

B−1 B−1C

CT B−1 D + CT B−1C

)
. Note that this is a well-defined, skew-symmetric

matrix.

▶ Lemma 8 ([34]). It then holds, for any X ⊆ [n], that det(A ∗ S)[X] = det A[X∆S]
det A[S] , In

particular, (A ∗ S)[X] is non-singular if and only if A[X∆S] is non-singular.

Finally, let us note a formula on the Pfaffian of a sum of two skew-symmetric matrices:

▶ Lemma 9 ([29, Lemma 7.3.20]). For two skew-symmetric matrices A1 and A2 both indexed
by V = [n], we have

Pf (A1 + A2) =
∑

U⊆V

σU Pf A1[U] · Pf A2[V \ U],

where Pf Ai[∅] = 1 for i = 1, 2 and σU ∈ {1, −1} is a sign of the permutation(
1 2 · · · |U | |U | + 1 · · · |V | − 1 |V |
u1 u2 · · · u|U | v1 · · · v|V \U |−1 u|V \U |

)
,

where ui and vi are the i-th largest elements of U and V \ U , respectively.

The following is a generalization of the Cauchy-Binet formula to skew-symmetric matrices.
The algebraic approach of Lovász [26] for matroid parity can be derived from this formula
(see [27]).

▶ Lemma 10 (Ishikawa-Wakayama formula [19]). For a skew-symmetric 2n × 2n-matrix A

and a 2k × 2n-matrix B with k ≤ n, we have

Pf BABT =
∑

U∈([2n]
2k)

det B[·, U] Pf A[U].

Linear representation. A skew-symmetric matrix defines a delta-matroid as follows. For a
skew-symmetric matrix A ∈ FV ×V over a field F, define F = {X ⊆ V | A[X] is non-singular}.
Then, (V, F), which is denoted by D(A), is a delta-matroid. We say that a delta-matroid
D = (V, F) is representable over F if there is a skew-symmetric matrix A ∈ FV ×V and
a twisting set S ⊆ V such that D = D(A)∆S. If A[X] is non-singular, or equivalently
∅ ∈ F(D), we say that D is directly representable over F. Note that a directly representable
delta-matroid D can be represented without a twisting set X, as D(A)∆X = D(A ∗ X). We

T. Koana and M. Wahlström 62:11

will say that D is directly represented by A if D = D(A). A delta-matroid is called normal if
∅ is feasible. Note that every linear delta-matroid is even, and that a linear delta-matroid is
directly representable if and only if it is normal. Linear delta-matroids are tractable [3].

In addition, we consider projected linear delta-matroids. Let D = (V, F) be a delta-
matroid and X ⊆ V . Then the projection D|X is defined as D|X = (V \ X, F|X) where
F|X = {F \ X | F ∈ F}. Then D|X is a delta-matroid, although it is in general not
even, hence not linear. When D is linear, then we refer to D′ = D|X as a projected linear
delta-matroid. When |X| = 1 we refer to this as an elementary projection, following Geelen
et al. [17].

As noted above, we assume that A has a zero diagonal (this naturally follows from the
definition over all fields with a characteristic not 2). However, if F is a field of characteristic
2, then linear delta-matroids over F with a non-zero diagonal correspond to projected linear
delta-matroids over F; see Geelen et al. [17].

For a matroid M = (V, I) with the basis family B, D = (V, B) is a delta-matroid. If M

is represented by A, D can be represented as follows. Fix a basis B ∈ B. We may assume
w.l.o.g. that A[·, B] = I. Define

A′ =
(B V \B

B O A[·, V \ B]
V \B −AT [V \ B, ·] O

)
.

Observe that for every F ⊆ V , A′[F] is non-singular if and only if A[F ∩ B, F \ B] is
non-singular. Since A[·, B] = I, this is equivalent to A[·, (B \F)∪ (F \B)] being non-singular,
and thus D = D(A′)∆B.

Conversely, let D = (V, F) be a delta-matroid. Then the set of maximum-cardinality
feasible sets in D forms the set of bases of a matroid M = (V, I). Furthermore, if D = D(A)
is directly represented, then A (as a column space) is also a representation of the matroid
M . This is because if B is a column basis for a skew-symmetric matrix A, then A[B] is
non-singular (see e.g., [31] or [29, Proposition 7.3.6]).

To avoid intricate representation issues, we assume that every linear representation is
given over some finite field. We note that a representation over the rationals can be efficiently
transformed into an equivalent representation over a finite field.

Approximate linear representation. For a delta-matroid D = (V, F), we say that a delta-
matroid D′ = (V, F ′) is an ε-approximate representation of D if F ′ ⊆ F and for every F ∈ F ,
the probability that F ∈ F ′ is at least 1 − ε. For constructing an ε-approximate linear
representation, the Schwartz-Zippel lemma [33, 37] (also referred to as the DeMillo-Lipton-
Schwartz-Zippel lemma) comes in handy. It states that a polynomial P (X) of total degree
at most d over a field F becomes nonzero with probability at least 1 − d/|F| when evaluated
at uniformly chosen elements from F, unless P (X) is identically zero.

Let G = (V, E) be an undirected graph and let F ⊆ 2V contain all sets F ⊆ V such
that G[F] has a perfect matching. Then D(G) = (V, F) is a delta-matroid referred to as
the matching delta-matroid of G. The Tutte matrix gives rise to an approximate linear
representation. Note that setting ε = O(2−|V |) (or lower) gives a matrix of polynomial size
which with high probability is a correct representation of D(G). However, this will inflate
the time needed for field operations over F by at least Ω(n), so for efficiency reasons we work
with ε-approximate representations where ε is a parameter.

STACS 2025

62:12 Faster Algorithms on Linear Delta-Matroids

▶ Lemma 11 (⋆). Let G = (V, E) be a graph on n vertices and F be a field with at least
n · ⌈1/ε⌉ elements. We can construct a ε-approximate linear representation of the matching
delta-matroid of G over F.

Operations in matrix product time. Determinant, rank, basis, inverse can be found in
O(nω) time. Given an n × 2n-matrix, its row echelon form can be computed in O(nω). We
can find a lexicographically smallest column basis in O(nω) time. See [35].

3 Contraction representation of linear delta-matroids

In this section, we introduce a novel linear representation for delta-matroids, called contraction
representation. For the sake of clarity, we will say that the representation of a delta-matroid
as D = D(A)∆S is a twist representation. As we will see in Section 4, the contraction
representation is useful in the design of more efficient algorithms for linear delta-matroids.
We also give further results, supported by the new representation. First, we show that the
union and delta-sum of linear delta-matroids is linear. Previously, this was only known to
define delta-matroids [2, 4]. We also use this to provide a compact representation of projected
linear delta-matroids. All of these additional results will be useful in our algorithms.

3.1 Contraction representations

For a delta-matroid D = (V, F), a contraction representation of D is a pair (A, T) where A is
a skew-symmetric matrix over a field F whose rows and columns are labelled by V ∪ T , such
that D = D(A)/T , i.e., for every F ⊆ V , F is feasible in D if and only if F ∪ T is feasible in
D(A). This is closely related to strong maps of delta-matroids. For two delta-matroids D

and D◦, D◦ is a strong map of D if there exists a delta-matroid D+ = (V ∪ Z, F) such that
D = D+ \ Z and D◦ = D+/Z (see Geelen et al. [17]). Hence, if D = (V, F) = D(A)/T is
a contraction representation of a delta-matroid D, then D is a strong map of the directly
representable delta-matroid D(A[V]). We show that the contraction and twist representations
are equivalent.

▶ Lemma 12. Given a delta-matroid D in twist representation, we can construct a contraction
representation D = D(A)/T of D deterministically in O(n2) time.

Proof. Let D = (V, F) be given as D = D(A)∆S, S ⊆ V . For a set T of size |S|, define a
skew-symmetric matrix A′ over V ∪ T by

A′ =

T S V \S

T O I O

S −I A[S] A[S, V \ S]
V \S O A[V \ S, S] A[V \ S]

where I is an identity matrix. Note that the support graph of A′[T ∪ S] has a unique perfect
matching (namely, every vertex in T has degree one), thus Pf A′[T ∪ S] = ±1 and A′[T ∪ S]
is non-singular. Thus, we can construct the matrix A∗ = A′ ∗ (T ∪ S). Note that

(A′[T ∪ S])−1 =
(

O I

−I A[S]

)−1

=
(

A[S] −I

I O

)
,

T. Koana and M. Wahlström 62:13

and consequently, the result of pivoting is

A∗ =

T S V \S

T A[S] −I −A[S, V \ S]
S I O O

V \S −A[V \ S, S] O A[V \ S]

.

Clearly, A∗ can be constructed in O(n2) time. Now by Lemma 8, for any F ⊆ V , A∗[F ∪ T]
is non-singular if and only if A′[(F ∪ T)∆(S ∪ T)] = A′[F∆S] is. Since F∆S ⊆ V and
A′[V] = A[V], this is equivalent to F ∈ F(D), thereby showing that D(A∗)/T is a contraction
representation of D. ◀

▶ Lemma 13. Given a contraction representation D = D(A)/T , we can find a twist
representation of D deterministically using O(nω) field operations.

Proof. Let S ⊆ V be a set such that A[S∪T] is non-singular; such a set exists since F(D) ̸= ∅
by assumption, and can be found efficiently over A. Then A′ = A ∗ (S ∪ T) is well-defined.
Let A∗ = A′ \T . Observe that D = D(A)∆S, that is, for every F ⊆ V , A∗[F ∆S] = A′[F ∆S]
is non-singular if and only if A[(F∆S)∆(S ∪ T)] = A[F ∪ T] is non-singular by Lemma 8.
All operations above can be performed in matrix multiplication time. ◀

We also observe that the contracted set T in a representation of a delta-matroid D = (V, F)
never needs to be larger than |V |.

▶ Lemma 14 (⋆). Given a contraction representation D = D(A)/T of a delta-matroid
D = (V, F), in O(nω) field operations, where n = |V | + |T |, we can find a contraction
representation D = D(A′)/T ′ where |T ′| ≤ |V |.

3.2 Constructions
We next consider an immediate way to combine two delta-matroids into a new delta-matroid,
the delta-matroid union (surveyed in the introduction). Let D1 = (V1, F1) and D2 = (V2, F2)
be two delta-matroids on not necessarily disjoint ground sets and let V = V1 ∪ V2. Define
F = F1 ⊎ F2 := {F1 ∪ F2 | F1 ∈ F1, F2 ∈ F2, F1 ∩ F2 = ∅} as the collection of sets that can
be produced as disjoint unions from F1 and F2, and write D = (V, F) = D1 ∪ D2. Then
Bouchet [2] showed that D = (V, F) is a delta-matroid. We show that furthermore, if D1
and D2 are linear or projected linear then so is D, and an ε-approximate representation can
be constructed in polynomial time. Note that we may as well assume that V = V1 = V2, by
adding the missing elements to the respective delta-matroid as loops.

▶ Lemma 15 (⋆). Let D1 = (V, F1) and D2 = (V, F2) be linear (respectively projected linear)
delta-matroids defined over a common field F and given in contraction representation. Then
the delta-matroid union D = D1 ∪ D2 is a linear (respectively projected linear) delta-matroid,
and an ε-approximate representation of D can be constructed in O(n2) field operations over
an extension field of F with at least n · ⌈1/ε⌉ elements.

Let D1 = (V1, F1) and D2 = (V2, F2) be delta-matroids on not necessarily disjoint ground
sets. Let V = V1 ∪ V2 and F = {F1∆F2 | F1 ∈ F1, F2 ∈ F2}. Then D = (V, F) is called
the delta-sum D = D1∆D2 of D1 and D2, and is itself a delta-matroid. Bouchet and
Schwärzler [4] give a proof, citing unpublished work by Duchamp for the result. We show that
the delta-sum of linear delta-matroids is linear when D1 and D2 are given as representations
over a common field. By Lemma 12, we can work with contraction representations.

STACS 2025

62:14 Faster Algorithms on Linear Delta-Matroids

▶ Lemma 16 (⋆). The delta-sum of (projected) linear delta-matroids over a common field
is a (projected) linear delta-matroid, and a representation can be computed in randomized
polynomial time. More precisely, let D1 and D2 be linear delta-matroids given in contraction
representation over a common finite field F. Let ε > 0 be given and let F′ be a field extension
of F with at least n · ⌈1/ε⌉ elements. We can construct an ε-approximate contraction
representation of D1∆D2 in O(nω) field operations over F′.

Proof sketch. Let D1 = (V, F1) = D(A1)/T1 and D2 = (V, F2) = D(A2)/T2, w.l.o.g.
represented over the same ground set and with T1 ∩ T2 = ∅. Create three copies V ⊎ V1 ⊎ V2
of the ground set and define three sets of variables Yi = {yv,i | v ∈ V }, i = 1, 2, 3. Let

A =

V V1 T1 V2 T2

V O B1 O B2 O

V1 −B1 A1[V1] A1[V1, T1] B3 O

T1 O A1[T1, V1] A1[T1] O O

V2 −B2 −B3 O A2[V2] A2[V2, T2]
T2 O O O A2[T2, V2] A2[T2]

where Bi, i = 1, 2, 3 is a diagonal matrix whose v:th entry is yv,i. Note that A can be seen
as the sum of the representation of the disjoint union of D1 and D2 and the Tutte matrix of
the graph consisting of a disjoint union of triangles on {v, v1, v2} for every v ∈ V , where vi

is the copy of v in Vi, i = 1, 2. It now follows from the Pfaffian sum formula (Lemma 9) that
D(A)/(V1 ∪ T1 ∪ V2 ∪ T2) is an ε-approximate representation of D1∆D2. ◀

Recall that a projected linear delta-matroid D = (V, F) is a delta-matroid represented
as D = D′|X where D′ = (V ∪ X, F ′) is a linear delta-matroid. Projections of linear
delta-matroids were studied by Geelen et al. [17] in the context of linear delta-matroids over
fields of characteristic 2, and by Kakimura and Takamatsu [21] regarding generalizations of
constrained matching problems. We observe that if D is linear, then the even (respectively
odd) sets of D|X form a linear delta-matroid, and that every projected linear delta-matroid
D|X can be represented via an elementary projection.

▶ Lemma 17 (⋆). Let D = (V ∪ X, F) be a linear delta-matroid. Then the following
delta-matroids are linear and approximate representations can be constructed efficiently.
1. A linear delta-matroid D′ = (V ∪ X ′, F ′) such that D|X = D′|X ′ and |X ′| ≤ 1
2. The delta-matroid De = (V, Fe) where Fe contains the sets of F|X of even cardinality
3. The delta-matroid Do = (V, Fo) where Fo contains the sets of F|X of odd cardinality
More precisely, let D = D(A)/T in contraction representation over a finite field F and let
ε > 0 be given. Let F′ be a field extension of F with at least n · ⌈1/ε⌉ elements. We can
construct an ε-approximate contraction representation of each of the above delta-matroids in
O(n2) operations over F′.

4 Algorithms for fundamental delta-matroid problems

We now present the various algorithms over linear delta-matroids.

4.1 Max-weight feasible sets
We show an O(nω)-time algorithm for finding a max-weight feasible set in a linear delta-
matroid. More precisely, let D = (V, F) be a delta-matroid and w(v) ∈ Q, v ∈ V a set of
element weights. Let n = |V |. The goal is to find a feasible set F ∈ F to maximize the

T. Koana and M. Wahlström 62:15

weight w(F) =
∑

v∈F w(v). Note that since the feasible sets of D do not necessarily all have
the same cardinality, the negative element weights cannot easily be removed by any simple
transformation (as, e.g., shifting by a constant would affect different feasible sets differently).
This problem can be solved via the “signed greedy” algorithm, which extends the normal
greedy algorithm (in fact, like for matroids, the success of signed greedy can be taken as a
definition of delta-matroids) [3, 1]. However, this requires O(n) calls to a separation oracle.
If D is linear, this algorithm thus runs in O(nω+1) time. We show an improvement using the
contraction representation. We begin with the following observation.

▶ Lemma 18. Let D = (V, F) be a delta-matroid and w : V → Q a set of weights. Let
N ⊆ V be the set of elements v ∈ V such that w(v) < 0. Let D′ = D∆N , and define a
set of weights w′ by w′(v) = |w(v)| for every v ∈ V . For any feasible set F ∈ F , we have
w(F) = w′(F∆N) + w(N).

Proof. The following hold: w(F) = w′(F \ N) − w′(F ∩ N) and w′(F∆N) = w′(F \ N) +
w′(N \ F). Thereby w(F) − w′(F∆N) = −w′(N) = w(N) as promised. ◀

The problem of finding a max-weight feasible set in a linear delta-matroid in contraction
representation now reduces to the problem of finding a max-weight basis of a linear matroid.

▶ Theorem 2. Let D = (V, F) be a linear or projected linear delta-matroid. In O(nω) field
operations, we can find a max-weight feasible set in D.

Proof. By Lemma 17, it suffices to prove the statement for linear delta-matroids.
Let D = (V, F) and w : V → Q be given as input, and as above define N = {v ∈

V | w(v) < 0}, D′ = D∆N and w′ : V → Q where w′(v) = |w(v)| for all v ∈ V . Let
D(A)/T be a contraction representation of D′, which can be constructed using Lemma 12.
Finally, order the columns of A to begin with T and thereafter elements v ∈ V in order
of non-increasing weight w′(v). Let B be a lex-min column basis for A with respect to
this ordering. Then B can be computed in O(nω) field operations over A (see e.g., [5]),
and B is a max-weight column basis of A with respect to the weights w′. We claim that
F = (B \ T)∆N is a max-weight feasible set in D. For this, let F ∗ be a max-weight feasible
set in D with respect to the weights w. Then by Lemma 18, F ∗∆N is a max-weight feasible
set in D′ with respect to the weights w′. Hence B′ = (F ∗∆N) ∪ T is feasible in D(A) and
w′(B \ T) ≥ w′(B′ \ T) = w(F ∗) − w(N). On the other hand, let B be a lex-min basis of A

in the above ordering. Then T ⊆ B by construction. By Lemma 18, F = (B \ T)∆N is a
feasible set in D with w(F) = w′(B \ T) + w(N) ≤ w(F ∗). Hence w′(B \ T) = w(F ∗) − w(N)
by sandwiching and w((B \ T)∆N) = w′(B \ T) + w(N) = w(F ∗). ◀

4.2 Intersection, Parity, and Delta-Covering
Recall that the DM Parity problem is defined as follows. Let D = (V, F) be a delta-matroid
with V partitioned into n pairs Π. The problem is to find a feasible set F ∈ F minimizing the
number of broken pairs δΠ(F) = |{P ∈ Π : |F ∩ P | = 1}|. Let δ(D, Π) = minF ∈F δΠ(F). We
consider the equivalent DM Delta-covering problem defined as follows. Let D1 = (V, F1)
and D2 = (V, F2) be two given delta-matroids. The problem is to find F1 ∈ F1 and F2 ∈ F2
maximizing |F1∆F2|. Let τ(D1, D2) = maxFi∈Fi

|F1∆F2|. As described in Section 1, DM
Parity and DM Delta-Covering reduce to each other. Moreover, DM Covering and
DM Intersection are special cases of DM Parity and DM Delta-Covering.

We can compute τ(D1, D2) in O(nω) field operations as follows. Observe that τ(D1, D2)
is the maximum feasible set size in the delta-sum D1∆D2. By Lemma 16, we can find a linear
representation D(A)/T of D1∆D2 in O(nω) field operations. We then have τ(D1, D2) =

STACS 2025

62:16 Faster Algorithms on Linear Delta-Matroids

rank A − |T |. Thus the decision variants of DM Parity and DM Delta-Covering can be
solved in O(nω) field operations. Via self-reducibility, we obtain an algorithm that finds a
witness for DM Parity and DM Delta-Covering in O(nω+1) field operations, matching
the result of Geelen et al. [17]. We present an improvement to O(nω), using the method of
Harvey [18]. Specifically, we prove the following:

▶ Lemma 19 (⋆). Let A be an n × n skew-symmetric, non-singular polynomial matrix with
its row and column indexed by V = {v1, . . . , vn}. Suppose that A = B + Y , where (i) B is
a matrix defined over a field F containing Ω(n3) elements, and (ii) Y is the Tutte matrix
of a graph G = (V, E) with variables ye, e ∈ E. Suppose that G has connected components
C1, . . . , Cγ , with |Ci| ∈ O(1) for every i ∈ [γ]. It is possible to find an inclusion-wise maximal
set S ⊆ E for which A remains non-singular when setting ye to zero for all e ∈ S. This can
be done with probability 1 − 1/Ω(n) using O(nω) field operations over F.

Using Lemma 19, we prove Theorem 3, which yields algorithms for DM Delta-Covering
and DM Parity as well as DM Covering and DM Intersection using O(nω) field
operations (Corollary 4).

▶ Theorem 3. Let D1 = (V, F1) and D2 = (V, F2) be (projected) linear delta-matroids over
a common field with Ω(n3) elements. For a feasible set F ⊆ V in D1∆D2, we can, with high
probability, find feasible sets F1 ∈ F1 and F2 ∈ F2 with F1∆F2 = F in O(nω) field operations.

▶ Corollary 4. The following search problems can be solved in O(nω) field operations with high
probability, given (projected) linear delta-matroids on ground sets of n elements represented
over a common field with Ω(n3) elements: DM Covering; DM Delta-Covering; DM
Intersection; DM Partition; and DM Parity.

Proof sketch. We treat the problems in turn. Throughout, by Lemma 17 (and by exhaus-
tively guessing the parities of the feasible sets involved in the solution), we assume that every
delta-matroid D in the input is linear, and by Lemma 12 that it is provided in contraction
form D = D(A)/T for some skew-symmetric matrix A. We omit details of field size and
approximate representations.

DM Parity. Let the input be (D, Π) with D = D(A)/T . Construct the matching delta-
matroid DΠ of the graph with edge set Π and construct a contraction representation of
D′ = D∆DΠ using Lemma 16. Let F be a maximum feasible set in D′ and apply Theorem 3.

DM Intersection. Given input (D1, D2), construct D = D1∆D2. If ∅ is feasible in D,
then apply Theorem 3 to F = ∅; otherwise report a no-instance.

DM Partition. Given input (D1, D2), construct D = D1∆D2. If the full ground set V is
feasible in D, apply Theorem 3; otherwise report a no-instance.

DM Covering. Given input (D1, D2), construct D = D1 ∪ D2 and let F be a maximal
feasible set. Delete all elements of V \ F to create the induced delta-matroids D′

1 and D′
2

with ground set F , and apply Theorem 3 to D′ = D′
1∆D′

2.
DM Delta-Covering. Given input (D1, D2), construct D = D1∆D2 and let F be a

maximal feasible set. Apply Theorem 3 to F . ◀

Let D1 = (V, F1) and D2 = (V, F2) be two linear delta-matroids with weights w(v) ∈
N, v ∈ V . We consider the intersection problem, where the goal is to find a common
feasible set F ⊆ V , i.e., F ∈ F1 and F ∈ F2. The decision problem, i.e., whether there exists
F ∈ F1 ∩F2, can be solved in O(nω) by testing whether V is feasible in the delta-sum D1∆D∗

2 .
Moreover, we can find a common feasible set in O(nω) time using Theorem 3. We next
give a (pseudo)polynomial-time randomized algorithm for the Weighted Delta-matroid

T. Koana and M. Wahlström 62:17

Intersection, where we are tasked with finding a common feasible set of maximum weight,
answering an open question of Kakimura and Takamatsu [21]. Previously, there has been no
polynomial-time algorithm even for the unweighted case.

▶ Theorem 5. Let D1 = (V, F1) and D2 = (V, F2) be (projected) linear delta-matroids over
a common field with Ω(n2) elements and let w : V → {1, . . . , W } be element weights. In
O(Wnω) field operations we can find with high probability the maximum weight of a common
feasible set F ∈ F1 ∩ F2. In particular, we can find the maximum cardinality of |F | in O(nω)
field operations with high probability.

5 Conclusions

We have introduced a novel representation for linear delta-matroids, the contraction represen-
tation, which enable us to derive a range of new results, including linear representations of
delta-matroid union and delta-sum, and faster algorithms for various problems including Lin-
ear Delta-Matroid Parity. We also show the first (pseudo)polynomial-time, randomized
algorithms for the maximum cardinality and weighted versions of Linear Delta-Matroid
Intersection, solving an open question of Kakimura and Takamatsu [21].

We note a few open questions. First, all our running times are stated purely in terms
of the number of elements n. It would be interesting to explore faster algorithms for linear
delta-matroids of bounded “rank”. But we also note two specific challenging questions.
1. Is there a strongly polynomial-time algorithm for Weighted Linear Delta-Matroid

Parity, extending the recent result for Weighted Linear Matroid Parity [20]?
2. Is there a Õ(Wnω)-time algorithm for Shortest Disjoint S-Paths? This would extend

results for graph matching [9].
Additionally, does there exist a good characterization of, and/or a deterministic algorithm
for the maximum cardinality version of Linear Delta-Matroid Intersection?

References
1 André Bouchet. Greedy algorithm and symmetric matroids. Math. Program., 38(2):147–159,

1987. doi:10.1007/BF02604639.
2 André Bouchet. Matchings and ∆-matroids. Discret. Appl. Math., 24(1-3):55–62, 1989.

doi:10.1016/0166-218X(92)90272-C.
3 André Bouchet. Coverings and delta-coverings. In IPCO, pages 228–243, 1995. doi:10.1007/

3-540-59408-6_54.
4 André Bouchet and Werner Schwärzler. The delta-sum of matching delta-matroids. Discret.

Math., 181(1-3):53–63, 1998. doi:10.1016/S0012-365X(97)00044-7.
5 Peter Bürgisser, Michael Clausen, and Mohammad Amin Shokrollahi. Algebraic complexity

theory, volume 315 of Grundlehren der mathematischen Wissenschaften. Springer, 1997.
6 Ho Yee Cheung, Lap Chi Lau, and Kai Man Leung. Algebraic algorithms for linear matroid

parity problems. ACM Trans. Algorithms, 10(3):10:1–10:26, 2014. doi:10.1145/2601066.
7 Gérard Cornuéjols. General factors of graphs. J. Comb. Theory, Ser. B, 45(2):185–198, 1988.

doi:10.1016/0095-8956(88)90068-8.
8 Marek Cygan, Fedor V. Fomin, Lukasz Kowalik, Daniel Lokshtanov, Dániel Marx, Marcin

Pilipczuk, Michal Pilipczuk, and Saket Saurabh. Parameterized Algorithms. Springer, 2015.
doi:10.1007/978-3-319-21275-3.

9 Marek Cygan, Harold N. Gabow, and Piotr Sankowski. Algorithmic applications of Baur-
Strassen’s theorem: Shortest cycles, diameter, and matchings. J. ACM, 62(4):28:1–28:30, 2015.
doi:10.1145/2736283.

STACS 2025

https://doi.org/10.1007/BF02604639
https://doi.org/10.1016/0166-218X(92)90272-C
https://doi.org/10.1007/3-540-59408-6_54
https://doi.org/10.1007/3-540-59408-6_54
https://doi.org/10.1016/S0012-365X(97)00044-7
https://doi.org/10.1145/2601066
https://doi.org/10.1016/0095-8956(88)90068-8
https://doi.org/10.1007/978-3-319-21275-3
https://doi.org/10.1145/2736283

62:18 Faster Algorithms on Linear Delta-Matroids

10 Szymon Dudycz and Katarzyna E. Paluch. Optimal general matchings. CoRR, abs/1706.07418,
2017. arXiv:1706.07418.

11 Zdenek Dvorák and Martin Kupec. On planar Boolean CSP. In ICALP (1), volume
9134 of Lecture Notes in Computer Science, pages 432–443. Springer, 2015. doi:10.1007/
978-3-662-47672-7_35.

12 Eduard Eiben, Tomohiro Koana, and Magnus Wahlström. Determinantal sieving. In SODA,
pages 377–423, 2024. doi:10.1137/1.9781611977912.16.

13 Tomás Feder. Fanout limitations on constraint systems. Theor. Comput. Sci., 255(1-2):281–293,
2001. doi:10.1016/S0304-3975(99)00288-1.

14 Fedor V. Fomin, Daniel Lokshtanov, Fahad Panolan, and Saket Saurabh. Efficient computation
of representative families with applications in parameterized and exact algorithms. J. ACM,
63(4):29:1–29:60, 2016. doi:10.1145/2886094.

15 Fedor V. Fomin, Daniel Lokshtanov, Saket Saurabh, and Meirav Zehavi. Kernelization:
Theory of Parameterized Preprocessing. Cambridge University Press, 2019. doi:10.1017/
9781107415157.

16 Harold N. Gabow and Piotr Sankowski. Algorithms for weighted matching generalizations I:
Bipartite graphs, b-matching, and unweighted f -factors. SIAM J. Comput., 50(2):440–486,
2021. doi:10.1137/16M1106195.

17 James F. Geelen, Satoru Iwata, and Kazuo Murota. The linear delta-matroid parity problem.
J. Comb. Theory, Ser. B, 88(2):377–398, 2003. doi:10.1016/S0095-8956(03)00039-X.

18 Nicholas J. A. Harvey. Algebraic algorithms for matching and matroid problems. SIAM J.
Comput., 39(2):679–702, 2009. doi:10.1137/070684008.

19 Masao Ishikawa and Masato Wakayama. Minor summation formula of Pfaffians. Linear and
Multilinear algebra, 39(3):285–305, 1995.

20 Satoru Iwata and Yusuke Kobayashi. A weighted linear matroid parity algorithm. SIAM J.
Comput., 51(2):17–238, 2022. doi:10.1137/17M1141709.

21 Naonori Kakimura and Mizuyo Takamatsu. Matching problems with delta-matroid constraints.
SIAM J. Discret. Math., 28(2):942–961, 2014. doi:10.1137/110860070.

22 Alexandr Kazda, Vladimir Kolmogorov, and Michal Rolínek. Even delta-matroids and
the complexity of planar Bpolean CSPs. ACM Trans. Algorithms, 15(2):22:1–22:33, 2019.
doi:10.1145/3230649.

23 Yusuke Kobayashi. Optimal general factor problem and jump system intersection. In Al-
berto Del Pia and Volker Kaibel, editors, IPCO, volume 13904 of Lecture Notes in Computer
Science, pages 291–305. Springer, 2023. doi:10.1007/978-3-031-32726-1_21.

24 Stefan Kratsch and Magnus Wahlström. Compression via matroids: A randomized polynomial
kernel for odd cycle transversal. ACM Trans. Algorithms, 10(4):20:1–20:15, 2014. doi:
10.1145/2635810.

25 Stefan Kratsch and Magnus Wahlström. Representative sets and irrelevant vertices: New tools
for kernelization. J. ACM, 67(3):16:1–16:50, 2020. doi:10.1145/3390887.

26 László Lovász. Matroid matching and some applications. J. Comb. Theory, Ser. B, 28(2):208–
236, 1980. doi:10.1016/0095-8956(80)90066-0.

27 Kazuki Matoya and Taihei Oki. Pfaffian pairs and parities: Counting on linear matroid
intersection and parity problems. SIAM J. Discret. Math., 36(3):2121–2158, 2022. doi:
10.1137/21M1421751.

28 Iain Moffatt. Delta-matroids for graph theorists. In Allan Lo, Richard Mycroft, Guillem
Perarnau, and Andrew Treglown, editors, Surveys in Combinatorics 2019, London Math-
ematical Society Lecture Note Series, pages 167–220. Cambridge University Press, 2019.
doi:10.1017/9781108649094.007.

29 Kazuo Murota. Matrices and matroids for systems analysis, volume 20. Springer Science &
Business Media, 1999.

30 James Oxley. Matroid Theory. Oxford University Press, 2011.

https://arxiv.org/abs/1706.07418
https://doi.org/10.1007/978-3-662-47672-7_35
https://doi.org/10.1007/978-3-662-47672-7_35
https://doi.org/10.1137/1.9781611977912.16
https://doi.org/10.1016/S0304-3975(99)00288-1
https://doi.org/10.1145/2886094
https://doi.org/10.1017/9781107415157
https://doi.org/10.1017/9781107415157
https://doi.org/10.1137/16M1106195
https://doi.org/10.1016/S0095-8956(03)00039-X
https://doi.org/10.1137/070684008
https://doi.org/10.1137/17M1141709
https://doi.org/10.1137/110860070
https://doi.org/10.1145/3230649
https://doi.org/10.1007/978-3-031-32726-1_21
https://doi.org/10.1145/2635810
https://doi.org/10.1145/2635810
https://doi.org/10.1145/3390887
https://doi.org/10.1016/0095-8956(80)90066-0
https://doi.org/10.1137/21M1421751
https://doi.org/10.1137/21M1421751
https://doi.org/10.1017/9781108649094.007

T. Koana and M. Wahlström 62:19

31 Michael O. Rabin and Vijay V. Vazirani. Maximum matchings in general graphs through
randomization. J. Algorithms, 10(4):557–567, 1989. doi:10.1016/0196-6774(89)90005-9.

32 A. Schrijver. Combinatorial Optimization: Polyhedra and Efficiency. Algorithms and combi-
natorics. Springer, 2003.

33 Jacob T. Schwartz. Fast probabilistic algorithms for verification of polynomial identities. J.
ACM, 27(4):701–717, 1980. doi:10.1145/322217.322225.

34 Albert W Tucker. A combinatorial equivalence of matrices. Combinatorial analysis, pages
129–140, 1960.

35 Joachim von zur Gathen and Jürgen Gerhard. Modern computer algebra. Cambridge university
press, 2013.

36 Magnus Wahlström. Representative set statements for delta-matroids and the Mader delta-
matroid. In SODA, pages 780–810, 2024. doi:10.1137/1.9781611977912.31.

37 Richard Zippel. Probabilistic algorithms for sparse polynomials. In EUROSAM, pages 216–226,
1979. doi:10.1007/3-540-09519-5_73.

STACS 2025

https://doi.org/10.1016/0196-6774(89)90005-9
https://doi.org/10.1145/322217.322225
https://doi.org/10.1137/1.9781611977912.31
https://doi.org/10.1007/3-540-09519-5_73

Approximation of Spanning Tree Congestion Using
Hereditary Bisection
Petr Kolman # Ñ

Department of Applied Mathematics, Faculty of Mathematics and Physics,
Charles University, Prague, Czech Republic

Abstract
The Spanning Tree Congestion (STC) problem is the following NP-hard problem: given a graph G,
construct a spanning tree T of G minimizing its maximum edge congestion where the congestion
of an edge e ∈ T is the number of edges uv in G such that the unique path between u and v in T

passes through e; the optimal value for a given graph G is denoted STC(G).
It is known that every spanning tree is an n/2-approximation for the STC problem. A long-

standing problem is to design a better approximation algorithm. Our contribution towards this
goal is an O(∆ · log3/2 n)-approximation algorithm where ∆ is the maximum degree in G and n the
number of vertices. For graphs with a maximum degree bounded by a polylog of the number of
vertices, this is an exponential improvement over the previous best approximation.

Our main tool for the algorithm is a new lower bound on the spanning tree congestion which is
of independent interest. Denoting by hb(G) the hereditary bisection of G which is the maximum
bisection width over all subgraphs of G, we prove that for every graph G, STC(G) ≥ Ω(hb(G)/∆).

2012 ACM Subject Classification Mathematics of computing → Discrete mathematics; Theory of
computation → Design and analysis of algorithms

Keywords and phrases Spanning Tree Congestion, Bisection, Expansion, Divide and Conquer

Digital Object Identifier 10.4230/LIPIcs.STACS.2025.63

1 Introduction

The spanning tree congestion problem has been studied from various viewpoints for more
than twenty years, yet our ability to approximate it is still extremely limited. It has been
shown that every spanning tree is an n/2-approximation [9] but no o(n)-approximation for
general graphs is known. For graphs with ω(n log2 n) edges, Chandran et al. [2] described
an algorithm that constructs in polynomial time a spanning tree with congestion at most
O(
√

mn); combined with the trivial lower bound Ω(m/n) on the spanning tree congestion,
this yields an O(n/ log n)-approximation. There is also an Õ(n1−1/(

√
log n+1))-approximation1

algorithm for graphs with maximum degree bounded by polylog of the number of vertices [5].
On the hardness side, the strongest known lower bound states that no c-approximation

with c smaller than 6/5 is possible unless P = NP [8]. The Ω(n) gap between the best upper
and lower bounds is highly unsatisfactory.

For a detailed overview of other related results, we refer to the survey paper by Otachi [9],
to our recent paper [5], and to the new paper by Lampis et al. [7] that deals with the STC
problem from the perspective of parameterized complexity.

1.1 Our Results
Our contribution in this paper is twofold. We describe an O(∆ · log3/2 n)-approximation
algorithm for the spanning tree congestion problem where ∆ is the maximum degree in G and
n the number of vertices. For graphs with maximum degree bounded by ∆ = o(n/ log3/2 n),

1 The Big-O-Tilde notation Õ ignores logarithmic factors.
© Petr Kolman;
licensed under Creative Commons License CC-BY 4.0

42nd International Symposium on Theoretical Aspects of Computer Science (STACS 2025).
Editors: Olaf Beyersdorff, Michał Pilipczuk, Elaine Pimentel, and Nguyễn Kim Thắng;
Article No. 63; pp. 63:1–63:6

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:kolman@kam.mff.cuni.cz
https://kam.mff.cuni.cz/~kolman/
https://orcid.org/0000-0003-2235-0506
https://doi.org/10.4230/LIPIcs.STACS.2025.63
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

63:2 Approximation of Spanning Tree Congestion Using Hereditary Bisection

we get o(n)-approximation; this significantly extends the class of graphs for which sublinear
approximation is known, and provides a partial answer to the open problem P2 from our
recent paper [5]. Moreover, for graphs with a stronger bound on the maximum degree, the
approximation ratio is even better than o(n). For example, for graphs with a maximum
degree bounded by polylog of the number of vertices, the approximation is polylogarithmic
which is an exponential improvement over the previous best approximation [5].

For graphs excluding any fixed graph as a minor (e.g., planar graphs or bounded genus
graphs), we get a slightly better bound of O(∆ · log n) on the approximation ratio.

Our key tool in the algorithm design is a new lower bound on STC(G) which is our
second contribution. In the recent paper [5], we proved that STC(G) ≥ b(G)

∆·log n where b(G) is

the bisection of G. We strengthen the bound and prove that STC(G) ≥ Ω
(

hb(G)
∆

)
where

hb(G) is the hereditary bisection of G which is the maximum of b(H) over all subgraphs H

of G. This is a corollary of another new lower bound saying that for every subgraph H of G,
STC(G) ≥ β(H)·n′

3·∆ ; here β(H) is the expansion of H and n′ is the number of vertices in H.

1.2 Sketch of the Algorithm
The algorithm uses the standard Divide and Conquer framework and is conceptually very
simple: partition the graph by a 2

3 -balanced cut into two or more connected components, solve
the problem recursively for each of the components, and arbitrarily combine the spanning
trees of the components into a spanning tree of the entire graph. The structure of the
algorithm is the same as the structure of our recent o(n)-approximation algorithm [5] for
graphs with maximum degree bounded by polylog(n) - there is a minor difference in the tool
used in the partitioning step and in the stopping condition for the recursion.

It is far from obvious that the Divide and Conquer approach works for the spanning tree
congestion problem. The difficulty is that there is no apparent relation between STC(G)
and STC(H) for a subgraph H of G. In the paper [5], we proved that STC(G) ≥ STC(H)

e(H,G\H)
where e(H, G \H) denotes the number of edges between the subgraph H and the rest of the
graph G. Note that the bound is very weak when e(H, G \H) is large. Also, note that the
bound is tight in the following sense: there exist graphs for which STC(G) and STC(H)

e(H,G\H) are
equal, up to a small multiplicative constant. For example, let G be a graph obtained from a
3-regular expander H on n vertices by adding a new vertex r and connecting it by an edge
to every vertex of H. Then STC(H) = Ω(n) (cf. Lemma 4) while STC(G) = O(1) (consider
the spanning tree of G consisting only of all the edges adjacent to the new vertex r).

The main reason for the significant improvement of the bound on the approximation
ratio of the algorithm is the new lower bound STC(G) ≥ Ω

(
hb(G)

∆

)
that connects STC(G)

and properties of subgraphs of G in a much tighter way. This connection yields a simpler
algorithm with better approximation, broader applicability and simpler analysis.

1.3 Preliminaries
For an undirected graph G = (V, E) and a subset of vertices S ⊂ V , we denote by E(S, V \S)
the set of edges between S and V \ S in G, and by e(S, V \ S) = |E(S, V \ S)| the number of
these edges. An edge {u, v} ∈ E is also denoted by uv for notational simplicity. For a subset
of vertices S ⊆ V , G[S] is the subgraph induced by S. By V (G), we mean the vertex set of
the graph G and by E(G) its edge set. Given a graph G = (V, E) and an edge e ∈ E, G \ e

is the graph (V, E \ {e}).

P. Kolman 63:3

Let G = (V, E) be a connected graph and T = (V, ET) be a spanning tree of G. For an
edge uv ∈ ET , we denote by Su, Sv ⊂ V the vertex sets of the two connected components of
T \ uv containing u and v, resp. The congestion c(uv) of the edge uv with respect to G and
T , is the number of edges in G between Su and Sv. The congestion c(G, T) of the spanning
tree T of G is defined as maxe∈ET

c(e), and the spanning tree congestion STC(G) of G is
defined as the minimum value of c(G, T) over all spanning trees T of G.

A bisection of a graph with n vertices is a partition of its vertices into two sets, S and
V \ S, each of size at most ⌈n/2⌉. The width of a bisection (S, V \ S) is e(S, V \ S). The
minimum width of a bisection of a graph G is denoted b(G). The hereditary bisection width
hb(G) is the maximum of b(H) over all subgraphs H of G. In approximation algorithms,
the requirement that each of the two parts in a partition of V is of size at most ⌈n/2⌉ is
sometimes relaxed to 2n/3, or to some other fraction, and then we talk about balanced cuts.
In particular, a c-balanced cut is a partition of the graph vertices into two sets, each of size
at most c · n. The edge expansion of G is

β(G) = min
A⊆V

e(A, V \A)
min{|A|, |V \A|}

. (1)

There are several approximation and pseudo-approximation algorithms for bisection and
balanced cuts. In our algorithm, we will employ the algorithm by Arora, Rao and Vazirani [1],
and for graphs excluding any fixed graph as a minor (e.g., planar graphs), a slightly stronger
algorithm by Klein, Protkin and Rao [4].

▶ Theorem 1 ([1, 4]). A 2/3-balanced cut of cost within a ratio of O(
√

log n) of the optimum
bisection can be computed in polynomial time. For graphs excluding any fixed graph as a
minor, even O(1) ratio is possible.

We conclude this section with two more statements that will be used later.

▶ Theorem 2 (Jordan [3]). Given a tree on n vertices, there exists a vertex whose removal
partitions the tree into components, each with at most n/2 vertices.

▶ Lemma 3 (Kolman and Matoušek [6]). Every graph G on n vertices contains a subgraph
on at least 2 · n/3 vertices with edge expansion at least b(G)/n.

2 New Lower Bound

The main result of this section is captured in the following lemma and its corollary.

▶ Lemma 4. For every graph G = (V, E) on n vertices with maximum degree ∆ and every
subgraph H of G on n′ vertices, we have

STC(G) ≥ β(H) · n′

3 ·∆ . (2)

▶ Corollary 5. For every graph G = (V, E) with maximum degree ∆,

STC(G) ≥ 2 · hb(G)
9 ·∆ . (3)

Before proving the lemma and its corollary, we state a slight generalization of Theorem 2; for
the sake of completeness, we also provide proof of it, though it is a straightforward extension
of the standard proof of Theorem 2.

STACS 2025

63:4 Approximation of Spanning Tree Congestion Using Hereditary Bisection

▶ Lemma 6. Given a tree T on n vertices with n′ ≤ n vertices marked, there exists a vertex
(marked or unmarked) whose removal partitions the tree into components, each with at most
n′/2 marked vertices.

Proof. Start with an arbitrary vertex v0 ∈ T and set i = 0. We proceed as follows. If
the removal of vi partitions the tree into components such that each contains at most n′/2
marked vertices, we are done. Otherwise, one of the components, say a component C, has
strictly more than n′/2 marked vertices. Let vi+1 be the neighbour of vi that belongs to the
component C. Note that for every i > 0, vi is different from all the vertices v0, v1, . . . , vi−1.
As the number of vertices in the tree is bounded, eventually, this process has to stop, and we
get to a vertex with the desired properties. ◀

Proof of Lemma 4. Let T be the spanning tree of G with the minimum congestion. By
Lemma 6, there exists a vertex z ∈ T whose removal partitions the tree T into components,
each with at most n′/2 verices from H. We organize the components of T \ z into two parts
so that the total number of vertices from H in the smaller part is at least n′/3; such a
partition can be found greedily. Let C ⊆ V (H) be the vertices from H in the smaller part.
Then, by the definition of expansion (1), e(C, V (H) \ C) ≥ β(H) · n′/3. As for each edge
uv ∈ E(C, V (H) \C), the path connecting u and v in T uses at least one edge adjacent to z,
we conclude that

STC(G) ≥ e(C, V (H) \ C)
∆ ≥ β(H) · n′

3 ·∆ . ◀

Proof of Corollary 5. Consider a subgraph H ′ of G such that b(H ′) = hb(G). By Lemma 3,
there is a subgraph H of H ′, such that |V (H)| ≥ 2 · |V (H ′)|/3 and β(H) ≥ b(H ′)/|V (H ′)|.
Since H is a subgraph of G, by Lemma 4,

STC(G) ≥ β(H) · |V (H)|
3 ·∆ ≥ 2 · b(H ′)

3 · 3 ·∆ = 2 · hb(G)
9 ·∆ . ◀

3 Approximation Algorithm

Given a connected graph G = (V, E), we construct the spanning tree of G by the recursive
algorithm CongSpanTree called on the graph G. In step 3, one of the algorithms of
Theorem 1 is used: for general graphs, the algorithm by Arora, Rao and Vazirani [1], for
graphs excluding any fixed graph as a minor, the algorithm by Klein, Protkin and Rao; by
α(n) we denote the respective pseudo-approximation factor.

Algorithm 1 CongSpanTree(H).

1: if |V (H)| = 1 then
2: return H

3: construct a 2
3 -balanced cut (S, V (H) \ S) of H

4: F ← E(S, V (H) \ S)
5: for each connected component C of H \ F do
6: TC ← CongSpanTree(C)
7: arbitrarily connect all the trees TC by edges from F to form a spanning tree T of H

8: return T

Let τ denote the tree representing the recursive decomposition of G (implicitly) constructed
by the algorithm CongSpanTree: The root r of τ corresponds to the graph G, and the
children of a non-leaf node t ∈ τ associated with a set Vt correspond to the connected

P. Kolman 63:5

components of G[Vt] \ F where F is the set of edges of the 2
3 -balanced cut of G[Vt] from

step 4; by Theorem 1, |F | ≤ α(n) · b(G[Vt]). We denote by Gt = G[Vt] the subgraph of G

induced by the vertex set Vt, by Tt the spanning tree constructed for Gt by the algorithm
CongSpanTree. The height h(t) of a tree node t ∈ τ is the number of edges on the longest
path from t to a leaf in its subtree (i.e., to a leaf that is a descendant of t).

▶ Lemma 7. Let t ∈ τ be a node of the decomposition tree and t1, . . . , tk its children. Then

c(Gt, Tt) ≤ max
i

c(Gti , Tti) + α(n) · b(Gt) . (4)

Proof. Let F be the set of edges of the 2
3 -balanced cut of Gt from step 4. We will show

that for every edge e ∈ E(Tt), its congestion c(e) with respect to Gt and Tt is at most
maxi c(Gti , Tti) + |F |; as |F | ≤ α(n) · b(G[Vt]), this will prove the lemma. Recall that
E(Tt) ⊆

⋃k
i=1 E(Tti

) ∪ F , as the spanning tree Tt is constructed (step 7) from the spanning
trees Tt1 , . . . , Ttk

and the set F .
Consider first an edge e ∈ E(Tt) that belongs to a tree Tti

, for some i. The only edges
from E(G) that may contribute to the congestion c(e) of e with respect to Gt and Tt are
the edges in E(Gti

) ∪ F ; the contribution of the edges in E(Gti
) is at most c(Gti

, Tti
), the

contribution of the edges in F is at most |F |. Thus, the congestion c(e) of the edge e with
respect to Gt and Tt is at most c(Gti , Tti) + |F |.

Consider now an edge e ∈ F ∩ E(Tt). As the only edges from E(G) that may contribute
to the congestion c(e) of e with respect to Gt and Tt are the edges in F , its congestion is at
most |F |.

Thus, for every edge e ∈ E(Tt), its congestion with respect to Gt and Tt is at most
maxi c(Gti

, Tti
) + |F |, and the proof of the lemma is completed. ◀

▶ Lemma 8. Let T = CongSpanTree(G). Then

c(G, T) ≤ O(α(n) · log n) · hb(G) . (5)

Proof. For technical reasons, we extend the notion of the spanning tree congestion also to
the trivial graph H = ({v}, ∅) consisting of a single vertex and no edge (and having a single
spanning tree TH = H) by defining c(H, TH) = 0.

By induction on the height of vertices in the decomposition tree τ , we prove the following
auxiliary claim: for every t ∈ τ ,

c(Gt, Tt) ≤ h(t) · α(n) · hb(G) . (6)

Consider first a node t ∈ τ of height zero, that is, a node t that is a leaf. Then both sides
of (6) are zero and the inequality holds.

Consider now a node t ∈ τ such that for all his children the inequality (6) holds. Let t′

be the child of the node t for which c(Gt′ , Tt′) is the largest among the children of t. Then,
as b(Gt) ≤ hb(G) by the definition of hb, by Lemma 7 we get

c(Gt, Tt) ≤ c(Gt′ , Tt′) + α(n) · hb(G) .

By the inductive assumption applied on the node t′,

c(Gt′ , Tt′) ≤ h(t′) · α(n) · hb(G) .

Because h(t′) + 1 ≤ h(t), the proof of the auxiliary claim is completed.
Observing that the height of the root of the decomposition tree τ is at most O(log n), as

all cuts used by the algorithm are balanced, the proof is completed. ◀

STACS 2025

63:6 Approximation of Spanning Tree Congestion Using Hereditary Bisection

▶ Theorem 9. Given a graph G with maximum degree ∆, the algorithm CongSpanTree
constructs an O(∆ · log3/2 n)-approximation of the minimum congestion spanning tree; for
graphs excluding any fixed graph as a minor, the approximation is O(∆ · log n).

Proof. By Corollary 5, for every graph G, Ω(hb(G)/∆) is a lower bound on STC(G). By
Lemma 8, the algorithm CongSpanTree(G) constructs a spanning tree T of congestion
at most O(α(n) · log n) · hb(G). Combining these two results yields the theorem: c(G, T) ≤
O(α(n) · log n) · hb(G) ≤ O(α(n) · log n ·∆) · STC(G). Plugging in the bounds on α(n) from
Theorem 1 yields the theorem. ◀

4 Open Problems

The inevitable question is whether it is possible to eliminate the dependency of the ap-
proximation ratio of the algorithm on the largest degree ∆ in the graph and obtain an
o(n)-approximation algorithm for the STC problem for all graphs.

References
1 Sanjeev Arora, Satish Rao, and Umesh V. Vazirani. Expander flows, geometric embeddings

and graph partitioning. J. ACM, 56(2):5:1–5:37, 2009. Preliminary version in Proc. of the
40th Annual ACM Symposium on Theory of Computing (STOC), 2004. doi:10.1145/1502793.
1502794.

2 L. Sunil Chandran, Yun Kuen Cheung, and Davis Issac. Spanning tree congestion and
computation of generalized Györi-Lovász partition. In Proc. of 45th International Colloquium
on Automata, Languages, and Programming (ICALP), volume 107 of LIPIcs, pages 32:1–32:14.
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, 2018. doi:10.4230/LIPICS.ICALP.2018.
32.

3 Camille Jordan. Sur les assemblages de lignes. Journal für die reine und angewandte Mathem-
atik, 70:185–190, 1869.

4 Philip N. Klein, Serge A. Plotkin, and Satish Rao. Excluded minors, network decomposition,
and multicommodity flow. In Proc. of the Twenty-Fifth Annual ACM Symposium on Theory
of Computing (STOC), pages 682–690, 1993. doi:10.1145/167088.167261.

5 Petr Kolman. Approximating spanning tree congestion on graphs with polylog degree. In
Proc. of International Workshop on Combinatorial Algorithms (IWOCA), pages 497–508, 2024.
doi:10.1007/978-3-031-63021-7_38.

6 Petr Kolman and Jiří Matoušek. Crossing number, pair-crossing number, and expansion.
Journal of Combinatorial Theory, Series B, 92(1):99–113, 2004. doi:10.1016/j.jctb.2003.
09.002.

7 Michael Lampis, Valia Mitsou, Edouard Nemery, Yota Otachi, Manolis Vasilakis, and Daniel
Vaz. Parameterized spanning tree congestion, 2024. doi:10.48550/arXiv.2410.08314.

8 Huong Luu and Marek Chrobak. Better hardness results for the minimum spanning tree
congestion problem. Algorithmica, pages 1–18, 2024. Preliminary version in Proc. of 17th
International Conference and Workshops on Algorithms and Computation (WALCOM), 2023.
doi:10.1007/s00453-024-01278-5.

9 Yota Otachi. A survey on spanning tree congestion. In Treewidth, Kernels, and Algorithms:
Essays Dedicated to Hans L. Bodlaender on the Occasion of His 60th Birthday, volume 12160 of
Lecture Notes in Computer Science, pages 165–172, 2020. doi:10.1007/978-3-030-42071-0_
12.

https://doi.org/10.1145/1502793.1502794
https://doi.org/10.1145/1502793.1502794
https://doi.org/10.4230/LIPICS.ICALP.2018.32
https://doi.org/10.4230/LIPICS.ICALP.2018.32
https://doi.org/10.1145/167088.167261
https://doi.org/10.1007/978-3-031-63021-7_38
https://doi.org/10.1016/j.jctb.2003.09.002
https://doi.org/10.1016/j.jctb.2003.09.002
https://doi.org/10.48550/arXiv.2410.08314
https://doi.org/10.1007/s00453-024-01278-5
https://doi.org/10.1007/978-3-030-42071-0_12
https://doi.org/10.1007/978-3-030-42071-0_12

Cluster Editing on Cographs and Related Classes
Manuel Lafond #

Department of Computer Science, Université de Sherbrooke, Canada

Alitzel López Sánchez #

Department of Computer Science, Université de Sherbrooke, Canada

Weidong Luo #

Department of Computer Science, Université de Sherbrooke, Canada

Abstract
In the Cluster Editing problem, sometimes known as (unweighted) Correlation Clustering,
we must insert and delete a minimum number of edges to achieve a graph in which every connected
component is a clique. Owing to its applications in computational biology, social network analysis,
machine learning, and others, this problem has been widely studied for decades and is still undergoing
active research. There exist several parameterized algorithms for general graphs, but little is known
about the complexity of the problem on specific classes of graphs.

Among the few important results in this direction, if only deletions are allowed, the problem can
be solved in polynomial time on cographs, which are the P4-free graphs. However, the complexity
of the broader editing problem on cographs is still open. We show that even on a very restricted
subclass of cographs, the problem is NP-hard, W[1]-hard when parameterized by the number p of
desired clusters, and that time no(p/ log p) is forbidden under the ETH. This shows that the editing
variant is substantially harder than the deletion-only case, and that hardness holds for the many
superclasses of cographs (including graphs of clique-width at most 2, perfect graphs, circle graphs,
permutation graphs). On the other hand, we provide an almost tight upper bound of time nO(p),
which is a consequence of a more general nO(cw·p) time algorithm, where cw is the clique-width.
Given that forbidding P4s maintains NP-hardness, we look at {P4, C4}-free graphs, also known as
trivially perfect graphs, and provide a cubic-time algorithm for this class.

2012 ACM Subject Classification Theory of computation → Design and analysis of algorithms

Keywords and phrases Cluster editing, cographs, parameterized algorithms, clique-width, trivially
perfect graphs

Digital Object Identifier 10.4230/LIPIcs.STACS.2025.64

Related Version Full Version: https://arxiv.org/abs/2412.12454

Acknowledgements We thank the anonymous reviewers for their valuable comments.

1 Introduction

Clustering objects into groups of similarity is a ubiquitous task in computer science, with
applications in computational biology [45, 40], social network analysis [46, 1, 2], machine
learning [16, 18], and many others [4]. There are many interpretations of what a “good”
clustering is, with one of the most simple, elegant, and useful being the Cluster Editing
formulation – sometimes also known as (unweighted) Correlation Clustering [3]. In this
graph-theoretical view, pairs of objects that are believed to be similar are linked by an edge,
and non-edges correspond to dissimilar objects. If groups are perfectly separable, this graph
should be a cluster graph, that is, a graph in which each connected component is a clique.
However, due to noise and errors, this is almost never observed in practice. To remove such
errors, Cluster Editing asks for a minimum number of edges to correct to obtain a cluster
graph, where “correcting” means adding a non-existing edge or deleting an edge.

© Manuel Lafond, Alitzel López Sánchez, and Weidong Luo;
licensed under Creative Commons License CC-BY 4.0

42nd International Symposium on Theoretical Aspects of Computer Science (STACS 2025).
Editors: Olaf Beyersdorff, Michał Pilipczuk, Elaine Pimentel, and Nguyễn Kim Thắng;
Article No. 64; pp. 64:1–64:21

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:manuel.lafond@usherbrooke.ca
https://orcid.org/0000-0002-5305-7372
mailto:alitzel.lopez.sanchez@usherbrooke.ca
https://orcid.org/0000-0002-3545-039X
mailto:weidong.luo@yahoo.com
https://orcid.org/0009-0003-5300-606X
https://doi.org/10.4230/LIPIcs.STACS.2025.64
https://arxiv.org/abs/2412.12454
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

64:2 Cluster Editing on Cographs and Related Classes

Owing to its importance, this APX-hard [12], of course also NP-hard [3, 37], problem has
been widely studied in the parameterized complexity community. Let k be the number of
required edge modifications. After a series of works, the problem now can be solved in time
O∗(1.62k) [6, 7, 8, 24, 25] and admits a 2k kernel [11, 13, 26]. In addition, if we require that
the solution contains exactly p clusters, then the problem is NP-hard for every p ≥ 2 [45],
but admits a PTAS [23], a (p + 2)k + p kernel [26], and can be solved in 2O(

√
pk)nO(1) time.

This is shown to be tight assuming the ETH, under which 2o(
√

pk)nO(1) is not possible [19].
Another angle, which we study in this paper, is to focus on specific classes of graphs.

For example, restricting the input to bounded-degree graphs does not help, as Cluster
Editing is NP-hard even on planar unit disk graphs with maximum degree 4 [35, 43]. In [5],
the authors circumvent the APX-hardness of the problem by proposing a PTAS on planar
graphs. A polynomial-time algorithm is provided for the problem on unit interval graphs [41],
a subclass of unit disk. The Cluster Deletion problem, in which only edge deletions
are allowed, has received much more attention on restricted classes. It is polynomial-time
solvable on graphs of maximum degree 3 and NP-hard for larger degrees [35]. Various results
were also obtained on interval and split graphs [36], other subclasses of chordal graphs [9],
and unit disk graphs [43]. In [31], graphs with bounded structural parameters are studied,
with the weighted variant being paraNP-hard in twin cover, but FPT in the unweighted case.

If we forbid specific induced subgraphs, the reduction in [35] implies that Cluster
Deletion is NP-hard on C4-free graphs (as observed in [21]). If instead we forbid P4, i.e.,
induced paths on four vertices, we obtain the class of cographs, on which the deletion problem
is remarkably shown to be polynomial-time solvable in [21] using a greedy max-clique strategy.
However, the complexity of Cluster Editing on cographs has remained open. In addition,
to our knowledge, there are no known non-trivial polynomial-time algorithms for Cluster
Editing on specific graph classes with a finite set of forbidden induced subgraphs. It is not
hard to obtain a polynomial-time algorithm for the problem on the threshold graphs, i.e. the
{P4, C4, 2K2}-free graphs, using standard dynamic programming on its co-tree. However, it
appears to be unknown whether removing any of the three induced subgraphs from this set
leads to NP-hardness.

In this paper, we focus on open complexity questions for the Cluster Editing problem
on cographs and related classes. It is worth mentioning that the cograph restriction is more
than a mere complexity classification endeavor – it can be useful to determine how well
an equivalence relation (i.e., a cluster graph) can approximate a different type of relation
(see for example [47]). In the case of cograph-like relations, our motivations have roots
in phylogenetics. In this field, gene pairs are classified into orthologs and paralogs, with
orthology graphs known to correspond exactly to cographs [29, 38, 30]. However, as argued
in [44], most orthology prediction software use clustering libraries and infer a cluster graph
of orthologs. The question that arises is then “how much information is lost by predicting a
cluster graph, knowing that the true graph is a cograph”? This requires finding a cluster
graph that is the closest to a given cograph G, leading to Cluster Editing on cographs.
Furthermore, researchers argue that social communities should sometimes be modeled as
cographs [33] or trivially perfect graphs [42], as opposed to cluster graphs as is done in most
community detection approaches. This leads to Cluster Editing on cographs or trivially
perfect graphs. Additionally, an algorithm for the NP-hard Trivial Perfect Graph
Editing, which can practical scalability to large real-world graphs, is provided in [10].

Our contributions. We first settle the complexity of Cluster Editing on cographs by
showing that it is not only NP-hard, but also W[1]-hard when a parameter p is specified,
which represents the number of desired clusters. We use the Unary Bin Packing hardness

M. Lafond, A. López Sánchez, and W. Luo 64:3

results from [32], which also implies an Exponential Time Hypothesis (ETH) lower bound
that forbids time no(p/ log p) under this parameter. In fact, our hardness holds for very
restricted classes of cographs, namely graphs obtained by taking two cluster graphs, and
adding all possible edges between them (this also correspond to cographs that admit a cotree
of height 3). Moreover, because cographs have clique-width (cw) at most 2, this also means
that the problem is para-NP-hard in clique-width, and that a complexity of the form ng(cw)

is unlikely, for any function g (the same actually holds for the modular-width parameter
and generalizations, see [20, 39]). In fact, the ETH forbids time f(p)ng(cw)·o(p/ log p) for any
functions f and g, which contrasts with the aforementioned subexponential bounds in pk [19].

The hardness also extends to all superclasses of cographs, such as circle graphs, perfect
graphs, and permutation graphs. On the other hand we show that time nO(p) can be
achieved on any cograph, which is almost tight. This contrasts with the general Cluster
Editing problem which is NP-hard when p = 2. In fact, this complexity follows from a
more general algorithm for arbitrary graphs that runs in time nO(cw·p), which shows that
Cluster Editing is XP in parameter cw + p. Note that our hardness results imply that XP
membership in either parameter individually is unlikely, and so under standard assumptions
both cw and p must contribute in the exponent of n.

Finally, we aim to find the largest subclass of cographs on which Cluster Editing
is polynomial-time solvable. The literature mentioned above implies that such a class lies
somewhere between P4-free and {P4, C4, 2K2}-free graphs. We improve the latter by showing
that Cluster Editing can be solved in time O(n3) on {P4, C4}-free graphs, also known
as trivially perfect graphs (TPG). This result is achieved by a characterization of optimal
clusterings on TPGs, which says that as we build a clustering going up in the cotree, only
the largest cluster is allowed to become larger as we proceed.

Our results are summarized in the following, where n is the number of vertices of the
graphs, and p-Cluster Editing is the variant in which the edge modifications must result
in p connected components that are cliques. We treat p as a parameter specified in the input.

▶ Theorem 1. The following results hold:
Cluster Editing is NP-complete on cographs, and solvable in time O(n3) on trivially
perfect graphs.
p-Cluster Editing admits an nO(cw·p) time algorithm if a cw-expression is given, but
admits no f(p)ng(cw)·o(p/ log p) time algorithm for any functions f and g unless ETH fails.
p-Cluster Editing on cographs is NP-complete, and W[1]-hard parameterized by p.
p-Cluster Editing on cographs admits an nO(p) time algorithm, but admits no f(p)no(p/ log p)

time algorithm for any function f unless ETH fails.

2 Preliminaries

We use the notation [n] = {1, . . . , n}. For two sets A and B, A △ B is the symmetric
difference between A and B. For a graph G, V (G) and E(G) are the vertex and edge sets of
G, respectively, and G[S] is the subgraph induced by S ⊆ V (G). The complement of G is
denoted G. Given two graphs G and H, the disjoint union G ∪ H is the graph with vertex
set V (G) ∪ V (H) and edge set E(G) ∪ E(H). The join G ∨ H of two graphs G and H is the
graph obtained from G ∪ H by adding every possible edge uv with u ∈ V (G) and v ∈ V (H).

It will be useful to consider two equivalent views on the Cluster Editing problem,
in terms of the edge operations to perform to achieve a cluster graph, and in terms of the
resulting partition into clusters. A graph is a cluster graph if it is a disjoint union of complete

STACS 2025

64:4 Cluster Editing on Cographs and Related Classes

graphs. Let G = (V, E) be a graph and F ⊆ V × V . If G′ = (V, E △ F) is a cluster graph,
then F is called a cluster editing set. The edges of F can be divided into two types: F ∩ E(G)
are called deleted edges, and F \ E(G) are called inserted edges, where the deleted edges
disconnect some adjacent vertices in G and the inserted edges connect some non-adjacent
vertices in G to transform G into G′.

Note that the clusters of G′ result in a partition of V (G). Conversely, given any partition
C of V (G), we can easily infer the editing set F that yields the clusters C: it consists of
non-edges within the clusters, and of edges with endpoints in different clusters. To be precise,
a clustering of G is a partition C = {C1, . . . , Cl} of V (G). The cluster editing set of C is

edit(C) := {uv ∈ E(G) : u ∈ Ci, v ∈ Cj , i ̸= j} ∪
⋃

i∈[l]

E(G[Ci]).

We define costG(C) = |edit(C)|. An element of C ∈ C is called a cluster, and the cardinality
of C is called cluster number. An optimal cluster editing set for G is a cluster editing set for
G of minimum size. An optimal clustering is a partition C of V (G) of minimum cost.

A formal definition of Cluster Editing problem is as follows.

Cluster Editing
Input: A graph G and an integer k.
Question: Is there a clustering of G with cost at most k?

A clustering with exactly p clusters is called a p-clustering. In p-Cluster Editing, the
problem is the same, but we must find a p-clustering of cost at most k.

We will sometimes use the fact that twins, which are pairs of vertices that have the same
closed neighborhood, can be assumed to be in the same cluster. More generally, a critical
clique of a graph G is a clique K such that all v ∈ K have the same neighbor vertices in
V (G) \ K, and K is maximal under this property.

▶ Proposition 2 ([13, 26]). Let K be a critical clique of G. For any optimal clustering C of
G, there is a C ∈ C such that K ⊆ C.

Note that Proposition 2 is not always true if we require a p-clustering instead of any
optimal clustering. For example if p is imposed and G is a complete graph with p vertices,
then G consists of a critical clique which be broken. We will ensure that this is not problematic
in the results that follow.

Cographs and cotrees. A cograph is a graph that can be constructed using the three
following rules: (1) a single vertex is a cograph; (2) the disjoint union G ∪ H of cographs
G, H is a cograph; (3) the join G ∨ H of cographs G, H is a cograph. Cographs are exactly
the P4-free graphs, i.e., that do not contain a path on four vertices as an induced subgraph.

Cographs are also known for their tree representation. For a graph G, a cotree for G is a
rooted tree T whose set of leaves, denoted L(T), satisfies L(T) = V (G). Moreover, every
internal node v ∈ V (T) \ L(T) is one of two types, either a 0-node or a 1-node, such that
uv ∈ E(G) if and only if the lowest common ancestor of u and v in T is a 1-node1. It is
well-known that G is a cograph if and only if there exists a cotree T for G. This can be seen
from the intuition that leaves represent applications of Rule (1) above, 0-node represents
disjoint unions, and 1-node represents joins.

1 To emphasize the distinction between general graphs and trees, we will refer to vertices of a tree as
nodes.

M. Lafond, A. López Sánchez, and W. Luo 64:5

A trivially perfect graph (TPG), among several characterizations, is a cograph G that
has no induced cycle on four vertices, i.e., a {P4, C4}-free graph. TPGs are also the chordal
cographs. For our purposes, a TPG is a cograph that admits a cotree T in which every
1-node has at most one child that is not a leaf (see [28, Lemma 4.1]).

Clique-width and NLC-width. Our clique-width (cw) algorithm does not use the notion
of cw directly, but instead the analogous measure of NLC-width [28]. We only provide the
definition of the latter. Let G = (V, E, lab) be a graph in which every vertex has one of k

node labels (k-NL), where lab is a function from V to [k]. A single-vertex graph labeled t is
denoted by •t.

▶ Definition 3. A k-node labeled controlled (k-NLC) graph is a k-NL graph defined recursively
as follows.
1. •t is a k-NLC graph for every t ∈ [k].
2. Let G1 = (V1, E1, lab1), G2 = (V2, E2, lab2) be two k-NLC graphs, relation S ⊆ [k]2, and

Eadd = {uv : u ∈ V1 ∧ v ∈ V2 ∧ (lab1(u), lab2(v)) ∈ S}.
The k-NL graph G = (V, E, lab) denoted G1 ×S G2 is a k-NLC graph defined as: V =
V1 ∪ V2, E = E1 ∪ E2 ∪ Eadd, and lab(u) = lab1(u), lab(v) = lab2(v) for u ∈ V1, v ∈ V2.

3. Let G = (V, E, lab) be a k-NLC graph and R be a function from [k] to [k]. Then
◦R(G) = (V, E, lab′) is a k-NLC graph, where lab′(v) = R(lab(v)) for all v ∈ V .

Intuitively, operation 2 denoted by ×S takes the disjoint union of the graphs G1, G2, then
adds all possible edges between labeled vertices of G1 and labeled vertices of G2 as controlled
by the pairs of S. Operation 3 denoted by ◦R relabels the vertices of a graph controlled by R.
NLCk denotes all k-NLC graphs. The NLC-width of a labeled graph G is the smallest k such
that G is a k-NLC graph. Furthermore, for a labeled graph G = (V, E, lab), the NLC-width
of a graph G′ = (V, E), obtained from G with all labels removed, equals the NLC-width of G.

A well-parenthesized expression X built with operations 1, 2, 3 is called a k-expression.
The graph constructed by X is denoted by GX . We associate the k-expression tree T of GX

with X in a natural way, that is, leaves of T correspond to all vertices of GX and the internal
nodes of T correspond to the operations 2, 3 of X. For each node u of T , the sub-tree rooted
at u corresponds to a sub k-expression of X denoted by Xu, and the graph GXu

constructed
by Xu is also denoted by Gu. Moreover, we say Gu is the related graph of u in T .

Let us briefly mention that a graph has clique-width at most k if it can be built using
what we will call a cw(k)-expression, which has four operations instead: creating a single
labeled vertex •t; taking the disjoint union; adding all edges between vertices of a specified
label pair (i, i′); relabeling all vertices with label i to another label j. We do not detail
further, since the following allows us to use NLC-width instead of clique-width.

▶ Proposition 4 ([27, 34]). For every graph G, the clique-width of G is at least the NLC-width
of G, and at most two times the NLC-width of G. Moreover, any given cw(k)-expression can
be transformed into an equivalent k-expression in polynomial time (i.e., yielding the same
graph).

We will assume that our k-expressions are derived from a given cw(k)-expression. Refer-
ence [34] is often cited for this transformation, but seems to have vanished from nature. The
transformation can be done using the normal form of a cw(k)-expression described in [17].

STACS 2025

64:6 Cluster Editing on Cographs and Related Classes

3 Cluster editing on cographs

We first prove our hardness results for Cluster Editing and p-Cluster Editing on
cographs, using a reduction from Unary Bin Packing. An instance of Unary Bin Packing
consists of a unary-encoded integer multiset A = [a1, . . . , an], which represent the sizes of n

items, and integers b, k. We must decide whether the items can be packed into at most k

bins that each have capacity b. Thus, we must partition A into k multisets A1, . . . , Ak, some
possibly empty, such that

∑
a∈Ai

a ≤ b for each i ∈ [k].
For our purpose, we introduce a variant of this problem called Unary Perfect Bin

Packing. The problem is identical, except that the partition of A into A1, . . . , Ak must
satisfy

∑
a∈Ai

a = b for each i ∈ [k]. That is, we must fill all k bins to their maximum
capacity b. Note that for this to be possible,

∑n
i=1 ai = kb must hold. Note that these packing

problems can be solved in polynomial time for any fixed k [32]. We assume henceforth that
k, n ≥ 10, maxn

i=1 ai ≤ b, and
∑n

i=1 ai ≤ kb, otherwise, they can be decided in polynomial
time. It is known that Unary Bin Packing is NP-complete [22], W[1]-hard parameterized
by the number of bins k [32], and does not admit an f(k)|I|o(k/ log k) time algorithm for any
function f unless Exponential Time Hypothesis (ETH) fails [32], where |I| is the size of the
instance (in unary). The results easily extend to the perfect version.

▶ Proposition 5. Unary Perfect Bin Packing is NP-complete, W[1]-hard parameterized
by k, and has no f(k)|I|o(k/ log k) time algorithm for any function f unless ETH fails.

Proof. Clearly, Unary Perfect Bin Packing is in NP. Let (A, b, k) be an instance of
Unary Bin Packing, where A = [a1, . . . , an]. We assume that k is even, as otherwise we
increase k by 1 and add to A an item of value b. If

∑n
i=1 ai ≤ 0.1kb, we argue that we have

a YES instance: we can pack the largest k/2 of the n items into k/2 bins, and pack the
other n − k/2 items in the remaining bins, as follows. Assume w.l.o.g. b ≥ a1 ≥ · · · ≥ ak/2 ≥
ak/2+1 ≥ · · · ≥ an. We have k/2 · ak/2 ≤

∑k/2
i=1 ai ≤ 0.1kb, so ak/2 ≤ 0.2b. This means that

ak/2+1, . . . , an ≤ 0.2b and we can always select a batch of items with these sizes such that
the total size of a batch is in the interval [0.8b, b] until there are no items left (the last batch
may have a size less than 0.8b). Thus, we can pack the items with sizes ak/2+1, . . . , an using
at most 0.1kb

0.8b + 1 = 0.125k + 1 < k/2 bins.
So assume henceforth that

∑n
i=1 ai > 0.1kb. Construct an instance (B, b, k) for Unary

Perfect Bin Packing, where B = [a1, . . . , an, 1, . . . , 1] consists of all integers of A and
kb −

∑n
i=1 ai 1s. Since 0.1kb <

∑n
i=1 ai ≤ kb, the new instance size is bounded by a

linear function of the original instance size. Moreover, the new instance can be obtained in
polynomial time. It is easy to verify that (A, b, k) is a YES instance of Unary Bin Packing
if and only if (B, b, k) is a YES instance of Unary Perfect Bin Packing. ◀

▶ Lemma 6. Given a unary-encoded integer multiset A = [a1, . . . , an] for the sizes of n

items, and integers b, k satisfying kb =
∑n

i=1 ai, there is a polynomial-time algorithm which
outputs a cograph G and an integer t such that,
1. for any optimal clustering C of G, |C| = k and the cost of C is at least t;
2. the n items can be perfectly packed by k bins with capacity b if and only if there is a

clustering of G with cost at most t.
Moreover, G is obtained by taking a join of two cluster graphs.

Proof. For the remainder, let us denote a :=
∑n

i=1 ai and s :=
∑n

i=1 a2
i . Construct an

instance (G, t) for Cluster Editing as follows. First, add two cluster graphs I = B1∪. . .∪Bk

and J = A1 ∪ . . . ∪ An into G, where Bi is a complete graph with h := (nka)10 vertices for

M. Lafond, A. López Sánchez, and W. Luo 64:7

B2

. . .

A2 A3 An

B1 Bk

. . .

An−1A1

. . .

I

J

Figure 1 An illustration of the construction. In the subgraph I, each Bi is a “large enough”
complete graph, and in the subgraph J , each Aj is a complete graph with aj vertices. The wiggly
line indicates that all possible edges between I and J are present (there are no edges between two
Bi’s, and no edge between two Aj ’s).

every i ∈ [k], and Aj is a complete graph with aj vertices for every j ∈ [n]. Then, connect
each v ∈ V (I) to all vertices of V (J). See Figure 1. One can easily verify that G is a cograph
obtained from the join of two cluster graphs. In addition, define t := (k − 1)ah + 1

2 (kb2 − s).
Clearly, t is an integer since s ≡ a ≡ kb ≡ kb2 (mod 2). Let I = {V (B1), . . . , V (Bk)} and
J = {V (A1), . . . , V (An)}. Clearly, every element in I ∪ J is a critical clique of G.

▷ Claim 7. Let C be an optimal clustering of G, and F be the cluster editing set for this
solution. Then, |C| = k, and each element of C is a superset of exactly one element from I.
Moreover, |F | ≥ t, and |F | = t if and only if all elements of C have the same cardinality.

Proof. Let C = {P1, . . . , Pl}. Since each element in I ∪ J is a critical clique of G, each such
element is a subset of some cluster in C by Proposition 2. Note that each cluster of C could
contain 0, 1, or more cliques of I. We split the possibilities into three cases and provide
bounds on |F | for each case. First, if there exists a cluster of C that includes at least two
critical cliques from I, then F contains h2 inserted edges to connect two critical cliques from
I, and thus |F | ≥ h2. Assume instead that every cluster of C includes at most one critical
clique from I. Then, we have l ≥ k. Suppose l ≥ k + 1. Then, there are l − k clusters in C
that do not contain any critical cliques from I. Let C′ ⊆ C consist of these l − k clusters and
U =

⋃
P ∈C′ P . Then, for every v ∈ U , kh deleted edges are required in F to disconnect v

from all vertices of V (I), and for every u ∈ V (J) \ U , (k − 1)h deleted edges are required in
F to disconnect u from all vertices of V (I) \ P , where P is the clique of I contained in the
same cluster as u. Therefore,

|F | ≥ kh|U | + (k − 1)h|V (J) \ U |
= h|U | + (k − 1)h|U | + (k − 1)h|V (J) \ U |
= h|U | + (k − 1)ha

≥ (k − 1)ah + h.

Now assume that l = k. Then, every element of C includes exactly one critical clique from
I. Consider each i ∈ [k] and assume w.l.o.g. that V (Bi) ⊆ Pi. Let Wi = Pi \ V (Bi) and let
{J1, . . . , Jk} be a partition of J such that, for each i ∈ [k], the union of all elements of Ji

is Wi (such a partition exists because each element of J is entirely contained in some Wi).
Firstly, (k − 1)h deleted edges are required in F to disconnect each v ∈ Wi from all vertices
of V (I) \ V (Bi). Secondly, for each i ∈ [k], 1

2
∑

S,S′∈Ji
|S||S′| inserted edges are required in

F to connect all vertices of Wi. One can easily check that for each i ∈ [k], F accounts for
every edge with an endpoint in Pi and an endpoint outside, and accounts for all non-edges
within Pi. Therefore, all the possible edges of F are counted. Thus,

STACS 2025

64:8 Cluster Editing on Cographs and Related Classes

|F | =
k∑

i=1

|Wi|(k − 1)h + 1
2
∑

S,S′∈Ji

|S||S′|

= |V (J)|(k − 1)h + 1

2

k∑
i=1

(∑
S∈Ji

|S|

)2

−
∑

S∈Ji

|S|2

= (k − 1)ah + 1
2

k∑
i=1

|Wi|2 − 1
2
∑
S∈J

|S|2

= (k − 1)ah + 1
2

k∑
i=1

|Wi|2 − s

2 .

We can now compare |F | from the lower bounds obtained in the previous two cases, as
follows.

|F | = (k − 1)ah + 1
2

k∑
i=1

|Wi|2 − s

2

< (k − 1)ah +
k∑

i=1
|Wi|2 +

∑
1≤i,j≤k

|Wi||Wj |

= (k − 1)ah +
(

k∑
i=1

|Wi|

)2

= (k − 1)ah + a2

< (k − 1)ah + h < h2.

The last line implies that having |C| = k, with each element of C a superset of exactly one
element from I, always achieves a lower cost than the other possibilities.

Next, consider the lower bound of |F | ≥ t and the conditions on equality. Using the same
starting point,

|F | = (k − 1)ah + 1
2

k∑
i=1

|Wi|2 − s

2

= (k − 1)ah + 1
2k

(
k∑

i=1
|Wi|2

)(
k∑

i=1
12

)
− s

2

≥ (k − 1)ah + 1
2k

(
k∑

i=1
|Wi|)2 − s

2 (1)

= (k − 1)ah + 1
2k

a2 − s

2 = t.

In (1), we used the Cauchy-Schwarz inequality, and the two sides are equal if and only if
|W1| = · · · = |Wk|. In addition, |W1| = · · · = |Wk| if and only if |P1| = · · · = |Pk| (recall that
Wi = Pi \ V (Bi) and |V (Bi)| = h for each i ∈ [k]). This proves every statement of the claim.

◁

M. Lafond, A. López Sánchez, and W. Luo 64:9

Armed with the above claim, we immediately deduce the first statement of the theorem.
We now show the second part, i.e., the n items of A can fit perfectly into k bins of capacity
b if and only if we can make G a cluster graph with at most t edge modifications.

(⇐): Assume there is a clustering C of G with cost at most t. By Claim 7, the size of any
optimal cluster editing set for G is at least t. Thus, the cost of C must be equal to t, and C
must be optimal. Claim 7 then implies that C = {P1, . . . , Pk}, such that |P1| = · · · = |Pk|
and V (Bi) ⊆ Pi for each i ∈ [k] (w.l.o.g.). Moreover, each critical clique of J is a subset
of some element of C by Proposition 2. So there is a partition J1, . . . , Jk of J such that
Pi \ V (Bi) =

⋃
S∈Ji

S for every i ∈ [k]. This means that J can be partitioned into k groups
such that the number of vertices in each group equals b.

(⇒): Assume the n items can be perfectly packed into k bins with capacity b. We construct
a cluster editing set F of size at most t. Consider each i ∈ [k]. Let Si ⊆ A consist of the sizes
of the items packed in the i-th bin, and define a corresponding cluster graph B′

i =
⋃

aj∈Si
Aj .

We put in F a set of (k−1)h deleted edges, by disconnecting each v ∈ V (B′
i) from every vertex

in V (I) \ V (Bi) in G. We then add to F the set of 1
2
∑

V (Aj),V (Ar)⊆V (B′
i
) ajar of inserted

edges into F to make B′
i a complete graph, where j, r ∈ [n]. Applying the modifications in

F results in a clustering C = {P1, . . . , Pk} such that Pi = V (Bi) ∪ V (B′
i) for each i ∈ [k].

Moreover, the cardinality of the cluster editing set is

|F | =
k∑

i=1

(k − 1)h|V (B′
i)| + 1

2
∑

V (Aj),V (Ar)⊆V (B′
i
)

ajar

= (k − 1)h

n∑
i=1

|V (Ai)| + 1
2

k∑
i=1

 ∑

V (Aj)⊆V (B′
i
)

aj

2

−
∑

V (Aj)⊆V (B′
i
)

a2
j

= (k − 1)h|V (J)| + 1

2

k∑
i=1

|V (B′
i)|2 −

∑
V (Aj)⊆V (B′

i
)

a2
j

= (k − 1)ah + 1

2

k∑
i=1

b2 − 1
2

∑
V (Aj)⊆V (J)

a2
j

= (k − 1)ah + 1
2kb2 − 1

2s = t.

Thus, G has a clustering with cost at most t. ◀

Since the reduction given in Lemma 6 is a parameter-preserving Karp reduction from
Unary Perfect Bin Packing with parameter k to p-Cluster Editing in cographs with parameter
p = k, we can make the following series of deductions.

▶ Theorem 8. The following hardness results hold:
Cluster Editing on cographs and p-Cluster Editing on cographs are NP-complete.
p-Cluster Editing on cographs is W[1]-hard parameterized by p.
p-Cluster Editing on cographs admits no f(p)no(p/ log p) time algorithm for any function
f unless ETH fails, where n is the number of vertices of the input graph.

Since cographs have a constant clique-width [15], we have the following.

▶ Corollary 9. p-Cluster Editing admits no f(p)ng(cw)·o(p/ log p) time algorithm for any
functions f and g unless ETH fails.

STACS 2025

64:10 Cluster Editing on Cographs and Related Classes

An nO(p·cw) time algorithm
We propose a dynamic programming algorithm over the k-expression tree T of G as described
in the preliminaries, where k is at most twice the clique-width of G. The idea is that, for
each node u of T and every way of distributing the vertices of V (Gu) among p clusters and
k labels, we compute the minimum-cost clustering conditioned on such a distribution. The
latter is described as a matrix of vertex counts per cluster per label, and the cost can be
computed by combining the appropriate cost for matrices of the children of u.

The entries of all matrices discussed here are natural numbers between 0 and n. Mi,: and
M:,j represent the i-th row and j-the column of matrix M , respectively. We write mi,j for
the entry of M in row i and column j. The sum of all entries in Mi,: and M:,j are denoted by
sum{Mi,:} and sum{M:,j}, respectively. We use {Si}n

i=1 to denote a sequence (S1, . . . , Sn).
Let M be a k × p matrix and G be a k-NL graph. An M -sequencing of G is a sequence

{Ci}p
i=1 of subsets of V (G) such that

1. the non-empty subsets of this sequence form a partition C of V (G);
2. the number of vertices in Cj labeled i is equal to mi,j for every i ∈ [k], j ∈ [p].
The partition C obtained from {Ci}p

i=1 is called an M -clustering, and the cost of the M -
sequencing is the cost of the clustering C of G, which is costG(C).

Clearly, an M -sequencing of G exists if and only if the sum of all entries of M equals the
number of vertices of G and the sum of all entries of the i-th row of M equals the number
of vertices in G labeled i for every i ∈ [k]. The cost of M -sequencing is defined as ∞ if it
does not exist. In addition, we say M is a well-defined matrix for G if an M -sequencing of G

exists. An optimal M -sequencing of G is an M -sequencing of G of minimum cost.

▶ Theorem 10. p-Cluster Editing has an O(n2p·cw+4) time algorithm if a k-expression
is given, where k = cw and n is the number of vertices of the input graph.

Proof. Let T be a k-expression tree of k-NLC graph G = (V, E, lab). For every u ∈ V (T),
let Gu = (V u, Eu, labu) be the related graph of u, and let V u

i denote the vertices of V u

labeled i for each i ∈ [k]. Let Mu = (mz
i,j) be a well-defined matrix of Gu. Assume u is

a node of T corresponding to operation ×S , and v, w are the two children of u. We define
h(Mv, Mw, S), for later use, which equals∑

j∈[p]

sum{Mv
:,j} · sum{Mw

:,j} +
∑

(i,i′)∈S

sum{Mv
i,:} · sum{Mw

i′,:} − 2
∑

(i,i′)∈S

∑
j∈[p]

mv
i,jmw

i′,j .

Next, we will first provide the dynamic programming algorithm for this problem, and then
prove its correctness.

Let dynamic programming table D(u, Mu) denote the cost of an optimal Mu-sequencing
of Gu. For a leaf u of T and all well-defined Mu of u, D(u, Mu) := 0. For an internal vertex
u of T with corresponding operation ×S , and children v, w, we have

D(u, Mu) := min
Mu=Mv+Mw

{D(v, Mv) + D(w, Mw) + h(Mv, Mw, S)}.

For an internal node u of T with corresponding operation ◦R, and child v, we have

D(u, Mu) := min
Mv

D(v, Mv),

where the minimization is taken over every well-defined matrix Mv for Gv that satisfies
Mu

i′,: =
∑

(i,i′)∈R Mv
i,: for every i′ ∈ [k].

Since every entry of the k × p matrix Mu is at most n, each u ∈ V (T) has at most npk

tables. For the ×S vertices, one entry D(u, Mu) can be computed in time O(npk+3) by
enumerating all the possible O(npk) matrices Mv, from which Mw can be deduced from

M. Lafond, A. López Sánchez, and W. Luo 64:11

Mu − Mv in time O(pk) = O(n2), and computing h(Mv, Mw, S) in time O(n3) (because S

has at most k2 ≤ n2 entries, and we treat p and k as upper-bounded by n for simplicity).
Thus the set of all entries for u can be computed in O(n2pk+3) time if all tables of its children
are given. For the ◦R vertices, each entry can be computed in time O(npk+3) similarly by
enumerating the Mv matrices and checking the sum conditions, for a total time of O(n2pk+3)
as well. Since T has O(n) nodes, we can compute all tables for all nodes, from leaves to root,
of T in O(n2pk+4) time, which is O(n2p·cw+4) if we assume cw = k. Let r be the root of T .
The output of our algorithm is the minimum D(r, Mr) such that Mr has no zero columns
(note that if we require at most p clusters, we can simply tolerate zero columns).

We now prove that the recurrences are correct. The leaf case is easy to verify, so we assume
inductively that the table is filled correctly for the children of an internal node u. Suppose
that u corresponds to operation ×S and consider the value we assign to an entry D(u, Mu).
Assume the two children of u are v, w. Suppose {Cu

i }p
i=1 is an optimal Mu-sequencing for Gu

with Mu-clustering Cu. Let Cv = {C ∩V v : C ∈ Cu}\{∅} and Cw = {C ∩V w : C ∈ Cu}\{∅}.
Since Gu is an union of Gv and Gw by adding some edges between them controlled by S, we
claim that the cost of the optimal Mu-sequencing costGu(Cu) equals∑

y∈{v,w}

costGy (Cy) +
∑

C∈Cu

|C ∩ V v||C ∩ V w| +
∑

(i,i′)∈S

|V v
i ||V w

i′ |

− 2
∑

(i,i′)∈S

∑
C∈Cu

|C ∩ V v
i ||C ∩ V w

i′ |,

justified as follows. First, any inserted or deleted edge of Cu whose endpoints are both in V v,
or both in V w, is counted exactly once, namely in the first summation

∑
y∈{v,w} costGy (Cy).

Then, consider the inserted/deleted edges with one endpoint in V v and the other in V w.
Observe that a non-edge between V v and V w is counted once in the second summation if
and only if it is an inserted edge. That non-edge is not counted in the third summation,
because the latter only counts edges of Gu, and it is not subtracted in the last term for the
same reason. Thus the expression counts inserted edges between V v, V w in Cu exactly once,
and no other such non-edge. Now, consider an edge e between V v and V w, which exists
because of S. If e is a deleted edge, its endpoints are in different clusters and it is counted
exactly once, in the third summation. If e is not deleted, its endpoints are in the same cluster
and it is counted in both the second and third summation. On the other hand, that edge
is subtracted twice in the last term, and so overall it is not counted. We deduce that the
expression correctly represents the cost of Cu in Gu.

For each y ∈ {v, w}, we further define My = (my
i,j) such that my

i,j = |Cu
j ∩ V y

i | for all
i, j. Clearly, we have Mv + Mw = Mu. Now, we claim that {Cu

i ∩ V y}p
i=1 is an optimal

My-sequencing of Gy with My-clustering Cy for every y ∈ {v, w}. Roughly speaking, this
can be seen by observing that merging any Mv and Mw-clustering will result, in the cost
expression given above, in the same values for the three last summations. Since the choice of
My clusterings only affects the first summation, they should be chosen to minimize it. To see
this in more detail, assume for contradiction that {Dv

i }p
i=1 is an Mv-sequencing of Gv with

Mv-clustering Dv and {Dw
i }p

i=1 is an Mw-sequencing of Gw with Mw-clustering Dw such that∑
y∈{v,w} costGy (Dy) <

∑
y∈{v,w} costGy (Cy). Then, {Dv

i ∪ Dw
i }p

i=1 is a Mu-sequencing for
Gu since Mv + Mw = Mu and V v + V w = V u. Furthermore, the cost of the Mu-sequencing
{Dv

i ∪ Dw
i }p

i=1 is
∑

y∈{v,w} costGy (Dy) + h(Mv, Mw, S), where h(Mv, Mw, S) also equals∑
C∈Cu

|C ∩ V v||C ∩ V w| +
∑

(i,i′)∈S

|V v
i ||V w

i′ | − 2
∑

(i,i′)∈S

∑
C∈Cu

|C ∩ V v
i ||C ∩ V w

i′ |

STACS 2025

64:12 Cluster Editing on Cographs and Related Classes

based on the definitions of Mv and Mw. As a result,
∑

y∈{v,w} costGy (Dy)+h(Mv, Mw, S) <∑
y∈{v,w} costGy (Cy) + h(Mv, Mw, S) = costGu(Cu), a contradiction. Therefore, Cu is ob-

tained by merging optimal Mv and Mw-clusterings. Since our value of D(u, Mu) eventually
considers D(v, Mv) + D(w, Mw), which by induction contain the optimal costs, we have that
D(u, Mu) is at most the cost of Cu. It is also easy to see that each possible entry considered
in the minimization corresponds to an Mu-clustering of Gu, which cannot be better than Cu,
and so it follows that D(u, Mu) is also at least the cost of Cu. Thus our value of D(u, Mu)
is correct.

Consider an internal node u with corresponding operation ◦R. Let v be the child of
u. Suppose {Cu

i }p
i=1 is an optimal Mu-sequencing for Gu with Mu-clustering Cu. We

define Mv = (mv
i,j) such that mv

i,j = |V v
i ∩ Cu

j |. Then, Mu
i′,: =

∑
(i,i′)∈R Mv

i,: for each
i ∈ [k]. Now, we claim that {Cu

i }p
i=1 is also an optimal Mv-sequencing of Gv with Mv-

clustering Cu. Otherwise, assume for contradiction that {Cv
i }p

i=1 is an Mv-sequencing of
Gv with Mv-clustering Cv such that costGv (Cv) < costGv (Cu). Then, {Cv

i }p
i=1 is also a

Mu-sequencing of Gu with Mu-clustering Cv, because (1) the non-empty sets of {Cv
i }p

i=1
define a partition of V v, thus also define a partition of V u since V v = V u. (2) In Cv

j of V v,
the number of vertices labeled i is mv

i,j . In addition, Gu is obtained from Gv by relabeling
vertices controlled by function R. Hence, in Cv

j of V u, the number of vertices labeled i′ is∑
(i,i′)∈R mv

i,j , which equals mu
i′,j for each i′ ∈ [k]. Thus, the cost of the Mu-sequencing

{Cv
i }p

i=1 is costGu(Cv) = costGv (Cv) < costGv (Cu) = costGu(Cu), a contradiction. As before,
this shows that our value of D(u, Mu) is both an upper and lower bound on the cost of Cu,
and is therefore correct. ◀

Recall that cographs have clique-width at most 2. Moreover, a cw(2)-expression and
then a 2-expression can easily be derived from a binary cotree, since 0-nodes are simply join
operations that add no edges, and 1-nodes can be expressed by joining graphs with two
different colors and adding every edge between them (in fact, dynamic programming over
the cotree directly could be more efficient). We therefore have the following consequence,
which we note is not conditioned on receiving a k-expression.

▶ Corollary 11. p-Cluster Editing on cographs admits an O(n4p+4) time algorithm.

4 Cluster Editing on Trivially Perfect Graphs

We now show that Cluster Editing can be solved in cubic time on TPGs, first providing
some intuitions. Consider a TPG G, and recall that it admits a cotree T in which every
1-node has at most one child that is not a leaf. Such a cotree can be found in linear time [14].
Let C be an optimal clustering of G. Let v ∈ V (T) and let X ⊆ V (G) be the set of leaves
that descend from v, which we call a clade. Suppose that there are two clusters C1, C2 ∈ C
that intersect with X, but that also satisfy C1 \ X ̸= ∅, C2 \ X ̸= ∅ (we will say that X

“grows” in C1 and C2). We can show that there is an alternate optimal clustering obtainable
by moving C1 ∩ X into a new cluster by itself, and merging (C1 \ X) ∪ C2 into a single
cluster2. In this manner, X “grows” in one less cluster, and we can repeat this until it grows
in at most one cluster. This property allows dynamic programming over the clades of the
cotree, as we only need to memorize optimal solutions with respect to the size of the only
cluster that can grow in the subsequent clades.

2 Note that this is where the properties of TPGs are used: this works because if we consider the neighbors
of X outside of X, they are all children of 1-nodes on the path from v to the root. They thus form a
clique, which makes the merging (C1 \ X) ∪ C2 advantageous as it saves the deletions of edges from
that clique. Also, we may need to exchange the roles of C1 and C2.

M. Lafond, A. López Sánchez, and W. Luo 64:13

For two vertex-disjoint subsets of vertices X, Y , we denote EG(X, Y) = {uv ∈ E(G) : u ∈
X, v ∈ Y } and eG(X, Y) = |EG(X, Y)|. We further denote eG(X, Y) = |X||Y | − eG(X, Y),
which is the number of non-edges between X and Y . We drop the subscript G from these
notations if it is clear from the context. Two disjoint subsets X, Y ⊆ V (G) are neighbors if
e(X, Y) = |X||Y |, and they are non-neighbors if e(X, Y) = |X||Y |. That is, every possible
edge is present, and absent, respectively. Note that using this notation, for a given clustering
C = {C1, · · · , Cl}, the set of inserted edges is

⋃
C∈C E(G[C]) and the set of deleted edges is⋃

1≤i<j≤l E(Ci, Cj).
Let G be a cograph with cotree T . For v ∈ V (T), we denote by L(v) the set of leaves

that descend from v in T (note that L(v) ⊆ V (G)). We call L(v) the clade of v. We say that
X ⊆ V (G) is a clade of T if X is a clade of some v ∈ V (T). In this case, we say that X is
rooted at v. The set of clades of T is defined as clades(T) = {L(v) : v ∈ V (T)}.

We first show a technical property of optimal solutions that will be useful. The lemma
statement is illustrated in Figure 2.

C1 C2

A,A′

or

Y

B

A

Y ′

B′

A′

Y

B

A

B′

A′

B

A

Y ′ Y
Y ′

B′

A′

Y ′Y B,B′

u

X

Figure 2 Illustration of Lemma 12. The tree shown is the cotree of G, with disc vertices being
1-nodes and square vertices 0-nodes. Here, Y = X ∩C1 and Y ′ = X ∩C2. If |A| ≥ |B| and |A′| ≥ |B′|,
then rearranging C1 and C2 in one of the two ways shown also gives an optimal clustering.

▶ Lemma 12. Let G be a TPG with cotree T , let u ∈ V (T), and let X = L(u). Let C be an
optimal clustering of G and let C1, C2 ∈ C be distinct clusters that both intersect with X. Let
U be the set of strict ancestors of u in T . Let A (resp. A′) be the set of vertices of C1 (resp.
C2) that are children of 1-nodes in U , and let B = C1 \ (X ∪ A) (resp. B′ = C2 \ (X ∪ A′)).

If |A| ≥ |B| and |A′| ≥ |B′|, then at least one of the alternate clusterings (C \ {C1, C2}) ∪
{C1 ∪ A′ ∪ B′, C2 ∩ X} or (C \ {C1, C2}) ∪ {C1 ∩ X, C2 ∪ A ∪ B} has cost at most costG(C).

Let G be a TPG with cotree T . Let C = {C1, . . . , Cl} be a clustering of G. Let X be a
clade of T . For Ci ∈ C, we say that X grows in Ci if Ci ∩ X ≠ ∅ and Ci \ X ≠ ∅. Note that
this differs from the notion of overlapping, since X ⊂ Ci is possible. We then say that X

has a single-growth in C if X grows in at most one element of C. In other words, at most
one cluster of C containing elements of X also has elements outside of X, and the rest of X

is split into clusters that are subsets of X. Note that X could grow in zero elements of C.
Furthermore, we will say that X has a heritable single-growth in C if, for all clades Y of T

STACS 2025

64:14 Cluster Editing on Cographs and Related Classes

such that Y ⊆ X, Y has a single-growth in C. For v ∈ V (T), we may also say that v grows
in Ci if L(v) grows in Ci, or that v has a single-growth in C if L(v) does. For brevity, we
may write SG for single-growth, and HSG for heritable single-growth.

▶ Lemma 13. Suppose that G is a TPG with cotree T . Then there exists an optimal
clustering C of G such that every clade X of T has an SG in C.

Proof. Consider an optimal clustering C = {C1, . . . , Cl} of G, chosen such that the number
of clades of T that have an HSG in C is maximum, among all optimal clusterings3. If every
clade of T has the HSG property, then we are done (since HSG implies SG), so we assume
that not every clade has the HSG property. Clearly, in C, every leaf of T has an HSG, the
root of T does not have an HSG, and there exists at least one internal node of T that does
not have an SG. Choose u ∈ V (T) with the minimum number of descendants such that u

does not have an SG in C. Then, every descendant of u has an SG, thus, also has an HSG in
C. Notice that u cannot be the root of T , because the root trivially has an SG in C.

Denote X = L(u). Since u does not have the SG property, X grows in at least two
clusters of C, say C1 and C2. Thus X ∩ C1, C1 \ X, X ∩ C2, C2 \ X are all non-empty. Denote
Y = X ∩ C1, Y ′ = X ∩ C2. We show that we can transform C into another optimal clustering
C′ in which one of Y or Y ′ is a cluster by itself, and such that the number of clades that
have an HSG in C′ is no less than in C.

As in Lemma 12, let U be the set of strict ancestors of u in T . Let A and A′ be the
sets of vertices of C1 and C2, respectively, that are children of 1-nodes in U . Then let
B = C1 \ (X ∪ A) and B′ = C2 \ (X ∪ A′). Note that because C1 \ X ≠ ∅ and X does not
intersect A or B, we have that A ∪ B is non-empty. Likewise, A′ ∪ B′ is non-empty.

We argue that |A| ≥ |B|. Suppose instead that |A| < |B|. Consider the clustering
C′ = (C \ {C1}) ∪ {Y, A ∪ B}. Then C′ has |A||Y | edge deletions that are not in C (and no
other edge modification is in C′ but not in C, since Y and B share no edge, as the lowest
common ancestor of any vertex in X and a vertex of B is a 0-node in the cotree). On the
other hand, C has |B||Y | > |A||Y | edge additions that are not in C′. Hence, the cost of C′ is
strictly lower than that of C, a contradiction. By the same argument, we get that |A′| ≥ |B′|.

We see that C1 and C2 satisfy all the requirements of Lemma 12, and so we may get an
alternate optimal clustering C′ or C′′, where C′ is obtained from C by replacing C1, C2 by
Y, C2 ∪ A ∪ B, and C′′ is obtained by replacing C1, C2 by Y ′, C1 ∪ A′ ∪ B′. Notice that X

grows in fewer clusters in C′ than in C, and the same is true for C′′. Before proceeding, we
need to argue that T has as many clades with an HSG in C′, and in C′′ than in C.

So, let w ∈ V (T) be such that w has an HSG in C. Observe that w cannot be in U ∪ {u},
since these have u as a descendant and u does not have an SG in C. Therefore, w must either
be: (1) a leaf child of a 1-node in U ; (2) a descendant of u; or (3) a node whose first ancestor
in U is a 0-node. Let v be a descendant of w, with v = w possible. By the definition of HSG,
v has an SG in C. In all cases, we argue that v still has an SG in C′ and C′′.
1. If w is the child of a 1-node of U , then w = v is a leaf and it trivially has an SG in C′

and C′′.
2. Suppose that w, and thus v, is a descendant of u. If L(v) does not intersect with C1 nor

C2, then the clusters of C that intersect with L(v) are unaltered in C′ and C′′, and thus v

also has an SG in C′, and in C′′. Thus suppose that L(v) intersects with C1 ∪ C2.

3 We could attempt to choose C to maximize the clades with an SG instead, but we will modify C later
on, and keeping track of changes in HSG clades is much easier than SGs.

M. Lafond, A. López Sánchez, and W. Luo 64:15

In that case, since v descends from u, L(v) ⊆ X and it must thus intersect with Y ∪ Y ′.
If L(v) ∩ Y ̸= ∅, then v grows in C1 because A ∪ B ̸= ∅. Likewise, if L(v) ∩ Y ′ ̸= ∅, then v

grows in C2. It follows that L(v) intersects exactly one of Y or Y ′, and grows in exactly
one of C1 or C2. If L(v) intersects Y , then in C′, L(v) may grow in the cluster Y , but it
does not grow in C2 ∪ A ∪ B since it does intersect with it, and does not grow in other
clusters of C′ since these were unaltered. Thus L(v) has an SG in C′. In C′′, L(v) grows
in C1 ∪ A′ ∪ B′ but no other cluster for the same reason. Thus L(v) has an SG in C′′ as
well. If L(v) intersects Y ′, the same arguments can be used to deduce that L(v) has an
SG in C′ and C′′.

3. Finally, suppose that w is such that its first ancestor in U is a 0-node. Again we may
assume that L(v) intersects C1 ∪ C2. This implies that L(v) intersects with B ∪ B′,
and does not intersect with Y ∪ Y ′ ∪ A ∪ A′. If L(v) intersects B, then it grows in C1
since |A| ≥ |B|. Then in C′, v grows in C2 ∪ A ∪ B, but not Y nor any other unaltered
cluster. In C′′ it grows in C1 ∪ A′ ∪ B′, but not Y ′ nor any other unaltered cluster. If
L(v) intersects B′, the same argument applies. Either way, L(v) has an SG in C′ and C′′.

Since any descendant of w has an SG in either C′ and C′′, we deduce that w has an HSG
in both alternate clusterings.

We have thus found an optimal clustering C∗ ∈ {C′, C′′} such that every w ∈ V (T) that
has an HSG in C also has an HSG in C∗. Moreover, since C∗ “extracts” either Y or Y ′ from
its cluster, X grows in one less cluster of C∗. If X grows in only one such cluster, then u has
an SG in C∗ and therefore also an HSG in C∗, by the choice of u. In this case, T has more
clades that have an HSG in C∗ than with C, which contradicts our choice of C. If X still
grows in at least two clusters of C∗, we may repeat the above modification as many times as
needed until X grows in a single cluster, yielding the same contradiction. We deduce that
every node of T has an HSG, and therefore an SG in C. ◀

Our goal is to use the above to perform dynamic programming over the cotree. For a
node v of this cotree, we will store the value of a solution for the subgraph induced by L(v),
and will need to determine which cluster of such a partial solution should grow. As it turns
out, we should choose the largest cluster to grow.

▶ Lemma 14. Let G be a TPG with cotree T . Let C be an optimal clustering of G such that
every clade of T has an SG in C and, among all such possible optimal clusterings, such that
|C| is maximum. Then for every clade X of T , one of the following holds:

X does not grow in any Ci ∈ C; or
X grows in one Ci ∈ C, and |X ∩ Ci| = maxCj∈C |X ∩ Cj |.

Proof. Let X be a clade of T and suppose that X grows in some Ci ∈ C. Note that vertices of
X share the same neighborhood outside of X. Thus Ci can be partitioned into {X ∩Ci, A, B}
such that X, A are neighbors and X, B are non-neighbors. Note that |A| ≥ |B| as otherwise,
we could obtain an alternate clustering C′ by replacing Ci by {X ∩ Ci, A ∪ B} and save a
cost of |X ∩ Ci|(|B| − |A|) > 0.

We also argue that |A| > |B|. This is because if |A| = |B|, the same clustering C′ has
costG(C′) = costG(C), but has one more cluster. We also argue that every clade of T has an
SG in C′, contradicting our choice of C. Let Y = X ∩ Ci and consider some v ∈ V (T). By
assumption v has an SG in C. If Ci ∩ L(v) = ∅, then the clusters of C that intersect with
L(v) are unaltered in C′ and v also has an SG C′. Suppose that Ci ⊆ L(v). Apart from
Ci = Y ∪ A ∪ B, the clusters of C that intersect with L(v) are unaltered in C′. Moreover,
L(v) does not grow in Y ∪ A ∪ B, and neither does it grow in Y or A ∪ B. Thus v also has

STACS 2025

64:16 Cluster Editing on Cographs and Related Classes

an SG C′. The remaining case is when L(v) grows in Ci (but no other cluster of C). Let
u ∈ V (T) be such that L(u) = X. If v = u, then L(v) does not grow in any cluster of C′. If
v is a strict descendant of u, then L(v) can only grow in Y of C′. If v is a strict ancestor of
u, then Y ⊆ L(v) and L(v) can only grow in A ∪ B of C′. If v is in the rest of V (T), then
Y ∩ L(v) = ∅ and L(v) grows only in A ∪ B of C′. As a result, L(v) has an SG in C′. Since
this holds for any v, every node has an SG in C′, which is a contradiction since |C| < |C′|.
Therefore, |A| > |B|.

Now suppose that there is some Cj ̸= Ci such that |X ∩ Cj | > |X ∩ Ci|. Because
X already grows in Ci, the SG property implies that Cj ⊆ X. Consider the alternate
clustering C∗ obtained from C by replacing Ci, Cj by Cj ∪ A ∪ B, X ∩ Ci. The number of
modifications in C∗ but not in C is |X ∩ Ci||A| + |Cj ||B|, but the number of modifications
in C not in C∗ is |X ∩ Ci||B| + |Cj ||A|. The difference between the latter and the former is
(|Cj | − |X ∩ Ci|)(|A| − |B|). Since |A| > |B| and |Cj | = |X ∩ Cj | > |X ∩ Ci|, this is greater
than 0, and thus C∗ is a clustering of cost lower than C, a contradiction. ◀

Our algorithm will search for an optimal clustering that satisfies all the requirements of
Lemma 14. That is, for a TPG G with cotree T , a clustering C is well-behaved if it is optimal,
every clade of T has an SG in C, and among all such possible clusterings |C| is maximum.
As we know that such a C exists, we will search for one using dynamic programming.

In the remainder, for an arbitrary clustering C of G and X ⊆ V (G), define C|X =
{Ci ∩ X|Ci ∈ C} \ {∅}, i.e., the restriction of C to X. Note that C|X is a clustering of G[X],
and we refer to costG[X](C|X) as the cost of C in G[X]. Although C|X is not necessarily an
optimal clustering of G[X], we can deduce from the above that it has minimum cost among
those clusterings with the same largest cluster.

▶ Corollary 15. Let G be a TPG with cotree T , and let C be a well-behaved clustering of G.
Let u ∈ V (T) with clade X = L(u), and let k∗

u = maxCj∈C |X ∩ Cj | denote the size of the
largest intersection of C with X.

Then C|X is a clustering of G[X] such that costG[X](C|X) is minimum, among all clus-
terings of G[X] whose largest cluster has size k∗

u.

We define a 2-dimensional dynamic programming table D indexed by V (T) × [n], with
the intent that D[u, k] has the cost of an optimal clustering of G[L(u)] in which the largest
cluster has size k. Notice that this intent is mostly for intuition purposes, since we will not
be able to guarantee that D[u, k] stores the correct value for each u, k. Indeed, if we require
a clustering of G[L(u)] with largest cluster size k, such a clustering may not be optimal and
the properties of the above lemmas may not hold. However, we will argue that when k is the
size of a largest cluster in an optimal clustering, then the entries are correct, as we prove
that they combine information from optimal clusterings at the children of u which may also
be assumed to be correct.

We assume that the cotree T of G is binary (note that such a cotree always exists and,
since the previous lemmas make no assumption on the structure of the cotree, this is without
loss of generality). If u is a leaf, put D[u, 1] = 0 and D[u, k] = ∞ for every k ̸= 1. For
internal node u, let u1, u2 be the two children of u in T . We put

D[u, k] = min

D[u1, k] + minj∈[k] D[u2, j] + Iu · |L(u1)||L(u2)|
D[u2, k] + minj∈[k] D[u1, j] + Iu · |L(u1)||L(u2)|
minj∈[k−1](D[u1, j] + D[u2, k − j] + α(u)),

M. Lafond, A. López Sánchez, and W. Luo 64:17

where Iu = 0 if u is a 0-node and Iu = 1 if it is a 1-node, and

α(u) = min
{

|L(u1)||L(u2)| − j(k − j) if u is a 1-node
j(k − j) otherwise.

The recurrence for D[u, k] mainly says that there are three ways to obtain a solution
with a largest cluster of size k: either that cluster is taken directly from the solution at u1,
from the solution at u2, or we take a cluster of size j from u1 and size k − j from u2, and
merge them together.

▶ Lemma 16. Let C be a well-behaved clustering of G. Let u ∈ V (T), and denote by k∗
u the

size of the largest cluster of C|L(u). Then both of the following hold:
for each k such that D[u, k] ̸= ∞, there exists a clustering of G[L(u)] of cost at most
D[u, k] whose largest cluster has size k;
D[u, k∗

u] is equal to costG[L(u)](C|L(u)), the cost of C restricted to G[L(u)].

Proof. We prove the statement by induction on the cotree T . For a leaf u, it is clear that
both statements hold with D[u, 1] = 0. Let u be an internal node of T and let u1, u2 be its
children. Denote X = L(u), X1 = L(u1), X2 = L(u2).

We focus on the first part and assume that D[u, k] ̸= ∞. The value of D[u, k] is the
minimum among three cases. If D[u, k] = D[u1, k] + minj∈[k] D[u2, j] + Iu|L(u1)||L(u2)|,
then because D[u, k] ̸= ∞, D[u1, k] ̸= ∞ and D[u2, j] ̸= ∞ for the chosen j in the minimum
expression. We can take the disjoint union of a clustering of G[L(u1)] whose largest cluster
has size k (one exists of cost at most D[u1, k] by induction), and a clustering of G[L(u2)]
with largest cluster of size j ≤ k (one exists of cost at most D[u2, j] by induction). If u is
a 1-node, all edges between L(u1) and L(u2) are present and Iu|X1||X2| must be added to
the cost (whereas if u is a 0-node, no additional cost is required). This confirms that, if
the first case of the recurrence is the minimum, there exists a clustering with cost at most
D[u, k] whose largest cluster has size k. The same argument applies to the second case of
the recurrence.

So assume that D[u, k] = minj∈[k−1](D[u1, j]+D[u2, k−j]+α(u)). This case corresponds
to taking, by induction, a clustering of G[X1] and of G[X2] with the largest cluster of size j

and k − j, respectively, and merging their largest cluster into one cluster of size k (leaving
the other clusters intact). If u is a 1-node, the number of deleted edges between the resulting
clusters is |L(u1)||L(u2)| − j(k − j), and if u is a 0-node we must pay j(k − j) edge insertions.
This shows the first part of the statement.

For the second part, suppose that k = k∗
u. Here, C is the optimal clustering stated in

the lemma. As we just argued, there is a clustering of G[X] of cost at most D[u, k∗
u] with

the largest cluster size k∗
u. By Corollary 15, C|X has minimum cost among such clusterings,

and so D[u, k∗
u] is at least costG[X](C|X). We argue that the latter is also an upper bound

on D[u, k∗
u]. Let C1 ∈ C|X1 , and note that if C1 /∈ C|X , then C1 was “merged” with some

cluster of C|X2 to obtain C|X . In this case, u1 grows in some cluster of C|X , and therefore
also grows in some cluster of C. By the SG property, this means that there is at most one C1
of C|X1 such that C1 /∈ C|X . For the same reason, there is at most one C2 of C|X2 that is
not in C|X . This in turn implies that either C|X = C|X1 ∪ C|X2 , or that there is a unique
C1 ∈ C|X1 and a unique C2 ∈ C|X2 such that C1 ∪ C2 is in C|X . We now consider both cases.

If C|X = C|X1 ∪ C|X2 , since C|X has its largest cluster of size k = k∗
u, one of C|X1 or

C|X2 must have a largest cluster of size k, and the other a largest cluster of some size
j ∈ [k]. Using induction on the second part of the lemma, the corresponding entries

STACS 2025

64:18 Cluster Editing on Cographs and Related Classes

D[ui, k] and D[ui′ , j] for {i, i′} = {1, 2} store the costs of C|X1 and C|X2 , and since all
the possibilities are considered by the D[u, k∗

u] recurrence, it is clear that D[u, k∗
u] is at

most costG[X](C|X).
If C1 ∪ C2 ∈ C|X , we have C|X = ((C|X1 ∪ C|X2) \ {C1, C2}) ∪ {C1 ∪ C2}. Observe that X1
grows in C1 ∪ C2. This means that X1 also grows in the cluster of C ′ ∈ C that contains
C1 ∪ C2. By Lemma 14, |X1 ∩ C ′| ≥ |X1 ∩ C ′′| for each C ′′ ∈ C. Since C ′ contains C1,
we get that |X1 ∩ C ′| = |C1|, and since {X ∩ C ′′ : C ′′ ∈ C} contains all the clusters of
C|X1 , it must be that C1 is the largest cluster of C|X1 . By the same argument, C2 is the
largest cluster of C|X2 . Let j = |C1|. We have that C|X has the largest cluster size k, and
is obtained by taking a clustering of G[L(u1)] with the largest cluster of size j, and a
clustering of G[L(u2)] with largest cluster of size k − j, and merging these two clusters. If
u is a 1-node, the cost of this is the cost of C in G[L(u1)], which is D[u1, j] by induction,
plus the cost of C in G[L(u2)], which is D[u2, k − j] by induction, plus the cost for all the
edges between L(u1) and L(u2), excluding those between C1 and C2. If u is a 0-node,
the cost is the same, except that we pay j(k − j) for the non-edges between C1 and C2.
Either way, this case is considered by our recurrence, and we get D[u, k] ≤ costG[X](C|X).

Having shown both the lower and upper bounds, we get that D[u, k∗
u] = costG[X](C|X). ◀

▶ Theorem 17. The Cluster Editing problem can be solved in time O(n3) on trivially
perfect graphs.

Open problems. We observe that the structural properties shown on TPGs only work if
the number of desired clusters is unrestricted. The complexity of p-Cluster Editing on
TPGs is open (note that if p is constant, our nO(p) time algorithm on cographs provides a
polynomial-time algorithm). Regarding our clique-width (or rather NLC-width), it might be
possible to improve the complexity, for example by achieving nO(p+cw) instead of nO(p·cw).

We proved the problem in P on {P4, C4}-free graphs, but we do not know the complexity
on {P4, 2K2}-graphs. The complement of such graphs are {P4, C4}-free and may be in P
as well, but it is unclear whether the editing problem on the complement can be solved
using our techniques. More generally, it would be ideal to aim for a dichotomy theorem for
forbidden induced subgraphs, that is, to characterize the forbidden induced subgraphs that
make Cluster Editing in P, and the ones that make it NP-hard.

References
1 Faisal N Abu-Khzam, Joseph R Barr, Amin Fakhereldine, and Peter Shaw. A greedy heuristic

for cluster editing with vertex splitting. In 2021 4th International conference on artificial
intelligence for industries (AI4I), pages 38–41. IEEE, 2021. doi:10.1109/AI4I51902.2021.
00017.

2 Emmanuel Arrighi, Matthias Bentert, Pål Grønås Drange, Blair D Sullivan, and Petra
Wolf. Cluster editing with overlapping communities. In 18th International Symposium on
Parameterized and Exact Computation (IPEC 2023). Schloss-Dagstuhl-Leibniz Zentrum für
Informatik, 2023.

3 Nikhil Bansal, Avrim Blum, and Shuchi Chawla. Correlation clustering. Machine learning,
56:89–113, 2004. doi:10.1023/B:MACH.0000033116.57574.95.

4 Hila Becker. A survey of correlation clustering. Advanced Topics in Computational Learning
Theory, pages 1–10, 2005.

5 André Berger, Alexander Grigoriev, and Andrej Winokurow. A PTAS for the cluster editing
problem on planar graphs. In International Workshop on Approximation and Online Algorithms,
pages 27–39. Springer, 2016. doi:10.1007/978-3-319-51741-4_3.

https://doi.org/10.1109/AI4I51902.2021.00017
https://doi.org/10.1109/AI4I51902.2021.00017
https://doi.org/10.1023/B:MACH.0000033116.57574.95
https://doi.org/10.1007/978-3-319-51741-4_3

M. Lafond, A. López Sánchez, and W. Luo 64:19

6 Sebastian Böcker. A golden ratio parameterized algorithm for cluster editing. J. Discrete
Algorithms, 16:79–89, 2012. doi:10.1016/J.JDA.2012.04.005.

7 Sebastian Böcker, Sebastian Briesemeister, Quang Bao Anh Bui, and Anke Truß. Going
weighted: Parameterized algorithms for cluster editing. Theor. Comput. Sci., 410(52):5467–
5480, 2009. doi:10.1016/J.TCS.2009.05.006.

8 Sebastian Böcker and Peter Damaschke. Even faster parameterized cluster deletion and cluster
editing. Inf. Process. Lett., 111(14):717–721, 2011. doi:10.1016/J.IPL.2011.05.003.

9 Flavia Bonomo, Guillermo Duran, and Mario Valencia-Pabon. Complexity of the cluster
deletion problem on subclasses of chordal graphs. Theoretical Computer Science, 600:59–69,
2015. doi:10.1016/J.TCS.2015.07.001.

10 Ulrik Brandes, Michael Hamann, Ben Strasser, and Dorothea Wagner. Fast quasi-threshold
editing. In Nikhil Bansal and Irene Finocchi, editors, Algorithms - ESA 2015 - 23rd An-
nual European Symposium, Patras, Greece, September 14-16, 2015, Proceedings, volume
9294 of Lecture Notes in Computer Science, pages 251–262. Springer, 2015. doi:10.1007/
978-3-662-48350-3_22.

11 Yixin Cao and Jianer Chen. Cluster editing: Kernelization based on edge cuts. Algorithmica,
64(1):152–169, 2012. doi:10.1007/S00453-011-9595-1.

12 Moses Charikar, Venkatesan Guruswami, and Anthony Wirth. Clustering with qualitative
information. In FOCS 2003, 11-14 October 2003, Cambridge, MA, USA, Proceedings, pages
524–533. IEEE Computer Society, 2003. doi:10.1109/SFCS.2003.1238225.

13 Jianer Chen and Jie Meng. A 2k kernel for the cluster editing problem. J. Comput. Syst. Sci.,
78(1):211–220, 2012. doi:10.1016/J.JCSS.2011.04.001.

14 Derek G. Corneil, Yehoshua Perl, and Lorna K. Stewart. A linear recognition algorithm for
cographs. SIAM J. Comput., 14(4):926–934, 1985. doi:10.1137/0214065.

15 Bruno Courcelle and Stephan Olariu. Upper bounds to the clique width of graphs. Discrete
Applied Mathematics, 101(1-3):77–114, 2000. doi:10.1016/S0166-218X(99)00184-5.

16 Nameirakpam Dhanachandra, Khumanthem Manglem, and Yambem Jina Chanu. Image
segmentation using k-means clustering algorithm and subtractive clustering algorithm. Procedia
Computer Science, 54:764–771, 2015.

17 Wolfgang Espelage, Frank Gurski, and Egon Wanke. Deciding clique-width for graphs of
bounded tree-width. Journal of Graph Algorithms and Applications, 7(2):141–180, 2003.
doi:10.7155/JGAA.00065.

18 Absalom E Ezugwu, Abiodun M Ikotun, Olaide O Oyelade, Laith Abualigah, Jeffery O
Agushaka, Christopher I Eke, and Andronicus A Akinyelu. A comprehensive survey of
clustering algorithms: State-of-the-art machine learning applications, taxonomy, challenges,
and future research prospects. Engineering Applications of Artificial Intelligence, 110:104743,
2022. doi:10.1016/J.ENGAPPAI.2022.104743.

19 Fedor V. Fomin, Stefan Kratsch, Marcin Pilipczuk, Michal Pilipczuk, and Yngve Villanger.
Tight bounds for parameterized complexity of cluster editing with a small number of clusters.
J. Comput. Syst. Sci., 80(7):1430–1447, 2014. doi:10.1016/J.JCSS.2014.04.015.

20 Jakub Gajarskỳ, Michael Lampis, and Sebastian Ordyniak. Parameterized algorithms for
modular-width. In IPEC 2013, Sophia Antipolis, France, September 4-6, 2013, Revised Selected
Papers 8, pages 163–176. Springer, 2013.

21 Yong Gao, Donovan R. Hare, and James Nastos. The cluster deletion problem for cographs.
Discret. Math., 313(23):2763–2771, 2013. doi:10.1016/J.DISC.2013.08.017.

22 M. R. Garey and David S. Johnson. Computers and Intractability: A Guide to the Theory of
NP-Completeness. W. H. Freeman, 1979.

23 Ioannis Giotis and Venkatesan Guruswami. Correlation clustering with a fixed number of
clusters. Theory Comput., 2(13):249–266, 2006. doi:10.4086/TOC.2006.V002A013.

24 Jens Gramm, Jiong Guo, Falk Hüffner, and Rolf Niedermeier. Graph-modeled data clustering:
Fixed-parameter algorithms for clique generation. In Rossella Petreschi, Giuseppe Persiano,
and Riccardo Silvestri, editors, CIAC 2003, Rome, Italy, May 28-30, 2003, Proceedings,
volume 2653 of Lecture Notes in Computer Science, pages 108–119. Springer, 2003. doi:
10.1007/3-540-44849-7_17.

STACS 2025

https://doi.org/10.1016/J.JDA.2012.04.005
https://doi.org/10.1016/J.TCS.2009.05.006
https://doi.org/10.1016/J.IPL.2011.05.003
https://doi.org/10.1016/J.TCS.2015.07.001
https://doi.org/10.1007/978-3-662-48350-3_22
https://doi.org/10.1007/978-3-662-48350-3_22
https://doi.org/10.1007/S00453-011-9595-1
https://doi.org/10.1109/SFCS.2003.1238225
https://doi.org/10.1016/J.JCSS.2011.04.001
https://doi.org/10.1137/0214065
https://doi.org/10.1016/S0166-218X(99)00184-5
https://doi.org/10.7155/JGAA.00065
https://doi.org/10.1016/J.ENGAPPAI.2022.104743
https://doi.org/10.1016/J.JCSS.2014.04.015
https://doi.org/10.1016/J.DISC.2013.08.017
https://doi.org/10.4086/TOC.2006.V002A013
https://doi.org/10.1007/3-540-44849-7_17
https://doi.org/10.1007/3-540-44849-7_17

64:20 Cluster Editing on Cographs and Related Classes

25 Jens Gramm, Jiong Guo, Falk Hüffner, and Rolf Niedermeier. Automated generation of search
tree algorithms for hard graph modification problems. Algorithmica, 39(4):321–347, 2004.
doi:10.1007/S00453-004-1090-5.

26 Jiong Guo. A more effective linear kernelization for cluster editing. Theor. Comput. Sci.,
410(8-10):718–726, 2009. doi:10.1016/J.TCS.2008.10.021.

27 Frank Gurski, Egon Wanke, and Eda Yilmaz. Directed NLC-width. Theor. Comput. Sci.,
616:1–17, 2016. doi:10.1016/J.TCS.2015.11.003.

28 P Heggernes and D Kratsch. Linear-time certifying algorithms for recognizing trivially perfect
graphs. Reports In Informatics ISSN, pages 0333–3590, 2006.

29 Marc Hellmuth, Maribel Hernandez-Rosales, Katharina T Huber, Vincent Moulton, Peter F
Stadler, and Nicolas Wieseke. Orthology relations, symbolic ultrametrics, and cographs.
Journal of mathematical biology, 66:399–420, 2013.

30 Marc Hellmuth, Nicolas Wieseke, Marcus Lechner, Hans-Peter Lenhof, Martin Middendorf,
and Peter F Stadler. Phylogenomics with paralogs. Proceedings of the National Academy of
Sciences, 112(7):2058–2063, 2015.

31 Giuseppe F Italiano, Athanasios L Konstantinidis, and Charis Papadopoulos. Structural
parameterization of cluster deletion. In International Conference and Workshops on Algorithms
and Computation, pages 371–383. Springer, 2023. doi:10.1007/978-3-031-27051-2_31.

32 Klaus Jansen, Stefan Kratsch, Dániel Marx, and Ildikó Schlotter. Bin packing with fixed number
of bins revisited. J. Comput. Syst. Sci., 79(1):39–49, 2013. doi:10.1016/J.JCSS.2012.04.004.

33 Songwei Jia, Lin Gao, Yong Gao, James Nastos, Yijie Wang, Xindong Zhang, and Haiyang
Wang. Defining and identifying cograph communities in complex networks. New Journal of
Physics, 17(1):013044, 2015.

34 Ojvind Johansson. Clique-decomposition, NLC-decomposition, and modular decomposition-
relationships and results for random graphs. Congressus Numerantium, pages 39–60, 1998.

35 Christian Komusiewicz and Johannes Uhlmann. Cluster editing with locally bounded modific-
ations. Discrete Applied Mathematics, 160(15):2259–2270, 2012. doi:10.1016/J.DAM.2012.
05.019.

36 Athanasios L Konstantinidis and Charis Papadopoulos. Cluster deletion on interval graphs and
split related graphs. Algorithmica, 83(7):2018–2046, 2021. doi:10.1007/S00453-021-00817-8.

37 Mirko Krivánek and Jaroslav Morávek. NP-hard problems in hierarchical-tree clustering. Acta
Informatica, 23(3):311–323, 1986. doi:10.1007/BF00289116.

38 Manuel Lafond and Nadia El-Mabrouk. Orthology and paralogy constraints: satisfiability and
consistency. BMC genomics, 15:1–10, 2014.

39 Manuel Lafond and Weidong Luo. Parameterized complexity of domination problems using
restricted modular partitions. In Jérôme Leroux, Sylvain Lombardy, and David Peleg, editors,
MFCS 2023, volume 272 of Leibniz International Proceedings in Informatics (LIPIcs), pages
61:1–61:14, Dagstuhl, Germany, 2023. Schloss Dagstuhl – Leibniz-Zentrum für Informatik.
doi:10.4230/LIPIcs.MFCS.2023.61.

40 Manuel Lafond, Mona Meghdari Miardan, and David Sankoff. Accurate prediction of orthologs
in the presence of divergence after duplication. Bioinformatics, 34(13):i366–i375, 2018. doi:
10.1093/BIOINFORMATICS/BTY242.

41 Bassel Mannaa. Cluster editing problem for points on the real line: A polynomial time algorithm.
Information processing letters, 110(21):961–965, 2010. doi:10.1016/J.IPL.2010.08.002.

42 James Nastos and Yong Gao. Familial groups in social networks. Soc. Networks, 35(3):439–450,
2013. doi:10.1016/J.SOCNET.2013.05.001.

43 Sebastian Ochs. Cluster Deletion on Unit Disk Graphs. Master’s thesis, Philipps-Universität
Marburg, 2023.

44 Alitzel López Sánchez and Manuel Lafond. Colorful orthology clustering in bounded-degree
similarity graphs. Journal of Bioinformatics and Computational Biology, 19(06):2140010, 2021.

45 Ron Shamir, Roded Sharan, and Dekel Tsur. Cluster graph modification problems. Discret.
Appl. Math., 144(1-2):173–182, 2004. doi:10.1016/J.DAM.2004.01.007.

https://doi.org/10.1007/S00453-004-1090-5
https://doi.org/10.1016/J.TCS.2008.10.021
https://doi.org/10.1016/J.TCS.2015.11.003
https://doi.org/10.1007/978-3-031-27051-2_31
https://doi.org/10.1016/J.JCSS.2012.04.004
https://doi.org/10.1016/J.DAM.2012.05.019
https://doi.org/10.1016/J.DAM.2012.05.019
https://doi.org/10.1007/S00453-021-00817-8
https://doi.org/10.1007/BF00289116
https://doi.org/10.4230/LIPIcs.MFCS.2023.61
https://doi.org/10.1093/BIOINFORMATICS/BTY242
https://doi.org/10.1093/BIOINFORMATICS/BTY242
https://doi.org/10.1016/J.IPL.2010.08.002
https://doi.org/10.1016/J.SOCNET.2013.05.001
https://doi.org/10.1016/J.DAM.2004.01.007

M. Lafond, A. López Sánchez, and W. Luo 64:21

46 Nate Veldt, David F Gleich, and Anthony Wirth. A correlation clustering framework for
community detection. In Proceedings of the 2018 World Wide Web Conference, pages 439–448,
2018. doi:10.1145/3178876.3186110.

47 Charles T Zahn, Jr. Approximating symmetric relations by equivalence relations. Journal of
the Society for Industrial and Applied Mathematics, 12(4):840–847, 1964.

STACS 2025

https://doi.org/10.1145/3178876.3186110

On Average Baby PIH and Its Applications
Yuwei Liu #

Shanghai Jiao Tong University, China

Yijia Chen #

Shanghai Jiao Tong University, China

Shuangle Li #

Nanjing University, China

Bingkai Lin #

Nanjing University, China

Xin Zheng #

Nanjing University, China

Abstract
The Parameterized Inapproximability Hypothesis (PIH) asserts that no FPT algorithm can decide
whether a given 2CSP instance parameterized by the number of variables is satisfiable, or at most
a constant fraction of its constraints can be satisfied simultaneously. In a recent breakthrough,
Guruswami, Lin, Ren, Sun, and Wu (STOC 2024) proved the PIH under the Exponential Time
Hypothesis (ETH). However, it remains a major open problem whether the PIH can be established
assuming only W[1] ̸= FPT. Towards this goal, Guruswami, Ren, and Sandeep (CCC 2024) showed
a weaker version of the PIH called the Baby PIH under W[1] ̸= FPT. In addition, they proposed
one more intermediate assumption known as the Average Baby PIH, which might lead to further
progress on the PIH. As the main contribution of this paper, we prove that the Average Baby PIH
holds assuming W[1] ̸= FPT.

Given a 2CSP instance where the number of its variables is the parameter, the Average Baby
PIH states that no FPT algorithm can decide whether (i) it is satisfiable or (ii) any multi-assignment
that satisfies all constraints must assign each variable more than r values on average for any fixed
constant r > 1. So there is a gap between (i) and (ii) on the average number of values that are
assigned to a variable, i.e., 1 vs. r. If this gap occurs in each variable instead of on average, we get
the original Baby PIH. So central to our paper is an FPT self-reduction for 2CSP instances that
turns the above gap for each variable into a gap on average. By the known W[1]-hardness for the
Baby PIH, this proves that the Average Baby PIH holds under W[1] ̸= FPT.

As applications, we obtain (i) for the first time, the W[1]-hardness of constant approximating
k-ExactCover, and (ii) a tight relationship between running time lower bounds in the Average
Baby PIH and approximating the parameterized Nearest Codeword Problem (k-NCP).

2012 ACM Subject Classification Theory of computation → Problems, reductions and completeness;
Theory of computation → Parameterized complexity and exact algorithms

Keywords and phrases Average Baby PIH, Parameterized Inapproximability, Constraint Satisfaction
Problem, Exact Set Cover, W[1]-hardness

Digital Object Identifier 10.4230/LIPIcs.STACS.2025.65

Funding Yuwei Liu and Yijia Chen are supported by the National Natural Science Foundation of
China (Project 62372291).

Acknowledgements The authors want to thank Guohang Liu, Mingjun Liu, Yangluo Zheng for
discussions in the early stage of this work. The comments and suggestions from anonymous reviewers
also help to improve the paper significantly. In particular, Theorem 2 is due to one of them.

© Yuwei Liu, Yijia Chen, Shuangle Li, Bingkai Lin, and Xin Zheng;
licensed under Creative Commons License CC-BY 4.0

42nd International Symposium on Theoretical Aspects of Computer Science (STACS 2025).
Editors: Olaf Beyersdorff, Michał Pilipczuk, Elaine Pimentel, and Nguyễn Kim Thắng;
Article No. 65; pp. 65:1–65:19

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:yuwei.liu@sjtu.edu.cn
https://orcid.org/0009-0000-8035-6629
mailto:yijia.chen@cs.sjtu.edu.cn
https://orcid.org/0000-0001-7033-9593
mailto:shuangleli@smail.nju.edu.cn
https://orcid.org/0009-0009-6865-9286
mailto:lin@nju.edu.cn
https://orcid.org/0000-0002-3444-6380
mailto:xinzheng@smail.nju.edu.cn
https://orcid.org/0009-0000-0227-2833
https://doi.org/10.4230/LIPIcs.STACS.2025.65
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

65:2 On Average Baby PIH and Its Applications

1 Introduction

In classical complexity theory, the PCP theorem [3, 2, 8] serves as an essential tool for
proving most of the existing results in the hardness of approximation. As a variant, the
Multi-Assignment PCP theorem [1, Lemma 11] states that, for any constant r > 1 and
0 < ε < 1, it is even NP-hard to decide whether a CSP instance is satisfiable, or any
multi-assignment (see Definition 7.) that assigns each variable no more than r values cannot
satisfy a (1− ε)-fraction of constraints. Among others, the Multi-Assignment PCP theorem
was used to show the NP-hardness of approximating SetCover [1]. It turns out that
the Multi-Assignment PCP theorem is a simple consequence of the PCP theorem by a
straightforward probabilistic argument. Nevertheless, Barto and Kozik [4] gave a direct and
purely combinatorial proof for the simple case of ε = 0. Observe that it means that the
CSP instances under consideration are either satisfiable or cannot be satisfied by a desired
multi-assignment. This restricted version of the Multi-Assignment PCP theorem is termed
the Baby PCP Theorem in [4].

As an analog of the PCP theorem in parameterized complexity theory, the Parameterized
Inapproximability Hypothesis [21], PIH for short, is an important assumption from which we
can prove many FPT inapproximability results, including the inapproximability of k-Clique,
k-ExactCover [13], and Direct Odd Cycle Transversal [21], etc. It claims that
for some constant 0 < ε < 1, no f(k) · nO(1)-time (i.e., FPT) algorithm can distinguish
a satisfiable 2CSP instance with k variables from one where less than (1 − ε)-fraction of
constraints can be satisfied simultaneously [21]. Unlike the PCP theorem, the PIH is still a
major open problem in parameterized complexity. The current state of the art is that the
PIH holds under the Exponential Time Hypothesis (ETH) [12, 11], and a proof of the PIH
under the minimum assumption W[1] ̸= FPT remains elusive. Toward this goal, studying
some consequences of the PIH and proving them under W[1] ̸= FPT might provide new
insights and valuable lessons.

Recently, Guruswami, Ren, and Sandeep [13] proved a parameterized version of the
Baby PCP Theorem, appropriately coined as the Baby PIH, under W[1] ̸= FPT. The Baby
PIH states that for any constant r > 1, no FPT algorithm can distinguish a satisfiable
2CSP instance from one with no satisfying multi-assignment which assigns each variable
no more than r values. Just like the relationship between the PCP theorem and the Baby
PCP theorem, the Baby PIH is a direct consequence of the PIH. As a next step, a further
complexity assumption is suggested, i.e., the Average Baby PIH [13, Conjecture 3], which
seems to be sandwiched between the PIH and the Baby PIH. It postulates the W[1]-hardness
of the problem known as Avg-r-Gap-2CSP (see Definition 8) which asks for distinguishing
a satisfiable 2CSP instance from one without satisfying multi-assignment which assigns
each variable no more than r values on average. The authors of [13] also demonstrated the
difference between the Baby PIH and the Average Baby PIH. In fact, for all r > 1 and
δ > 0, they constructed 2CSP instances with variable set X that cannot be satisfied by any
multi-assignment assigning each variable in X no more than r values, but can be satisfied by
a multi-assignment that assigns in total (1 + δ)|X| values to all the variables in X, that is,
every variable is assigned 1 + δ values on average. Compared to proving W[1]-hardness1 of
the PIH, it is apparently easier to show the W[1]-hardness of the Average Baby PIH, and

1 Strictly speaking, the PIH is not a computational problem and we cannot directly define its hardness.
The formal statement should be “proving W[1]-hardness of the problem described in the PIH”, and we
use “W[1]-hardness for the PIH” for short in the introduction.

Y. Liu, Y. Chen, S. Li, B. Lin, and X. Zheng 65:3

studying the Average Baby PIH might bring us further closer to a proof of the W[1]-hardness
for the PIH. Moreover, the Average Baby PIH is already sufficient for proving some non-trivial
inapproximability results such as k-ExactCover [13].

1.1 Main Results

Let Π = (X, Σ, Φ) be a 2CSP instance with a set X of variables, an alphabet Σ, and a set Φ
of constraints. A multi-assignment σ̂ : X → 2Σ relaxes the standard notion of assignments
by assigning each variable x ∈X a set of values in Σ, i.e., σ̂(x) ⊆ Σ. Thereby, Π is said to
be satisfied by σ̂ if for every constraint φ ∈ Φ, one can pick for each variable x of φ a value
from the set σ̂(x) assigned to this variable to satisfy φ. We say that σ̂ assigns

∑
x∈X |σ̂(x)|

values to X in total, or equivalently, each variable in X is assigned
∑

x∈X
|σ̂(x)|

|X| values on
average (see Definition 7). Our main result is the following theorem stating that the Average
Baby PIH holds under W[1] ̸= FPT.

▶ Theorem 1 (Informal, see Theorem 16). Assume W[1] ̸= FPT. Then for any constant
r > 1, given a 2CSP instance Π = (X, Σ, Φ) parameterized by |X|, no FPT time algorithm
can distinguish between:

Π is satisfiable.
Any multi-assignment assigning no more than r|X| values to X does not satisfy Π.

Clearly any standard assignment σ : X → Σ can be identified with a multi-assignment σ̂

that assigns each variable x ∈ X a set of a single value, i.e., σ̂(x) = {σ(x)}. Hence, there
is a constant r gap in Theorem 1 between YES and NO instances on the average number
of values assigned to each variable, which gives us the aforementioned Avg-r-Gap-2CSP
problem. On the other hand, the constant gap for the PIH is on the fraction of constraints
that can be satisfied by an assignment. That is, a YES instance is a 2CSP instance whose all
constraints can be satisfied by an assignment, while any assignment can only satisfy at most
a constant fraction of constraints in a NO instance. So, perhaps surprisingly, the difference
between the Average Baby PIH and the PIH can be pinpointed within the Avg-r-Gap-2CSP
problem precisely in terms of whether a given instance contains a “dense” or “sparse” set of
constraints.2 More precisely:

▶ Theorem 2.
Under W[1] ̸= FPT, the Average Baby PIH holds for Avg-r-Gap-2CSP instances Π =
(X, Σ, Φ) with |Φ| = ω(|X|).
If the Average Baby PIH holds for Avg-r-Gap-2CSP instances Π = (X, Σ, Φ) with
|Φ| = O(|X|), then the PIH holds as well.

As a first application of the Average Baby PIH under W[1] ̸= FPT, using a reduction
in [13], we obtain the W[1]-hardness of constant approximating the k-ExactCover problem
(see Definition 9), improving its previous approxmation lower bound under a stronger
assumption, i.e., the Gap-ETH [23].

▶ Theorem 3 (Theorem 27 restated). For any constant r > 1, r-approximating k-
ExactCover is W[1]-hard.

2 This is pointed out by an anonymous reviewer.

STACS 2025

65:4 On Average Baby PIH and Its Applications

We remark that the W[1]-hardness of approximating k-ExactCover has been a long-standing
open problem in parameterized complexity. Although the W[1], W[2], ETH-hardness of
approximating the k-SetCover problem has been established in [6, 15, 18, 20], as a special
case of k-SetCover, the hardness of approximating k-ExactCover was only known under
the PIH [23] prior to our work.

The second application is a close relationship between running time lower bounds for
constant approximating the parameterized Nearest Codeword Problem γ-Gap-k-NCPp (see
Definition 10) and Avg-r-Gap-2CSP. Its proof is a straightforward composition of two
known reductions in [23, 13] .

▶ Theorem 4. For any prime p, computable function g, and constant r, if no f(k) · no(g(k))-
time algorithm can decide Avg-r-Gap-2CSP with k variables for any computable function f ,
then r-Gap-k-NCPp cannot be solved in time f(k) · no(g(k)) for any computable function f .

Proof Sketch. Theorem 4 follows from the gap-preserving reduction [13] from Avg-r-Gap-
2CSP to k-ExactCover (see also Section A), and the gap-preserving reduction from
k-ExactCover to r-Gap-k-NCPp [23, Theorem 28]. Note that in both reductions the
parameter k is preserved. ◀

1.2 Technical Overview: Local-to-Global Reduction For 2CSP
To prove Theorem 1, we show that the W[1]-hardness for the Baby PIH implies the W[1]-
hardness for the Average Baby PIH. Here, the “W[1]-hardness for the Baby PIH” means
that, for all r > 1, it’s W[1]-hard to decide whether (i) a 2CSP instance is satisfiable, or (ii)
it cannot be satisfied by any multi-assignment assigning each variable no more than r values.
Thus there is a constant r gap between (i) and (ii) in the number of values assigned to each
variable. Thereby, the gap is “local.” As already mentioned, for the Average Baby PIH, the
gap is on the average number of values, or equivalently, the total number of values assigned
to all the variables. Hence, the gap is “global.” Our reduction from the Baby PIH to the
Average Baby PIH is thus said to be “local-to-global.”

Technically, our reduction relies on a simple but crucial property of high-distance error-
correcting codes (ECC) shown in [16, 20]. In particular, we need an ECC C ⊆ Fm

p with
relative distance 1− δ such that any two distinct codewords x, y ∈ C can agree on at most δm

entries. So if we have a set S of codewords and an ε-fraction of entries (denoted by I ⊆ [m])
with ε ≫ δ such that for each i ∈ I, we can find distinct x, y ∈ S that agree on their i-th
entry, then the size of S must be large. The lower bound of |S| is called the collision number
of C, denote by Colε(C). A simple counting argument in [20] shows that Colε(C) ≥

√
2ε/δ.

Now given a 2CSP instance Π0 = (X0, Σ0, Φ0), let n = |Π0| > |Σ0|, parameter k = |X0|,
and k′ = |Φ0|. We fix some ECC with very large relative distance (e.g., a Reed-Solomon code)
C : Fk

p → Fk′′

p for prime n1/k ≤ p < 2n1/k and k′′ = Θ(k5). Then we have Colε(C) > 2rk.
We construct a new 2CSP instance Π = (X1 ∪̇X2, Σ, Φ) as:

X1 = {u1, · · · , uk′}, X2 = {v1, · · · , vk′′}.
Each uj takes value from the (encoding of) satisfying assignments of φj = (xi1xi2 , Cj) ∈
Φ0, i.e., {(C(a1), C(a2)) : (a1, a2) ∈ Cj}. Each vℓ takes value from Fk

p.
For each uj ∈ X1 and vℓ ∈ X2, there is a constraint that checks whether uj ’s assigned
value (w1, w2) and vℓ’s assigned value s satisfy w1[ℓ] = s[i1] and w2[ℓ] = s[i2].

See Figure 1 for an illustration. Finally, we duplicate X1 and X2 each an appropriate number
of times to make them equal in size, finishing our reduction.

In general, an assignment to X1 should correspond to a satisfying multi-assignment to the
original instance Π0, and the value assigned to each vℓ ∈ X2 is a “guess” of the ℓ-th entry of
the encoding of every xi. It is easy to see that if the input instance Π0 is satisfiable, then so

Y. Liu, Y. Chen, S. Li, B. Lin, and X. Zheng 65:5

x1 x2 x3

u1

u2

u3

(φ1 = (x1x2, C1))

(φ2 = (x1x3, C2))

(φ3 = (x2x3, C3))

v1

vk′′

· ··

C(a1)

C(a1)

C(a2)

C(a2)

C(a3)

C(a3)

Figure 1 An illustration of our construction for an input instance Π0 = (X0, Σ0, Φ0) with
|X0| = |Φ0| = 3.

does the new 2CSP instance Π, since for each uj ∈ X1 corresponding to φj = (xi1xi2 , Cj), we
can simply assign it the value (C(σ(xi1)), C(σ(xi2))), where σ is a satisfying assignment for Π0.
At the same time, the value assigned to each vℓ ∈ X2 is (C(σ(x1))[ℓ], · · · , C(σ(xk))[ℓ]) ∈ Fk

p.
For soundness, suppose Π0 has no satisfying multi-assignment assigning at most r values

to each variable, we need to argue that Π has no satisfying multi-assignment that assigns
r(1− ε)(|X1|+ |X2|)/2 values in total. To that end, we exploit the collision number of the
code C. Fix any satisfying multi-assignment σ̂ to Π. Recall that each variable uj ∈ X1 is
assigned some value from a satisfying partial assignment to φj ∈ Φ0. Then, σ̂(X1) naturally
gives a satisfying multi-assignment to Π0, which implies that there exists a variable xi ∈ X0
such that more than r different values are assigned by σ̂ to uj , for which the corresponding
constraint φj contains xi.

Now we have two possible cases for σ̂. In the first case, for (1− ε)-fraction of variables in
X2, the multi-assignment σ̂ assigns each of them more than r values. We are done, since this
implies that the total number of assigned values by σ̂ is more than (1 − ε)r|X2|. For the
second case, there exists an ε-fraction of variables in X2, each of which is assigned by σ̂ at
most r values. Given such a variable vℓ, we have more than r different codewords assigned to
X1 in xi’s position which has at most r possible values in the ℓ-th entry. This entails the
existence of two different codewords with the same ℓ-th entry. Since there are εm such entries,
the assignment to X1 must contain at least Colε(C) different codewords. Each assignment
to uj ∈ X1 contributes two codewords, so the total number of assigned values by σ̂ is at
least Colε(C)/2 > rk. In summary, both cases guarantee a constant gap on either X1 or X2,
showing that any satisfying multi-assignment to Π must assign r(1− ε)(|X1|+ |X2|)/2 values
to X1 ∪X2 in total.

More details are referred to Section 3.

1.3 Discussions

For minimization problems, the technique of constructing two parts of variables and arguing
that at least one part has a large gap seems quite general, as exhibited by the previous
works showing the W[1]-hardness of approximating k-SetCover [6, 20] and k-NCP [17].

STACS 2025

65:6 On Average Baby PIH and Its Applications

The use of the collision number of error-correcting codes in the context of parameterized
inapproximability was first introduced in [16] and further developed in [20, 17]. We ask
whether these techniques can be unified.

▶ Question 1. Is there a general framework for proving parameterized inapproximability of
minimization problems?

We also suggest two new variants of the Average Baby PIH, which might serve as a next
step towards proving the PIH under W[1] ̸= FPT. On closer inspection of our construction,
particularly Case 1 in the proof of Lemma 20, it only guarantees the total number of values
assigned to X1 (i.e., Σx∈X1 |σ̂(x)|) is large. This could happen if an o(1)-fraction of x’s in X1
is assigned super-constant number of values. We ask if a larger gap can be achieved. So the
first one asks whether the Average Baby PIH can be strengthened by requiring a constant
fraction of variables to be assigned multiple values.

▶ Question 2. Under W[1] ̸= FPT, can we prove that for any constant r > 2, there exists a
constant c > 0 such that no FPT algorithm can decide whether a 2CSP instance is satisfiable,
or any satisfying multi-assignment must have at least a c-fraction of variables assigned r

values?

We remark that the case of r = 2 follows from the inapproximability of k-Clique [19, 14, 5].
The second variant is already contained in Theorem 2, thus equivalent to PIH.

▶ Question 3. Under W[1] ≠ FPT, can we prove that the Average PIH holds even for
Avg-r-Gap-2CSP instances with the number of constraints being linear in the number of
variables?

It is also interesting to consider whether the inapproximability factor in the Average
Baby PIH can be improved to ω(1), since this would directly lead to better lower bounds
for approximating k-ExactCover. The current obstacle is that, although the running
time of our reduction does not depend on the approximation factor, our reduction relies on
the gap created in the Baby PIH [13]. In order to achieve an r-gap in the Baby PIH, the
reduction in [13] runs in time Ω(n(2r)r), consequently, the existing FPT reduction cannot
create a super-constant r = ω(1) gap .

▶ Question 4. Under W[1] ̸= FPT, can we prove that the Average PIH (Theorem 1)
holds for inapproximability factor r = ω(1), hence giving better inapproximability result for
k-ExactCover?

1.4 Organization
In Section 2, we introduce the main computational problems and complexity assumptions
studied in this paper. As the central contribution, Section 3 explains our reduction from the
Baby PIH to the Average Baby PIH. This, in fact, establishes the Average Baby PIH under
W[1] ̸= FPT. In Section A, we present a reduction from Avg-r-Gap-2CSP to the constant
approximation of k-ExactCover, which slightly differs from the construction in [13].

2 Preliminaries

For a positive integer n, we use [n] to denote the set {1, 2, · · · , n}. S1 ∪̇ · · · ∪̇Sk is the disjoint
union of sets S1, . . . , Sk, where we tacitly assume that S1, . . . , Sk are pairwise disjoint. We
use log (without subscript) to denote the logarithm number with base 2. For any prime

Y. Liu, Y. Chen, S. Li, B. Lin, and X. Zheng 65:7

number p, we write Fp for the (unique) finite field of size p. The asymptotic notations, i.e.,
O, Ω, ω, and Θ, are used following the general convention. The reader is assumed to be
familiar with basic notions in parameterized complexity theory, in particular FPT and W[1].
Otherwise, the standard references are, e.g., [10, 9, 7].

2.1 Problems
▶ Definition 5 (Parameterized 2CSP). A 2CSP instance is defined as a triple Π = (X, Σ, Φ)
where:

X is a set of variable.
Σ =

⋃̇
x∈XΣx, where each Σx contains values that the variable x ∈ X can be assigned.

Often, we assume that there exists an n ∈ N such that |Σx| ≤ n for all x ∈ X.
Φ = {φ1, · · · , φk′}, where each φj = (xi1xi2 , Cj) for some xi1 , xi2 ∈ X, and Ci is a
subset of Σxi1

× Σxi2
.

The problem is to decide whether there exists an assignment σ : X → Σ that satisfies:
For all x ∈ X, σ(x) ∈ Σx.
For all φj = (xi1xi2 , Cj) ∈ Φ, (σ(xi1), σ(xi2)) ∈ Cj.

The parameter for this problem is k = |X|, the number of variables. Each pair of variables
has at most one constraint, so |Φ| ≤

(
k
2
)
. Without loss of generality, each variable is related

to some constraint in Φ. The size of instance Π is defined as |Π| = |Σ|+ |Φ|, where the size
of each φj is defined as |φj | = |Cj |.

The approximation of parameterized 2CSP refers to the following problem.

▶ Definition 6 (ε-Gap-2CSP). Given a 2CSP instance Π = (X, Σ, Φ) with parameter
k = |X|, we want to distinguish between:

Π is satisfiable;
any assignment can satisfy at most an ε-fraction of constraints in Φ.

As already mentioned, the notion of multi-assignment extends the usual assignment in
such a way that each variable can be assigned multiple values.

▶ Definition 7 (Multi-assignment). A multi-assignment of a 2CSP instance Π = (X, Σ, Φ) is
a function σ̂ : X → 2Σ, 3 such that for all x ∈ X we have σ̂(x) ⊆ Σx. Furthermore, we say
that σ̂ satisfies Π if:

For all φj = (xi1xi2 , Cj) ∈ Φ, there exist c1 ∈ σ̂(xi1) and c2 ∈ σ̂(xi2) with (c1, c2) ∈ Cj.
The individual size of σ̂ is defined as maxx∈X |σ̂(x)|, and the total size of σ̂ is

∑
x∈X |σ̂(x)|.

Let r ≥ 1. We say that a 2CSP instance Π = (X, Σ, Φ) is r-list satisfiable if there exists a
multi-assignment σ̂ with individual size no more than r which satisfies Π, and Π is r-average
list satisfiable if there exists a multi-assignment σ̂ with total size no more than r|X| which
satisfies Π.

▶ Definition 8 (Avg-r-Gap-2CSP). Given a 2CSP instance Π, the goal is to distinguish
between the following two cases:

Π is satisfiable.
Π is not r-average list satisfiable.

3 Here we use 2Σ to denote the power set of Σ.

STACS 2025

65:8 On Average Baby PIH and Its Applications

We also consider the k-ExactCover problem (aka, the k-UniqueSetCover problem)
and the k-NCP problem (aka, k-MLD, for the parameterized Maximum Likelihood Decoding
problem) as defined below.

▶ Definition 9 (k-ExactCover). Given a set U (which we call universe) and a collection
of U ’s subsets S, the goal is to distinguish between the following two cases:

there exist at most k disjoint sets in S that form a partition of U ,
or U is not the union of any k sets in S.

▶ Definition 10 (k-NCP). For prime p, integer d > 0, given a (multi-)set V of vectors in
Fd

p, and a target vector t⃗ ∈ Fd
p, the k-NCPp problem asks for distinguishing between:

the Hamming distance between t⃗ and the vector space spanned by V is at most k,
or the Hamming distance between t⃗ and the vector space spanned by V is at least k + 1.

2.2 Hypotheses
▶ Hypothesis 11 (PIH [21]). For every constant 0 < ε < 1, there is no FPT algorithm solving
ε-Gap-2CSP.

The Baby PIH, a hypothesis implied by PIH, asserts the hardness of approximating
individual size of a satisfying multi-assignment. Formally,

▶ Hypothesis 12 (Baby PIH [13]). For any constant r > 0, no FPT algorithm can on
input a 2CSP instance, distinguish whether it is satisfiable, or cannot be satisfied by any
multi-assignment with individual size at most r.

We emphasize that the Baby PIH is a hardness hypothesis with a local condition, i.e.,
the individual size of satisfying assignments. It is shown that the standard assumption
W[1] ̸= FPT implies the Baby PIH:

▶ Theorem 13 ([13]). The Baby PIH holds under W[1] ̸= FPT.

In contrast, the Average Baby PIH is defined on a global condition concerning the total
size of satisfying assignments. The precise statement of this complexity assumption contains
a technical property on the “shape” of the constraints in a 2CSP instance.

▶ Definition 14 (Rectangular relation). A 2CSP instance Π = (X, Σ, Φ) is said to have
rectangular relations if for each φj = (xi1xi2 , Cj) ∈ Φ, there exist a set Qj and mappings
πj , ρj : Σ→ Qj , such that (a, b) ∈ Cj iff πj(a) = ρj(b). We call Qj the underlying set of φj .

Some explanation for “rectangular” might be in order. Recall that a subset S ⊆ Σ2 is a
(combinatorial) rectangle if and only if there exist A, B ⊆ Σ such that S = A×B. It is easy
to verify that R ⊆ Σ2 is rectangular if and only if R is the union of a set of pairwise disjoint
rectangles.

▶ Hypothesis 15 (Average Baby PIH). For any constant r > 0, there exists no FPT algorithm
solving the Avg-r-Gap-2CSP problem, even when the instance contains only rectangular
relations.

3 Average Baby PIH from Baby PIH

In this section, we show that the Average Baby PIH even for instances with only rectangular
relations, is implied by the Baby PIH.

Y. Liu, Y. Chen, S. Li, B. Lin, and X. Zheng 65:9

3.1 Proofs of Main Results
We employ a local-to-global reduction developed in [17] to amplify the local gap for one
variable (Theorem 13) into a global gap for all variables, thus proving the Average Baby PIH
from the Baby PIH.

▶ Theorem 16. Under W[1] ̸= FPT, for any constant r > 0, no FPT algorithm can distinguish
a given 2CSP instance with rectangular relation is satisfiable, or cannot be satisfied by any
multi-assignment with total size no more than r.

To show Theorem 16, we first introduce some tools from coding theory. The collision number
of an error-correcting code characterizes the number of codewords needed to find “collision”
on a constant fraction of coordinates. We use the definition in [17]:

▶ Definition 17 (ε-Collision Number). Let m ≥ 1 and x, y ∈ Σm with x ̸= y. For every
i ∈ [m] we say that x and y collide on position i if x[i] = y[i]. Furthermore, a subset S ⊆ Σm

collides on position i if there exist distinct x, y ∈ S with x[i] = y[i]. We define the collision
set of S as

ColSet(S) =
{

i ∈ [m]
∣∣ S collides on position i

}
.

Observe that if |S| ≤ 1, then ColSet(S) = ∅.

Now for every C ⊆ Σm and 0 < ε < 1 the ε-collision number of C, denoted by Colε(C),
is the maximum s ≤ |C|+ 1 such that for all S ∈

(
C

s−1
)

we have∣∣ColSet(S)
∣∣ ≤ εm.

For Reed-Solomon codes, we have the following lower bounds on their collision number.

▶ Theorem 18 (Theorem 10 in [20], see also [16]). For any 0 < ε < 1, any Reed-Solomon
code CRS : Fk

p → Fm
p with sufficiently large k < m ≤ p, Colε(CRS) ≥

√
2εm

k .

Our proof of Theorem 16 consists of two reductions. The first one (Lemma 20) reduces
2CSP instances from the Baby PIH, i.e., with a “local” gap as explained in Section 1.2, to
a new instance whose constraints are between two disjoint groups of variables. The new
instance has a different “global” gap on each group of variables. As the sizes of the two
groups might not be balanced, we do not necessarily have a “global” gap on all the variables.
But this is easily remedied by the second reduction (Lemma 22) which makes an appropriate
number of copies of the two groups.

▶ Definition 19 ((r, s)-Average Multi-Assignment). Let Π = (X, Σ, Φ) be a bipartite 2CSP
instance, in particular X = X1 ∪̇ X2 and every φ = (x1x2, C) ∈ Φ has x1 ∈ X1 and
x2 ∈ X2. Then for r1, r2 ≥ 1 an (r1, r2)-average multi-assignment of Π is a multi-assignment
σ̂ : X → 2Σ such that∑

x∈X1
|σ̂(x)|

|X1|
≤ r1 and

∑
x∈X2

|σ̂(x)|
|X2|

≤ r2.

That is, the total size of σ̂ restricted to X1 is at most r1|X1|, and the total size of σ̂ restricted
to X2 is at most r2|X2| (cf. Definition 7). We say Π is (r1, r2)-average list satisfiable if there
is an (r1, r2)-average multi-assignment which satisfies Π.

▶ Lemma 20. There is an algorithm A which on input a 2CSP instance Π0 = (X0, Σ0, Φ0),
ε > 0, and r ≥ 1 computes a bipartite 2CSP instance Π = (X1 ∪̇X2, Σ, Φ) with the following
properties.
Completeness. If Π0 is satisfiable, then so is Π,

STACS 2025

65:10 On Average Baby PIH and Its Applications

Soundness. For every r ≥ 1 if Π0 is not 2r-list satisfiable, then Π is not (r1, r2)-average list
satisfiable for every r1, r2 ∈ N with

r1 + r2 ≤ 2(1− ε)r.

Rectangularity. All constraints in Φ are rectangular.
In addition, there exists a computable function f upper bounding the running time of A as

f(|X0|+ |Φ0|+ 1/ε + r)|Σ0|O(1). (1)

And the number of variables |X1|+ |X2| and the number of constraints |Π| in Π can also be
upper bounded by f(|X0|+ |Φ0|+ 1/ε + r).

Proof. For the given 2CSP instance Π0 = (X0, Σ0, Φ0) we let

k = |X0| and k′ = |Φ0|.

Thereby we fix some enumerations of the variables in X0 and the constraints in Φ0 as

X0 = {x1, . . . , xk} and Φ0 =
{

φ1, . . . , φk′
}

.

Let C : Fk
p → Fk′′

p be a Reed-Solomon code with

2|Σ0|1/k > p ≥ |Σ0|1/k and k′′ =
⌊

8(1− ε)2r2

ε
k(k′)2

⌋
+ 1.

Clearly |Σ0| ≤ pk, and therefore we can assume without loss of generality

Σ0 ⊆ Fk
p.

Moreover, we only consider the case that

k′′ ≤ p
(

=
∣∣Fp

∣∣) < 2|Σ0|1/k,

i.e., Σ0 is sufficiently larger than k and k′.4 Hence we can invoke Theorem 18 on Σ← Fp,
k ← k, m← k′′, and ε← ε to obtain

Colε(C(Fk
p)) ≥

√
2εk′′

k
> 4(1− ε)rk′, (2)

where the second inequality is by our choice of k′′.

Now the algorithm A constructs the following bipartite 2CSP instance Π = (X, Σ, Φ).
Variables. X = X1 ∪̇X2 with

X1 = {u1, . . . , uk′} and X2 = {v1, . . . , vk′′}.
Alphabets. Σ =

⋃
u∈X1

Σu ∪
⋃

v∈X2
Σv where:

For every j ∈ [k′] the alphabet of the variable uj ∈ X1 is

Σuj =
{(
C(a1), C(a2)

) ∣∣∣ φj = (xi1xi2 , C) and (a1, a2) ∈ C
}
⊆

(
C(Fk

p)
)2 ⊆

(
Fk′′

p

)2
.

(3)

That is, Σuj contains all the (partial) satisfying assignments of φj encoded by C :
Fk

p → Fk′′

p as pairs of vectors in Fk′′

p . (Recall Σ0 ⊆ Fk
p.)

For every ℓ ∈ [k′′] we have Σvℓ
= Fk

p. Since p < 2|Σ0|1/k, we have |Σvℓ
| ≤ 2k|Σ0|.

4 Otherwise, the original instance Π0 can be solved in time of the form (1), and we can then output some
predetermined Π depending on whether Π0 is satisfiable.

Y. Liu, Y. Chen, S. Li, B. Lin, and X. Zheng 65:11

Constraints. Let j ∈ [k′] and φj = (xi1xi2 , C). Then for every ℓ ∈ [k′′] we have a constraint
between the variable uj ∈ X1 and vℓ ∈ X2 which checks whether uj is assigned to
(w1, w2) ∈

(
Fk′′

p

)2 and vℓ to s ∈ Fℓ
q such that

w1[ℓ] = s[i1] and w2[ℓ] = s[i2]. (4)
Consequently (4) implies that the constraint is rectangular.5 Moreover, the number of
constraints in Π is

k′k′′ = k′
⌊

2(1− ε)2r2

ε
k(k′)2

⌋
+ k′.

The completeness of our reduction is straightforward. So we turn to the soundness. In
particular, we assume that the given 2CSP instance Π0 is not 2r-list satisfiable. Furthermore,
let σ̂ : X → 2Σ be a satisfying multi-assignment for Π. We need to show that, for any
r1, r2 ∈ N if there is a satisfying (r1, r2)-average multi-assignment σ̂, then

r1 + r2 > 2(1− ε)r. (5)

To that end, let

Wordσ̂ =
⋃

uj∈X1

⋃
(w1,w2)∈σ̂(uj)

{w1, w2} ⊆ Fk′′

p . (6)

That is, Wordσ̂ is the set of all codewords in Fk′′

p that σ̂ uses for the variables in X1.

▷ Claim 21. Let ℓ ∈ [k′′] with |σ̂(vℓ)| ≤ 2r. Then Wordσ̂ collides on position ℓ.

Proof of Claim 21. Let ℓ ∈ [k′′] be fixed with |σ̂(vℓ)| ≤ 2r.

Consider an arbitrary constraint φj = (xi1xi2 , C) ∈ Φ0
(
i.e., j ∈ [k′]

)
. Since σ̂ is a

satisfying multi-assignment for Π, there exist

(w1, w2) ∈ σ̂(uj) ⊆ Σuj
⊆

(
Fk′′

p

)2 and s ∈ σ̂(vℓ) ⊆ Fk
p

such that uj = (w1, w2) and vℓ = s satisfy the constraint between uj and vℓ in Π. By
(w1, w2) ∈ Σuj and (3) there are a1, a2 ∈ Σ0 with w1 = C(a1) and w2 = C(a2) such that

xi1 = a1 and xi2 = a2 satisfy φj . (7)

Then we say that a1 is (σ̂, φj)-suitable for xi1 with respect to s, and similarly a2 is (σ̂, φj)-
suitable for xi2 with respect to s.

In addition, by (4)

C(a1)[ℓ] = s[i1] and C(a2)[ℓ] = s[i2]. (8)

Now we define a multi-assignment σ̂0 : X0 → 2Σ0 for the original instance Π0 = (X0, Σ0, Φ0)
as follows. For every x ∈ X0 let

σ̂0(x) =
⋃

s∈σ̂(vℓ)

{
a ∈ Σ0

∣∣ j ∈ [k′] and a is (σ̂, φj)-suitable for x with respect to s
}

. (9)

(Recall that we have fixed an ℓ ∈ [k′′] and hence σ̂(vℓ).) Since every variable x must appear
in at least one constraint φj ∈ Φ0 (cf. Definition 5), it is easy to see that σ̂0 is a satisfying
multi-assignment for Π0 by (7).

5 To see this, we take π(uj) = π(w1, w2) = (w1[ℓ], w2[ℓ]) and ρ(vℓ) = (vℓ[i1], vℓ[i2]). Then equation (4) is
precisely π(uj) = ρ(vℓ) as in Definition 14.

STACS 2025

65:12 On Average Baby PIH and Its Applications

As Π0 is not 2r-list satisfiable, there exists an xi∗ ∈ X0 (i.e., i∗ ∈ [k]) with∣∣σ̂0(xi∗)
∣∣ ≥ 2r + 1.

We have assumed that

|σ̂(vℓ)| ≤ 2r,

so by (9) there is an s ∈ σ̂(vℓ) such that∣∣∣{a ∈ Σ0
∣∣ j ∈ [k′] and a is (σ̂, φj)-suitable for xi∗ with respect to s

}∣∣∣ ≥ 2.

Hence there are a1, a2 ∈ Σ0 with a1 ̸= a2 and j1, j2 ∈ [k′] such that
a1 is (σ̂, φj1)-suitable for xi∗ with respect to s,
and a2 is (σ̂, φj2)-suitable for xi∗ with respect to s.

Then (8) implies that

C(a1)[ℓ] = s[i∗] = C(a2)[ℓ].

In other words, C(a1) and C(a2) collide on position ℓ. Clearly C(a1), C(a2) ∈Wordσ̂, so this
finishes the proof of the claim. ◁

Let

r1 =
∑

x∈X1
|σ̂(x)|

|X1|
=

∑
j∈[k′]

∣∣σ̂(uj)
∣∣

k′ and r2 =
∑

x∈X2
|σ̂(x)|

|X2|
=

∑
ℓ∈[k′′]

∣∣σ̂(vℓ)
∣∣

k′′ .

Now we distinguish two cases.
1. There are more than ε fraction of ℓ ∈ [k′′] such that |σ̂(vℓ)| ≤ 2r, then Claim 21 implies

that Wordσ̂ collides on more than ε fraction of positions ℓ ∈ [k′′]. Recall (2), i.e.,

Colε(C(Fk
p)) ≥

√
2εk′′

k
> 4(1− ε)rk′.

Hence,∣∣Wordσ̂

∣∣ ≥ Colε(C(Fk
p)) > 4(1− ε)rk′.

By the definition (6) of Wordσ̂ we deduce

∣∣Wordσ̂

∣∣ =

∣∣∣∣∣∣
⋃

uj∈X1

⋃
(w1,w2)∈σ̂(ui)

{w1, w2}

∣∣∣∣∣∣
≤

∑
uj∈X1

∣∣∣∣∣∣
⋃

(w1,w2)∈σ̂(ui)

{w1, w2}

∣∣∣∣∣∣ ≤
∑

uj∈X1

2
∣∣σ̂(ui)

∣∣
It follows that

r1 =
∑

j∈[k′]
∣∣σ̂(uj)

∣∣
k′ >

4(1− ε)rk′

2k′ = 2(1− ε)r.

2. There are at most ε fraction of ℓ ∈ [k′′] with |σ̂(vℓ)| ≤ 2r. Or equivalently, there are at
least (1− ε) fraction of ℓ ∈ [k′′] with |σ̂(vℓ)| ≥ 2r + 1. Then

r2 =
∑

ℓ∈[k′′]
∣∣σ̂(vℓ)

∣∣
k′′ ≥ (1− ε)k′′(2r + 1) + εk′′

k′′ > 2(1− ε)r.

So both cases lead to (5) as desired. ◀

Y. Liu, Y. Chen, S. Li, B. Lin, and X. Zheng 65:13

With some proper replication, the unbalanced (r1, r2)-gap can be turned into a balanced
one, and yield the desired r-average list unsatisfiability.

▶ Lemma 22. For any bipartite 2CSP instance Π = (X1 ∪̇ X2, Σ, Φ) and r > 1 we can
compute in polynomial time a 2CSP instance Π′ = (X ′, Σ′, Φ′) with

|X| = 2|X1||X2|

such that
Completeness. If Π is satisfiable, then so is Π′,
Soundness. Let r ≥ 1. If Π is not (r1, r2)-average list satisfiable for every r1, r2 ≥ 1 with

r1 + r2 ≤ 2r, then Π′ is not r-average list satisfiable. Or equivalently, if Π′ is r-average
list satisfiable, then for some r1, r2 ∈ N with r1 +r2 ≤ 2r the bipartite Π is (r1, r2)-average
list satisfiable.

Furthermore, if Π is rectangular, then so is Π′.

Proof. Let

k1 = |X1| and k2 = |X2|.

The desired Π′ = (X ′, Σ′, Φ′) is constructed as below.
Variables. X ′ consists of k2 copies of X1 and k1 copies of X2, i.e., X ′ = X ′

1 ∪̇X ′
2 where

X ′
1 =

{
x(i) ∣∣ x ∈ X1 and i ∈ [k2]

}
and X ′

2 =
{

x(i) ∣∣ x ∈ X2 and i ∈ [k1]
}

.

Note, |X ′
1| = |X ′

2| = k1k2, therefore Π′ contains 2k1k2 many variables.
Alphabets. Σ′ =

⋃
x∈X′ Σ′

x where:
For every x ∈ X1 and i ∈ [k2], let Σ′

x(i) = Σx. Recall that Σx ⊆ Σ is the alphabet for
the variable x in the original 2CSP instance Π.
Similarly, for every x ∈ X2 and i ∈ [k1] let Σ′

x(i) = Σx.
Constraints. For every constraint φ = (x1x2, C) ∈ Φ with x1 ∈ X1 and x2 ∈ X2, i1 ∈ [k2],

and i2 ∈ [k1] we have a constraint

φi1,i2 =
(

x
(i1)
1 x

(i2)
2 , C

)
∈ Φ′.

That is, φi1,i2 is a copy of φ where the variable x1 is replaced by its i1-th copy x
(i1)
1 and

x2 by its i2-th copy x
(i2)
2 . It immediately implies that if Π is rectangular, then Π′ is

rectangular too.

Again the completeness is immediate. Towards the soundness, let σ̂′ : X ′ → 2Σ′ be a
satisfying r-average multi-assignment for Π′. In particular,

r =
∑

x∈X′

∣∣σ̂′(x)
∣∣

|X ′|
=

∑
x∈X′

1

∣∣σ̂′(x)
∣∣ +

∑
x∈X′

2

∣∣σ̂′(x)
∣∣

|X ′
1|+ |X ′

2|
=

∑
x∈X′

1

∣∣σ̂′(x)
∣∣ +

∑
x∈X′

2

∣∣σ̂′(x)
∣∣

2k1k2
.

We set

r1 =
∑

x∈X′
1

∣∣σ̂′(x)
∣∣

|X ′
1|

=
∑

x∈X′
1

∣∣σ̂′(x)
∣∣

k1k2
and r2 =

∑
x∈X′

2

∣∣σ̂′(x)
∣∣

|X ′
2|

=
∑

x∈X′
2

∣∣σ̂′(x)
∣∣

k1k2
(10)

It follows that

r1 + r2 =
∑

x∈X′
1

∣∣σ̂′(x)
∣∣ +

∑
x∈X′

2

∣∣σ̂′(x)
∣∣

k1k2
= 2r.

STACS 2025

65:14 On Average Baby PIH and Its Applications

Note that

X ′
1 =

⋃̇
i∈[k2]

{
x(i) | x ∈ X1

}
. (11)

Therefore,

r1k1k2 = r1|X ′
1|

(
by |X ′

1| = k1k2
)

=
∑

x∈X′
1

∣∣σ̂′(x)
∣∣ (

by (10)
)

=
∑

i∈[k2]

∑
x∈X1

∣∣σ̂′(x(i))
∣∣. (

by (11)
)

Hence, there exists an i1 ∈ [k2] such that

∑
x∈X1

∣∣σ̂′(x(i1))
∣∣ ≤ r1k1, or equivalently

∑
x∈X1

∣∣σ̂′(x(i1))
∣∣

|X1|
≤ r1

by |X1| = k1. Arguing similarly for X2 we get an i2 ∈ [k1] such that∑
x∈X2

∣∣σ̂′(x(i2))
∣∣

|X2|
≤ r2

Finally we define a multi-assignment σ̂ for the original instance Π by

σ̂(x) =
{

σ̂′(x(i1)) if x ∈ X1

σ̂′(x(i2)) if x ∈ X2.

By the above argument, σ̂ is (r1, r2)-average. Moreover, it satisfies Π, since σ̂′ satisfies Π′. ◀

Putting all pieces together, we have Theorem 16.

Proof of Theorem 16. We give an FPT reduction from instances in the Baby PIH (The-
orem 13) to Avg-r-Gap-2CSP. Then, since the Baby PIH holds under W[1] ̸= FPT, we
deduce that the Average Baby PIH also holds under W[1] ̸= FPT.

For any 2CSP instance Π0 = (X0, Σ0, Φ0), we can construct a bipartite 2CSP instance
Π1 = (X1, Σ1, Φ1) by Lemma 20, and then construct an Avg-r-Gap-2CSP instance Π =
(X, Σ, Φ) from Π1 by Lemma 22. Trivially, Π is satisfiable when Π0 is satisfiable. When Π0
is not r-list satisfiable, Π1 is not (r1, r2)-average list satisfiable for all constants r1, r2 with
r1 + r2 ≥ 2(1− ε)r, and thus Π is not (1− ε)r-average list satisfiable. Furthermore, Π has
rectangular relations because Π1 has rectangular relations.

Moreover, the running time of this reduction can be bounded by

f(|X0|+ |Φ0|+ 1/ε + r)|Σ0|O(1)

for a computable function f , and

|X|+ |Φ| ≤ f(|X0|+ |Φ0|+ 1/ε + r)|Σ0|O(1)

as well, so the reduction is an FPT reduction. ◀

Y. Liu, Y. Chen, S. Li, B. Lin, and X. Zheng 65:15

3.2 Average Baby PIH on Dense and Sparse Instances
In this section we prove Theorem 2, which is divided into two separate lemmas to help with
readability. For our purposes, a 2CSP instance Π = (X, Σ, Φ) is dense if |Φ| = ω(|X|); or it
is sparse, if |Φ| = O(|X|).

▶ Lemma 23. Under W[1] ≠ FPT, the Average Baby PIH holds for all Avg-r-Gap-2CSP
instances that are dense.

Proof. The reduction in the proof of Lemma 20 yields complete bipartite 2CSP instances
Π1 = (X1 ∪̇ X2, Σ1, Φ1), i.e., for each x1 ∈ X1 and x2 ∈ X2, there exists a constraint
φ = (x1x2, C) ∈ Φ. Then the reduction in the proof of Lemma 22 makes |X2| copies of X1
and |X1| copies of |X2|, while keeping the constraints in each pair of copies. So in the final
instance Π = (X, Σ, Φ) from the proof of Theorem 16, the number of constraints is

|Φ| = |X1|2|X2|2 = |X|
2

4 .

Now consider any function h ∈ ω(1). We produce a new instance Π′ = (X ′, Σ′, Φ′) by simply
copying Π for t times, where t is chosen as the minimum number satisfying

h(t|X|) ≥ |X|4 .

Note that there is no constraint between different copies. Then, the new parameter is
|X ′| = t|X|, and

|Φ′| = t|Φ| = t|X|2

4 = |X|4 |X
′| ≤ h(|X ′|)|X ′|.

It’s clear that this reduction runs in FPT time. Also, if Π is satisfiable, then Π′ is
satisfiable. If any satisfying multi-assignment to Π must have total size more than r|X|, then
any satisfying multi-assignment to Π′ must assign each copy of Π more than r|X| values, so
in total more than r|X ′| values, preserving the gap. ◀

▶ Lemma 24. Let r > 1. If there exists a constant c > 0 such that no FPT algorithm can
solve Avg-r-Gap-2CSP on instance Π = (X, Σ, Φ) with |Φ| ≤ c · r|X|, i.e., Π is sparse, then
the PIH holds.

Proof Sketch. Let Π = (X, Σ, Φ) be a NO instance of Avg-r-Gap-2CSP. For any (standard)
assignment σ : X → Σ, assume that σ violates t constraints, then one can simply add at
most 2t values to σ and obtain a satisfying multi-assignment σ̂ with total size |X|+ 2t. Since
Π is a NO instance, we have |X|+ 2t > r|X|. Thus,

t >
r − 1

2 |X| = r − 1
2c · r

· c · r|X| ≥ r − 1
2c · r

|Φ|.

In other words, any assignment to Π must violate a constant fraction of the constraints in Π.
This gives a reduction from Avg-r-Gap-2CSP to PIH. ◀

Putting Lemma 23 and Lemma 24 together, we obtain Theorem 2. As already mentioned
in the introduction, this result indicates that the current barrier to the W[1]-hardness of the
PIH is the lack of reduction for Avg-r-Gap-2CSP on sparse instances, i.e., instances with
linearly many constraints.

STACS 2025

65:16 On Average Baby PIH and Its Applications

References
1 Noga Alon, Dana Moshkovitz, and Shmuel Safra. Algorithmic construction of sets for k-

restrictions. ACM Trans. Algorithms, 2(2):153–177, 2006. doi:10.1145/1150334.1150336.
2 Sanjeev Arora, Carsten Lund, Rajeev Motwani, Madhu Sudan, and Mario Szegedy. Proof

verification and the hardness of approximation problems. J. ACM, 45(3):501–555, 1998.
doi:10.1145/278298.278306.

3 Sanjeev Arora and Shmuel Safra. Probabilistic checking of proofs: A new characterization of
NP. J. ACM, 45(1):70–122, 1998. doi:10.1145/273865.273901.

4 Libor Barto and Marcin Kozik. Combinatorial gap theorem and reductions between promise
CSPs. In Joseph (Seffi) Naor and Niv Buchbinder, editors, Proceedings of the 2022 ACM-SIAM
Symposium on Discrete Algorithms, SODA 2022, Virtual Conference / Alexandria, VA, USA,
January 9 - 12, 2022, pages 1204–1220. SIAM, 2022. doi:10.1137/1.9781611977073.50.

5 Yijia Chen, Yi Feng, Bundit Laekhanukit, and Yanlin Liu. Simple combinatorial construction
of the ko(1)-lower bound for approximating the parameterized k-Clique. In 2025 Symposium
on Simplicity in Algorithms (SOSA), pages 263–280. Society for Industrial and Applied
Mathematics, 2025. doi:10.1137/1.9781611978315.21.

6 Yijia Chen and Bingkai Lin. The constant inapproximability of the parameterized Dominating
Set problem. SIAM J. Comput., 48(2):513–533, 2019. doi:10.1137/17M1127211.

7 Marek Cygan, Fedor V. Fomin, Lukasz Kowalik, Daniel Lokshtanov, Dániel Marx, Marcin
Pilipczuk, Michal Pilipczuk, and Saket Saurabh. Parameterized Algorithms. Springer, 2015.
doi:10.1007/978-3-319-21275-3.

8 Irit Dinur. The PCP theorem by gap amplification. J. ACM, 54(3):12, 2007. doi:10.1145/
1236457.1236459.

9 Rodney G. Downey and Michael R. Fellows. Fundamentals of Parameterized Complexity.
Texts in Computer Science. Springer, 2013. doi:10.1007/978-1-4471-5559-1.

10 Jörg Flum and Martin Grohe. Parameterized Complexity Theory. Texts in Theoretical
Computer Science. An EATCS Series. Springer, 2006. doi:10.1007/3-540-29953-X.

11 Venkatesan Guruswami, Bingkai Lin, Xuandi Ren, Yican Sun, and Kewen Wu. Almost optimal
time lower bound for approximating parameterized Clique, CSP, and more, under ETH. CoRR,
abs/2404.08870, 2024. doi:10.48550/arXiv.2404.08870.

12 Venkatesan Guruswami, Bingkai Lin, Xuandi Ren, Yican Sun, and Kewen Wu. Parameterized
Inapproximability Hypothesis under Exponential Time Hypothesis. In Bojan Mohar, Igor
Shinkar, and Ryan O’Donnell, editors, Proceedings of the 56th Annual ACM Symposium on
Theory of Computing, STOC 2024, Vancouver, BC, Canada, June 24-28, 2024, pages 24–35.
ACM, 2024. doi:10.1145/3618260.3649771.

13 Venkatesan Guruswami, Xuandi Ren, and Sai Sandeep. Baby PIH: parameterized inapproxim-
ability of min CSP. In Rahul Santhanam, editor, 39th Computational Complexity Conference,
CCC 2024, July 22-25, 2024, Ann Arbor, MI, USA, volume 300 of LIPIcs, pages 27:1–27:17.
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, 2024. doi:10.4230/LIPICS.CCC.2024.27.

14 Karthik C. S. and Subhash Khot. Almost polynomial factor inapproximability for parameterized
k-Clique. In Shachar Lovett, editor, 37th Computational Complexity Conference, CCC 2022,
July 20-23, 2022, Philadelphia, PA, USA, volume 234 of LIPIcs, pages 6:1–6:21. Schloss
Dagstuhl – Leibniz-Zentrum für Informatik, 2022. doi:10.4230/LIPICS.CCC.2022.6.

15 Karthik C. S., Bundit Laekhanukit, and Pasin Manurangsi. On the parameterized complexity
of approximating Dominating Set. J. ACM, 66(5):33:1–33:38, 2019. doi:10.1145/3325116.

16 Karthik C. S. and Inbal Livni Navon. On hardness of approximation of parameterized Set Cover
and Label Cover: Threshold graphs from error correcting codes. In Hung Viet Le and Valerie
King, editors, 4th Symposium on Simplicity in Algorithms, SOSA 2021, Virtual Conference,
January 11-12, 2021, pages 210–223. SIAM, 2021. doi:10.1137/1.9781611976496.24.

https://doi.org/10.1145/1150334.1150336
https://doi.org/10.1145/278298.278306
https://doi.org/10.1145/273865.273901
https://doi.org/10.1137/1.9781611977073.50
https://doi.org/10.1137/1.9781611978315.21
https://doi.org/10.1137/17M1127211
https://doi.org/10.1007/978-3-319-21275-3
https://doi.org/10.1145/1236457.1236459
https://doi.org/10.1145/1236457.1236459
https://doi.org/10.1007/978-1-4471-5559-1
https://doi.org/10.1007/3-540-29953-X
https://doi.org/10.48550/arXiv.2404.08870
https://doi.org/10.1145/3618260.3649771
https://doi.org/10.4230/LIPICS.CCC.2024.27
https://doi.org/10.4230/LIPICS.CCC.2022.6
https://doi.org/10.1145/3325116
https://doi.org/10.1137/1.9781611976496.24

Y. Liu, Y. Chen, S. Li, B. Lin, and X. Zheng 65:17

17 Shuangle Li, Bingkai Lin, and Yuwei Liu. Improved lower bounds for approximating paramet-
erized nearest codeword and related problems under ETH. In Karl Bringmann, Martin Grohe,
Gabriele Puppis, and Ola Svensson, editors, 51st International Colloquium on Automata,
Languages, and Programming, ICALP 2024, July 8-12, 2024, Tallinn, Estonia, volume 297
of LIPIcs, pages 107:1–107:20. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, 2024.
doi:10.4230/LIPICS.ICALP.2024.107.

18 Bingkai Lin. A simple gap-producing reduction for the parameterized Set Cover problem.
In Christel Baier, Ioannis Chatzigiannakis, Paola Flocchini, and Stefano Leonardi, editors,
46th International Colloquium on Automata, Languages, and Programming, ICALP 2019,
July 9-12, 2019, Patras, Greece, volume 132 of LIPIcs, pages 81:1–81:15. Schloss Dagstuhl –
Leibniz-Zentrum für Informatik, 2019. doi:10.4230/LIPICS.ICALP.2019.81.

19 Bingkai Lin. Constant approximating k-Clique is W[1]-hard. In Samir Khuller and Vir-
ginia Vassilevska Williams, editors, STOC ’21: 53rd Annual ACM SIGACT Symposium on
Theory of Computing, Virtual Event, Italy, June 21-25, 2021, pages 1749–1756. ACM, 2021.
doi:10.1145/3406325.3451016.

20 Bingkai Lin, Xuandi Ren, Yican Sun, and Xiuhan Wang. Constant approximating parameter-
ized k-SetCover is W[2]-hard. In Nikhil Bansal and Viswanath Nagarajan, editors, Proceedings
of the 2023 ACM-SIAM Symposium on Discrete Algorithms, SODA 2023, Florence, Italy,
January 22-25, 2023, pages 3305–3316. SIAM, 2023. doi:10.1137/1.9781611977554.CH126.

21 Daniel Lokshtanov, M. S. Ramanujan, Saket Saurabh, and Meirav Zehavi. Parameterized
complexity and approximability of Directed Odd Cycle Transversal. In Shuchi Chawla, editor,
Proceedings of the 2020 ACM-SIAM Symposium on Discrete Algorithms, SODA 2020, Salt
Lake City, UT, USA, January 5-8, 2020, pages 2181–2200. SIAM, 2020. doi:10.1137/1.
9781611975994.134.

22 Carsten Lund and Mihalis Yannakakis. On the hardness of approximating minimization
problems. J. ACM, 41(5):960–981, 1994. doi:10.1145/185675.306789.

23 Pasin Manurangsi. Tight running time lower bounds for strong inapproximability of maximum
k-Coverage, Unique Set Cover and related problems (via t-wise agreement testing theorem). In
Shuchi Chawla, editor, Proceedings of the 2020 ACM-SIAM Symposium on Discrete Algorithms,
SODA 2020, Salt Lake City, UT, USA, January 5-8, 2020, pages 62–81. SIAM, 2020. doi:
10.1137/1.9781611975994.5.

A From Average Baby PIH to Inapproximability of k-ExactCover

We present a proof relying on a construction that slightly differs from the one in [13]. Their
proof makes use of the (T, m)-set gadget [22, 1] that was previously used to show the
hardness of approximating SetCover problem. On the other hand, our proof develops a
novel composition of the collision number of ECCs (recall Definition 17) with the following
well-known combinatorial object.

▶ Definition 25 (Hypercube Partition System). Let A, B be two sets. Then the (A, B)-
hypercube partition system is defined by

the universe M = AB
(

=
{

z
∣∣ a function z : B → A

})
, and

a collection of subsets
{

Px,y

}
x∈B,y∈A

where each Px,y =
{

z ∈M
∣∣ z(x) = y

}
.

▶ Theorem 26 (cf. Theorem 21 in [13]). Assume that the Average Baby PIH holds on all
2CSP instances with rectangular relations. Then k-ExactCover cannot be approximated
in FPT time within any constant factor. More precisely, for every constant r > 1 no FPT
algorithm, on a given k-SetCover instance Π = (S, U) with size n and k ≥ 1, can distinguish
between the following two cases:

We can choose k disjoint sets in S whose union is U .
U is not the union of any rk sets in S.

STACS 2025

https://doi.org/10.4230/LIPICS.ICALP.2024.107
https://doi.org/10.4230/LIPICS.ICALP.2019.81
https://doi.org/10.1145/3406325.3451016
https://doi.org/10.1137/1.9781611977554.CH126
https://doi.org/10.1137/1.9781611975994.134
https://doi.org/10.1137/1.9781611975994.134
https://doi.org/10.1145/185675.306789
https://doi.org/10.1137/1.9781611975994.5
https://doi.org/10.1137/1.9781611975994.5

65:18 On Average Baby PIH and Its Applications

Proof. Let Π = (X, Σ, Φ) be an Avg-r-Gap-2CSP instance with rectangular relations. We
set k = |X|. Moreover, for each rectangular constraint φj = (xi1xi2 , Cj) ∈ Φ we use Qj to
denote the underlying set and πj , ρj : Σ→ Qj the associated mappings as in Definition 14.
That is, for every a, b ∈ Σ, it holds that (a, b) ∈ Cj if and only if πj(a) = ρj(b). Then we set

t = max
φj∈Φ

|Qj |. (12)

Clearly, we can assume without loss of generality

t ≤ |Π|.

Now we reduce Π to a k-ExactCover instance. To that end, we choose a further alphabet
∆ whose size is a prime and satisfies

max
{
⌈log t⌉ , 22r2k2

}
≤ |∆| ≤ 2 max

{
⌈log t⌉ , 22r2k2

}
.

Moreover,let

d =
⌈

2r2k2 log t

log |∆|

⌉
.

This leads to the following code with very large distance (here we simply use Reed-Solomon
code again)

Enc : ∆
⌈

log t
log |∆|

⌉
→ ∆d.

Plugging

k ←
⌊

log t

log |∆|

⌋
, m← d, p← |∆|, 6 and ε← 1/2

in Theorem 18 we conclude that the 1/2-collision number of Enc is

Col1/2(Enc) ≥

√
d

log t/ log |∆| > rk.

Observe that (12) implies that every tuple in Ci can be identified with a string in ∆
⌈

log m
log |∆|

⌉
,

i.e., the domain of Enc.
Then, for each variable x ∈ X and every its possible value a ∈ Σ, we define a set Sx,a

as follows. For each constraint φj = (xi1xi2 , Cj) ∈ Φ with associated set Tj and mappings
πj , ρj : Σ→ Qj , and for each ℓ ∈ [d], we construct a ([2], ∆)-hypercube partition system(

M(j,ℓ), {P (j,ℓ)
u,v }u∈∆,v∈[2]

)
. (13)

6 Observe that⌊
log t

log |∆|

⌋
<

⌈
2r2k2 log t

log |∆|

⌉
≤ ⌈log t⌉ ≤ |∆|,

hence, the condition k < m ≤ p in Theorem 18 is satisfied.

Y. Liu, Y. Chen, S. Li, B. Lin, and X. Zheng 65:19

Then for each (a, b) ∈ Cj we add P
(j,ℓ)
Enc(πj(a))[ℓ],1 to Sxi1 ,a and similarly P

(j,ℓ)
Enc(ρj(b))[ℓ],2 to Sxi2 ,b.

Finally, let the universe be

U =
⋃̇

φj∈Φ,ℓ∈[d]
M(j,ℓ), and S =

{
Sx,a

∣∣ x ∈ X and a ∈ Σ
}

.

For the completeness, let σ : X → Σ be a satisfying assignment of Π, it is routine to
check that {Sx,σ(x)}x∈X is a partition of U .

For the soundness, assume that every satisfying multi-assignment of Π has total size at
least rk (cf. Definition 7). Let S ′ ⊆ S be a cover of U . Consider the multi-assignment that
maps every variable x ∈ X to

{
a ∈ Σ

∣∣ Sx,a ∈ S ′}. If this multi-assignment satisfies Π,
the our assumption implies |S ′| ≥ rk. Otherwise, assume that there exists some constraint
φj = (xi1xi2 , Cj) ∈ Φ which is not satisfied. Note that the above multi-assignment assigns
xi1 to E1 =

{
a ∈ Σ

∣∣ Sxi1 ,a ∈ S ′} and xi2 to E2 =
{

b ∈ Σ
∣∣ Sxi2 ,b ∈ S ′}. Since φj

is not satisfied, for all (a, b) ∈ E1 × E2 we have Enc(πj(a)) ̸= Enc(ρj(b)). However, for
each ℓ ∈ [d], since M(j,ℓ) is covered by S ′, there must exist a ∈ E1 and b ∈ E2 with
Enc(πj(a))[ℓ] = Enc(ρj(b))[ℓ]. Therefore, the set {πj(a)}a∈E1 ∪ {ρj(b)}b∈E2 collides on all
coordinates ℓ ∈ [d], hence it must have size at least Col1/2(Enc). We deduce

|S ′| ≥ |E1|+ |E2| ≥
∣∣{πj(a)}a∈E1 ∪ {ρj(b)}b∈E2

∣∣ ≥ Col1/2(Enc) > rk.

Finally, in each hypercube partition system (13) it holds that∣∣M(j,ℓ)∣∣ = 2|∆| ≤ 4⌈log t⌉ + 422r2k2

≤ |Π|2 + 422r2k2

,

and there are at most
(

k
2
)
d ≤ k2r2k2 log t ≤ r2k4 log |Π| such systems. The size of the

universe U is thus at most g(r, k)|Π|3 for some appropriate computable function g : N2 → N,
while the parameter of the k-ExactCover instance remains k = |X|. It follows easily that
the running time of this reduction is FPT. ◀

Combining Theorem 26 and Theorem 16, we obtain:

▶ Theorem 27. For any constant r > 1, r-approximating k-ExactCover is W[1]-hard.

STACS 2025

The Hardness of Decision Tree Complexity
Bruno Loff #

LASIGE, Faculdade de Ciências, Universidade de Lisboa, Portugal

Alexey Milovanov #

LASIGE, Faculdade de Ciências, Universidade de Lisboa, Portugal

Abstract
Let f be a Boolean function given as either a truth table or a circuit. How difficult is it to find
the decision tree complexity, also known as deterministic query complexity, of f in both cases? We
prove that this problem is NC1-hard and PSPACE-hard, respectively. The second bound is tight,
and the first bound is close to being tight.

2012 ACM Subject Classification Theory of computation

Keywords and phrases Decision tree, Log-depth circuits

Digital Object Identifier 10.4230/LIPIcs.STACS.2025.66

Funding This work was funded by the European Union (ERC, HOFGA, 101041696). Views and
opinions expressed are however those of the author(s) only and do not necessarily reflect those of the
European Union or the European Research Council. Neither the European Union nor the granting
authority can be held responsible for them. It was also supported by FCT through the LASIGE
Research Unit, ref. UIDB/00408/2025 and ref. UIDP/00408/2025, and by CMAFcIO, FCT Project
UIDB/04561/2020, https://doi.org/10.54499/UIDB/04561/2020.

Acknowledgements The authors would like to thank Wei Zhan for his answer at StackOverflow.

1 Introduction

The decision tree is one of the most important computational models in theoretical computer
science. Decision trees were invented in the 50s with the purpose of analyzing data. In this
context, at each node in the tree we query some feature of the data, which partitions the
data points depending on the value of this chosen feature. The resulting partition at the
leaves should allow us to better understand the data. Starting in the 1980s, several learning
algorithms were developed that would process data and produce a classifier. Meaning, we
assume the existence of some function f of which we know some sampled pairs (x, f(x)) (the
data), and we wish to produce a decision tree that would be able to predict f(x), even on a
previously-unseen input x (some famous algorithms are CHAID, CART, ID3, and C4.5, see
([9, 4, 14, 15])). The goal here is to produce the smallest possible decision tree, while making
the fewest possible mistakes. This task, of decision-tree synthesis, is used in applications
(e.g. [19]).

But one can also consider a more algorithmic problem, which is of theoretical interest.
Here, the function f is completely known (i.e., we know (x, f(x)) for all x), and we wish
to produce a decision tree which computes f (e.g., without any mistakes). As far as we
are aware it was in the 1970s (e.g. [20]) when people first studied, for specific functions f ,
and for specific ways of querying the input x, how small can be the depth of a decision tree
that computes f(x) when given x as input. In the meantime, decision trees have become a
ubiquitous computational model, useful in the study of various kinds of computation. To
give a few examples, decision trees are relevant to the study of data structures (the cell-probe
model [13, 11]), cryptographic reductions (in black-box reductions [17]), and communication

© Bruno Loff and Alexey Milovanov;
licensed under Creative Commons License CC-BY 4.0

42nd International Symposium on Theoretical Aspects of Computer Science (STACS 2025).
Editors: Olaf Beyersdorff, Michał Pilipczuk, Elaine Pimentel, and Nguyễn Kim Thắng;
Article No. 66; pp. 66:1–66:13

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:bruno.loff@gmail.com
https://orcid.org/0000-0001-7562-457X
mailto:bruno.loff@gmail.com
https://orcid.org/0000-0002-2356-2079
https://doi.org/10.4230/LIPIcs.STACS.2025.66
https://doi.org/10.54499/UIDB/04561/2020
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

66:2 The Hardness of Decision Tree Complexity

complexity1. There is a meta-complexity problem underlying this algorithmic problem:
how does one determine the decision-tree complexity of a given function f? This question
has been studied before, usually for the learning problem [10], but also for the algorithmic
problem [1, 18].

Let us restrict our attention to the simplest of all decision-tree models, where the
known function f : {0, 1}n → {0, 1} is a Boolean function, and the computational model is
deterministic decision tree that must compute f(x) by querying the bits of x. Here, we can
consider two scenarios, with respect to how f is given:
(tt-DT) We are given f as a truth table, meaning a binary string of length N = 2n so that

f(x) appears at the x-th position.
(circuit-DT) We are given f as a Boolean circuit, which potentially allows for a more succinct

encoding of f .
The meta-complexity problem is: we are given f as input, either as a truth-table (tt-DT) or
as a circuit (circuit-DT) and we wish to find the deterministic query complexity complexity of
f , namely, the smallest depth of a deterministic decision tree that computes f(x) by querying
the bits of x. How hard is this problem? In this paper, we give a satisfactory answer for
both scenarios, essentially via the same technique.

It is not difficult to see that circuit-DT belongs to PSPACE: see Proposition 7 below. One
could immediately conjecture that the problem is PSPACE-hard, but one soon comes across
various difficulties in proving such a statement. (After the required definitions are in place, in
Section 3.2, we discuss precisely where the difficulty lies.) Our first main result, Theorem 10,
is showing that this problem is indeed PSPACE-hard.

It is also well-known, and appears as Proposition 6 below, that tt-DT belongs to P. Meaning,
denoting the input length for tt-DT as N = 2n, which is the length of the truth-table of
a Boolean function f : {0, 1}n → {0, 1}, Proposition 6 states that tt-DT can be solved in
poly(N) time. In Proposition 9, we observe that tt-DT can also be computed in parallel,
namely, by a Boolean circuit of depth O(log N log log N) and size poly(N). This result is
simple enough that it should be considered folklore: easy to prove for anyone who would
care to do so. However, despite being a natural and fundamental problem, no matching
lower-bound was known. Our second main result, Theorem 11, shows that the above bound
is close to tight: tt-DT is NC1-hard (under uniform NC0 reductions).

2 Definitions and upper bounds

▶ Definition 1. We let {0, 1}n denote the set of all binary strings of length n, sometimes
called the Boolean cube. We let {0, 1, ∗}n denote the set of (n-bit) partial assignments. The
elements ρ ∈ {0, 1, ∗}n are in bijection with the Boolean subcubes:

{x ∈ {0, 1}n | ∀i ∈ [n] ρi ̸= ∗ =⇒ xi = ρi}.

We will denote this set also by ρ, by abuse of notation.
We let [i← b] = ∗i−1b∗n−i−1 assign b to the i-th coordinate. Two partial assignment ρ

and ρ′ are called compatible if ρi ̸= ∗ and ρ′i ̸= ∗ implies ρi = ρ′i.
If ρ, ρ′ ∈ {0, 1, ∗}n are compatible, then ρ · ρ′ is the partial assignment such that (ρ · ρ′)i

equals to ρi if ρi ̸= ∗, equals ρ′i if ρ′i ̸= ∗, and equals ∗ if ρi = ρ′i = ∗.

1 In lifting theorems. Some examples of lifting theorems that use deterministic decision trees are:
[16, 7, 6, 5, 12].

B. Loff and A. Milovanov 66:3

If |ρ−1(∗)| = ℓ and y ∈ {0, 1}ℓ, we let ρ(y) ∈ {0, 1}n be the binary string which equals ρ

where ρi ̸= ∗, and equals y in the remaining coordinates (which are filled in order).
Given a Boolean function f : {0, 1}n → {0, 1} and a partial assignment ρ ∈ {0, 1, ∗}n

with ℓ = |ρ−1(∗)| the number of ∗, we let f |ρ : {0, 1}ℓ → {0, 1} be given by

f |ρ(y) = f(ρ(y)).

I.e. it is the restriction of f to the Boolean subcube ρ.

▶ Definition 2. A deterministic decision tree over {0, 1}n is a rooted, labelled, ordered binary
tree T :

Each non-leaf node v is labelled by an index iv ∈ [n].
Each non-leaf node v has two children v0 and v1.

Associated with each node v of T is a partial assignment ρv

The root is associated with ∗n.
For a non-leaf node v, and for both b ∈ {0, 1}, ρvb

= ρv · [xiv
= b].

▶ Definition 3. The computation of T on input x ∈ {0, 1}n is a path in T , which begins at
the root, and proceeds at each node v by going to the child vxiv

, until it reaches a leaf.
It is easy to see that ρv is the set of inputs whose computation goes through v. We have
(ρv)i = ∗ if and only if the coordinate xi has not yet been queried in the computation between
the root and node v, i.e., at or before v. If xi has been queried at or before v, then (ρv)i = xi

for every x whose computation goes through v.

▶ Definition 4. We say that T computes a function f : {0, 1}n → {0, 1} if, for every leaf v of
T , f is constant on ρv. The deterministic query complexity of a function f : {0, 1}n → {0, 1},
which will be denoted D(f), is the smallest depth of any decision tree that computes f .

▶ Definition 5. We let tt-DT be the computational problem where we are given the truth-
table of a function f : {0, 1}n → {0, 1}, and wish to compute D(f). We let circuit-DT be
the computational problem where we are given a Boolean circuit C computing a function
f : {0, 1}n → {0, 1}, and we wish to compute D(f).

The simplest observation that one can make is that tt-DT has a polynomial-time algorithm.

▶ Proposition 6 ([8, 1]). tt-DT belongs to P. More precisely, there is an algorithm that com-
putes the DT-complexity of an n-ary Boolean function in time O(3n · n) = O(N1.585... log N),
where N = 2n.

This algorithm should be considered folklore, but we include it here because it is simple
and insightful.

Proof. The main, crucial observation is that the best decision tree for f must first choose a
coordinate i, query xi, and then run the best decision tree for f |[i←xi]. In general, for any
partial assignment ρ ∈ {0, 1, ∗}n, D(f |ρ) = 0 if f is constant on ρ, and otherwise

D(f |ρ) = min
i∈ρ−1(∗)

{1 + max
b∈{0,1}

D(f |ρ·[i←b])}. (∗)

This gives us a dynamic programming algorithm: knowing D(f |ρ) for all partial assign-
ments ρ ∈ {0, 1, ∗}n with |ρ−1(∗)| = ℓ free variables, we can use the above formula to compute
D(f |ρ) for all ρ ∈ {0, 1, ∗}n with |ρ−1(∗)| = ℓ + 1 free variables. Finally f = f |∗n , so we
learned D(f). There are 3n partial assignments in total, and each computation D(f |ρ) takes
time O(n) in a random-access machine. ◀

STACS 2025

66:4 The Hardness of Decision Tree Complexity

Some more insight will come from the following game reformulation of the statement
“D(f) ≤ k”. Consider the following game between two players, Alice and Bob. The game
lasts for k steps. At every step, Alice chooses a variable xi, and Bob sets a Boolean value to
the corresponding variable, either xi = 0 or xi = 1. After k steps, Alice wins f |ρ is constant
on the partial assignment ρ corresponding to Alice and Bob’s moves; otherwise, Bob wins. It
follows that Alice has a winning strategy in this game if and only if D(f) ≤ k. Indeed, if
D(f) ≤ k, then Alice can make moves according to the corresponding tree, and if D(f) > k,
then Bob wins because this inequality means that for every i, the decision tree complexity of
f |[i←1] or f |[i←0] is at least k. Bob’s strategy is then to repeatedly choose the value b ∈ {0, 1}
that maximizes D(f |[i←b]). One can algorithmically find the winner in this game by a simple
recursive algorithm. It is easy to see that, if a Boolean function f : {0, 1}n → {0, 1} is given
as a Boolean circuit C, an algorithm can decide which of the two players has a winning
strategy, using poly(n, |C|) memory. So, we get the following:

▶ Proposition 7. circuit-DT belongs to PSPACE.

One may now ask whether Proposition 6 can be at all improved. Indeed, the algorithm can
be parallelized. First, a definition:

▶ Definition 8. For i ∈ N, we let NCi denote the class of functions f : {0, 1}n → {0, 1}m

computable by Boolean circuits with binary AND and OR gates, and unary NOT gates, in
depth O((log n)i) and size poly(n, m). We let ÑC1 denote the class of functions f : {0, 1}n →
{0, 1}m computable by such circuits in depth O(log n · log log n) and size poly(n, m).

We now claim the following.

▶ Proposition 9. tt-DT can be computed by a Boolean circuit of size O(3n · poly(n)) =
O(N1.583... polylog N) and depth O(n log n) = O(log N log log N). Hence, tt-DT is in ÑC1.

Proof. The equation (∗) directly gives us a circuit that uses O(3n) min, max, increment, and
all-equal gates: for each partial assignment ρ we check if f |ρ is constant using an all-equal
gate, otherwise we compute the formula given by (∗). This circuit has depth O(n) using
such gates. Implementing such gates using Boolean gates will result in a circuit of depth
O(n log n). ◀

3 Lower bounds

Our two main theorems are the following.

▶ Theorem 10. circuit-DT is PSPACE-hard under polynomial-time reductions.

▶ Theorem 11. tt-DT is NC1-hard under NC0-reduction.

The first theorem is well understood, but the second requires some clarification regarding
reductions and uniformity. Recall the definition of DLOGTIME-uniform cicuits from [3].

▶ Definition 12. Let C = {Cn | n ∈ N} be a family of Boolean circuits, so that Cn computes
a function f : {0, 1}n → {0, 1}m(n).

The “direct connection language” of C is the set of tuples ⟨0n, t, a, b⟩, where a ∈ [|Cn|]
and b ∈ {0} ∪ [|Cn|] are gate numbers in Cn, t is the type of gate a (AND, OR, NOT, or
input gate xi), and gate b is a child of gate a (and equals 0 if a is a leaf).
The circuit family C is DLOGTIME-uniform if its direct connection language can be
recognized in O(log(n)) time by a deterministic multi-tape Turing machine with an index
tape for random access to the input.

B. Loff and A. Milovanov 66:5

We say that language A ⊆ {0, 1}∗ is NC0-reduced to language B ⊆ {0, 1}∗, which we write
A ≤NC0 B, if there is a DLOGTIME-uniform family of NC0-circuits C = {Cn} such that,
for every x ∈ {0, 1}n, x ∈ A iff Cn(x) ∈ B.

It is not difficult to see that this type of reduction satisfies the natural properties like
transitivity and closure: If A ≤NC0 B and B ∈ NC1 then A ∈ NC1 (this holds for both
uniform and non-uniform variants of NC1).

3.1 TQBF
The proof of theorems 10 and 11 are similar: we prove that TQBF reduces to DT. Recall
that TQBF (True Quantified Boolean Formula) is the problem of determining the truth of a
formula

∃y1∀x1∃y2∀x2 . . . ∃yn∀xnh(y1, x1, y2, x2, . . . yn, xn), (†)

where h is some Boolean function. As we did for decision-tree complexity, let us consider
two variants of the TQBF problem:
tt-TQBF We are given as input a Boolean function h : {0, 1}2n → {0, 1} as a truth table,

and wish to know whether (†) holds.
circuit-TQBF We are given h as a circuit, and wish to know whether (†) holds.
It is well-known that circuit-TQBF is PSPACE-complete. It turns out that tt-TQBF is
NC1-complete:

▶ Theorem 13. tt-TQBF is NC1-complete under ≤NC0 reductions.

To prove Theorem 13 we use the following result of Barrington.

▶ Theorem 14 ([2, 3]). The S5 identity problem, S5IP, is the problem of deciding if the
product of given permutations from S5 is equal to the identity. Then S5IP is NC1-complete
under ≤NC0 reductions.

This theorem was proved in [2], and in [3] the authors verified that the reasoning proves the
desired statement with DLOGTIME-uniform NC0 reductions.

Proof of Theorem 13. It is easy to see that tt-TQBF is in NC1: the formula (†) is a Boolean
formula of depth n whose leaves are entries in the truth-table of h. To prove that tt-TQBF is
NC1-hard, the idea is to consider S5IP as a game that can be interpreted as a TQBF formula.

Consider the input of S5IP: permutations π1, . . . , πN , with N = 2n. Imagine two players
Alice and Bob; Alice wants to prove that the product is equal to the identity permutation
and Bob does not trust her.

They play in the following game. Bob asks: what is the product of the first half of the
permutations, i.e. π1 · . . . · π⌊N

2 ⌋
. Alice states that this product is some permutation σ1.

Additionally, since Alice is trying to prove to Bob that all the product of all permutations is
equal to the identity, she is also implicitly stating that the product π⌊N

2 ⌋+1 · . . . · πN is equal
to σ−1

1 . Bob does not trust Alice, and so he chooses b1 ∈ {0, 1} to mean that he believes
one of Alice’s statements to be false. I.e. he chooses b1 = 0 if he believes that the first part
is actually not σ1, and he sets b1 = 1 if he believes that the second part is not σ−1

1 . After
this, a similar procedure repeats: Alice states that the value of the product of the first half
of Bob’s chosen part is σ2 (this is one quarter of all permutations), which implies that the
second half of Bob’s chosen part is σ−1

2 σ
(−1)b1

1 . Then Bob chooses one of these two quarters
b2 ∈ {0, 1} where he believes Alice’s statement is false, and so on.

STACS 2025

66:6 The Hardness of Decision Tree Complexity

This game produces a sequence σ1, b1, . . . , σn, bn. At the end of the game, the winner is
identified by whether α = πi or not, where α and i are inferred from the sequence. This game
can be interpreted as a TQBF: each statement σi of Alice can be encoded as 7 bits (since
5! < 27), and each choice bi of Bob can be encoded as 1 bit. Every value of the truth table
of h for tt-TQBF can be constructed from Alice and Bob’s moves and the corresponding
value of some πi.

Indeed, h(σ1, b1, . . . , σn, bn) = 1 if and only if α = πi for the appropriate α ∈ S5 and
i ∈ [n]. Hence, this reduction is in NC0, since every value in the truth-table of h (i.e. the
winner in the corresponding game) depends only on one permutation πi of the input, which
is encoded using a constant number of bits.

We further claim that the corresponding NC0 reduction can be made DLOGTIME
uniform. By logarithmic time we mean O(log N) = O(n). We first describe an algorithm
which, when given σ1, b1, . . . σn, bn (i.e. the moves in Alice-Bob game), outputs the index
i and the permutation α required to compute the bit h(σ1, b1, . . . σn, bn) = [α = πi?] of h’s
truth table.

The algorithm looks at every pair of moves (σ1, b1), . . . (σn, bn) one time and maintains
in memory a permutation α, an index k ∈ [n], and two indexes 1 ≤ s ≤ t ≤ N . These values
in memory have the following meaning: after round k, Alice has stated that πs . . . πt = α.
Initially α is the identity, k = 0, i = 1, and j = N .

The move of Alice in the k-th round is some permutation σk ∈ S5, and Alice states that
πs . . . πm = σk, where m = s+t

2 . The move of Bob (some bit bk) is a choice “left” or “right”.
If Bob’s answer is “left”, then we set s := s, t := m, α := σ and if Bob’s choice is “right” then
we set s := m + 1, t := t, and α := σ−1

k · α. Each such calculation can be done in constant
time, so the entire computation can be done in linear time.

The above circuit is very simple, and the above algorithm shows how to compute the
connections between the various gates. Since this algorithms runs in O(log N) time, this
circuit is DLOGTIME-uniform. ◀

3.2 The crucial difficulty: TQBF vs DT
We have now laid out enough definitions that we can discuss the crucial difficulty in proving
our main result (Theorems 10 and 11). We would like to prove that circuit-DT is PSPACE-
hard, and we know that circuit-TQBF is PSPACE-hard. We would like to prove that tt-DT
is NC1-hard, and we know that tt-TQBF is NC1-hard. The fundamental difference between
the two problems can be understood by looking them as a game.

In TQBF, we have two disjoint sets of variables: Alice sets the yi variables and Bob sets
the xi variables. In DT, we have a single set of variables: Alice chooses a variable, and Bob
sets the variable. Now, what we would like to do, is to simulate the TQBF game using the
DT game. The difficulty is that it is not at all obvious how such a simulation should proceed.

To simulate a TQBF game over variables y1, x1, . . . , yn, xn, we use a DT game over
variables y1, y′1, x1, x′1, . . . , yn, y′n, xn, x′n, and some other auxiliary variables. The hope is
that the DT instance works in such a way that Alice must play by choosing first yi and then
y′i, or first y′i and then yi. Whichever order she chooses, Bob must play by setting the first
chosen yi or y′i variable to 1, and by setting the second chosen to 0. Then Alice must play
by choosing one of the two xi or x′i variables, and Bob can set it anyway he wants. This
way we simulate the TQBF game using the DT game. The difficulty is now in ensuring
that Alice and Bob are indeed forced to play by the above “standard” strategies. To enforce
this, additional gadgets will be put in place, so that any deviation from the above standard
strategies will cause the deviating player to loose the DT game.

So let us begin.

B. Loff and A. Milovanov 66:7

3.3 First auxiliary function
In the reduction we will need an example, due to Wei Zhan, of a Boolean function W such
that for some variable p it holds that D(W) = D(W |p=1)≫ D(W |p=0). This function will be
a kind of product of the following function w : {0, 1}4 → {0, 1}:

w(p, a0, a1, r) =
{

0 if p = 1, and a0 = a1,
ar if p = 0, or a0 ̸= a1.

▶ Lemma 15 ([21]). The function w is such that
(i) D(w) = 3,
(ii) D(w|p=1) = 3 and
(iii) D(w|p=0) = 2.

Proof of Lemma 15.
(i) To determine w one can ask the values of a0 and a1. If a0 ̸= a1 then it is enough to

know r to determine the value of the function. If a0 = a1 then it is enough to know p

(if p = 0 then w = a0 = a1, if p = 1 then w = 0). The proof of the lower bound follows
from the second item.

(ii) The upper-bound follows from (i). The lower-bound is proven by brute force. We have

w(1, a0, a1, r) =
{

0 if a0 = a1,
ar if a0 ̸= a1.

If we choose to query a0 and a1 first, and they differ, we still need to query r. If we
choose to query ai and r first, and r = 1− i, we still need to query a1−i.

(iii) To determine w(0, a0, a1, r) we may ask r then ar. It is easy to see that one question is
not enough. ◀

Denote by Wk : {0, 1}1+3k the Boolean function given by:

Wk(p, a1
0, a1

1, r1, . . . , ak
0 , ak

1 , rk) = w(p, a1
0, a1

1, r1)⊕ . . .⊕ w(p, ak
0 , ak

1 , rk).

▶ Lemma 16. The function Wk has the following properties:
1. D(Wk) = 3k; Moreover, there is a strategy for the second player (who sets the values)

such that if the first player (Alice) chooses variable p then she looses.
2. D(Wk|p=1) = 3k;
3. D(Wk|p=0) = 2k.

Proof of Lemma 16. It is easy to see that if functions f and g have disjoint variables then
D(f⊕g) = D(f)+D(g). By these reasons the second and the third items are direct corollaries
of the same items in Lemma 15. To prove the first item just consider the following obvious
inequalities:

3k = D(Wk|p=1) ≤ D(Wk) ≤ k · D(w) = 3k. ◀

3.4 Second auxiliary function
Another tool in the reduction is the following function:

Fn(y1, y′1, x1, x′1, . . . yn, y′n, xn, x′n) := f1 ⊕ g1 ⊕ . . .⊕ fn ⊕ gn, where:

every fi is defined as fi(yi, y′i) = yi ∧ y′i;

STACS 2025

66:8 The Hardness of Decision Tree Complexity

every gi is defined as

gi(y1, y′1, x1, x′1, . . . yi, y′i, xi, x′i) =
{

xi if f1 ⊕ g1 ⊕ . . .⊕ gi−1 ⊕ fi = 1
x′i otherwise.

We claim that D(Fn) = 3n. Moreover, we want to claim some properties of the corresponding
DT-game between Alice (who chooses variables) and Bob (who sets values). We would like
to say that Alice and Bob must follow certain standard strategies, or else they will loose the
DT game. Standard strategies are as follows:

Standard strategies for Alice. In a standard strategy for Alice, she spends 2n questions to
ask about the variables yi and y′i for all i. She can ask these questions in an arbitrary order.

She also spends n questions to ask about exactly one of the two variables xi and x′i, for
each i. Here the order is crucial. The correct variable to choose depends on the value of
f1 ⊕ g1 ⊕ · · · ⊕ gi−1 ⊕ fi: she chooses xi if this is 1, and x′i if this is 0, as in the definition of
gi above. So, before asking about xi or x′i, Alice must first ask about y1, y′1, . . . , yi−1, y′i−1
and about the appropriate variable in every couple (xj , x′j) for all j < i. This defines fj , for
all j ≤ i, and gj , for all j < i.

Standard strategies for Bob. A standard strategy for Bob is any strategy such that, the
first time Alice asks about one of the two variables yi or y′i, Bob answers 1.

We now formulate the following lemma about standard strategies.

▶ Lemma 17. It holds that D(Fn) = 3n and, furthermore,
1. If Alice plays according to a standard strategy, she wins the DT game within 3n rounds.
2. If Alice does not play according to a standard strategy then Bob can play in such a way

that Alice does not win within 3n rounds.
3. If, while Alice is playing according to a standard strategy, Bob does not answer according

to one of his standard strategies, then Alice can win the DT game in strictly fewer than
3n rounds.

This auxiliary function is one of the central pieces in the reduction. It will allow us to
replace the TQBF game, where Alice and Bob choose values for some variables, by a DT
game, where Alice chooses some variables and Bob sets their value. For the reduction to go
through, however, we need to put the pieces together in just the right way.

Proof of Lemma 17. The first observation follows from Items 1 and 2. Item 1 follows
because, in a standard strategy, Alice has asked about all variables in the functions fi, and
because she asked about the relevant variable among xi and x′i, she also learned all the gi.

Now we prove Item 2. Assume that Alice does not play according to a standard strategy.
It means that either (a) Alice does not ask about some yi or y′i, or (b) she did not ask
about one of the xi or x′i, or (c.i) she asks about xi or x′i before seeing all the variables of
f1⊕ g1⊕ . . .⊕ gi−1⊕fi, or (d) for some i, she saw all the variables of f1⊕ g1⊕ . . .⊕ gi−1⊕fi,
but asked about the wrong xi or x′i.

In case (a), Alice did not ask about some yi or y′i, so that the value of fi is not defined
and independent of the remaining values, and hence the value of Fn is also not defined, so if
Bob plays according to any standard strategy, they end in a non-monochromatic subcube,
and Alice looses. Likewise, in cases (b) and (d), gi is undefined and independent of the
remaining values, and hence Fn is also undefined, and Alice also looses.

B. Loff and A. Milovanov 66:9

Now suppose we are in case (c.i), but not (a), (b), or (d), or (c.j), for any j < i. Then,
Alice has asked about one of the variables xi or x′i, but she did so before asking every variable
of f1 ⊕ g1 ⊕ . . .⊕ gi−1 ⊕ fi. We then claim that Bob can answer Alice’s questions in such a
way that Alice will need to ask at least 3n + 1 questions in total to know the value of F .
Indeed, Alice has asked about xi or x′i before f1 ⊕ g1 ⊕ . . .⊕ gi−1 ⊕ fi became defined. So
after choosing some value for the variable xi or x′i, Bob can still answer Alice’s questions by
a standard strategy such that gi equals the variable x′i or xi which Alice did not choose. The
remaining questions Bob answers according to an arbitrary standard strategy. Since Alice
wasted (at least) one question by asking an irrelevant variable, it follows that she needs 3n

other questions to fix the value of Fn.
Finally, to prove Item 3, suppose that the first time Alice asks one of the two variables

yi or y′i, Bob answers 0. Then the function fi = yi ∧ y′i becomes fixed and equal to 0, so
Alice can fix the value of F without ever asking about the other variable. And so Alice wins
within 3n− 1 moves. ◀

3.5 The reduction
Let us here sketch of proofs of theorems 10 and 11. We reduce the TQBF instance

∃y1∀x1 . . . ∀xnh(y1, x1, . . . yn, xn) (1)

to computing the query complexity D(D) of the function:

D =
{

q, if Gn ∨ p = 0
W10n ⊕ Fn, otherwise.

where D = D(x1, x′1, y1, y′1, . . . , xn, x′n, yn, y′n, p, q, a1
0, a1

1, r1, . . . , a10n
0 , a10n

1 , r10n)

is a Boolean function on 4n + 2 + 30n variables.

W10n = W10n(p, a1
0, a1

1, r1, . . . , a10n
0 , a10n

1 , r10n) was defined in Section 3.3,
Fn = Fn(y1, y′1, x1, x′1, . . . yn, y′n, xn, x′n) was defined in Section 3.4. And
Gn = Gn(y1, y′1, x1, x′1, . . . yn, y′n, xn, x′n)

is a (previously undefined) Boolean function on 2n variables, given by:

Gn = h(y1, x1, . . . , yn, xn) ∨
n∨

i=1
(yi ∧ y′i) ∨

n∨
i=1

xi ⊕ x′i

In the next subsection we prove that this reduction is correct. But let us sketch here how
the above pieces (p, q, W10n, Fn and Gn) fit together:

If Equation (1) holds, Alice can query the variables of Fn using a standard strategy for
Fn: if she wants to set yi to 1, she asks about yi and then y′i; to set yi to 0, she asks first
about y′i and then yi. If Bob plays according to a standard strategy, he will be forced to
set the variables yi as Alice wants, and ultimately h will be 1, so G will be 1, and then
Alice and Bob must play the game for W10n. So Alice wins with 3n + 30n queries in total.
If Equation (1) does not hold, and Alice plays according to a standard strategy on the 3n

variables of Fn, then Bob can force h and hence Gn to be 0. Now Alice is in trouble: if
she doesn’t query p, she won’t know whether q or W10n is relevant, so the function won’t
be fixed. But as soon as she queries p, Bob can answer p = 1, and now she must query
further 30n variables to learn W10n. That’s 3n + 1 + 30n queries in total.

STACS 2025

66:10 The Hardness of Decision Tree Complexity

If at any point one of the players does not use a standard strategy, then the other player
will have a way of winning .

Completion of the proofs of Theorems 10 and 11. First we note that this reduction can
be computed in polynomial time if h is given as a circuit and by a NC0-circuit if h is given a
truth-table: every value of D depends only on one value of h. To see DLOGTIME-uniformity
one can check that, given values for the input variables of D, one can calculate the ouput,
as a function of h, in time O(n). We simply calculate every value in the above expression
for D in time O(n), and as a result, the output will be either 1, 0, hn(. . .) or ¬hn(. . .). So
the truth table of D can be computed from the truth table of h by a DLOGTIME-uniform
NC0-reduction.

We now claim that (1) is true if and only if D(D) ≤ 33n.

When (1) holds
First we prove if (1) is true, i.e., Alice has a winning strategy in the TQBF-game, then
D(D) ≤ 33n, i.e. Alice has a winning strategy in the DT-game, which allows her to win
within 33n steps.

In the TQBF-game Alice first chooses y1, then y2 as a function of y1 and (Bob’s choice for)
x1 then y3 as a function from y1, x1, y2, x2, and so on. We wish to translate such a strategy
for the TQBF-game, into a strategy for the DT-game. The translation is the following.

Alice begins by fixing the value of Fn to a constant. She will do so, by using the following
standard DT-strategy (standard as in the proof of Lemma 17). If the TQBF-strategy of
Alice sets y1 = 1, then the standard DT-strategy of Alice first asks about the variable y1,
and then asks about the variable y′1. If the TQBF-strategy of Alice sets y1 = 0, the standard
DT-strategy of Alice swaps the order: first asking about y′1 and then about y1. The standard
DT-strategy of Alice then asks about the appropriate relevant variable x1 or x′1 (according
to her standard strategy). She considers the value of the chosen variable (x1 or x′1) to
be the value Bob has chosen for x1 in TQBF-game. Then, the DT-strategy of Alice asks
about y2 and y′2 in some order, that again depends on the corresponding value for y2 in the
TQBF-strategy, and so on.

Now, either Bob follows a standard strategy (as in Lemma 17), or not. If he does, then
(because the TQBF-strategy is a winning strategy for Alice) the value of h is equal to 1 and
hence Gn is also equal to 1 and therefore D is equal to Fn ⊕W10n. Note, that the value of
Fn is already defined. By Lemma 16 Alice can define the value of W10n in remaining 30n

moves, so she wins.
If Bob does not use a standard strategy, Alice can define the value of Fn in fewer than

3n moves. She can do it by Lemma 17. Then Alice asks about p. Then, either:
Bob answers p = 1. In this case, D is equal to Fn⊕W10n, Fn is already defined and Alice
can ask at least 30n questions, which is enough to determine the value of W10n.
Bob answers p = 0. In this case by Lemma 16 Alice can define the value of W10n|p=0
in 20n questions, so she has at least 10n questions left. She uses these questions to ask
about all the variables q, x1, x′1, y1, y′1, . . . , xn, x′n, yn and y′n. Therefore, now Alice knows
the values of W10n, q, p, Gn, and Fn, so Alice knows the value of D.

When (1) is false
Now we prove that if (1) is false then Alice cannot win in 33n moves. First we prove the
following

B. Loff and A. Milovanov 66:11

▶ Lemma 18. Assume that (1) is false. Then, Bob can answer the questions of Alice about
the variables of Fn in such a way that

Fn will not be defined as long as Alice has asked fewer than 3n questions.
If Alice has asked exactly 3n questions, then either (i) the value of Fn is not defined, or
(ii) the value of Fn is defined, but there exists an assignment of variables not asked by
Alice such that Gn = 0.

Proof of Lemma 18. From Lemma 17 we know that, if Alice does not play according to a
standard strategy, she will need more than 3n questions to define Fn. So we can assume
that Alice plays according to a standard strategy. Bob will also play according to a standard
strategy, with the following additional constraint: for every pair {yi, y′i} Bob will answer 0
to the second requested variable. (Recall that, a standard strategy for Bob is one where he
answers 1 for the first requested variable in the pair.)

We claim that if (1) is false, and Alice uses a standard strategy, then Bob can make
xi = x′i for every i, and h = 0, thus forcing Gn = 0. Indeed, in a standard strategy Alice
asks variables in the right order, so that Bob can set xi and x′i to the same value, according
to his winning strategy in the TQBF-game. This makes the value of h equal to 0. ◀

Now we are ready to describe the strategy for Bob. To recall: we are assuming that (1)
is false, and we will devise a strategy for Bob that will leave D undefined unless Alice asks
more than 33n queries.

Bob’s strategy.
For the variables that define Fn, Bob uses the strategy from Lemma 18.
If Alice asks about p then Bob answers 1.
For the variables that define W10n, Bob uses some best strategy for W10n|p=1.
For q the answer is arbitrary.

We argue that if Bob uses this strategy then Alice cannot define the value of D in 33n

questions. Indeed, assume that Alice asks about p. Then p = 1 and the value of D is equal to
the value of Fn⊕W10n. Now either Alice asked < 3n questions about Fn or < 30n questions
about W10n|p=1. Either way, one of these functions is not defined and hence D is also not
defined.

Now assume that Alice does not ask about p. Then by setting p = 1, we can always force
the value of D to be equal to Fn⊕W10n, so this value must be defined. But to define Fn and
W10n, Alice must spend all her 33n questions, and so she cannot ask about q. Moreover, to
learn the value of Fn, she must spend exactly 3n questions about Fn, but she cannot spend
any more. From Lemma 18, there must then exist some setting of the variables Alice didn’t
ask, such that Gn = 0. Then, by way of this assignment together with p = 0, D becomes
equal to q, which Alice did not ask and hence is not defined. ◀

4 Open questions

1. What is the exact time-complexity of tt-DT? Is it possible to improve O(3nn)-algorithm
of Proposition 6? Is it possible to prove any non-trivial bounds (for example, under the
Exponential Time Hypothesis)?

2. Is it possible to improve the O(log N log log N)-depth bound of Proposition 9?
3. What is the exact time, space, and circuit complexity of the problem of finding the

minimum size of a decision tree that computes a given Boolean function? It is known that
this problem belongs to P[1], but the best depth upper-bound we know is O((log N)2). It
seemed to us that our reduction cannot be adapted to this case without a significantly
new idea.

STACS 2025

66:12 The Hardness of Decision Tree Complexity

4. What can we say about the problem of approximating DT complexity? One can consider,
in the reduction above, the function D1

n ⊕ . . . ⊕ Dk
n instead of Dn for some k, where

all Di
n are the same functions as Dn with fresh variables. It allows to prove that the

problem of the approximation of DT with constant term has the same complexity as
exact calculation of DT. Is it possible to improve on this result?

References
1 Scott Aaronson. Algorithms for boolean function query properties. SIAM Journal on Com-

puting, 32(5):1140–1157, 2003. doi:10.1137/S0097539700379644.
2 David A Barrington. Bounded-width polynomial-size branching programs recognize exactly

those languages in NC1. In Proceedings STOC, 1986. doi:10.1145/12130.12131.
3 David A Mix Barrington, Neil Immerman, and Howard Straubing. On uniformity within NC1.

Journal of Computer and System Sciences, 41(3):274–306, 1990. doi:10.1016/0022-0000(90)
90022-D.

4 L. Breiman, J. H. Friedman, R. A. Olshen, and C. J. Stone. Classification and Regression
Trees. Chapman and Hall/CRC, 1984.

5 Arkadev Chattopadhyay, Michal Kouckỳ, Bruno Loff, and Sagnik Mukhopadhyay. Simulation
theorems via pseudo-random properties. Computational Complexity, 28:617–659, 2019. doi:
10.1007/S00037-019-00190-7.

6 Mika Göös. Lower bounds for clique vs. independent set. In Proceedings of FOCS, 2015.
doi:10.1109/FOCS.2015.69.

7 Mika Göös, Toniann Pitassi, and Thomas Watson. Deterministic communication vs. partition
number. In Proceedings of the 56th FOCS, 2015. doi:10.1109/FOCS.2015.70.

8 David Guijarro, Vıctor Lavın, and Vijay Raghavan. Exact learning when irrelevant variables
abound. Information Processing Letters, 70(5):233–239, 1999. doi:10.1016/S0020-0190(99)
00063-0.

9 G. V. Kass. An exploratory technique for investigating large quantities of categorical data.
Applied Statistics, 29(2):119–127, 1980.

10 C. Koch, C. Strassle, and L. Tan. Properly learning decision trees with queries is NP-
hard. In 2023 IEEE 64th Annual Symposium on Foundations of Computer Science (FOCS),
pages 2383–2407, Los Alamitos, CA, USA, November 2023. IEEE Computer Society. doi:
10.1109/FOCS57990.2023.00146.

11 Kasper Green Larsen. Models and techniques for proving data structure lower bounds. PhD
thesis, Aarhus University, 2013.

12 Bruno Loff and Sagnik Mukhopadhyay. Lifting theorems for equality. In Proceedings of STACS,
2019. doi:10.4230/LIPIcs.STACS.2019.50.

13 Mihai Pǎtraşcu. Lower bound techniques for data structures. PhD thesis, Massachusetts
Institute of Technology, 2008.

14 J. R. Quinlan. Induction of decision trees. Machine Learning, 1(1):81–106, 1986. doi:
10.1023/A:1022643204877.

15 J. R. Quinlan. C4.5: Programs for Machine Learning. Morgan Kaufmann Publishers, 1993.
16 Ran Raz and Pierre McKenzie. Separation of the monotone NC hierarchy. Combinatorica,

19(3):403–435, 1999. doi:10.1007/S004930050062.
17 Omer Reingold, Luca Trevisan, and Salil Vadhan. Notions of reducibility between cryptographic

primitives. In Theory of Cryptography Conference, pages 1–20. Springer, 2004. doi:10.1007/
978-3-540-24638-1_1.

18 Detlef Sieling. Minimization of decision trees is hard to approximate. J. Comput. Syst. Sci.,
74(3):394–403, 2008. doi:10.1016/J.JCSS.2007.06.014.

19 Shihao Xuanyuan, Shiang Xuanyuan, and Ye Yue. Application of c4. 5 algorithm in insurance
and financial services using data mining methods. Mobile Information Systems, 2022(1), 2022.

https://doi.org/10.1137/S0097539700379644
https://doi.org/10.1145/12130.12131
https://doi.org/10.1016/0022-0000(90)90022-D
https://doi.org/10.1016/0022-0000(90)90022-D
https://doi.org/10.1007/S00037-019-00190-7
https://doi.org/10.1007/S00037-019-00190-7
https://doi.org/10.1109/FOCS.2015.69
https://doi.org/10.1109/FOCS.2015.70
https://doi.org/10.1016/S0020-0190(99)00063-0
https://doi.org/10.1016/S0020-0190(99)00063-0
https://doi.org/10.1109/FOCS57990.2023.00146
https://doi.org/10.1109/FOCS57990.2023.00146
https://doi.org/10.4230/LIPIcs.STACS.2019.50
https://doi.org/10.1023/A:1022643204877
https://doi.org/10.1023/A:1022643204877
https://doi.org/10.1007/S004930050062
https://doi.org/10.1007/978-3-540-24638-1_1
https://doi.org/10.1007/978-3-540-24638-1_1
https://doi.org/10.1016/J.JCSS.2007.06.014

B. Loff and A. Milovanov 66:13

20 Andrew Chi-Chih Yao. On the complexity of comparison problems using linear functions. In
16th Annual Symposium on Foundations of Computer Science (sfcs 1975), pages 85–89. IEEE
Computer Society, 1975.

21 Wei Zhan. URL: https://cstheory.stackexchange.com/questions/52546/a-question-
about-decision-tree-complexity.

STACS 2025

https://cstheory.stackexchange.com/questions/52546/a-question-about-decision-tree-complexity
https://cstheory.stackexchange.com/questions/52546/a-question-about-decision-tree-complexity

Commutative N-Rational Series of Polynomial
Growth
Aliaume Lopez #

University of Warsaw, Poland

Abstract
This paper studies which functions computed by Z-weighted automata can be realised by N-weighted
automata, under two extra assumptions: commutativity (the order of letters in the input does not
matter) and polynomial growth (the output of the function is bounded by a polynomial in the size
of the input). We leverage this effective characterization to decide whether a function computed by
a commutative N-weighted automaton of polynomial growth is star-free, a notion borrowed from
the theory of regular languages that has been the subject of many investigations in the context of
string-to-string functions during the last decade.

2012 ACM Subject Classification Theory of computation → Quantitative automata; Theory of
computation → Transducers

Keywords and phrases Rational series, weighted automata, polyregular function, commutative

Digital Object Identifier 10.4230/LIPIcs.STACS.2025.67

Related Version Full Version: https://arxiv.org/abs/2404.02232 [11]

1 Introduction

Given a semiring S, and a finite alphabet Σ, the class of (noncommutative) S-rational series
is defined as functions from Σ∗ to S that are computed by S-weighted automata [1]. This
computational model is a generalization of the classical notion of non-deterministic finite
automata to the weighted setting, where transitions are labeled with elements of S. The
semantics of S-weighted automata on a given word w is defined by the sum over all accepting
runs reading w, of the product of the weights of the transitions taken along this run. In
this paper, we are interested in the case where S equals N or Z, hence, in N-rational series
(NSeries) and Z-rational series (ZSeries). It is clear that NSeries is a proper subclass of
ZSeries, and a longstanding open problem is to provide an algorithm that decides whether a
given ZSeries is in NSeries [10].

▶ Problem 1. Input: A ZSeries f . Output: Is f in NSeries?

Problem 1 recently received attention in the context of polyregular functions (Poly), a
computational model that aims to generalize the theory of regular languages to the setting
of string-to-string functions [2]. In the case of regular languages, star-free languages form a
robust subclass of regular languages described equivalently in terms of first order logic [13],
counter-free automata [13], or aperiodic monoids [16]. Analogously, there exists a star-free
fragment of polyregular functions called star-free polyregular functions (SF) [2]. One open
question in this area is to decide whether a given polyregular function is star-free.

▶ Problem 2. Input: A polyregular function f . Output: Is f star-free?

In order to approach decision problems on polyregular functions, restricting the output
alphabet to a single letter has proven to be a fruitful method [6, 7]. Because words over a
unary alphabet are canonically identified with natural numbers, unary output polyregular
functions are often called N-polyregular functions (NPoly), and their star-free counterpart
star-free N-polyregular functions (NSF). Coincidentally, polyregular functions with unary

© Aliaume Lopez;
licensed under Creative Commons License CC-BY 4.0

42nd International Symposium on Theoretical Aspects of Computer Science (STACS 2025).
Editors: Olaf Beyersdorff, Michał Pilipczuk, Elaine Pimentel, and Nguyễn Kim Thắng;
Article No. 67; pp. 67:1–67:16

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:ad.lopez@uw.edu.pl
https://orcid.org/0000-0002-4205-327X
https://doi.org/10.4230/LIPIcs.STACS.2025.67
https://arxiv.org/abs/2404.02232
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

67:2 Commutative N-Rational Series of Polynomial Growth

SF Poly

ZSF

NSF

ZPoly

NPoly

ZSeries

NSeries

decidable decidable

decidable

decidable

decidable

? [8, Open question 5.55]? ? Problem 1

?
Problem 2

?
[8, Conjecture 7.61]

Figure 1 Decidability and inclusions of classes of functions, arranged along two axes. The
first one is the complexity of the output alphabet (Z, N, Σ). The second one is the allowed
computational power (star-free polyregular functions, polyregular functions, rational series). Arrows
denote strict inclusions, and effectiveness (both in terms of decidability and of effective representation)
is represented by thick double arrows. Inclusions that are suspected to be effective are represented
using a dashed arrow together with a question mark.

output forms a subclass of N-rational series, namely the class of N-rational series of polynomial
growth, i.e. the output of the function is bounded by a polynomial in the size of the input.
In [5], the authors introduced the class of Z-polyregular functions (ZPoly) as a subclass of
Z-rational series that generalizes N-polyregular functions by allowing negative outputs, and
showed that membership in the star-free subclass ZSF inside ZPoly is decidable [5, Theorem
V.8]. Although this could not be immediately leveraged to decide NSF inside NPoly, it was
conjectured that NPoly ∩ZSF = NSF [8, Conjecture 7.61]. It was believed that understanding
the membership problem of NPoly inside ZPoly, that is, a restricted version of Problem 1,
would be a key step towards proving NPoly ∩ ZSF = NSF, which itself would give hope in
designing an algorithm for Problem 2. We illustrate in Figure 1 the known inclusions and
related open problems between the discussed classes of functions.

Contributions. In this paper, we work under the extra assumption of commutativity, that
is, assuming that the function is invariant under the permutation of its input. In this setting,
we prove that NPoly ∩ ZSF = NSF [8, Conjecture 7.61] and design an algorithm that decides
whether a function in ZPoly is in NPoly [8, Open question 5.55]. As a consequence, the
upper left square of Figure 1 has all of its arrows decidable and with effective conversion
procedures under this extra assumption. Because Z-rational series with polynomial growth
are exactly Z-polyregular functions [5], this can be seen as decision procedure for Problem 1
under the extra assumption of commutativity and polynomial growth. Similarly, our results
provide an algorithm for Problem 2 under the extra assumption of commutativity and unary
output alphabet.

As an intermediate step, we provide a complete and decidable characterization of polyno-
mials in Q[X⃗] that can be computed using NSeries (resp. ZSeries). These characterizations
uncover a fatal flaw in the proof of a former characterization of such polynomials [10, The-
orem 3.3, page 4]. We also prove that this previous results holds for polynomials with at
most two indeterminates (Lemma 29), which may explain why it was not detected earlier.
Furthermore, these characterizations provide effective descriptions of polynomials that can
be expressed in ZSeries as those obtained using integer combinations of products of binomial
coefficients (called integer binomial polynomials, defined page 11) and similarly for NSeries

A. Lopez 67:3

by introducing the notion of strongly natural binomial polynomials (defined page 12), which
we believe has its own interest. Finally, these characterizations demonstrate that polynomials
expressible by ZSeries (resp. NSeries) are exactly those expressible by ZSF (resp. NSF), that
is, polynomials are inherently star free functions.

Outline of the paper. In Section 2, we provide a combinatorial definition of N-polyregular
functions (resp. Z-polyregular functions), show that one can decide if a function f ∈ ZPoly is
commutative (Lemma 8). In Section 3, we provide a counterexample to the flawed result of
[10, Theorem 3.3, page 4] (Lemma 15), and correct it by providing effective characterizations
of polynomials computed by ZSeries (Theorem 31) and NSeries (Theorem 34). Finally,
in Section 4, we answer positively to [8, Open question 5.55] (Theorem 37) and to [8,
Conjecture 7.61] (Theorem 40), both under the extra assumption of commutativity.

2 Preliminaries

The capital letters Σ, Γ denote fixed alphabets, i.e. finite set of letters, and Σ∗, Γ∗ (resp.
Σ+, Γ+) are the set of words (resp. non-empty words) over Σ, Γ. The empty word is written
ε ∈ Σ∗. When w ∈ Σ∗ and a ∈ Σ, we let |w| ∈ N be the length of w, and |w|a be the number
of occurrences of a in w.

We assume that the reader is familiar with the basics of automata theory, in particular
the notions of monoid morphisms, idempotents in monoids, monadic second-order (MSO)
logic and first-order (FO) logic over finite words (see e.g. [17]). As aperiodicity will be a
central notion of this paper, let us recall that a monoid M is aperiodic whenever for all
x ∈ M , there exists n ∈ N such that xn+1 = xn. If the monoid M is finite, this n can be
uniformly chosen for all elements in M .

We use the notation {{·}} : Σ∗ → NΣ for the map that counts occurrences of every letter
in the input word (that is, computes the Parikh vector) namely: {{w}} := (a 7→ |w|a)a∈Σ.
Given a set X, a function f : Σ∗ → X is commutative whenever for all u ∈ Σ∗, for all
permutations σ of {1, . . . , |w|}, f(σ(u)) = f(u). Equivalently, it is commutative whenever
there exists a map g : NΣ → X such that g ◦ {{·}} = f .

Let k ∈ N, and let Σ be a finite alphabet. Given a function η : {1, . . . , k} → Σ, we
define the η† : Nk → Σ∗ as η†(x⃗) := η(1)x1 . . . η(k)xk . A function f : Nk → X is represented
by a commutative function g : Σ∗ → X if there exists a map η : {1, . . . , k} → Σ such that
g ◦ η† = f . This notion will be useful to formally state that a polynomial “is” a commutative
polyregular function. For instance, the polynomial function P (X, Y) = X × Y is represented
by the commutative function g : {a, b}∗ → Z defined by g(w) := |w|a × |w|b.

2.1 Polynomials
A polynomial P ∈ Z[X1, . . . , Xk] is non-negative when for all non-negative integer inputs
n1, . . . , nk ≥ 0, the output P (n1, . . . , nk) of the polynomial is non-negative. In the case
of at most three indeterminates, we use variables X, Y, Z instead of X1, X2, X3 to lighten
the notation. Beware that we do not consider negative values as input, as the numbers
ni will ultimately count the number of occurrences of a letter in a word. As an example,
the polynomial (X − Y)2 is non-negative, and so is the polynomial X3, but the polynomial
X2 − 2X is not.

A monomial is a product of indeterminates and integers. For instance, XY is a monomial,
3X is a monomial, −Y is a monomial, but X + Y and 2X2 + XY are not. Every polynomial
P ∈ Z[X1, . . . , Xn] decomposes uniquely into a sum of monomials. A monomial S divides

STACS 2025

67:4 Commutative N-Rational Series of Polynomial Growth

a monomial T , when S divides T seen as polynomials in Q. For instance, 2X divides XY ,
−Y Z divides X2Y Z3, and Y does not divide X. In the decomposition of P ∈ Z[X1, . . . , Xk],
a monomial is a maximal monomial if it is a maximal element for the divisibility preordering
of monomials. In the polynomial P (X, Y) := X2 − 2XY + Y 2 + X + Y , the set of maximal
monomials is {X2, −2XY, Y 2}. For instance, the non-negative monomials of P (X, Y) :=
(X − Y)2 are X2 and Y 2.

2.2 Polyregular Functions
Because the functions of interest in this paper have output in N or Z, we will only provide the
definition of polyregular functions for these two output semigroups, and we refer the reader
to [3] for the general definition of polyregular functions and their aperiodic counterpart, the
star-free polyregular functions. We chose in this paper to provide a combinatorial description
of polyregular functions with commutative outputs because it will play nicely with our
analysis on polynomials. This description is very similar in shape to the finite counting
automata introduced by [15].

▶ Definition 3 (Z-polyregular functions [5]). Let d ∈ N. The set ZPolyd of polyregular
Z-polyregular functions of degree at most d, is the set of functions f : Σ∗ → Z such that there
exists a finite monoid M , a morphism µ : Σ∗ → M , and a function π : Md+1 → Z satisfying
for all w ∈ Σ∗:

f(w) = π†(w) :=
∑

w=u1···ud+1

π(µ(u1), . . . , µ(ud+1)) .

We call π the production function of f . If the function π has codomain N, then f is N-
polyregular of degree at most d, i.e., f ∈ NPolyd. If the monoid M is aperiodic then the
function f is star-free Z-polyregular (ZSFd), resp. star-free N-polyregular (NSFd).

We complete Definition 3 by letting NPoly :=
⋃

d∈N NPolyd, and similarly for ZPoly,
NSF, and ZSF. In order to illustrate these definitions, let us provide an example of an
N-polyregular function computed using a finite monoid in Example 4. Let us also introduce
in Example 5 a function that serves as an example of division computed by a N-polyregular
function.

▶ Example 4. The map f : w 7→ |w| + 1 belongs to NSF1.

Proof. Let us define M := ({1}, ×) which is a finite aperiodic monoid, µ : Σ∗ → M defined
by µ(w) := 1, and π : M2 → N that is the constant function equal to 1. We check that for
all w ∈ Σ∗: π†(w) =

∑
uv=w 1 = |w| + 1 = f(w). ◀

▶ Example 5. Let f : Σ∗ → N be the function that maps a word w to the number of distinct
pairs of positions in w, i.e., f(w) =

(|w|
2
)

= |w|(|w| − 1)/2. Then, f ∈ NSF2.

Proof. Let us remark that the set Pw of distinct pairs of positions i < j in a word w is
in bijection with the set Dw of decompositions of the form w = xyz, where x and y are
non-empty, via the map (i, j) 7→ (w1,i, wi+1,j , wj+1,|w|). Let us write M := ({0, 1}, max)
which is a finite aperiodic monoid, and µ : Σ∗ → M that maps the empty word ε to 0 and
the other words to 1. Then, let us define π : M3 → N via π(x, y, z) = x × y. We conclude
because:

π†(w) :=
∑

xyz=w

π(µ(x), µ(y), µ(z)) =
∑

xyz=w∧x ̸=ε∧y ̸=ε

1 = |Dw| = |Pw| = f(w) . ◀

A. Lopez 67:5

One of the appeals of NPoly and ZPoly are the numerous characterizations of these classes
in terms of logic, weighted automata, and the larger class of polyregular functions [5, 8]. In
this paper, the main focus will be the connection to weighted automata, which is based on
the notion of growth rate. The growth rate of a function f : Σ∗ → Z is defined as the minimal
d such that |f(w)| = O

(
|w|d

)
. If such a d exists, we say that the function f has polynomial

growth. It turns out that for all k ∈ N, ZPolyd (resp. NPolyd) are precisely functions in
ZSeries (resp. in NSeries) that have growth rate at most d.

▶ Lemma 6 ([8, Theorem 5.22]). Let f ∈ ZSeries. The following are equivalent:
1. f ∈ ZPolyd.
2. f has polynomial growth of degree at most d.
And similarly for NPoly and NSeries.

Let us introduce some compositional properties of Z-polyregular functions that will be
used in this paper to construct Z-polyregular functions.

▶ Lemma 7 ([5, Theorem II.20]). Let d ≥ 1, f, g ∈ NPolyd (resp. ZPolyd, NSFd, ZSFd), L

be a star-free language over Σ∗, and h : Σ∗ → Γ∗ be a polyregular function (resp. a star-free
polyregular function). Then, the following are also in NPolyd (resp. ZPolyd, NSFd, ZSFd):
f ◦ h, f + g := w 7→ f(w) + g(w), f × g := w 7→ f(w) × g(w), 1L × f . Furthermore, the
above constructions preserve commutativity.

Let us briefly state that commutativity is a decidable property of Z-rational series, hence
of Z-polyregular functions. As a consequence, we are working inside a relatively robust and
decidable subclass of Z-rational series.

▶ Lemma 8. Let f ∈ ZSeries. One can decide if f is commutative.

Proof. Remark that the group of permutations of {1, . . . , n} is generated by the cycle
c := (n, 1, . . . , n − 1) and the transposition t := (1, 2). As a consequence, a function f is
commutative if and only if f ◦ c = f = f ◦ t. When f is a rational series, f ◦ c and f ◦ t

are both rational series that can be effectively computed from f ,1 and since equivalence of
rational series is decidable [1, Corollary 3.6], we have obtained a decision procedure. ◀

3 N-rational Polynomials

In this section, we will completely characterize which polynomials in Q[X⃗] are represented
by N-rational series (resp. Z-rational series). To that end, we start by characterizing these
classes for polynomials in Z[X⃗]. We say that a polynomial P ∈ Z[X1, . . . , Xn] is an N-rational
polynomial if it is represented by a N-rational series. It is an easy check that polynomials
with coefficients in N are N-rational polynomials (Lemma 9). However, Example 10 provides
a polynomial with negative coefficients that is an N-rational polynomial. The problem of
characterizing N-rational polynomials was claimed to be solved in [10], using the Definition 11
to characterize N-rational polynomials, as restated in Flawed Theorem 12.

▶ Lemma 9. Let P ∈ N[X⃗]. Then, P is an N-rational polynomial.

1 This can be done by guessing the second (resp. last) letter of the input word, remembering the first
letter in a state, and then running the original automaton for f on the modified input, checking at the
second position (resp. the end of the word) if the guess was correct.

STACS 2025

67:6 Commutative N-Rational Series of Polynomial Growth

▶ Example 10. The polynomials X, X2 + 3, and X2 − 2X + 2 are N-rational polynomials,
but −X is not an N-rational polynomial.

▶ Definition 11 ([10, Section 3, page 3]). The class PolyNNeg[X⃗] is the class of polynomials
P ∈ Z[X⃗] that are non-negative and such that every maximal monomial is non-negative.
When the indeterminates are clear from the context, we write this class PolyNNeg.

▶ Flawed Theorem 12 ([10, Theorem 3.3, page 4]). Let P ∈ Z[X⃗] be a polynomial. Then, P

is an N-rational polynomial if and only if P ∈ PolyNNeg.

Before giving a counterexample to the above statement, let us first exhibit in Example 14
some non-negative polynomial that is not an N-rational polynomial. While the example
will not be in PolyNNeg, it illustrates the key difference between non-negative polynomials
and N-rational polynomials. In order to derive this example, we will need the following
fundamental result about the pre-image of regular languages by polyregular functions.2

Before that, let us remark that if a polynomial P is represented by a N-rational series, then
it is in fact represented by a N-polyregular function thanks to Lemma 6.

▶ Theorem 13 ([2, Theorem 1.7]). The pre-image of a regular language by a (string-to-string)
polyregular function is a regular language.

▶ Example 14. Let P (X, Y) := (X − Y)2. Then P is non-negative, but is not an N-rational
polynomial. Indeed, assume by contradiction that f ∈ NPoly represents P over the alphabet
Σ := {a, b}. Then, f−1({0}) is a regular language (Theorem 13), but f−1({0}) = {w ∈ Σ |
|w|a = |w|b} is not.

Please note that the same argument cannot be leveraged for proving that P is not
representd by a Z-rational series: Theorem 13 only holds for string-to-string functions, and
is applied to the specific case where the output alphabet is {1}, i.e., where the output of the
function belongs to {1}∗ which is isomorphic to N.

Let us now design a counterexample to Flawed Theorem 12 by suitably tweaking Ex-
ample 14 to ensure that the polynomial not only is non-negative, but also belongs to PolyNNeg.
We define Pbad(X, Y, Z) := Z(X + Y)2 + 2(X − Y)2.

▶ Lemma 15. The polynomial Pbad belongs to PolyNNeg, but is not an N-rational polynomial.
As a corollary, [10, Theorem 3.3], restated in Flawed Theorem 12, is false when allowing at
least 3 indeterminates.

Proof. It is clear that Pbad is non-negative. We can expand the expression of Pbad to obtain
Pbad = ZX2 + ZY 2 + 2ZXY + 2X2 − 4XY + 2Y 2. The maximal monomials of P are ZX2,
ZY 2, and 2ZXY , all of which are non-negative.

Assume by contradiction that Pbad is an N-rational polynomial. Let Σ := {a, b, c} be a
finite alphabet. There exists a commutative N-polyregular function f : Σ∗ → N such that
for all w ∈ Σ∗, Pbad(|w|a, |w|b, |w|c) = f(w). Remark that for all x, y, z ≥ 0, Pbad(x, y, z) = 0
if and only if z(x + y)2 = −2(x − y)2. Hence, Pbad(x, y, z) = 0 if and only if z = 0 and
x = y, or z ≠ 0, and x = y = 0. Now, let us consider the language L := {w | f(w) = 0}. By
the above computation, we conclude that L = {w ∈ {a, b}∗ | |w|a = |w|b} ∪ {c}∗. Because
L ∩ {a, b}∗ is not a regular language, we conclude that L is not a regular language. However,
L = f−1({0}) is a regular language (Theorem 13). ◀

2 In this particular case, one could have considered more generally N-rational series, and replaced regular
languages over a unary alphabet by semi-linear sets.

A. Lopez 67:7

We will discuss at the end of Section 3.2 why Lemma 15 is minimal in the number of
indeterminates, which first requires us to provide a correct analogue of Flawed Theorem 12.
Our counterexample relies on the fact that PolyNNeg is not stable under fixing indeterminates,
while N-rational polynomials are. Indeed, the polynomial Pbad satisfies Pbad(X, Y, 1) =
3X2 + 3Y 2 − 2XY , which has a negative coefficient for a maximal monomial. Let us now
prove that closing PolyNNeg under variable assignments is enough to recover from Flawed
Theorem 12. We use the following notation to fix the value of some indeterminate, if P (X, Y)
is a polynomial in Z[X, Y], then [P (X, Y)]X=1 is the polynomial P (1, Y) ∈ Z[Y]. More
generally, if ν is a partial function from X⃗ to N, written ν : X⃗ ⇀ N, the restriction [P (X⃗)]ν
is the polynomial with indeterminates Y⃗ := X⃗ − dom(ν) obtained by fixing the variables of
the domain of ν.

▶ Definition 16. The class PolyStrNNeg[X⃗] is the collection of polynomials P ∈ Z[X⃗] such
that, for every partial function ν : X⃗ ⇀ N, every maximal monomial of [P]ν is non-negative.

First, let us remark that PolyStrNNeg ⊆ PolyNNeg, because polynomials in PolyStrNNeg
are non-negative. We also remarked at the beginning of this section that our counterexample
Pbad provided in Lemma 15 is not in PolyStrNNeg. The rest of the section is mainly concerned
with proving the following corrected version of Flawed Theorem 12.

▶ Theorem 17. Let P ∈ Z[X⃗]. The following are equivalent:
1. P ∈ PolyStrNNeg,
2. P is represented by a N-rational series,
3. P is represented by a N-polyregular function,
4. P is represented by a star-free N-polyregular function,
Furthermore, the properties are decidable, and conversions effective.

Theorem 17 is surprising given the fact that it is not possible to decide whether a
polynomial P ∈ Z[X⃗] is non-negative or if a polynomial P belongs to PolyNNeg (Remark 18),
by reduction to the undecidability of Hilbert’s Tenth Problem [9, 12]. That is, PolyStrNNeg
is a decidable class that strictly contains N[X⃗], and is contained in the undecidable classes
PolyNNeg and the class of non-negative polynomials.
▶ Remark 18. Checking whether a polynomial P ∈ Z[X⃗] is non-negative is undecidable.
Similarly, checking whether a polynomial P ∈ Z[X⃗] belongs to PolyNNeg is undecidable.

The proof of Theorem 17 is divided into two parts. First, we provide in Section 3.1 a fine
combinatorial understanding of what functions can be computed in NPoly and ZPoly. This
allows us to prove that N-polyregular functions are in PolyStrNNeg (Corollary 22). Then, in
Section 3.2 we will show how to compute polynomials in PolyStrNNeg using NPoly (Lemma 26).
Finally, we will next generalize Theorem 17 to polynomials in Q[X⃗] in Section 3.3.

3.1 From N-polyregular functions to polynomials
Let us prove that N-rational polynomials are in PolyStrNNeg. This fact follows from the
correct implication in the statement of Flawed Theorem 12, but we provide a self-contained
proof using a refinement of the classical combinatorial pumping arguments for ZPoly [5,
Lemma 4.16] and NPoly [8, Lemma 5.37]. We take extra care to reprove in our upcoming
Lemma 20 a strong statement that has two main goals. Our first goal is to highlight the role
of commutative polyregular functions in the broader study of polyregular functions, which is
done by reformulating the traditional pumping argument as a composition property involving
said functions, which will be reused in the upcoming Definitions 35 and 39 of Section 4.
Our second goal is to give a precise shape of the functions that arise from such pumping
arguments, which was lacking in former similar statements.

STACS 2025

67:8 Commutative N-Rational Series of Polynomial Growth

To address our first goal, let us define that a function q is a pumping pattern from Np

to Σ∗ whenever there exists words α0, . . . , αp ∈ Σ∗, and words u1, . . . , up ∈ Σ∗, such that
q(X1, . . . , Xp) = α0

∏p
i=1 uXi

i αi. That is, q is syntactically defined by a non-commutative
monomial over the monoid Σ∗. Pumping patterns are commutative polyregular functions.

Our second goal is achieved by understanding that N-polyregular functions essentially
compute binomial coefficients, as illustrated by the polynomial X(X − 1)/2 =

(
X
2
)

of
Example 5. A simple binomial function is a function of the form

(
X−ℓ

k

)
, where ℓ and k

are natural numbers. We extend this to natural binomial functions that are obtained by
considering N-linear combinations of products of simple binomial functions, that is, we
consider functions that have the following shape: f(x1, . . . , xk) =

∑n
i=1 ni

∏k
j=1

(
xj−pi,j

ki,j

)
.

Beware that
(

X−ℓ
k

)
is defined to be 0 when X ≤ ℓ, and is therefore not a polynomial. Let us

immediately prove that simple binomial functions can be represented in NSF, generalizing
Example 5. Conversely, we prove in Lemma 20 that, when suitably pumping a N-polyregular
function, one always obtains natural binomial functions.

▶ Lemma 19. Let F be a simple binomial function from Nk to N. Then it is represented by
a star-free polyregular function.

Proof. Because of the stability properties of NSF (Lemma 7), we only need to check that
given r, s ∈ N, the function x 7→

(
x−r

s

)
is represented by a function fr,s ∈ NSF. Let us

prove it when r = 0, since the other functions can be obtained by translating fr,s. By
definition,

(
x
s

)
= |Px,s|, where Px,s := {(x1, . . . , xs) ∈ Ns | 1 ≤ x1 < · · · < xs ≤ x}. Let

us proceed as in Example 5 and define Dw,s := {(u1, . . . , us, us+1) ∈ (Σ+)s × Σ∗ | w =
u1u2 · · · usus+1}. It is clear that Dax,s is in bijection with Px,s for all x ∈ N using the map
(x1, . . . , xs) 7→ (ax1 , . . . , axs). Now, using the monoid M := ({0, 1}, max) and the morphism
µ(ε) := 0 and µ(a) := 1, one can compute |Dw,s| as π†(w) where π : Ms+1 → N is defined
by π(m1, . . . , ms, ms+1) := m1 × · · · × ms. We conclude that f0,s ∈ NSFs is a star-free
polyregular function. ◀

▶ Lemma 20. Let f be an N-polyregular function. There exists a computable ω ∈ N≥1 such
that for all pumping patterns q : Np → Σ∗, there exists a computable natural binomial function
F such that:

f ◦ q(ωX1, . . . , ωXp) = F over (N≥1)p .

The multiplicative factor ω is necessary in Lemma 20. Indeed, the function f : {a}∗ → N
defined as 0 when the input is of odd length and 1 when the input is of even length is
N-polyregular, but f(aX) is not a polynomial. We can trade off this multiplicative factor for
a constant term addition under the extra assumption that the function is star-free polyregular,
as described in the following Lemma 21. This lemma is not immediately of use, but is crucial
for the upcoming characterization of N-rational polynomials in Theorem 34, which in turn is
a key ingredient of our main Theorem 40.

▶ Lemma 21. Let f be a star-free N-polyregular function. There exists a computable s ∈ N≥1
such that for all pumping patterns q : Np → Σ∗, there exists a computable natural binomial
function F such that:

f ◦ q(X1 + s, . . . , Xp + s) = F over Np .

Because natural binomial functions behave as polynomials with non-negative maximal
monomials on large enough inputs, we can conclude from Lemma 20 that N-rational polyno-
mials are in PolyStrNNeg.

A. Lopez 67:9

▶ Corollary 22. Let P ∈ Z[X1, . . . , Xp] be an N-rational polynomial. Then, P ∈ PolyStrNNeg.

Proof. Let f be a commutative N-rational series with domain defined as Σ := {a1, . . . , ap}
that represents P . Because f has polynomial growth, f ∈ NPoly (Lemma 6). Using
Lemma 20, there exists a number ω ∈ N≥1 and natural binomial function Q such that for all
n1, . . . , np ≥ 1:

f

(
p∏

i=1
aωni

i

)
= Q(n1, . . . , np) = P (ωn1, . . . , ωnp) .

For large enough values of X, the simple binomial function
(

X−p
k

)
coincides with a polynomial

whose leading coefficient is 1/k! which is non-negative. We conclude that the maximal
monomials of P (ωX1, . . . , ωXp) are non-negative, and since ω ≥ 1, we conclude that the
maximal monomials of P have non-negative coefficients.

For every partial valuation ν : X⃗ ⇀ N, the polynomial [P]ν continues to be represented by
a N-polyregular function, namely fu : w 7→ f(uw) where w belongs to a restricted alphabet.
As a consequence, the maximal monomials of [P]ν are also non-negative, and we have proven
that P ∈ PolyStrNNeg. ◀

3.2 From polynomials to N-polyregular functions
This section is devoted to proving that polynomials in PolyStrNNeg can be represented by
star-free N-polyregular functions. The key lemma of this section is Lemma 26, which is
proved by induction on the number of indeterminates of a given polynomial P . In order
to prove that result, we use the combinatorial Lemma 25 that allows us to transform a
polynomial P ∈ PolyStrNNeg into a polynomial in N[X⃗] through a well-chosen translation
of the indeterminates. This argument is based on the notion of discrete derivative which
is built by translating the domain of the polynomial. To that end, let us write τK for
the translation function that maps a polynomial P ∈ Z[X1, . . . , Xk] to the polynomial
P (X1 + K, . . . , Xk + K).

▶ Definition 23. Let K ∈ N, and P ∈ Z[X⃗] be a polynomial, then ∆K(P) := τK(P) − P .

▶ Lemma 24. Let P ∈ N[X⃗] that is non-constant, and K ∈ N, then ∆K(P) ∈ N[X⃗] and all
of its coefficients are (positive) multiples of K. Furthermore, every monomial that strictly
divides some monomial of P appears in ∆K(P).

Proof. We prove the result for monomials, as it extends to N-linear combinations by linearity.
Let P =

∏k
i=1 Xαi

i be a monomial. Notice that τK(P) =
∏k

i=1(Xi + K)αi , and using a
binomial expansion we list all the possible divisors of P , all of which with coefficients that
are positive integers and multiples of K except the coefficient of the maximal monomial
(equal to P itself) which is 1. As a consequence, τK(P) − P is simply obtained by removing
this maximal monomial, which concludes the proof. ◀

▶ Lemma 25. Let P ∈ PolyStrNNeg, P1 be the sum of maximal monomials of P , and
P2 := P − P1 be the sum of non-maximal monomials of P . There exists a computable number
K ∈ N, such that Q := (∆K(P1) + τK(P2)) ∈ N[X⃗].

Proof. Let us first tackle the specific case where P is a constant polynomial. In this
case, P1 = P and P2 = 0. Furthermore, ∆K(P1) = 0 for all K ∈ N. We conclude that
∆K(P1) + τK(P2) = 0 for all K ∈ N, hence belongs to N[X⃗]. Selecting K = 0 we conclude.
Assume now that P is not a constant polynomial. We will use Lemma 24 on a well-selected

STACS 2025

67:10 Commutative N-Rational Series of Polynomial Growth

value of K. Let us write α to be the maximal absolute value of a coefficient in P . Let D be
the number of unitary monomials that divide some monomial appearing in P . We can now
define K := D × α, and let Q := (∆K(P1) + τK(P2)). Remark that ∆K(P1) is already in
N[X⃗], and the constant coefficient of τK(P2) is also in N. For any other monomial of P2, by
the maximality of P1, it strictly divides some monomial of P1, and equals some monomial of
∆K(P1) up to a multiplication by a factor in Q. Because every monomial of ∆K(P1) has a
coefficient that is a multiple of K = α × D, we can compensate every monomial of P2 by a
monomial of ∆K(P1). Therefore, Q ∈ N[X⃗]. ◀

▶ Lemma 26. Let P ∈ Z[X⃗]. If P ∈ PolyStrNNeg, then P is represented by a star-free
N-polyregular function, which is computable given P .

Proof. We prove the result by induction on the number of indeterminates of P . In the
proof, we write X⃗ for the indeterminates appearing in P , that is, we assume without loss of
generality that all indeterminates are used.

Base case: If the (unique) maximal monomial of P is a constant term. Since P ∈
PolyStrNNeg, P = n ∈ N, and therefore P is represented by a constant star-free N-polyregular
function.

Induction: Assume that P is not a constant polynomial, and let us write P = P1 + P2
where P1 is the sum of the maximal monomials of P . We compute a bound K such that
Q := (∆K(P1) + τK(P2)) ∈ N[X⃗] (Lemma 25). In particular, Q is represented by a star-free
N-polyregular function using Lemma 9, the latter being effectively computable from Q. Let
us now remark that P1 ∈ N[X⃗], and is therefore (effectively) represented by a star-free
N-polyregular function (using again Lemma 9). As a consequence, τK(P) = P1 + Q is
(effectively) represented by a function f∆.

For all partial valuations ν : X⃗ ⇀ {0, . . . , K} fixing at least one indeterminate, one can
use the induction hypothesis to compute a star-free N-polyregular function fν that represents
[P]ν . This is possible because we assumed that all indeterminates in X⃗ are used in P .

Let us assume that the alphabet over which the (commutative) functions f∆ and fν are
defined is {a1, . . . , ak}, with ai representing the indeterminate Xi of the polynomials. Now,
let us define by case analysis the following commutative star-free N-polyregular function,
defined on words w of the form w := ax1

1 · · · axk

k , with x1, . . . , xk ≥ 0.

f(w) :=
{

f[Xi 7→xi](w) if ∃i ∈ {1, . . . , k}, xi ≤ K

f∆(ax1−K
1 · · · axk−K

k) otherwise
.

Remark that f is a commutative star-free N-polyregular function that represents P . ◀

While Lemma 26 provides an effective conversion procedure, it does not explicitly state
that the membership is decidable to keep the proof clearer. A similar proof scheme can
be followed to conclude that membership is decidable, and even show that elements in
PolyStrNNeg are, up to suitable translations, polynomials in N[X⃗] (Lemma 27). Beware that
partial applications are still needed in this characterization, as Example 28 illustrates.

▶ Lemma 27. Let P ∈ Z[X⃗]. There exists a computable number K ∈ N such that the
following are equivalent:
1. P ∈ PolyStrNNeg,
2. for all partial functions ν : X⃗ ⇀ N, τK([P]ν) ∈ N[X⃗],
3. for all partial functions ν : X⃗ ⇀ {0, . . . , K}, τK([P]ν) ∈ N[X⃗].
In particular, the above properties are decidable.

A. Lopez 67:11

▶ Example 28. The polynomial Pbad is not a N-rational polynomial, but is non-negative
and satisfies τ10(Pbad) ∈ N[X⃗].

We now have all the tools to prove the corrected version of Flawed Theorem 12.

Proof of Theorem 17 on page 7. The implications Item 4 =⇒ Item 3 =⇒ Item 2 are
obvious. Lemma 26 proves Item 1 =⇒ Item 4, while Corollary 22 proves Item 2 =⇒
Item 1. Note that the lemmas provide effective conversion procedures, and that Lemma 27
also provides a decision procedure. ◀

For completeness, let us remark that the counterexample of Lemma 15 uses three inde-
terminates, and this is not a coincidence: in the particular cases of one or two indeterminates,
the classes PolyStrNNeg and PolyNNeg coincide. In particular, the examples appearing in [10]
are not invalidated, as they all use at most two indeterminates. Note that the equivalence is
clear for the univariate case, where being non-negative and having non-negative maximal
coefficient clearly imply being an N-rational polynomial.

▶ Lemma 29. PolyStrNNeg[X, Y] = PolyNNeg[X, Y].

Proof. It is clear that PolyStrNNeg[X, Y] ⊆ PolyNNeg[X, Y], by considering the empty
valuation ν : {X, Y } ⇀ N. For the converse inclusion, let us consider P (X, Y) that is
non-negative, such that the maximal monomials are non-negative.

If we fix none of the variables, then the maximal monomials are non-negative by assump-
tion. If we fix one of the variables, we can assume without loss of generality that we fix X = k

for some k ∈ N. Then P (k, Y) is a non-negative univariate polynomial, and therefore must
either have a positive leading coefficient (which is the unique maximal monomial in this case)
or be constant equal to 0. In both cases, the maximal monomials have positive coefficient.
The same reasoning applies a fortiori in the case where we fix the two indeterminates, leading
to a constant polynomial. ◀

3.3 From Z to Q

Let us complete our analysis of polynomials represented by NSeries or ZSeries by considering
polynomials with coefficients in Q, and justify that all the combinatorial work has already
happened in Z and N. From Lemma 21, we know that the polynomials that can be
computed by star-free N-polyregular functions are going to coincide (on large enough inputs)
with natural binomial functions. For that reason, we introduce the following “polynomial
counterpart” of a binomial coefficient: given two numbers ℓ, k ∈ N, •

(
X−ℓ

k

)
• defined as

(X − ℓ) · · · (X − ℓ − k)/k!,3 that we call a binomial monomial, and we introduce natural
binomial polynomials as N-linear combinations of products of binomial monomials, i.e., of
the shape: P (X1, . . . , Xk) =

∑n
i=1 ni

∏k
j=1 •

(
Xj−pi,j

ki,j

)
•. Similarly, we introduce the class of

integer binomial polynomials, which are obtained by Z-linear combinations of products of
binomial monomials.

These definitions are justified by the classical result of Pólya that characterizes polynomials
P in Q[X] that are integer-valued (i.e., are such that P (Z) ⊆ Z) as integer binomial
polynomials [14, 4]. Note that this result straightforwardly extends to multiple indeterminates
as we prove in Lemma 30.

3 In particular, •
(

X−ℓ
k

)
• is defined to be 1 when k = 0, and X − ℓ when k = 1.

STACS 2025

67:12 Commutative N-Rational Series of Polynomial Growth

▶ Lemma 30. Let P ∈ Q[X1, . . . , Xk] be a polynomial. Then, P is an integer binomial
polynomial if and only if P (Zk) ⊆ Z, if and only if P (Nk) ⊆ Z.

As an immediate corollary, we completely characterize the class of polynomials in Q[X⃗]
that are represented by ZPoly as the integer binomial polynomials.

▶ Theorem 31. Let P ∈ Q[X⃗]. Then, the following properties are equivalent:
1. P is integer-valued,
2. P is represented by a Z-rational series,
3. P is represented by a Z-polyregular function,
4. P is represented by a star-free Z-polyregular function,
5. P is an integer binomial polynomial.

These properties are furthermore decidable.

Proof. The implications Item 4 =⇒ Item 3 =⇒ Item 2 =⇒ Item 1 are obvious. Now,
Item 1 =⇒ Item 5 is a direct consequence of Lemma 30. Finally, Item 5 =⇒ Item 4 follows
from the fact that •

(
X−p

k

)
• is represented by a star-free Z-polyregular function defined by

hardcoding the output values (in Z) when 0 ≤ X ≤ p, and using a star-free N-polyregular
function when X > p (Lemma 19). Because ZSF is closed under products and Z-linear
combinations, we conclude. ◀

Obtaining an analogue of Theorem 31 for N-polyregular functions requires a bit more
work, as polynomials in Q[X⃗] that are represented by NPoly are not exactly natural binomial
polynomials (see Example 32). To address the issues raised by the former example, we
introduce the notion of strongly natural binomial polynomials, as the polynomials P ∈ Q[X]
such that for all partial valuation ν : ⇀ N, [P]ν is a natural binomial polynomial, which
characterizes the class of polynomials that are represented by NPoly (Theorem 34).

▶ Example 32. The polynomial Q(X, Y, Z) := •
(

X−4
1
)
• •
(

Y
1
)
• •
(

Z
1
)
• +8 •

(
Y
2
)
• +8 •

(
Z
2
)
• +4 is

a non-negative natural binomial polynomial in Z[X, Y, Z], but cannot be computed by a
star-free N-polyregular function. Indeed, Q(0, Y, Z) has a negative maximal monomial, hence
Q ̸∈ PolyStrNNeg, and we conclude using Theorem 17.

▶ Lemma 33. Let P ∈ Q[X⃗] be an integer-valued polynomial, and n ∈ N≥1 be such that
nP ∈ PolyStrNNeg. Then, P is a strongly natural binomial polynomial.

▶ Theorem 34. Let P ∈ Q[X⃗] be a polynomial with rational coefficients and let α be the
smallest number in N≥1 such that αP ∈ Z[X⃗]. Then, the following are equivalent:
1. αP ∈ PolyStrNNeg and P is integer-valued,
2. P is represented by a N-rational series,
3. P is represented by a N-polyregular function,
4. P is represented by a star-free N-polyregular function,
5. P is a strongly natural binomial polynomial.
In particular, the properties are decidable.

Proof. Let us first remark that NPoly ⊆ NSeries, and that if P is represented by a function
f ∈ NSeries, then said function has polynomial growth, and in particular f ∈ NPoly thanks
to Lemma 6. As a consequence, Item 2 ⇐⇒ Item 3. For the implication Item 3 =⇒ Item 1,
we obtain αP ∈ PolyStrNNeg via Theorem 17 by remarking that N-polyregular functions
have output in N and are closed under multiplication by a constant α ∈ N. The fact that P

is integer-valued follows from Theorem 31 and the fact that NSF ⊆ ZPoly. The implication
Item 1 =⇒ Item 5 is obtained thanks to Lemma 33.

A. Lopez 67:13

Let us now prove by induction on the number of indeterminates that Item 5 =⇒ Item 4.
Note that by construction, there exists a number K ∈ N such that when the input values
of P are all greater than K, P coincides with a natural binomial function, which is itself
represented by a star-free N-polyregular function. If some input value Xi is set to a number
xi ≤ K, then one can leverage the fact that [P]Xi=xi

remains a strongly natural binomial
polynomial to conclude by induction that [P]Xi=xi is represented by a star-free N-polyregular
function. Combining these, we obtain a star-free N-polyregular function representing P .

Finally, the implication Item 4 =⇒ Item 3 is immediate as NSF ⊆ NPoly. ◀

Let us remark that Theorem 34 shows that the class of polynomials represented by NPoly
is the same as the class of polynomials represented by NSF, which is a non-trivial statement
that will be reused in the study of more general commutative functions in ZPoly.

4 Beyond Polynomials

In this section, we leverage the decidability results of Section 3 to decide membership in
NPoly inside ZPoly and membership in NSF inside NPoly, both under the extra assumption
of commutativity. To characterize NPoly inside ZPoly we introduce the notion of (k,N)-
combinatorial function (Definition 35), following the spirit of revious characterizations of
subclasses of ZPoly in terms of polynomial pumping arguments [6, 7, 5].

▶ Definition 35. Let k ∈ N, and f : Σ∗ → Z be a Z-polyregular function. The function f is
(k,N)-combinatorial if there exists ω ∈ N, such that for all pumping patterns q : Nk → Σ∗,
there exists a strongly natural binomial polynomial P satisfying:

f ◦ q(ωX1, . . . , ωXk) = P over (N≥1)k .

Let us now introduce a decomposition of commutative Z-polyregular functions into integer
binomial polynomials. Given a number ω ∈ N, let us write ωTypesk for the collection of pairs
(S, r⃗) where S ⊆ {1, . . . , k} and r ∈ {0, . . . , ω − 1}k. To a tuple x⃗ ∈ Nk, one can associate its
ω-type, written ωtype(x⃗), which is the pair (S, r⃗) where S = {i ∈ {1, . . . , k} | xi ≥ ω} and
r⃗ = (xi mod ω)i∈{1,...,k}.

▶ Lemma 36. Let f : Σ∗ → Z be a commutative Z-polyregular function, where we fix the
alphabet Σ = {a1, . . . , ak}. There exists a computable ω ∈ N≥1, and computable integer
binomial polynomials P(S,r⃗) ∈ Q[(Xi)i∈S] for (S, r⃗) ∈ ωTypesk, such that for all x⃗ ∈ Nk,

f

(
k∏

i=1
axi

i

)
= P(S,r⃗) ((⌊xi/ω⌋)i∈S) where (S, r⃗) = ωtype(x⃗) .

▶ Theorem 37. Let k, d ∈ N, and f ∈ ZPolyd be commutative over an alphabet of size k.
Then, the following are equivalent:
1. f is (k,N)-combinatorial,
2. f ∈ NPolyd,
Furthermore, the properties are decidable, and conversions effective.

Proof. Let f ∈ ZPolyd be commutative over an alphabet of size k. We apply Lemma 36 to
compute an ω ∈ N and integer binomial polynomials (P(S,r⃗))(S,r⃗)∈ωTypesk such that for all
x⃗ ∈ Nk, f

(∏k
i=1 axi

i

)
= P(S,r⃗)((⌊xi/ω⌋)i∈S), where (S, r⃗) = ωtype(x⃗). We are first going to

prove that f ∈ NPolyd if and only if P(S,r⃗) is a strongly natural binomial polynomial for all
(S, r⃗) ∈ ωTypesk. This will also provide decidability of Item 2, since one can decide whether
a polynomial is strongly natural binomial polynomial using Theorem 34.

STACS 2025

67:14 Commutative N-Rational Series of Polynomial Growth

Assume that f ∈ NPoly, then by definition, the polynomials P(S,r⃗) are represented by
an N-polyregular function, hence are strongly natural binomial polynomials (Theorem 34).
Conversely, if P(S,r⃗) is a strongly natural binomial polynomial for all (S, r⃗) ∈ ωTypesk, then
f ∈ NPoly because one can compute the ω-type of the input using a polyregular function,
and then compute the suitable strongly natural binomial polynomial P(S,r⃗) which is possible
in NPoly thanks to Theorem 34. The resulting composition belongs to NPoly thanks to
Lemma 7, and we conclude that f ∈ NPolyd because it has growth rate at most d (Lemma 6).

Note that the same proof scheme can be used to conclude that Item 2 implies Item 1.
For the converse implication, we are going to introduce ω2 associated to the fact that f

is (k,N)-combinatorial. Because polynomials represented by N-polyregular functions and
integer binomial polynomials are both closed under multiplication of their input by a constant
factor, we can assume that ω = ω2 in the decomposition of f . Now, consider (S, r⃗) ∈ ωTypesk.
Notice that for all vectors x⃗ ∈ (N≥1)k, the vector (x1ω1S(1) + r1, . . . , xkω1S(k) + rk) has
ω-type (S, r⃗). In particular, the following equality holds:

f

(
k∏

i=1
a

xiω1S(i)+ri

i

)
= P(S,r⃗)((xi)i∈S) ∀x⃗ ∈ (N≥1)k .

Let us therefore consider the pumping pattern q : Nk → Σ∗ that is simply defined
as q(X1, . . . , Xk) :=

∏k
i=1 a

Xi1S(i)+ri

i . Because f is (k,N)-combinatorial with parameter
ω, there exists a strongly natural binomial polynomial P ∈ Q[X1, . . . , Xk] such that f ◦
q(ωX1, . . . , ωXk) = P (X1, . . . , Xk) over (N≥1)k. This proves that P(S,r⃗)((Xi)i∈S) equals
P (X1, . . . , Xk) as polynomials, hence, that P(S,r⃗) is a strongly natural binomial polynomial
for all (S, r⃗) ∈ ωTypesk. We have proven that f ∈ NPolyd. ◀

It was already known that Z-polyregular functions with unary input that are non-negative
are N-polyregular [1, Proposition 2.1 p 137]. Let us derive this fact from our Theorem 37.

▶ Corollary 38. Let f : {a}∗ → Z be a non-negative Z-polyregular function, then f ∈ NPoly.

Proof. Since f has unary input, it is commutative. Furthermore, f is (1,N)-combinatorial
because for all q : N → {a} and all ω ≥ 1, f(q(ωX)) is non-negative. When it is a polynomial
function, it therefore belongs to PolyStrNNeg, hence is a strongly natural binomial polynomial.
We conclude using Theorem 37. ◀

Let us now prove that the above characterizations of commutative N-polyregular functions
can be combined with the recent advances in the study of Z-polyregular functions [5] allowing
to decide the membership of ZSF inside ZPoly. The key ingredient of this study is the use of
a semantic characterization of star-free Z-polyregular functions among Z-rational series that
generalizes the notion of aperiodicity for languages to functions.

▶ Definition 39 (Ultimately polynomial). Let Σ be a finite alphabet. A function f : Σ∗ → Z
is ultimately polynomial when there exists N0 ∈ N such that for all k ∈ N, for all pumping
pattern q : Nk → Σ∗, there exists a polynomial P ∈ Q[X1, . . . , Xk] such that:

f ◦ q = P over (N≥N0)k .

It was observed in [5, Claim V.6], and in [8, Claim 7.45, Lemma 7.53] that a regular
language L is star-free if and only if its indicator function 1L is ultimately polynomial. We
can now answer [8, Conjecture 7.61] positively, by proving that NPoly ∩ ZSF = NSF.

▶ Theorem 40. Let Σ be a finite alphabet, and f : Σ∗ → Z be a commutative N-polyregular
function. Then, the following are equivalent:
1. f is ultimately polynomial,

A. Lopez 67:15

2. f ∈ ZSF,
3. f ∈ NSF.
Furthermore, membership is decidable and conversions are effective.

Proof. The implication Item 3 ⇒ Item 2 is immediate since NSF ⊆ ZSF. Furthermore,
Item 2 implies Item 1 following previous results for star-free Z-polyregular functions [5,
Theorem V.13].

For the implication Item 1 ⇒ Item 3, let us assume that f is ultimately polynomial.
We prove the result by induction on the size of the alphabet Σ. By definition, there exists
N0 ∈ N, and P ∈ Q[(Xa)a∈Σ] such that:

f

(∏
a∈Σ

axa

)
= P ((xa)a∈Σ) ∀x⃗ ∈ (N≥N0)Σ .

It is clear that τN0(P) is represented by an N-polyregular function, namely, fu : w 7→ f(uw)
where u :=

∏
a∈Σ aN0 , and is therefore represented by a star-free N-polyregular function

thanks to Theorem 34. For every letter a ∈ Σ and number 0 ≤ n ≤ N0, there exists, by
induction hypothesis, a star-free N-polyregular function gan that represents the function
fan : (Σ \ {a})∗ → Z that maps w ∈ (Σ \ {a})∗ to f(anw).

Let us conclude by computing f using the following star-free N-polyregular function
g : Σ∗ → Z:

g : w 7→

{
gan(w) if |w|a = n for some a ∈ Σ and n ≤ N0

τN0(P)((|w|a − N0)a∈Σ) otherwise
◀

5 Outlook

Let us end on a more general discussion regarding the status of commutative input functions
in the study of unary output polyregular functions. A quantitative pumping argument for
polyregular function f : Σ∗ → Z states that f has property X if and only if for all pumping
pattern q : Nk → Σ∗, f ◦ q has property X. Let us formalize such a statement for growth
rate and aperiodicity respectively in Lemmas 41 and 42. Note that we generalized pumping
patterns to commutative star-free polyregular functions to simplify the statements.

▶ Lemma 41. Let f ∈ ZSeries, and d ∈ N. Then, f ∈ ZPolyd if and only if for every
commutative star-free polyregular function h of growth rate l ∈ N, (f ◦ h) ∈ ZPolyd×l.

▶ Lemma 42. Let f ∈ ZPoly. Then, f ∈ ZSF, if and only if for every commutative star-free
polyregular function h, (f ◦ h) ∈ ZSF.

Remark that if Lemma 42 were to hold for N-polyregular functions, then the decidability
of NPoly inside ZPoly, and the decidability of NSF inside NPoly would immediately follow.
On the one hand, one can guess a candidate function and check for equivalence, on the other
hand, one can guess a commutative star-free polyregular function and check membership
(which is decidable thanks to this paper). This is restated in our concluding conjecture.

▶ Conjecture 43. Let f ∈ ZPoly. Then, f ∈ NPoly if and only if for every commutative
star-free polyregular function h, (f ◦ h) ∈ NPoly.

STACS 2025

67:16 Commutative N-Rational Series of Polynomial Growth

References
1 Jean Berstel and Christophe Reutenauer. Noncommutative rational series with applications,

volume 137 of Encyclopedia of Mathematics and its Applications. Cambridge University Press,
2010. doi:10.1017/CBO9780511760860.

2 Mikołaj Bojańczyk. Polyregular functions, 2018. arXiv:1810.08760.
3 Mikołaj Bojańczyk, Sandra Kiefer, and Nathan Lhote. String-to-String Interpretations With

Polynomial-Size Output. In Christel Baier, Ioannis Chatzigiannakis, Paola Flocchini, and
Stefano Leonardi, editors, 46th International Colloquium on Automata, Languages, and
Programming (ICALP 2019), volume 132 of Leibniz International Proceedings in Informatics
(LIPIcs), pages 106:1–106:14, Dagstuhl, Germany, 2019. Schloss Dagstuhl – Leibniz-Zentrum
für Informatik. doi:10.4230/LIPIcs.ICALP.2019.106.

4 Paul-Jean Cahen and Jean-Luc Chabert. Integer-Valued Polynomials. American Mathematical
Society, December 1996. doi:10.1090/surv/048.

5 Thomas Colcombet, Gaëtan Douéneau-Tabot, and Aliaume Lopez. Z-polyregular functions.
In 2023 38th Annual ACM/IEEE Symposium on Logic in Computer Science (LICS), pages
1–13, Los Alamitos, CA, USA, June 2023. IEEE Computer Society. doi:10.1109/LICS56636.
2023.10175685.

6 Gaëtan Douéneau-Tabot. Pebble Transducers with Unary Output. In Filippo Bonchi and
Simon J. Puglisi, editors, 46th International Symposium on Mathematical Foundations of
Computer Science (MFCS 2021), volume 202 of Leibniz International Proceedings in Informatics
(LIPIcs), pages 40:1–40:17, Dagstuhl, Germany, 2021. Schloss Dagstuhl – Leibniz-Zentrum für
Informatik. doi:10.4230/LIPIcs.MFCS.2021.40.

7 Gaëtan Douéneau-Tabot. Hiding Pebbles When the Output Alphabet Is Unary. In Mikołaj
Bojańczyk, Emanuela Merelli, and David P. Woodruff, editors, 49th International Colloquium
on Automata, Languages, and Programming (ICALP 2022), volume 229 of Leibniz International
Proceedings in Informatics (LIPIcs), pages 120:1–120:17, Dagstuhl, Germany, 2022. Schloss
Dagstuhl – Leibniz-Zentrum für Informatik. doi:10.4230/LIPIcs.ICALP.2022.120.

8 Gaëtan Douéneau-Tabot. Optimization of string transducers. PhD thesis, Uni-
versité Paris Cité, 2023. URL: https://gdoueneau.github.io/pages/DOUENEAU-TABOT_
Optimization-transducers_v2.pdf.

9 David Hilbert. Mathematical problems. Bulletin of the American Mathematical Society,
8(10):437–479, 1902. doi:10.1090/s0002-9904-1902-00923-3.

10 Juhani Karhumäki. Remarks on commutative N-rational series. Theoretical Computer Science,
5(2):211–217, 1977. doi:10.1016/0304-3975(77)90008-1.

11 Aliaume Lopez. Commutative n-polyregular functions, 2024. doi:10.48550/arXiv.2404.
02232.

12 Yuri Vladimirovich Matiyasevich. The diophantineness of enumerable sets. Doklady Akademii
Nauk SSSR, 191:279–282, 1970. in Russian.

13 Robert McNaughton and Seymour A. Papert. Counter-Free Automata. The MIT Press, 1971.
doi:10.5555/1097043.

14 G. Pólya. Über ganzwertige ganze Funktionen. Rend. Circ. Mat. Palermo, 40:1–16, 1915.
doi:10.1007/BF03014836.

15 Marcel P. Schützenberger. Finite counting automata. Information and control, 5(2):91–107,
1962. doi:10.1016/S0019-9958(62)90244-9.

16 Marcel P. Schützenberger. On finite monoids having only trivial subgroups. Information and
Control, 8(2):190–194, 1965. doi:10.1016/S0019-9958(65)90108-7.

17 Wolfgang Thomas. Languages, automata, and logic. In Grzegorz Rozenberg and Arto
Salomaa, editors, Handbook of formal languages, pages 389–455. Springer, 1997. doi:10.1007/
978-3-642-59136-5.

https://doi.org/10.1017/CBO9780511760860
https://arxiv.org/abs/1810.08760
https://doi.org/10.4230/LIPIcs.ICALP.2019.106
https://doi.org/10.1090/surv/048
https://doi.org/10.1109/LICS56636.2023.10175685
https://doi.org/10.1109/LICS56636.2023.10175685
https://doi.org/10.4230/LIPIcs.MFCS.2021.40
https://doi.org/10.4230/LIPIcs.ICALP.2022.120
https://gdoueneau.github.io/pages/DOUENEAU- TABOT_Optimization-transducers_v2.pdf
https://gdoueneau.github.io/pages/DOUENEAU- TABOT_Optimization-transducers_v2.pdf
https://doi.org/10.1090/s0002-9904-1902-00923-3
https://doi.org/10.1016/0304-3975(77)90008-1
https://doi.org/10.48550/arXiv.2404.02232
https://doi.org/10.48550/arXiv.2404.02232
https://doi.org/10.5555/1097043
https://doi.org/10.1007/BF03014836
https://doi.org/10.1016/S0019-9958(62)90244-9
https://doi.org/10.1016/S0019-9958(65)90108-7
https://doi.org/10.1007/978-3-642-59136-5
https://doi.org/10.1007/978-3-642-59136-5

Slightly Non-Linear Higher-Order Tree Transducers
Lê Thành Dũng (Tito) Nguyễn # Ñ

CNRS & Aix-Marseille University, France

Gabriele Vanoni # Ñ

IRIF, Université Paris Cité, France

Abstract
We investigate the tree-to-tree functions computed by “affine λ-transducers”: tree automata whose
memory consists of an affine λ-term instead of a finite state. They can be seen as variations on
Gallot, Lemay and Salvati’s Linear High-Order Deterministic Tree Transducers.

When the memory is almost purely affine (à la Kanazawa), we show that these machines can
be translated to tree-walking transducers (and with a purely affine memory, we get a reversible
tree-walking transducer). This leads to a proof of an inexpressivity conjecture of Nguyễn and Pradic
on “implicit automata” in an affine λ-calculus. We also prove that a more powerful variant, extended
with preprocessing by an MSO relabeling and allowing a limited amount of non-linearity, is equivalent
in expressive power to Engelfriet, Hoogeboom and Samwel’s invisible pebble tree transducers.

The key technical tool in our proofs is the Interaction Abstract Machine (IAM), an operational
avatar of Girard’s geometry of interaction, a semantics of linear logic. We work with ad-hoc
specializations to λ-terms of low exponential depth of a tree-generating version of the IAM.

2012 ACM Subject Classification Theory of computation → Linear logic; Theory of computation
→ Transducers

Keywords and phrases Almost affine lambda-calculus, geometry of interaction, reversibility, tree
transducers, tree-walking automata

Digital Object Identifier 10.4230/LIPIcs.STACS.2025.68

Related Version Technical report with appendix : https://arxiv.org/abs/2402.05854 [38]

Funding Lê Thành Dũng (Tito) Nguyễn: Supported by the DyVerSe project (ANR-19-CE48-0010).
Gabriele Vanoni: Supported by the ANR PPS Project (ANR-19-CE48-0014) and the European
Union’s Horizon 2020 research and innovation programme under the Marie Skłodowska-Curie grant
agreement No. 101034255.

Acknowledgements We thank Damiano Mazza and Cécilia Pradic for discussions on the possible
applications of the Geometry of Interaction to implicit complexity and automata theory.

1 Introduction

This paper investigates the expressive power of various kinds of tree transducers: automata
computing tree-to-tree functions. This is a topic with a long history, and many equivalences
between machine models are already known. For instance, the class of monadic second-
order transductions1 (MSOTs), whose name refers to a definition by logic, is also captured
by various tree transducer models (e.g. [19]) or by a system of primitive functions and
combinators [10]. This class is closed under composition, and includes functions such as:

mirror and add a d above each b: a(b(c), c) 7→ a(c, d(b(c)))
relabel each c by parity of its depth: a(b(c), c) 7→ a(b(0), 1)

count number of non-a nodes in unary: a(b(c), c) 7→ S(S(S(0)))

1 We consider only tree-to-tree transductions here, but there is a rich theory of MSOTs between graphs,
or between arbitrary relational structures, cf. [12]. See also [8] for a history of MSO transductions. In
the well-studied special case of string functions, MSOTs are called “regular functions”, cf. [33].

© Lê Thành Dũng Nguyễn and Gabriele Vanoni;
licensed under Creative Commons License CC-BY 4.0

42nd International Symposium on Theoretical Aspects of Computer Science (STACS 2025).
Editors: Olaf Beyersdorff, Michał Pilipczuk, Elaine Pimentel, and Nguyễn Kim Thắng;
Article No. 68; pp. 68:1–68:20

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:nltd@nguyentito.eu
https://nguyentito.eu/
https://orcid.org/0000-0002-6900-5577
mailto:vanonigabriele@gmail.com
https://vanoni.me/
https://orcid.org/0000-0001-8762-8674
https://doi.org/10.4230/LIPIcs.STACS.2025.68
https://arxiv.org/abs/2402.05854
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

68:2 Slightly Non-Linear Higher-Order Tree Transducers

Some machines for MSOTs, such as the restricted macro tree transducers2 of [20], involve tree
contexts as data structures used in their computation. A tree context is a tree with “holes”
at some leaves – for example b(a(c, a(⟨·⟩, c))) – and these holes are meant to be substituted
by other trees. Thus, it represents a simple function taking trees to trees: these transducers
use functions as data. From this point of view, in the spirit of functional programming, it
also makes sense to consider transducers manipulating higher-order data, that is, functions
that may take functions as arguments (a function of order k + 1 takes arguments of order
at most k). This idea goes back to the 1980s [21] (cf. Remark 2.9), and a recent variant by
Gallot, Lemay and Salvati [22, 23] computes exactly the tree-to-tree MSOTs.

Linear/affine λ-calculus for MSOTs. Gallot et al. [22, 23] use the λ-calculus to represent
higher-order data, and in order to control the expressive power, they impose a linearity
restriction on λ-terms. In programming language theory, a linear function uses its argument
exactly once, while an affine function must use its argument at most once – affineness thus
mirrors the “single-use restrictions” that appear in various tree transducer models [7, 20, 4, 10].

An independent but similar characterization of MSOTs appeared around the same time
in Nguyễn and Pradic’s work on “implicit automata” [37, 34]. In an analogous fashion to
how the untyped λ-calculus can be used as a Turing-complete programming language, they
consider typed λ-terms seen as standalone programs. For a well-chosen type system – which
enforces a linearity restriction – and input/output convention, it turns out that the functions
computed by these λ-terms are exactly the MSO tree transductions [34, Theorem 1.2.3].

In fact, the proof of [34, Theorem 1.2.3] introduces, as an intermediate step, a machine
model – the “single-state L-BRTTs” of [34, Section 6.4] – that uses λ-terms as memory
to capture the class of MSOTs. Clearly, this device is very close to the tree transducer
model of Gallot et al. Yet there are also important differences between the two: they can be
understood as two distinct ways of extending what we call “purely linear λ-transducers”, as
we will explain. Actually, to avoid some uninteresting pathologies (cf. [34, Theorem 7.0.2]),
we shall prefer to work with affine λ-transducers instead.

▶ Example 1.1. Purely affine λ-transducers will be properly defined later, but for now, for
the sake of concreteness, let us exhibit one such transducer. It takes input trees with binary
a-labeled nodes, unary b-labeled nodes and c-labeled leaves, and is specified by the λ-terms:

ta = λℓ. λr. λx. ℓ (r x) tb = λf. λx. S (f x) tc = S u = λf. f 0

where S and 0 are constants from the output alphabet. The input a(b(c), c) is then mapped
to u (ta (tb tc) tc) which evaluates to the normal form S (S (S 0)). So this λ-transducer
computes the aforementioned “number of non-a nodes written in unary” function. (It actually
is purely linear: each bound variable has exactly one occurrence.)

The issue with this transducer model is its lack of expressiveness, as shown by the following
consequence of our results, which settles an equivalent3 conjecture on “implicit automata”
that had been put forth by Nguyễn and Pradic in [37, Section 5.3]. (We will come back in
Remark 7.1 to how they overcome this to characterize tree-to-tree MSO transductions.)

2 Which are very similar to some other transducer models for MSOTs: the bottom-up ranked tree
transducers of [4, Sections 3.7–3.8] and the register tree transducers of [10, Section 4].

3 A routine syntactic analysis akin to [37, Lemma 3.6] shows that it is indeed equivalent. Note that the
results of [37] are indeed about affine, not linear, λ-calculi.

L. T. D. Nguyễn and G. Vanoni 68:3

▶ Corollary 1.2 (of Theorem 1.4 below). There exists a regular tree4 language whose indicator
function cannot be computed by any purely affine λ-transducer.

Gallot et al. avoid this limitation by extending the transducer model with common
automata-theoretic features. They then show [23, Chapter 7] that the usual linear λ-terms
lead to the previously mentioned characterization of MSOTs, while relaxing the linearity
condition to “almost linearity” yields the larger class of “MSOTs with sharing”5 (MSOT-S).

This notion of almost linear λ-term was introduced by Kanazawa [28], who also studied
the almost affine case in [28, 27]. In fact, the aforementioned characterization of MSOT-S
was first claimed by Kanazawa in a talk more than 15 years ago [26], although he never
published a proof to the best of our knowledge.

Flavors of affine types. We shall work with an affine type system that allows some data
to be marked as duplicable via the exponential modality “!”. The grammar of types is thus
A, B ::= o | A⊸ B | !A – the connective ⊸ is the affine function arrow.

The point is to allow us to restrict duplication by means of syntactic constraints on ‘!’.

▶ Definition 1.3. A purely affine type does not contain any ‘!’, i.e. is built from o and ⊸.
A type is said to be almost purely affine when the only occurrences of ‘!’ are applied to o.

In particular, every purely affine type is almost purely affine.

For example, (o⊸ !o)⊸ !o is almost purely affine but not !(o⊸ o).
The latter definition is motivated by the aforementioned almost affine λ-terms [27], which

allow the variables of base type o to be used multiple times, e.g. λy. λf. λg. (λx. f x x) (g y y)
is almost affine (and even almost linear) for x : o and y : o. Inconveniently, almost linear/affine
λ-terms are not closed under β-reduction, as remarked in [27, §4]. For instance, the previous
term reduces to λy. λf. λg. f (g y y) (g y y) which uses g : o ⊸ o ⊸ o twice. The “!”
modality provides a convenient way to realize a similar idea while avoiding this drawback.

Each λ-transducer has in its definition a memory type, which is for instance o⊸ o for
Example 1.1. We extend Definition 1.3 to λ-transducers: a λ-transducer is purely (resp.
almost purely) affine when its memory type is purely (resp. almost purely) affine.

Contributions. First, we study (almost) purely affine λ-transducers, relating them to yet
another machine model: tree-walking tree transducers, see e.g. [19]. Those are devices with a
finite-state control and a reading head moving around the nodes of the input tree; in one
step, the head can move to the parent or one of the children of the current node.

▶ Theorem 1.4. Writing ⊆ for a comparison in expressive power, we have:

purely affine λ-transducer ⊆ reversible tree-walking transducer
almost purely affine λ-transducer ⊆ tree-walking transducer

Corollary 1.2 then follows immediately from a result of Bojańczyk and Colcombet [9]:
there exists a regular tree language not recognized by any tree-walking automaton.

4 This phenomenon depends on using trees as inputs. Over strings, purely affine λ-terms can be used to
recognize any regular language [37, Theorem 5.1].

5 An MSOT-S can be decomposed as an MSO tree-to-graph transduction (Footnote 1), that produces a
rooted directed acyclic graph (DAG), followed by the unfolding of this graph into a tree. The rooted
DAG is a compressed representation of the output tree with some “sharing” of subtrees.

STACS 2025

68:4 Slightly Non-Linear Higher-Order Tree Transducers

We also obtain characterizations of MSOTs and of MSOT-Ss, by preprocessing the input
with an MSO relabeling – a special kind of MSOT that can only change the node labels in a
tree, but keeps its structure as it is. Morally, this preprocessing amounts to the same thing
as the automata-theoretic features – finite states and regular look-ahead – used in [22, 23].

▶ Theorem 1.5. Using ≡ to denote an equivalence in expressive power, we have:

purely affine λ-transducer ◦ MSO relabeling ≡ MSOT
almost purely affine λ-transducer ◦ MSO relabeling ≡ MSOT-S

This should be informally understood as a mere rephrasing of the results of Gallot et al. and
of Kanazawa, except with affine rather than linear λ-terms. On a technical level, we derive
our right-to-left inclusions from their results; there turns out to be a minor mismatch, and
working with affineness rather than linearity proves convenient to overcome it. As for the
left-to-right inclusions, we get them as corollaries of Theorem 1.4.

Finally, we give a genuinely new characterization of the class MSOT-S2 of functions that
can be written as compositions of two MSO transductions with sharing.

▶ Definition 1.6. A type is almost !-depth 1 when the only occurrences of ‘!’ are applied to
almost purely affine types (e.g. !(!o⊸ o) is almost !-depth 1, but not !!(o⊸ o)).

▶ Theorem 1.7. Almost !-depth 1 λ-transducer ◦ MSO relabeling ≡ MSOT-S2.

To prove the left-to-right inclusion, we compile these λ-transducers to invisible pebble tree
transducers [18] – an extension of tree-walking transducers known to capture MSOT-S2. For
the converse, we rely on a simple composition procedure for λ-transducers, which gives us:

▶ Proposition 1.8. Suppose that the tree-to-tree functions f and g are computed by λ-
transducers with respective memory types A and B. Then g ◦ f is computed by a λ-transducer
with memory type A{o := B}.

Key tool: the Interaction Abstract Machine (IAM). To translate λ-transducers into
tree-walking or invisible pebble tree transducers, we use a mechanism that evaluates a λ-term
using a pointer to its syntax tree that is moved by local steps – just like a tree-walking
reading head. This mechanism, called the Interaction Abstract Machine, was derived from a
family of semantics of linear λ-calculi known as “geometry of interaction” (GoI) – for more
on its history, see [46, Chapter 3]. Our approach thus differs from both the proofs of Gallot
et al. in [23], which go through a syntactic procedure for lowering the order of λ-terms, and
those of Nguyễn and Pradic in [34], which rely on another kind of denotational semantics.

The IAM satisfies a well-known reversibility property, see e.g. [46, Proposition 3.3.4] –
it even appears in the title of the seminal paper [14]. In the purely affine case, this gives
us reversible tree-walking transducers in Theorem 1.4 – these have not appeared explicitly
in the literature, but we define them similarly to the existing reversible graph-walking
automata [39] and reversible two-way string transducers [15]. In the almost purely affine and
almost !-depth 1 cases, we use an ad-hoc optimization of the IAM that breaks reversibility.

Preliminaries on trees. A ranked alphabet Σ is a finite set with a “rank” (or “arity”)
rk(c) ∈ N = {0, 1, . . . } associated to each “letter” c ∈ Σ. It can be seen as a first-order
signature of function symbols, and by a tree over Σ we mean a closed first-order term over
this signature. For instance, a tree over {a : 2, b : 1, c : 0} may have binary a-labeled nodes,
unary b-labeled nodes and c-labeled leaves; examples include a(b(c), c) or b(a(a(c, c), c)).

L. T. D. Nguyễn and G. Vanoni 68:5

We write Tree(Σ) for the set of trees over the ranked alphabet Σ. It will also be convenient
to work with the sets Tree(Σ, X) = Tree(Σ ∪ {x : 0 | x ∈ X}) of trees over Σ with the
additional possibility of having X-labeled leaves.

2 Affine λ-terms and tree-to-tree λ-transducers

The grammar of our λ-terms, where a ranges over constants and x over variables, is

t, u ::= a | x | λx. t | t u | !t | let !x = u in t

These λ-terms are considered up to renaming of bound variables (λx. t binds x in t, while
let !x = u in t binds x in t but not in u). We will also use contexts, which are λ-terms
containing one occurrence of a special symbol, the hole ⟨·⟩:

C, D, E ::= ⟨·⟩ | λx. C | t C | C u | !C | let !x = C in t | let !x = u in C

Plugging, i.e. substituting the hole of a context C for a term t, potentially capturing free
variables, is written C⟨t⟩. For example, if C = λx. t ⟨·⟩, then C⟨u v⟩ = λx. t (u v). The
linear logic tradition calls a term of the form !t a box, and the number of nested boxes
surrounding a subterm of some term is called its depth within this term. Similarly, the depth
of a context C is defined to be the number of boxes surrounding the hole ⟨·⟩. In this paper,
however, we are counting only boxes which do not surround terms of the base type o.

Typing rules. Our type system is a variant of Dual Intuitionistic Linear Logic [6], with
weakening to make it affine. As already said, our grammar of types is A, B ::= o | A⊸ B | !A.
As usual, ⊸ is right-associative: the parentheses in A⊸ (B ⊸ C) can be dropped.

The typing contexts are of the form (unrestricted variables) | (affine variables). In the
rules below, a comma between two sets of typed affine variables denotes a disjoint union; this
corresponds to prohibiting the use of the same affine free variable in two distinct subterms.

Θ | Φ, x : A ⊢ x : A

Θ | Φ, x : A ⊢ t : B

Θ | Φ ⊢ λx. t : A⊸ B

Θ | Φ ⊢ t : A⊸ B Θ | Φ′ ⊢ u : A

Θ | Φ, Φ′ ⊢ t u : B

Θ, x : A | Φ ⊢ x : A

Θ | ∅ ⊢ t : A

Θ | ∅ ⊢ !t : !A
Θ | Φ ⊢ u : !A Θ, x : A | Φ′ ⊢ t : B

Θ | Φ, Φ′ ⊢ let !x = u in t : B

We also work with constants whose types are fixed in advance. Fixing a : A means that we
have the typing rule Θ | Φ ⊢ a : A. We shall also abbreviate ∅ | ∅ ⊢ t : A as t : A.

▷ Claim 2.1 (Affineness). If λx. t is well-typed, the variable x occurs at most once in t, at
depth 0. (But let-bound variables are not subject to any such restriction).

Normalization. Our β-reduction rules, which can be applied in any context C, are as follows,
where the context L consists of a succession of let-binders (i.e. L ::= ⟨·⟩ | let !x′ = t′ in L):

L⟨λx. t⟩ u −→β L⟨t{x := u}⟩ let !x = L⟨!u⟩ in t −→β L⟨t{x := u}⟩

For instance, the following is a valid β-reduction:

(let !x = u in let !y = v in λz. z x y) t −→∗
β let !x = u in let !y = v in t x y

This “reduction at a distance” – an idea of Accattoli & Kesner [3] – is a way to get the desirable
Proposition 2.4 below without having to introduce cumbersome “commuting conversions”.
For an extended discussion in the context of a system very close to ours, see [32, §1.2.1].

STACS 2025

68:6 Slightly Non-Linear Higher-Order Tree Transducers

▶ Proposition 2.2 (Normalization and subject reduction). Any well-typed term has a β-normal
form. Furthermore, if Θ | Φ ⊢ t : A then Θ | Φ ⊢ t′ : A for any β-normal form t′ of t.

▶ Definition 2.3. We say that a term Θ | Φ ⊢ t : A is purely affine when all of its subterms
have purely affine types (cf. Definition 1.3) and Θ = ∅, which implies that it contains no
!-box or let-binding. We also call almost purely affine (resp. almost !-depth 1) the terms
Θ | Φ ⊢ t : A in which, for every subterm u of t,

the type of u is almost purely affine (resp. almost !-depth 1 – cf. Definition 1.6),
if u = !r then r is purely (resp. almost purely) affine,
Θ = x1 : o, . . . , xn : o (resp. Θ = x1 : A1, . . . , xn : An where A1, . . . , An are almost purely
affine).

▶ Proposition 2.4. Assume that we work with purely affine constants, as will always be the
case in this paper. Let Θ | Φ ⊢ t : A and suppose t is in normal form. If A and the types in
Θ and Φ are purely affine (resp. almost purely affine, almost !-depth 1), then so is t.

For example, let !z = !(λx. x) in z : o⊸ o is not purely affine but its normal form λx. x is.

Encoding of trees in our affine λ-calculus. Fix a ranked alphabet Σ. We consider λ-terms
built over the constants c : ork(c) ⊸ o for c ∈ Σ. There is a canonical encoding ›(·) of trees
as closed terms of type o; for instance, τ = a(b(c), c) is encoded as τ̃ = a (b c) c.

▶ Proposition 2.5. Every closed term of type o using these constants admits a unique
normal form. Furthermore, ›(·) is a bijection between Tree(Σ) and these normal forms.

Given a type A and a family of λ-terms t⃗ = (tc)c∈Σ such that tc : Ark(c) ⊸ A for each
letter c ∈ Σ, we write τ̂ (⃗t) for the result of replacing each constant c in τ̃ by tc. It is always well
typed, with type A. For the example τ = a(b(c), c), we have τ̂((tx)x∈{a,b,c}) = ta (tb tc) tc.

Higher-order transducers (or λ-transducers). Let us fix an input ranked alphabet Γ.

▶ Definition 2.6. An (affine) λ-transducer Tree(Γ) → Tree(Σ) is specified by a memory
type A and a family of terms (that can use the aforementioned constants from Σ):

ta : Ark(a) ⊸ A︸ ︷︷ ︸
“transition terms”

for each letter a ∈ Γ and u : A⊸ o︸ ︷︷ ︸
“output term”

The λ-transducer defines the function

τ ∈ Tree(Γ) 7→ σ ∈ Tree(Σ) such that σ̃ is the normal form of
well-typed with type o︷ ︸︸ ︷

u τ̂((ta)a∈Γ)︸ ︷︷ ︸
well-defined and unique thanks to Proposition 2.5

This amounts to specifying a structurally recursive function over Tree(Γ) with return type A,
followed by some post-processing that produces an output tree. Alternatively, a λ-transducer
can be seen as a kind of tree automaton whose memory consists of affine λ-terms of some
type A (with constants from Σ) and whose bottom-up transitions are also defined by λ-terms.

In addition to the purely affine Example 1.1, we exhibit two other λ-transducers.

▶ Example 2.7. The following almost affine λ-transducer maps Sn(0) = S(. . . (S(0))) to the
list [1, 2, . . . , n], encoded as the tree cons(S(0), . . . (cons(Sn(0), nil) . . .).

t0 = λx. nil : !o⊸ o (memory type) u = λg. g !(S 0)
tS = λg. λx. let !y = x in cons y (g !(S y))

L. T. D. Nguyễn and G. Vanoni 68:7

▶ Example 2.8. The following λ-transducer takes as input the binary encoding of a natural
number n and returns a complete binary tree of height n, e.g. 0(0(1(0(ε)))) 7→ a(a(c, c), a(c, c)).
Thus, its growth is doubly exponential. Its memory type !(!o⊸ !o)⊸ o is almost !-depth 1.

t0 = λg. λx. let !f = x in g !(λy. f (f y)) tε = λx. let !f = x in let !z = f !c in z

t1 = λg. λx. let !f = x in g !(λy. let !z = f (f y) in !(a z z)) u = λg. g !(λy. y)

Moreover, composing Examples 1.1 and 2.7 according to Proposition 1.8 gives another
almost purely affine example.
▶ Remark 2.9. The original impetus for Engelfriet and Vogler’s higher-order transducers [21]
was that their transducers of order k are equivalent to compositions of k unrestricted macro
tree transducers. A major motivation of Gallot et al.’s machine model using linear λ-terms
was also function composition, for which they give efficient constructions [23, Chapter 6]
(which are non-trivial). And in Nguyễn and Pradic’s “implicit automata”, composition is
just a matter of plugging two λ-terms together [37, Lemma 2.8].

3 Tree-walking transducers (last definitions needed for Theorem 1.4)

Generalities. In this paper, we shall encounter several machine models that generate
some output tree in a top-down fashion, starting from the root. (This is not the case of
λ-transducers.) They follow a common pattern, which we abstract as a lightweight formalism
here: essentially, a deterministic regular tree grammar with infinitely many non-terminals.
▶ Remark 3.1. Engelfriet’s tree grammars with storage (see for instance [17]) are more
complex formalisms that also attempt to unify several definitions of tree transducer models.

▶ Definition 3.2. A tree-generating machine over the ranked alphabet Σ consists of:
a (possibly infinite) set K of configurations;
an initial configuration κ0 ∈ K – in concrete instances, κ0 will be defined as a simple
function of some input tree (for tree transducers) or some given λ-term (for the IAM);
a computation-step (partial) function K ⇀ Tree(Σ, K).

▶ Example 3.3. To motivate the formal semantics for these machines that we will soon
define, we give a tree-generating machine that is meant to produce the list [1, 2, . . . , n] (for
an arbitrarily chosen n ∈ N), encoded as in Example 2.7.

The set of configurations is K = {spine, num}×N where spine and num are formal symbols.
The initial configuration is (spine, n) – let us write this pair as ⟨spine, n⟩.

The computation-step function is

⟨spine, 0⟩ 7→ nil

⟨spine, m + 1⟩ 7→ cons(⟨num, n − m⟩, ⟨spine, m⟩)
⟨num, 0⟩ 7→ 0

⟨num, m + 1⟩ 7→ S(⟨num, m⟩)
For n = 3, one possible run is

⟨spine, 3⟩⇝ cons(⟨num, 1⟩, ⟨spine, 2⟩)⇝ cons(S(⟨num, 0⟩), ⟨spine, 2⟩)⇝ . . .

All runs starting from ⟨spine, 3⟩ eventually reach the tree that encodes [1, 2, 3].

Let us now discuss the general case. Intuitively, the execution of the machine involves
spawning several independent concurrent processes, outputting disjoint subtrees. We formalize
this parallel computation as a rewriting system ⇝ on Tree(Σ, K): we have τ1 ⇝ τ2 whenever

STACS 2025

68:8 Slightly Non-Linear Higher-Order Tree Transducers

τ2 is obtained from τ1 by substituting one of its configuration leaves by its image by the
computation-step function. This rewriting system is orthogonal, and therefore confluent,
which means that the initial configuration has at most one normal form. If this normal form
exists and belongs to Tree(Σ), it is the output of the machine; we then say that the machine
converges. Otherwise, the output is undefined; the machine diverges.

Tree-walking transducers. Before giving the definition, let us see a concrete example.

▶ Example 3.4. According to Theorem 1.4, since the λ-transducer of Example 1.1 is purely
affine, the function “count non-a nodes” that it defines can also be computed by some
(reversible) tree-walking transducer. We show the run of such a transducer on the input
a1(b2(c3), c4) – the indices are not part of the node labels, they serve to distinguish positions:

(q,⟲, a1)⇝ (q, ↓•, b2)⇝ S((q, ↓•, c3))⇝ S(S((q, ↑•
1, b2)))⇝ S(S((q, ↑•

1, a1)))
⇝ S(S((q, ↓•, c4)))⇝ S(S(S((q, ↑•

2, a1)))))⇝ S(S(S(0)))

where q is the single state of the transducer. The second component records the “provenance”,
i.e. the previous position of the tree-walking transducer relatively to the current node (stored
in the third component): ↓• refers to its parent, ⟲ to itself, and ↑•

i to its i-th child.

▶ Definition 3.5. A tree-walking transducer (TWT) Tree(Γ) ⇀ Tree(Σ) consists of:
a finite set of states Q with an initial state q0 ∈ Q

a family of (partial) transition functions for a ∈ Γ

δa : Q × {↓•,⟲, ↑•
1, . . . , ↑•

k} ⇀ Tree(Σ, Q × {↑•,⟲, ↓•
1, . . . , ↓•

k}) where k = rk(a)

a family of (partial) transition functions at the root for a ∈ Γ

δroot
a : Q × {⟲, ↑•

1, . . . , ↑•
k} ⇀ Tree(Σ, Q × {⟲, ↓•

1, . . . , ↓•
k}) where k = rk(a)

The TWT associates to each input tree τ a tree-generating machine whose output is the
image of τ . Its set of configurations is Q × {↓•,⟲, ↑•

1, . . . } × {nodes of τ} and its initial
configuration of is (q0, ⟲, root of τ).

To define the image of (q, p, v) by the computation-step function (it is undefined if one of
the following steps is undefined), we start with either δroot

a (q, p) if v is the root or δa(q, p)
otherwise – where a is the label of the node v – then replace each (q′, p) ∈ Q × {↑•, . . . } by(q′, ↓•, i-th child of v) if p = ↓•

i (q′,⟲, v) if p = ⟲
(q′, ↑•

j , parent of v) if p = ↑• and v is the j-th child of its parent

▶ Example 3.6. Using the idea of Example 3.3, we define a tree-walking transducer that
computes the function “n 7→ [1, . . . , n] modulo encodings” of Example 2.7. Its set of states is
Q = {spine, num}, its initial state is spine and its transitions are

δroot
S (spine,⟲) = δS(spine, ↓•) = cons((num,⟲), (spine, ↓•

1))
δS(num,⟲) = δS(num, ↑•

1) = S((num, ↑•))
δroot

S (num,⟲) = δroot
S (num, ↑•

1) = S(0) δroot
0 (spine,⟲) = δ0(spine, ↓•) = nil

▶ Remark 3.7. In the above example, the provenance information in {↓•, . . . } plays no role.
On the contrary, it is crucial in the former Example 3.4, where we have δroot

a (q, ↑•
2) = 0 and

δroot
a (q,⟲) = δa(q, ↓•) = (q, ↓•

1) δroot
a (q, ↑•

1) = δa(q, ↑•
1) = (q, ↓•

2)︸ ︷︷ ︸
“after returning from the 1st child, the traversal starts visiting the 2nd child”

δa(q, ↑•
2) = (q, ↑•)

L. T. D. Nguyễn and G. Vanoni 68:9

In the definitions of tree-walking automata or transducers in the literature, e.g. [9, 16, 19],
transitions often do not have access to this provenance, but instead they can depend on the
“child number” i of the current node (such that the node is an i-th child of its parent). One
can easily simulate one variant with the other; but if neither of these features were available,
the machine model would be strictly weaker [25, Theorem 5.5].

Our main motivation for using provenances instead of child numbers is that, according
to [39, Sections 5 and 6], being “direction-determinate” – i.e. knowing which previous node
the current configuration came from – is important in the reversible case. This can indeed
be observed in the proof of Claim 3.9. (Directed states are used in [15] for a similar reason.)

Let us say that a map δ : X → Tree(Σ, Y) is Y -leaf-injective whenever in the family of
trees (δ(x) | x ∈ X), each y ∈ Y occurs at most once: y appears in at most one tree of the
family, and if it does appear, this tree has a single leaf with label y.

▶ Definition 3.8. A tree-walking transducer Tree(Γ) ⇀ Tree(Σ) is reversible when all maps
δa and δroot

a for a ∈ Γ are (Q × {↑•,⟲, ↓•
1, . . . , ↓•

rk(a)})-leaf-injective.

Example 3.4 is reversible, but not Example 3.6.

▷ Claim 3.9 (The meaning of reversibility). Fix a reversible tree-walking transducer and
an input tree. Any configuration C has at most one predecessor configuration, i.e. one
configuration C ′ whose image by the computation-step function contains C as a leaf.

Proof. Let (q, p, v) = C, and assume that (q′, p′, v′) = C ′ exists. The provenance information
p tells us where v′ is situated in the input tree relatively to v, so we determine v′ along with
its label a. Among the leaves of δa(q′, p′) (or δroot

a (q′, p′) if v′ is the root), there must be one
of the form (q, p) where q and p are related (in a one-to-one fashion) as defined just above
Example 3.6. By leaf-injectivity this uniquely determines q′ and p′. ◁

4 From the Interaction Abstract Machine to (reversible) TWTs

This section finally discusses the proof of Theorem 1.4. (For lack of space, we focus on stating
some key definitions and illustrating the ideas on examples; rigorous details are left to the
technical report.) By definition, computing the image of an input tree by a λ-transducer
involves normalizing a λ-term. Unfortunately, iterating β-reductions until a normal form is
reached requires too much working memory to be implemented by a finite-state device, such
as a tree-walking transducer. That is why we rely on other ways to normalize terms of base
type o, namely variants of the Interaction Abstract Machine (IAM).

The purely affine IAM. Let us start with a machine that can normalize a purely affine
term v : o. Intuitively, it moves a token around the edges of the syntax tree of v; we represent
the situation where the token is on the edge connecting the subterm t to its context C (such
that C⟨t⟩ = v) and is moving down (resp. up) as C⟨t⟩ (resp. C⟨t⟩). The token carries a small
amount of additional information: a “tape” which is a stack using the symbols • and ◦.

We reuse the formalism of tree-generating machines from the previous section, and we
denote by X∗ (with the Kleene star) the set of lists with elements in X.

▶ Definition 4.1. Let v : o be purely affine. The tree-generating machine PAIAM(v) has:
configurations of the form (d, t, C, T) where d ∈ {↓, ↑}, C⟨t⟩ = v and T ∈ {•, ◦}∗ – which
we abbreviate as (C⟨t⟩, T) when d = ↓ or (C⟨t⟩, T) when d = ↑;
the initial configuration (t, ε) = (↓, t, ⟨·⟩, ε);

STACS 2025

68:10 Slightly Non-Linear Higher-Order Tree Transducers

the following computation-step function:
(C⟨t u⟩, T) 7→ (C⟨t u⟩, •·T) (C⟨t u⟩, •·T) 7→ (C⟨t u⟩, T)
(C⟨t u⟩, T) 7→ (C⟨t u⟩, ◦·T) (C⟨t u⟩, ◦·T) 7→ (C⟨t u⟩, T)

(C⟨λx. t⟩, T) 7→ (C⟨λx. t⟩, •·T) (C⟨λx. t⟩, •·T) 7→ (C⟨λx. t⟩, T)
(C⟨λx. D⟨x⟩⟩, T) 7→ (C⟨λx. D⟨x⟩⟩, ◦·T) (C⟨λx. D⟨x⟩⟩, ◦·T) 7→ (C⟨λx. D⟨x⟩⟩, T)

(C⟨c⟩, •rk(c)·T) 7→ c
Ä
(C⟨c⟩, ◦·T), (C⟨c⟩, •· ◦ ·T), . . . , (C⟨c⟩, •rk(c)−1· ◦ ·T)

ä
The last rule handles constants c : ork(c) ⊸ o coming from a fixed ranked alphabet Σ. When
rk(c) = 0, the right-hand side is simply the tree with a single node labeled by c; otherwise, it
is a tree of height 1, whose leaves are all configurations.

▶ Example 4.2. Let u and (tx)x∈{a,b,c} be the terms defining the purely affine λ-transducer
from Example 1.1. On the term v = u (ta (tb tc) tc), we have the following IAM execution
(where C ⇝n C ′ means that C rewrites into C ′ in n steps):

(v, ε)⇝ (u (ta (tb tc) tc), •)⇝ ((λf. f 0) (ta (tb tc) tc), ε)⇝ ((λf. f 0) (. . .), •)
⇝ ((λf. f 0) (ta (tb tc) tc), ◦•)⇝ (u (ta (tb tc) tc), •)⇝2 (u (ta (tb tc) tc), • • •)
⇝4 (u ((λℓ. λr. λx. ℓ (r x)) (tb tc) tc), •)⇝ (u (ta (tb tc) tc), ◦•)⇝2 (. . . tb . . . , ••)
⇝3 (u (ta ((λf. λx. S (f x)) tc) tc), •)⇝ S

output node (will be the root of the output tree)
((u (ta ((λf. λx. S (f x)) tc) tc), ◦))

⇝∗ . . . [many steps] . . .

⇝∗ S(S((u (. . . tc), •)))⇝ S3((u (ta (tb tc) S), ◦))⇝ S3((u (ta (tb tc) S), ◦◦))
⇝2 S3((u ((λℓ. λr. λx. ℓ (r x)) (tb tc) tc), ◦◦))⇝ S3((. . . (r x) . . . , ◦))

⇝ S3((. . . (r x) . . . , ε))⇝ S3((u ((λℓ. λr. λx. ℓ (r x)) (tb tc) tc), ◦))
⇝2 S3((u (ta (tb tc) tc), • • ◦))⇝2 S3((u (ta (tb tc) tc), ◦))⇝ S3((u . . . , ◦◦))
⇝ S3(((λf. f 0) . . . , ◦))⇝ S3(((λf. f 0) . . . , ε))⇝ S(S(S(0)))

Aside from our bespoke extension dedicated to constants from Σ, all the other rules in
Definition 4.1 come from the “Linear IAM” described by Accattoli et al. [1, Section 3] (see
also [46, §3.1]) – we refer to those papers for high-level explanations of these rules. Despite
its name, the Linear IAM also works for affine terms (cf. [32, §3.3.4]). In particular, when run
on closed normal forms of type o, namely encoding of trees by Prop. 2.5, the IAM outputs
the encoded tree.

▶ Proposition 4.3. For each tree τ ∈ Tree(Σ), (τ̃ , ε)⇝∗ τ .

Proof. We strengthen the statement, considering the reduction (C⟨τ̃⟩, ε)⇝∗ τ . Then, we
proceed by induction on the structure of τ . If τ is a leaf, then we have τ̃ = c and rk(c) = 0.
Thus, we have (C⟨c⟩, ε) ⇝ c, which concludes this case. Otherwise τ is not a leaf, and in
particular it is of the form c (τ1 . . . τk), where k = rk(c) ≥ 1. Then we have:

(C⟨c τ̃1 . . . τ̃k⟩, ε) ⇝k (C⟨c τ̃1 . . . τ̃k⟩, •k)
⇝ c

Ä
(C⟨c τ̃1 . . . τ̃k⟩), ◦, . . . , (C⟨c τ̃1 . . . τ̃k⟩, •k−1·◦)

ä
⇝∗ c

Ä
(C⟨c τ̃1τ̃2 . . . τ̃k⟩, ε), . . . , (C⟨c τ̃1 . . . τ̃k−1τ̃k⟩, ε)

ä
⇝∗ c (τ1 . . . τk)

Where the last reduction comes from applying the induction hypothesis to each configuration.
◀

The soundness of the machine comes from the standard fact (see e.g. [1, 31]) that what is
computed by the IAM, in our case the tree, is invariant by β-reduction, the details are in the
technical report [38].

L. T. D. Nguyễn and G. Vanoni 68:11

▶ Theorem 4.4 (Soundness of the purely affine IAM). For any purely affine term v : o, the
output of PAIAM(v) is the unique τ ∈ Tree(Σ) such that τ̃ is the normal form of v.

Simulating λ-transducers by tree-walking transducers. Fix a purely affine λ-transducer
given by ta : Ark(a) ⊸ A for a ∈ Γ and u : A ⊸ o. Thanks to Proposition 2.2, we may
assume that u and every ta are in normal form. Proposition 2.4 then tells us that since
A is purely affine, so are these terms – and therefore, so is u τ̂((ta)a∈Γ) : o for any input
τ ∈ Tree(Γ). Thus, we can use the purely affine IAM to compute the tree encoded by its
normal form – which, by definition, gives us the image of τ by our λ-transducer.

To prove the first part of Theorem 1.4, we just need to simulate (in an appropriate sense,
made precise in the technical report [38]) PAIAM(u τ̂((ta)a∈Γ)) by a TWT running on τ .
Example 4.5 below illustrates how this works: a configuration of PAIAM(u τ̂((ta)a∈Γ)) is
represented by a configuration on input τ of a TWT in which each state consists of

a formal symbol in {U, T, ∇, ∆};
if the symbol is U (resp. T), a position in u (resp. ta ♢1 . . . ♢rk(a) for some a ∈ Γ);
a tape in {•, ◦}∗ that appears in the run of PAIAM(u σ̂((ta)a∈Γ)) for some σ ∈ Tree(Γ).

The information in the first two components is clearly bounded, but this is not so obvious
for the third one. We shall address this issue using Corollary 4.7 below, after the example.

▶ Example 4.5. We translate Example 1.1 to a TWT that has the following run on the
input a1(b2(c3), c4) – note how the steps correspond to those of the IAM run in Example 4.2.
This run visits the same input nodes as Example 3.4, in the same order. The only difference
is that it stays for longer on each node (⟲ appears very frequently).

(I,⟲, a1)⇝ (U(λf. f 0, •),⟲, a1)⇝3 (U(λf. f 0, ◦•),⟲, a1)⇝ (∇(•),⟲, a1)
⇝ (T(ta ♢1 ♢2, ••),⟲, a1)⇝5 (T((λℓ. λr. λx. ℓ (r x)) ♢1 ♢2, •),⟲, a1)
⇝ (T(ta ♢1 ♢2, ◦•),⟲, a1)⇝ (∇(•), ↓•, b2)⇝ (T(tb ♢1, ••),⟲, b2)
⇝3 (T((λf. λx. S (f x)) ♢1, •),⟲, b2)⇝ S((T((λf. λx. S (f x)) ♢1, ◦),⟲, b2))
⇝∗ . . . [many steps] . . .

⇝∗ S(S((∇(•), ↓•, c4)))⇝ S3((∆(◦), ↑•
2, a1))⇝ (T(ta ♢1 ♢2, ◦◦),⟲, a1)

⇝7 S3(T(ta ♢1 ♢2), • • ◦),⟲, a1)⇝2 S3((∆(◦),⟲, a1))⇝ S3(U(u, ◦◦),⟲, a1)
⇝2 S3((U(λf. f 0, ε),⟲, a1))⇝ S(S(S(0)))

Finite states via a typing invariant. To bound the size of tapes T ∈ {•, ◦}∗, we leverage the
type system. The idea is that a tape that appears in an IAM run “points to” an occurrence
of the base type o in the type of the current subterm. Formally, we define inductively:

A ε = A (A⊸ B) (◦·T) = A T (A⊸ B) (•·T) = B T

(thus, o T is undefined for T ̸= ε). We then have the following invariant on configurations:

▶ Proposition 4.6 (compare with [32, Lemma 32 in §3.3.5]). Suppose that either (C⟨t⟩, T) or
(C⟨t⟩, T) appears in a run of PAIAM(v) for some v : o. If the (not necessarily closed) term t

is given the type A as part of a typing derivation for v : o, then A T = o.

Since |T | ≤ height(A) is a necessary condition for A T to be defined, we immediately get:

▶ Corollary 4.7. The sizes of the tapes that appear in a run of PAIAM(v) are bounded by
the maximum, over all subterms t of v, of the height of the syntax tree of the type of v.

STACS 2025

68:12 Slightly Non-Linear Higher-Order Tree Transducers

Therefore, the tapes that can appear in a run of PAIAM(u τ̂((ta)a∈Γ)) have their size bounded
depending only on the subterms of u and of each ta, independently of τ ∈ Tree(Γ). This
ensures that the TWT we build from a purely affine λ-transducer has a finite set of states –
which concludes our exposition of the key ingredients for the first half of Theorem 1.4.

The almost purely affine case. To prove the second half of Theorem 1.4, we add non-
standard rules for let-bindings and !-boxes to the Interaction Abstract Machine.

▶ Definition 4.8. Let v : o be an almost purely affine term. APAIAM(v) is the extension of
PAIAM(v) (cf. Definition 4.1) with the following new cases in the computation-step function:

(C⟨let !x = u in t⟩, T) 7→ (C⟨let !x = u in t⟩, T) (C⟨!t⟩, T) 7→ (C⟨!t⟩, T)
(C⟨let !x = u in t⟩, T) 7→ (C⟨let !x = u in t⟩, T)

(C⟨let !x = u in D⟨x⟩⟩, T) 7→ (C⟨let !x = u in D⟨x⟩⟩, T)

▷ Claim 4.9. Proposition 4.6 extends to APAIAM(v) with !A T = A T .

The last rule (and the rule for !-boxes) in Definition 4.8 break(s) a key duality principle
at work in the purely affine IAM (and suggested by the layout of Definition 4.1): if any rule –
except the one for constants from Σ – sends a configuration κ1 to another configuration κ2,
then there is a dual rule sending κ⊥

2 to κ⊥
1 , where (C⟨t⟩, T)⊥ = (C⟨t⟩, T) and conversely

(C⟨t⟩, T)⊥ = (C⟨t⟩, T).
In fact, our new rule for let-bound variables x cannot have a dual, because it is not

injective. Indeed, consider a term of the form C⟨let !x = u in t⟩ where t contains multiple
occurrences of x, i.e. t = D1⟨x⟩ = D2⟨x⟩ for some contexts D1 ̸= D2 – this may happen,
since let-bound variables are not affine. Then for any T ∈ {•, ◦}∗, the computation-step
function sends both (C⟨let !x = u in D1⟨x⟩⟩, T) and (C⟨let !x = u in D2⟨x⟩⟩, T) to the
same configuration (C⟨let !x = u in t⟩, T) due to the x rule. This is why reversible TWTs
can simulate the purely affine IAM, but not the almost purely affine IAM.

To be sure that the missing dual rule is unnecessary, we show that configurations of the
form (C⟨let !x = u in t⟩, T) cannot occur in an actual run. Assume the opposite for the
sake of contradiction. The typing rule for let-bindings forces the type of u to have the form
!A, and by almost pure affineness, it must be !o. By Claim 4.9, !o T = o T ; therefore, T = ε,
which contradicts another invariant:

▶ Proposition 4.10. If (C⟨t⟩, T) (resp. (C⟨t⟩, T)) appears in a run of APAIAM(v) for some
almost purely affine v : o, then T contains an odd (resp. even) number of ◦s.

(The same reasoning also shows that (C⟨!t⟩, T) cannot occur in a run).
Having ruled out these problematic configurations, we can establish soundness for the

almost purely affine IAM exactly as before, extending Theorem 4.4.

▶ Proposition 4.11 (Soundness of the almost purely affine IAM). For any almost purely affine
term v : o, the output of APAIAM(v) is the unique τ ∈ Tree(Σ) such that τ̃ is the normal
form of v.

The simulation by tree-walking transducers then follows the same pattern than in the purely
affine case (except that we do not get reversibility).

L. T. D. Nguyễn and G. Vanoni 68:13

5 From the almost !-depth 1 IAM to invisible pebbles

Now that we have seen how to prove Theorem 1.4, let us apply the same methodology to the
almost !-depth 1 case, with another variation on the Interaction Abstract Machine.

The key challenge is that we can no longer rule out positions of the form C⟨let !x = u in t⟩
for the IAM token. If x has multiple occurrences in t, we need some information to know
which of these occurrences we should move to. The standard solution to this problem is to
enrich the IAM configurations with another data structure – cf. the “boxes stack” of [14] or
the “log” of [1]. In our simple low-depth case, a stack of variable occurrences will be enough.

The almost !-depth 1 IAM. Let v : o be an almost !-depth 1 term. To compute its normal
form, we introduce a tree-generating machine whose configurations are of the form (C⟨t⟩, T, L)
or (C⟨t⟩, T, L), where C⟨t⟩ = v, T ∈ {•, ◦, l}∗, and logs L and logged positions l are defined
by mutual induction as follows (please notice that n ∈ {0, 1} for !-depth 1 terms):

l ::= (Dn, Ln) L0 ::= ε Ln ::= l · Ln−1

The initial configuration is (v, ε, ε). To define the computation-step function, we start by
reusing all the rules of the almost purely affine IAM (Definition 4.8) except the x-rule for
let-bound x, and the one for !-boxes, adapting them so that they do not change the log L.
We then add the rules below, where Ci ranges over contexts of depth i ∈ {0, 1} (as defined in
Section 2) and A ̸= o. Please notice that transition rules now depend also on the type of
the current subterm, indeed we have to distinguish between the “almost” and the “depth-1”
exponentials:

(C0⟨let !x = u in Dn⟨x!A⟩⟩, T, Ln) 7→ (C0⟨let !x = u!A in Dn⟨x⟩⟩, (Dn, Ln)·T, ε)

(C0⟨let !x = u!A in Dn⟨x⟩⟩, (Dn, Ln)·T, ε) 7→ (C0⟨let !x = u in Dn⟨x!A⟩⟩, T, Ln)

(C⟨let !x = u in Dn⟨x!o⟩⟩, T, Ln·L) 7→ (C⟨let !x = u!o in Dn⟨x⟩⟩, T, L) (non-reversible)

(C0⟨!t!A⟩, l · T, ε) 7→ (C0⟨!tA⟩, T, l) (C0⟨!tA⟩, T, l) 7→ (C0⟨!t!A⟩, l · T, ε)

(C⟨!t!o⟩, T, L) 7→ (C⟨!to⟩, T, L) (non-reversible)

Again, this device, which is a just a specialization of the standard IAM (but again
non-reversible in order to handle linearly the almost affine terms), successfully normalizes
almost !-depth 1 terms of base type. Next, we would like to simulate it by some automaton
model, to get a counterpart of Theorem 1.4 in this setting. The problem now is that both the
log L and the tape T do not fit into the finite state of a tree-walking transducer, since their
size cannot be statically bounded. Therefore, we need to target a more powerful machine
model.

Invisible pebbles. Luckily, a suitable device has already been introduced by Engelfriet,
Hoogeboom and Samwel [18]: the invisible pebble tree transducer (IPTT). Informally, it is
a TWT extended with the ability to put down pebbles on input nodes. The pebbles have
colors that are taken in a finite set. They can be later examined and removed: an IPTT can
check whether the last pebble to have been put down is on the current position, and if so, it
can observe its color, and perhaps decide to remove it. The “invisible” part means that only
the last pebble can be seen. Thus, the lifetimes of the pebbles follow a stack discipline (last
put down, first removed). The number of pebbles used in a computation may be unbounded.

STACS 2025

68:14 Slightly Non-Linear Higher-Order Tree Transducers

▶ Definition 5.1 ([18]). An invisible pebble tree transducer Tree(Γ) ⇀ Tree(Σ) is made of:
a finite set of states Q with an initial state q0 ∈ Q

a finite set of colors C

a (partial) transition function that sends tuples consisting of
an input letter a ∈ Γ, a state q ∈ Q, a provenance p ∈ {↓•,⟲, ↑•

1, . . . , ↑•
rk(a)}

a boolean isRoot which must be false if p = ↓•

a value z which is either a color in C or the symbol None
to Tree(Σ, Q × ({↑•

prohibited if isRoot is true

,⟲, ↓•
1, . . . , ↓•

k, remove︸ ︷︷ ︸
prohibited if z = None

} ∪ {putc | c ∈ C}))

Note that removing z in the arguments and remove/putc in the codomain would just yield
an alternative presentation of tree-walking transducers (Definition 3.5).

The set of configurations of an invisible pebble tree transducer on an input tree τ is

Q × {↓•,⟲, ↑•
1, . . . } × {nodes of τ}︸ ︷︷ ︸

TWT configuration

× (C × {nodes of τ})∗︸ ︷︷ ︸
pebble stack

The transition function of the IPTT determines a computation-step function by extending
Definition 3.5 in the expected way (the transducer stays at the same node after a remove
or putc instruction). Here is an example of a configuration over τ = a1(b2(c3), c4) for some
invisible pebble tree transducer: (q, ↓•, c3, [(a, b2), (b, c3)]). The top of the stack is the leftmost
element the list: it is an a-colored pebble on position b2. Since this differs from the current
node c3, the transducer does not see any pebble (z = None) even though there is a b-colored
pebble on c3 further down the stack. If we execute the instruction puta while transitioning to
state q′, we get the configuration (q′,⟲, c3, [(a, c3), (a, b2), (b, c3)]). In that new configuration,
the IPTT now sees the topmost pebble (z = a) and is thus allowed to remove it.

Outcome of the simulation. We use a single stack implementation (detailed in the technical
report [38]) of the IAM presented above to compile λ-transducers to IPTTs as in the previous
section, thus establishing the following comparison in expressive power:

▶ Lemma 5.2. Almost !-depth 1 λ-transducer ⊆ invisible pebble tree transducer ≡ MSOT-S2.

Here, the equivalence between IPTT and MSOT-S2 is a rephrasing of a result of Engelfriet
et al. [18, Theorem 53], as explained in [35, §3.3].

6 Expressiveness of λ-transducers with preprocessing

Now, let us prove Theorems 1.5 and 1.7. We first note that the left-to-right inclusions are
immediate consequences of Theorem 1.4 and Lemma 5.2 combined with the following facts:

MSOT-S (and, therefore, MSOT-S2) are closed under precomposition by MSO relabeling
(cf. [7, Section 3] where MSOT-S are called “MSO term graph transductions”);
TWT ⊂ MSOT-S (a slight variant of [7, Theorem 9], cf. [35, §3.2]);
TWT of linear growth ⊂ MSOT (see e.g. [19, §6.2]), and purely affine λ-transducers have
linear growth because the size of purely affine terms is non-increasing during β-reduction.

(“f has linear growth” means that |f(t)| = O(|t|).) Next, we turn to the converse inclusions.

L. T. D. Nguyễn and G. Vanoni 68:15

MSOT ⊆ purely affine λ-transducer ◦ MSO relabeling. We derive this from the results
of Gallot, Lemay and Salvati [22, 23]. First, we introduce a slight generalization of their
machine model for MSOTs [22, §2.3]. Their model involves bottom-up regular lookahead,
but as usual in automata theory, this feature can be simulated by preprocessing by an MSO
relabeling; this is why we do not include it in our version.

▶ Definition 6.1. A GLS-transducer Tree(Γ) → Tree(Σ) consists of:
a finite set Q of states, with a family (Aq)q∈Q of purely affine types;
an initial state q0 ∈ Q and an output term u : Aq0 ⊸ o – which, like all the terms t below,
may use constants c : ork(c) ⊸ o for c ∈ Σ;
for each q ∈ Q and a ∈ Γ, a rule q⟨a(x1, . . . , xrk(a))⟩ → t q1⟨x1⟩ . . . qrk(a)⟨xrk(a)⟩ where
the qi and t : Aq1 ⊸ · · ·⊸ Aqrk(a) ⊸ Aq are chosen depending on (q, a).

The semantics is that a GLS-transducer performs a top-down traversal q0⟨τ⟩ →∗ τ⇓ of its
input tree τ which builds a λ-term τ⇓ : Aq0 . The normal form of u τ⇓ then encodes the
output tree. Our model is a bit more syntactically permissive than that of Gallot et al.
(theirs would correspond to using linear rather than affine terms, and forcing u to be λx. x –
so Aq0 = o); therefore, it can compute at least everything that their model can:

▶ Theorem 6.2 (from [22, Theorem 3]). MSOT ⊆ GLS-transducer ◦ MSO relabeling.

We derive our desired result on λ-transducers in two steps.
Every GLS-transducer can be made “type-constant”: ∃A : ∀q, Aq = A. This uses an
encoding trick, detailed in the technical report [38], that preserves pure affineness, but
not linearity.
A type-constant GLS-transducer can be turned into an MSO relabeling (that adds to
each node its top-down propagated state) followed by a purely affine λ-transducer (which
is just a GLS-transducer with |Q| = 1).

From Theorem 6.2, we thus get MSOT ⊆ purely affine λ-transducer ◦ (MSO relabeling)2,
and since MSO relabelings are closed under composition [7, §3], we are done.

MSOT-S ⊆ almost purely affine λ-transducer ◦ MSO relabeling. Following the same
recipe as above, we reduce this to Gallot et al.’s characterization of MSOT-S [22, Theorem 3].
Since they use Kanazawa’s almost linear λ-terms [28] (which we discussed in the introduction),
we need to translate such terms into our almost purely affine terms. Let us introduce the
abbreviation λ!x. t = (λy. let !x = y in t) where y is a fresh variable. We define inductively:
?c = λ!x1. . . . λ!xrk(c). !(c x1 . . . xrk(c)) for constants c in a ranked alphabet Σ, and

?x =

!x if x : o

x otherwise
?(λx. t) =

λ!x. ?t if x : o

λx. ?x otherwise
?(t u) = (?t) (?u)

▷ Claim 6.3. Let t : A be almost affine as defined in [27]. Then ?t is almost purely affine,
with type A{o := !o}. When t : o, if t −→∗

β τ̃ (for some τ ∈ Tree(Σ)) then ?t −→∗
β !τ̃ .

The inductive rule for application implies that ?(u τ̂((ta)a∈Γ)) = (?u) τ̂((?ta)a∈Γ), so the
above claim allows us to translate λ-transducers using almost affine terms à la Kanazawa.

STACS 2025

68:16 Slightly Non-Linear Higher-Order Tree Transducers

MSOT-S2 ⊆ almost !-depth 1 λ-transducer ◦ relabeling. Having just finished proving
Theorem 1.5 above, we may use it right away:

MSOT-S2 ≡ almost purely affine λ-transducer ◦ MSO relabeling ◦ MSOT-S (Thm. 1.5)
≡ almost purely affine λ-transducer ◦ MSOT-S (∗)
≡ (almost purely affine λ-transducer)2 ◦ MSO relabeling (Thm. 1.5)

The line (∗) above relies on the fact that MSOT-S are closed under postcomposition by MSO
relabelings, cf. [35, §3.3]. To conclude, we apply the composition property of λ-transducers
(Proposition 1.8), noting that if A and B are almost purely affine types, then A{o := B} is
almost !-depth 1 (indeed, every ‘!’ in it is applied to either o or B).

7 Conclusion

In this paper, we established several expressivity results relating a typed λ-calculus to tree
transducers. This can be seen as furthering Nguyễn and Pradic’s “implicit automata” research
programme [37], even though the formal setting is slightly different; indeed, we settle one
of their conjectures in Corollary 1.2. From a purely automata-theoretic perspective, our
characterization of MSOT-S2 is the first that involves a “one-way” device, performing a single
bottom-up pass on its input (modulo preprocessing).

The equivalences between “one-way” λ-transducers and tree-walking / invisible pebble
tree transducers can be seen as a trade-off between a sophisticated memory (higher-order
data) and freedom of movement on the input (tree-walking reading head). This is arguably
a sort of qualitative space/time trade-off (more movement means more computation steps).
This is similar to the reasons that led the Geometry of Interaction to be used in implicit
computational complexity when dealing with space complexity classes – an application area
pioneered by Schöpp [44, 45] and leading to several further works [13, 31]. These successes
even led to the belief that the GoI should give a reasonable space cost model, that is to say
comparable with the one of Turing machines; but this belief is now known to be wrong in
the general case of the untyped λ-calculus [2].

7.1 More related work
Katsumata [29] has connected a categorical version of the GoI (the “Int-construction”) to
attribute grammars [30], which are “essentially [a] notational variation” on tree-walking
transducers (quoting Courcelle & Engelfriet [12, §8.7]). Recently, Pradic and Price [40] have
used a “planar” version of this categorical GoI in order to prove an “implicit automata”
theorem. Further GoI-automata connections of this kind are discussed in [36, §1.1].

Our methodology of connecting λ-calculus and automata via abstract machines may
be compared to Salvati and Walukiewicz’s [43] use of Krivine machines in the theory of
higher-order recursion schemes. Clairambault and Murawski [11] also compile affine recursion
schemes to automata using a game semantics that can be seen as a denotational counterpart
of the operational Interaction Abstract Machine. Ghica exploited ideas from the GoI and
game semantics, to design a compiler from a higher-order functional language directly to
digital circuits [24], in particular targeting Mealy machines.
▶ Remark 7.1. The aforementioned work [11] is a rare example of application of some GoI
variant to a setting that features the additive connectives of linear logic. It yields a translation
from λ-terms to infinite-state systems, making it unsuited to our purposes. In most versions
of the GoI, the support for additives is not as satisfactory as their handling of additive-free
linear logic – a well-known issue in the linear logic community.

L. T. D. Nguyễn and G. Vanoni 68:17

This obstruction also motivated our choice, discussed in the introduction, to follow the
approach of Gallot et al. [22, 23] rather than Nguyễn and Pradic’s “implicit automata” [37, 34].
Indeed, the latter’s solution to overcome the limitations evidenced by Corollary 1.2 is to
work with a linear λ-calculus with additive connectives, enabling more flexible linear usage
patterns. This is analogous (see [34, Remark 6.0.1] for an actual technical connection) to
moving from “strongly single use” to “single use” macro tree transducers [20, Section 5].

Salvati has shown [41] that the string languages defined by abstract categorial grammars,
which are very close to our purely linear λ-transducers, coincide with the output languages
of tree-to-string tree-walking transducers. He explains in his habilitation thesis [42, §3.2]
that the proof ideas are similar to a game semantics of multiplicative linear logic – and the
latter is closely related to GoI, as mentioned above. It would be interesting to understand to
which extent his approach implicitly resembles ours, despite a very different presentation.

We also note that in the same paper that introduces almost linear λ-terms [28], Kanazawa
studies a notion of “links in typed λ-terms” that looks like a form of GoI. However, these links
are only well-behaved for λ-terms in normal form, while the Interaction Abstract Machine
does not have this drawback. Finally, let us stress that our use of the IAM has the advantage,
compared to the aforementioned works [29, 11, 41, 26], of adapting to the presence of the
exponential modality “!”. This is crucial in our proof of Theorem 1.7.

7.2 Perspectives
The obvious direction for further work is to study the MSOT-Sk+1 and almost !-depth k

hierarchies for k ≥ 2. While the argument at the end of Section 6 easily generalizes to show
that the former is included in the latter, we have no reason to believe that they coincide. As
a more modest conjecture (“!-depth 1” means “no nested ‘!’s”):

▶ Conjecture 7.2. !-depth 1 λ-transducer ◦ MSO relabeling ≡ MSOT ◦ MSOT-S.

We believe that the reversible tree-walking transducers that we have introduced also deserve
to be studied further. Indeed, we expect that they should be closed under composition
(cf. [15] over strings) and verify the “single-use restriction” of [12, §8.2]; the latter would
imply that they can be translated into MSO transductions.

References
1 Beniamino Accattoli, Ugo Dal Lago, and Gabriele Vanoni. The machinery of interaction.

In PPDP ’20: 22nd International Symposium on Principles and Practice of Declarative
Programming, Bologna, Italy, 9-10 September, 2020, pages 4:1–4:15. ACM, 2020. doi:10.
1145/3414080.3414108.

2 Beniamino Accattoli, Ugo Dal Lago, and Gabriele Vanoni. The space of interaction. In 2021
36th Annual ACM/IEEE Symposium on Logic in Computer Science (LICS), pages 1–13, 2021.
doi:10.1109/LICS52264.2021.9470726.

3 Beniamino Accattoli and Delia Kesner. The structural λ-calculus. In Anuj Dawar and
Helmut Veith, editors, Computer Science Logic, 24th International Workshop, CSL 2010, 19th
Annual Conference of the EACSL, Brno, Czech Republic, August 23-27, 2010. Proceedings,
volume 6247 of Lecture Notes in Computer Science, pages 381–395. Springer, 2010. doi:
10.1007/978-3-642-15205-4_30.

4 Rajeev Alur and Loris D’Antoni. Streaming Tree Transducers. Journal of the ACM, 64(5):1–55,
August 2017. doi:10.1145/3092842.

5 Toshiyasu Arai. 10th Asian Logic Conference. The Bulletin of Symbolic Logic, 15(2):246–265,
2009. doi:10.2178/bsl/1243948490.

STACS 2025

https://doi.org/10.1145/3414080.3414108
https://doi.org/10.1145/3414080.3414108
https://doi.org/10.1109/LICS52264.2021.9470726
https://doi.org/10.1007/978-3-642-15205-4_30
https://doi.org/10.1007/978-3-642-15205-4_30
https://doi.org/10.1145/3092842
https://doi.org/10.2178/bsl/1243948490

68:18 Slightly Non-Linear Higher-Order Tree Transducers

6 Andrew Barber. Dual Intuitionistic Linear Logic. Technical report ECS-LFCS-96-347,
LFCS, University of Edinburgh, 1996. URL: http://www.lfcs.inf.ed.ac.uk/reports/96/
ECS-LFCS-96-347/.

7 Roderick Bloem and Joost Engelfriet. A Comparison of Tree Transductions Defined by Monadic
Second Order Logic and by Attribute Grammars. Journal of Computer and System Sciences,
61(1):1–50, August 2000. doi:10.1006/jcss.1999.1684.

8 Mikołaj Bojańczyk. Who to cite: MSO transductions, December 2019. URL:
https://web.archive.org/web/20230810161232/https://www.mimuw.edu.pl/~bojan/
posts/who-to-cite-mso-transductions.

9 Mikołaj Bojańczyk and Thomas Colcombet. Tree-walking automata do not recognize all regular
languages. SIAM Journal on Computing, 38(2):658–701, 2008. doi:10.1137/050645427.

10 Mikołaj Bojańczyk and Amina Doumane. First-order tree-to-tree functions, 2020. Corrected
version with erratum of a LICS 2020 paper. arXiv:2002.09307v2.

11 Pierre Clairambault and Andrzej S. Murawski. On the Expressivity of Linear Recursion
Schemes. In Peter Rossmanith, Pinar Heggernes, and Joost-Pieter Katoen, editors, 44th
International Symposium on Mathematical Foundations of Computer Science (MFCS 2019),
volume 138 of Leibniz International Proceedings in Informatics (LIPIcs), pages 50:1–50:14.
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, 2019. doi:10.4230/LIPIcs.MFCS.2019.
50.

12 Bruno Courcelle and Joost Engelfriet. Graph structure and monadic second-order logic. A
language-theoretic approach. Encyclopedia of Mathematics and its applications, Vol. 138. Cam-
bridge University Press, June 2012. Collection Encyclopedia of Mathematics and Applications,
Vol. 138. URL: https://hal.archives-ouvertes.fr/hal-00646514.

13 Ugo Dal Lago and Ulrich Schöpp. Computation by interaction for space-bounded functional
programming. Information and Computation, 248:150–194, 2016. doi:10.1016/j.ic.2015.
04.006.

14 Vincent Danos and Laurent Regnier. Reversible, irreversible and optimal λ-machines. Theoreti-
cal Computer Science, 227(1):79–97, September 1999. doi:10.1016/S0304-3975(99)00049-3.

15 Luc Dartois, Paulin Fournier, Ismaël Jecker, and Nathan Lhote. On reversible transducers.
In Ioannis Chatzigiannakis, Piotr Indyk, Fabian Kuhn, and Anca Muscholl, editors, 44th
International Colloquium on Automata, Languages, and Programming, ICALP 2017, July
10-14, 2017, Warsaw, Poland, volume 80 of LIPIcs, pages 113:1–113:12. Schloss Dagstuhl –
Leibniz-Zentrum für Informatik, 2017. doi:10.4230/LIPIcs.ICALP.2017.113.

16 Joost Engelfriet. The time complexity of typechecking tree-walking tree transducers. Acta
Informatica, 46(2):139–154, 2009. doi:10.1007/s00236-008-0087-y.

17 Joost Engelfriet. Context-free grammars with storage, 2014. Revised version of a 1986 technical
report. arXiv:1408.0683.

18 Joost Engelfriet, Hendrik Jan Hoogeboom, and Bart Samwel. XML navigation and transforma-
tion by tree-walking automata and transducers with visible and invisible pebbles. Theoretical
Computer Science, 850:40–97, January 2021. doi:10.1016/j.tcs.2020.10.030.

19 Joost Engelfriet, Kazuhiro Inaba, and Sebastian Maneth. Linear-bounded composition of tree-
walking tree transducers: linear size increase and complexity. Acta Informatica, 58(1-2):95–152,
2021. doi:10.1007/s00236-019-00360-8.

20 Joost Engelfriet and Sebastian Maneth. Macro Tree Transducers, Attribute Grammars, and
MSO Definable Tree Translations. Information and Computation, 154(1):34–91, October 1999.
doi:10.1006/inco.1999.2807.

21 Joost Engelfriet and Heiko Vogler. High level tree transducers and iterated pushdown tree
transducers. Acta Informatica, 26(1/2):131–192, 1988. doi:10.1007/BF02915449.

22 Paul Gallot, Aurélien Lemay, and Sylvain Salvati. Linear high-order deterministic tree
transducers with regular look-ahead. In Javier Esparza and Daniel Král’, editors, 45th
International Symposium on Mathematical Foundations of Computer Science, MFCS 2020,
August 24-28, 2020, Prague, Czech Republic, volume 170 of LIPIcs, pages 38:1–38:13. Schloss
Dagstuhl – Leibniz-Zentrum für Informatik, 2020. doi:10.4230/LIPIcs.MFCS.2020.38.

http://www.lfcs.inf.ed.ac.uk/reports/96/ECS-LFCS-96-347/
http://www.lfcs.inf.ed.ac.uk/reports/96/ECS-LFCS-96-347/
https://doi.org/10.1006/jcss.1999.1684
https://web.archive.org/web/20230810161232/https://www.mimuw.edu.pl/~bojan/posts/who-to-cite-mso-transductions
https://web.archive.org/web/20230810161232/https://www.mimuw.edu.pl/~bojan/posts/who-to-cite-mso-transductions
https://doi.org/10.1137/050645427
https://arxiv.org/abs/2002.09307v2
https://doi.org/10.4230/LIPIcs.MFCS.2019.50
https://doi.org/10.4230/LIPIcs.MFCS.2019.50
https://hal.archives-ouvertes.fr/hal-00646514
https://doi.org/10.1016/j.ic.2015.04.006
https://doi.org/10.1016/j.ic.2015.04.006
https://doi.org/10.1016/S0304-3975(99)00049-3
https://doi.org/10.4230/LIPIcs.ICALP.2017.113
https://doi.org/10.1007/s00236-008-0087-y
https://arxiv.org/abs/1408.0683
https://doi.org/10.1016/j.tcs.2020.10.030
https://doi.org/10.1007/s00236-019-00360-8
https://doi.org/10.1006/inco.1999.2807
https://doi.org/10.1007/BF02915449
https://doi.org/10.4230/LIPIcs.MFCS.2020.38

L. T. D. Nguyễn and G. Vanoni 68:19

23 Paul D. Gallot. Safety of transformations of data trees: tree transducer theory applied to a
verification problem on shell scripts. PhD thesis, Université de Lille, December 2021. URL:
https://theses.hal.science/tel-03773108.

24 Dan R. Ghica. Geometry of Synthesis: A Structured Approach to VLSI Design. In Martin
Hofmann and Matthias Felleisen, editors, Proceedings of the 34th ACM SIGPLAN-SIGACT
Symposium on Principles of Programming Languages, POPL 2007, Nice, France, January
17-19, 2007, pages 363–375. ACM, 2007. doi:10.1145/1190216.1190269.

25 Tsutomu Kamimura and Giora Slutzki. Parallel and two-way automata on directed ordered
acyclic graphs. Information and Control, 49(1):10–51, 1981. doi:10.1016/S0019-9958(81)
90438-1.

26 Makoto Kanazawa. A lambda calculus characterization of MSO definable tree transductions,
September 2008. Talk given at the 10th Asian Logic Conference, Kobe University, Japan. Slides
available at https://makotokanazawa.ws.hosei.ac.jp/talks/asian_logic.pdf. Abstract
available at [5, p. 250–251].

27 Makoto Kanazawa. Almost affine lambda terms. In Andrzej Indrzejczak, Janusz Kaczmarek,
and Michał Zawidzki, editors, Trends in Logic XIII. Gentzen’s and Jaśkowski’s Heritage. 80
Years of Natural Deduction and Sequent Calculi, pages 131–148. Wydawnictwo Uniwersytetu
Łódzkiego, 2014.

28 Makoto Kanazawa. Parsing and generation as datalog query evaluation. IfCoLog Journal of
Logics and their Applications (FLAP), 4(4), 2017. Long version of an ACL 2007 paper. URL:
http://www.collegepublications.co.uk/downloads/ifcolog00013.pdf.

29 Shin-ya Katsumata. Attribute grammars and categorical semantics. In Luca Aceto, Ivan
Damgård, Leslie Ann Goldberg, Magnús M. Halldórsson, Anna Ingólfsdóttir, and Igor
Walukiewicz, editors, Automata, Languages and Programming, 35th International Collo-
quium, ICALP 2008, Reykjavik, Iceland, July 7-11, 2008, Proceedings, Part II – Track B:
Logic, Semantics, and Theory of Programming & Track C: Security and Cryptography Foun-
dations, volume 5126 of Lecture Notes in Computer Science, pages 271–282. Springer, 2008.
doi:10.1007/978-3-540-70583-3_23.

30 Donald E. Knuth. The genesis of attribute grammars. In Pierre Deransart and Martin Jourdan,
editors, Attribute Grammars and their Applications, International Conference WAGA, Paris,
France, September 19-21, 1990, Proceedings, volume 461 of Lecture Notes in Computer Science,
pages 1–12. Springer, 1990. doi:10.1007/3-540-53101-7_1.

31 Damiano Mazza. Simple parsimonious types and logarithmic space. In Stephan Kreutzer,
editor, 24th EACSL Annual Conference on Computer Science Logic, CSL 2015, September 7-10,
2015, Berlin, Germany, volume 41 of LIPIcs, pages 24–40. Schloss Dagstuhl – Leibniz-Zentrum
für Informatik, 2015. doi:10.4230/LIPIcs.CSL.2015.24.

32 Damiano Mazza. Polyadic Approximations in Logic and Computation. Habilitation à diriger
des recherches, Université Paris XIII (Sorbonne Paris Nord), November 2017. URL: https:
//theses.hal.science/tel-04238579.

33 Anca Muscholl and Gabriele Puppis. The Many Facets of String Transducers. In Rolf
Niedermeier and Christophe Paul, editors, 36th International Symposium on Theoretical
Aspects of Computer Science (STACS 2019), volume 126 of Leibniz International Proceedings
in Informatics (LIPIcs), pages 2:1–2:21. Schloss Dagstuhl – Leibniz-Zentrum für Informatik,
2019. doi:10.4230/LIPIcs.STACS.2019.2.

34 Lê Thành Dũng Nguyễn. Implicit automata in linear logic and categorical transducer theory.
PhD thesis, Université Paris XIII (Sorbonne Paris Nord), December 2021. URL: https:
//theses.hal.science/tel-04132636.

35 Lê Thành Dũng Nguyễn. Two or three things i know about tree transducers, 2024. arXiv:
2409.03169.

36 Lê Thành Dũng Nguyễn, Camille Noûs, and Cécilia Pradic. Two-way automata and transducers
with planar behaviours are aperiodic, 2023. arXiv:2307.11057.

STACS 2025

https://theses.hal.science/tel-03773108
https://doi.org/10.1145/1190216.1190269
https://doi.org/10.1016/S0019-9958(81)90438-1
https://doi.org/10.1016/S0019-9958(81)90438-1
https://makotokanazawa.ws.hosei.ac.jp/talks/asian_logic.pdf
http://www.collegepublications.co.uk/downloads/ifcolog00013.pdf
https://doi.org/10.1007/978-3-540-70583-3_23
https://doi.org/10.1007/3-540-53101-7_1
https://doi.org/10.4230/LIPIcs.CSL.2015.24
https://theses.hal.science/tel-04238579
https://theses.hal.science/tel-04238579
https://doi.org/10.4230/LIPIcs.STACS.2019.2
https://theses.hal.science/tel-04132636
https://theses.hal.science/tel-04132636
https://arxiv.org/abs/2409.03169
https://arxiv.org/abs/2409.03169
https://arxiv.org/abs/2307.11057

68:20 Slightly Non-Linear Higher-Order Tree Transducers

37 Lê Thành Dũng Nguyễn and Cécilia Pradic. Implicit automata in typed λ-calculi I: aperiodicity
in a non-commutative logic. In Artur Czumaj, Anuj Dawar, and Emanuela Merelli, editors,
47th International Colloquium on Automata, Languages, and Programming, ICALP 2020,
July 8-11, 2020, Saarbrücken, Germany (Virtual Conference), volume 168 of LIPIcs, pages
135:1–135:20. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, 2020. doi:10.4230/LIPIcs.
ICALP.2020.135.

38 Lê Thành Dũng Nguyễn and Gabriele Vanoni. Slightly non-linear higher-order tree transducers.
CoRR, abs/2402.05854, 2024. doi:10.48550/arXiv.2402.05854.

39 Alexander Okhotin. Graph-walking automata: From whence they come, and whither they are
bound. In Michal Hospodár and Galina Jirásková, editors, Implementation and Application of
Automata – 24th International Conference, CIAA 2019, Košice, Slovakia, July 22-25, 2019,
Proceedings, volume 11601 of Lecture Notes in Computer Science, pages 10–29. Springer, 2019.
doi:10.1007/978-3-030-23679-3_2.

40 Cécilia Pradic and Ian Price. Implicit automata in λ-calculi iii: affine planar string-to-string
functions. Electronic Notes in Theoretical Informatics and Computer Science, Volume 4 –
Proceedings of MFPS XL, December 2024. doi:10.46298/entics.14804.

41 Sylvain Salvati. Encoding second order string ACG with deterministic tree walking transducers.
In Shuly Wintner, editor, The 11th conference on Formal Grammar, FG Online Proceedings,
pages 143–156, Malaga, Spain, 2006. Paola Monachesi; Gerald Penn; Giorgio Satta; Shuly
Wintner, CSLI Publications. URL: https://web.stanford.edu/group/cslipublications/
cslipublications/FG/2006/salvati.pdf.

42 Sylvain Salvati. Lambda-calculus and formal language theory. Habilitation à diriger des
recherches, Université de Bordeaux, December 2015. URL: https://theses.hal.science/
tel-01253426.

43 Sylvain Salvati and Igor Walukiewicz. Simply typed fixpoint calculus and collapsible pushdown
automata. Mathematical Structures in Computer Science, 26(7):1304–1350, October 2016.
doi:10.1017/S0960129514000590.

44 Ulrich Schöpp. Space-efficient computation by interaction. In Zoltán Ésik, editor, Computer
Science Logic, 20th International Workshop, CSL 2006, 15th Annual Conference of the EACSL,
Szeged, Hungary, September 25-29, 2006, Proceedings, volume 4207 of Lecture Notes in
Computer Science, pages 606–621. Springer, 2006. doi:10.1007/11874683_40.

45 Ulrich Schöpp. Stratified bounded affine logic for logarithmic space. In 22nd IEEE Symposium
on Logic in Computer Science (LICS 2007), 10-12 July 2007, Wroclaw, Poland, Proceedings,
pages 411–420. IEEE Computer Society, 2007. doi:10.1109/LICS.2007.45.

46 Gabriele Vanoni. On Reasonable Space and Time Cost Models for the λ-Calculus. PhD
thesis, Alma Mater Studiorum – Università di Bologna, June 2022. doi:10.48676/unibo/
amsdottorato/10276.

https://doi.org/10.4230/LIPIcs.ICALP.2020.135
https://doi.org/10.4230/LIPIcs.ICALP.2020.135
https://doi.org/10.48550/arXiv.2402.05854
https://doi.org/10.1007/978-3-030-23679-3_2
https://doi.org/10.46298/entics.14804
https://web.stanford.edu/group/cslipublications/cslipublications/FG/2006/salvati.pdf
https://web.stanford.edu/group/cslipublications/cslipublications/FG/2006/salvati.pdf
https://theses.hal.science/tel-01253426
https://theses.hal.science/tel-01253426
https://doi.org/10.1017/S0960129514000590
https://doi.org/10.1007/11874683_40
https://doi.org/10.1109/LICS.2007.45
https://doi.org/10.48676/unibo/amsdottorato/10276
https://doi.org/10.48676/unibo/amsdottorato/10276

A Dichotomy Theorem for Ordinal Ranks in MSO
Damian Niwiński # Ñ

Institute of Informatics, University of Warsaw, Poland

Paweł Parys # Ñ

Institute of Informatics, University of Warsaw, Poland

Michał Skrzypczak # Ñ

Institute of Informatics, University of Warsaw, Poland

Abstract
We focus on formulae ∃X. φ(Y⃗ , X) of monadic second-order logic over the full binary tree, such that
the witness X is a well-founded set. The ordinal rank rank(X) < ω1 of such a set X measures its
depth and branching structure. We search for the least upper bound for these ranks, and discover
the following dichotomy depending on the formula φ. Let ηφ be the minimal ordinal such that,
whenever an instance Y⃗ satisfies the formula, there is a witness X with rank(X) ≤ ηφ. Then ηφ is
either strictly smaller than ω2 or it reaches the maximal possible value ω1. Moreover, it is decidable
which of the cases holds. The result has potential for applications in a variety of ordinal-related
problems, in particular it entails a result about the closure ordinal of a fixed-point formula.

2012 ACM Subject Classification Theory of computation → Automata over infinite objects; Theory
of computation → Tree languages

Keywords and phrases dichotomy result, limit ordinal, countable ordinals, nondeterministic tree
automata

Digital Object Identifier 10.4230/LIPIcs.STACS.2025.69

Related Version Full Version: https://arxiv.org/abs/2501.05385

Funding All authors supported by the National Science Centre, Poland (grant no. 2021/41/B/ST6/
03914).

Acknowledgements The authors would like to thank Marek Czarnecki for preliminary discussions
on related subjects.

1 Introduction

The concept of well-founded relation plays a central role in foundations of mathematics. It
gives rise to ordinal numbers, which underlie the basic results in set theory, for example
that any two sets can be compared in cardinality. Well-foundedness is no less important in
the realm of computer science, where it often underlies the proofs of termination of non-
deterministic processes, especially when no efficient bound on the length of a computation
is known. In such cases, the complexity of possible executions is usually measured using
an ordinal called rank. Such a rank can be seen as a measure of the depth of the considered
partial order, taking into account suprema of lengths of possible descending chains. Estimates
on a rank can provide upper-bounds on the computational complexity of the considered
problem [26].

In this work, we adopt the perspective of mathematical foundations of program verification
and model-checking. We focus on the monadic second-order logic (MSO) interpreted in the
infinite binary tree (with the left and right successors as the only non-logical predicates),
which is one of the reference formalisms in the area [29]. The famous Rabin Tree Theorem [25]
established its decidability, but – half a century after its introduction – the theory is still an
object of study. On one hand, it has led to numerous extensions, often shifting the decidability

© Damian Niwiński, Paweł Parys, and Michał Skrzypczak;
licensed under Creative Commons License CC-BY 4.0

42nd International Symposium on Theoretical Aspects of Computer Science (STACS 2025).
Editors: Olaf Beyersdorff, Michał Pilipczuk, Elaine Pimentel, and Nguyễn Kim Thắng;
Article No. 69; pp. 69:1–69:18

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:niwinski@mimuw.edu.pl
https://www.mimuw.edu.pl/~niwinski/
https://orcid.org/0000-0002-1342-9805
mailto:parys@mimuw.edu.pl
https://www.mimuw.edu.pl/~parys/
https://orcid.org/0000-0001-7247-1408
mailto:mskrzypczak@mimuw.edu.pl
https://www.mimuw.edu.pl/~mskrzypczak/
https://orcid.org/0000-0002-9647-4993
https://doi.org/10.4230/LIPIcs.STACS.2025.69
https://arxiv.org/abs/2501.05385
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

69:2 A Dichotomy Theorem for Ordinal Ranks in MSO

result far beyond the original theory (see e.g. [4, 24]). On the other hand, a number of
natural questions regarding Rabin’s theory remain still open, including a large spectrum
of simplification problems. For example, we still do not know whether we can decide if
a given formula admits an equivalent form with all quantifiers restricted to finite sets. Similar
questions have been studied in related formalisms like µ-calculus or automata; for example if
we can effectively minimise the Mostowski index of a parity tree automaton [11, 15], or the
µν-alternation depth of a µ-calculus formula [5].

On positive side, some decidability questions have been solved by reduction to the original
theory. For example, it has been observed [22] that for a given formula φ(X⃗), the cardinality
of the family of tuples of sets X⃗ satisfying φ(X⃗) can be computed; this cardinality can be
either finite, ℵ0, or c. Later on, Bárány, Kaiser, and Rabinovich [3] proved a more general
result: they studied cardinality quantifiers ∃≥κX. φ(Y⃗ , X), stating that there are at least κ

distinct sets X satisfying φ(Y⃗ , X), and showed that these quantifiers can be expressed in the
standard syntax of MSO; thus the extended theory remains decidable.

In the present work, instead of asking how many sets X witness to the formula ∃X. φ(Y⃗ , X),
we ask how complex these witnesses must be in terms of their depth-and-branching structure.
A set X of nodes of a tree is well-founded if it contains no infinite chain with respect to
the descendant order. In this case, a countable ordinal number rank(X) is well defined (see
Section 2 below); intuitively, the smaller rank(X), the simpler the set X is, in terms of its
branching structure.

We consider formulae of the form ∃X. φ(Y⃗ , X), where φ is an arbitrary formula of MSO
(it may contain quantifiers). We assume that, whenever the formula is satisfied for some
valuation of variables Y⃗ , the value of X witnessing the formula is a well-founded set. Note
that well-foundedness of a set is expressible in MSO (it suffices to say that each branch
contains only finitely many nodes in X), hence the requirement can be expressed within φ.
For a fixed formula as above, we ask what is the minimal ordinal ηφ, such that the rank of
a witness can be bounded by ηφ,

ηφ
def= sup

Y⃗

min
X

rank(X), (1.1)

where Y⃗ and X range, as expected, over the values satisfying φ(Y⃗ , X).
Since ηφ is a supremum of countable ordinals, its value is at most ω1 (the least uncountable

ordinal). It can be achieved, for example, by the formula “X = Y and Y is a well-founded
set”, as there are well-founded sets of arbitrarily large countable ranks. On the other hand,
for each pair of natural numbers (k, l), one can construct a formula φ with rank ηφ = ω · k + l

in an analogous way to Czarnecki [12], see Lemma 9.4 below. The main result of this work
shows that no other ordinals can be obtained:

▶ Theorem 1.1. For any formula ∃X. φ(Y⃗ , X) as above, the ordinal ηφ is either strictly
smaller than ω2 or equal to ω1. Moreover, it can be effectively decided which of the cases
holds. In the former case, it is possible to compute a number N ∈ N such that ηφ < ω · N .

We also show that, in contrast to the aforementioned cardinality quantifiers, the property
that rank(X) is smaller than ω2 cannot be expressed directly in MSO (see Corollary 9.3).

The proof of Theorem 1.1 develops the game-based technique used previously to charac-
terise certain properties of MSO-definable tree languages (see e.g. [9, 28]). Each application
of this technique requires a specific game, designed in a way which reflects the studied
property. The game should have a finite arena and be played between two perfectly-informed
players ∃ and ∀. The winning condition of the game is given by a certain ω-regular set.

D. Niwiński, P. Parys, and M. Skrzypczak 69:3

Then, the seminal result of Büchi and Landweber [8] yields that the game is determined and
the winner of this game can be effectively decided. The construction of the game is such
that a winning strategy of each of the players provides a witness of either of the considered
possibilities: if ∃ wins then ηφ = ω1 and if ∀ wins then ηφ < ω · N for some computable N .
The crucial difficulty of this approach lies in a proper definition of the game, so that both
these implications actually hold.

Related work
In the context of µ-calculus, one asks how many iterations are needed to reach a fixed point;
this aspect concerns complexity of model checking (cf. [7, 14]), as well as expressive power
of the logic (cf. [7, 6]). Recall that, in an infinite structure, a least fixed point µX. F (X) is
in general reached in a transfinite number of iterations: ∅, F (∅), . . . , F α(∅), . . ., where, for
a limit ordinal α, F α(∅) =

⋃
ξ<α F ξ(∅). It is therefore natural to ask if, for a given formula,

one can effectively find a closure ordinal ηF , such that, in any model, the fixed point can
be reached in ηF , but in general not less, iterations. Fontaine [18] effectively characterised
the formulae such that in each model the fixed point is reached in a finite number of steps.
Czarnecki [12] observed that some formulae have no closure ordinals but, for each ordinal
η < ω2, there is a formula whose closure ordinal is η. He also raised the following question.

▶ Question 1.2 (Czarnecki [12]). Is there a µ-calculus formula of the form µX. F (X) that
has a closure ordinal ηF ≥ ω2?

Gouveia and Santocanale [19] exhibited an example of a formula with an essential
alternation of the least and greatest fixed-point operators whose closure ordinal is ω1; clearly
this limit can be achieved only in uncountable models. In general, it remains open whether a
formula µX. F (X) of the µ-calculus may have a countable closure ordinal ηF ≥ ω2. Afshari
and Leigh [2] claimed a negative answer for formulas of the alternation-free fragment of
µ-calculus; however, as the authors have later admitted [1], the proof contained some gaps.
In a recent paper [1], Afshari, Barlucchi, and Leigh update the proof and extend the result
to formulae of the so-called Σ-fragment of the µ-calculus. More specifically, the authors
consider systems of equations X1 = F1(X1, . . . , Xn), . . . , Xn = Fn(X1, . . . , Xn), where the
formulae Fi may contain closed sub-formulae of the full µ-calculus, but the variables Xi

do not fall in the scope of any fixed-point operators. The authors show that if a countable
number of iterations η suffice to reach the least fixed point of such a system in any Kripke
frame then η < ω2. (Note that, by Bekič principle, each component of such a solution can
be expressed by a single formula with the nested µ-operators.)

As a direct consequence of our result, we obtain an alternative proof for formulae of
the form µX. F (X), where X does not fall in the scope of any fixed-point operator, but
arbitrary closed subformulae may appear in F . (This corresponds to the case of n = 1 in the
equation system of [1].) We show that no such formula has a closure ordinal ηF satisfying
ω2 ≤ ηF < ω1, and moreover, it can be decided whether ηF < ω2; see Section 10. This is
achieved via a well-known reduction of the µ-calculus to the MSO theory of the binary tree,
based on the tree-model property [7], and a natural encoding of a tree model.

In the studies of topological complexity of MSO-definable tree languages, it has been also
observed that dichotomies may help to solve decision problems. An open problem related
to the aforementioned question of definability with finite-set quantifiers, is whether we can
decide if a tree language belongs to the Borel hierarchy (in general, it need not). A positive
answer is known if a tree language is given by a deterministic parity automaton [23], based
on the following dichotomy: such a language is either Π1

1-complete (very hard), or on the

STACS 2025

69:4 A Dichotomy Theorem for Ordinal Ranks in MSO

level Π0
3 (relatively low) of Borel hierarchy. Skrzypczak and Walukiewicz [28] gave a proof

in the case when a tree language is given by a non-deterministic Büchi tree automaton,
inspired by a rank-related dichotomy conjectured in the previous work of the first author [27,
Conjecture 4.4]. There, an ordinal has been associated with each Büchi tree automaton, and
it turns out (in view of [28]) that this ordinal either equals ω1 or is smaller than ω2, in which
case the tree language is Borel. It should be mentioned that a procedure to decide if a Büchi
definable tree language is weakly definable was given earlier by Colcombet et al. [10].

Relation between ordinals and automata has been also considered in the studies of
automatic structures. In particular, Delhommé [13] showed that automatic ordinals are
smaller than ωω while tree-automatic ordinals (defined in terms of automata on finite trees)
can go higher, but not above ωωω . Later, Finkel and Todorcevic [17] showed that ω-tree
automatic ordinals are smaller than ωωω as well. These results may appear in contrast
with our more restrictive bound of ω2; however, representation by automatic structures is
in general more powerful than expressibility in MSO, so the two approaches are not directly
related.

2 Basic notions

N = {0, 1, 2, . . .} denotes the set of natural numbers. We use standard notation for ordinal
numbers, with 0 being the least ordinal number, ω being the least infinite ordinal, and ω1
the least uncountable ordinal. Although ω and N coincide as sets, we distinguish the two
notations to emphasise the perspective.

Words. An alphabet A is any finite non-empty set, whose elements are called letters.
A word over A is a finite sequence of letters w = w0 · · · wn−1, with wi ∈ A for i < n,
and n being the length of w. The empty word, denoted ε, is the unique word of length 0.
By uv we denote the concatenation of words u = u0 · · · un−1 and v = v0 · · · vm−1, that is,
uv = u0 · · · un−1v0 · · · vm−1.

A∗ denotes the set of all finite words over the alphabet A, while Aω denotes the set
of all ω-words over A, that is, functions α : N → A. If α ∈ Aω is an infinite word and
n ∈ N then by α↾n we denote the finite word consisting of the first n letters of α, that is,
α0 · · · αn−1 ∈ A∗.

Trees. Let L and R denote two distinct letters called directions. For a direction d ∈ {L, R},
the opposite direction is denoted d̄ ≠ d. Words over the alphabet {L, R} are called nodes, with
the empty word ε often called the root. An ω-word α ∈ {L, R}ω is called an infinite branch.
A node u is called the parent of its children uL and uR.

A (full infinite binary) tree over an alphabet A is a function t : {L, R}∗ → A, assigning
letters t(u) ∈ A to nodes u ∈ {L, R}∗. The set of all trees over A is denoted TrA. A subtree of
a tree t ∈ TrA in a node u ∈ {L, R}∗ is the tree t↾u over A defined by taking t↾u(v) = t(uv).

Automata. Instead of working with formulae of MSO, we use another equivalent form-
alism, namely non-deterministic parity tree automata [29]. An automaton is a tuple
A = (A, Q, qI, ∆, Ω), where A is an alphabet, Q is a finite set of states, qI ∈ Q is an initial
state, ∆ ⊆ Q × A × Q × Q is a transition relation, and Ω: Q → {i, . . . , j} ⊆ N is a priority
mapping. A run of an automaton A from a state q ∈ Q over a tree t ∈ TrA is a tree ρ ∈ TrQ

such that ρ(ε) = q and for every node u ∈ {L, R}∗ the quadruple(
ρ(u), t(u), ρ(uL), ρ(uR)

)
,

is a transition of A (i.e., belongs to ∆).

D. Niwiński, P. Parys, and M. Skrzypczak 69:5

A sequence of states (q0, q1, . . .) ∈ Qω is accepting if lim supn→∞ Ω(qn) is an even natural
number. A run ρ is accepting if for every infinite branch α ∈ {L, R}ω the sequence of states(
ρ(α↾n)

)
n∈N that appear in ρ on α is accepting.

A tree t ∈ TrA is accepted by an automaton A from a state q ∈ Q if there exists
an accepting run ρ of A from the state q over t. The language of A, denoted L(A) ⊆ TrA, is
the set of trees which are accepted by the automaton from the initial state qI. A language
L ⊆ TrA is regular if it is L(A) for some automaton A.

We now recall the famous theorem of Rabin, which allows us to transform MSO formulae
into equivalent tree automata.

▶ Theorem 2.1 ([25], see also [29]). For every MSO formula φ(X0, . . . , Xn−1) the set of
valuations satisfying φ is a regular language over the alphabet {0, 1}n.

We say that an automaton is pruned if every state q ∈ Q appears in some accepting
run, that is, there exists an accepting run ρ of A over a tree t such that ρ(u) = q for some
node u ∈ {L, R}∗. Note that every automaton can effectively be pruned, without affecting its
language, by detecting and removing states that do not appear in any accepting run.

Games. We use the standard framework of two-player games of infinite duration (see
e.g., [8, 16]). The arena of such a game is given as a graph with both players having perfect
information about the current position. The winning condition of the game is given by
a language of infinite plays won by one of the players.

Ranks. Recall that an ordinal η can be seen as the linearly ordered set of all ordinals
smaller than η. Given a set X ⊆ {L, R}∗, a counting function is a function C : X → η such
that C(u) < C(v) whenever u ∈ X is a proper descendant of v ∈ X (such a function exists for
some η whenever X is well-founded). The rank of a well-founded set X is the least ordinal η

for which a counting function from X to η exists.
Taking the automata-based perspective, instead of working with monadic variables Y⃗

and X, we consider labellings of the tree by certain finite alphabets. In particular, a set of
nodes X ⊆ {L, R}∗ can be identified with its characteristic function, that is, a tree x ∈ Tr{0,1}
over the alphabet {0, 1}. Such a tree is well-founded if no infinite branch contains infinitely
many nodes labelled by 1. The set of well-founded trees is denoted WF ⊆ Tr{0,1}. Likewise,
we define the rank of x ∈ WF, denoted rank(x), as the least η for which there is a counting
function from the set of 1-labelled nodes of x to η. The considered rank is analogous with
the standard rank of well-founded trees (e.g., [21, Section 2.E]).

▶ Example 2.2. The tree x0 ∈ Tr{0,1} with all nodes labelled by 0 has rank 0.
Consider a tree xω where a node v has label 1 if v = RiLj with 1 ≤ j ≤ i. It is a comb:

the rightmost branch is labelled by zeros, and below its i-th node we have a tooth of i nodes
labelled by ones, going left. The rank of xω is ω.

Such combs can be nested: suppose that xω·2 starts analogously to xω, but below every
tooth we again insert xω (i.e., xω·2↾RiLi+1 = xω for every i); then rank(xω·2) = ω ·2. Repeating
this, we can insert xω·n below every tooth of xω, and obtain xω·(n+1) of rank ω · (n+1), for
every n ∈ N.

Then, we can place every xω·n at node RnL, below a 0-labelled rightmost branch; the
resulting tree has rank ω2. In a similar manner we can create a tree having rank equal to
any countable ordinal η.

STACS 2025

69:6 A Dichotomy Theorem for Ordinal Ranks in MSO

3 Problem formulation

We begin by formulating the problem under consideration. Instead of working with a formula
φ(Y⃗ , X), we assume that A is some alphabet and Γ is a regular language over the alphabet
A × {0, 1}. We identify a tree τ over A × {0, 1} with a pair (t, x), where t ∈ TrA and
x ∈ Tr{0,1} such that τ(u) =

(
t(u), x(u)

)
for every node u ∈ {L, R}∗. Thus, Γ ⊆ TrA×{0,1} can

be seen as a relation whose elements are pairs (t, x). We additionally require that whenever
(t, x) ∈ Γ then x is well-founded, which means that Γ (treated as a relation) is contained in
TrA × WF. We say that such a relation is regular if it is regular as a language over A × {0, 1}.

Let πA(Γ) be the projection of Γ onto the A coordinate, that is, the set of those trees
t ∈ TrA for which there exists a (necessarily well-founded) tree x ∈ Tr{0,1} such that (t, x) ∈ Γ.
Similarly, for a tree t ∈ TrA by Γt we denote the section of Γ over the tree t, that is, the set
{x ∈ Tr{0,1} | (t, x) ∈ Γ}.

The following definition is just a reformulation of Formula (1.1) in terms of a relation Γ.

▶ Definition 3.1. The closure ordinal of a relation Γ ⊆ TrA×WF ⊆ TrA×{0,1} (or of
an automaton recognising it) is defined as

ηΓ
def= sup

t∈πA(Γ)
min
x∈Γt

rank(x).

▶ Example 3.2. Consider the following automaton A over the alphabet {b, c} × {0, 1}. Its
states are p0, q1, q2, q3, r0, r1 with q1 being initial, where the subscript provides the priority of
a state (i.e., Ω(pi) = Ω(qi) = Ω(ri) = i). The transitions are, for all i ∈ {0, 1}, j ∈ {1, 2, 3},
and a ∈ {b, c},

(p0, (a, 0), p0, p0), (qj , (c, 0), q3, p0), (qj , (c, 0), p0, r0),
(qj , (b, 0), q2, p0), (qj , (c, 0), p0, q3), (ri, (b, i), r1, r0),
(qj , (b, 0), p0, q1), (qj , (c, 0), r0, p0), (ri, (c, 0), p0, p0).

In this example, we should see c-labelled nodes as separators, splitting the whole tree into
b-labelled fragments. Let us see when a pair (t, x) ∈ Tr{b,c}×{0,1} can be accepted. Note
first that A accepts (t, x0) from p0 for every tree t, and for x0 having all nodes labelled by 0.
Next, observe that states qj become aligned along a single branch, either finite or infinite. If
in t there is a branch that infinitely often goes left, but visits only finitely many c-labelled
nodes, then we can align the qj states along this branch, and (t, x0) will be accepted. Indeed,
just below every c we have q3 (state of large odd priority; has to occur finitely often); below
every b, if we go left we have q2, and if we go right we have q1 (so the parity condition
requires infinitely many left-turns). Another possibility is that the branch with states qj

is finite, and below some c-labelled node the state changes to r0. Now the run sends r1 to
every left child, and r0 to every right child; hence every left child in x should have label 1,
and every right child – label 0. We can continue the zone of states ri until reaching a node
labelled by c; such a node allows us to change the state into p0 and accept anything below.
The acceptance condition requires that there are only finitely many states r1 (hence also
nodes with label 1 in x) on every branch; the tree x is necessarily well-founded.

This determines the optimal rank of a witness x for a tree t. Namely, if in t there is
a branch that infinitely often goes left, but visits only finitely many c-labelled nodes, we
have a witness of rank 0. Otherwise, we should consider every zone of b-labelled nodes in t,
surrounded by c-labelled nodes; consider x having 1 in every left child in that zone; and take
the minimum of ranks of such trees x, over all choices of zones (not including the topmost

D. Niwiński, P. Parys, and M. Skrzypczak 69:7

zone, above the first c on a branch). Thus, every witness of a tree t has rank at least η if and
only if every such zone results in rank at least η, and the former case does not hold. Such
a tree exists for every η < ω1, so the closure ordinal of A is ω1.

4 The dichotomy game

We now move to the definition of the game GA designed to decide the dichotomy from
Theorem 1.1.

Note that for every regular relation Γ ⊆ TrA×{0,1} there exists another regular relation
Γ′ ⊆ TrA×{0,1} with the same closure ordinal, but such that πA(Γ′) is the set of all trees
over A. To see this, it is enough to take Γ′ = Γ ∪ {(t, x′) | x′ ∈ WF ∧ ¬∃x.(t, x) ∈ Γ}. Then
minx∈Γt

rank(x) = minx∈Γ′
t

rank(x) for t ∈ πA(Γ) and minx∈Γ′
t

rank(x) = 0 for t ̸∈ πA(Γ).
Towards the proof of Theorem 1.1, we consider some relation Γ ⊆ TrA×{0,1} such that

Γ ⊆ TrA × WF and πA(Γ) = TrA. Reformulating Theorem 1.1, we need to show that either
ηΓ < ω · N for some N ∈ N, or ηΓ = ω1, and we can effectively decide which case holds. We
assume that Γ is given by a pruned (i.e., all states appear in some accepting run) automaton
A = (A, Q, qI, ∆, Ω).

First, a side is a symbol s ∈ {T, R} (which stands for “trunk” and “reach”), and a mode
is a symbol m ∈ { 1 , 2 } (which stands for non-branching and binary-branching).

A quadruple (δ, s, m, d) ∈ ∆ × {T, R} × { 1 , 2 } × {L, R} such that s = R implies m = 1
(i.e., m = 2 is allowed only for s = T) is called a selector for (δ, s), where δ is of the form(

q, (a, i), qL, qR
)

with a ∈ A, i ∈ {0, 1}. Such a selector agrees with a direction d′ ∈ {L, R}
if either m = 2 or d′ = d (i.e., both directions d′ are fine if m = 2 , but if m = 1
then we require d′ = d). The output side of a selector (δ, s, m, d) in direction d′, where
δ = (q, (a, i), qL, qR), is

T if s = T and d′ = d, or s = R and i = 1, and
R otherwise: if s = T and d′ ̸= d, or s = R and i = 0.

A state-flow is a triple
(
(q, s), m, (q′, s′)

)
, where q, q′ ∈ Q, s, s′ ∈ {T, R}, and m ∈ { 1 , 2 }.

A flow µ is a set of state-flows. The set
{

(q′, s′) |
(
(q, s), m, (q′, s′)

)
∈ µ

}
is called the image

of µ. Note that the number of all possible state-flows, hence also of all possible flows, is
finite.

Given a flow µ, we say that a flow µ̄ ⊆ µ is a back-marking of µ if for every pair (q′, s′)
in the image of µ, precisely one state-flow leading to (q′, s′) belongs to µ̄. This state flow is
called back-marked for (q′, s′).

Given a sequence of flows, µ1, µ2, . . . we can define their composition as the graph with
vertices (q, s, n) ∈ Q × {T, R} × N and with a directed edge from (q, s, n) to (q′, s′, n+1)
labelled by m for every state-flow

(
(q, s), m, (q′, s′)

)
∈ µn+1, n ∈ N. Note that in a flow

there may be two state-flows with the same pairs (q, s) and (q′, s′), with modes m = 1 and
m = 2 , leading to two parallel edges in this graph.

Assume that we are given a set Q′ ⊆ Q and a letter a ∈ A. By ∆a(Q′) we denote the set
of transitions of the form

(
q, (a, i), qL, qR

)
with q ∈ Q′.

Finally, for two sets of states T, R ⊆ Q we denote LT, RM def= (T×{T}) ∪ (R×{R}). Note
that every subset of Q × {T, R} can be uniquely represented as LT, RM for some T, R ⊆ Q.

We can now move to the definition of the crucial game GA, used to prove the desired
dichotomy. The positions of GA are of the form LT, RM ⊆ Q × {T, R} (formally, one also needs
additional auxiliary positions to represent the situation between particular steps of a round;
we do not refer to these positions explicitly). The initial position is L{qI}, ∅M, where qI is the
initial state of the automaton A. The consecutive steps in a round n ∈ N from a position
LTn, RnM are as follows:

STACS 2025

69:8 A Dichotomy Theorem for Ordinal Ranks in MSO

1. ∀ declares a subset T ′
n ⊆ Tn.

2. ∃ declares a letter an ∈ A.
3. ∃ declares a set Fn of selectors, containing one selector for each (δ, s) ∈ (∆an

(T ′
n)×{T}) ∪

(∆an
(Rn)×{R}).

4. ∀ declares a direction dn+1 ∈ {L, R}.
5. We define a flow µn+1 as the set containing the state-flows

(
(q, s), m, (qdn+1 , s′)

)
for each

selector (δ, s, m, d) ∈ Fn that agrees with direction dn+1, where s′ is the output side of
the selector in the direction dn+1, and δ = (q, (an, i), qL, qR) (so q is the source state of δ

and qdn+1 is the state sent by δ in direction dn+1).
6. ∀ declares some back-marking µ̄n+1 of the flow µn+1.
The new position of the game, LTn+1, Rn+1M, is the image of the flow µn+1.

Given a play Π of the game, the winning condition for ∃ is the disjunction A) ∨ B) of the
following parts.
A) In the graph obtained as a composition of the back-markings µ̄1, µ̄2, . . . there exists

a path which infinitely many times changes sides between T and R.
B) In the graph obtained as a composition of the flows µ1, µ2, . . . every infinite path either

is rejecting or contains infinitely many state-flows of mode 2 .

Above, while saying that a path going through (q0, s0, 0), (q1, s1, 1), . . . is rejecting, we
mean that the sequence of states (qn)n∈N is rejecting, that is, lim supn→∞ Ω(qn) is odd.
▶ Remark 4.1. The arena of the game GA is finite and the winning condition defined above is
ω-regular. Thus, the theorem of Büchi and Landweber [8] applies: one can effectively decide
the winner of GA. Moreover, there exists a computable bound M such that whoever wins GA,
can win using a finite-memory strategy that uses at most M memory states.

The following proposition formalises the relation between GA and Theorem 1.1.

▶ Proposition 4.2. Assume that A is a pruned automaton which recognises a relation
Γ ⊆ TrA × WF such that πA(Γ) = TrA (i.e., the projection of Γ is full). Then, we have the
following two implications:
1. if player ∃ wins GA then ηΓ = ω1;
2. if player ∀ wins GA then ηΓ < ω · N , for a number N ∈ N computable based on the

automaton A.

Depiction of a round of GA. Figure 4.1 depicts an example of a round of the game GA.
First ∀ declares a subset T ′

n = {q0, q1} effectively removing the state q2 from the T side.
Note that some states might repeat on both sides. Once the letter an = a is chosen by ∃,
there are six possible transitions from the considered states: one from each of them, except
the state q1 which has two possible transitions, δ1 over (a, 0) and δ2 over (a, 1). ∃ declares
a set of selectors

Fn =
{(

δ0, T, 2 , L
)
,
(
δ1, T, 1 , L

)
,
(
δ2, T, 2 , R

)
,
(
δ3, R, 1 , L

)
,
(
δ4, R, 1 , L

)
,
(
δ5, R, 1 , R

)}
.

Thus, the selectors for the transitions δ0 and δ2 are in the mode 2 , while the remaining
selectors are in the mode 1 . Once ∀ chooses the direction dn+1 = L, we gather into new
sets Tn+1 and Rn+1 the states sent by the transitions in the direction L. The transitions δ0
and δ1 provide their left states into Tn+1. However, in the case of transition δ2 the direction
of the selector is R while the direction chosen by ∀ is L and therefore the left state of this
transition goes to Rn+1. Regarding the transitions on the R side, δ3 provides its state to Tn+1
because this transition is over (a, 1). The transition δ4 provides its state to Rn+1 because

D. Niwiński, P. Parys, and M. Skrzypczak 69:9

Tn Rn

q0 q1 q2 q3 q4 q5

∀: T ′
n = {q0, q1}

∃: an = a

δ0

(a, 0)

δ1

(a, 0)

δ2

(a, 1)

δ3

(a, 1)

δ4

(a, 0)

δ5

(a, 0)

∃: Fn

q′
0 q′

1 q′
2 q′

3

∀: dn+1 = L

Tn+1 Rn+1

Figure 4.1 A depiction of a round of the game GA.

this transition is over (a, 0). Finally, the transition δ5 does not provide its state anywhere,
because its mode is 1 and its direction is R, different than the direction L chosen by ∀. The
states provided by the transitions δ0 and δ1 are both q′

0 and are therefore merged. This
means that the final flow µn+1 is{(

(q0, T), 2 , (q′
0, T)

)
,
(
(q0, T), 1 , (q′

0, T)
)
,
(
(q1, T), 2 , (q′

2, R)
)
,(

(q3, R), 1 , (q′
1, T)

)
,
(
(q4, R), 1 , (q′

3, R)
)}

.

When ∀ chooses a back-marking µ̄n+1 of the flow µn+1, he needs to make a choice which
state-flow to select for the pair (q′

0, T) as there are two possible choices.

5 Intuitions

Let us explain the intuitions behind the game. First very generally: the game is designed
so that ∃ wins when there are trees t requiring witnesses x of arbitrarily large ranks.
Conversely, ∀ wins if there is a bound η such that every tree t has a witness x of rank at
most η. But because this is a finite game with an ω-regular winning condition, if ∀ wins then
he wins with a finite-memory winning strategy; from such a strategy we can deduce that the
bound η is actually of the form ω · N for some natural number N depending on the size of
the memory of ∀.

Having the above in mind, let us discuss details of the game. The role of ∃ should be to
show a tree t (whose all witnesses x have large rank), so we allow her to propose a label of
a node in step 2. However, as usually in games, we do not continue in both children of the
current node, but we rather ask ∀ to choose one direction (dn+1 in step 4), where ∃ has to
continue creating the tree, and where ∀ thinks that it is impossible to continue.

Recall now that arbitrarily large countable ordinals can be obtained by alternately
applying two operations in a well-founded way: add one, and take the supremum of infinitely
many ordinals. Similarly, in a tree x of a large rank, we can always find a comb: an infinite
branch – a trunk – such that from infinitely many nodes on the side of this trunk we can
reach a node labelled by 1, below which the rank is again large (but slightly smaller). In these

STACS 2025

69:10 A Dichotomy Theorem for Ordinal Ranks in MSO

places we can repeat this process, that is, again find an analogous comb, and so on, obtaining
a tree of nested combs that is well-formed but itself has a large rank. Obviously the converse
holds as well: such a tree of nested combs having large rank can exist inside x only if x has a
large rank. Let us also remark that in the case of a finite-memory strategy of ∀ we obtain
that such combs in x can be nested at most N ∈ N times, which itself implies that the rank
of x is at most ω · N .

Thus, in order to show that the constructed tree t allows only witnesses x of large rank,
∃ shows a nested comb structure. But this has to be done for every x such that (t, x) ∈ Γ,
so, in a sense, for every run of A over (t, x) for some x. As usual, we cannot require from ∀
to choose a run on the fly, during the game; an interesting (even an accepting) run of A can
only be fixed after the whole tree (i.e., the whole future of the play) is fixed. This means
that during the game we have to trace all possible runs of A. However, there are infinitely
many runs, so we cannot do that. To deal with that, we keep track of all “interesting” states
in the sets Tn, Rn, and we consider all possible transitions from them in step 3. This makes
the situation of ∃ a bit worse: she has to make decisions based only on the current state, not
knowing the past of the run (the same state may emerge after two different run prefixes).
But it turns out that ∃ can handle that; in our proof this corresponds to positionality of
strategies in an auxiliary game considered in Section 7.

Now, how exactly does ∃ show the nested comb structure? This is done via selectors
proposed in the sets Fn. For states in Tn (i.e., on the “trunk” side) ∃ has to show in
which direction the trunk continues. Moreover, ∃ has to show places where on side of the
trunk we can reach label 1 followed by a nested comb; in these places ∃ plays mode 2
(“branch”). If ∀ chooses a direction in which the trunk (as declared by ∃) continues, we
trace the resulting state again on the T side. If he chooses the opposite direction, and the
mode is 1 (no branching here), we just stop tracing this run. But if ∀ chooses the non-trunk
direction while the mode is 2 , the resulting state ends up on the R (“reach”) side. The role
of ∃ is now to show a direction in which we can reach a node with label 1. If ∀ follows this
direction, and the label of x is 0, we continue searching for label 1 on the R side. When
label 1 is found, we put the resulting state on the T side; ∃ has to show a next comb. The B)
part of the winning condition ensures for every accepting run that the trunk of each comb
has infinitely many branching points (i.e., points with mode 2) and that on the R side we
stay only for finitely many steps (as mode 2 does not occur there). Note that by arbitrarily
composing transitions we may obtain also rejecting runs; the B) condition does not require
anything for them.

There is one more issue taken into account in the design of the game: ∃ should be obliged
to produce the combs nested arbitrarily many times, but not infinitely many times. The
number of nestings (i.e., of switches between sides T and R) is controlled by ∀. When he is
satisfied with the nesting depth provided by ∃ for runs ending in some state, he can remove
this step from the position in step 1, and let ∃ provide appropriate comb structures only from
remaining states (we allow this removal only on the T side, but we could equally well allow
it on the R side, or on both sides). The A) part of the winning condition obliges ∀ to indeed
remove a state after seeing finitely many nestings. To see the usefulness of back-marking
used to formulate this condition, consider a situation with two runs leading to some state:
one with already many nestings of combs provided by ∃, and other where we are still on
the trunk of the first comb. Because ∃ should provide many nested combs for all runs, in
such a situation ∀ should still be able to analyse the latter run. To this end, he can select
the latter run as the back-marked history of the considered state, and continue waiting for
further nested combs, without worrying that he will lose by the A) part of the winning
condition due to the former run.

D. Niwiński, P. Parys, and M. Skrzypczak 69:11

▶ Example 5.1. Let us see how the game GA behaves for the automaton A from Example 3.2.
Recall that the closure ordinal of A is ω1, so ∃ should be able to win.

The strategy of ∃ from a position LT ′
n, RnM is as follows. If T ′

n ∪Rn contains a state ri, then
∃ plays letter b, otherwise letter c. Then ∃ proposes selectors: transitions δ originating from
states qj are handled by selectors (δ, s, m, d) with mode m = 1 and with direction d being
such that δ sends state p0 to the opposite direction d̄ (i.e., d = L for δ = (qj , (a, 0), q2, p0),
etc.); transitions originating from ri are handled by direction d = R, and by mode m = 2 on
the T side and mode m = 1 on the R side. As we argue below, p0 never becomes an element
of Tn ∪ Rn, so transitions from p0 need not to be handled.

The initial position is L{q1}, ∅M. Here ∃ plays letter c and some selectors with mode 1 ,
and ∀ chooses a direction. There are two selectors (δ, s, m, d) that agree with this direction,
and they send there states q3 and r0. Thus the next position is L{q3, r0}, ∅M, reached by the
flow {((q1, T), 1 , (q3, T)), ((q1, T), 1 , (r0, T))}. This time ∃ plays letter b. If ∀ goes right, the
new position is L{q1, r0}, ∅M, reached by the flow {((q3, T), 1 , (q1, T)), ((r0, T), 2 , (r0, T))};
this position behaves identically to the previous one, as from q1 and q3 we have the
same transitions. If ∀ goes left, the new position is L{q2}, {r1}M, reached by the flow
{((q3, T), 1 , (q2, T)), ((r0, T), 2 , (r1, R))}. From L{q2}, {r1}M once again letter b is played.
Note that the only transition from r1 reading letter b on the first coordinate, reads 1 on the
second coordinate. So, if ∀ goes right, the new position is back to L{q1, r0}, ∅M, reached by
the flow {((q2, T), 1 , (q1, T)), ((r1, R), 1 , (r0, T))}; if he goes left, he reaches L{q2}, ∅M, which
behaves like the initial position.

It is also possible that ∀ erases a state from the T side (i.e., plays T ′
n being a proper

subset of Tn). If state r0 is erased, we end up in a position L{qj}, ∅M, being like the initial
position. We may also have positions L{r0}, ∅M and L∅, {r1}M, and flows {((r0, T), 2 , (r0, T))},
{((r0, T), 2 , (r1, R))}, {((r1, R), 1 , (r0, T))} between them. Finally, we may also reach L∅, ∅M.

Note that in our example there is always only one state-flow leading to every pair (q, s);
in consequence, every state-flow is back-marked.

Let us now check the winning condition. One possibility is that infinitely many letters c
were played. In these moments no state ri was present in the position, so the only infinite
path in the composition of flows is the path going through appropriate qj states. But after
seeing every c this state was q3, so the path is rejecting; part B) of the winning condition
is satisfied (we may also have no infinite path, if the qj state was removed by ∀, but then
condition B) holds even more). The opposite case is that from some moment on, only letter b
was played. We then also have an infinite path going, from some moment, through the ri

states (this path really exists: if ∀ removes the state r0, then letter c is played). Note that
whenever ∀ goes left, this path changes sides from T to R, and in the next round returns back
to the T side. If this happens infinitely often, ∃ wins by condition A). Otherwise, from some
moment on ∀ constantly goes right. After that, the path going through the ri states has all
state-flows of mode 2 , and the other path (if exists) remains in state q1, so it is rejecting;
condition B) is satisfied.

6 Soundness

We begin by proving Item 1 of Proposition 4.2: if ∃ wins GA then ηΓ = ω1. To this end,
assume that ∃ wins the game and fix any winning strategy for her. For every countable
ordinal η > 0, our goal is to construct a tree t such that rank(x) ≥ η whenever (t, x) ∈ Γ.
We do this by inductively unravelling the fixed strategy of ∃. During this process, we keep
track of

STACS 2025

69:12 A Dichotomy Theorem for Ordinal Ranks in MSO

the current node v ∈ {L, R}∗,
the current position LTv, RvM of the game,
a mapping κv, which assigns some ordinals ≤ η to all elements of the set LTv, RvM.

Initially v = ε, the position LTε, RεM is the initial position of the game (i.e., L{qI}, ∅M),
and κε = {(qI, T) 7→ η}. Then, in every node v, the letter declared by ∃ provides a label
of this node in t, and while moving to a child vd of v we trace a play in which ∀ declares
the respective direction d. What remains is to declare the remaining choices of ∀ and say
how the mapping κv is updated. The role of the ordinal κv(q, s) is to provide a lower bound
for ranks of witnesses x such that (t↾v, x) can be accepted by A from the state q. While
going down the tree, this ordinal decreases whenever we change the side from T to R; when
it becomes 0, ∀ removes the respective state from the set Tv in his move. The back-markings
are declared by ∀ in a way that maximises the ordinals κv(q, s) of the respective state-flows.

It remains to show that if (t, x) ∈ Γ then rank(x) ≥ η. This is achieved by considering
any accepting run ρ of A over (t, x). Since all possible transitions of A are taken into account
in each round of GA, one can trace the run ρ in the simulated plays of GA. The policy of
updating the mapping κv inductively assures that for every node v and currently traced
side sv we have (ρ(v), sv) ∈ LTv, RvM and rank(x↾v) ≥ κv(ρ(v), sv). Moreover, this policy
guarantees that condition A) is never satisfied in these plays. Thus, condition B) must hold,
inductively guaranteeing the inequality on rank(x↾v).

7 Auxiliary game

Before moving towards a proof of the other implication, we need to be able to construct
reasonable strategies of ∃ in GA. This is achieved by considering an auxiliary game, based
directly on GA, when considering a single transition of A at each round. The players of the
game are called Automaton (responsible for choosing transitions and choices of ∀ in GA) and
Pathfinder (responsible for choices of ∃ in GA). The game is denoted HA,t,N and depends on
the fixed automaton A, a tree t ∈ TrA, and a number N ∈ N. Positions of HA,t,N are triples
(v, q, s) ∈ {L, R}∗ × Q × {T, R}, plus some additional auxiliary positions, to which we do not
refer explicitly.

For a node v ∈ dom(t) and a state q ∈ Q define

valt(v, q) = inf
{

rank(x) | (t↾v, x) can be accepted from q
}

.

We assume inf ∅ = ∞ (which is greater than all ordinals).
In positions (v, q, s) such that valt(v, q) = 0 the game reaches an immediate victory

in which Pathfinder wins. A round from a position (v, q, s) such that valt(v, q) > 0 consists
of the following steps:
1. Automaton declares a transition δ = (q, (t(v), i), qL, qR) from the current state q over

(t(v), i) for some i ∈ {0, 1}.
2. Pathfinder declares a selector (δ, s, m, d) for (δ, s).
3. Automaton declares a direction d′ that agrees with the selector.
Let v′ = vd′, q′ = qd′ , and let s′ be the output side of the selector in the direction d′. Now,
for every possible number k ≤ N , the following four conditions of immediate victory may
end the game, making Automaton win:

D. Niwiński, P. Parys, and M. Skrzypczak 69:13

s = T ∧ valt(v, q) ≥ ω · k ∧ s′ = T ∧ valt(v′, q′) < ω · k,

s = T ∧ valt(v, q) ≥ ω · k ∧ s′ = R ∧ valt(v′, q′) ≤ ω · (k−1),
s = R ∧ valt(v, q) > ω · k ∧ s′ = R ∧ valt(v′, q′) ≤ ω · k,

s = R ∧ valt(v, q) > ω · k ∧ s′ = T ∧ valt(v′, q′) < ω · k.

If no immediate victory happened, the game proceeds to the new position which is (v′, q′, s′).
Note that the conditions of immediate victory depend only on (v, q, s) and (v′, q′, s′), so can
be directly hardwired in the structure of the game.

An infinite play (i.e., without any immediate victory) of HA,t,N is won by Pathfinder if
the sequence of visited states is rejecting or a selector with mode 2 is played infinitely often.

The main result about HA,t,N is the following lemma. First, the winning condition
of HA,t,N guarantees that if Pathfinder wins the game then he wins it positionally. To
prove that he wins, one assumes that Automaton wins from some position, which leads to
a contradiction.

▶ Lemma 7.1. Pathfinder has a positional strategy in HA,t,N that is winning from every
position of the game (we call such a strategy uniform).

8 Completeness

We now move to the proof of Item 2 of Proposition 4.2: if ∀ wins GA then ηΓ < ω · N for
some computable N ∈ N. First observe the following important consequence of the winning
condition of the game.

▶ Proposition 8.1. There exists a computable bound N ∈ N such that if ∀ wins GA then
he has a winning strategy that guarantees the following. In every play Π (either finite or
infinite) consistent with this strategy, every path in the graph obtained as the composition of
back-markings µ̄1, µ̄2, . . . contains less than N changes of sides from T to R.

Compute the bound N as above. Assume that ∀ wins the game GA and fix his winning
strategy satisfying the thesis of the above proposition. We claim that then the closure ordinal
of the automaton is bounded by ω · N . Assume for the sake of contradiction that there exists
a tree t which does not have a witnessing tree x of rank smaller than ω · N . The above
assumption about t implies that valt(ε, qI) ≥ ω · N .

Based on the tree t, we now construct a play that is consistent with the fixed ∀’s strategy,
but is won be ∃, leading to a contradiction. Together with the current position of the game,
LTn, RnM, we store some node vn of the tree, starting with v0 = ε. In order to construct
the play, we need to provide choices of ∃: she declares a letter based on the label of vn in
the fixed tree t, and a set of selectors based on a fixed uniform positional strategy π0 of
Pathfinder in HA,t,N , given by Lemma 7.1. The current node vn is then updated according
to the direction declared by ∀ in GA.

For a pair (q, s) ∈ LTn, RnM denote by histn(q, s) the number of switches from the side T
to the side R on the back-marked history of (q, s). We keep a val-preserving invariant saying
that for every pair (q, s) ∈ LTn, RnM with k = N − histn(q, s) either
1. s = T and valt(vn, q) ≥ ω · k, or
2. s = R and valt(vn, q) > ω · k.
Note that the val-preserving invariant is initially met, because valt(ε, qI) ≥ ω · N . Note also
that always k > 0 because Proposition 8.1 implies that histn(q, s) < N . The fact that the
Pathfinder’s strategy π0 is winning in HA,t,N can be used to deduce that the constructed play
is won by ∃ in GA. This concludes the proof of Proposition 4.2, hence also of Theorem 1.1.

STACS 2025

69:14 A Dichotomy Theorem for Ordinal Ranks in MSO

9 Definability of ranks in MSO

We now move to a study of definability of particular rank bounds in MSO.
With some analogy to the cardinality quantifier by Bárány et al. [3], one can propose a

quantifier ∃≤ηX. φ(Y⃗ , X), expressing that there exists a well-founded set X of rank at most η

such that φ(Y⃗ , X) holds. Note that this can be equivalently rewritten using the predicate
rank(X) ≤ η, defined by ∃≤ηZ. X = Z. Below we show that the predicate rank(X) ≤ η, and
consequently the respective quantifier, cannot be expressed in MSO except for the basic case
of natural numbers (or ω1). Definability of this predicate in MSO boils down to checking if
the following language is regular:

L≤η
def=

{
x ∈ Tr{0,1} | rank(x) ≤ η

}
.

Clearly, rank(x) < ω1 holds for every well-founded tree, thus it remains to consider η < ω1.
We first show that these languages are regular for η < ω.

▶ Fact 9.1. For every l < ω the language L≤l is regular.

Going beyond ω, the languages stop being regular. First, a simple pumping argument shows
the following.

▶ Lemma 9.2. For all ordinals η < ω1 and all l < ω the language L≤η+ω+l is not regular.

The argument from Lemma 9.2 applies in particular to all ordinals η such that ω ≤ η < ω2,
whereas the ordinals η ≥ ω2 are covered by Theorem 1.1. Thus we may conclude.

▶ Corollary 9.3. For an ordinal η < ω1 the language L≤η is regular if and only if η < ω.

The above corollary does not exclude the possibility that a higher ordinal η may be a supremum
of a regular subset of L≤η.

▶ Lemma 9.4. For each pair of natural numbers k, l there exists a regular language L ⊆ WF
such that supx∈L rank(x) = ω · k + l.

▶ Remark 9.5. Clearly no countable formalism can define all the languages L≤η for η < ω1.
However, certain formalisms can go beyond MSO. For instance, the logic WMSO+U (for
which the satisfiability problem is known to be decidable [4]) is capable of defining the
language L≤ω: a tree x has rank at most ω if below every node u labelled by 1 there is
a bound K on the number of nodes labelled by 1 that can appear on branches of x passing
through u. This construction can be iterated to define the languages L≤ω·k+l and possibly
even beyond that.

10 Closure ordinals

In this section we show how a negative answer to Czarnecki’s question on closure ordinals
can be derived from the present result. We use the standard syntax and semantics of modal
µ-calculus [7], with its formulae constructed using the following grammar:

F ::= a | X | µX. F | νX. F | F1 ∨ F2 | F1 ∧ F2 | ♢F | □F,

where a ∈ A is a letter from a fixed alphabet, X is a variable from some fixed set of variables,
µ and ν are the least and the greatest fixed-point operators, and ♢ and □ are the standard
modalities (“exists a successor” and “for all successors”). For technical convenience we make

D. Niwiński, P. Parys, and M. Skrzypczak 69:15

an assumption that, in each point of our model, exactly one proposition (letter in A) is
satisfied. For the sake of readability we often identify a formula with its semantics, that is,
we read a closed formula as a subset of the domain, and a formula with k free variables as
a k-ary function over its powerset.

Given an ordinal number η, we use the standard notation µηX. F (X) for the η-approx-
imation of the fixed point in a given model (which amounts to the η’s iteration F η(∅)).
Given a model τ , we define the closure ordinal of µX. F (X) in τ as the least ordinal η

such that µX. F (X) = µηX. F (X). Then, the closure ordinal of µX. F (X) (as considered in
Question 1.2) is the supremum of these ordinals over all models τ (or ∞ if the supremum
does not exist). We aim at providing an (alternative to Afshari, Barlucchi, and Leigh [1])
proof of the following theorem.

▶ Theorem 10.1. Let F (X) be a µ-calculus formula in which the variable X does not occur
in scope of any fixed-point operator. Then, the closure ordinal of µX. F (X) is either strictly
smaller than ω2, or at least ω1 and it can be effectively decided which of the cases holds.

Note that we allow arbitrary closed formulae of µ-calculus to be nested in F ; however,
we do not cover the whole µ-calculus, because of the restriction on occurrences of X. This
stays in line with the fragment considered by Afshari, Barlucchi, and Leigh [1] (as explained
in Section 1), but we additionally provide a decision procedure that makes the dichotomy
effective.

Towards a proof of Theorem 10.1, as a first step, we eliminate from F all occurrences
of X that are not in scope of any modal operator; this can be done without changing the
closure ordinal. Next, using standard techniques we obtain the following lemma.

▶ Lemma 10.2. Let F (X) be a formula as in Theorem 10.1, with all occurrences of X

being in scope of a modal operator. The following three conditions are equivalent for every
countable limit ordinal η:
1. the closure ordinal of µX. F (X) is bounded by η;
2. for every model τ that is a countable tree with its root in µX. F (X), this root belongs to

µηX. F (X);
3. for every model τ that is a countable tree with its root in µX. F (X), there exists a well-foun-

ded set Z ⊆ dom(τ) containing the root, such that F (Z) ⊇ Z and rank(Z) ≤ η.

A countable tree τ , occurring in Items 2 and 3 above, can be seen as a function τ : X → A

from a prefix-closed subset X ⊆ N∗ to a finite alphabet A. Now, recall a natural encoding
(n1, n2, . . . , nk) 7→ Rn1 LRn2 L · · · Rnk L of N∗ into {L, R}∗. This encoding preserves the prefix order
on N∗ and moreover preserves ranks of well-founded sets. Take the relation ΓF that contains
(t, x) ∈ TrA × Tr{0,1} if:

t encodes a model τ ,
x encodes a set Z ⊆ dom(τ),
the root of τ belongs to µX. F (X),
the root of τ belongs to Z, and F (Z) ⊇ Z.

The µ-calculus formulae F (Z) and µX. F (X) can be rewritten into MSO [7] and then modified
to read the above encoding of τ in the binary tree, instead of τ itself. It follows that the
relation ΓF is MSO-definable.

Observe that Item 3 of Lemma 10.2 can be rephrased by saying that the closure ordinal
of ΓF is bounded by η. Applying Theorem 1.1 to ΓF , and then Lemma 10.2, we have one
of two possibilities: If the closure ordinal of ΓF is smaller than ω2, then it is bounded by
ω · N for some N ∈ N; then also the closure ordinal of µX. F (X) is bounded by ω · N < ω2.

STACS 2025

69:16 A Dichotomy Theorem for Ordinal Ranks in MSO

Otherwise, the closure ordinal of ΓF is ω1, so it is not bounded by any countable limit ordinal;
then also the closure ordinal of µX. F (X) is not bounded by any countable limit ordinal,
hence it is at least ω1. This concludes the proof of Theorem 10.1.

▶ Remark 10.3. One may ask if Theorem 10.1 is merely a consequence or it is in some sense
equivalent to our main result Theorem 1.1. To the best of our understanding, Theorem 10.1
does not transfer back to the general realm of MSO-definable relations, as in Theorem 1.1.
One of the reasons is that the iterations of fixed points are required to proceed in a monotone
fashion, driven by the internal formula F ; while in full MSO one can express arbitrary
correspondence between the parameters Y⃗ and a well-founded witness X.

11 Conclusions

This work contributes to the study of expressive power of the MSO theory of binary tree.
We investigate to what extent this theory can express properties of well-founded trees, and
in particular distinguish between their ordinal ranks. We observe that the ability of explicit
expression of properties of ranks is practically limited to statements of the form: all trees X

satisfying φ(X) have rank(X) < N , for a fixed N ∈ N (cf. Corollary 9.3 above). However
the implicit expressive power of MSO logic goes much higher. In particular, our main result
(Theorem 1.1) allows us to decide whether the property

∃X. φ(Y⃗ , X) ∧ X is well-founded with rank(X) < ω2,

is generally true (for all Y⃗), although the property itself is not expressible in MSO.
There is, however, a number of questions that remain to be answered. As ordinals smaller

than ω2 can be effectively represented, we would like to have an effective procedure that, given
a formula φ, computes the exact bound, that is, (a representation of) the least ordinal ηφ

that can be substituted for ω2 in the construction above. Even more elementarily, given
an MSO-definable set L of well-founded trees, we would like to compute the supremum of
ranks of trees in L. These questions are subjects of ongoing research.

A more far-reaching direction is to relate the techniques of the present paper to the open
problem of computing the Mostowski index, mentioned in Introduction. The parity condition
itself imposes well-foundedness restriction on the occurrences of each odd label m in the
fragments of tree where this label is the highest. Colcombet and Löding [11] have approached
the index problem (still unsolved) by reducing it to the boundedness problem for distance
automata (see also Idir and Lehtinen [20] for a simplified version of this reduction). One
may consider an alternative approach towards the index problem by studying the ordinal
ranks which arise from the well-foundedness restriction of the parity condition.

References
1 Bahareh Afshari, Giacomo Barlucchi, and Graham E. Leigh. The limit of recursion in

state-based systems. In FICS, 2024. URL: https://www.irif.fr/_media/users/saurin/
fics2024/pre-proceedings/fics-2024-afshari-etal.pdf.

2 Bahareh Afshari and Graham E. Leigh. On closure ordinals for the modal mu-calculus. In
CSL, volume 23 of LIPIcs, pages 30–44. Schloss Dagstuhl – Leibniz-Zentrum für Informatik,
2013. doi:10.4230/LIPICS.CSL.2013.30.

3 Vince Bárány, Łukasz Kaiser, and Alexander M. Rabinovich. Expressing cardinality quantifiers
in monadic second-order logic over trees. Fundam. Inform., 100(1-4):1–17, 2010. doi:10.
3233/FI-2010-260.

https://www.irif.fr/_media/users/saurin/fics2024/pre-proceedings/fics-2024-afshari-etal.pdf
https://www.irif.fr/_media/users/saurin/fics2024/pre-proceedings/fics-2024-afshari-etal.pdf
https://doi.org/10.4230/LIPICS.CSL.2013.30
https://doi.org/10.3233/FI-2010-260
https://doi.org/10.3233/FI-2010-260

D. Niwiński, P. Parys, and M. Skrzypczak 69:17

4 Mikołaj Bojańczyk. Weak MSO+U with path quantifiers over infinite trees. In ICALP
(2), volume 8573 of Lecture Notes in Computer Science, pages 38–49. Springer, 2014. doi:
10.1007/978-3-662-43951-7_4.

5 Julian C. Bradfield. Simplifying the modal mu-calculus alternation hierarchy. In STACS,
volume 1373 of Lecture Notes in Computer Science, pages 39–49. Springer, 1998. doi:
10.1007/BFB0028547.

6 Julian C. Bradfield, Jacques Duparc, and Sandra Quickert. Transfinite extension of the
mu-calculus. In CSL, volume 3634 of Lecture Notes in Computer Science, pages 384–396.
Springer, 2005. doi:10.1007/11538363_27.

7 Julian C. Bradfield and Igor Walukiewicz. The mu-calculus and model checking. In Handbook
of Model Checking, pages 871–919. Springer, 2018. doi:10.1007/978-3-319-10575-8_26.

8 Julius R. Büchi and Lawrence H. Landweber. Solving sequential conditions by finite-state
strategies. Transactions of the American Mathematical Society, 138:295–311, 1969.

9 Lorenzo Clemente and Michał Skrzypczak. Deterministic and game separability for regular
languages of infinite trees. In ICALP, volume 198 of LIPIcs, pages 126:1–126:15. Schloss
Dagstuhl – Leibniz-Zentrum für Informatik, 2021. doi:10.4230/LIPICS.ICALP.2021.126.

10 Thomas Colcombet, Denis Kuperberg, Christof Löding, and Michael Vanden Boom. Deciding
the weak definability of Büchi definable tree languages. In CSL, volume 23 of LIPIcs, pages
215–230. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, 2013. doi:10.4230/LIPICS.CSL.
2013.215.

11 Thomas Colcombet and Christof Löding. The non-deterministic Mostowski hierarchy and
distance-parity automata. In ICALP (2), volume 5126 of Lecture Notes in Computer Science,
pages 398–409. Springer, 2008. doi:10.1007/978-3-540-70583-3_33.

12 Marek Czarnecki. How fast can the fixpoints in modal mu-calculus be reached? In FICS,
pages 35–39. Laboratoire d’Informatique Fondamentale de Marseille, 2010. URL: https:
//hal.archives-ouvertes.fr/hal-00512377/document#page=36.

13 Christian Delhommé. Automaticité des ordinaux et des graphes homogènes. Comptes Rendus
de L’Académie des Sciences, Mathématiques, 339(1):5–10, 2004.

14 Javier Esparza, Stefan Kiefer, and Michael Luttenberger. Derivation tree analysis for ac-
celerated fixed-point computation. Theor. Comput. Sci., 412(28):3226–3241, 2011. doi:
10.1016/J.TCS.2011.03.020.

15 Alessandro Facchini, Filip Murlak, and Michał Skrzypczak. Rabin-Mostowski index problem:
A step beyond deterministic automata. In LICS, pages 499–508. IEEE Computer Society,
2013. doi:10.1109/LICS.2013.56.

16 Nathanaël Fijalkow, Nathalie Bertrand, Patricia Bouyer-Decitre, Romain Brenguier, Arnaud
Carayol, John Fearnley, Hugo Gimbert, Florian Horn, Rasmus Ibsen-Jensen, Nicolas Markey,
Benjamin Monmege, Petr Novotný, Mickael Randour, Ocan Sankur, Sylvain Schmitz, Olivier
Serre, and Mateusz Skomra. Games on graphs. CoRR, abs/2305.10546, 2023. doi:10.48550/
arXiv.2305.10546.

17 Olivier Finkel and Stevo Todorcevic. Automatic ordinals. Int. J. Unconv. Com-
put., 9(1-2):61–70, 2013. URL: http://www.oldcitypublishing.com/journals/ijuc-home/
ijuc-issue-contents/ijuc-volume-9-number-1-2-2013/ijuc-9-1-2-p-61-70/.

18 Gaëlle Fontaine. Continuous fragment of the mu-calculus. In CSL, volume 5213 of Lecture Notes
in Computer Science, pages 139–153. Springer, 2008. doi:10.1007/978-3-540-87531-4_12.

19 Maria J. Gouveia and Luigi Santocanale. ℵ1 and the modal µ-calculus. Log. Methods Comput.
Sci., 15(4), 2019. doi:10.23638/LMCS-15(4:1)2019.

20 Olivier Idir and Karoliina Lehtinen. Mostowski index via extended register games. CoRR,
abs/2412.16793, 2024. doi:10.48550/arXiv.2412.16793.

21 Alexander Kechris. Classical descriptive set theory. Springer-Verlag, New York, 1995.
22 Damian Niwiński. On the cardinality of sets of infinite trees recognizable by finite automata.

In MFCS, volume 520 of Lecture Notes in Computer Science, pages 367–376. Springer, 1991.
doi:10.1007/3-540-54345-7_80.

STACS 2025

https://doi.org/10.1007/978-3-662-43951-7_4
https://doi.org/10.1007/978-3-662-43951-7_4
https://doi.org/10.1007/BFB0028547
https://doi.org/10.1007/BFB0028547
https://doi.org/10.1007/11538363_27
https://doi.org/10.1007/978-3-319-10575-8_26
https://doi.org/10.4230/LIPICS.ICALP.2021.126
https://doi.org/10.4230/LIPICS.CSL.2013.215
https://doi.org/10.4230/LIPICS.CSL.2013.215
https://doi.org/10.1007/978-3-540-70583-3_33
https://hal.archives-ouvertes.fr/hal-00512377/document#page=36
https://hal.archives-ouvertes.fr/hal-00512377/document#page=36
https://doi.org/10.1016/J.TCS.2011.03.020
https://doi.org/10.1016/J.TCS.2011.03.020
https://doi.org/10.1109/LICS.2013.56
https://doi.org/10.48550/arXiv.2305.10546
https://doi.org/10.48550/arXiv.2305.10546
http://www.oldcitypublishing.com/journals/ijuc-home/ijuc-issue-contents/ijuc-volume-9-number-1-2-2013/ijuc-9-1-2-p-61-70/
http://www.oldcitypublishing.com/journals/ijuc-home/ijuc-issue-contents/ijuc-volume-9-number-1-2-2013/ijuc-9-1-2-p-61-70/
https://doi.org/10.1007/978-3-540-87531-4_12
https://doi.org/10.23638/LMCS-15(4:1)2019
https://doi.org/10.48550/arXiv.2412.16793
https://doi.org/10.1007/3-540-54345-7_80

69:18 A Dichotomy Theorem for Ordinal Ranks in MSO

23 Damian Niwiński and Igor Walukiewicz. A gap property of deterministic tree languages. Theor.
Comput. Sci., 1(303):215–231, 2003. doi:10.1016/S0304-3975(02)00452-8.

24 C.-H. Luke Ong. On model-checking trees generated by higher-order recursion schemes. In
LICS, pages 81–90. IEEE Computer Society, 2006. doi:10.1109/LICS.2006.38.

25 Michael O. Rabin. Decidability of second-order theories and automata on infinite trees.
Transactions of the American Mathematical Society, 141:1–35, 1969.

26 Sylvain Schmitz. Algorithmic Complexity of Well-Quasi-Orders. (Complexité algorithmique
des beaux pré-ordres). École normale supérieure Paris-Saclay, 2017. URL: https://tel.
archives-ouvertes.fr/tel-01663266.

27 Michał Skrzypczak. Descriptive Set Theoretic Methods in Automata Theory – Decidability and
Topological Complexity, volume 9802 of Lecture Notes in Computer Science. Springer, 2016.
doi:10.1007/978-3-662-52947-8.

28 Michał Skrzypczak and Igor Walukiewicz. Deciding the topological complexity of Büchi
languages. In ICALP, volume 55 of LIPIcs, pages 99:1–99:13. Schloss Dagstuhl – Leibniz-
Zentrum für Informatik, 2016. doi:10.4230/LIPICS.ICALP.2016.99.

29 Wolfgang Thomas. Languages, automata, and logic. In Handbook of Formal Languages (3),
pages 389–455. Springer, 1997. doi:10.1007/978-3-642-59126-6_7.

https://doi.org/10.1016/S0304-3975(02)00452-8
https://doi.org/10.1109/LICS.2006.38
https://tel.archives-ouvertes.fr/tel-01663266
https://tel.archives-ouvertes.fr/tel-01663266
https://doi.org/10.1007/978-3-662-52947-8
https://doi.org/10.4230/LIPICS.ICALP.2016.99
https://doi.org/10.1007/978-3-642-59126-6_7

Colorful Vertex Recoloring of Bipartite Graphs
Boaz Patt-Shamir #

School of Electrical Engineering, Tel Aviv University, Israel

Adi Rosén #

CNRS and Université Paris Cité, France

Seeun William Umboh #

School of Computing and Information Systems, The University of Melbourne, Australia
ARC Training Centre in Optimisation Technologies, Integrated Methodologies, and Applications
(OPTIMA), Melbourne, Australia

Abstract
We consider the problem of vertex recoloring: we are given n vertices with their initial coloring, and
edges arrive in an online fashion. The algorithm is required to maintain a valid coloring by means
of vertex recoloring, where recoloring a vertex incurs a cost. The problem abstracts a scenario of
job placement in machines (possibly in the cloud), where vertices represent jobs, colors represent
machines, and edges represent “anti affinity” (disengagement) constraints. Online coloring in this
setting is a hard problem, and only a few cases were analyzed. One family of instances which is
fairly well-understood is bipartite graphs, i.e., instances in which two colors are sufficient to satisfy
all constraints. In this case it is known that the competitive ratio of vertex recoloring is Θ(log n).

In this paper we propose a generalization of the problem, which allows using additional colors
(possibly at a higher cost), to improve overall performance. Concretely, we analyze the simple
case of bipartite graphs of bounded largest bond (a bond of a connected graph is an edge-cut
that partitions the graph into two connected components). From the upper bound perspective,
we propose two algorithms. One algorithm exhibits a trade-off for the uniform-cost case: given
Ω(log β) ≤ c ≤ O(log n) colors, the algorithm guarantees that its cost is at most O(log n

c
) times the

optimal offline cost for two colors, where n is the number of vertices and β is the size of the largest
bond of the graph. The other algorithm is designed for the case where the additional colors come
at a higher cost, D > 1: given ∆ additional colors, where ∆ is the maximum degree in the graph,
the algorithm guarantees a competitive ratio of O(log D). From the lower bounds viewpoint, we
show that if the cost of the extra colors is D > 1, no algorithm (even randomized) can achieve a
competitive ratio of o(log D). We also show that in the case of general bipartite graphs (i.e., of
unbounded bond size), any deterministic online algorithm has competitive ratio Ω(min(D, log n)).

2012 ACM Subject Classification Theory of computation → Online algorithms; Theory of computa-
tion → Graph algorithms analysis; Theory of computation → Adversary models

Keywords and phrases online algorithms, competitive analysis, resource augmentation, graph
coloring

Digital Object Identifier 10.4230/LIPIcs.STACS.2025.70

Related Version Full Version: https://arxiv.org/abs/2501.05796

Funding Boaz Patt-Shamir : This research was supported by the Israel Science Foundation, grant
No. 1948/21.
Adi Rosén: Research partially supported by CNRS grant IEA ALFRED and ANR grant AlgoriDAM.
Seeun William Umboh: Funded by CNRS grant IEA ALFRED and by the Australian Government
through the Australian Research Council DP240101353.

1 Introduction

Motivation. In the cloud, jobs are placed on machines according to multiple criteria.
Sometimes, during the execution of a job, it turns out that the job is in conflict with another
job, in the sense that the two jobs must not run on the same machine. Such conflicts may

© Boaz Patt-Shamir, Adi Rosén, and Seeun William Umboh;
licensed under Creative Commons License CC-BY 4.0

42nd International Symposium on Theoretical Aspects of Computer Science (STACS 2025).
Editors: Olaf Beyersdorff, Michał Pilipczuk, Elaine Pimentel, and Nguyễn Kim Thắng;
Article No. 70; pp. 70:1–70:19

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:boaz@tau.ac.il
https://orcid.org/0000-0001-8398-8218
mailto:adiro@irif.fr
mailto:william.umboh@unimelb.edu.au
https://orcid.org/0000-0001-6984-4007
https://doi.org/10.4230/LIPIcs.STACS.2025.70
https://arxiv.org/abs/2501.05796
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

70:2 Colorful Vertex Recoloring of Bipartite Graphs

arise due to limited resources on a single machine, or due to security considerations, or other
reasons. Whenever such a conflict between two jobs located in the same machine is detected,
the system needs to migrate one of the conflicting jobs (or both) so as to separate them.
This situation was abstracted in [1] as the “vertex recoloring” (or “disengagement”) problem.
Generally speaking, the problem is stated as an online problem, where initially we are given n

vertices (representing jobs) colored in k colors (representing machines). Edges (representing
conflicts) arrive online, and the algorithm is asked to output a valid vertex coloring after the
arrival of each edge. Recoloring a vertex incurs a cost, and the cost incurred by an algorithm
is the total cost of vertex recoloring events by the algorithm. As usual with online problems,
the performance measure is the competitive ratio, namely the worst-case ratio between the
cost paid by the online algorithm in question and the best cost possible (offline).

In this paper we seek to generalize the problem so as to make it both richer theoretically
and more realistic practically. Our starting point is the following. Recalling the motivating
scenario of job migration as outlined above, we note that in many cases, it is possible to
acquire more machines on which jobs may be executed. Therefore, we are interested in
understanding what are the consequences of allowing the online algorithm to use more colors.
Our reference cost is still the optimal cost when using the initial k colors, but now we allow
the online algorithm to use more colors.

The idea is not new: in fact, it was used in the very first paper on competitive analysis [12]
(for cache size). Later work called this type of comparison “resource augmentation” (see,
e.g., [5]). However, in this paper, still motivated by the job migration scenario, we propose
an additional generalization: we also consider the case in which the additional colors come
at a greater cost. We are not aware of any previous study of such a model.1 We believe that
this approach, which we call weighted resource augmentation, may be appropriate in other
scenarios as well.

Our results. The problem of vertex recoloring is natural and applicable in many situations,
but one has to bear in mind that it entails the problem of graph coloring, which is notoriously
hard, computationally speaking. Following the approach of [1], we focus on polynomially-
solvable instances of coloring. Specifically, in this paper we consider bipartite graphs, i.e., we
assume that after all edges have arrived, the graph is 2-colorable. In [1] it was shown that the
competitive ratio of online vertex recoloring is Θ(log n) in the case of bipartite graphs, where
n is the number of vertices. We study the effect of using more colors in this case. In the
following, the competitive ratio is w.r.t. the 2-color optimal solution. For general bipartite
graphs and deterministic algorithms it turns out that extra colors do not really help:

▶ Theorem 1. Let I be the set of instances of recoloring with two basic colors and n special
colors, where recoloring by a basic color costs 1 and recoloring by a special color costs D. Then
for every deterministic online recoloring algorithm there is an instance in I with competitive
ratio Ω(min{log n, D}).

(We note that competitive ratio D is trivial to achieve when given n special colors. See
Lemma 5.) We therefore restrict our attention to a subclass of bipartite graphs, namely
bipartite graphs of bounded bond size. A bond of a connected graph is a set of edges whose
removal partitions the graphs into two connected components (alternatively, a minimal edge
cut, cf. [4], and see Definition 6). Our main result in this paper is the following:

1 In paging, this could be interpreted as follows: The offline solution uses a cache of size k, while the
online solution has the cache of size k and an additional cache whose replacement cost may be greater.

B. Patt-Shamir, A. Rosén, and S. W. Umboh 70:3

▶ Theorem 2. Suppose that the final graph is bipartite, with all vertex degrees at most
∆, and with bond size at most β for each of its connected components. Then there is a
deterministic algorithm that uses ∆ special colors of cost at most D, whose competitive ratio
is O(log D + β2).

We note that in acyclic graphs, the largest bond size is 1. The following result shows
that the competitive ratio of Theorem 2 cannot be improved even if we restrict the instances
to have largest bond size 1.

▶ Theorem 3. Consider instances in which the final graph is a collection of paths, and there
is an infinite set of special colors, each of cost D > 1. The competitive ratio of any (possibly
randomized) recoloring algorithm in this class of instances is Ω(log D).

On the other hand, if D = 1 (i.e., the cost of all colors is 1), another algorithm provides
a way to reduce the competitive ratio at the price of using more colors.

▶ Theorem 4. Suppose that the final graph is bipartite with bond at most β. Then for any
given 1

2 log β+3 < ϵ ≤ 1 there is a deterministic online algorithm that uses O(ϵ log n) special
colors of unit cost, and guarantees competitive ratio O(ϵ−1).

Our techniques. Our algorithms use Algorithm 1 of [1], denoted A in this paper, as a
black box. To facilitate our algorithms, however, we need to develop a refined analysis of
Algorithm A. In Lemma 17 we prove a tighter upper bound on the cost of A when applied to
an input sequence that satisfies a certain condition (“moderate sequences,” cf. Definition 7).
Using this bound, the main idea in our algorithms is to filter the input sequence so as to
make it moderate, and to feed that sequence to A for simulation (which we know to have
good performance). The difference between our algorithms is what to do with the other
edges, and how to determine the color of vertices which may be affected by the filtering.

The approach taken by our Algorithm B (whose performance is stated Theorem 2), is
to use special colors, essentially in greedy fashion, to resolve conflicts that involve edges
that were rejected from simulation due to the moderate sequence condition. We show that
this approach can guarantee O(log D) competitiveness while using ∆ additional colors. The
other approach, taken by our Algorithm C, is to have a hierarchical set of instantations
(simulations) of A. If an edge is rejected by one instantation, one of its endpoints is sent
to the next instantiation in the hierarchy, which uses a new set of colors; and if this fails,
we send that vertex to the next instantiation etc. We show that the number of edges in
this hierarchy of simulations decreases exponentially as a function of a parameter of the
“moderation” of the input sequence, which allows us to prove Theorem 4.

We note that the largest bond size proves to be a very useful graph parameter, as it
measures, in some precise sense, how far a graph is from a tree. Our Lemma 10 gives us a
tool which may be handy in other contexts as well.

Related work. As mentioned above, the problem of vertex recoloring was introduced in [1],
where vertices have weights, and the cost of recoloring a vertex is its weight. It is shown that
for bipartite graphs, competitive ratio of O(log n) can be achieved by a deterministic online
algorithm, and that no randomized algorithm has competitive ratio o(log n). Tight bounds
are also presented for (∆ + 1) coloring for randomized and deterministic algorithms where ∆
denotes the maximal degree in the graph. Recently, Rajaraman and Wasim [11] considered
the capacitated setting where there is a bound B on the number or weight of vertices in each
color. They give “traditional” resource-augmented algorithms: the algorithms are allowed to

STACS 2025

70:4 Colorful Vertex Recoloring of Bipartite Graphs

violate the capacity bound by a (1 + ϵ) where ϵ is an arbitrarily small constant. They also
study the (1 + ϵ)-overprovisioned setting where the the algorithm is allowed ∆ colors and
the maximum degree of the graph is bounded by (1 − ϵ)∆.

Recoloring (or coloring with recourse) has been considered previously in the context of
dynamic data structures [6, 3, 13, 10]. In these papers, no initial coloring is given and the
competitive ratio is not analyzed; their measure of performance is the absolute number of
recolorings. Competitive analysis is implicit in [3, 13] which is bicriteria: the arrival model
is similar to ours but the final graph may be arbitrary, and the goal is to minimize both
the update time and the number of colors used. In this line of work, it is assumed that the
algorithm has access to an oracle that can be queried about the chromatic number of a graph.
The best general result is due to Solomon and Wein [13], who give a deterministic algorithm
with O(d) amortized running time using O

(
log3 n

d χ(G)
)

colors. Henzinger et al. [9] give
better results for bounded arboricity graphs.

Although the largest bond and maximum cut of a graph may seem superficially similar,
they are quite different, both in value and complexity. For example, finding the largest graph
bond in bipartite graphs is NP-hard [7], but max-cut is trivial in bipartite graphs, and it
is polynomially computable in planar graphs [8]; any tree has a max-cut of size Ω(n) but
largest bond size 1.

Paper organization. The remainder of this paper is organized as follows. In Section 2, we
formalize the problem and introduce some notation. In Section 3, we prove our main result
Theorem 2. In Section 4, we consider the uniform case and prove Theorem 4. Additional
material is included in the full version: we prove our lower bounds Theorem 3 and Theorem 1,
and present a slightly improved version of Algorithm B. A short conclusion is presented in
Section 6.

2 Problem Statement and Notation

Problem statement. We consider the following model. Initially we are given a palette P of
k basic colors, and a superset P ∗ ⊇ P of colors. The extra colors in P ∗ \ P are called special
colors. Each color j is assigned a cost cost : P ∗ → R+, such that cost(j) = 1 for all basic
colors, and 1 ≤ cost(j) ≤ D for all special colors, where D ≥ 1 is some given parameter. We
are also given a set of n vertices V with an initial coloring c0 : V → P using only the basic
colors. The online input is a sequence of edges e1, e2, . . ., where each edge is an unordered
pair of distinct vertices. We define the graph Gi by Gi = (V, {e1, . . . , ei}). In response to
the arrival of each edge ei, the algorithm outputs a coloring ci : V → P ∗ such that none of
the edges in Gi is monochromatic.

Given an algorithm A, an initial coloring c0 and an edge sequence σ = (e1, . . . , eℓ),
A(c0, σ) is a sequence of colorings c1, . . . , cℓ. Define the cost of A on an instance (c0, σ) as

costA(c0, σ) =
ℓ∑

i=1

∑
v∈V

(
1 − δci−1(v)ci(v)

)
cost(ci(v)) ,

where δ is the Kronecker delta. That is, whenever a vertex is recolored, the algorithm pays
the cost of its new color. In this paper we assume that the input is such that the final graph
can be colored using P , i.e., Gℓ is k-colorable. Given an initial coloring c0, the offline cost of
an input sequence σ with respect to the basic colors P is

B. Patt-Shamir, A. Rosén, and S. W. Umboh 70:5

OPTk(c0, σ) = min
{∑

v∈V

(
1 − δc0(v)c∗(v)

)
| c∗ : c∗ is a valid k-coloring of Gi by P

}
.

In other words, the offline cost of σ w.r.t. k is the least cost of recoloring V using basic colors
so that Gi has no monochromatic edges.

Let I = (c0, σ) denote an instance. The competitive ratio of an algorithm A with respect
to k is supI {costA(I)/OPTk(I)}. Let us make a quick observation about the problem.

▶ Lemma 5. Any instance I of recoloring with k basic colors can be solved by an online
algorithm using n − k special colors at cost at most 2D · OPTk(I), where n is the number of
vertices and D is the cost of a special color.

Proof. Consider the final graph, with vertices colored by the initial coloring. Any feasible
solution must recolor a vertex cover of the monochromatic edges in this graph. Therefore,
denoting the size of such a minimum vertex cover by q, we have that OPTk(I) ≥ q. On the
other hand, we can maintain in an online manner a 2-approximate vertex cover (e.g., using
an online version of the algorithm of Bar-Yehuda and Even [2]), and every time a vertex
enters the online cover, we recolor it with a distinct new color. The special colors never
collide because each is used at most once, and hence the total cost is at most 2qD. ◀

Additional notation.
Given a sequence σ, σ[i] denotes the prefix of the first i elements of σ. Given sequences
σ and σ′, σ ◦ σ′ denotes the sequence obtained by concatenating σ and σ′.
Given a graph G = (V, E) and V ′ ⊆ V , G[V ′] denotes the graph induced by V ′, i.e., the
graph with vertices V ′ whose edges are all edges of E with both endpoints in V ′.

Graph bond. The largest bond size is a graph parameter related to max cut, but it is quite
different. Intuitively, the graph bond is a measure of how close the graph is to a tree. We
give below a definition that generalizes the standard one (e.g., [7]) to graphs with multiple
connected components.

▶ Definition 6. Let G = (V, E) be a graph with k ≥ 1 connected components. An edge set
B ⊆ E is a bond of G if (V, E \ B) has exactly k + 1 connected components. The size of the
largest bond of G is denoted β(G).

Note that β(G) = 1 if and only if G is a forest. Also note that the size of the largest bond of
a graph is monotone in its edge set. More formally, if G = (V, E) and G′ = (V, E′) are two
graphs with the same vertex set, then E ⊆ E′ implies β(G) ≤ β(G′).

We remark that an alternative definition for bond is a minimal edge cut [4]: an edge cut
of G = (V, E) is an edge set B ⊆ E such that (V, E \ B) has more connected components
than G, and an edge cut B is minimal if no proper subset of B is an edge cut of G.

3 Non-Uniform Cost

In this section we prove our main result. Intuitively, we show that while the competitive
ratio for general bipartite graphs is known to be Θ(log n), by using ∆ + 1 additional colors of
cost (at most) D, one can reduce the competitive ratio to Θ(log D) in graphs whose largest
bond is small. In the full version, we show that we can achieve the same competitive ratio
with only ∆ additional colors, using a somewhat more complicated algorithm.

STACS 2025

70:6 Colorful Vertex Recoloring of Bipartite Graphs

Our algorithm uses the algorithm of Azar et al. [1] for bipartite graphs as a black box;
henceforth, we refer to Algorithm 1 of [1] as A. The basic strategy of our algorithm is as
follows. The input sequence of edges σ is split in two: a subsequence denoted σsim is sent to
a simulation by algorithm A (which uses only the two basic colors), and the remaining edges
are sent to a procedure called recx, which uses the additional special colors. Determining
which edge goes to σsim depends on the size of the connected components of its two endpoints,
and by the number of vertices already recolored by A in them. The idea is to control the
simulation of A so that its cost remains within the range of O(log D) competitiveness, and
use the special colors only once we know that we can pay for them. The bond size affects
the total cost due to the edges that are not sent to the simulation.

3.1 Algorithm B: Specification
To describe the algorithm, we need some notation. Recall that σ[i] is the sequence of the
first i edges of σ. We use Ei to denote the set of edges in σ[i]: Ei = {e1, e2, . . . ei}. We use
σsim

i to denote the subsequence of edges sent to the simulation of A in steps 1, . . . , i, and
E[i]sim to denote the corresponding set of edges. Ri is used to denote the set of vertices ever
recolored by algorithm A when executed on input σsim

i . We also define R to be R|σ|.
We now specify the algorithm, using the parameters D (the maximal cost of a color), and

α ∈ (0, 1), a parameter of our choice which indirectly controls how many of the edges will be
sent to the simulation: the smaller α is, less edges will be sent to the simulation.

We also define the following concepts.

▶ Definition 7. Consider a sequence of edges σ and a connected component C of the graph
which is edge-induced by the set of edges in σ.

C is small if |C| ≤ D and large otherwise, where |C| is the number of vertices in C.
C is σ-light if |R ∩ C|/|C| ≤ α, and σ-heavy otherwise, where R is the set of vertices
ever recolored by algorithm A on input σ.

▶ Definition 8. Consider an input sequence σ, and two values D and α.
An input sequence σ is called (D, α)-moderate if for every edge ei = (u, v) in σ, it
holds that if u and v are in two distinct connected components Cu and Cv with respect
to e1, . . . , ei−1, then either Cu or Cv is either small or σ[i − 1]-light (i.e., no edge in σ

connects two distinct components which are large and σ[i − 1]-heavy).
The two series of subsequences σsim

i and σexc
i of σ are defined inductively as follows.

σsim
i =

⊥ if i = 0
σsim

i−1 ◦ ei if i > 0 and σsim
i−1 ◦ ei is (D, α)-moderate

σsim
i−1 if i > 0 and σsim

i−1 ◦ ei is not (D, α)-moderate

σexc
i =

⊥ if i = 0
σexc

i−1 if i > 0 and σsim
i−1 ◦ ei is (D, α)-moderate

σexc
i−1 ◦ ei if i > 0 and σsim

i−1 ◦ ei is not (D, α)-moderate

(Informally, ei is appended to σsim
i−1 if it keeps the moderation property, and to σexc

i−1 otherwise.)
The pseudocode for the algorithm appears in the following page.

3.2 Analysis
We now turn to analyze the algorithm.

The interesting part about the algorithm is that the simulation of A is unaware of some
of the edges. We start by showing that Algorithm B produces a valid coloring.

B. Patt-Shamir, A. Rosén, and S. W. Umboh 70:7

▶ Lemma 9. After every step i, ci is a valid coloring of the graph Gi = (V, Ei).

Proof. First observe that once a vertex becomes special, then it is always colored by a
special color. Likewise, only special vertices are colored by special colors.

Algorithm B

State:
Each vertex u has an actual color c(u) and a simulated color c(u). The simulated coloring c is
the coloring maintained by the simulation of A. The initial actual colors are given as input, and
the initial simulated colors are the initial actual colors.
Each vertex records whether its simulated color was ever changed by the simulation of A. This
allows the algorithm to maintain the set Ri.
Each vertex has an indication whether it is “special” or not. Initially all vertices are not special.

Action:
Upon the arrival of edge ei = (ui, vi):

a. If σsim
i−1 ◦ ei is (D, α)-moderate then
send ei to A (which updates c(·)); //σsim

i = σsim
i−1 ◦ ei

set c(w) := c(w) for every non-special vertex w.
b. Else

If both ui and vi are not special then mark ui as special.
c. Invoke recx(ui, vi)

Procedure recx(u, v):
1. If u and v are special then

if e = (u, v) is monochromatic then
recolor u with a free special color. // there are ∆ + 1 special colors

2. Else
If u is special then

if u is colored by a basic color then
recolor u with a free special color. // first time u is colored special

3. Else
If v is special then // this case cannot happen because of the way recx is used.

if v is colored by a basic color then
recolor v with a free special color.

We prove the lemma by induction on i. The base case is i = 0, in which E0 = ∅ and
hence any coloring is valid. For the inductive step, we first consider all edges but the new
edge ei and for those we proceed in two sub-steps. Then we consider the new edge ei.

For all edges but ei, if ei is not a simulated edge and is not sent to A, then the first
sub-step is empty. If ei is a simulated edge and is sent to A, then the colors of some
non-special vertices may change. After this sub-step, for each (old) edge: (1) if its two
endpoints are non-special then the edge is not monochromatic by the correctness of A; (2)
if its two endpoints are special, then their color does not change in this sub-step and the
edge is not monochromatic by the induction hypothesis; (3) if one endpoint is special and
the other is not, then one and only one endpoint is colored by a special color, and hence the
edge is not monochromatic.

The second sub-step is the invocation of recx on the input edge. Following this invocation
one vertex might be recolored to a special color. Clearly any (old) edge with at least one
node not special remains non-monochromatic by the induction hypothesis. For an (old) edge
with two special endpoints, if their color is not changed, they remain non-monochromatic by
the induction hypothesis. For such an edge for which one of its endpoints changed color by
recx, the code ensures that it is non-monochromatic after the execution of recx.

STACS 2025

70:8 Colorful Vertex Recoloring of Bipartite Graphs

Now as to the edge ei itself, we have a number of cases depending whether it is a simulated
edge and the status (special or not) of its two endpoints when step i begins.
1. If its two endpoints are non-special when step i starts:

if ei is a simulated edge: at the end of the first sub-step ei is not monochromatic by
the correctness of A; none of its endpoints is marked special and hence recx does not
recolor any node and ei remains non-monochromatic.
if ei is not a simulated edge: One of its endpoints is marked special; recx recolors that
vertex by a special color, while the other endpoint remains colored by a basic color;
hence ei is not monochromatic.

2. If its two endpoints are special when step i starts, then regardless of whether ei is a
simulated edge or not the code of recx ensures that ei is not monochromatic.

3. If one endpoint is special and the other is not when step i starts, then regardless of
whether ei is a simulated edge or not, the status of neither vertex changes, and one of
them remains colored by a special color and the other by a basic color, hence ei is not
monochromatic. ◀

We now turn to analyze the competitiveness of our algorithm. To this end, we first prove
the following property about graphs with bounded bond size.

▶ Lemma 10. Let G = (V, E) be a connected graph with largest bond size at most β, and
let {V1, . . . , Vk} be a partition of V such that the induced subgraph G[Vi] is connected, for
every 1 ≤ i ≤ k. Then the number of edges which are not contained in any of these induced
subgraphs (i.e., the number of edges with endpoints in two different parts of the partition) is
at most (k − 1)β.

Proof. Consider the multi-graph G′ = (V ′, E′) obtained from G by contracting each Vi to a
single node and eliminating self-loops. We shall prove that |E′| ≤ (k − 1)β.

First, we note that |V ′| = k, and that the size of the largest bond of G′ is at most β. We
now prove, by induction on k, that if a loop-free multigraph G′ = (V ′, E′) has k nodes and
bond size at most β, then |E′| ≤ (k − 1)β. The base case is k = 1; in this case, E′ is empty
since G′ does not contain self loops.

For the inductive step, fix any k ≥ 2. Let v be an arbitrary node in V ′, and let V̄ = V ′\{v}.
We proceed according to the connectivity of V̄ . If G′[V̄] is connected, then the degree of v is
at most β. Since |V̄ | = k − 1, by the induction hypothesis and the fact that the size of the
largest bond of G′[V̄] is at most the size of the largest bond of G′ (which is at most β), we
have that |E′| ≤ β + (k − 2)β = (k − 1)β.

Otherwise, G′[V̄] is disconnected. Let C1 be the set of vertices of an arbitrary connected
component of V̄ , and denote C2 = V̄ \ C1. Let Cv

1 = C1 ∪ {v}, and Cv
2 = C2 ∪ {v}. Trivially

|Cv
1 | + |Cv

2 | = k + 1, and m1 + m2 = |E′|, where m1 and m2 are the number of edges in
G′[Cv

1] and in G′[Cv
2], respectively. Since the largest bond of a subgraph is no larger than

the largest bond of the original graph, and since the number of nodes in each of G′[Cv
1] and

G′[Cv
2] is strictly less than k, by the inductive hypothesis we have that m1 ≤ (|Cv

1 | − 1)β
and m2 ≤ (|Cv

2 | − 1)β. It follows that |E′| = m1 + m2 ≤ (k − 1)β. ◀

▶ Corollary 11. Let G = (V, E) be a graph with β(G) ≤ β, and let C1, . . . , Ck be a collection
of disjoint subsets of vertices in V such that G[Ci] is connected for all 1 ≤ i ≤ k. Then
|{(v, u) ∈ E : v ∈ Ci, u ∈ Cj , i ̸= j}| ≤ β(k − 1) , i.e., the number of edges with endpoints in
two different subsets is at most β(k − 1).

Proof. Let V1, . . . , Vk, Vk+1 be any partition of V such that:
for each 1 ≤ i ≤ k, Ci ⊆ Vi, and G[Ci] is connected; and
Vk+1 is exactly the set of vertices which are not connected in G to any vertex of

⋃k
i=1 Ci.

B. Patt-Shamir, A. Rosén, and S. W. Umboh 70:9

This can be achieved by associating each vertex of V \ Vk+1 with the set Ci closest to it (like
in a Voronoi partition). Note that we may assume without loss of generality that Vk+1 is
empty: otherwise, consider the graph G′ def= G[V \ Vk+1]: Clearly, by the definition of Vk+1,
the number of edges connecting vertices in different Ci in G and G′ is the same.

Since every edge between two subsets Ci, Cj connects different parts of the partition Vi

and Vj , the result follows from Lemma 10, when applied to each connected component of G

separately. ◀

We proceed to bound from above the cost of Algorithm B. The cost consists of two parts:
the cost incurred by Procedure recx and the cost due to the simulation of A. We start by
stating a number of facts due to the definition of the algorithm.

▶ Fact 12. A vertex which is colored by a special color after step i must belong to a connected
component of E[i − 1]sim that has more than αD vertices of R.

Proof. Observe that a node v is colored by a special color only in procedure recx, when it
is a special vertex. Moreover, it is marked special only when an edge ej = (v, u) arrives, and
that edge is in E \ Esim. It follows that there is an edge ej , for j ≤ i, which connects two
large and heavy connected components of E[j − 1]sim. Hence, v is part of a large connected
component of E[j − 1]sim which has more than αD vertices of R. ◀

Recalling the sequences σexc and σsim defined in Definition 8 as a function of any sequence
σ, we prove the following lemma that allows us to (indirectly) give an upper bound on the
number of vertices that require “special treatment”.

▶ Lemma 13. For any given σ, D and α, it holds that |σexc| ≤ β|R|
αD , where R is the set of

vertices whose colors are modified when σsim is given as input to A.

Proof. In order to prove the lemma we maintain, as the input sequence σsim proceeds, sets
of vertices, B1, B2, . . . , Bs, which are pairwise disjoint; furthermore, all vertices in each Bi

belong to the same connected component of the input graph (with respect to all edges, not
only those in σsim). We call the Bi sets witness sets. We construct the witness sets online as
follows. Initially, there are no witness sets. When an edge e = (u, v) ∈ σ arrives, we modify
the witness sets as follows.

I If none of {u, v} is already in one of the existing witness sets, and if the connected
component that contains e (after e is added to the graph) has at most αD vertices from
R: do nothing.

II If none of {u, v} is already in one of the existing witness sets, and if the connected
component that contains e (after e is added to the graph) has more than αD vertices
from R: create a witness set which contains all the vertices in that connected component.

III If one of {u, v}, w.l.o.g. u, is already in an existing witness set, say B, and v is not: add
all the vertices of the connected component of v to B. (As we prove below in Point 4,
these vertices do not yet belong to any witness set.)

IV If both {u, v} are already in some witness sets (possibly the same one): do nothing.

Intuitively, witness sets are created when a connected component passes the “critical
mass” threshold of αD vertices from R, and vertices that do not belong to any witness set
are added to the witness set they encounter, i.e., the set of the first vertex that belongs to a
witness set, to which they are connected.

The following properties follow from a straightforward induction on the input sequence.

STACS 2025

70:10 Colorful Vertex Recoloring of Bipartite Graphs

1. All the vertices of a given witness set are in the same connected component of σ. This is
because a new witness set is created from connected vertices. Moreover, additions to a
witness set are always in the form of vertices connected to vertices already in that witness
set.

2. All the vertices in a connected component of σsim with more than αD vertices of R are in
some witness set (not necessarily all in the same witness set). This follows by induction
on the arrival of new edges of σsim and the actions relative to witness sets taken when
this happens.

3. Every two vertices u, v which are in the same connected component of σ are either both
in some witness set (not necessarily the same), or both are not in any witness set. This
follows from the fact that the actions taken regarding witness sets exclude the possibility
of an edge with exactly one endpoint in a witness set.

4. If a vertex w belongs to some witness set B at some point of the execution, then w

belongs to B in the remainder of the execution. This follows from the fact that a vertex
w becomes a member of witness set B′ only in Cases II or III above.
In Case II, w did not belong before to any witness set because both u and v did not
belong to any witness set and w is in the same connected component of either u or v.
Hence, by Point 3, w is not in any witness set.
In Case III, similarily, w is connected to v and since v does not belong to any witness set,
then by Point 3 w is not in any witness set.

It follows from the above properties that the total number of witness sets is at most |R|
αD ,

because each witness set that is created requires at least αD distinct vertices of R, vertices
do not change their witness set, and the sets are pairwise disjoint.

Next, we claim that when an edge e is added to σexc (i.e., it connects two distinct
large-and-heavy connected components C, C ′ of σsim), then the vertices of C and C ′ already
belong to two distinct witness sets. By definition, each of C and C ′ contains more than αD

vertices of R, and hence, by Point (2) above, the endpoints of e are already associated with
witness sets. To show that the endpoints of e belong to distinct witness sets, assume, by
way of contradiction, that the endpoints of e belong to the same witness set. Then from
Point 1 we have that C and C ′ are already connected in σ (but, by assumption, they are
not connected in σsim). Let e0 be the first edge (according to the order of the arrival of
the edges) in σexc that completes a path from some node in C to some node in C ′. Since
e0 /∈ σsim, it must be the case that when e0 arrived, both of its endpoints belonged to two
large and heavy connected components of σsim. Point 2 ensures then that the vertices of C

and C ′ are already in witness sets. Point 1 implies that these witness sets must be distinct,
because before the arrival of e0, C and C ′ are not connected to each other in σ. The sets to
which the vertices of C and C ′ belong are the same, and hence distinct, when e arrives, by
Point 4. This is in contradiction to the assumption that the witness sets are the same.

Thus, an edge is added to σexc only when its endpoints are in two distinct witness sets.
Since there can be at most |R|

αD such sets, we get from Corollary 11 and the assumption that
the graph has bond size at most β, that there are at most β|R|

αD such edges. ◀

▶ Lemma 14. The total cost incurred in procedure recx is O(β2|R|/α), where R is the set
of vertices ever recolored by A.

Proof. Procedure recx only recolors vertices that are marked special. For each special vertex
v, the procedure recx recolors v from a basic color to a special color exactly once in the
step when v becomes special, and might recolor v again when a new edge (v, u) arrives, and
also u is marked special. Let V ′ be the set of vertices ever marked special, and E′ the set of
edges such that when they arrive both their endpoints are marked special.

B. Patt-Shamir, A. Rosén, and S. W. Umboh 70:11

A node v is marked special only when an edge ei = (v, u) arrives and ei ∈ E \ Esim. By
Lemma 13 |E \ Esim| ≤ O(β|R|

αD), and hence |V ′| ≤ O(β|R|
αD).

Let |V ′| = ℓ, and V ′ = {uj : 1 ≤ j ≤ ℓ}. By applying Corollary 11 with sets C1 =
{u1}, . . . , Cℓ = {uℓ}, we have that |E′| ≤ O(β2|R|

αD).
The cost of recx is therefore O(|V ′| + |E′|) · D = O(β|R|

αD + β2|R|
αD) · D = O(β2|R|

α). ◀

Next, we bound from above the cost incurred by the simulation of A. We need a refined
analysis of Algorithm A. In the following two lemmas, we recall properties of A from [1].
The first lemma relates the number of vertices recolored by A to the optimal cost.

▶ Lemma 15 ([1], Lemma 3.4). Let OPT2[i] denote the offline cost for input σ[i] when using
two colors of unit cost. Then |Ri| ≤ 3 · OPT2[i].

The next lemma is used to upper-bound the number of times a vertex is recolored by A.

▶ Lemma 16 ([1], Proposition 3.5). Let r(i) denote the number of vertices recolored by A in
step i. There exists a subset of steps I+ ⊆ {1, . . . , |σ|} such that

∑
i∈I+ r(i) ≥ 1

7
∑|σ|

i=1 r(i).
Moreover, for every i ∈ I+, if the arriving edge connects two distinct connected components
C and C ′, and A recolors C, then |C ′ ∪ C| ≥ 5

4 |C|.

In [1], Lemma 15 and Lemma 16 are used to show an O(log n) bound on the competitive
ratio of A. Here, we prove a tighter bound on the competitive ratio when the input sequence
is moderate (cf. Definition 7). The proof uses amortized analysis by designing an appropriate
charging scheme.

▶ Lemma 17. If σ is a (D, α)-moderate input sequence, then costA(σ) ≤ O(|R| log D/(1−α)).

Proof. Let Ri be the set of vertices recolored by A so far after it processed the ith input
edge. Let I+ be the subset of steps given by Lemma 16; it suffices to bound from above the
cost incurred by A on steps in I+. We will do this via a charging scheme.

The high-level intuition behind the charging scheme is as follows. Let i ∈ I+, and suppose
ei connects components Ci and C ′

i, and that in response, A recolors Ci (recall that we
consider bipartite graphs and two colors, hence a monochromatic edge must connect two
distinct connected components). Our goal is to charge a the load of 1 on certain vertices
and show that (1) the total charge in each step i is at least a constant fraction of |Ci ∩ R|
or |C ′

i ∩ R| and (2) every vertex is charged O(log D) times in total over the course of the
input sequence. There are four cases to consider and each case will use a different type of
charging. (1) The first is when Ci is small, i.e. |Ci| ≤ D. In this case, we charge every vertex
in Ci. Lemma 16 implies that a vertex can only be charged by this charging type a total of
O(log D) times. (2) The second case is when Ci is large and light. In this case, we charge to
the vertices of Ci that are newly recolored by the algorithm. Since Ci is light, the number of
vertices that are recolored for the first time by A in this step is sufficiently large. Since this
type of charging charges newly recolored vertices, a vertex can be charged by this charging
type at most once.

The remaining possibilities concern case (3) when Ci is large and heavy. We consider two
subcases. (3.1) The first subcase is when Ci is large and heavy and C ′

i is small and heavy. In
this case, we charge to C ′

i ∩R. Lemma 16 implies that |R∩C ′
i| is at least an α fraction of |Ci|.

Moreover, since the vertices in C ′
i are part of a large component after this step, a vertex can

be charged by this charging type at most once. The final and most interesting case is (3.2)
when C ′

i is light. To handle this case, we maintain, for each (maximal) connected component
C that exists at a given time, a subset X(C) of vertices. We will charge to the vertices of

STACS 2025

70:12 Colorful Vertex Recoloring of Bipartite Graphs

X(Ci) in this case. The sets X are defined inductively as described in the pseudocode of the
charging scheme below. As we prove below, each vertex is charged by this type of charging
only once, we the size of the sets X is large enough to compensate for the cost of recoloring.

Note that these cases are exhaustive as Ci and C ′
i cannot be both large and heavy,

otherwise the edge would not have been input to the simulation A. The following summarizes
in a formal manner the charging scheme described above. We then formally prove the desired
properties of the charging scheme as stated informally above.

Charging scheme

Initially, X({v}) = {v} for every vertex v.
When a new edge ei = (ui, vi) arrives connecting components Ci and C′

i:
1. Suppose A recolors Ci

a. Charge vertices as follows:
i. If Ci is small, then charge 1 to each vertex in Ci

ii. If Ci is large and light, then charge 1 to each vertex in Ci \ Ri−1, i.e., the vertices of Ci

that were never recolored before step i.
iii. If Ci is large and heavy, C′

i small and heavy, then charge 1 to each vertex in Ri−1(C′
i)

iv. If Ci is large and heavy, C′
i light, then charge 1 to each vertex in X(Ci).

b. If C′
i is light, then X(Ci ∪ C′

i) = (Ci ∪ C′
i) \ Ri; else X(Ci ∪ C′

i) = X(Ci) ∪ X(C′
i)

2. If A does not recolor, then X(Ci ∪ C′
i) = X(Ci) ∪ X(C′

i)

Observe that every vertex charged is either in Ci, the component being recolored, or was
previously recolored (case 1(a)iii). Thus every vertex that is charged is in R. It now remains
to show that in each step, the number of vertices being charged is at least a constant fraction
of the number of vertices being recolored – i.e. the total charge received by the vertices can
pay for the recoloring cost – and that each vertex is not charged more than O(log D) times.

▷ Claim 18. Consider a connected component C that exists after an arbitrary step i, and the
set X(C) defined by the charging scheme. For every C ∈ P , we have |X(C)| ≥ |C|(1 − α)/5.

Proof. We prove this claim by induction on |C|, the base case being |C| = 1. By definition for
C, such that |C| = 1, X(C) = C and hence the claim hold, since 0 < α < 1. For the inductive
step, suppose that C = A ∪ A′, and that |X(A)| ≥ |A|(1 − α)/5 and |X(A′)| ≥ |A′|(1 − α)/5.
If X(C) = X(A) ∪ X(A′) (which occurs in two distinct cases in the specifications of the
charging scheme) then, since A ∩ A′ = ∅,

|X(C)| = |X(A)| + |X(A′)| ≥ (|A| + |A′|)(1 − α)/5 = |C|(1 − α)/5.

Otherwise, X(C) = (A ∪ A′) \ Ri. Then, when ei arrived, A recolored one of the two
connected components A, A′ and the other connected component was light. Suppose w.l.o.g.
that A recolored A, and A′ was light. Then, we have

C \ Ri ⊆ A′ \ Ri = A′ \ Ri−1 .

By the lightness of A′, we have that |A′ \ Ri−1| ≥ |A′|(1 − α) ≥ |C|(1 − α)/5 by Lemma 16.
This concludes the induction argument. ◁

▷ Claim 19. Suppose A recolors component Ci at step i. Then the number of vertices being
charged is at least Ω(|Ci|(1 − α)).

Proof. We show that the number of vertices being charged is at least |C|(1 − α)/20 in
every case. In case 1(a)i, we charge C so this clearly holds. In case 1(a)ii, lightness
of C implies that |C \ Ri−1| ≥ |C|(1 − α)/5 ≥ |C|(1 − α)/20. In case 1(a)iii, we have

B. Patt-Shamir, A. Rosén, and S. W. Umboh 70:13

|Ri−1(C ′)| ≥ |C ′|(1 − α)/5 ≥ |C|(1 − α)/20 where the first inequality is due to C ′ being
heavy and the second due to Lemma 16. For case 1(a)iv, we get that |X(C)| ≥ |C|(1 − α)/5
from Claim 18. ◁

▷ Claim 20. Every vertex is charged at most O(log D) times.

Proof. By Lemma 16, the number of times a vertex v is charged due to case 1(a)i is O(log D).
The number of times a vertex v is charged due to line 1(a)ii is at most once since it is
recolored and now belongs to Ri. The number of times it can be charged due to 1(a)iii is at
most once since it now belongs to a large component. The number of times it can be charged
due to 1(a)iv is at most once since afterwards it belongs to Ri and thus cannot be in X(A)
for any future component, due to the way the set X is modified in 1b. ◁

Combining the fact that only vertices in R can be charged and Claims 19 and 20, we are
done proving Lemma 17. ◀

We are now ready to conclude the analysis of Algorithm B.

Proof of Theorem 2. By Lemma 14, the total cost incurred by recoloring using a special
color is O(|R| · β2

α). Next, note that by the code the sequence given as input to A, σsim, is
(D, α)-moderate. It therefore follows from Lemma 17 that the total cost due to the simulation
of A is O(|R| log D/(1 − α)). Since by Lemma 15 the optimal cost is Ω(|R|), we are done by
picking, say, α = 1/2. ◀

4 Uniform cost

In this section, we still consider vertex recoloring of bipartite graphs, but now in the setting
where that all colors, basic and special, have the same cost. We thus present an algorithm
which has better competitive ratio if more than two colors are available, covering the spectrum
between an O(log n) competitive ratio with no special colors, and a O(log β) competitive
ratio with O(logβ n) special colors, where β is an upper bound on the size of graph bonds.
Specifically, we prove Theorem 4, reproduced below.

▶ Theorem 4. Suppose that the final graph is bipartite with bond at most β. Then for any
given 1

2 log β+3 < ϵ ≤ 1 there is a deterministic online algorithm that uses O(ϵ log n) special
colors of unit cost, and guarantees competitive ratio O(ϵ−1).

The idea is to use O(ϵ log n) instances of Algorithm A (Alg. 1 of [1]) for recoloring
bipartite graphs.

High-Level Description. We push the ideas of simulation and promoting vertices to be
“special”, used in algorithm B, even further. Roughly speaking, the main idea of the algorithm
is to create multiple (possibly overlapping) subinstances of the problem, such that the input
sequence of each subinstance is moderate, as in Definition 7. Each subsequence is fed into
a different instance of A, which uses a distinct pair of colors. At every point in time, each
vertex is associated with some instance j, which determines its actual color.

More specifically, denote the jth instance of A by Aj , its input sequence by σj , and the
coloring that it maintains at any time by cj . Each vertex v is associated at any given time
with one of the instances, denoted level(v). Initially, level(v) = 1 for all v ∈ V . We define
V j def= {v ∈ V | level(v) = j}. Aj determines the coloring of V j : cj : V j → {2j − 1, 2j}. Our

STACS 2025

70:14 Colorful Vertex Recoloring of Bipartite Graphs

algorithm maintains the following invariants: (1) each subsequence σj is moderate; (2) for
each level j, the coloring cj is a valid coloring of V j with respect to G[V j] where G is the
graph consisting of every edge in the entire input sequence, not just those of σj .

Suppose that when an edge ei = (ui, vi) arrives, ui and vi have the same color. This
can only happen if they have the same level j. We first check if appending ei to σj is
still moderate. If it is, then we append and send ei to Aj , and recolor vertices of level j

accordingly. Otherwise, we choose one of them, arbitrarily, to promote to level j + 1.
When we promote a vertex u to level k, in order to maintain invariant (2), we attempt

to append, one-by-one, each edge (u, v) in which level(v) = k to σk, in arbitrary order. In
this process, if for some edge (u, v), we are unable to append it to σk without maintaining
the moderate property, we promote u to the next level. Note a vertex cannot be promoted
indefinitely as it eventually ends up at a level with no other vertices. Pseudocode of our
algorithm is given below.

Algorithm C: Coloring a bipartite graph of largest bond size β using O(ϵ log n) colors.
a. Set level(v) := 1 for all v ∈ V .
b. Set c1 to be the initial vertex coloring.
c. Fix an arbitrary initial coloring cj for j > 1, say cj(v) = 2j for all v ∈ V .
d. Let τ = max

{
21/ϵ, 4β2/α

}
. // α is a constant parameter in (0, 1)

e. When edge ei = (ui, vi) arrives:
(1) If level(vi) ̸= level(ui) then return; // different colors
(2) Let j = level(vi) // j = level(ui) as well
(3) If σj ◦ (ei) is (τ, α)-moderate, then send ei to Aj // ei is appended to σj

(4) Else invoke promote(ui, j + 1) // ei is j-excess; ui is chosen arbitrarily
f. Output coloring c(v) = clevel(v)(v) for all v ∈ V .

Procedure promote(u, k):
1. Let V ′ := V k ∪ {u} // u gets the initial color of ck

2. Let σ′ be an arbitrary ordering of the edges e = (u, v) arrived so far, such that level(v) = k.
3. For each edge e′ in σ′:

a. If σk ◦ (e′) is (τ, α)-moderate, send e′ to Ak // e′ is appended to σk

b. Else invoke promote(u, k + 1) and return // e′ is k-excess
4. level(u) := k // promotion to level j was successful

4.1 Analysis
▷ Claim 21. Let ei = (u, v). At any time t ≥ i, if level(u) = level(v) = k, then ei ∈ σk.

Proof. At any time t ≥ i, if at the beginning of time step t, level(u) ̸= level(v), we are done as
the levels do not change (step 5(a)). If at the beginning of time step t level(u) = level(v) = k

and σk ◦ ei is moderate then ei is added σk (step 5(c)), and the claim holds. In the remaining
case (Step 5(d)), u is promoted and v is not, hence their level will not be the same at the
end of time step t. ◁

The correctness of the algorithm is now straightforward.

▶ Lemma 22. The coloring produced by Algorithm C is correct.

Proof. Follows from the fact that at any time (1) two vertices of different levels are not
colored by the same color, (2) if an edge e = (u, v) exists and level(u) = level(v) = k, then
e ∈ σk (3) the correctness of Ak for all k. ◀

B. Patt-Shamir, A. Rosén, and S. W. Umboh 70:15

We now proceed to give an upper bound on the cost paid by Algorithm C and on the
number of colors it uses. Recoloring occurs in C either by some Aj or by procedure promote
(which recolors to the initial color of the corresponding level). We analyze each separately.

Let us denote by OPT2(σ) the optimal cost of recoloring an input sequence σ, when
only the two initial colors of unit cost are available; the initial coloring of the vertices is
understood from the context. Regarding recoloring by some Aj , we have the following. Let
Rj denote the set of vertices whose color was altered by Aj .

▶ Lemma 23. For all j, costj
A(σj) = O (|Rj | log τ/(1 − α)).

Proof. Follows from Lemma 17 and the fact that σj is (τ, α)-moderate by construction. ◀

We note that the recoloring done by the algorithm are either (1) changes of ck(v), for
v such that level(v) = k, done by Ak, or (2) change of the color of v due to the change of
level(v), in procedure promote. We now analyze the cost due to the latter; the former was
analyzed in the above lemma.

We use the following definition.

▶ Definition 24. An input edge e = (u, v) is called j-excess if it caused promote(u, j + 1) to
be invoked, i.e., either of the two lines (1) Step e4 or (2) Step 3b of Procedure promote, was
reached when e was processed. We denote the set of all j-excess edges by Fj.

Clearly, the total cost due to recoloring by promote is at most
∑

j |Fj |, because each
excess edge causes at most one vertex to be recolored (indirectly) when promote changes the
level of a vertex. Then by Lemma 13 we have:

▶ Lemma 25. |Fj | ≤ β
|Rj |
ατ for every j ≥ 1.

We now have that the total cost of the algorithm is

costC(σ) ≤
∑
j≥2

|Fj | +
∑
j≥1

costA(σj) ≤ O

(
β

ατ
+ log τ

1 − α

) ∑
j≥1

|Rj |. (1)

Next, we bound
∑

j≥1 |Rj |. We will need the following lemma.

▶ Lemma 26. Let Ej denote the set of edges in σj . Then for every j > 1, |Ej | ≤ β2 · |Rj−1|
ατ .

Proof. Let Sj be the set of vertices u to which promote(u, j) was applied at some point in
the algorithm. Clearly, |Sj | = |Fj−1|, because each (j − 1)-excess edge promotes a single
vertex to level j. It follows that |Sj | = |Fj−1| ≤ β · |Rj−1|

ατ by Lemma 25. Now, Ej ⊆ G[Sj],
because an edge is appended to σj only if both its endpoints are in V j at that time. Since
Ej is a subset of the edges of a graph with largest bond size β, we have from Corollary 11
that |Ej | ≤ β(|Sj | − 1). We therefore conclude that |Ej | ≤ β2 · |Rj−1|

ατ . ◀

We can now prove that |Rj | decreases exponentially with j, for large enough τ .

▶ Proposition 27. |Rj | ≤ 2β2 · |Rj−1|
ατ for every j > 1.

Proof. Since Aj recolors a vertex only if it is incident on an input edge, we have that
|Rj | ≤ 2|Ej |. The result follows from Lemma 26. ◀

Proposition 27 immediately gives an upper bound on the number of colors used by
Algorithm C.

STACS 2025

70:16 Colorful Vertex Recoloring of Bipartite Graphs

▶ Corollary 28. With α = 1
2 and 1/ϵ ≥ 2 log β + 3, Algorithm C uses at most O(ϵ−1 log n)

colors.

Proof. Let γ = 2β2

ατ . By Step d of Algorithm C, γ < 1. Clearly, |R1| ≤ n, and hence, by
Proposition 27 we have that |Rj | ≤ n · γj . Hence, for j > log(1/γ) n we have that |Rj | < 1.
The result follows, since log(1/γ) = log τ − O(log β) = Θ(1/ϵ). ◀

We can now conclude the analysis of Algorithm C.

Proof of Theorem 4. Fix α = 1/2. The number of colors is given by Corollary 28. By
Inequality (1), the total cost of the algorithm is at most

O

(
β

ατ
+ log τ

1 − α

) ∑
j≥1

|Rj |.

Since ϵ > 1
2 log β+3 and α = 1/2, we get that τ = 21/ϵ and so β

ατ + log τ
1−α ≤ O(1/ϵ).

Moreover, Proposition 27 implies that
∑

j≥1 |Rj | ≤ O(1)|R1|. By Lemma 15, we have that
|R1| ≤ O(1)OPT2(σ1) ≤ O(1)OPT2(σ). Thus,

∑
j≥1 |Rj | ≤ O(1)OPT2(σ). Therefore, the

total cost of the algorithm is at most O(1/ϵ)OPT2(σ), as desired. ◀

5 Lower Bounds

In this section we prove two lower bounds on online recoloring. The first, Theorem 3, says
that no matter how many extra colors we use, if they cost D, then the best competitive
ratio one can hope for is O(log D) even if the underlying graph is acyclic. The second lower
bound, Theorem 1, shows that if there is no upper bound on the bond size of the graph, the
competitive ratio of any online recoloring algorithm is at least Ω(min(log n, D)).

5.1 Acyclic Graphs
In this subsection we show that the competitive ratio of Algorithm B cannot be improved,
even by randomized algorithms, as stated by Theorem 3 reproduced below.

▶ Theorem 3. Consider instances in which the final graph is a collection of paths, and there
is an infinite set of special colors, each of cost D > 1. The competitive ratio of any (possibly
randomized) recoloring algorithm in this class of instances is Ω(log D).

Proof. By Yao’s Principle, it suffices to show the existence of an input distribution on which
the expected cost of any deterministic algorithm is Ω(log D) times the optimal cost. We
describe such a distribution. Initially, there are n vertices, each colored by one of the two basic
(unit cost) colors. Without loss of generality, let us assume that n is a multiple of ≥ D/ log D

vertices. For ease of explanation, we shall assume that the vertices are arranged left-to-right
on a line. The input sequence is constructed in H phases, where H

def= ⌈log D − log log D⌉.
In phase 1 ≤ h ≤ H , edges arrive so that at the end of the phase, each connected component
is a path with 2h vertices. Specifically, for each 1 ≤ j ≤ n/2h, an edge connecting random
endpoints of the (2j − 1)-th leftmost path and the 2j-th leftmost path is inserted. Note that
after the last phase, we have a set of paths of length 2H vertices each. Note that for every
phase h, the set of connected components at the end of the phase is predetermined; it is only
the order in which the vertices in a connected component appear in the corresponding path
that is randomized.

B. Patt-Shamir, A. Rosén, and S. W. Umboh 70:17

Fix an arbitrary deterministic recoloring algorithm A. We now bound from below the
expected cost of A on the input distribution defined above. We first prove the following
lemma.

▶ Lemma 29. Let A∗ be an arbitrary deterministic algorithm that uses only the two basic
colors. Let k be any integer power of 2 not greater than 2H . Consider a randomized input
sequence as described above and a connected component consisting of k vertices after log k

phases. Let σ be the restriction of the input sequence to the connected component. Then we
have Pr [costA∗(σ) ≥ k(log k − 2)/8] ≥ 1/2.

Proof. In phase h > 1, there are k/2h merges of paths each containing 2h−1 vertices. Observe
that with probability exactly 1/2 a given merge is monochromatic (i.e., the merging new
edge connects two vertices of the same color) independently of all other merges (in the same
and other phases). This is because for a given merge, each of the two merged paths have
one end colored with each of the two basic colors. Further observe that a monochromatic
merge at phase h > 0 results in recoloring of exactly 2h−1 vertices. Let Zh be the indicator
random variable indicating whether at least half of the merges in phase h are monochromatic.
Clearly, if Zh = 1 then the algorithm recolors at least 1

2
k

2h · 2h−1 = k/4 vertices in phase h .
Moreover, for any 1 < h < log k, even when conditioned on all Zj (except Zh), it holds that
Pr[Zh = 1] = 1/2.

It therefore follows that costA′ ≥
∑log k

h=2 Zh · k/4, and

Pr
[
costA∗ ≥ k(log k − 2)

8

]
≥ Pr

[log k∑
h=2

Zh · k

4 ≥ k(log k − 2)
8

]
≥ 1

2 ,

where the last inequality follows from the fact that
∑log k−1

h=2 Zh is a sum of (log k − 2)
independent Bernoulli random variables with parameter 1/2, and so their sum is at least
(log k − 2)/2 with probability 1/2. ◀

We now continue with the proof of Theorem 3. Consider one of the paths of length
2H that exist after the last phase. We give a lower bound on the expected cost of A for
re-coloring the vertices of that path. Let AD be the indicator random variable indicating if
A uses at least once an extra color (of cost D) for recoloring the vertices of the given path.
There are two cases to consider.
(1) If Pr [AD] ≥ 1/4, then Pr [costA ≥ D] ≥ 1/4, and hence E[costA] ≥ D/4.
(2) Otherwise, Pr [AD] < 1/4. In this case, define a deterministic online recoloring algorithm

A′ that uses only the basic colors as follows. A′ mimics A so long as A uses basic colors.
Once A uses a special color (if it does), A′ stops mimicking A and continues to recolor
(properly), using only the basic colors.

We make the following observations.
Pr

[
costA′ ≥ 2H(H − 2)/8

]
≥ 1/2 by Lemma 29.

The probability that A′ and A diverge in their colorings on the path under consideration
(and hence do not have the same cost for that path) is less than 1/4.

It follows that with probability more than 1/4, costA = costA′ , and that cost is at least

costA ≥ 2H · H − 2
8

= (2⌈log D−log log D⌉ · ⌈log D − log log D⌉ − 2
8

≥ D

log D
· log D − log log D − 2

8
= Ω(D) .

STACS 2025

70:18 Colorful Vertex Recoloring of Bipartite Graphs

Therefore, in both cases the expected cost of A for recolorings of the vertices in the path
that we consider is Ω(D).

The bound above is the cost for a single component of length 2H . By linearity of
expectation, the expected cost of A for all components is n

2H · Ω(D). On the other hand the
cost of the optimal algorithms is O(n) for any input sequence. Hence we have a lower bound
on the competitive ratio of Ω

(
(n/2H)·D

n

)
= Ω

(
D
2H

)
= Ω

(
D

2log D−log log D

)
= Ω(log D). ◀

5.2 Bipartite Graphs with Unbounded Bond Size
In this subsection we show that no deterministic online recoloring algorithm can have good
competitive ratio for all bipartite graphs with large bond, even when special colors are
available. In fact, using special colors cannot improve the competitive ratio beyond the easy
O(D) bound of Lemma 5 if the bond may be large.

▶ Theorem 1. Let I be the set of instances of recoloring with two basic colors and n special
colors, where recoloring by a basic color costs 1 and recoloring by a special color costs D. Then
for every deterministic online recoloring algorithm there is an instance in I with competitive
ratio Ω(min{log n, D}).

Proof. We construct an adversarial input sequence that consists of phases. At any point in
time, a vertex is said to be special if the algorithm has recolored it at some earlier point to a
special color; the vertex is called basic otherwise. Furthermore, at each phase we characterize
the connected components as active or inactive. A component is said to be active if at least
half of its vertices are basic, and it is said to be inactive otherwise. Let c1, c2 denote the two
basic colors. Initially, each vertex is given either the color c1 or c2. An active component is
said to be c-dominated, for c ∈ {c1, c2} if at least a quarter of its vertices are colored c (a
component may be both c1-dominated and c2-dominated).

The construction maintains the following invariant:
At the start of phase h > 0, every active component has 2h−1 vertices.

In phase h, we match active components of the same dominating color in pairs. For each
such pair (C, C ′) of connected components of the same dominating color, we add a perfect
matching between their vertex sets such that at least a quarter of the matching edges (i.e.,
at least 2h−3 edges) are monochromatic. The process ends once there is at most one active
component of dominating color c1 and at most one active component of dominating color c2.

We claim that the cost paid by the algorithm for the above input sequence is at least
Ω(min{n log n, nD}). To prove the claim, let k be the number of special vertices at the end
of the input sequence, and let M be the number of edges that were monochromatic when they
arrived. Clearly, the cost for the algorithm is at least max {kD, M} ≥ (kD + M)/2. Now, if
k ≥ n/4, then the algorithm’s cost is Ω(nD) and the claim holds. Otherwise, k < n/4, and
hence, by the definition of active components, at the end of the execution, there are at most
2k < n/2 vertices in inactive components. It follows that in each phase there are at least
n/2 vertices in active components, and therefore at least n/4 vertices in active components
of the same dominating color, which implies that in each phase, the number of introduced
monochromatic edges is Ω(n). Further, note that if k < n/4 then the number of phases is at
least log n − 3: before every phase h ≤ log n − 2, each connected component contains less
than 2log n−3 = n/8 vertices, and hence there are at least 4 active connected components, so
there are at least two connected components dominated by the same color. It follows that
the total cost of the algorithm is Ω(n log n).

In summary, we have shown that the cost of the online algorithm for the input sequence
specified above is Ω(min{n log n, nD}). As the optimal cost is O(n) the theorem follows. ◀

B. Patt-Shamir, A. Rosén, and S. W. Umboh 70:19

We note that the largest bond size of any active connected component C in the construction
above is Ω(|C|).

6 Conclusions

In this paper we studied competitive vertex recoloring with weighted augmentation. We have
shown that the competitive ratio of recoloring bipartite graphs may be reduced if the online
algorithm can use additional colors, even if they are more costly than the basic two colors.
Beyond the direct technical contribution, we believe that we introduced some conceptual
contributions:

The approach of weighted resource augmentation is new, as far as we know.
The concept of the largest graph bond as a way to generalize algorithmic results quanti-
tatively.

It seems that these ideas can be useful in dealing with other problems of competitive analysis.

References
1 Yossi Azar, Chay Machluf, Boaz Patt-Shamir, and Noam Touitou. Competitive vertex

recoloring. Algorithmica, 85(7):2001–2027, 2023. doi:10.1007/s00453-022-01076-x.
2 Reuven Bar-Yehuda and Shimon Even. A linear-time approximation algorithm for the weighted

vertex cover problem. Journal of Algorithms, 2(2):198–203, 1981. doi:10.1016/0196-6774(81)
90020-1.

3 Luis Barba, Jean Cardinal, Matias Korman, Stefan Langerman, André van Renssen, Marcel
Roeloffzen, and Sander Verdonschot. Dynamic graph coloring. Algorithmica, 81(4):1319–1341,
2019. doi:10.1007/s00453-018-0473-y.

4 J.A. Bondy and U.S.R Murty. Graph Theory. Springer Publishing Company, Incorporated,
1st edition, 2008.

5 Allan Borodin and Ran El-Yaniv. Online Computation and Competitive Analysis. Cambridge
University Press, 1998.

6 Bartłomiej Bosek, Yann Disser, Andreas Emil Feldmann, Jakub Pawlewicz, and Anna Zych-
Pawlewicz. Recoloring Interval Graphs with Limited Recourse Budget. In Proc. 17th Scandi-
navian Symposium and Workshops on Algorithm Theory (SWAT 2020), volume 162 of Leibniz
International Proceedings in Informatics (LIPIcs), pages 17:1–17:23, Dagstuhl, Germany, 2020.
doi:10.4230/LIPIcs.SWAT.2020.17.

7 Gabriel L. Duarte, Hiroshi Eto, Tesshu Hanaka, Yasuaki Kobayashi, Yusuke Kobayashi, Daniel
Lokshtanov, Lehilton L. C. Pedrosa, Rafael C. S. Schouery, and Uéverton S. Souza. Computing
the largest bond and the maximum connected cut of a graph. Algorithmica, 83:1421–1458,
January 2021. doi:10.1007/S00453-020-00789-1.

8 F. Hadlock. Finding a maximum cut of a planar graph in polynomial time. SIAM J. Comput.,
4(3):221–225, 1975. doi:10.1137/0204019.

9 Monika Henzinger, Stefan Neumann, and Andreas Wiese. Explicit and implicit dynamic
coloring of graphs with bounded arboricity. CoRR, abs/2002.10142, 2020. arXiv:2002.10142.

10 Manas Jyoti Kashyop, N. S. Narayanaswamy, Meghana Nasre, and Sai Mohith Potluri. Trade-
offs in dynamic coloring for bipartite and general graphs. Algorithmica, 85(4):854–878, 2023.
doi:10.1007/s00453-022-01050-7.

11 Rajmohan Rajaraman and Omer Wasim. Competitive capacitated online recoloring. In
Timothy Chan, Johannes Fischer, John Iacono, and Grzegorz Herman, editors, 32nd Annual
European Symposium on Algorithms, ESA 2024, September 2-4, 2024, Royal Holloway, London,
United Kingdom, volume 308 of LIPIcs, pages 95:1–95:17. Schloss Dagstuhl – Leibniz-Zentrum
für Informatik, 2024. doi:10.4230/LIPICS.ESA.2024.95.

12 Daniel D. Sleator and Robert E. Tarjan. Amortized efficiency of list update and paging rules.
Comm. ACM, 28(2):202–208, 1985. doi:10.1145/2786.2793.

13 Shay Solomon and Nicole Wein. Improved dynamic graph coloring. ACM Trans. Algorithms,
16(3):1–24, June 2020. doi:10.1145/3392724.

STACS 2025

https://doi.org/10.1007/s00453-022-01076-x
https://doi.org/10.1016/0196-6774(81)90020-1
https://doi.org/10.1016/0196-6774(81)90020-1
https://doi.org/10.1007/s00453-018-0473-y
https://doi.org/10.4230/LIPIcs.SWAT.2020.17
https://doi.org/10.1007/S00453-020-00789-1
https://doi.org/10.1137/0204019
https://arxiv.org/abs/2002.10142
https://doi.org/10.1007/s00453-022-01050-7
https://doi.org/10.4230/LIPICS.ESA.2024.95
https://doi.org/10.1145/2786.2793
https://doi.org/10.1145/3392724

Unfairly Splitting Separable Necklaces
Patrick Schnider #

Department of Computer Science, ETH Zürich, Switzerland

Linus Stalder #

Department of Computer Science, ETH Zürich, Switzerland

Simon Weber #

Department of Computer Science, ETH Zürich, Switzerland

Abstract
The Necklace Splitting problem is a classical problem in combinatorics that has been intensively
studied both from a combinatorial and a computational point of view. It is well-known that the
Necklace Splitting problem reduces to the discrete Ham Sandwich problem. This reduction was
crucial in the proof of PPA-completeness of the Ham Sandwich problem. Recently, Borzechowski,
Schnider and Weber [ISAAC’23] introduced a variant of Necklace Splitting that similarly reduces
to the α-Ham Sandwich problem, which lies in the complexity class UEOPL but is not known to
be complete. To make this reduction work, the input necklace is guaranteed to be n-separable.
They showed that these necklaces can be fairly split in polynomial time and thus this subproblem
cannot be used to prove UEOPL-hardness for α-Ham Sandwich. We consider the more general unfair
necklace splitting problem on n-separable necklaces, i.e., the problem of splitting these necklaces
such that each thief gets a desired fraction of each type of jewels. This more general problem is the
natural necklace-splitting-type version of α-Ham Sandwich, and its complexity status is one of the
main open questions posed by Borzechowski, Schnider and Weber. We show that the unfair splitting
problem is also polynomial-time solvable, and can thus also not be used to show UEOPL-hardness
for α-Ham Sandwich.

2012 ACM Subject Classification Mathematics of computing → Combinatoric problems; Theory of
computation → Computational geometry

Keywords and phrases Necklace splitting, n-separability, well-separation, Ham Sandwich, alpha-Ham
Sandwich, unfair splitting, fair division

Digital Object Identifier 10.4230/LIPIcs.STACS.2025.71

Related Version Full Version: https://arXiv.org/abs/2408.17126

Funding Simon Weber : Swiss National Science Foundation under project no. 204320.

1 Introduction

One of the most famous theorems in fair division is the Ham Sandwich theorem [23]. It
states that any d point sets in Rd can be simultaneously bisected by a single hyperplane.
The Ham Sandwich theorem is closely related to another fair division theorem that lives
in R; the Necklace Splitting theorem. It states that given n point sets in R (a necklace with
n types of jewels), we can split the real number line at n points such that when we partition
the resulting pieces alternatingly, each of the two parts contains exactly half of the jewels
of each type. In fact, the Necklace Splitting theorem can be proven by lifting the necklace
to the moment curve in Rn, which is the curve parameterised by (t, t2, t3, . . . , tn), and then
applying the Ham Sandwich theorem.

Under some additional assumptions on the input points, the Ham Sandwich theorem
can be significantly strengthened: If the input point sets are well-separated and in general
position, the α-Ham Sandwich theorem [22] says that we can not only simultaneously bisect
each point set, but we can for each i choose any number 1 ≤ αi ≤ |Pi|, and find a single

© Patrick Schnider, Linus Stalder, and Simon Weber;
licensed under Creative Commons License CC-BY 4.0

42nd International Symposium on Theoretical Aspects of Computer Science (STACS 2025).
Editors: Olaf Beyersdorff, Michał Pilipczuk, Elaine Pimentel, and Nguyễn Kim Thắng;
Article No. 71; pp. 71:1–71:19

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:patrick.schnider@inf.ethz.ch
https://orcid.org/0000-0002-2172-9285
mailto:listalde@student.ethz.ch
mailto:simon.weber@inf.ethz.ch
https://orcid.org/0000-0003-1901-3621
https://doi.org/10.4230/LIPIcs.STACS.2025.71
https://arXiv.org/abs/2408.17126
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

71:2 Unfairly Splitting Separable Necklaces

hyperplane that cuts off exactly αi points from each point set Pi. Informally, a family
of point sets is well-separated if the union of any subfamily can be separated from the
union of the complement subfamily by a single hyperplane. Borzechowski, Schnider and
Weber [6] introduced an analogue of this well-separation condition for necklaces: A necklace
is n-separable, if any subfamily can be separated from the complement subfamily by splitting
the necklace at at most n points. It is shown in [6] that a necklace is n-separable if and only
if its lifting to the moment curve is well-separated.

Existence theorems such as the Ham Sandwich and the Necklace Splitting theorem can
also be viewed from the lens of computational complexity. The corresponding problems are
total search problems, i.e., problems in which a solution is always guaranteed to exist, but
the task is to actually find a solution. In this setting, the strategy used above to prove
the Necklace Splitting theorem using the Ham Sandwich theorem also yields a reduction
from the Necklace Splitting problem to the Ham Sandwich problem. This reduction was
crucial for establishing the PPA-hardness of the Ham Sandwich problem, which is since
known to be PPA-complete [12]. The α-Ham Sandwich problem is known to lie in the
subclass UEOPL ⊆ PPA [8], but no matching hardness result is known. It is thus natural
to ask whether UEOPL-hardness of α-Ham Sandwich could be proven by reduction from a
Necklace Splitting problem on n-separable necklaces. Borzechowski, Schnider and Weber [6]
showed that the classical (fair) Necklace Splitting problem on n-separable necklaces is
polynomial-time solvable and thus very unlikely to be UEOPL-hard. However, the natural
necklace-splitting-type analogue of α-Ham Sandwich would actually allow for unfair splittings
on n-separable necklaces, where the first of the two thieves should get exactly αi jewels of
type i, for some input vector α. We settle the complexity status of this problem variant
by providing a polynomial-time algorithm. This completely disqualifies Necklace Splitting
variants on n-separable necklaces as possible problems to prove UEOPL-hardness of α-Ham
Sandwich.

We would like to note that necklace splitting and its extensions to higher dimensions
and larger numbers of thieves, as well as other related problems have enjoyed much research
interest [1, 2, 4, 5, 7, 10, 11, 13, 14, 17, 20, 21].

1.1 Results
Before we can state our results we have to begin with the most crucial definitions.

▶ Definition 1 (Necklace). A necklace is a family C = {C1, . . . , Cn} of disjoint finite point
sets in R. The sets Ci are called colours, and each point p ∈ Ci is called a bead of colour i.

We align the following definition of α-cuts in necklaces as closely as possible with the
definition of α-cuts in the α-Ham Sandwich theorem (which we will define later). We require
that an α-cut of a necklace splits the necklace at exactly one bead per colour, called the cut
point. Furthermore, the parity of the permutation of how these cut points appear along R
determines whether the first part of the necklace is given to the first or the second thief. Let
us make this definition more formal.

▶ Definition 2 (α-Cut). Let C = {C1, . . . , Cn} be a necklace. A set of n cut points s1, . . . , sn

such that for all i we have si ∈ Ci defines the subset C+ of C1 ∪ . . . ∪ Cn that is assigned
to the first thief as follows. We first add the points s0 := −∞ and sn+1 := ∞, and let
π : {0, . . . , n + 1} → {0, . . . , n + 1} be the permutation such that sπ(0) < . . . < sπ(n+1). We
then get the two sets of closed intervals Aeven := {[sπ(i), sπ(i+1)] | 0 ≤ i ≤ n, i even} and
Aodd := {[sπ(i), sπ(i+1)] | 0 ≤ i ≤ n, i odd}. Let A+ be Asgn(π), i.e., the set of intervals
corresponding to the parity of π. Then, {s1, . . . , sn} is called an α-cut of C for the vector
α = (α1, . . . , αn), where αi = |A+ ∩ Ci|.

P. Schnider, L. Stalder, and S. Weber 71:3

Definition 2 is illustrated in Figure 1.

R

Aeven

Aodd

Figure 1 A 3-separable necklace with three colours C1 (red), C2 (green), and C3 (blue). In each
colour, the point illustrated as a square is chosen as the cut point si. This defines the intervals
Aeven illustrated above the necklace, and the intervals Aodd illustrated below. The cut points are
coloured 1 3 2 when ordered increasingly. Since the parity of the permutation 0 1 3 2 4 is odd,
A+ = Aodd. The filled points are thus exactly those in A+, and A− consists of the square cut points
and the empty circles. Thus this cut is (the unique) (4, 1, 3)-cut.

With this definition, n-separability of the necklace and the α-Ham Sandwich theorem
guarantee a unique α-cut for every vector α fulfilling 1 ≤ αi ≤ |Ci|, as we will see later. We
are now ready to define the α-Necklace-Splitting problem.

▶ Definition 3 (α-Necklace-Splitting). Given an n-separable necklace C with n colours,
and a vector α = (α1, . . . , αn) with 1 ≤ αi ≤ |Ci|, the α-Necklace-Splitting problem is
to find the unique α-cut of C.

We are now ready to introduce our results.

▶ Theorem 4. α-Necklace-Splitting is polynomial-time solvable.

We contrast this result by showing that without the promise of n-separability, the
associated decision problem is NP-complete.

▶ Theorem 5. Given a necklace C with n colours, and a vector α = (α1, . . . , αn) with
1 ≤ αi ≤ |Ci|, the problem of deciding whether C has an α-cut is NP-complete.

Note that Borzechowski, Schnider and Weber [6] proved that it is possible to check whether
a given necklace is n-separable in polynomial time. This is in contrast to the Ham Sandwich
setting, where it has been shown that checking well-separation is co-NP-complete [3].

1.2 Proof Techniques
The algorithm of Borzechowski, Schnider and Weber [6] relies on the following core observation:
If some colour only appears in the necklace in two components (i.e., consecutive intervals
of R that contain only points of this colour), the smaller of the two components can be
discarded since the cut point of that colour must lie in the larger component. While for fair
splitting this follows quite immediately – the larger component must be split, otherwise the
cut cannot be fair – this observation does not generalise to unfair splitting. We thus have to
use a more complicated approach.

We first show that under the promise of n-separability the number of colours that consist
of more than two consecutive components is bounded by a constant. For each of these colours
we can guess in which component the cut point of this colour lies. For each guess we reduce
each of these colours to the single component containing the cut point, and try to compute
the α-cut for the resulting necklace. For one of these guesses, the resulting α-cut must be
adaptable to an α-cut of the original necklace. To compute the α-cut for these necklaces (in
which now every colour consists of at most two components), we reduce the necklace further
according to some reduction rules similar to those in [6]. This process will eventually come

STACS 2025

71:4 Unfairly Splitting Separable Necklaces

to an end; we will reach an irreducible necklace. Here comes the crucial part of our proof:
We will show that for each n, the irreducible necklaces with n colours all have the same walk
graph (as introduced in [6] and below in Section 2). We translate α-Necklace-Splitting
on irreducible necklaces into an integer linear program (ILP), and use the rigid structure
of irreducible necklaces to show that the primal graph of this ILP has constant treewidth.
Using the FPT algorithm of Jansen and Kratsch [15], we can thus solve these ILPs efficiently.

For the NP-hardness proof of the decision version of α-Necklace-Splitting we use a
reduction from e3-Sat.

2 Preliminaries

Let us first formally introduce separability, as defined by Borzechowski, Schnider and
Weber [6].

▶ Definition 6 (Separability). A necklace C is k-separable if for all A ⊆ C there exist
k separator points s1 < . . . < sk ∈ R that separate A from C \ A. More formally, if we
alternatingly label the intervals (−∞, s1], [s1, s2], . . . , [sk−1, sk], [sk, ∞) with A and A (starting
with either A or A), for every interval I labelled A we have I ∩

⋃
c∈(C\A) c = ∅ and for every

interval I ′ labelled A we have I ′ ∩
⋃

c∈A c = ∅.
The separability sep(C) of a necklace C is the minimum integer k ≥ 0 such that C is

k-separable.

We call each maximal set of consecutive points that have the same colour c a component
of c. We say a colour c is an interval, if it consists of exactly one component. In other words,
a colour c is an interval if its convex hull does not intersect any other colour c′.

Borzechowski, Schnider and Weber further showed that n-separability is strongly related
to the notion of well-separation.

▶ Definition 7. Let P1, . . . , Pk ⊂ Rd be point sets. They are well-separated if and only if for
every non-empty index set I ⊂ [k], the convex hulls of the two disjoint subfamilies

⋃
i∈I Pi

and
⋃

i∈[k]\I Pi can be separated by a hyperplane.

▶ Lemma 8 ([6]). Let C be a set of n colours in R. Let C ′ be the set of subsets of Rn obtained
by lifting each point in each colour of C to the n-dimensional moment curve using the function
f(t) = (t, t2, . . . , tn). Then the set C is n-separable if and only if C ′ is well-separated.

The following theorem due to Steiger and Zhao [22] shows that we can always unfairly
bisect well-separated point sets.

▶ Lemma 9 (α-Ham-Sandwich Theorem, [22]). Let P1, . . . , Pn ⊂ Rn be finite well-separated
point sets in general position, and let α1, . . . , αn be positive integers with αi ≤ |Pi|, then there
exists a unique (α1, . . . , αn)-cut, i.e., a hyperplane H that contains a point from each colour
and such that for the closed positive halfspace H+ bounded by H we have |H+∩Pi| = αi. Here,
the positive side of a hyperplane H containing one point pi per point set Pi is determined by
the orientation of these pi, i.e., for any point h ∈ H+ the simplex (p1, . . . , pn, h) is oriented
positively.

Note that the (α1, . . . , αn)-cut in Lemma 9 is defined by one point from each colour,
and the positive side of the cut is determined by the orientation of these points on the
hyperplane. This is the motivation of the similar restrictions in our definition of an α-cut in
α-Necklace-Splitting (Definition 2).

P. Schnider, L. Stalder, and S. Weber 71:5

Through the classical reduction of Necklace Splitting to the Ham-Sandwich problem
obtained by lifting the points to the moment curve, as it appeared in many works before [9,
12, 16, 19], we can easily obtain the following theorem.

▶ Theorem 10. α-Necklace-Splitting always has a unique solution.

Proof (sketch). By Lemma 8, the point sets lifted to the moment curve are well-separated,
and thus Lemma 9 applies. α-Necklace-Splitting thus always has a solution, and
uniqueness follows from the fact that two different solutions of α-Necklace-Splitting
would lift to different solutions of α-Ham Sandwich. ◀

To argue about the separability of necklaces, we use the view of walk graphs that were
also introduced in [6].

▶ Definition 11 (Walk graph). Given a necklace C, the walk graph GC is the multigraph
with V = C and with every potential edge {a, b} ∈

(
V
2
)

being present with the multiplicity
equal to the number of pairs of points p ∈ a, p′ ∈ b that are neighbouring.

Note that given a necklace C as a set of point sets, the walk graph can be built in linear
time in the size of the necklace N :=

∑
c∈C |c| .

Recall that a graph is Eulerian if it contains a Eulerian tour, a closed walk that uses all
edges exactly once. A graph is semi-Eulerian if it contains a Eulerian path, a (not necessarily
closed) walk that uses all edges exactly once.

▶ Observation 12. The walk graph of a necklace is connected and semi-Eulerian, and thus
at most two vertices have odd degree.

The separability of a necklace turns out to be equivalent to the max-cut in its walk graph.

▶ Definition 13 (Cut). In a (multi-)graph G on the vertices V , a cut is a subset A ⊆ V .
The size µ(A) of a cut A is the number of edges {u, v} in G such that u ∈ A and v ̸∈ A. The
max-cut, denoted by µ(G), is the largest size of any cut A ⊆ V .

▶ Lemma 14 ([6]). For every necklace C, we have sep(C) = µ(GC).

3 Tractability of the Search Problem

In this section we prove Theorem 4 by providing a polynomial-time algorithm for α-
Necklace-Splitting. As mentioned above, the algorithm works in two main phases.

In the first phase, the necklace is first reduced to a necklace where each colour consists of
at most two components by guessing the correct component to cut for colours with three
or more components. The necklace with only colours with at most two components is then
further reduced to an irreducible necklace.

In the second phase, we reduce necklace splitting in an irreducible necklace to a labelling
problem of its walk graph. This labelling problem is then modelled as an integer linear
program, which turns out to be tractable in polynomial time. To prove that this ILP is
tractable, we prove some strong structural properties about the walk graphs of irreducible
necklaces.

STACS 2025

71:6 Unfairly Splitting Separable Necklaces

3.1 Reducing Necklaces
Instead of solving α-Necklace-Splitting, we will actually solve the following slightly more
general problem. Given a vector α = (α1, . . . , αn), we define the complement vector α as the
vector (|C1| − α1 + 1, . . . , |Cn| − αn + 1). If α denotes the number of points per point set
on the positive side of a cut, α denotes the number of points on the other side, both sides
including the cut points. Since the cut parity can change in our reduction steps and thus the
positive side may become the negative side and vice versa, the following problem is nicer to
solve recursively than α-Necklace-Splitting.

▶ Definition 15. α-α-Necklace-Splitting
Input: An n-separable necklace C = {C1, . . . , Cn},

a vector α = (α1, . . . , αn), αi ∈ {1, . . . , |Ci|}.
Output: A pair (S, S), where S is the unique α-cut and S the unique α-cut.

3.1.1 Reducing to at most two components per colour
In this section we will algorithmically reduce α-α-Necklace-Splitting to the following
subproblem, where each colour in the necklace consists of at most two components.

▶ Definition 16. α-α-Necklace-Splitting2

Input: An n-separable necklace C = {C1, . . . , Cn}, where each colour has at most 2
components, and a vector α = (α1, . . . , αn), αi ∈ {1, . . . , |Ci|}.

Output: A pair (S, S), where S is the unique α-cut and S the unique α-cut.

Our reduction is based on the following observation, proven in the full version of this
paper.

▶ Lemma 17. Let C be an n-separable necklace with n colours for n ≥ 8. Then in the
necklace at least one of the following must be true:

(i) there are two neighbouring intervals, or
(ii) there is no colour with more than four components, and at most two colours have more

than two components.

The proof of Lemma 17 as well as the proofs of many other structural results on n-
separable necklaces in this paper and in [6] rely on Lemma 14 and the following bound that
is a corollary of a theorem of Poljak and Turzík.

▶ Corollary 18 ([18]). A connected (multi-)graph G with n vertices and m edges has a
maximum cut µ(G) of at least ω(G) := m

2 + n−1
4 .

This corollary directly gives a bound on the number of edges in the walk graph of an
n-separable necklace. By this we can also bound the degree distribution of the vertices in
the walk graph and therefore also the distribution of the numbers of components of colours
in the necklace.

Algorithmically, the conditions (i) and (ii) can be used as follows. If there are two
neighbouring intervals, since an α-cut must go through exactly one bead of each colour, there
must be a cut in both intervals. Moreover, in between these cuts there is no other cut point.
Therefore, we remove the two intervals and solve on the newly obtained necklace recursively.
Finally, we add the cuts at the right positions in the removed intervals.

If there are no neighbouring intervals, condition (ii) states that at most two colours
have more than two components. The strategy will be to look at these colours and test
out every possible component per colour. Again by condition (ii), this requires at most

P. Schnider, L. Stalder, and S. Weber 71:7

4 · 4 = 16 ∈ O(1) tests. That is, for each colour with more than two components we fix a
component and remove all other components of that colour. In this smaller necklace (that
still consists of n colours) we recursively solve for an α-cut. The necklace for the recursive
call will then be a necklace where each colour has at most two components, so we need to
solve an α-α-Necklace-Splitting2 instance in the recursive step.

Since there must be an α-cut, one combination of components must lead to a smaller
necklace whose α-cut can be augmented by inserting the cut of each colour in the fixed
component.

Note that for our recursive calls to be valid, we also need that removing neighbouring
intervals yields a (n − 2)-separable necklace on n − 2 colours, and removing all but one
component from a colour does not destroy n-separability either. Both of these facts are
shown in [6, Lemmas 19 and 20].

This lets us conclude the following proposition.

▶ Proposition 19. Let T2(n, N) be the time to solve α-α-Necklace-Splitting2 on an
n-separable necklace with n colours and a total of N beads. Then α-α-Necklace-Splitting
on an n-separable necklace with a total of N beads and n colours can be solved in at most
O(T2(n, N) + n · N) time.

Proof. We describe an algorithm for α-α-Necklace-Splitting in this proof, pseudocode
of this algorithm can be found in the full version of this paper.

As a base case, for n small enough (n < 8) we simply apply a brute force algorithm that
iterates through every possible cut and checks if it has found the α-cut or α-cut. Otherwise,
the algorithm proceeds as follows.

In a first step, neighbouring intervals are removed from the necklace and the α- and α-cut
is computed in the obtained necklace recursively. Then in these cuts the right cuts are added
in the removed intervals to get the α- and α-cut. We need to make sure to maintain the
cut parity when inserting these cuts, so the algorithm checks first if the cut parity switches
when inserting these cuts and if yes, it swaps the α- and α-cuts obtained by the recursive
call. That is, if the cut parity switches, the algorithm uses the obtained α-cut and turns it
into the α-cut by inserting the correct cuts in the removed intervals (and similarly turns the
α-cut into an α-cut).

If there are no neighbouring intervals in the necklace, the algorithm determines the set
of all colours with at least three components, call this set C3. If C3 is empty, the necklace
consists only of colours each having at most two components, so we can use an algorithm for
α-α-Necklace-Splitting2 to compute the α- and α-cut.

Otherwise, if C3 is not empty, the algorithm iterates over all combinations of components
of colours in C3. That is, each iteration considers a choice (ci1 , . . . , ci|C3|

) of exactly one
component cik

of each colour Cik
in C3. In this iteration, all components from colours in C3

except the components from the current choice are removed. We obtain a necklace that still
consists of n colours but each colour has at most two components. Therefore, we can use
an algorithm for α-α-Necklace-Splitting2 to find an α- and α-cut in the new necklace.
However, since we removed beads from the colours in C3 the α vector might be invalid for
this necklace. We therefore use a dummy α value of 1 for these colours. Then the algorithm
checks if the obtained cuts can be turned to the corresponding α- or α-cut by shifting the
cuts along the beads within the components of the current iteration.

To show that the algorithm is correct, we need to show that the algorithm returns
the correct result in the case when removing neighbouring intervals, and in the case when
removing the components from colours with at least three components.

STACS 2025

71:8 Unfairly Splitting Separable Necklaces

We first consider the case when removing neighbouring intervals. Note that inserting cuts
in neighbouring intervals either changes the parity of the cut permutation for all cuts or for
no cut. This can be seen as moving neighbouring intervals as a pair cannot add additional
inversions to the cut permutation. Thus, moving them to the beginning of the necklace, there
are always either an even or an odd number of inversions, regardless of the cut to augment.
We can therefore indeed check whether inserting the cuts in the intervals changes parity and
if it does we swap the α- and α-cut of the necklace from the recursive call. This way, we
make sure that when inserting the correct cut points in the removed intervals, the obtained
cuts are indeed valid α- and α-cuts. This shows that in this case the algorithm returns the
unique α- and α-cuts.

Next we show that the cut returned for the case when there are colours with at least
three components is correct. We only argue for the α-cut, the case for the α-cut is analogous.
Notice that in the unique α-cut there is exactly one component per colour in C3 where the
cut lies in. Therefore, there must be one iteration for exactly that choice of components. For
that iteration, the cut obtained by the call of the algorithm for α-α-Necklace-Splitting2
is a valid α-cut in the necklace C ′ for all colours except the ones in C3, where C ′ is the
necklace obtained by removing all components from colours in C3 except the components
from the current choice. Then the α-cut in C ′ can be shifted to an α-cut in C. Observe that
we do not have to worry about changing cut parities, since the necklace C ′ works on the
same set of colours and the cuts are only shifted within components, so the cut permutation
does not change. Hence, the cut obtained in this case will be the correct α-cut.

For the runtime analysis note that the brute force step takes O(N) time. Moreover, as
long as there are neighbouring intervals the algorithm takes O(N) per recursive call. In each
recursive call the number of colours decreases by 2, so there are at most O(n) iterations.
Hence, the runtime for removing neighbouring intervals is at most O(n · N).

By Lemma 17 we have |C3| ≤ 2 and each colour in C3 has at most four components.
Therefore, the number of iterations over components of C3 is constant, where each iteration
takes time O(T2(n, N) + N).

Hence, the total runtime is O(n · N + T2(n, N) + N) = O(T2(n, N) + n · N). ◀

3.1.2 Further reductions until irreducibility
To solve the α-α-Necklace-Splitting2 problem we perform some further reductions to
reach a necklace that we cannot further reduce using any techniques known to us, which we
will call irreducible.

▶ Definition 20. An n-separable necklace C is called irreducible if and only if all of the
following conditions hold.

(i) All colours have at most two components,
(ii) there are no neighbouring intervals,
(iii) neither the first nor the last component is an interval,
(iv) the first and the last component are of different colours.

We thus reduce α-α-Necklace-Splitting2 to the following subproblem.

▶ Definition 21. α-α-Irr-Necklace-Splitting

Input: An n-separable irreducible necklace C = {C1, . . . , Cn},
a vector α = (α1, . . . , αn), αi ∈ {1, . . . , |Ci|}.

Output: A pair (S, S), where S is the unique α-cut and S the unique α-cut.

P. Schnider, L. Stalder, and S. Weber 71:9

To perform this reduction, we search for violations of any of the conditions (ii) to (iv)
in Definition 20. Note that although we already removed all neighbouring intervals in Sec-
tion 3.1.1, neighbouring intervals may have been reintroduced by removing some components
from the necklace when removing components from colours, or may be reintroduced now
when dealing with any of the other three violations in the further reduction.

In the following we show how the α-cut can be computed for each of the violations to
conditions (ii) to (iv). We already know how to deal with violations to condition (ii), i.e.,
neighbouring intervals, from the previous subsection.

If condition (iii) is violated because the first component is an interval, the idea is to
remove that colour and solve recursively on the smaller instance C ′. To obtain an α-cut we
take either the α-cut or the α-cut in C ′ and add the cut the first component at the correct
bead. Note that if the first component is of colour Ci and the number of colours Cj ∈ C ′

such that j < i is odd, then augmenting the cut will switch the parity of the cut permutation,
since adding the first cut in Ci /∈ C ′ adds an odd number of inversions to the permutation.
Moreover, adding a cut in the first component flips the positive and the negative side of the
rest of the necklace once more. Thus, if the first component is such that the cut permutation
parity does not flip, we extend the α-cut of C ′, and otherwise the α-cut.

The same idea is applied if the last component is an interval Ci. We again remove this
colour, solve recursively and add a cut in the last component. In this case, adding the cut to
the last component does not additionally flip the positive and negative side of the rest of the
necklace, but the permutation flips parity if the number of colours Cj ∈ C ′ such that j > i is
odd.

It is easy to see that removing an interval at the beginning or the end of the necklace
decreases the separability by 1, since this interval can always be put on the correct side of a
cut so one cut is needed to separate it from the rest. Thus, C ′ is indeed (n − 1)-separable,
and the recursive call is legal.

If condition (iv) is violated because the first and last component are of the same colour,
we use a similar idea. We obtain the necklace C ′ by removing this colour. Note again that
C ′ is (n − 1)-separable. We again use recursion to get an α- and α-cut for the remaining
colours in C ′. The α-cut in C can now be found by trying to augment both the α-cut and
the α-cut of C ′ by inserting a cut in the first or last component. At least one of the two
augmentations must succeed as removing the cut in Ci from the unique α-cut in C must
yield either the α- or the α-cut of C ′. Similarly, we can also find the α-cut of C.

For the sake of completeness we give pseudocode for the way these reductions can be
implemented in the full version of this paper. From the arguments above it follows that the
algorithm is correct and runs in O(Tirr(n, N) + n · N) time, where Tirr(n, N) is the time
needed to solve α-α-Irr-Necklace-Splitting. This proves the following proposition.

▶ Proposition 22. Let Tirr(n, N) be the time to solve α-α-Irr-Necklace-Splitting on an
n-separable irreducible necklace with n colours and a total of N beads. Then α-α-Necklace-
Splitting2 on an n-separable necklace with a total of N beads and n colours can be solved
in at most O(Tirr(n, N) + n · N) time.

3.2 Structure of Irreducible Necklaces

To be able to solve α-α-Irr-Necklace-Splitting, we will first analyse the structure of the
walk graphs of irreducible necklaces.

STACS 2025

71:10 Unfairly Splitting Separable Necklaces

Figure 2 The graphs N7 to the left and N8 to the right.

First, we claim that the walk graphs G = (V, E) of irreducible necklaces with n colours
can be characterised as follows. A proof of this can be found in the full version of this paper,
but the lemma follows quite straightforwardly from Definition 20.

▶ Lemma 23. A graph G = (V, E) on n vertices is the walk graph of an irreducible necklace
with n colours if and only if it satisfies all of the following conditions.
a) G is semi-Eulerian but not Eulerian,
b) for all vertices v ∈ V we have deg(v) ∈ {2, 3, 4},
c) there are no adjacent vertices of degree 2,
d) the maximum cut of G is at most µ(G) ≤ n .

If a graph G is the walk graph for some irreducible necklace, we call G an irreducible
walk graph. We will see that all irreducible walk graphs on n vertices are isomorphic. In
particular, we claim that the walk graph is isomorphic to the graph Nn defined as follows.

▶ Definition 24. The cycle graph Cn is the cycle on the vertex set [n]. The graph P odd
n−1 is

the graph with vertex set [n] and edge set

E(P odd
n−1) =

{
{2i − 1, 2i + 1} | i ∈

[
⌊n − 1

2 ⌋
]}

,

that is P odd
n−1 is the graph on vertex set [n] with a path of length ⌊(n − 1)/2⌋ starting at vertex

1 and skipping every other vertex. Now the graph Nn obtained by taking the union of the
edges in Cn and in P odd

n−1 is called the irreducible necklace graph of size n.

See Figure 2 for two examples of these graphs. Solving α-α-Irr-Necklace-Splitting
heavily relies on the following proposition.

▶ Proposition 25. Let C be an irreducible necklace with n colours for some n ≥ 3. The walk
graph G of C is isomorphic to Nn.

The proof of this proposition is quite technical and lengthy. Moreover, the proof itself is not
instructive for the further design of the algorithm. We thus only present the proof in the full
version of this paper.

3.3 Splitting Irreducible Necklaces
As mentioned above, we will solve α-α-Irr-Necklace-Splitting by formulating it as an
edge labelling problem in the walk graph, which will then be formulated as an integer linear
program (ILP). While at first glance a reduction to an ILP might be counterintuitive due
to the NP-completeness of ILP, it turns out that in our special case the ILP is tractable in
polynomial time.

P. Schnider, L. Stalder, and S. Weber 71:11

Figure 3 Turning the walk graph to the label graph for n = 7 (left) and n = 8 (right). The
coloured edges and vertices are added to the walk graph to obtain the label graph.

3.3.1 The cut labelling problem

Recall that the edges of the walk graph correspond to intervals between beads of the necklace
– where one of the beads is the last bead of one component and the other is the first bead of
a component of some different colour. Any choice of one component per colour to put a cut
point puts some of these intervals on the positive side of the cut, and others on the negative
side. In this way, such a choice of components induces a labelling of the edges of the walk
graph by “positive” and “negative”. Of course, not every labelling corresponds to a cut. We
will now collect some properties of labellings that do correspond to cuts.

For every component of a colour c there are two edges (except if the component appears at
the beginning or at the end of the necklace): one edge corresponding to the change of colours
when entering the component and one edge when leaving the component. We call these pairs
of edges traversals. For a vertex v define trav(v) := {(e, e′) ∈ E ×E | e, e′ is a traversal of v}
to be the set of traversals of v. The two edges of a traversal are labelled the same if and
only if the corresponding component is not chosen to contain a cut point. Thus, if we now
consider a vertex corresponding to an interval, it must have exactly one positively labelled
incident edge, and one negatively labelled incident edge. Since a colour has exactly one
component with a cut point, a bicomponent that is neither the first nor the last colour of the
necklace must have either one positive and three negative, or one negative and three positive
incident edges.

The edges of the walk graph only contain information about the intervals between
components of the necklace. However, we additionally know that if n is even, the interval
from −∞ to the first cut point and the interval from the last cut point to ∞ must be on the
same side of the cut, as there is an even number of cut points. Similarly for n odd, the two
intervals are on opposite sides of the cut. To capture this information in the edge labelling,
we slightly modify our walk graph. We add an edge between the vertices corresponding
to the first and last component if n is even, or a subdivided edge (with a new degree two
vertex) between these two vertices if n is odd. This newly obtained graph is called the
label graph (see Figure 3). We see that a choice of one component per colour also induces a
labelling of these newly added edges. When n is odd, we see that the two edges incident to
the newly introduced vertex v must have different labels, just like if v was a regular vertex
corresponding to an interval.

So far, all of our properties are invariant under flipping the labelling of all edges. However,
by the cut permutation, any choice of one component per colour fixes the positive side of the
cut. We can see that for every labelling fulfilling the previous properties, exactly one of the
labelling and its inverse are actually the labelling induced by some cut.

STACS 2025

71:12 Unfairly Splitting Separable Necklaces

We thus have now found a characterisation of the labellings that are induced by choices
of one component per colour to cut. However, we are interested only in α-cuts. We thus
would now like to characterise the labellings that are induced by α-cuts.

Clearly, if both edges of a traversal (e, e′) are labelled negative, all beads of the corres-
ponding component c of colour Cv must lie on the negative side of the cut. This cut can only
be an α-cut if αc is low enough, i.e., αv ≤ |Cv| − |c|. Similarly, if both edges were labelled
positive, we would have to have αv ≥ |c| + 1. It turns out that if an edge labelling of the
label graph fulfils this condition for some fixed α, we can actually place the cut points in the
corresponding components to get an α-cut. We thus define the following problem.

For notational convenience we let e(v, i, 1) and e(v, i, 2) be the two edges corresponding
to the i-th traversal of the vertex v. That is, (e(v, i, 1), e(v, i, 2)) ∈ trav(v), and this traversal
corresponds to the i-th component of that colour. In our case e(v, i, j) is only defined for
i ∈ {1, 2} for every vertex; for intervals only for i = 1. We furthermore define wv(i) as the
size of the i-th component of colour v.

▶ Definition 26. We define α-Cut-Labelling as the following problem.
Input: The label graph G = (V, E) of some n-separable irreducible necklace C = {C1, . . . , Cn},
and a vector α = (α1, . . . , αn), αi ∈ {1, . . . , |Ci|}.
Output: A subset of the edges P ⊆ E to be labelled positively (the negatively labelled edges
are N := E \ P) such that:
(1) ∀v ∈ V : |{e ∈ P | v ∈ e}| ∈ {1, 3},
(2) ∀v ∈ V, i ∈ {1, 2} : {e(v, i, 1), e(v, i, 2)} ⊆ P =⇒ αv ≥ wv(i) + 1,
(3) ∀v ∈ V, i ∈ {1, 2} : {e(v, i, 1), e(v, i, 2)} ⊆ N =⇒ αv ≤ |Cv| − wv(i),
(4) all edges in P lie on the positive side of the cut induced by the labelling (P, N).

A solution of an α-Cut-Labelling instance for a given α-vector is called an α-labelling.
The concluding result of this section is the following.

▶ Proposition 27. Let Tlab(n) be the time required to solve α-Cut-Labelling on the label
graph of any irreducible necklace with n colours. We can solve α-α-Irr-Necklace-Splitting
on any necklace with n colours and N total beads in time O(Tlab(n, N) + N).

Proof. To solve α-α-Necklace-Splitting on the necklace C we simply solve α-Cut-
Labelling and α-Cut-Labelling on its label graph and translate the labellings back to α-
and α-cuts. We only consider the α-labelling, since the case for α works exactly the same
way.

We begin by placing a cut point in the first or last bead of each component that is cut
according to the α-labelling. Thanks to conditions (1) and (4) of an α-labelling, this already
yields an α′-cut for some other α′. The cut points can now be moved within their components.
Moving the cut point of colour v within its component only changes the number of points
on the positive side of colour v and leaves other colours unaffected. Moving the cut point
from one side of the component to the other allows us to include any number of points of
the component on the positive side, from 1 point up to all points. Thanks to conditions (2)
and (3), each cut point can be moved such that exactly αv points of the colour are on the
positive side. We have thus reached an α-cut we can return. Since this movement can be
computed for each colour individually, it can be performed in O(N). The label graph can
also be computed in O(N), and thus the statement follows. ◀

Note that for a given α, there must be a unique α-labelling, since applying the strategy
in the proof above to distinct α-labellings would yield distinct α-cuts, a contradiction to the
α-Ham Sandwich theorem.

P. Schnider, L. Stalder, and S. Weber 71:13

3.3.2 An ILP formulation

In this section we model α-Cut-Labelling as an Integer Linear Program (ILP). To do this,
we formulate an ILP such that any solution of the ILP corresponds to a labelling fulfilling
conditions (1)–(3) in Definition 26 and vice versa. Condition (4) can then be addressed by
observing that for a given instance of α-Cut-Labelling there are only a constant number
of labellings fulfilling conditions (1)–(3): namely the labelling induced by the α-cut and the
labelling induced by the α-cut, but with the label of all edges swapped. Instead of merely
solving for one solution of the ILP, we will later just enumerate all feasible solutions and
check the result against condition (4).

Our ILP formulation will only use binary variables. For the sake of clarity we use bold
face for variables in our ILP. To model that each edge is either labelled positively or negatively,
we introduce two binary variables per edge. For each edge e in the label graph add two
binary variables pe and ne with the interpretation that pe = 1 ⇐⇒ e is labelled positive
and ne = 1 ⇐⇒ e is labelled negative. Since any edge must have exactly one label we add
the constraint pe + ne = 1 for every edge e.

To model constraints on traversals, we introduce new binary variables pv,i and nv,i for
every vertex v and possible indices of traversals i. The interpretation of these variables are
that in the i-th traversal of v both the edges are labelled both positive or both negative,
respectively. To keep these new variables consistent with the variables for edges, we wish to
add the constraints pv,i = pe(v,i,1) · pe(v,i,2) and nv,i = ne(v,i,1) · ne(v,i,2). Note that these
constraints are not linear, but they can be linearised as follows.

pv,i ≤ pe(v,i,1) nv,i ≤ ne(v,i,1)

pv,i ≤ pe(v,i,2) nv,i ≤ ne(v,i,2)

pv,i ≥ pe(v,i,1) + pe(v,i,2) − 1 nv,i ≥ ne(v,i,1) + xe(v,i,2) − 1

We also wish to encode whether the edges corresponding to the i-th traversal have the same
label, no matter what this label is. We thus introduce the variables sv,i for each vertex v

and its traversals i. They are related to pv,i and nv,i as follows.

sv,i = pv,i + nv,i

Now we use these variables to encode condition (1) of a cut labelling. This can be done by
the following constraints.

∀v ∈ V, deg(v) = 4 : sv,1 + sv,2 = 1
∀v ∈ V, deg(v) = 2 : sv,1 = 0

Lastly, we need to encode the conditions the α-vector poses on the labelling, that is conditions
(2) and (3) of a cut labelling. Note that these conditions are only necessary for vertices with
multiple traversals, since for intervals the conditions are always satisfied.

Condition (2) can be implemented using the constraints pv,i ·wv(i)+1 ≤ αv. For condition
(3) we need to be more careful since only using nv,i ·wv(i) ≥ αv results in a violated condition
if nv,i = 0. We thus need to include the case when nv,i = 0 and add a trivial upper bound
on αv. This can be done by using |Cv|, the total number of beads for that vertex. We obtain
the following constraints for all vertices v with deg(v) = 4.

STACS 2025

71:14 Unfairly Splitting Separable Necklaces

nv,1 · wv(2) + (1 − nv,1) · |Cv| ≥ αv

nv,2 · wv(1) + (1 − nv,2) · |Cv| ≥ αv

pv,1 · wv(1) + 1 ≤ αv

pv,2 · wv(2) + 1 ≤ αv

Note that in general ILPs also optimise an objective function. However, we are only
interested in the satisfying assignments. Let us now summarise the complete α-Cut-
Labelling-ILP.

▶ Definition 28. α-Cut-Labelling-ILP
Let G = (V, E) be a label graph of some n-separable necklace C = {C1, . . . , Cn} with

colours consisting of at most two components. The α-Cut-Labelling-ILP is the ILP given
by the feasibility of the following constraints.

∀e ∈ E : pe, ne ∈ {0, 1}
∀v ∈ V, i ∈ [deg(v)/2] : pv,i, nv,i, sv,i ∈ {0, 1}

∀e ∈ E : pe + ne = 1
∀v ∈ V, i ∈ [deg(v)/2] : pv,i ≤ pe(v,i,1)

pv,i ≤ pe(v,i,2)

pe(v,i,1) + pe(v,i,2) − 1 ≤ pv,i

nv,i ≤ ne(v,i,1)

nv,i ≤ ne(v,i,2)

ne(v,i,1) + ne(v,i,2) − 1 ≤ nv,i

sv,i = pv,i + nv,i

∀v ∈ V, deg(v) = 2 : sv,1 = 0
∀v ∈ V, deg(v) = 4 : sv,1 + sv,2 = 1

nv,1 · wv(2) + (1 − nv,1) · |Cv| ≥ αv

nv,2 · wv(1) + (1 − nv,2) · |Cv| ≥ αv

pv,1 · wv(1) + 1 ≤ αv

pv,2 · wv(2) + 1 ≤ αv

By construction, α-Cut-Labelling-ILP is equivalent to conditions (1)–(3) of α-Cut-
Labelling in the sense that any solution of the former can be turned to a labelling fulfilling
the conditions and vice versa, by simply considering the pe and ne as the encoding of a
labelling.

3.3.3 Solving cut labelling for irreducible necklaces
In this section we show that α-Cut-Labelling-ILP is solvable in polynomial time. To do
that we leverage the structure of the ILP given by the fact that the underlying necklace is
irreducible. We wish to use the following FPT algorithm by Jansen and Kratsch.

▶ Theorem 29 ([15]). For an ILP instance I where each variable is in the domain D,
feasibility can be decided in time O(|D|O(tw(P (I))) · |I|), where tw(P (I)) denotes the treewidth
of the primal graph of the instance. Moreover, if the ILP only has a constant number of
feasible solutions, they can be enumerated in the same time bound.

P. Schnider, L. Stalder, and S. Weber 71:15

The primal graph of an ILP encodes which pairs of variables occur in constraints together.
Treewidth is a very well-studied graph parameter that describes how “tree-like” a graph
is, with lower treewidth denoting that the graph is more “tree-like”. We omit the exact
definitions here and refer to the full version of this paper. The following proposition shown
in the full version of this paper using a hierarchical approach states that the primal graph of
the α-Cut-Labelling-ILP has a constant treewidth. Since the ILP is boolean, the domain
is D = {0, 1}, and thus from this Theorem 29 gives us polynomial runtime for enumerating
all solutions of α-Cut-Labelling-ILP, and thus for solving α-Cut-Labelling.

▶ Proposition 30. Let C = {C1, . . . , Cn} be an irreducible necklace with n colours. Then
the primal graph of the α-Cut-Labelling-ILP of that necklace has treewidth at most 55.

We are now ready to prove the following.

▶ Proposition 31. α-α-Irr-Necklace-Splitting can be solved in O(n · N) time.

Proof. Theorem 29 implies an O(n2) algorithm for α-Cut-Labelling-ILP, using that
|D| = |{0, 1}| ∈ O(1) and tw(P (I)) ∈ O(1) by Proposition 30. The size of the ILP instance
|I| is given by the number of entries of the matrix defining the instance I. Thus we have
|I| ∈ O(n·n), as we have a constant number of variables and constraints per colour. As argued
above, the ILP only has a constant number of feasible solutions. Hence, we can enumerate
these efficiently, and determine which of these satisfy condition (4) of α-Cut-Labelling.
This check can be implemented in O(N). This shows that α-Cut-Labelling can be solved
in time O(n2 + N). Therefore, by Proposition 27 α-α-Irr-Necklace-Splitting can be
solved in O(n2 + N) ∈ O(n · N) time, using that n ∈ O(N). ◀

Together with Propositions 19 and 22, we can conclude that α-α-Necklace-Splitting,
and thus α-Necklace-Splitting, can be solved in O(n · N) time. We have thus proven
Theorem 4.

4 NP-Completeness of the Decision Problem

In this section we prove Theorem 5, i.e., we show NP-completeness of deciding whether an
arbitrary necklace has an α-cut. Since an α-cut can be used as a yes-certificate and verified
in polynomial time, this problem is clearly in NP.

Instead of showing NP-hardness of this problem directly, we instead show NP-hardness of
the following problem.

▶ Definition 32. α/α-Necklace-Deciding

Input: A necklace C = {C1, . . . , Cn} and α = (α1, . . . , αn), αi ∈ {1, . . . , |Ci|}
Decide: Does C have a cut that is either an α-cut or an α-cut?

α/α-Necklace-Deciding can be seen as the problem of deciding whether there exist
cut points that split the necklace into two sides, one of which has size α, but not necessarily
the positive side of the cut defined via the cut parity. Clearly, α/α-Necklace-Deciding
can be solved by testing individually whether C has an α-cut, and whether it has an α-cut.
Thus, the following proposition immediately implies Theorem 5.

▶ Proposition 33. α/α-Necklace-Deciding is NP-hard.

STACS 2025

71:16 Unfairly Splitting Separable Necklaces

Proof. We reduce from e3-Sat. Let Φ = C1 ∧ · · · ∧ Cm be an instance of e3-Sat. Each
clause Ci consists of exactly three variables. We now construct a necklace ζ and a vector α

such that ζ has an α- or α-cut if and only if Φ is satisfiable. As discussed above, we can
instead show that Φ is satisfiable if and only if there exist cut points (one per colour) such
that some chosen side contains the desired number of points α.

To construct ζ, we use the following types of beads. The two types of beads P and N

are used to enforce that certain parts of the necklace are on the positive or negative side
(we will set α(P) = |P | and α(N) = 1). For every variable x we use the types xA

0 and xB
0 to

construct a gadget which encodes the truth value of x. For every clause Ci such that x ∈ Ci

we additionally use the types xA
i and xB

i to read out the value of x at the clause Ci. To
transfer the value of x, we use yet another type of bead xT . For clauses Ci we only need one
more type of bead, which we simply name Ci.

We also need multiple types of beads as separator beads. A separator bead only occurs
once, and is used to enforce that there is a cut at its location. We denote a separator
bead type by S∗ where the subscript indicates the part of the necklace the separator bead
belongs to.

Finally, we need two types of beads a, b that are only used to enforce the positive side of
the cut. The necklace starts with the string a b a and we set α such that both beads of a

must be on the positive side. Since there must be exactly one cut through one bead of a and
another cut through the single occurrence of b, the only way of having both a and the b on
the positive side is to cut the second occurrence of a, and to put the unbounded interval
from −∞ to the first occurrence of a on the positive side of the cut, or to cut through the
first occurrence of a, and still putting the unbounded interval from −∞ to the first bead of
a on the positive side, which will then also put the second bead of a on the positive side.

The rest of the necklace consists of two main parts. The first part is the encoding part
where we encode the assignment of variables and the satisfiability of each clause. In the
second part we enforce the position of cuts for some types of beads. In the following we
describe both parts, starting with the encoding part.

The encoding part first contains the following string for each variable x

P xA
0 xT . . . xT︸ ︷︷ ︸

k times

xB
0 P xA

0 xB
0 P

where k is the number of occurrences of the variable x, that is, the number of clauses Ci such
that x ∈ Ci (either positively or negatively). Then, the encoding part contains the following
string for each clause Ci and each variable x ∈ Ci.

P xA
i Ci xB

i P xA
i xT xB

i P, if x appears as a positive literal in Ci,
P xA

i xB
i P xA

i xT Ci xB
i P, if x appears as a negative literal in Ci.

Note that the only difference between these two strings is the placement of the bead of
type Ci.

We prove that under the following assumptions the encoding part properly encodes true
assignments to Φ. These assumptions will be enforced by the α-vector and the second part
of the necklace. We first assume that there is no cut in any bead of types P, xT , Ci within
the encoding part. Furthermore, we assume that a cut is correct if and only if the positive
side of the cut within the encoding part contains all beads of type P , half of each xT (note
that xT occurs an even number of times), at most two beads of type Ci, and both beads of
types xA

i and xB
i (for all i including 0). Recall that a bead at which we cut the necklace is

counted towards the positive side.

P. Schnider, L. Stalder, and S. Weber 71:17

The only way to make the xA
i and xB

i types have both beads on the positive side is by
either cutting through the first xA

i and first xB
i , or by cutting through the second xA

i and
second xB

i . The first case will encode the assignment x = “true” and the latter encodes
x = “false”.

The cuts for i = 0 corresponding to a true assignment will move the k beads of type xT

between xA
0 and xB

0 to the negative side. Since we need half of the beads of type xT on the
positive side, this implies that for the cuts in xA

i and xB
i for i ̸= 0, the bead of type xT must

be on the positive side. Hence, the cuts in xA
i and xB

i must encode the same assignment as
the cuts in xA

0 and xB
0 .

We see that the bead of type Ci between xA
i and xB

i is on the negative side of the cut if
and only if Ci is satisfied by the variable x. We thus see that at most two of the beads of
type Ci are on the positive side if and only if Ci is fulfilled by one of its literals. Hence, we
can conclude that under the assumptions listed above, the encoding part correctly encodes
correct assignments to Φ.

In the second part of the necklace we will now first enforce that the cut points of type
P, xT , and Ci will lie in this second part.

We add the following three strings. For each clause Ci we add the string

P Ci Ci Ci Si P,

where Si is a new separator bead. Still assuming that P is not getting cut, this enforces that
one of the three beads of type Ci is cut.

Then, for each variable x we add the string

P xT . . . P xT︸ ︷︷ ︸
k times

N xT . . . N xT︸ ︷︷ ︸
k times

N Sx,

where again k is the number of clauses containing x, and Sx is a new separator bead.
Assuming P and N to not be cut, this enforces the k-th occurrence of xT to be cut, putting
k of the beads of type xT in this substring on the positive side, and k on the negative side.

Finally, we add the string

P N.

Since the number of types of beads is even (P comes paired with N , xA
i comes paired with

xB
i , Ci is paired with Si and xT is paired with Sx), we can see that this last bead of type

N must be cut: If it was not cut, it would be on the positive side of the cut, since both
unbounded intervals must belong to the positive side. However, the cut point of type N is
another bead that would be counted to the positive side, violating α(N) = 1. If however
this last bead of type N is cut, also the last bead of type P must be cut by a symmetric
argument.

We thus see that the second part of the string enforces the cuts we assumed in the
encoding part. Furthermore, since the second part has exactly half of the beads of type xT

and one up to three beads of type Ci on the positive side, the following α-vector exactly
gives us all of the assumptions on the number of beads on the positive side we made in the
encoding part.

STACS 2025

71:18 Unfairly Splitting Separable Necklaces

α(a) = 2, α(b) = 1,

α(P) = |P |, α(N) = 1,

α(xA
i) = 2, α(xB

i) = 2 for all variables x and all i including 0,

α(xT) = |xT |
2 for all variables xT , note that |xT | is even,

α(Ci) = 3 for all clauses Ci,
α(S∗) = 1 for any separator S∗.

We have argued before that a cut with the correct number of points α on the positive side
corresponds to a satisfying assignment of Φ. On the flip side, it is clear that a satisfying
assignment can be turned into a cut by cutting the xA

i , xB
i at the corresponding places and

the Ci at the correct of the three consecutive occurrences, depending on how many literals
in Ci are true.

The necklace ζ can be built in polynomial time in m, and we thus get that α/α-Necklace-
Deciding is NP-hard. ◀

For an example of this reduction see the full version of this paper.

References
1 Noga Alon. Splitting necklaces. Advances in Mathematics, 63(3):247–253, 1987. doi:10.1016/

0001-8708(87)90055-7.
2 Noga Alon and Douglas B. West. The Borsuk-Ulam theorem and bisection of necklaces.

In Proceedings of the American Mathematical Society, volume 98, pages 623–628. American
Mathematical Society, 1986. doi:10.1090/S0002-9939-1986-0861764-9.

3 Helena Bergold, Daniel Bertschinger, Nicolas Grelier, Wolfgang Mulzer, and Patrick Schnider.
Well-Separation and Hyperplane Transversals in High Dimensions. In Artur Czumaj and Qin
Xin, editors, 18th Scandinavian Symposium and Workshops on Algorithm Theory (SWAT
2022), volume 227 of Leibniz International Proceedings in Informatics (LIPIcs), pages 16:1–
16:14, Dagstuhl, Germany, 2022. Schloss Dagstuhl – Leibniz-Zentrum für Informatik. doi:
10.4230/LIPIcs.SWAT.2022.16.

4 Paul Bonsma, Thomas Epping, and Winfried Hochstättler. Complexity results on restricted
instances of a paint shop problem for words. Discrete Applied Mathematics, 154(9):1335–1343,
2006. 2nd Cologne/Twente Workshop on Graphs and Combinatorial Optimization (CTW
2003). doi:10.1016/j.dam.2005.05.033.

5 Michaela Borzechowski, John Fearnley, Spencer Gordon, Rahul Savani, Patrick Schnider, and
Simon Weber. Two Choices Are Enough for P-LCPs, USOs, and Colorful Tangents. In Karl
Bringmann, Martin Grohe, Gabriele Puppis, and Ola Svensson, editors, 51st International
Colloquium on Automata, Languages, and Programming (ICALP 2024), volume 297 of Leibniz
International Proceedings in Informatics (LIPIcs), pages 32:1–32:18, Dagstuhl, Germany, 2024.
Schloss Dagstuhl – Leibniz-Zentrum für Informatik. doi:10.4230/LIPIcs.ICALP.2024.32.

6 Michaela Borzechowski, Patrick Schnider, and Simon Weber. An FPT Algorithm for Splitting
a Necklace Among Two Thieves. In Satoru Iwata and Naonori Kakimura, editors, 34th
International Symposium on Algorithms and Computation (ISAAC 2023), volume 283 of Leibniz
International Proceedings in Informatics (LIPIcs), pages 15:1–15:14, Dagstuhl, Germany, 2023.
Schloss Dagstuhl – Leibniz-Zentrum für Informatik. doi:10.4230/LIPIcs.ISAAC.2023.15.

7 Steven J. Brams and Alan D. Taylor. An Envy-Free Cake Division Protocol. The American
Mathematical Monthly, 102(1):9–18, 1995. doi:10.1080/00029890.1995.11990526.

https://doi.org/10.1016/0001-8708(87)90055-7
https://doi.org/10.1016/0001-8708(87)90055-7
https://doi.org/10.1090/S0002-9939-1986-0861764-9
https://doi.org/10.4230/LIPIcs.SWAT.2022.16
https://doi.org/10.4230/LIPIcs.SWAT.2022.16
https://doi.org/10.1016/j.dam.2005.05.033
https://doi.org/10.4230/LIPIcs.ICALP.2024.32
https://doi.org/10.4230/LIPIcs.ISAAC.2023.15
https://doi.org/10.1080/00029890.1995.11990526

P. Schnider, L. Stalder, and S. Weber 71:19

8 Man-Kwun Chiu, Aruni Choudhary, and Wolfgang Mulzer. Computational Complexity
of the α-Ham-Sandwich Problem. In Artur Czumaj, Anuj Dawar, and Emanuela Merelli,
editors, 47th International Colloquium on Automata, Languages, and Programming (ICALP
2020), volume 168 of Leibniz International Proceedings in Informatics (LIPIcs), pages 31:1–
31:18, Dagstuhl, Germany, 2020. Schloss Dagstuhl – Leibniz-Zentrum für Informatik. doi:
10.4230/LIPIcs.ICALP.2020.31.

9 Jesús De Loera, Xavier Goaoc, Frédéric Meunier, and Nabil Mustafa. The discrete yet
ubiquitous theorems of Carathéodory, Helly, Sperner, Tucker, and Tverberg. Bulletin of the
American Mathematical Society, 56(3):415–511, 2019. doi:10.1090/bull/1653.

10 Xiaotie Deng, Qi Qi, and Amin Saberi. Algorithmic solutions for envy-free cake cutting.
Operations Research, 60(6):1461–1476, 2012. doi:10.1287/opre.1120.1116.

11 Thomas Epping, Winfried Hochstättler, and Peter Oertel. Complexity results on a paint shop
problem. Discrete Applied Mathematics, 136(2):217–226, 2004. The 1st Cologne-Twente Work-
shop on Graphs and Combinatorial Optimization. doi:10.1016/S0166-218X(03)00442-6.

12 Aris Filos-Ratsikas and Paul W. Goldberg. The complexity of splitting necklaces and bisecting
ham sandwiches. In Proceedings of the 51st Annual ACM SIGACT Symposium on Theory of
Computing, STOC 2019, pages 638–649, New York, NY, USA, 2019. Association for Computing
Machinery. doi:10.1145/3313276.3316334.

13 Charles H. Goldberg and Douglas B. West. Bisection of circle colorings. SIAM Journal on
Algebraic Discrete Methods, 6(1):93–106, 1985. doi:10.1137/0606010.

14 Charles R. Hobby and John R. Rice. A moment problem in L1 approximation. Proceedings of
the American Mathematical Society, 16(4):665–670, 1965. doi:10.2307/2033900.

15 Bart M. P. Jansen and Stefan Kratsch. A structural approach to kernels for ILPs: Treewidth
and total unimodularity. In Nikhil Bansal and Irene Finocchi, editors, Algorithms - ESA 2015,
pages 779–791. Springer Berlin Heidelberg, 2015. doi:10.1007/978-3-662-48350-3_65.

16 Jiří Matoušek. Lectures on Discrete Geometry. Graduate Texts in Mathematics. Springer New
York, 2002. doi:10.1007/978-1-4613-0039-7.

17 Frédéric Meunier and András Sebő. Paintshop, odd cycles and necklace splitting. Discrete
Applied Mathematics, 157(4):780–793, 2009. doi:10.1016/j.dam.2008.06.017.

18 Svatopluk Poljak and Daniel Turzík. A polynomial time heuristic for certain subgraph
optimization problems with guaranteed worst case bound. Discrete Mathematics, 58(1):99–104,
1986. doi:10.1016/0012-365X(86)90192-5.

19 Sambuddha Roy and William Steiger. Some combinatorial and algorithmic applications
of the Borsuk–Ulam theorem. Graphs and Combinatorics, 23(1):331–341, June 2007. doi:
10.1007/s00373-007-0716-1.

20 Erel Segal-Halevi, Shmuel Nitzan, Avinatan Hassidim, and Yonatan Aumann. Envy-free
division of land. Mathematics of Operations Research, 45(3):896–922, 2020. doi:10.1287/
moor.2019.1016.

21 Forest W. Simmons and Francis Edward Su. Consensus-halving via theorems of Borsuk-Ulam
and Tucker. Mathematical Social Sciences, 45(1):15–25, 2003. doi:10.1016/S0165-4896(02)
00087-2.

22 William Steiger and Jihui Zhao. Generalized ham-sandwich cuts. Discrete & Computational
Geometry, 44(3):535–545, 2010. doi:10.1007/s00454-009-9225-8.

23 Arthur H. Stone and John W. Tukey. Generalized “sandwich” theorems. Duke Math. J.,
9(2):356–359, 1942. doi:10.1215/S0012-7094-42-00925-6.

STACS 2025

https://doi.org/10.4230/LIPIcs.ICALP.2020.31
https://doi.org/10.4230/LIPIcs.ICALP.2020.31
https://doi.org/10.1090/bull/1653
https://doi.org/10.1287/opre.1120.1116
https://doi.org/10.1016/S0166-218X(03)00442-6
https://doi.org/10.1145/3313276.3316334
https://doi.org/10.1137/0606010
https://doi.org/10.2307/2033900
https://doi.org/10.1007/978-3-662-48350-3_65
https://doi.org/10.1007/978-1-4613-0039-7
https://doi.org/10.1016/j.dam.2008.06.017
https://doi.org/10.1016/0012-365X(86)90192-5
https://doi.org/10.1007/s00373-007-0716-1
https://doi.org/10.1007/s00373-007-0716-1
https://doi.org/10.1287/moor.2019.1016
https://doi.org/10.1287/moor.2019.1016
https://doi.org/10.1016/S0165-4896(02)00087-2
https://doi.org/10.1016/S0165-4896(02)00087-2
https://doi.org/10.1007/s00454-009-9225-8
https://doi.org/10.1215/S0012-7094-42-00925-6

Card-Based Protocols Imply PSM Protocols
Kazumasa Shinagawa #

Ibaraki University, Ibaraki, Japan
National Institute of Advanced Industrial Science and Technology (AIST), Tokyo, Japan

Koji Nuida #

Institute of Mathematics for Industry (IMI), Kyushu University, Fukuoka, Japan
National Institute of Advanced Industrial Science and Technology (AIST), Tokyo, Japan

Abstract
Card-based cryptography is the art of cryptography using a deck of physical cards. While this area
is known as a research area of recreational cryptography and is recently paid attention in educational
purposes, there is no systematic study of the relationship between card-based cryptography and
the other “conventional” cryptography. This paper establishes the first generic conversion from
card-based protocols to private simultaneous messages (PSM) protocols, a special kind of secure
multiparty computation. Our compiler supports “simple” card-based protocols, which is a natural
subclass of finite-runtime protocols. The communication complexity of the resulting PSM protocol
depends on how many cards are opened in total in all possible branches of the original card-based
protocol. This result shows theoretical importance of such “opening complexity” of card-based
protocols, which had not been focused in this area. As a consequence, lower bounds for PSM protocols
imply those for simple card-based protocols. In particular, if there exists no PSM protocol with
subexponential communication complexity for a function f , then there exists no simple card-based
protocol with subexponential opening complexity for the same f .

2012 ACM Subject Classification Security and privacy → Information-theoretic techniques

Keywords and phrases Card-based cryptography, private simultaneous messages

Digital Object Identifier 10.4230/LIPIcs.STACS.2025.72

Funding This work was supported by Institute of Mathematics for Industry, Joint Usage/Research
Center in Kyushu University: FY2022 Short-term Visiting Researcher “On Minimal Construction of
Private Simultaneous Messages Protocols” (2022a006), FY2023 Short-term Visiting Researcher “On
the Relationship between Physical and Non-physical Secure Computation Protocols” (2023a009),
and FY2024 Short-term Visiting Researcher “Private Simultaneous Messages and Card-Based
Cryptography” (2024a015).
Kazumasa Shinagawa: This work was supported in part by JSPS KAKENHI Grant Numbers
21K17702 and 23H00479, and JST CREST Grant Number MJCR22M1.
Koji Nuida: This work was supported in part by JSPS KAKENHI Grant Number JP22K11906.

1 Introduction

1.1 Background
Secure computation allows a set of parties, each with a secret input, to compute an output
value of a function of their inputs without revealing any information on the inputs beyond
the output value. Although secure computation is typically assumed to be implemented on
electronic devices, there is a line of research to implement secure computation using a deck
of physical cards, which is called card-based cryptography [8, 11,21].

In card-based cryptography, an important research topic is to determine the minimum
number of cards required for secure compution of a function. For the logical AND function, for
example, upper and lower bounds on the number of cards have been studied by constructing
a protocol and by proving impossibility for a certain number of cards [16–19], respectively.

© Kazumasa Shinagawa and Koji Nuida;
licensed under Creative Commons License CC-BY 4.0

42nd International Symposium on Theoretical Aspects of Computer Science (STACS 2025).
Editors: Olaf Beyersdorff, Michał Pilipczuk, Elaine Pimentel, and Nguyễn Kim Thắng;
Article No. 72; pp. 72:1–72:18

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:kazumasa.shinagawa.np92@vc.ibaraki.ac.jp
https://orcid.org/0000-0002-5219-1975
mailto:nuida@imi.kyushu-u.ac.jp
https://orcid.org/0000-0001-8259-9958
https://doi.org/10.4230/LIPIcs.STACS.2025.72
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

72:2 Card-Based Protocols Imply PSM Protocols

Other than AND protocols, lower bounds are so far known only for COPY protocols [16, 21]
and protocols for generating a random permutation without fixed points [14], and as far as
we know, no lower bounds for general functions have been explored.

On the other hand, in “conventional” (or “electronic”) cryptography, there have been
derived some lower bounds for general functions. For example, lower bounds on the commu-
nication complexity have been studied for secure multiparty computation (MPC) [10], private
simultaneous messages (PSM) [2, 4, 5, 12], conditional disclosure of secrets (CDS) [1, 13], and
secret sharing (SS) [9].

If there is some technical relationship between card-based and conventional cryptography,
lower bounds in card-based cryptography might be obtained from lower bounds in conventional
cryptography. Unfortunately, however, there has been no systematic study of the relationship
between card-based and conventional cryptography so far.

In this line of research, den Boer [11], in the historically first paper on card-based protocols,
proposed a conventional cryptographic protocol based on an idea from a card-based protocol.
However, there is no other research on constructing conventional cryptographic protocols
from card-based protocols; this line of research has not progressed at all for more than
30 years, long enough for many cryptographers to believe that there is no more technical
relationship between card-based and conventional cryptography.

1.2 Our Contribution
In this paper, we study a technical relationship between card-based and conventional crypto-
graphy. In particular, we develop a generic conversion from card-based to PSM protocols.

The model of PSM was initially introduced by Feige, Kilian, and Naor [12] and later
generalized by Ishai and Kushilevitz [15]. A PSM protocol is a kind of secure computation
protocols with one-round and unidirectional communication from n input players, having
input-independent pre-shared common randomness, to an output player called a referee.

Our compiler supports a class of finite-runtime card-based protocols, which we name
simple protocols (see Section 4.1): Roughly speaking, a finite-runtime protocol is said to
be simple if, throughout an execution, all cards in each step are face-down except when
opening cards. When the total number of possibly opened cards in a simple protocol is t,
the resulting PSM protocol has communication complexity nt. This parameter t, which we
name the opening complexity of the protocol, is a new complexity measure for card-based
protocols not well investigated in the previous studies. It is an interesting research direction
to design card-based protocols with small opening complexity.

For a special case, we consider single-shuffle full-open (SSFO) protocols (see Section 3).
Since SSFO protocols are simple and the opening complexity of an SSFO protocol is exactly
the same as the number of cards d used in the protocol, the communication complexity of
the resulting PSM protocol is nd.

The main contribution of this study is deepening our understanding of card-based
cryptography by connecting to the world of conventional cryptography. We believe that our
work enhances a new direction for future research on card-based cryptography: An interesting
research topic is to determine a class of functions for which our conversion yields efficient PSM
protocols; Another interesting topic is to develop deeper connections between card-based
protocols and PSM protocols or other kinds of conventional cryptographic protocols.

As a direct consequence of our conversion, lower bounds on the opening complexity t in
card-based protocols will be derived from lower bounds on the communication complexity
of PSM protocols (Corollary 5). If there exists no PSM protocol for any function with
subexponential communication complexity, which is an unproven but plausible statement

K. Shinagawa and K. Nuida 72:3

and is stated as Conjecture 6, then there exists no simple protocol computing any function
with subexponential opening complexity (Corollary 7). To prove an unconditional non-trivial
lower bound for card-based protocols, we need a super-quadratic lower bound for PSM
protocols, i.e., ω(kn2) for a function f : ({0, 1}k)n → {0, 1}. Unfortunately, as far as we
know, the state-of-the-art lower bound is Ω(kn2/ log(nk)) by Ball and Randolph [5] and no
super-quadratic lower bound has been proved yet. We believe that our result provides a new
motivation for obtaining such a lower bound.

Another application of our conversion is to provide a new method to construct PSM
protocols. As a concrete example, we construct a card-based protocol for an indirect storage
access (ISA, for short) function [23] and then convert it to a PSM protocol with communication
complexity O(KL2 + K2L log L), where K and L are parameters for the input length. Our
protocol is more efficient than the existing constructions based on branching programs (BP,
for short) and gate evaluation secret sharing (GESS, for short), both of which, to the best of
our knowledge, are the only existing constructions for efficient PSM protocols effective for
the ISA function.

2 Preliminaries

For an integer n ≥ 2, we denote [n] := {1, 2, . . . , n}. For an integer k ≥ 1, we denote
the k-th symmetric group by Sk. For a k-bit string s = (s1, s2, . . . , sk) ∈ {0, 1}k and a
permutation π ∈ Sk, a permuted string of s by π, denoted by π(s), is defined by π(s) :=
(sπ−1(1), sπ−1(2), . . . , sπ−1(k)). For example, for a string s = 111000 ∈ {0, 1}6 and a cyclic
permutation π = (1 2 3 4 5 6) ∈ S6, we have π(s) = 011100. We denote by X∗ the set of
finite sequences (of various lengths) from a set X.

2.1 PSM Protocols
Feige, Kilian, and Naor [12] introduced a minimal model of secure two-party computation
protocols. Ishai and Kushilevitz [15] generalized the model to the multiparty case, which is
called private simultaneous messages (PSM).

Suppose that n players P1, P2, . . . , Pn hold x1, x2, . . . , xn ∈ X, respectively. They want
to tell the output value f(x1, x2, . . . , xn) of a given function f : Xn → Y only to the referee,
who is not one of the n players, without revealing any information on the inputs beyond
the output value. The n players are assumed to share a common randomness and each of
them is allowed to send a single message to the referee. The model of PSM is summarized in
Figure 1.

Now we define the syntax and requirements for PSM protocols formally. Let X, Y

be finite sets and f : Xn → Y a function. Let R, M1, M2, . . . , Mn be finite sets and M :=
M1×M2×· · ·×Mn. A private simultaneous messages (PSM) protocol for f is an (n+2)-tuple
(R, Enc1, Enc2, . . . , Encn, Dec), where R is a probability distribution over R, Enci : X ×R→
Mi is the i-th encoding function (1 ≤ i ≤ n), and Dec : M → Y is the decoding function. The
protocol proceeds as follows: First, a common randomness r ← R is chosen and distributed
to the n players P1, P2, . . . , Pn. Then each player Pi holding (xi, r), where xi ∈ X is an input
of Pi, computes a message mi = Enci(xi, r) and sends it to the referee. Finally, on receiving
m1, m2, . . . , mn, the referee determines an output value y = Dec(m1, m2, . . . , mn).

The protocol is said to be correct if we have Dec(Enc1(x1, r), . . . , Encn(xn, r)) = f(x⃗) for
any x⃗ = (x1, . . . , xn) ∈ Xn and any r ∈ R such that Pr[r ← R] > 0. The protocol is said
to be secure if there exists an algorithm Sim called a simulator such that for any x⃗ ∈ Xn,

STACS 2025

72:4 Card-Based Protocols Imply PSM Protocols

Referee

m1 m2 mn

P1 P2 · · · Pn

x1, r x2, r xn, r

y

Figure 1 The model of PSM protocols.

the distribution of Sim(f(x⃗)) equals the distribution of (Enc1(x1,R), . . . , Encn(xn,R)). The
communication complexity of the protocol is defined by

∑n
i=1 log2 |Mi|. The randomness

complexity of the protocol is defined by the Shannon entropy H(R) of R.

2.2 Card-Based Protocols
Mizuki and Shizuya [21] proposed a computational model for card-based protocols, referred
to as the Mizuki–Shizuya model. We review the Mizuki–Shizuya model below. (We also
follow the well-summarized description of [19].)

A deck D is a finite and non-empty multiset of symbols. For a symbol c ∈ D, c
? and ?

c

denote a face-up card and face-down card with symbol c, respectively, where ‘?’ is a special
backside symbol that is not contained in D. For a card (i.e., face-up card or face-down card)
α, top(α) is defined by top(c

?) := c and top(?
c) := ?, and the flipped card of α is defined to be

?
c if α = c

? and to be c
? if α = ?

c .
In this paper, we mainly deal with a two-colored deck D, which consists of two types of

symbols ♣ and ♡. The face-up cards ♣
? and ♡

? are depicted by ♣ and ♡ , respectively, and
a face-down card is depicted by ? .

A sequence of cards from D is obtained by permuting D and, for each symbol c ∈ D,
choosing a face-up card c

? or a face-down card ?
c . For example, when D = [♣,♡,♡] (where

the square brackets represent a multiset), Γ = (♡
? , ♣

? , ?
♡) is a sequence of cards from D. For

a sequence of cards Γ = (α1, . . . , αd), vis(Γ) := (top(α1), . . . , top(αd)) is called the visible
sequence of Γ. We denote the set of all visible sequences of card sequences from D by VisD.

For a sequence of cards Γ = (α1, . . . , αd), we can apply the following three types of
actions:

(perm, π) for π ∈ Sd is an action that converts Γ to π(Γ) := (απ−1(1), απ−1(2), . . . , απ−1(d)).
(shuf, Π,F) for a subset Π ⊆ Sd and a probability distribution F over Π is an action that
converts Γ to π(Γ), where π ∈ Π is drawn from F . Here, no player should know which
permutation is chosen by the shuffle when it is applied to a sequence of face-down cards.
(turn, T) for a subset T ⊆ [d] is an operation that converts Γ to (β1, . . . , βd) where βi is
the flipped card of αi if i ∈ T and βi = αi otherwise.

The set of actions for card sequences from D is denoted by ActionD.
A Mizuki–Shizuya (MS) protocol is defined by a tuple (D, U, Q, A), where D is a deck,

U is a set of input sequences (of cards), Q is a set of states including the initial state
q0 and the set of final states Qfin ⊆ Q, and A : (Q \ Qfin) × VisD → Q × ActionD is a

K. Shinagawa and K. Nuida 72:5

partial function called an action function. An MS protocol starts with an input sequence
Γ0 ∈ U and the initial state q0. For the current sequence Γi and the current state q, if
A(vis(Γi), q) = (q′, action), the MS protocol applies action to Γi and updates the state to q′.
The MS protocol terminates when entering a final state q ∈ Qfin. The list of all sequences
(Γ0, Γ1, . . . , Γk) for a protocol execution is called the sequence trace of the protocol execution,
and (vis(Γ0), vis(Γ1), . . . , vis(Γk)) is called the visible sequence trace of the protocol execution.

We note that an MS protocol is defined as a mechanism for converting an input sequence
into an output sequence, and does not explicitly address the function to be computed. To
associate a function f : Xn → Y with an MS protocol (D, U, Q, A), we need to give a map
in : Xn → U called an input function and a map out : (VisD)∗ → Y called an output function.
For an input x⃗ ∈ Xn, the input sequence of the protocol is set to in(x⃗) ∈ U , and the
output of the protocol is defined by out(v0, v1, . . . , vk) ∈ Y when the visible sequence trace
is (v0, v1, . . . , vk) ∈ (VisD)k+1.

Let ini be the function representing the i-th card of the input sequence, i.e., in(x⃗) :=
(in1(x⃗), . . . , ind(x⃗)). We naturally assume that the output of each function ini depends only
on at most one input, say xj ∈ X (including the case that the output of ini is constant),
referred to as the locality of in.

A protocol is defined by a tuple (D, U, Q, A, in, out), where (D, U, Q, A) is an MS protocol,
and in and out are input and output functions, respectively. A protocol for a function f is
said to be correct if for all inputs x⃗ ∈ Xn, the protocol outputs f(x⃗) whenever it terminates.
A protocol for f is said to be secure if there exists an algorithm Sim called a simulator such
that for any x⃗ ∈ Xn, the distribution of Sim(f(x⃗)) equals the distribution of the visible
sequence trace of the protocol execution with input x⃗. A protocol is said to be finite-runtime
if it terminates within a fixed number of steps. A protocol is said to be Las Vegas if its
runtime is finite in expectation.

We give two remarks on the above definition. A pair of face-down cards with different
symbols is called a commitment to a bit, via the encoding rule ♣ ♡ = 0 and ♡ ♣ = 1.
Our definition of in can deal with input commitments: For a sequence of n commitments
to x1, x2, . . . , xn ∈ {0, 1}, in our definition, the input function in can be represented by
in(x⃗) =

(
?

x1
, ?

x1
, ?

x2
, ?

x2
, . . . , ?

xn
, ?

xn

)
using the encoding rule ♣ = 0 and ♡ = 1, where xi

denotes the negation of a bit xi. Our definition also captures other encoding rules as long as
they satisfy the locality.

There are two types of protocols in the area of card-based cryptography: a committed-
format protocol and a non-committed-format protocol. A protocol of the former type produces
a sequence of commitments as output, while a protocol of the latter type publicly outputs
the value f(x1, x2, . . . , xn). Our definition of the correctness and security supposed non-
committed-format protocols, but committed-format protocols can be obviously converted to
non-committed-format ones by just opening the output commitments and hence our proposed
conversion method is also applicable to them.

For a protocol P = (D, U, Q, A, in, out) (or an MS protocol P = (D, U, Q, A)), the protocol
diagram of P is defined as the directed edge-labeled graph as follows:

The set of vertices is Q.
A directed edge labeled by action ∈ ActionD from q to q′ exists if and only if there exists
a visible sequence v ∈ VisD such that A(q, v) = (q′, action).

See Figure 2 in Section 4.1 for an example of the protocol diagram of the four-card trick [20].
Note that a protocol diagram can be viewed as a reduced version of the Koch–Walzer–Härtel
diagram [19]. We remark that any finite-runtime protocol can be easily converted to a
(functionally equivalent) protocol whose protocol diagram forms a finite tree.

STACS 2025

72:6 Card-Based Protocols Imply PSM Protocols

3 Our Conversion for Special Case

In order to explain the essential idea of our proposed conversion before a general description
given in Section 4 below, in this section, we first describe our conversion for a special type of
card-based protocols which we call single-shuffle full-open protocols. A card-based protocol
is said to be single-shuffle full-open (SSFO) if it proceeds as follows:
1. The input sequence in(x⃗) is given:

? ? · · · ? ?︸ ︷︷ ︸
in(x⃗)

.

2. Apply a shuffle (shuf, Π,F) to the sequence as follows:

? ? · · · ? ?︸ ︷︷ ︸
in(x⃗)

→ ? ? · · · ? ?︸ ︷︷ ︸
π(in(x⃗))

,

where π ∈ Π is chosen according to F .
3. Turn over all cards and determine the output value:

? ? · · · ? ?︸ ︷︷ ︸
π(in(x⃗))

→ ♡ ♣ · · · ♣ ♡ ⇒ y ∈ Y.

In Section 3.1, we demonstrate our conversion for an SSFO protocol called the five-card trick.
In Section 3.2, we give our conversion for any SSFO protocol.

3.1 PSM Protocol from Five-Card Trick
The five-card trick is a five-card AND protocol proposed by den Boer [11]. First, we recall
the protocol description of the five-card trick.

1. The input sequence in(x⃗) is given as follows, where x⃗ = (x1, x2) ∈ {0, 1}2:

? ?︸ ︷︷ ︸
x1

?
♡

? ?︸ ︷︷ ︸
x2

.

2. Apply a shuffle (shuf, ⟨(1 2 3 4 5)⟩) to the sequence as follows:

? ? ? ? ?︸ ︷︷ ︸
in(x⃗)

→ ? ? ? ? ?︸ ︷︷ ︸
π(in(x⃗))

,

where π = (1 2 3 4 5)r for a uniformly random r ∈ {0, 1, 2, 3, 4}.
3. Turn over all cards. Output 0 if they are ♡♣♡♣♡ up to cyclic shifts, and 1 if they are
♡♡♡♣♣ up to cyclic shifts.

Now we convert the above protocol to a PSM protocol. Let Alice and Bob be the players
holding x1, x2 ∈ {0, 1}, respectively, and Charlie the referee.

First, following the encoding rule ♣ = 0 and ♡ = 1, the input sequence in(x1, x2), which
is the sequence of symbols for the cards, can be represented by

in(x1, x2) := (x1, x1, 1, x2, x2) ∈ {0, 1}5.

Although neither Alice nor Bob alone can compute the whole of in(x1, x2), Alice can compute

s1(x1) := (x1, x1, 1, 0, 0) ∈ {0, 1}5,

K. Shinagawa and K. Nuida 72:7

and Bob can compute

s2(x2) := (0, 0, 0, x2, x2) ∈ {0, 1}5.

We note that, by taking the component-wise XOR, we have

s1(x1)⊕ s2(x2) = (x1, x1, 1, x2, x2) = in(x1, x2).

In other words, thanks to the locality of in, Alice and Bob can jointly compute the input
sequence in(x1, x2) in a distributed manner.

Next, we notice that Alice and Bob can apply a shuffle to the sequence in their heads
by sharing a randomness of the shuffle as common randomness. In particular, by sharing
a random cyclic permutation π ∈ ⟨(1 2 3 4 5)⟩, Alice and Bob can compute π(s1(x1)) and
π(s2(x2)), respectively. We emphasize that

π(s1(x1))⊕ π(s2(x2)) = π(s1(x1)⊕ s2(x2)) = π(in(x1, x2))

by the property of permutations.
Finally, to hide their inputs, Alice and Bob compute m1 := π(s1(x1)) ⊕ r and m2 :=

π(s2(x2)) ⊕ r, respectively, where r ∈ {0, 1}5 is also shared as common randomness, and
send m1 and m2 to Charlie. Thanks to the masking by the random r, each of the messages
m1 and m2 alone does not leak any information on x1 and x2, respectively. Unmasking by
Charlie requires computation of XOR for the two messages to cancel the term r:

m := m1 ⊕m2 = (π(s1(x1))⊕ r)⊕ (π(s2(x2))⊕ r)
= π(s1(x1))⊕ π(s2(x2)) = π(in(x1, x2)) ,

which only tells Charlie the result π(in(x1, x2)) of the XOR and does not tell individual
sequences π(s1(x1)) nor π(s2(x2)). Then Charlie outputs 0 if m is equal to 10101 up to
cyclic shifts, and 1 if m is equal to 11100 up to cyclic shifts.

The resulting PSM protocol is summarized as follows.
1. The common randomness consists of a cyclic permutation π ∈ ⟨(1 2 3 4 5)⟩ and a 5-bit

string r ∈ {0, 1}5, both are chosen uniformly at random.
2. Alice (resp. Bob) computes m1 = π(s1(x1))⊕ r (resp. m2 = π(s2(x2))⊕ r) and sends it

to Charlie.
3. On receiving m1 and m2, Charlie determines an output value y as follows:

y :=
{

1 if m1 ⊕m2 ∈ {00111, 10011, 11001, 11100, 01110};
0 if m1 ⊕m2 ∈ {01011, 10101, 11010, 01101, 10110}.

The communication complexity of the protocol is 10 bits. The randomness complexity of the
protocol is 5 + log2 5 bits.

3.2 PSM Protocol from Any Single-Shuffle Full-Open Protocol
Let P = (D, U, Q, A, in, out) be any SSFO protocol whose shuffle operation is (shuf, Π,F).
By a similar observation to Section 3.1 thanks to the locality of the function in, we can define
a function si : X → {0, 1}d (i ∈ [n]) such that s1(x1)⊕ · · · ⊕ sn(xn) = in(x⃗) for any x⃗ ∈ Xn.

The resulting PSM protocol P̂ is given as follows, where H(F) denotes the Shannon
entropy of the distribution F .

STACS 2025

72:8 Card-Based Protocols Imply PSM Protocols

The PSM protocol P̂ from any SSFO protocol P

Input: x⃗ = (xi)i∈[n] ∈ Xn

Common Randomness: (π, (ri)i∈[n]) is generated as follows:
Choose a permutation π ∈ Π according to F .
Choose r1, r2, . . . , rn−1 ∈ {0, 1}d uniformly at random, and set rn := r1⊕r2⊕· · ·⊕rn−1.

Encoding Function: Output mi := π(si(xi))⊕ ri.
Decoding Function: Compute m := m1 ⊕m2 ⊕ · · · ⊕mn. The output value y is equal to
the output of the protocol P when the opened symbol is m.
Communication Complexity: nd

Randomness Complexity: (n− 1)d + H(F)

▶ Theorem 1. Let P be an SSFO protocol with correctness and security for f : Xn → Y

using d cards. Then the above PSM protocol P̂ is correct and secure for f with communication
complexity nd.

Proof. From the following computation, we have:

m = m1 ⊕m2 ⊕ · · · ⊕mn

= (π(s1(x1))⊕ r1)⊕ (π(s2(x2))⊕ r2)⊕ · · · ⊕ (π(sn(xn))⊕ rn)
= π(s1(x1))⊕ π(s2(x2))⊕ · · · ⊕ π(sn(xn))⊕ r1 ⊕ r2 ⊕ · · · ⊕ rn.

By the choice of rn in P̂, we have r1 ⊕ r2 ⊕ · · · ⊕ rn = 0. Hence we have

m = π(s1(x1))⊕ π(s2(x2))⊕ · · · ⊕ π(sn(xn))
= π(s1(x1)⊕ s2(x2)⊕ · · · ⊕ sn(xn)) = π(in(x⃗)),

which is exactly equal to the opened symbols of P. Thus, the correctness of P̂ follows from
the correctness of P.

We prove the security of P̂ by constructing a simulator Sim for P̂ . Given an output value
y ∈ Y , Sim first invokes a simulator for P on input y, which outputs a visible sequence trace
(?d, v) ∈ (VisD)∗ of a protocol execution. Here, v ∈ {0, 1}d represents the opened values at
the end of the protocol P, therefore v has the same conditional distribution as m in the
protocol P̂ conditioned on the output value y. Then Sim chooses r′

1, r′
2, . . . , r′

n−1 ∈ {0, 1}d

uniformly at random, and outputs (r′
1, r′

2, . . . , r′
n−1, r′

1⊕· · ·⊕ r′
n−1⊕v). Now the XOR of the

n components is v, which (as mentioned above) has the same conditional distribution as m.
Moreover, for each of the first n− 1 component, say the i-th, the message mi = π(si(xi))⊕ ri

is uniformly random thanks to the random choice of ri. Hence the distribution of Sim(y)
equals the distribution of the messages, therefore P̂ is secure. ◀

4 Our Conversion for General Case

In this section, we give our conversion for simple protocols. In Section 4.1, we define the class
of simple protocols. In Section 4.2, we give an overview of our conversion. In Section 4.3, we
describe our conversion for simple protocols.

K. Shinagawa and K. Nuida 72:9

q0

q1

q2

q3

q5

q7

q11

q8

q12

q4

q6

q9

q13

q10

q14

(shuf, {id, (1, 3)(2, 4)})

(shuf, {id, (2, 3)})

(turn, {2})

(turn, {2})

(turn, {4})

(turn, {4}) (turn, {4})

(turn, {2})

(turn, {1})

(turn, {1}) (turn, {1})

Figure 2 The protocol diagram of the four-card trick.

4.1 Simple Protocols
▶ Definition 2. A card-based protocol P = (D, U, Q, A, in, out) is said to be simple if P
satisfies the following conditions:
Finite-Tree: The protocol diagram of P forms a finite tree.
Face-Down: Any input sequence in U consists of face-down cards.
Mono-Opening: Every turn operation (turn, T) in P satisfies |T | = 1. (Intuitively speaking,

every turn operation flips a single card.)
Instant-Turn: Whenever a turn operation (turn, T) was applied to a sequence of all face-down

cards at the last step, the next operation is the same turn operation (turn, T). (Intuitively
speaking, if a face-down card is opened, then it is immediately faced down.)

Here we note that, from the viewpoint of feasibility, focusing only on the simple card-based
protocols does not decrease the generality of our conversion, because any finite-runtime
protocol P can be converted to a simple protocol (see Remark 3 below). We remark that
almost all existing finite-runtime card-based protocols are already simple or can be trivially
converted to simple (e.g., when some multiple cards are opened simultaneously, decomposing
this step into a series of opening and closing of each single card in order to satisfy the
mono-opening property). See Figure 2 for an example of the protocol tree of the four-card
trick [20].

Let P = (D, U, Q, A, in, out) be a simple protocol. Then any turn operation in P is
classified into the following two types:

The operation opens a single card from the whole sequence of face-down cards; referred to
as an open operation. In this case, since we deal with two-colored decks, there are at most
two subsequent states after this operation. We call this operation a branch operation if
there are two subsequent states, and a non-branch operation otherwise.
The operation faces down the card that was opened at the previous step; referred to as a
close operation.

Now we observe that for each non-final state q ∈ Q \Qfin, the operation performed at the
current step is uniquely determined from the state q. Indeed, when an open operation was
performed at the previous step, the operation at the current step must be a close operation

STACS 2025

72:10 Card-Based Protocols Imply PSM Protocols

for the unique opened card due to the instant-turn property. On the other hand, for the other
case, the current visible sequence is the trivial visible sequence v = (?, ?, . . . , ?), therefore the
operation A(q, v) in fact depends solely on q. This yields the following partitions for the set
of non-final states:

Q \Qfin = Qturn ⊔Qperm ⊔Qshuf

= (Q+
turn ⊔Q−

turn) ⊔Qperm ⊔Qshuf

= ((Qbranch ⊔Qnonbranch) ⊔Q−
turn) ⊔Qperm ⊔Qshuf ,

where Qturn, Q+
turn, Q−

turn, Qbranch, Qnonbranch, Qperm, and Qshuf are the sets of all non-final
states for which the next operation is a turn operation turn, an open operation, a close
operation (hence Qturn = Q+

turn ⊔Q−
turn), a branch operation, a non-branch operation (hence

Q+
turn = Qbranch ⊔ Qnonbranch), a permutation operation perm, and a shuffle operation shuf,

respectively.
The opening complexity of P is defined by |Q+

turn|. Note that this notion can be defined
similarly for any finite-runtime protocol that is not necessarily simple.
▶ Remark 3. We note that any finite-runtime protocol can be converted into a simple protocol
without affecting its correctness and security. As already stated in Section 2.2, finite-tree can
be easily obtained. Mono-opening can be obtained by replacing each (turn, {i1, . . . , ik}) with
(turn, {i1}), . . . , (turn, {ik}). Instant-turn can be obtained by appending close operations for
every open operations. The most non-trivial part is to obtain face-down. Note that if a
protocol is not face-down, then an input sequence may contain some face-up cards depending
on the inputs, and some shuffle operations are applied to a sequence containing face-up cards
called a branching shuffle. To obtain face-down, we modify the protocol as follows:

We associate a pair of auxiliary cards (faced down in default) to each card, representing
one-bit information by the order of two cards (where swapping these two cards corresponds
to bit flipping). Then:

We change each face-up card in in(x⃗) to be faced-down (satisfying instant-opening)
while recording this fact to auxiliary cards. At the beginning of the protocol, we read
information in auxiliary cards by opening them, and turn suitable cards to recover the
original in(x⃗).
Each step of the protocol is changed to: (1) turn down each face-up main (i.e., non-
auxiliary) card while recording to auxiliary cards which main cards are to be face-up;
(2a) in permutation/shuffle, main and auxiliary cards are synchronized; (2b) turn for
main cards are emulated by updating information in (i.e., permuting) auxiliary cards;
and (3) read information in auxiliary cards, turn up main cards suitably, and reset
auxiliary cards. This avoids permutation/shuffle operations for face-up cards.

4.2 Overview of Our Conversion
Let P be a simple protocol for f : Xn → Y . From the finite-runtime property, we can assume
that the protocol diagram of P forms a tree.

If all permutations in the shuffle operations are fixed, the order of the sequence of cards
at any step in an execution is determined. This is because the probability in an execution
is taken only for shuffle operations. So, the basic idea of our conversion is to share the
permutations chosen in shuffle operations as common randomness among the players, similar
to the protocol in Section 3.

Let c1, c2, . . . , ct ∈ {0, 1} be the opened symbols when a sequence of permutations π⃗

in the shuffle operations and the input x⃗ ∈ Xn are given. Similar to the protocol in
Section 3, we can observe that for each ci, at least one player can compute it if π⃗ is shared

K. Shinagawa and K. Nuida 72:11

as common randomness. Therefore, each player Pi can compute a message mi ∈ {0, 1}t such
that m1 ⊕m2 ⊕ · · · ⊕mn = (c1, c2, . . . , ct). Since the output value of P is determined by
the opened values, the referee can compute the output value from the messages and the
correctness of the obtained PSM protocol P̂ can be satisfied.

The remaining thing we need to consider is the security of P̂ . See Figure 2. This protocol
has three possible opened symbols c1, c2, c3 corresponding to q2, q4, q8, respectively, but only
two symbols are revealed in an execution as follows: If c1 = 0, the left path (c1, c2) should
be revealed; If c1 = 1, the right path (c1, c3) should be revealed. Since any leakage of the
values outside the path would compromise the security, the values outside the path must be
hidden from the referee. To hide these values, some player can replace the i-th bit of the
player’s message with a random bit if he notices that ci is not on the path.

The above idea is summarized as follows.
1. The common randomness consists of a sequence of permutations in all shuffle operations, an

n-tuple of t-bit random numbers (r1, r2, . . . , rn) ∈ ({0, 1}t)n such that r1⊕r2⊕· · ·⊕rn = 0t,
and other random bits to hide the values outside the path.

2. Each player Pi computes mi ∈ {0, 1}t such that m1 ⊕m2 ⊕ · · · ⊕mn equals the opened
values (c1, c2, . . . , ct).

3. Each player Pi updates mi to hide the values ci outside the path.
4. Each player Pi sets mi ← mi ⊕ ri and sends it to the referee.
5. On receiving m1, m2, . . . , mn, the referee obtains the opened symbols on the path from

m1 ⊕m2 ⊕ · · · ⊕mn, and determines an output value y based on simple protocol P.

4.3 Our Conversion for Simple Protocols
Let P = (D, U, Q, A, in, out) be a simple protocol for f : Xn → Y . We can assume that the
protocol diagram of P forms a tree.

For each q ∈ Qshuf , let (shuf, Πq,Fq) be the shuffle operation of q. As stated in Section 4.2,
given a sequence of permutations π⃗ = (πq)q∈Qshuf for πq ∈ Πq, the order of the sequence of
cards in a protocol execution is determined. In particular, given a sequence of permutations
π⃗ and an input x⃗ ∈ Xn, the opened symbol for q ∈ Q+

turn is determined.
Fix a sequence of permutations π⃗ and an input x⃗ ∈ Xn. We define the responsibility

for q ∈ Q+
turn as follows. We say that the first player P1 is responsible for q if the opened

value at q is a constant bit or depends on x1 ∈ X. We say that the i-th (i ̸= 1) player Pi is
responsible for q if the opened value at q is not a constant bit and depends on xi ∈ X. We
can observe that, for any q ∈ Q+

turn, exactly one player Pi is responsible for q.
Let cq ∈ {0, 1} be the opened symbol at q ∈ Q+

turn when π⃗ and x⃗ are given. We define a
map vali,q for i ∈ [n] and q ∈ Q+

turn as follows:

vali,q(π⃗, xi) :=
{

cq if Pi is responsible for q;
0 otherwise.

Since exactly one player is responsible for q, we have
n∑

i=1
vali,q(π⃗, xi) = cq,

i.e., the opened value cq is computed by the players in a distributed manner.
For a state q ∈ Q, the descendants of q is recursively defined as follows: a child of q is a

descendant of q, and a child of a descendant of q is a descendant of q. For a state q ∈ Q, we
define descen(q) as follows:

descen(q) := {q′ ∈ Q+
turn | q′ is a descendant of q}.

STACS 2025

72:12 Card-Based Protocols Imply PSM Protocols

For a branch state q ∈ Qbranch, let qb ∈ Q (b ∈ {0, 1}) be the child of q corresponding to the
opened value b, and we define descen(q, b) as follows:

descen(q, b) := {q′
b} ∪ descen(q′

b),

where q′
b is either q′

b = qb if qb ∈ Q+
turn or the nearest descendant of qb in Q+

turn.
The resulting PSM protocol is given as follows, where H(Fq) denotes the Shannon entropy

of the distribution Fq for q ∈ Qshuf and t := |Q+
turn| denotes the opening complexity of P.

The PSM protocol P̂ from any simple protocol P

Input: x⃗ = (xi)i∈[n] ∈ Xn

Common Randomness: (π⃗, r⃗, s⃗) is generated as follows:
For each q ∈ Qshuf whose operation is (shuf, Πq,Fq), choose a permutation πq ∈ Πq

according to Fq. Set π⃗ := (πq)q∈Qshuf .
Choose ri = (ri[q])q∈Q+

turn
∈ {0, 1}t for 1 ≤ i ≤ n − 1 uniformly at random, and set

rn := r1 ⊕ r2 ⊕ · · · ⊕ rn−1. Set r⃗ := (ri)i∈[n].
For each q ∈ Qbranch and q′ ∈ descen(q), choose s

(q)
q′ ∈ {0, 1} uniformly at random. Set

s⃗ := (s(q)
q′)q∈Qbranch,q′∈descen(q).

Encoding Function: Output mi := (mi[q])q∈Q+
turn
∈ {0, 1}t as follows:

1. For each q ∈ Q+
turn, set mi[q]← vali,q(π⃗, xi).

2. For each q ∈ Qbranch, if the player i is responsible for q, do the following:
Let cq ∈ {0, 1} be the opened value at q.
For each q′ ∈ descen(q, cq), compute mi[q′]← mi[q′]⊕ s

(q)
q′ .

3. For each q ∈ Q+
turn, set mi[q]← mi[q]⊕ ri[q].

Decoding Function: Compute m := m1 ⊕m2 ⊕ · · · ⊕mn. Since m = (m[q])q∈Q+
turn

repres-
ents a path on the tree, the referee outputs the value corresponding to the path. Commu-
nication Complexity: nt Randomness Complexity: (n− 1)t +

∑
q∈Qbranch

|descen(q)|+∑
q∈Qshuf

H(Fq)

▶ Theorem 4. Let P be a simple protocol with correctness and security for f : Xn → Y

with opening complexity t. Then the above PSM protocol P̂ is correct and secure for f with
communication complexity nt.

Proof. Let x⃗ be an input and π⃗ be all permutations in shuffle operations. Given x⃗ and π⃗,
let Qx⃗,π⃗ be the set of all states q ∈ Q+

turn that actually appear during the execution. By the
definition of encoding function in P̂, we can observe that mi[q] = vali,q(π⃗, xi)⊕ ri[q] if and
only if q ∈ Qx⃗,π⃗. For any q ∈ Qx⃗,π⃗, we have

m[q] = m1[q]⊕ · · · ⊕mn[q]
= (val1,q(π⃗, x1)⊕ r1[q])⊕ · · · ⊕ (valn,q(π⃗, xn)⊕ rn[q])
= val1,q(π⃗, x1)⊕ · · · ⊕ valn,q(π⃗, xn)⊕ r1[q]⊕ r2[q]⊕ · · · ⊕ rn[q].

By the choice of rn in P̂, we have r1[q]⊕ · · · ⊕ rn[q] = 0 for any q ∈ Q+
turn. Hence we have

m[q] = val1,q(π⃗, x1)⊕ · · · ⊕ valn,q(π⃗, xn) = cq,

where cq ∈ {0, 1} is the opened symbol at q ∈ Q+
turn of P . Thus, the correctness of P̂ follows

from the correctness of P.

K. Shinagawa and K. Nuida 72:13

We prove the security of P̂ by constructing a simulator Sim for P̂ . Given an output value
y ∈ Y , Sim first invokes a simulator for P on input y, which outputs a visible sequence trace
v⃗ ∈ (VisD)∗ of P . From v⃗, the path of the execution in the protocol tree of P is determined.
Let c1, c2, . . . , ck ∈ {0, 1} be the opened values in v⃗ and q1, q2, . . . , qk ∈ Q+

turn be the states
corresponding to them. Define m′ = (m′[q])q∈Q+

turn
∈ {0, 1}t as follows:

m′[q] :=
{

cq if q ∈ {q1, q2, . . . , qk};
0 otherwise.

Then the simulator Sim chooses r′
1, r′

2, . . . , r′
n−1 ∈ {0, 1}t uniformly at random and outputs

(r′
1, . . . , r′

n−1, r′
1⊕· · ·⊕r′

n−1⊕m′). For q ∈ Q+
turn, the message (m1[q], . . . , mn[q]) is uniformly

random conditioned on
∑n

i=1 mi[q] = cq thanks to the random choice of (r1[q], . . . , rn[q]). For
q ̸∈ Q+

turn, (m1[q], . . . , mn[q]) is uniformly random thanks to the random choice of s⃗. Hence
the distribution of Sim(y) equals the distribution of the messages, therefore P̂ is secure. ◀

4.4 Extension of Our Conversion to Up-Down Cards
A deck of up-down cards [22] consists of two types of cards ↑ and ↓ , which are transformed
to each other by 180◦ rotation. The extension of our conversion to up-down cards is somewhat
straightforward. The only difference is that random permutations πq ∈ Πq in the the common
randomness are replaced with extended permutations defined below.

Let ρ be the 180◦ rotation operation, and define CMap := {id, ρ} as the set of rotation
operations. An extended permutation (over d cards) is defined by a pair of d rotation
operations (ρ1, . . . , ρd) ∈ CMapd and a permutation π ∈ Sd. For a sequence of d cards
Γ := (α1, α2, . . . , αd), we define an action of an extended permutation ω := ((ρ1, . . . , ρd), π) ∈
CMapd × Sd by

ω(Γ) := (ρ1(απ−1(1)), . . . , ρd(απ−1(d))),

i.e., it first permutes the sequence of cards according to π and then applies the rotation
operations. Here, by defining the operation “◦” as

ω ◦ ω′ := ((ρ1 ◦ ρ′
π−1(1), . . . , ρd ◦ ρ′

π−1(d)), ππ′)
for ω =

(
(ρj)j∈[d], π

)
, ω′ =

(
(ρ′

j)j∈[d], π′) ∈ CMapd × Sd, the set CMapd × Sd forms a monoid
with id := ((id, . . . , id), id) being the identity element, which is so-called the wreath product
CMap ≀ Sd. In this extended model, perm and shuffle operations are extended to the set
of extended permutations CMap ≀ Sd instead of Sd. Other definitions are the same as the
Mizuki–Shizuya model.

Theorems 1 and 4 also hold for up-down cards. In particular, an SSFO protocol using d up-
down cards implies a PSM protocol with communication complexity nd, and a simple protocol
using up-down cards with opening complexity t implies a PSM protocol with communication
complexity nt. In Section 5.2, we demonstrate our conversion for a card-based protocol using
up-down cards.

5 Application

5.1 Lower Bounds of Card-Based Protocols
From our conversion method in Section 4, lower bounds on the opening complexity for card-
based protocols are immediately implied to lower bounds on the communication complexity
of PSM protocols. This is summarized by Corollary 5.

STACS 2025

72:14 Card-Based Protocols Imply PSM Protocols

▶ Corollary 5. Let ℓ be a lower bound on the communication complexity of PSM protocols for
a function f : Xn → Y . Then for any simple protocol computing f , the opening complexity t

must satisfy t ≥ ℓ/n. In particular, for any SSFO protocol computing f , the number of cards
d must satisfy d ≥ ℓ/n.

In 1994, Feige, Kilian, and Naor [12] constructed a two-player PSM protocol for any
function f : {0, 1}k × {0, 1}k → {0, 1} with communication complexity O(2k). After 20
years, Beimel, Ishai, Kumaresan, and Kushilevitz [6] improved it to O(2k/2). For multi-
player setting, in 2018, Beimel, Kushilevitz, and Nissim [7] constructed an n-player PSM
protocol for any function f : ({0, 1}k)n → {0, 1} with communication complexity O(2kn/2).
In 2021, Assouline and Liu [3] improved it to O(2k(n−1)/2) for infinitely many n. Although
the communication complexity has gradually improved, the communication complexity of
general-purpose protocols is still exponential with respect to the total input length nk, and
improving it to subexponential seems difficult at least based on the existing techniques. We
summarize this observation in the following conjecture.

▶ Conjecture 6. There exists no PSM protocol for f : ({0, 1}k)n → {0, 1} with subexponential
communication complexity 2o(kn).

From Conjecture 6, we obtain a lower bound on the opening complexity.

▶ Corollary 7. Assume Conjecture 6 holds. Then there exists no simple protocol for f :
({0, 1}k)n → {0, 1} with opening complexity 2o(kn). In particular, there exists no SSFO
protocol for f : ({0, 1}k)n → {0, 1} with 2o(kn) cards.

Proof. If there exists a card-based protocol with 2o(kn), there exists a PSM protocol with
n · 2o(kn) = 2o(kn), contradicting to Conjecture 6. ◀

Of course, whether Corollary 7 holds is an open problem, and thus whether such a
subexponential lower bound holds is not yet proven. However, we believe that the previous
work of PSM protocols provides a piece of evidence that such a subexponential lower bound
might hold in card-based cryptography.

One might imagine that a non-trivial lower bound for card-based protocols could be
obtained from existing lower bounds for PSM protocols. In 2022, Ball and Randlph [5] showed
a quadratic lower bound of PSM protocols based on the modified Nečiporuk measure G∗(f)
for a function f : ({0, 1}k)n → {0, 1}, which is a measure of function complexity. They proved
that the communication complexity of PSM protocols computing f : ({0, 1}k)n → {0, 1}
is greater than or equal to G∗(f)/2, and a random function f has G∗(f) = Ω(kn2

log2(kn)),
implying a quadratic lower bound of PSM protocols.

Now we try to obtain a lower bound of card-based protocols from the Ball–Randlph’s
lower bound. From Corollary 5, we obtain a lower bound d = Ω(kn

log2(kn)) on the number of
cards d of SSFO protocols, but this is not a strong bound because a card-based protocol
naturally requires Ω(kn) cards for representing a kn-bit input. Unfortunately, since Ball
and Randlph also showed that G∗(f) ≤ kn2

log2(kn) for any f , we cannot obtain any better
lower bound using the Nečiporuk measure. In order to obtain a non-trivial lower bound
of card-based protocols, we need to obtain a super-quadratic lower bound ω(kn2) of PSM
protocols. As far as we know, no super-quadratic lower bound of PSM protocols has been
proven so far, but our result provides a new motivation for obtaining such a lower bound.

K. Shinagawa and K. Nuida 72:15

5.2 PSM Protocol for Indirect Storage Access Function
An indirect storage access (ISA, in short) function [23] is a function fk,ℓ

ISA : {0, 1}k+ℓK+L →
{0, 1}, where K = 2k and L = 2ℓ, defined as follows:

fk,ℓ
ISA(a, x0, x1, . . . , xK−1, y) := y|x|a||,

where a = (a0, . . . , ak−1) ∈ {0, 1}k, xj = (xj,0, . . . , xj,ℓ−1) ∈ {0, 1}ℓ (0 ≤ j ≤ K − 1),
y = (y00···0, y00···1, . . . , y11···1) ∈ {0, 1}L, and for a bit string b = (b0, b1, . . . , bt−1) ∈ {0, 1}t,
|b| represents an integer

∑t−1
i=0 bi2i.

We describe our protocol for fk,ℓ
ISA using up-down cards when k = ℓ = 2. The general case

follows similarly. The protocol proceeds as follows:
1. Arrange the input sequence as follows:

p0 p1

︸ ︷︷ ︸
a

q00 q01

︸ ︷︷ ︸
x0

q10 q11

︸ ︷︷ ︸
x1

q20 q21

︸ ︷︷ ︸
x2

q30 q31

︸ ︷︷ ︸
x3

r0 r1 r2 r3︸ ︷︷ ︸
y

,

where pi, qi,j , and ri are labels of positions.
2. Apply a shuffle (shuf, {id, ω0}) for ω0 defined as follows:

q00

A
q10

B
q20

C
q30

D
r0

E
r1

F
r2

G
r3

J →

A B C D

F E J G ,

where A, B, . . . , J are alphabets with no 180◦-rotational symmetry. (Note that these
characters are only used to represent the rotation and permutation, and are not actually
written on the cards. In the following, we will use the same notation in the protocol.)

3. Apply a shuffle (shuf, {id, ω1}) for ω1 defined as follows:

q01

A
q11

B
q21

C
q31

D
r0

E
r1

F
r2

G
r3

J →

A B C D

G J E F .

4. Apply a shuffle (shuf, {id, ω′
0}) for ω′

0 defined as follows:

p0

A
q00

B
q01

C
q10

D
q11

E
q20

F
q21

G
q30

J
q31

K →

A

D E B C J K F G .

5. Apply a shuffle (shuf, {id, ω′
1}) for ω′

1 defined as follows:

p1

A
q00

B
q01

C
q10

D
q11

E
q20

F
q21

G
q30

J
q31

K →

A

F G J K B C D E .

6. Open the first k cards. Let ã ∈ {0, 1}k be the k-tuple of the opened values.
7. Open the ℓ consecutive cards from the (k + 1 + |ã|ℓ)-th card. Let x̃ ∈ {0, 1}ℓ be the

ℓ-tuple of the opened values.
8. Open the (k + ℓK + 1 + |x̃|)-th card and output the opened value.

For the general case, since the number of opened cards is k + ℓ+1, the opening complexity
is 2k+ℓ+1 = 2KL. Thus the communication complexity of the resulting PSM protocol is
2KL(k + ℓK + L) = O(KL2 + K2Lℓ). The communication complexity of Ishai–Kushilevitz’s
protocol for fk,ℓ

ISA is O(K2L3 + K3L2ℓ) since fk,ℓ
ISA can be computed by a BP of size O(KL),

and that of Kolesnikov’s protocol for fk,ℓ
ISA is O(K2L2(k + ℓ)2) since fk,ℓ

ISA can be computed by
a formula of depth 2(k + ℓ). Therefore, our protocol is more efficient than those protocols.

STACS 2025

72:16 Card-Based Protocols Imply PSM Protocols

6 Conclusion

In this paper, we showed a generic conversion from card-based to PSM protocols. The
significance of our conversion is to show a direct relationship from card-based to conventional
cryptography for the first time, which was previously thought to be of little relevance.

Finally, we list open problems and future research directions as follows:
Deriving unconditional lower bounds for card-based protocols: An open problem is to de-

rive unconditional lower bounds for card-based protocols from those of PSM protocols.
To obtain such a lower bound for card-based protocols, it is sufficient to obtain a super-
quadratic lower bound ω(kn2) on the communication complexity of the PSM protocols
for f : ({0, 1}k)n → {0, 1}. However, as already mentioned in Section 5.1, a lower bound
from the Nečiporuk measure will never be super-quadratic. Thus, it seems essential to
develop new techniques to obtain super-quadratic lower bounds.

Constructing efficient PSM protocols: An open problem is to determine a class of functions
for which our conversion yields efficient PSM protocols. Since the resulting PSM protocol
has communication complexity linear to the opening complexity of the underlying protocol
(or the number of cards for SSFO protocols), the following questions are worthy towards
obtaining efficient PSM protocols with polynomial communication:

What is the class of functions for which a simple card-based protocol exists with
opening complexity polynomial in the input length?
What is the class of functions for which an SSFO card-based protocol exists with
polynomial number of cards in the input length?

Further relations among card-based and PSM protocols: An open problem is to develop
deeper connections between card-based protocols and PSM or other kinds of conventional
cryptographic protocols as follows:

Is it possible to improve the efficiency (i.e., the communication complexity of the
resulting PSM protocol) of our conversion?
Can we establish a conversion in the opposite direction, i.e., from a certain subclass of
PSM protocols back to card-based protocols?

References
1 Benny Applebaum, Barak Arkis, Pavel Raykov, and Prashant Nalini Vasudevan. Conditional

disclosure of secrets: Amplification, closure, amortization, lower-bounds, and separations.
SIAM J. Comput., 50(1):32–67, 2021. doi:10.1137/18M1217097.

2 Benny Applebaum, Thomas Holenstein, Manoj Mishra, and Ofer Shayevitz. The communication
complexity of private simultaneous messages, revisited. J. Cryptol., 33(3):917–953, 2020.
doi:10.1007/S00145-019-09334-Y.

3 Léonard Assouline and Tianren Liu. Multi-party psm, revisited: Improved communication
and unbalanced communication. In Kobbi Nissim and Brent Waters, editors, Theory of
Cryptography – 19th International Conference, TCC 2021, Raleigh, NC, USA, November 8-11,
2021, Proceedings, Part II, volume 13043 of Lecture Notes in Computer Science, pages 194–223.
Springer, 2021. doi:10.1007/978-3-030-90453-1_7.

4 Marshall Ball, Justin Holmgren, Yuval Ishai, Tianren Liu, and Tal Malkin. On the complexity
of decomposable randomized encodings, or: How friendly can a garbling-friendly PRF be? In
Thomas Vidick, editor, 11th Innovations in Theoretical Computer Science Conference, ITCS
2020, January 12-14, 2020, Seattle, Washington, USA, volume 151 of LIPIcs, pages 86:1–86:22.
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, 2020. doi:10.4230/LIPICS.ITCS.2020.
86.

https://doi.org/10.1137/18M1217097
https://doi.org/10.1007/S00145-019-09334-Y
https://doi.org/10.1007/978-3-030-90453-1_7
https://doi.org/10.4230/LIPICS.ITCS.2020.86
https://doi.org/10.4230/LIPICS.ITCS.2020.86

K. Shinagawa and K. Nuida 72:17

5 Marshall Ball and Tim Randolph. A note on the complexity of private simultaneous messages
with many parties. In Dana Dachman-Soled, editor, 3rd Conference on Information-Theoretic
Cryptography, ITC 2022, July 5-7, 2022, Cambridge, MA, USA, volume 230 of LIPIcs, pages
7:1–7:12. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, 2022. doi:10.4230/LIPICS.ITC.
2022.7.

6 Amos Beimel, Yuval Ishai, Ranjit Kumaresan, and Eyal Kushilevitz. On the cryptographic
complexity of the worst functions. In Yehuda Lindell, editor, Theory of Cryptography - 11th
Theory of Cryptography Conference, TCC 2014, San Diego, CA, USA, February 24-26, 2014.
Proceedings, volume 8349 of Lecture Notes in Computer Science, pages 317–342. Springer,
2014. doi:10.1007/978-3-642-54242-8_14.

7 Amos Beimel, Eyal Kushilevitz, and Pnina Nissim. The complexity of multiparty PSM
protocols and related models. In Jesper Buus Nielsen and Vincent Rijmen, editors, Advances
in Cryptology - EUROCRYPT 2018 - 37th Annual International Conference on the Theory and
Applications of Cryptographic Techniques, Tel Aviv, Israel, April 29 - May 3, 2018 Proceedings,
Part II, volume 10821 of Lecture Notes in Computer Science, pages 287–318. Springer, 2018.
doi:10.1007/978-3-319-78375-8_10.

8 Claude Crépeau and Joe Kilian. Discreet solitary games. In Douglas R. Stinson, editor,
Advances in Cryptology - CRYPTO ’93, 13th Annual International Cryptology Conference,
Santa Barbara, California, USA, August 22-26, 1993, Proceedings, volume 773 of Lecture Notes
in Computer Science, pages 319–330. Springer, 1993. doi:10.1007/3-540-48329-2_27.

9 László Csirmaz. The size of a share must be large. J. Cryptol., 10(4):223–231, 1997. doi:
10.1007/S001459900029.

10 Deepesh Data, Manoj Prabhakaran, and Vinod M. Prabhakaran. On the communication
complexity of secure computation. In Juan A. Garay and Rosario Gennaro, editors, Advances
in Cryptology - CRYPTO 2014 - 34th Annual Cryptology Conference, Santa Barbara, CA,
USA, August 17-21, 2014, Proceedings, Part II, volume 8617 of Lecture Notes in Computer
Science, pages 199–216. Springer, 2014. doi:10.1007/978-3-662-44381-1_12.

11 Bert den Boer. More efficient match-making and satisfiability: The Five Card Trick. In Jean-
Jacques Quisquater and Joos Vandewalle, editors, Advances in Cryptology - EUROCRYPT
’89, Workshop on the Theory and Application of of Cryptographic Techniques, Houthalen,
Belgium, April 10-13, 1989, Proceedings, volume 434 of Lecture Notes in Computer Science,
pages 208–217. Springer, 1989. doi:10.1007/3-540-46885-4_23.

12 Uriel Feige, Joe Kilian, and Moni Naor. A minimal model for secure computation (extended
abstract). In Frank Thomson Leighton and Michael T. Goodrich, editors, Proceedings of the
Twenty-Sixth Annual ACM Symposium on Theory of Computing, 23-25 May 1994, Montréal,
Québec, Canada, pages 554–563. ACM, 1994. doi:10.1145/195058.195408.

13 Romain Gay, Iordanis Kerenidis, and Hoeteck Wee. Communication complexity of conditional
disclosure of secrets and attribute-based encryption. In Rosario Gennaro and Matthew Robshaw,
editors, Advances in Cryptology - CRYPTO 2015 - 35th Annual Cryptology Conference, Santa
Barbara, CA, USA, August 16-20, 2015, Proceedings, Part II, volume 9216 of Lecture Notes in
Computer Science, pages 485–502. Springer, 2015. doi:10.1007/978-3-662-48000-7_24.

14 Yuji Hashimoto, Koji Nuida, Kazumasa Shinagawa, Masaki Inamura, and Goichiro Hanaoka.
Toward finite-runtime card-based protocol for generating a hidden random permutation without
fixed points. IEICE Trans. Fundam. Electron. Commun. Comput. Sci., 101-A(9):1503–1511,
2018. doi:10.1587/TRANSFUN.E101.A.1503.

15 Yuval Ishai and Eyal Kushilevitz. Private simultaneous messages protocols with applications.
In Fifth Israel Symposium on Theory of Computing and Systems, ISTCS 1997, Ramat-
Gan, Israel, June 17-19, 1997, Proceedings, pages 174–184. IEEE Computer Society, 1997.
doi:10.1109/ISTCS.1997.595170.

STACS 2025

https://doi.org/10.4230/LIPICS.ITC.2022.7
https://doi.org/10.4230/LIPICS.ITC.2022.7
https://doi.org/10.1007/978-3-642-54242-8_14
https://doi.org/10.1007/978-3-319-78375-8_10
https://doi.org/10.1007/3-540-48329-2_27
https://doi.org/10.1007/S001459900029
https://doi.org/10.1007/S001459900029
https://doi.org/10.1007/978-3-662-44381-1_12
https://doi.org/10.1007/3-540-46885-4_23
https://doi.org/10.1145/195058.195408
https://doi.org/10.1007/978-3-662-48000-7_24
https://doi.org/10.1587/TRANSFUN.E101.A.1503
https://doi.org/10.1109/ISTCS.1997.595170

72:18 Card-Based Protocols Imply PSM Protocols

16 Julia Kastner, Alexander Koch, Stefan Walzer, Daiki Miyahara, Yu-ichi Hayashi, Takaaki
Mizuki, and Hideaki Sone. The minimum number of cards in practical card-based protocols.
In Tsuyoshi Takagi and Thomas Peyrin, editors, Advances in Cryptology – ASIACRYPT
2017 – 23rd International Conference on the Theory and Applications of Cryptology and
Information Security, Hong Kong, China, December 3-7, 2017, Proceedings, Part III, volume
10626 of Lecture Notes in Computer Science, pages 126–155. Springer, 2017. doi:10.1007/
978-3-319-70700-6_5.

17 Alexander Koch. The landscape of optimal card-based protocols. IACR Cryptol. ePrint Arch.,
page 951, 2018. URL: https://eprint.iacr.org/2018/951.

18 Alexander Koch, Michael Schrempp, and Michael Kirsten. Card-based cryptography
meets formal verification. New Gener. Comput., 39(1):115–158, 2021. doi:10.1007/
S00354-020-00120-0.

19 Alexander Koch, Stefan Walzer, and Kevin Härtel. Card-based cryptographic protocols
using a minimal number of cards. In Tetsu Iwata and Jung Hee Cheon, editors, Advances in
Cryptology – ASIACRYPT 2015 – 21st International Conference on the Theory and Application
of Cryptology and Information Security, Auckland, New Zealand, November 29 – December 3,
2015, Proceedings, Part I, volume 9452 of Lecture Notes in Computer Science, pages 783–807.
Springer, 2015. doi:10.1007/978-3-662-48797-6_32.

20 Takaaki Mizuki, Michihito Kumamoto, and Hideaki Sone. The five-card trick can be done with
four cards. In Xiaoyun Wang and Kazue Sako, editors, Advances in Cryptology – ASIACRYPT
2012 – 18th International Conference on the Theory and Application of Cryptology and
Information Security, Beijing, China, December 2-6, 2012. Proceedings, volume 7658 of Lecture
Notes in Computer Science, pages 598–606. Springer, 2012. doi:10.1007/978-3-642-34961-4_
36.

21 Takaaki Mizuki and Hiroki Shizuya. A formalization of card-based cryptographic protocols
via abstract machine. Int. J. Inf. Sec., 13(1):15–23, 2014. doi:10.1007/S10207-013-0219-4.

22 Takaaki Mizuki and Hiroki Shizuya. Practical card-based cryptography. In Alfredo Ferro,
Fabrizio Luccio, and Peter Widmayer, editors, Fun with Algorithms – 7th International
Conference, FUN 2014, Lipari Island, Sicily, Italy, July 1-3, 2014. Proceedings, volume
8496 of Lecture Notes in Computer Science, pages 313–324. Springer, 2014. doi:10.1007/
978-3-319-07890-8_27.

23 John E. Savage. Models of computation – exploring the power of computing. Addison-Wesley,
1998.

https://doi.org/10.1007/978-3-319-70700-6_5
https://doi.org/10.1007/978-3-319-70700-6_5
https://eprint.iacr.org/2018/951
https://doi.org/10.1007/S00354-020-00120-0
https://doi.org/10.1007/S00354-020-00120-0
https://doi.org/10.1007/978-3-662-48797-6_32
https://doi.org/10.1007/978-3-642-34961-4_36
https://doi.org/10.1007/978-3-642-34961-4_36
https://doi.org/10.1007/S10207-013-0219-4
https://doi.org/10.1007/978-3-319-07890-8_27
https://doi.org/10.1007/978-3-319-07890-8_27

Dominating Set, Independent Set, Discrete
k-Center, Dispersion, and Related Problems for
Planar Points in Convex Position
Anastasiia Tkachenko #

Kahlert School of Computing, University of Utah, Salt Lake City, UT, USA

Haitao Wang #

Kahlert School of Computing, University of Utah, Salt Lake City, UT, USA

Abstract
Given a set P of n points in the plane, its unit-disk graph G(P) is a graph with P as its vertex
set such that two points of P are connected by an edge if their (Euclidean) distance is at most 1.
We consider several classical problems on G(P) in a special setting when points of P are in convex
position. These problems are all NP-hard in the general case. We present efficient algorithms for
these problems under the convex position assumption.

For the problem of finding the smallest dominating set of G(P), we present an O(kn log n) time
algorithm, where k is the smallest dominating set size. We also consider the weighted case
in which each point of P has a weight and the goal is to find a dominating set in G(P) with
minimum total weight; our algorithm runs in O(n3 log2 n) time. In particular, for a given k, our
algorithm can compute in O(kn2 log2 n) time a minimum weight dominating set of size at most
k (if it exists).
For the discrete k-center problem, which is to find a subset of k points in P (called centers)
for a given k, such that the maximum distance between any point in P and its nearest cen-
ter is minimized. We present an algorithm that solves the problem in O(min{n4/3 log n +
kn log2 n, k2n log2 n}) time, which is O(n2 log2 n) in the worst case when k = Θ(n). For compar-
ison, the runtime of the current best algorithm for the continuous version of the problem where
centers can be anywhere in the plane is O(n3 log n).
For the problem of finding a maximum independent set in G(P), we give an algorithm of O(n7/2)
time and another randomized algorithm of O(n37/11) expected time, which improve the previous
best result of O(n6 log n) time. Our algorithms can be extended to compute a maximum-weight
independent set in G(P) with the same time complexities when points of P have weights.

If we are looking for an (unweighted) independent set of size 3, we derive an algorithm of
O(n log n) time; the previous best algorithm runs in O(n4/3 log2 n) time (which works for the
general case where points of P are not necessarily in convex position).
If points of P have weights and are not necessarily in convex position, we present an algorithm
that can find a maximum-weight independent set of size 3 in O(n5/3+δ) time for an arbitrarily
small constant δ > 0. By slightly modifying the algorithm, a maximum-weight clique of size 3
can also be found within the same time complexity.

For the dispersion problem, which is to find a subset of k points from P for a given k, such
that the minimum pairwise distance of the points in the subset is maximized. We present an
algorithm of O(n7/2 log n) time and another randomized algorithm of O(n37/11 log n) expected
time, which improve the previous best result of O(n6) time.

If k = 3, we present an algorithm of O(n log2 n) time and another randomized algorithm
of O(n log n) expected time; the previous best algorithm runs in O(n4/3 log2 n) time (which
works for the general case where points of P are not necessarily in convex position).

2012 ACM Subject Classification Theory of computation → Computational geometry; Theory of
computation → Design and analysis of algorithms

Keywords and phrases Dominating set, k-center, geometric set cover, independent set, clique, vertex
cover, unit-disk graphs, convex position, dispersion, maximally separated sets

Digital Object Identifier 10.4230/LIPIcs.STACS.2025.73

Related Version Full Version: http://arxiv.org/abs/2501.00207

© Anastasiia Tkachenko and Haitao Wang;
licensed under Creative Commons License CC-BY 4.0

42nd International Symposium on Theoretical Aspects of Computer Science (STACS 2025).
Editors: Olaf Beyersdorff, Michał Pilipczuk, Elaine Pimentel, and Nguyễn Kim Thắng;
Article No. 73; pp. 73:1–73:20

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:anastasiia.tkachenko@utah.edu
https://orcid.org/0009-0005-4716-1287
mailto:haitao.wang@utah.edu
https://orcid.org/0000-0001-8134-7409
https://doi.org/10.4230/LIPIcs.STACS.2025.73
http://arxiv.org/abs/2501.00207
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

73:2 Dominating Set, Independent Set, Discrete k-Center, Dispersion

Funding This research was supported in part by NSF under Grant CCF-2300356.

1 Introduction

Let P be a set of n points in the plane. The unit-disk graph of P , denoted by G(P), is
the graph with P as its vertex set such that two points are connected by an edge if their
(Euclidean) distance is at most 1. Equivalently, G(P) is the intersection graph of congruent
disks with radius 1/2 and centered at the points in P (i.e., two disks have an edge if they
intersect). This model is particularly useful in applications such as wireless sensor networks,
where connectivity is determined by signal ranges, represented by unit disks [6, 19,42,43].

1.1 Our results
We consider several classical problems on G(P). These problems are all NP-hard. However,
little attention has been given to special configurations of points, such as when the points
are in convex position, despite the potential for significant algorithmic simplifications in such
cases. In this paper, we systematically study these problems under the condition that the
points of P are in convex position (i.e., every point of P appears as a vertex in the convex
hull of P) and present efficient algorithms. We hope our results can lead to efficient solutions
to other problems in this setting.

Dominating set. A dominating set of G(P) is a subset S of vertices of G(P) such that
each vertex of G(P) is either in S or adjacent to a vertex in S. The dominating set problem,
which seeks a dominating set of the smallest size, is a classical NP-hard problem [19,29,31].
In the weighted case, each point of P has a weight and the problem is to find a dominating
set of minimum total weight. The dominating set problem has been widely studied, with
various approximation algorithms proposed [23,27,41,55].

To the best of our knowledge, we are not aware of any previous work under the convex
position assumption. For the unweighted case, we present an algorithm of O(kn log n) time,
where k is the smallest dominating set size of G(P). For the weighted case, we derive an
algorithm of O(n3 log2 n) time. In particular, given any k, our algorithm can compute in
O(kn2 log2 n) time a minimum-weight dominating set of size at most k.

Discrete k-center. A closely related problem is the discrete k-center problem. Given a
number k, the problem is to compute a subset of k points in P (called centers) such that the
maximum distance between any point in P and its nearest center is minimized. The problem,
which is NP-hard [49], is also a classical problem with applications in clustering, facility
locations, and network design. An algorithm for the dominating set problem can be used to
solve the decision version of the discrete k-center problem: Given a value r and k, decide
whether there exists a subset of k centers such that the distance from any point in P to its
nearest center is at most r. Indeed, if we define the unit-disk graph of P with respect to r,
then a dominating set of size k in the graph is a discrete k-center of P for r, and vice versa.

For the convex position case, we are not aware of any previous work. We propose an
algorithm of O(min{n4/3 log n + kn log2 n, k2n log2 n}) time.

Independent set. An independent set of G(P) is a subset of vertices such that no two
vertices have an edge. The maximum independent set problem is to find an independent set
of the largest cardinality. The problem of finding a maximum independent set in G(P) is
NP-hard [19]. Many approximation algorithms for the problem have been developed in the
literature, e.g., [21, 22,37,38].

A. Tkachenko and H. Wang 73:3

Under the convex position assumption, using the technique of Singireddy, Basappa, and
Mitchell [47] for a dispersion problem (more details to be discussed later), one can find
a maximum independent set in G(P) in O(n6 log n) time. We give a new algorithm of
O(n7/2) time,1 and another randomized algorithm of O(n37/11) expected time using the
recent randomized result of Agarwal, Ezra, and Sharir [1]. Furthermore, our algorithm
can be extended to compute a maximum-weight independent set of G(P) within the same
time complexity when points of P have weights; specifically, a maximum-weight independent
set is an independent set whose total vertex weight is maximized. Since the vertices of a
graph excluding an independent set form a vertex cover, our algorithm also computes a
minimum-weight vertex cover of G(P) in O(n7/2) time or in randomized O(n37/11) expected
time.

Furthermore, we consider a small-size case that is to find an (unweighted) independent
set of size 3 in G(P). If P is not necessarily in convex position, the problem has been studied
by Agarwal, Overmars, and Sharir [2], who presented an O(n4/3 log2 n) time algorithm. We
consider the convex position case and derive an algorithm of O(n log n) time. Note that
finding an independent set of size 2 is equivalent to computing a farthest pair of points of P ,
which can be done in O(n log n) time using the farthest Voronoi diagram [45].

In addition, we consider a more general small-size case that is to find a maximum-weight
independent set of size 3 in G(P) when points of P have weights and are not necessarily
in convex position. Our algorithm runs in O(n5/3+δ) time; δ refers to an arbitrarily small
positive constant. Our technique can also be used to find a maximum-weight clique of size 3
in G(P) within the same time complexity. In addition, we show that a maximum-weight
independent set or clique of size 2 can be found in n4/32O(log∗ n) time. All these algorithms
also work for computing the minimum-weight independent set or clique. We are not aware of
any previous work on these weighted problems. As mentioned above, the problem of finding
an (unweighted) independent set of size 3 can be solved in O(n4/3 log2 n) time [2]. It is also
known that finding an (unweighted) clique of size 3 in a disk graph (not necessarily unit-disk
graph) can be done in O(n log n) time [30].

The dispersion problem. A related problem is the dispersion problem (also called maximally
separated set problem [2]). Given P and a number k, we wish to find a subset of k points
from P so that their minimum pairwise distance is maximized. The problem is NP-hard [50].
An algorithm for the independent set problem of G(P) can be used as a decision algorithm
for the dispersion problem: Given a value r, we can decide whether P has a subset of k

points whose minimum pairwise distance is larger than r using the independent set algorithm
(i.e., by defining an edge for two points in the graph if their distance is at most r).

Under the convex position assumption, Singireddy, Basappa, and Mitchell [47] previously
gave an O(n4k2) time algorithm for the problem. Using our independent set algorithm
as a decision procedure and doing binary search among the interpoint distances of P , we
present a new algorithm that can solve the problem in O(n7/2 log n) time, or in randomized
O(n37/11 log n) expected time. For a special case where k = 3, the algorithm of [2] solves the
problem in O(n4/3 log3 n) time even if the points of P are not in convex position. Our new
algorithm, which works on the convex-position case only, runs in O(n log2 n) time. This is
achieved using parametric search [20,39] with our independent set algorithm as a decision
algorithm. In addition, with our decision algorithm and Chan’s randomized technique [11],
we can obtain a randomized algorithm of O(n log n) expected time. We note that a recent
work [35] proposed another algorithm of O(n2) time, apparently unaware of the result in [2].

1 Throughout the paper, the algorithm runtime is deterministic unless otherwise stated.

STACS 2025

73:4 Dominating Set, Independent Set, Discrete k-Center, Dispersion

1.2 Related work
Unit-disk graphs are a fundamental model in wireless networks, particularly where coverage
and connectivity are governed by proximity [6, 19, 42, 43]. However, many classical graph
problems, including coloring, vertex cover, independent set, and dominating set, remain
NP-hard even when restricted to unit-disk graphs [19]. One exception is that finding a
maximum clique in a unit-disk graph can be done in polynomial time [19, 25, 26] and the
current best algorithm runs in O(n2.5 log n) time [26] (see [34] for a comment about improving
the runtime to O(n7/3+o(1))).

The assumption that points are in convex position can simplify certain problems that are
otherwise NP-hard for general point sets in the plane. This has motivated the exploration
of other computational problems under similar assumptions. For example, the continuous
k-center problem where centers can be anywhere in the plane is NP-hard for arbitrary points
but become polynomial time solvable under the convex position assumption [18]. The convex
position constraint was even considered for classical problems that are already polynomial
time solvable in the general case. For instance, Aggarwal, Guibas, Saxe, and Shor [4] gave a
renowned linear time algorithm for computing the Voronoi diagram for a set of planar points
in convex position. Refer to [15,36,44] for more work for points in convex position.

The k-center problem under a variety of constraints has received much attention. Partic-
ularly, when k, the number of centers, is two and the centers can be anywhere in the plane
(referred to as the continuous 2-center problem), several near-linear time algorithms have
been developed [12,24,46,51], culminating in an optimal O(n log n) time [17]. The problem
variations under other constraints were also considered. For example, the k-center problem
can be solved in O(n log n) time if centers are required to lie on the same line [16, 53] or
two lines [10]. The continuous one-center problem is the classical smallest enclosing circle
problem and can be solved in linear time [40].

For the convex position case of the continuous k-center problem, Choi, Lee, and Ahn [18]
proposed an O(min{k, log n} · n2 log n + k2n log n) time algorithm. For comparison, the
worst-case runtime of their algorithm is cubic, while our discrete k-center algorithm runs in
near quadratic time.

The discrete 2-center problem also gets considerable attention. Agarwal, Sharir, and
Welzl gave the first subquadratic O(n4/3 log5 n) time algorithm [3]; the logarithmic factor
was slightly improved by Wang [52]. As the continuous two-center problem can be solved
in O(n log n) time [17] while the current best discrete two-center algorithm runs in Ω(n4/3)
time [3, 52], the discrete problem appears more challenging than the continuous counterpart.
This makes our discrete k-center algorithm even more interesting because it is almost a linear
factor faster than the continuous k-center algorithm in [18]. Therefore, it is an intriguing
question whether the algorithm in [18] can be further improved.

Other variations of the discrete k-center problem for small k were recently studied by
Chan, He, and Yu [13], improving over previous results [8, 9, 32].

The dispersion problem and some of its variants have also been studied before. The
general planar dispersion problem can be solved by an exact algorithm in nO(

√
k) time [2]. If

all points of P lie on a single line, Araki and Nakano [5] gave an algorithm of O((2k2)k · n)
time (assuming that the points are not given sorted), which is O(n) for a constant k. For
a circular case where all points of P lie on a circle and the distance between two points
is measured by their distance along the circle, the problem is solvable in O(n) time [48],
provided that the points are given sorted along the circle. We note that this implies that the
line case problem, which can be viewed as a special case of the circular case, is also solvable
in O(n) time after the points are sorted on the line.

A. Tkachenko and H. Wang 73:5

pi1

pik

Figure 1 Illustrating the ordering property of S (the centers of the disks).

1.3 Our approach
The weighted dominating set problem reduces to the following problem: Given any k, find a
minimum weight dominating set of size at most k. This is equivalent to finding a minimum
weight subset of at most k points of P such that the union of the unit disks centered at these
points covers P . Let S be an optimal solution for the problem (points of S are called centers).
If we consider P as a cyclic list of points along the convex hull of P , then for each center
p ∈ S, its unit disk Dp may cover multiple maximal contiguous subsequences (called sublists)
of P . We prove that it is possible to assign at most two such sublists to each center p ∈ S

such that (1) p belongs to at least one of these sublists; (2) the union of the sublists assigned
to all centers is P ; (3) for every two centers pi, pj ∈ S, the sublists of the points assigned
to pi can be separated by a line from the sublists assigned to pj . Using these properties,
we further obtain the following structural property (called ordering property; see Figure 1)
about the optimal solution S: There exists an ordering of the centers of S as pi1 , pi2 , . . . , pik

such that (1) pi1 (resp., pik
) is only assigned one sublist; (2) if a center pij , 1 < j < k, is

assigned two sublists, then one of them is on P1, the portion of P from pi1 to pik
clockwise,

and the other is on P2, the portion of P from pi1 to pik
counterclockwise; (3) the order of the

centers of the sublists along P1 (resp., P2) from pi1 to pik
is a (not necessarily contiguous)

subsequence of the above ordering.
The above ordering property is crucial to the success of our method. Using the property,

we develop a dynamic programming algorithm of O(kn2 log2 n) time. Setting k = n leads
to an O(n3 log2 n) time algorithm for the original weighted dominating set problem. These
properties are also applicable to the unweighted case, which is essentially a special case of
the weighted problem. Using an additional greedy strategy, the runtime of the algorithm can
be improved by roughly a linear factor for the unweighted case.

To solve the discrete k-center problem, we use the algorithm for the unweighted dominating
set problem as the decision problem: Given any value r, determine whether r ≥ r∗, where r∗

is the optimal objective value, i.e., the minimum value for which there exist k centers such that
the maximum distance from any point of P to its closest center is at most r∗. Observe that
r∗ must be equal to the distance of two points of P . As such, by doing binary search on the
pairwise distances of points of P and applying the distance selection framework in [54] with
our unweighted dominating set algorithm, we can compute r∗ in O(n4/3 log n+kn log2 n) time.
Furthermore, using parametric search [20,39], we develop another algorithm of O(k2n log2 n)
time, which is faster than the first algorithm when k = o(n1/6/

√
log n).

For the independent set problem, our algorithm is a dynamic program, which is in turn
based on the observation that the Voronoi diagram of a set of points in convex position
forms a tree [4]. The (unweighted) size-3 case is solved by new observations and developing

STACS 2025

73:6 Dominating Set, Independent Set, Discrete k-Center, Dispersion

efficient data structures. As discussed above, we tackle the dispersion problem by using
the independent set algorithm as a decision procedure. For computing a maximum-weight
independent set of size 3 for points in arbitrary position, our algorithm relies on certain
interesting observations and a tree-structured biclique partition of P . Biclique partition has
been studied before, e.g., [33, 54]. However, to our best knowledge, tree-structured biclique
partitions have never been introduced before. Our result may find applications elsewhere.

Outline. The rest of the paper is organized as follows. After introducing notation in
Section 2, we present our algorithms for the dominating set, the discrete k-center, the
independent set, and the dispersion problems for points in convex position in Sections 3, 4,
5 and 6, respectively. As the only problem for points in arbitrary position studied in this
paper, the size-3 weighted independent set problem is discussed in Section 7. Due to the
space limit, many details and proofs are omitted but can be found in the full paper.

2 Preliminaries

We introduce some notations that will be used throughout the paper, in addition to those
already defined in Section 1, e.g., P , n, G(P).

A unit disk refers to a disk with radius 1; the boundary of a unit disk is a unit circle.
For any point p in the plane, we use Dp to denote the unit disk centered at p. For any two
points p and q in the plane, we use |pq| to denote their (Euclidean) distance and use pq to
denote the line segment connecting them. Let −→pq to denote the directed segment from p to q.

Let H(P) be the convex hull of P . If the points in P are in convex position, then we can
consider P as a cyclic sequence. Specifically, let P = ⟨p1, p2, . . . , pn⟩ represent a cyclic list of
the points ordered counterclockwise along H(P). We use a sublist to refer to a contiguous
subsequence of P . Multiple sublists are said to be consecutive if their concatenation is also
a sublist. For any two points pi and pj in P , we define P [i, j] as the sublist of P from pi

counterclockwise to pj , inclusive, i.e., if i ≤ j, then P [i, j] = ⟨pi, pi+1, . . . , pj⟩; otherwise,
P [i, j] = ⟨pi, pi+1, . . . , pn, p1, . . . , pj⟩. We also denote by P (i, j] the sublist P [i, j] excluding
pi, and similarly for other variations, e.g., P [i, j) and P (i, j).

For simplicity of the discussion, we make a general position assumption that no three
points of P are collinear and no four points lie on the same circle. This assumption is made
without loss of generality as degenerate cases can be handled through perturbations.

3 The dominating set problem

In this section, we present our algorithms for the dominating set problem on a set P of n points
in convex position. The weighted and unweighted cases are discussed in Sections 3.2 and 3.3,
respectively. We first prove in Section 3.1 the structural properties that our algorithms rely
on and then present these algorithms.

3.1 Structural properties
We examine the structural properties of the dominating sets in the unit-disk graph G(P) for
the weighted case, which are also applicable to the unweighted case.

Let A represent a partition of P into consecutive, nonempty, and disjoint sublists. Suppose
S ⊆ P is a dominating set of G(P); points of S are called centers. It is not difficult to see
that the union of the collection D of unit disks centered at the points in S covers P .

A. Tkachenko and H. Wang 73:7

We say that a collection D of unit disks covers A if every sublist α ∈ A is covered by
at least one disk from D. An assignment ϕ : A → S is a mapping from sublists in A to
points in S, such that each sublist α is assigned to exactly one center pi ∈ S with α ⊆ Dpi

.
For each pi ∈ S, we define Gpi as the set of points in the sublists α ∈ A that are assigned
to pi; Gpi

is called the group of pi. Depending on the context, Gpi
may also represent the

collection of sublists assigned to pi. By definition, the groups of two centers of S are disjoint.
An assignment ϕ is said to be line separable if, for every two groups of ϕ, there exists a

line ℓ that separates the points from the two groups, that is, the points of one group lie on
one side of ℓ or on ℓ while those of the other group lie strictly on the other side of ℓ.

As discussed in Section 1.3, our main target is to prove the ordering property. This is
achieved by proving a series of lemmas. We start with the lemma that proves a line separable
property.

▶ Lemma 1. Let S be a dominating set of G(P). There exist a partition A of P and a
line-separable assignment ϕ : A → S such that for any center pi ∈ S, pi ∈ Gpi

, meaning that
a sublist of pi contains pi.

For the assignment ϕ from Lemma 1, for each center pi ∈ S, we refer to the sublist of pi

that contains pi as the main sublist of pi.

▶ Lemma 2. Let S be a dominating set for G(P). Then there exist a partition A of P and
an assignment ϕ : A → S with the following properties: (1) ϕ is line separable; (2) each
center of S is assigned at most two sublists, one of which is a main sublist.

▶ Lemma 3. Let S be an optimal dominating set and ϕ : A → S be the assignment given by
Lemma 2. There exists a pair of centers (pi, pj) in S, called a decoupling pair, such that the
following hold: (1) each of pi and pj has only one sublist; (2) for any center S that has two
sublists, one sublist is in P (i, j) while the other is in P (j, i).

Let S be an optimal dominating set and ϕ : A → S be the assignment given by Lemma 2.
Let (pi, pj) be a decoupling pair from Lemma 3. For any center of S \ {pi, pj}, each of its
sublist must be either entirely in P (i, j) or in P (j, i), and by Lemma 3, the center has at most
one sublist in P (i, j) and at most one sublist in P (j, i). We finally prove in the following
lemma the ordering property discussed in Section 1.3.

▶ Lemma 4. (The ordering property) Let S be an optimal dominating set and ϕ : A → S be
the assignment given by Lemma 2. Let (pi, pj) be a decoupling pair from Lemma 3. Then,
there exists an ordering of all centers of S as pi1 , pi2 , . . . , pik

with k = |S| such that (see
Figure 1)
1. pi = pi1 and pj = pik

, i.e., pi1 and pik
are the first and last points in the ordering,

respectively.
2. The sequence of the centers of S that have at least one sublist in P [i, j] (resp., P [j, i])

ordered by the points of their sublists appearing in P [i, j] (resp., P [j, i]) from pi to pj is a
(not necessarily contiguous) subsequence of the ordering.

3. For any t, 1 ≤ t ≤ k, the sublists of the first t centers in the ordering are consecutive
(i.e., their union, which is

⋃t
l=1 Gil

, is a sublist of P).
4. For any t, 2 ≤ t ≤ k,

⋃t−1
l=1 Gil

⊆
⋃t

l=1 Gil
.

5. For any t, 1 ≤ t ≤ k, each sublist of pit
appears at one end of

⋃t
l=1 Gil

(if t = k, then⋃t
l=1 Gil

becomes the cyclic list of P ; for convenience, we view
⋃t

l=1 Gil
as a list by

cutting it right after the clockwise endpoint of Gik
).

STACS 2025

73:8 Dominating Set, Independent Set, Discrete k-Center, Dispersion

Proof. First of all, notice that the first two properties imply the last three. Therefore, it
suffices to prove the first two properties.

Let S1 (resp., S2) be the subset of centers of S \ {pi, pj} that have a sublist in P (i, j)
(resp., P (j, i)). By Lemma 3, each center of S1 has at most one sublist in P (i, j) and each
center of S2 has at most one sublist in P (j, i). We add pi and pj to both S1 and S2. We
sort all centers of S1 as a sequence (called the sorted sequence of S1) by the points of their
sublists appearing in P [i, j] from pi to pj (and thus pi is the first center and pj is the last
one in the sequence). Similarly, we sort all centers of S2 as a sequence (called the sorted
sequence of S2) by the points of their sublists appearing in P [j, i] from pi to pj (and thus pi

is the first center and pj is the last one in the sequence). To prove the first two properties of
the lemma, it suffices to show the following statement: There exists an ordering of S such
that (1) pi is the first one in the ordering and pj is the last one; (2) the sorted sequence of
S1 (resp., S2) is a subsequence of the ordering.

We say that two centers pj1 , pj2 ∈ S are conflicting if pj1 appears in front of pj2 in the
sorted sequence of S1 while pj2 appears in front of pj1 in the sorted sequence of S2. It is not
difficult to see that if no two centers of S are conflicting then the above statement holds.
Assume to the contrary that there exist two centers pj1 , pj2 ∈ S that are conflicting. Then,
since the two centers are in both S1 and S2, each of them has two sublists. Since they are
conflicting, by the definition of the sorted sequences of S1 and S2 and due to the convexity
of P , the group of pj1 cannot be separated from the group of pj2 by a line, a contradiction
with the line separable property of ϕ. ◀

3.2 The weighted dominating set problem
For each point pi ∈ P , let wi denote its weight. We assume that each wi > 0, since otherwise
pi could always be included in the solution. For any subset S ⊆ P , let w(S) denote the total
weight of all points of S. We mainly consider the following bounded size problem: Given a
number k, compute a dominating set S of minimum total weight with |S| ≤ k in the unit-disk
graph G(P). If we have an algorithm for this problem, then applying the algorithm with
k = n can compute a minimum weight dominating set for G(P). Let S∗ denote an optimal
dominating set for the above bounded size problem. Define W ∗ = w(S∗).

In what follows, we first describe the algorithm and then discuss how to implement the
algorithm efficiently.

Algorithm description. We begin by introducing the following definition.

▶ Definition 5. For two points pi, pj ∈ P (pi = pj is possible), define aj
i as the index of

the first point p of P counterclockwise from pj such that |pip| > 1, and bj
i the index of the

first point p of P clockwise from pj such that |pip| > 1 (if |pipj | > 1, then aj
i = bj

i = j). If
|pip| ≤ 1 for all points p ∈ P , then let aj

i = bj
i = 0.

For a subset P ′ ⊆ P , let D(P ′) denote the union of the unit disks centered at the points
of P ′. Note that a subset S ⊆ P is a dominating set if and only if P ⊆ D(S).

Our algorithm has k iterations. In each t-th iteration with 1 ≤ t ≤ k, we compute a set
Lt of O(n2) sublists of P , and each sublist L ∈ Lt is associated with a weight w′(L) and a
set SL ⊆ P of at most t points. Our algorithm maintains the following invariant: For each
sublist L ∈ Lt, w(SL) ≤ w′(L) and points of L are all covered by D(SL). Suppose that there
exists a set S ⊆ P of k points such that P ⊆ D(S). Then we will show that Lk contains a
sublist L that is P and w′(L) ≤ W ∗. As such, after k iterations, we only need to find all
sublists of Lk that are P and then return the one with the minimum weight.

A. Tkachenko and H. Wang 73:9

In the first iteration, for each point pi ∈ P , we compute the two indices ai
i and bi

i; we
show in Lemma 7 that this can be done in O(log n) time after O(n log n) time preprocessing.
Then, let L1 = {P (bi

i, ai
i) | pi ∈ P}. For each sublist L = P (bi

i, ai
i) of L1, we set SL = {pi}

and w′(L) = wi. Clearly, the algorithm invariant holds on all sublists of L1. This finishes
the first iteration. Although |L1| = O(n), as will be seen next, |Lt| = O(n2) for all t ≥ 2.

In general, suppose that we have a set Lt−1 of O(n2) sublists and each sublist L ∈ Lt−1
is associated with a weight w′(L) and a set SL ⊆ P of at most t − 1 points such that the
algorithm invariant holds, i.e., w(SL) ≤ w′(L) and points of L are all covered by D(SL). We
now describe the t-th iteration of the algorithm.

For each point pi ∈ P , we perform a counterclockwise processing procedure as follows. For
each point pj ∈ P , we do the following. Compute the minimum weight sublist from Lt−1 that
contains P [ai

i, j]; we call this step a minimum-weight enclosing sublist query. We show later
that each such query can be answered in O(log2 n) time after O(n2 log n) time preprocessing
on the sublists of Lt−1. Let P [ji1, ji2] be the sublist computed above. Then, we compute
the index aji2+1

i . By definition, the union of the following three sublists is a sublist of P :
P (bi

i, ai
i), P [ji1, ji2], and P (ji2, aji2+1

i); denote by L the sublist. We set SL = SL′ ∪ {pi}
and w′(L) = w′(L′) + wi, where L′ = P [ji1, ji2]. We add L to Lt. We next argue that
the algorithm invariant holds for L, i.e., points of L are covered by D(SL), |SL| ≤ t, and
w(SL) ≤ w′(L). Indeed, by definition, all the points of P (bi

i, ai
i) ∪ P (ji2, aji2+1

i) are covered
by the disk Dpi . Since the sublist L′ is from Lt−1, by our algorithm invariant, L′ is covered
by D(SL′), |SL′ | ≤ t − 1, and w(SL′) ≤ w′(L′). Therefore, L is covered by D(SL′ ∪ {pi}) and
|SL| ≤ t. In addition, we have w(SL) ≤ w(SL′) + wi ≤ w′(L′) + wi = w′(L). As such, the
algorithm invariant holds on L.

The above counterclockwise processing procedure for pi will add O(n) sublists to Lt.
Symmetrically, we perform a clockwise processing procedure for pi, which will also add O(n)
sublists to Lt. We briefly discuss it. Given pi ∈ P , for each point pj ∈ P , we compute
the minimum weight sublist from Lt−1 that contains P [j, bi

i]. Let P [ji3, ji4] be the sublist
computed above. Then, we compute the index bji3−1

i . Let L be the sublist that is the union
of the following three sublists: P (bi

i, ai
i), P [ji3, ji4], and P (bji3−1

i , ji3). We let SL = SL′ ∪{pi}
and w′(L) = w′(L′) + wi, where L′ = P [ji3, ji4]. As above, the algorithm invariant holds on
L. We add L to Lt. In this way, the t-th iteration computes O(n2) sublists in Lt.

After the k-th iteration, we find from all sublists of Lk that are P the one L∗ whose
weight w′(L∗) is the minimum. Based on the ordering property in Lemma 4, the next lemma
shows that SL∗ is an optimal dominating set.

▶ Lemma 6. SL∗ is an optimal dominating set and W ∗ = w′(L∗).

Time analysis. In each iteration, we perform O(n2) operations for computing indices aj
i and

bj
i , and perform O(n2) minimum-weight enclosing sublist queries. We show later that each

query takes O(log2 n) time after O(n2 log n) time preprocessing. As such, each iteration of the
algorithm takes O(n2 log2 n) time and the total time of the algorithm is thus O(kn2 log2 n).

Algorithm implementation. The following lemma provides a data structure for computing
the indices aj

i and bj
i .

▶ Lemma 7. We can construct a data structure for P in O(n log n) time such that the indices
aj

i and bj
i can be computed in O(log n) time for any two points pi, pj ∈ P .

Given a set L of m sublists of P , each sublist has a weight. We wish to build a data
structure to answer the following minimum-weight enclosing sublist queries: Given a sublist
L, compute the minimum weight sublist of L that contains L. We have the following lemma.

STACS 2025

73:10 Dominating Set, Independent Set, Discrete k-Center, Dispersion

▶ Lemma 8. We can construct a data structure for L in O(m log m) time, with m = |L|, so
that each minimum-weight enclosing sublist query can be answered in O(log2 m) time.

Theorem 9 summarizes our result. Applying Theorem 9 with k = n leads to Corollary 10.

▶ Theorem 9. Given a number k and a set P of n weighted points in convex position in the
plane, we can find in O(kn2 log2 n) time a minimum-weight dominating set of size at most k

in the unit-disk graph G(P), or report no such dominating set exists.

▶ Corollary 10. Given a set P of n weighted points in convex position in the plane, we can
compute a minimum-weight dominating set in the unit-disk graph G(P) in O(n3 log2 n) time.

3.3 The unweighted case
In this section, we consider the unweighted dominating set problem. The goal is to compute
the smallest dominating set in the unit-disk graph G(P). Note that all properties for the
weighted case are also applicable here. In particular, by setting all point weights to 1 and
applying Theorem 9, one can solve the unweighted problem in O(n3 log2 n) time. We provide
an improved algorithm of O(kn log n) time, where k is the smallest dominating set size.

Algorithm description. We follow the iterative algorithmic scheme of the weighted case, but
incorporate a greedy strategy using the property that all points of P have the same weight.

In each t-th iteration of the algorithm, t ≥ 1, we compute a set Lt of O(n) sublists and
each list L ∈ Lt is associated with a set SL ⊆ P of at most t points. Our algorithm maintains
the following invariant: For each sublist L ∈ Lt, all points of L are covered by D(SL), i.e.,
the union of the unit disks centered at the points of SL. If k is the smallest dominating set
size, we show in Lemma 11 that after k iterations, Lk is guaranteed to contain a sublist that
is P . Thus, we can stop the algorithm as soon as the first sublist that is P is computed.

Initially, we compute the indices ai
i and bi

i for all points pi ∈ P . By Lemma 7, this
takes O(log n) time after O(n log n) time preprocessing. In the first iteration, we have
L1 = {P (bi

i, ai
i) | pi ∈ P}. For each sublist L = P (bi

i, ai
i) ∈ L1, we set SL = {pi}. Clearly,

the algorithm invariant holds.
In general, suppose that we have a set Lt−1 of O(n) sublists such that the algorithm

invariant holds. We assume that no sublist of Lt−1 is P . Then, the t-th iteration of the
algorithm works as follows. For each point pi ∈ P , we perform the following counterclockwise
processing procedure. We first compute the sublist of Lt−1 that contains pai

i
and has the most

counterclockwise endpoint. This is done by a counterclockwise farthest enclosing sublist query.
We show later in Section 3.3 that each such query takes O(log n) time after O(n log n) time
preprocessing for Lt−1. Let P [ji1, ji2] be the sublist computed above. Then, we compute
the index aji2+1

i in O(log n) time by Lemma 7. Note that the union of the following three
sublists is a sublist L of P : P (bi

i, ai
i), P [ji1, ji2], and P (ji2, aji2+1

i). We add L to Lt and set
SL = SL′ ∪ {pi} with L′ = P [ji1, ji2]. By our algorithm invariant, points of L′ are covered by
D(SL′). By definition, points of P (bi

i, ai
i) ∪ P (ji2, aji2+1

i) are covered by Dpi . Therefore, all
points of L are covered by D(SL). Hence, the algorithm invariant holds for L. In addition, if
L is P , we stop the algorithm and return SL as an optimal dominating set.

Symmetrically, we perform a clockwise processing procedure for pi. We compute the
sublist from Lt−1 that contains bi

i and has the most clockwise endpoint; this is done by a
clockwise farthest enclosing sublist query. Let P [ji3, ji4] be the sublist computed above. Then,
we compute the index bji3−1

i . Let L be the sublist that is the union of the following three

A. Tkachenko and H. Wang 73:11

sublists: P (bi
i, ai

i), P [ji3, ji4], and P (ji3, bji3−1
i). Let SL = SL′ ∪ {pi} with L′ = P [ji3, ji4].

As above, the algorithm invariant holds on L. We add L to Lt. If L is P , then we stop the
algorithm and return SL as an optimal dominating set.

The following lemma proves the correctness of the algorithm.

▶ Lemma 11. If the algorithm first time computes a sublist L that is P , then SL is the
smallest dominating set of G(P).

Time analysis. In each iteration, we perform O(n) operations for computing indices aj
i

and bj
i and O(n) counterclockwise/clockwise farthest enclosing sublist queries. Computing

indices aj
i and bj

i takes O(log n) time by Lemma 7. We show in Lemma 12 that each
counterclockwise/clockwise farthest enclosing sublist query can be answered in O(log n) time
after O(n log n) time preprocessing. As such, each iteration runs in O(n log n) time and the
total time of the algorithm is O(kn log n), where k is the smallest dominating set size.

Algorithm implementation. It remains to describe the data structure for answering counter-
clockwise/clockwise farthest enclosing sublist queries. We only discuss the counterclockwise
case as the clockwise case can be handled analogously. Given a set L consisting of n sublists
of P , the goal is to build a data structure to answer the following counterclockwise farthest
enclosing sublist queries: Given a point p ∈ P , find a sublist in L that contains p with the
farthest counterclockwise endpoint from p. We have the following lemma.

▶ Lemma 12. We can construct a data structure for L in O(n log n) time such that each
counterclockwise farthest enclosing sublist query can be answered in O(log n) time.

We conclude with the following theorem and corollary, which will be used in Section 4 to
solve the discrete k-center problem.

▶ Theorem 13. Given a set P of n points in convex position in the plane, the smallest
dominating set of the unit-disk graph G(P) can be computed in O(kn log n) time, where k is
the size of the smallest dominating set.

▶ Corollary 14. Given k, r, and a set P of n points in convex position in the plane, one can
do the following in O(kn log n) time: determine whether there exists a subset S ⊆ P of at
most k points such that the distance from any point of P to its closest point in S is at most
r, and if so, find such a subset S.

Proof. We redefine the unit-disk graph of P with a parameter r, where two points in P

are connected by an edge if their distance is at most r. We then apply the algorithm of
Theorem 13. If the algorithm finds a sublist L that is P within k iterations, then we return
S = SL; otherwise such a subset S as in the lemma statement does not exist. Since we run
the algorithm for at most k iterations, the total time of the algorithm is O(kn log n). ◀

4 The discrete k-center problem

In this section, we present our algorithm for the discrete k-center problem. Let P be a set of
n points in convex position in the plane. Given a number k, the goal is to compute a subset
S ⊆ P of at most k points (called centers) so that the maximum distance between any point
in P and its nearest center is minimized. Let r∗ denote the optimal objective value.

STACS 2025

73:12 Dominating Set, Independent Set, Discrete k-Center, Dispersion

Given a value r, the decision problem is to determine whether r ≥ r∗, or equivalently,
whether there exist a set of k centers in P such that the distance from any point of P to its
closest center is at most r. By Corollary 14, the problem can be solved in O(kn log n) time.
Clearly, r∗ is equal to the distance of two points of P , that is r∗ ∈ R, where R is defined as
the set of all pairwise distances between points in P . If we explicitly compute R and then
perform a binary search on R using the algorithm of Corollary 14 as a decision algorithm,
then r∗ can be computed in O(n2 + kn log2 n) time. We can improve the algorithm by using
the distance selection algorithms, which can find the k-th smallest value in R in O(n4/3 log n)
time for any given k [33,54]. In fact, by applying the algorithmic framework of Wang and
Zhao [54] with our decision algorithm, r∗ can be computed in O(n4/3 log n + nk log2 n) time.

In the following, we present another algorithm of O(k2n log2 n) time using the parametric
search [20,39]. This algorithm is faster than the above one when k = o(n1/6/

√
log n).

We simulate the decision algorithm over the unknown optimal value r∗. The algorithm
maintains an interval (r1, r2] that contains r∗. Initially, r1 = −∞ and r2 = ∞. During the
algorithm, the decision algorithm is invoked on certain critical values r to determine whether
r ≥ r∗; based on the outcome, the interval (r1, r2] is shrunk accordingly so that the new
interval still contains r∗. Upon completion, we can show that r∗ = r2 must hold.

Algorithm overview. For any r, certain variables in our decision algorithm are now defined
with respect to r as the radius of unit disks and therefore may be considered as functions of
r. For example, we use aj

i (r) to represent aj
i when the unit disk radius is r. The algorithm

has k iterations. We wish to compute the sublist set Lt(r∗) in each t-th iteration, 1 ≤ t ≤ k.
Specifically, the set L1(r∗) relies on ai

i(r∗) and bi
i(r∗) for all points pi ∈ P . As such, in the

first iteration, we will compute ai
i(r∗) and bi

i(r∗) for all pi ∈ P . The computation process
will generate certain critical values r, call the decision algorithm on these values, and shrink
the interval (r1, r2] accordingly. After that, L1(r∗) can be computed.

In a general t-th iteration, our goal is to compute the set Lt(r∗). We assume that the set
Lt−1(r∗) is already available with an interval (r1, r2] containing r∗. Then, for each pi ∈ P ,
we perform a counterclockwise processing procedure. We first compute the sublist of Lt−1(r∗)
with the farthest counterclockwise endpoint and containing ai

i(r∗). This procedure depends
solely on ai

i(r∗) and Lt−1(r∗), which are already available, and thus no critical values are
generated. Suppose that P [ji1(r∗), ji2(r∗)] is the sublist computed above. The next step
is to compute a

ji2(r∗)+1
i (r∗). This step will again generate critical values and shrink the

interval (r1, r2]. After that, we add to Lt(r∗) the sublist that is the union of the following
three sublists: P (bi

i(r∗), ai
i(r∗)), P [ji1(r∗), ji2(r∗)], and P (ji2(r∗), a

ji2(r∗)+1
i). Similarly, we

perform a clockwise processing procedure for each point pi ∈ P . After that, the set Lt(r∗) is
computed. The details can be found in the full version.

In summary, the algorithm can compute r∗ in O(k2n log2 n) time. Combining with the
O(n4/3 log n + kn log2 n) time algorithm discussed earlier, we obtain the following result.

▶ Theorem 15. Given a set P of n points in convex position in the plane and a number
k, we can compute in O(min{n4/3 log n + kn log2 n, k2n log2 n}) time a subset S ⊆ P of size
at most k, such that the maximum distance from any point of P to its nearest point in S is
minimized.

A. Tkachenko and H. Wang 73:13

pi

pj

pk

v

Figure 2 Illustrating DT (S), the solid segments,
and VD(S), the dotted segments.

pi

pj

pk
pl

p

q

Figure 3 Illustrating Lemma 18.

5 The independent set problem

In this section, we present our algorithms for the independent set problem, assuming that the
points of P are in convex position. In Section 5.1, we present the algorithm for computing
a maximum-weight independent set. Section 5.2 gives the algorithm for computing an
(unweighted) independent set of size 3.

5.1 The maximum-weight independent set problem
Recall that P = ⟨p1, p2, . . . , pn⟩ is a cyclic list ordered along H(P) in counterclockwise order.
For each point pi ∈ P , let wi denote its weight. We assume that each wi > 0 since otherwise
pi can be simply ignored, which would not affect the optimal solution. For any subset P ′ ⊆ P ,
let w(P ′) denote the total weight of all points of P ′.

For any three points p1, p2, p3, let D(p1, p2, p3) denote the disk whose boundary contains
them. Thus, ∂D(p1, p2, p3) is the unique circle through these points. For any compact region
B in the plane, we use ∂B to denote its boundary and use B to denote the complement
region of B in the plane. In particular, for a disk D in the plane, ∂D is its bounding circle,
and D refers to the region of the plane outside D.

In what follows, we first describe the algorithm and explain why it is correct, and then
discuss how to implement the algorithm efficiently.

5.1.1 Algorithm description and correctness
To motivate our algorithm and demonstrate its correctness, we first examine the optimal
solution structure and develop a recursive relation on which our dynamic program is based.

Let S be a maximum-weight independent set of G(P), or equivalently, S is a maximum-
weight subset of P such that the minimum pairwise distance of the points of S is larger
than 1. Let DT (S) denote the Delaunay triangulation of S. If (p, q) is the closest pair of
points of S, then pq must be an edge of DT (S) and in fact, the shortest edge of DT (S) [45].
As such, finding a maximum-weight independent set of G(P) is equivalent to finding a
maximum-weight subset S ⊆ P such that the shortest edge of DT (S) has length larger
than 1. The algorithm in [47] is based on this observation, which also inspires our algorithm.

Consider a triangle △pipjpk of DT (S) such that the points pi, pj , pk are in the coun-
terclockwise order of P (i.e., ordered counterclockwise on H(P)). Due to the property of
Delaunay triangulation, the disk D(pi, pj , pk) does not contain any point of S\{pi, pj , pk} [45].
Since the points of S are in convex position, we have the following observation.

STACS 2025

73:14 Dominating Set, Independent Set, Discrete k-Center, Dispersion

▶ Observation 16. DT (S) does not contain an edge connecting two points from any two
different subsets of {P (i, j), P (j, k), P (k, i)}; see Figure 2.

Observation 16 implies the following: To find an optimal solution S, if we know that
△pipjpk is a triangle in DT (S), since no point of S \ {pi, pj , pk} lies in the disk D(pi, pj , pk),
we can independently search P (i, j) ∩ D(pi, pj , pk), P (j, k) ∩ D(pi, pj , pk), and P (k, i) ∩
D(pi, pj , pk), respectively. This idea forms the basis of our dynamic program.

Let W ∗ denote the total weight of a maximum-weight independent set of G(P).
For any pair of indices (i, j) with |pipj | > 1, we call (i, j) a canonical pair and define

f(i, j) as the total weight of a maximum-weight subset P ′ of P (i, j) such that P ′ ∪ {pi, pj}
forms an independent set of G(P); if no such subset P ′ exists, then f(i, j) = 0. Computing
f(i, j) is a subproblem in our dynamic program. For simplicity, we let f(i, j) = −(wi + wj)
if (i, j) is not canonical, i.e., |pipj | ≤ 1. Lemma 17 explains why we are interested in f(i, j).

▶ Lemma 17. W ∗ = max1≤i,j≤n(f(i, j) + wi + wj).

By Lemma 17, to compute W ∗, it suffices to compute f(i, j) for all pairs of indices
1 ≤ i, j ≤ n and the one with the largest f(i, j) + wi + wj leads to the optimal solution. To
compute f(i, j), we define another type of subproblems that will be used in our algorithm.

For any three points pi, pj , pk such that they are ordered counterclockwise in P and their
minimum pairwise distance is larger than 1, we call (i, j, k) a canonical triple.

For a canonical triple (i, j, k), by slightly abusing the notation, we define f(i, j, k) as the
total weight of a maximum-weight subset P ′ of P (i, j) ∩ D(pi, pj , pk) such that P ′ ∪ {pi, pj}
is an independent set; if no such subset P ′ exists, then f(i, j, k) = 0. For any canonical
pair (i, j), if we consider p0 a dummy point to the left of −−→pipj and infinitely far from the
supporting line of pipj so that D(pi, pj , p0) becomes the left halfplane of −−→pipj , then f(i, j, 0)
following the above definition is exactly f(i, j); for convenience, we also consider (i, j, 0) a
canonical triple. To make the discussion concise, we often use f(i, j, 0) instead of f(i, j) since
the way we compute f(i, j, 0) is consistent with the way we compute f(i, j, k) for k ̸= 0.

For any canonical triple (i, j, k), define Pk(i, j) = {p | p ∈ P (i, j), p ̸∈ D(pi, pj , pk), |ppi| >

1, |ppj | > 1}. For any canonical pair (i, j), define P0(i, j) = {p | p ∈ P (i, j), |ppi| > 1, |ppj | >

1}. Note that P0(i, j) is consistent with Pk(i, j) if we consider p0 a dummy point as defined
above. Observe also that Pk(i, j) = P0(i, j) ∩ D(pi, pj , pk) for any canonical triple (i, j, k).
By definition, f(i, j, k) (including the case k = 0) is the total weight of a maximum-weight
independent set P ′ ⊆ Pk(i, j); this is the reason we introduce the notation Pk(i, j).

The following lemma gives the recursive relation of our dynamic programming algorithm.

▶ Lemma 18. For any canonical triple (i, j, k), including the case k = 0, the following holds
(see Figure 3):

f(i, j, k) =
{

maxpl∈Pk(pi,pj)(f(i, l, j) + f(l, j, i) + wl), if Pk(i, j) ̸= ∅
0, otherwise.

(1)

With Lemma 18, it remains to find an order to solve the subproblems so that when
computing f(i, j, k), the values f(i, l, j) and f(l, j, i) for all pl ∈ Pk(pi, pj) are available.

For any two points pi, pj ∈ P , we call pipj a diagonal.
We process the diagonals pipj for all 1 ≤ i, j ≤ n in the following way. For each

j = 2, . . . , n in this order, we enumerate i = j − 1, j − 2, . . . , 1 to process pipj as follows. If
|pipj | ≤ 1, then we set f(i, j) = −(wi + wj). Otherwise, (i, j) is a canonical pair, and we
compute f(i, j), i.e., f(i, j, 0), by Equation (1); one can check that the values f(i, l, j) and
f(l, j, i) for all pl ∈ P0(pi, pj) have already been computed. Next, for each point pk ∈ P (j, i)

A. Tkachenko and H. Wang 73:15

with |pipk| > 1 and |pjpk| > 1, (i, j, k) is a canonical triple and we compute f(i, j, k) by
Equation (1); again, the values f(i, l, j) and f(l, j, i) for all pl ∈ Pk(pi, pj) have already been
computed. Finally, by Lemma 17, we can return the largest f(i, j) + wi + wj among all
canonical pairs (i, j) as W ∗. The algorithm only computes the value W ∗, but by the standard
back-tracking technique a maximum-weight independent set can also be obtained.

5.1.2 Algorithm implementation
We can easily implement the algorithm in O(n4) time. Indeed, there are O(n3) subproblems
f(i, j, k). Each subproblem can be computed in O(n) time by checking every point pl ∈
Pk(i, j). As such, the total time is O(n4). We give a better algorithm below.

Specifically, we show that for each canonical pair (i, j) we can compute the subproblems
f(i, j, k) for all pk ∈ P (j, i) in a total of O(n3/2) time. To this end, we reduce the problem
to an offline outside-disk range max-cost query problem. For each point pl ∈ Pk(i, j), we
define the cost of pl as cost(pl) = f(i, l, j) + f(l, j, i) + wl. Recall that P0(i, j) = {p | p ∈
P (i, j), |ppi| > 1, |ppj | > 1} and Pk(i, j) = P0(i, j) ∩ D(pi, pj , pk). As such, computing
f(i, j, k) is equivalent to finding the maximum-cost point of P0(i, j) outside the query disk
D(pi, pj , pk). Our goal is to answer all such disk queries for all pk ∈ P (j, i). We note that
this problem can be solved in O(n15/11) expected time by applying the recent randomized
algorithm of Agarwal, Ezra, and Sharir [1]. In the full version, we present a deterministic
algorithm of O(n3/2) time by using cuttings [14]. We thus have the following result.

▶ Theorem 19. Given a set P of n weighted points in convex position in the plane, a
maximum-weight independent set in the unit-disk graph of P can be computed in O(n7/2)
deterministic time, or in O(n37/11) randomized expected time.

Using the randomized result of [1], the problem can be solved in O(n37/11) expected time.
The following corollary will be used in Section 6 to solve the dispersion problem.

▶ Corollary 20. Given a set P of n points in convex position in the plane and a number
r > 0, one can find in O(n7/2) deterministic time or in O(n37/11) randomized expected time
a maximum subset of P such that the distance of every two points of the subset is larger
than r.

5.2 Computing an independent set of size 3
To facilitate the discussion in Section 6 for the dispersion problem, we consider the following
problem: Given a set P of n points in convex position and a number r > 0, find three points
from P whose minimum pairwise distance is larger than or equal to r.

We follow the notation in Section 2. In particular, P = ⟨p1, p2, . . . , pn⟩ is a cyclic list
ordered along H(P) counterclockwise. In the following definition, for each point pi ∈ P , we
define ai similarly to ai

i in Definition 5 with respect to r (i.e., change “> 1” to “≥ r”).

▶ Definition 21. For each point pi ∈ P , define ai as the index of the first point p of P

counterclockwise from pi such that |pip| ≥ r; similarly, define bi ∈ P as the index of the
first point p clockwise from P such that |pip| ≥ r. If |pip| < r for all points p ∈ P , then let
ai = bi = 0.

We will make use of the following lemma, which has been proved previously in [35].

▶ Lemma 22 ([35]). P has three points whose minimum pairwise distance is at least r if
and only if there exists a point pi ∈ P such that P [ai, bi] has two points whose distance is at
least r.

STACS 2025

73:16 Dominating Set, Independent Set, Discrete k-Center, Dispersion

If pi is a point of P such that P [ai, bi] has two points whose distance is at least r, we
say that pi is a feasible point. By Lemma 22, it suffices to find a feasible point (if it exists).
Our algorithm comprises two procedures. In the first procedure, we compute ai and bi for
all points pi ∈ P . This can be done in O(n log n) time by slightly changing the algorithm
of Lemma 7. The second procedure finds a feasible point. In the following, we present an
O(n log n) time algorithm. We start with the following easy but crucial observation.

▶ Observation 23. A point pi ∈ P is a feasible point if and only if there is a point
pk ∈ P [ai, bi] such that pak

is also in P [ai, bi] and (pi, pk, pak
) is in counterclockwise order

in P .

For each point pi ∈ P , note that ai ̸= i must hold; we define a′
i =

{
ai, if i < ai

ai + n, otherwise.
By definition, i < a′

i always holds and a′
i = ai if a′

i ≤ n. Note that if ai = bi, then P [ai, bi]
has only one point, and therefore pi cannot be a feasible point. As such, we only need to
focus on the points pi with ai ≠ bi. Our algorithm is based on the following lemma, which in
turn relies on Observation 23.

▶ Lemma 24. For each pi ∈ P , we have the following.
1. If ai < bi, then pi is a feasible point if and only if mink∈[ai,bi] a′

k ≤ bi.
2. If ai > bi, then pi is a feasible point if and only if min

k∈[ai,n]
a′

k ≤ bi + n or min
k∈[1,bi]

a′
k ≤ bi.

Define an array A[1 · · · n] such that A[k] = a′
k for each 1 ≤ k ≤ n. In light of Lemma 24,

for each point pi ∈ P , we can determine whether pi is a feasible point using at most two
range-minima queries of the following type: Given a range [i, j] with i ≤ j, find the minimum
number in the subarray A[i · · · j]. It is possible to answer each range-minima query in O(1)
time after O(n) time preprocessing on A [7, 28]. For our problem, since it suffices to have
O(log n) query time and O(n log n) preprocessing time, we can use a simple solution by
constructing an augmented binary search tree. As such, in O(n log n) time we can find a
feasible point or report that no such point exists.

In summary, in O(n log n) time we can determine whether P has three points whose
minimum pairwise distance is at least r. If the answer is yes, then these three points can
also be found within the same time complexity according to the proofs of Lemmas 22 and 24.
We conclude with the following theorem.

▶ Theorem 25. Given a set P of n points in convex position in the plane and a number
r, in O(n log n) time one can find three points of P whose minimum pairwise distance is at
least r or report that no such three points exist.

6 The dispersion problem

Given a set P of n points in convex position in the plane and a number k, the dispersion
problem is to find a subset of k points from P so that the minimum pairwise distance of the
points of the subset is maximized.

Let r∗ be the minimum pairwise distance of the points in an optimal solution subset.
The value r∗ ∈ R, where R is the set of pairwise distances of the points of P . Given a value
r, the decision problem is to determine whether r < r∗, or equivalently, whether P has a
subset of k points whose minimum pairwise distance is larger than r. By Corollary 20, the
decision problem can be solved in O(n7/2) time. Using the decision algorithm and doing
binary search on the sorted list of R, r∗ can be computed in O(n7/2 log n) time.

A. Tkachenko and H. Wang 73:17

▶ Theorem 26. Given a set of n points in convex position in the plane and a number k, one
can find a subset of k points whose minimum pairwise distance is maximized in O(n7/2 log n)
deterministic time, or in O(n37/11 log n) randomized expected time.

The size-3 case. We now consider the case where k = 3. Given a number r, the decision
problem is to determine whether r ≤ r∗, that is, whether P has three points whose minimum
pairwise distance is at least r. With Theorem 25 as our decision algorithm, the decision
problem is solvable in O(n log n) time. To compute r∗, we follow the standard parametric
search framework [39] and simulate the decision algorithm on the unknown optimal value r∗

with an interval [r1, r2) that contains r∗. In fact, Cole’s technique [20] can be applied here. In
addition, we observe that Chan’s randomized technique [11] is applicable here. Consequently,
applying the technique with our O(n log n) time decision algorithm leads to a randomized
algorithm of O(n log n) expected time for the problem.

▶ Theorem 27. Given a set of n points in convex position in the plane, one can find three
points whose minimum pairwise distance is maximized in O(n log2 n) deterministic time or
in O(n log n) randomized expected time.

7 The size-3 weighted independent set for points in arbitrary position

Given a set P of n weighted points in the plane in arbitrary position, the problem is to find
a maximum-weight independent set of size 3 in G(P). As the size of our target independent
set is fixed, we allow points to have negative weights.

Define G(P) as the complement graph of G(P). The problem is equivalent to finding a
maximum-weight clique of size 3 in G(P). We want to partition G(P) into bicliques, i.e.,
complete bipartite graphs. We give the formal definition below.

▶ Definition 28 (Biclique partition). Define a biclique partition of G(P) as a collection of
edge-disjoint bicliques Γ(P) = {At × Bt | At, Bt ⊆ P} such that the following are satisfied:
1. For each pair (a, b) ∈ At × Bt ∈ Γ, |ab| > 1.
2. For any points a, b ∈ P with |ab| > 1, Γ has a unique biclique At × Bt that contains (a, b).

In our problem, we need a stronger version of the partition, called a tree-structured
biclique partition, and Lemma 30 explains why we introduce the concept.

▶ Definition 29 (Tree-structured biclique partition). A biclique partition Γ(P) = {At ×
Bt | At, Bt ⊆ P} is tree-structured if all the subsets At’s form a tree TA such that for each
internal node At, all its children subsets form a partition of At.

▶ Lemma 30. Let Γ(P) = {At × Bt | At, Bt ⊆ P} be a tree-structured biclique partition of
G(P) and TA is the tree formed by the subsets At’s. Then, the triple a, b, c ∈ P forms an
independent set in G(P) if and only if Γ(P) has a biclique (At, Bt) that contains a pair (a, b),
and At has an ancestor subset At′ in TA such that c ∈ Bt′ and |bc| > 1.

With this, we obtain the following result; see the full version for the details.

▶ Theorem 31. Given a set P of n weighted points in the plane, one can find a maximum-
weight (or minimum-weight) independent set (or clique) of size 3 in the unit-disk graph G(P)
in O(n5/3+δ) time, for any arbitrarily small constant δ > 0.

STACS 2025

73:18 Dominating Set, Independent Set, Discrete k-Center, Dispersion

References
1 Pankaj K. Agarwal, Esther Ezra, and Micha Sharir. Semi-algebraic off-line range searching

and biclique partitions in the plane. In Proceedings of the 40th International Symposium on
Computational Geometry (SoCG), pages 4:1–4:15, 2024. doi:10.4230/LIPIcs.SoCG.2024.4.

2 Pankaj K. Agarwal, Mark H. Overmars, and Micha Sharir. Computing maximally sepa-
rated sets in the plane. SIAM Journal on Computing, 36(3):815–834, 2006. doi:10.1137/
S0097539704446591.

3 Pankaj K. Agarwal, Micha Sharir, and Emo Welzl. The discrete 2-center problem. Discrete
and Computational Geometry, 20:287–305, 1998. doi:10.1007/PL00009387.

4 Alok Aggarwal, Leonidas J. Guibas, James Saxe, and Peter W. Shor. A linear-time algorithm
for computing the Voronoi diagram of a convex polygon. Discrete and Computational Geometry,
4:591–604, 1989. doi:10.1007/BF02187749.

5 Tetsuya Araki and Shin-ichi Nakano. Max–min dispersion on a line. Journal of Combinatorial
Optimization, 44(3):1824–1830, 2022. doi:10.1007/s10878-020-00549-5.

6 Paul Balister, Béla Bollobás, Amites Sarkar, and Mark Walters. Connectivity of random
k-nearest-neighbour graphs. Advances in Applied Probability, 37(1):1–24, 2005. doi:doi:
10.1239/aap/1113402397.

7 Michael A. Bender and Martín Farach-Colton. The LCA problem revisited. In Proceedings
of the 4th Latin American Symposium on Theoretical Informatics, pages 88–94, 2000. doi:
10.1007/10719839_9.

8 Sergei Bespamyatnikh and David G. Kirkpatrick. Rectilinear 2-center problems. In Proceedings
of the 11th Canadian Conference on Computational Geometry (CCCG), 1999. URL: http:
//www.cccg.ca/proceedings/1999/fp55.pdf.

9 Sergei Bespamyatnikh and Michael Segal. Rectilinear static and dynamic discrete 2-center
problems. In Proceedings of the 6th Workshop on Algorithms and Data Structures (WADS),
pages 276–287, 1999. doi:10.1007/3-540-48447-7_28.

10 Binay Bhattacharya, Ante Ćustić, Sandip Das, Yuya Higashikawa, Tsunehiko Kameda, and
Naoki Katoh. Geometric p-center problems with centers constrained to two lines. In Proceedings
of the 18th Japan Conference on Discrete and Computational Geometry, Graphs, and Games
(JCDCGG), pages 24–36, 2015. doi:10.1007/978-3-319-48532-4_3.

11 Timothy M. Chan. Geometric applications of a randomized optimization technique. Discrete
and Computational Geometry, 22(4):547–567, 1999. doi:10.1007/PL00009478.

12 Timothy M. Chan. More planar two-center algorithms. Computational Geometry: Theory and
Applications, 13:189–198, 1999. doi:10.1016/S0925-7721(99)00019-X.

13 Timothy M. Chan, Qizheng He, and Yuancheng Yu. On the fine-grained complexity of small-
size geometric set cover and discrete k-center for small k. In Proceedings of th 50th International
Colloquium on Automata, Languages, and Programming (ICALP), pages 34:1–34:19, 2023.
doi:10.4230/LIPIcs.ICALP.2023.34.

14 Bernard Chazelle. Cutting hyperplanes for divide-and-conquer. Discrete and Computational
Geometry, 9(2):145–158, 1993. doi:10.1007/BF02189314.

15 Bernard Chazelle, Herbert Edelsbrunner, Michelangelo Grigni, Leonidas Guibas, Micha Sharir,
and Emo Welzl. Improved bounds on weak ϵ-nets for convex sets. In Proceedings of the
25th Annual ACM Symposium on Theory of Computing (STOC), pages 495–504, 1993. doi:
10.1145/167088.167222.

16 Danny Z. Chen, Jian Li, and Haitao Wang. Efficient algorithms for the one-dimensional k-center
problem. Theoretical Computer Science, 592:135–142, 2015. doi:10.1016/j.tcs.2015.05.028.

17 Kyungjin Cho, Eunjin Oh, Haitao Wang, and Jie Xue. Optimal algorithm for the planar
two-center problem. In Proceedings of the 40th International Symposium on Computational
Geometry (SoCG), pages 40:1–40:15, 2024. doi:10.4230/LIPIcs.SoCG.2024.40.

18 Jongmin Choi, Jaegun Lee, and Hee-Kap Ahn. Efficient k-center algorithms for planar points
in convex position. In Proceedings of the 18th Algorithms and Data Structures Symposium
(WADS), pages 262–274, 2023. doi:10.1007/978-3-031-38906-1_18.

https://doi.org/10.4230/LIPIcs.SoCG.2024.4
https://doi.org/10.1137/S0097539704446591
https://doi.org/10.1137/S0097539704446591
https://doi.org/10.1007/PL00009387
https://doi.org/10.1007/BF02187749
https://doi.org/10.1007/s10878-020-00549-5
https://doi.org/doi:10.1239/aap/1113402397
https://doi.org/doi:10.1239/aap/1113402397
https://doi.org/10.1007/10719839_9
https://doi.org/10.1007/10719839_9
http://www.cccg.ca/proceedings/1999/fp55.pdf
http://www.cccg.ca/proceedings/1999/fp55.pdf
https://doi.org/10.1007/3-540-48447-7_28
https://doi.org/10.1007/978-3-319-48532-4_3
https://doi.org/10.1007/PL00009478
https://doi.org/10.1016/S0925-7721(99)00019-X
https://doi.org/10.4230/LIPIcs.ICALP.2023.34
https://doi.org/10.1007/BF02189314
https://doi.org/10.1145/167088.167222
https://doi.org/10.1145/167088.167222
https://doi.org/10.1016/j.tcs.2015.05.028
https://doi.org/10.4230/LIPIcs.SoCG.2024.40
https://doi.org/10.1007/978-3-031-38906-1_18

A. Tkachenko and H. Wang 73:19

19 Brent N. Clark, Charles J. Colbourn, and David S. Johnson. Unit disk graphs. Discrete
Mathematics, 86:165–177, 1990. doi:10.1016/0012-365X(90)90358-O.

20 Richard Cole. Slowing down sorting networks to obtain faster sorting algorithms. Journal of
the ACM, 34:200–208, 1987. doi:10.1145/7531.7537.

21 Gautam K. Das, Guilherme D. da Fonseca, and Ramesh K. Jallu. Efficient independent
set approximation in unit disk graphs. Discrete Applied Mathematics, 280:63–70, 2020.
doi:10.1016/j.dam.2018.05.049.

22 Gautam K. Das, Minati De, Sudeshna Kolay, Subhas C. Nandy, and Susmita Sur-Kolay.
Approximation algorithms for maximum independent set of a unit disk graph. Information
Processing Letters, 115:439–446, 2015. doi:10.1016/j.ipl.2014.11.002.

23 Minati De and Abhiruk Lahiri. Geometric dominating-set and set-cover via local-search.
Computational Geometry, 113(C):102007, 2023. doi:10.1016/j.comgeo.2023.102007.

24 David Eppstein. Faster construction of planar two-centers. In Proceedings of the 8th Annual
ACM-SIAM Symposium on Discrete Algorithms (SODA), pages 131–138, 1997. URL: http:
//dl.acm.org/citation.cfm?id=314161.314198.

25 David Eppstein. Graph-theoretic solutions to computational geometry problems. In Proceedings
of the 35th International Workshop on Graph-Theoretic Concepts in Computer Science (WG),
pages 1–16, 2009. doi:10.1007/978-3-642-11409-0_1.

26 Jared Espenant, J. Mark Keil, and Debajyoti Mondal. Finding a maximum clique in a disk
graph. In Proceedings of the 39th International Symposium on Computational Geometry
(SoCG), pages 30:1–30:17, 2023. doi:10.4230/LIPIcs.SoCG.2023.30.

27 Matt Gibson and Imran A. Pirwani. Algorithms for dominating set in disk graphs: Breaking
the log n barrier. In Proceedings of the 18th Annual European Symposium on Algorithms
(ESA), pages 243–254, 2010. doi:10.1007/978-3-642-15775-2_21.

28 Dov Harel and Robert E. Tarjan. Fast algorithms for finding nearest common ancestors. SIAM
Journal on Computing, 13:338–355, 1984. doi:10.1137/0213024.

29 Wen-Lian Hsu and George L. Nemhauser. Easy and hard bottleneck location problems.
Discrete Applied Mathematics, 1(3):209–215, 1979. doi:10.1016/0166-218X(79)90044-1.

30 Haim Kaplan, Katharina Klost, Wolfgang Mulzer, Liam Roditty, Paul Seiferth, and Micha
Sharir. Triangles and girth in disk graphs and transmission graphs. In Proceedings of
the 27th Annual European Symposium on Algorithms (ESA), pages 64:1–64:14, 2019. doi:
10.4230/LIPIcs.ESA.2019.64.

31 Richard M. Karp. Reducibility among combinatorial problems. Complexity of Computer
Computations, pages 85–103, 1972. doi:10.1007/978-3-540-68279-0_8.

32 Matthew J. Katz, Klara Kedem, and Michael Segal. Discrete rectilinear 2-center problems.
Computational Geometry, 15(4):203–214, 2000. doi:10.1016/S0925-7721(99)00052-8.

33 Matthew J. Katz and Micha Sharir. An expander-based approach to geometric optimization.
SIAM Journal on Computing, 26(5):1384–1408, 1997. doi:10.1137/S0097539794268649.

34 J. Mark Keil and Debajyoti Mondal. The maximum clique problem in a disk graph made easy.
arXiv:2404.03751, 2024. URL: https://arxiv.org/abs/2404.03751, doi:10.48550/arXiv.
2404.03751.

35 Yasuaki Kobayashi, Shin-ichi Nakano, Kei Uchizawa, Takeaki Uno, Yutaro Yamaguchi, and
Katsuhisa Yamanaka. An O(n2)-time algorithm for computing a max-min 3-dispersion on a
point set in convex position. IEICE Transactions on Information and Systems, 105(3):503–507,
2022. doi:10.1587/transinf.2021FCP0013.

36 Andrzej Lingas. On approximation behavior and implementation of the greedy triangulation
for convex planar point sets. In Proceedings of the 2nd Annual Symposium on Computational
Geometry (SoSG), pages 72–79, 1986. doi:10.1145/10515.10523.

37 Madhav V. Marathe, Heinz Breu, Harry B. Hunt III, Sekharipuram S. Ravi, and Daniel J.
Rosenkrantz. Simple heuristics for unit disk graphs. Networks, 25:59–68, 1995. doi:10.1002/
net.3230250205.

STACS 2025

https://doi.org/10.1016/0012-365X(90)90358-O
https://doi.org/10.1145/7531.7537
https://doi.org/10.1016/j.dam.2018.05.049
https://doi.org/10.1016/j.ipl.2014.11.002
https://doi.org/10.1016/j.comgeo.2023.102007
http://dl.acm.org/citation.cfm?id=314161.314198
http://dl.acm.org/citation.cfm?id=314161.314198
https://doi.org/10.1007/978-3-642-11409-0_1
https://doi.org/10.4230/LIPIcs.SoCG.2023.30
https://doi.org/10.1007/978-3-642-15775-2_21
https://doi.org/10.1137/0213024
https://doi.org/10.1016/0166-218X(79)90044-1
https://doi.org/10.4230/LIPIcs.ESA.2019.64
https://doi.org/10.4230/LIPIcs.ESA.2019.64
https://doi.org/10.1007/978-3-540-68279-0_8
https://doi.org/10.1016/S0925-7721(99)00052-8
https://doi.org/10.1137/S0097539794268649
https://arxiv.org/abs/2404.03751
https://doi.org/10.48550/arXiv.2404.03751
https://doi.org/10.48550/arXiv.2404.03751
https://doi.org/10.1587/transinf.2021FCP0013
https://doi.org/10.1145/10515.10523
https://doi.org/10.1002/net.3230250205
https://doi.org/10.1002/net.3230250205

73:20 Dominating Set, Independent Set, Discrete k-Center, Dispersion

38 Tomomi Matsui. Approximation algorithms for maximum independent set problems and
fractional coloring problems on unit disk graphs. In Proceedings of the 2nd Japanese Conference
on Discrete and Computational Geometry (JCDCG), pages 194–200, 1998. doi:10.1007/
978-3-540-46515-7_16.

39 Nimrod Megiddo. Applying parallel computation algorithms in the design of serial algorithms.
Journal of the ACM, 30(4):852–865, 1983. doi:10.1145/2157.322410.

40 Nimrod Megiddo. Linear-time algorithms for linear programming in R3 and related problems.
SIAM Journal on Computing, 12(4):759–776, 1983. doi:10.1137/0212052.

41 Nabil H. Mustafa and Saurabh Ray. Improved results on geometric hitting set problems.
Discrete and Computational Geometry, 44:883–895, 2010. doi:10.1007/s00454-010-9285-9.

42 Charles E. Perkins and Pravin Bhagwat. Highly dynamic destination-sequenced distance-vector
routing (dsdv) for mobile computers. In Proceedings of the Conference on Communications
Architectures, Protocols and Applications (SIGCOMM), pages 234–244, 1994. doi:10.1145/
190809.190336.

43 Charles E. Perkins and Pravin Bhagwat. Ad-hoc on-demand distance vector routing. In
Proceedings of the 2nd IEEE Workshop on Mobile Computing Systems and Applications
(WMCSA), pages 90–100, 1999. doi:10.1109/MCSA.1999.749281.

44 Dana S. Richards and Jeffrey S. Salowe. A rectilinear steiner minimal tree algorithm for
convex point sets. In Proceedings of the 2nd Scandinavian Workshop on Algorithm Theory
(SWAT), volume 447, pages 201–212, 1990. doi:10.1007/3-540-52846-6_90.

45 Michael I. Shamos and Dan Hoey. Closest-point problems. In Proceedings of the 16th
Annual Symposium on Foundations of Computer Science (FOCS), pages 151–162, 1975.
doi:10.1109/SFCS.1975.8.

46 Micha Sharir. A near-linear algorithm for the planar 2-center problem. Discrete and Compu-
tational Geometry, 18:125–134, 1997. doi:10.1007/PL00009311.

47 Vishwanath R. Singireddy, Manjanna Basappa, and Joseph S.B. Mitchell. Algorithms for
k-dispersion for points in convex position in the plane. In Proceedings of the 9th International
Conference on Algorithms and Discrete Applied Mathematics (CALDAM), pages 59–70, 2023.
doi:10.1007/978-3-031-25211-2_5.

48 Kuo-Hui Tsai and Da-Wei Wang. Optimal algorithms for circle partitioning. In Proceedings of
the Third Annual International Computing and Combinatorics Conference (COCOON), pages
304–310, 1997. doi:10.1007/BFb0045097.

49 Vijay V. Vazirani. Approximation Algorithms. Springer, Berlin Heidelberg, 1st edition, 2001.
50 Da-Wei Wang and Yue-Sun Kuo. A study on two geometric location problems. Information

processing letters, 28(6):281–286, 1988. doi:10.1016/0020-0190(88)90174-3.
51 Haitao Wang. On the planar two-center problem and circular hulls. Discrete and Computational

Geometry, 68:1175–1226, 2022. doi:10.1007/S00454-021-00358-5.
52 Haitao Wang. Unit-disk range searching and applications. Journal of Computational Geometry,

14(1):343–394, 2023. doi:10.20382/jocg.v14i1a13.
53 Haitao Wang and Jingru Zhang. Line-constrained k-median, k-means, and k-center problems

in the plane. International Journal of Computational Geometry and Application, 26(3):185–210,
2016. doi:10.1142/S0218195916600049.

54 Haitao Wang and Yiming Zhao. Improved algorithms for distance selection and related
problems. In Proceedings of the 31st Annual European Symposium on Algorithms (ESA), pages
101:1–101:14, 2023. doi:10.4230/LIPIcs.ESA.2023.101.

55 Frank Ángel Hernández Mira, Ernesto Parra Inza, José María Sigarreta Almira, and Nodari
Vakhania. A polynomial-time approximation to a minimum dominating set in a graph.
Theoretical Computer Science, 930:142–156, 2022. doi:10.1016/j.tcs.2022.07.020.

https://doi.org/10.1007/978-3-540-46515-7_16
https://doi.org/10.1007/978-3-540-46515-7_16
https://doi.org/10.1145/2157.322410
https://doi.org/10.1137/0212052
https://doi.org/10.1007/s00454-010-9285-9
https://doi.org/10.1145/190809.190336
https://doi.org/10.1145/190809.190336
https://doi.org/10.1109/MCSA.1999.749281
https://doi.org/10.1007/3-540-52846-6_90
https://doi.org/10.1109/SFCS.1975.8
https://doi.org/10.1007/PL00009311
https://doi.org/10.1007/978-3-031-25211-2_5
https://doi.org/10.1007/BFb0045097
https://doi.org/10.1016/0020-0190(88)90174-3
https://doi.org/10.1007/S00454-021-00358-5
https://doi.org/10.20382/jocg.v14i1a13
https://doi.org/10.1142/S0218195916600049
https://doi.org/10.4230/LIPIcs.ESA.2023.101
https://doi.org/10.1016/j.tcs.2022.07.020

Nearly-Optimal Algorithm for Non-Clairvoyant
Service with Delay
Noam Touitou #

Unaffiliated, Tel Aviv, Israel

Abstract
We consider the online service with delay problem, in which a server traverses a metric space to
serve requests that arrive over time. Requests gather individual delay cost while awaiting service,
penalizing service latency; an algorithm seeks to minimize both its movement cost and the total
delay cost. Algorithms for the problem (on general metric spaces) are only known for the clairvoyant
model, where the algorithm knows future delay cost in advance (e.g., Azar et al., STOC’17; Azar
and Touitou, FOCS’19; Touitou, STOC’23). However, in the non-clairvoyant setting, only negative
results are known: where 𝑛 is the size of the metric space and 𝑚 is the number of requests, there are
lower bounds of Ω(

√
𝑛) and Ω(

√
𝑚) on competitiveness (Azar et al., STOC’17), that hold even for

randomized algorithms (Le et al., SODA’23).
In this paper, we present the first algorithm for non-clairvoyant online service with delay. Our

algorithm is deterministic and 𝑂
(
min

{√
𝑛 log 𝑛,

√
𝑚 log𝑚

})
-competitive; combined with the lower

bounds of Azar et al., this settles the correct competitive ratio for the problem up to logarithmic
factors, in terms of both 𝑛 and 𝑚.

2012 ACM Subject Classification Theory of computation → K-server algorithms; Theory of compu-
tation → Online algorithms

Keywords and phrases Online, Delay, Deadlines, 𝑘-server, Non-clairvoyant

Digital Object Identifier 10.4230/LIPIcs.STACS.2025.74

1 Introduction

In online service with delay, or OSD, a server exists on a metric space of 𝑛 points. Requests
arrive over time, where every request is associated with a point in the metric space which the
server must visit to satisfy the request. The algorithm may move the server at any moment in
time, at a cost which is the distance traveled by the server in the metric space (the movement
is instantaneous). In addition, requests accumulate delay cost while pending, motivating the
algorithm to serve requests promptly. The goal of the algorithm is to minimize the sum of
total movement cost and total delay cost over the given input.

In this model, a crucial choice is whether the online algorithm becomes aware of a
request’s future delay cost upon its release (clairvoyant model) or only knows delay cost
accumulated in the past (non-clairvoyant model). Azar et al. [4], who introduced the
problem of online service with delay, presented an algorithm for the clairvoyant model of
polylogarithmic competitiveness in the size of the metric space 𝑛; specifically, 𝑂 (log4 𝑛)-
competitiveness. This was later improved to 𝑂 (log2 𝑛)-competitiveness [6], and then to
𝑂 (log(min{𝑛, 𝑚}))-competitiveness [35], where 𝑚 is the number of requests in the online
input.

In the non-clairvoyant model, however, there are no known positive results. Azar et
al. [4] presented Ω(

√
𝑛) and Ω(

√
𝑚) lower bounds on the competitiveness of any deterministic

algorithm; this bound also holds for randomized algorithms [31]. (Note that the lower bound
in [31] is stated for the joint replenishment problem, a special case of online service with
delay.)

© Noam Touitou;
licensed under Creative Commons License CC-BY 4.0

42nd International Symposium on Theoretical Aspects of Computer Science (STACS 2025).
Editors: Olaf Beyersdorff, Michał Pilipczuk, Elaine Pimentel, and Nguyễn Kim Thắng;
Article No. 74; pp. 74:1–74:21

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:noamtwx@gmail.com
https://orcid.org/0000-0002-5720-4114
https://doi.org/10.4230/LIPIcs.STACS.2025.74
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

74:2 Nearly-Optimal Algorithm for Non-Clairvoyant Service with Delay

1.1 Our Results
In this paper, we present the first non-clairvoyant algorithm for online service with delay.
Define 𝑘 to be the number of locations on which requests are released in the input; we prove
the following theorem.

▶ Theorem 1. There exists a polynomial-time, deterministic, non-clairvoyant algorithm for
online service with delay which is 𝑂 (

√
𝑘 log 𝑘)-competitive.

In particular, note that 𝑘 ≤ min(𝑛, 𝑚); thus, Theorem 1 also yields an
𝑂

(
min

{√
𝑛 log 𝑛,

√
𝑚 log𝑚

})
competitiveness bound. Recalling the Ω(

√
𝑛),Ω(

√
𝑚) lower

bounds on competitiveness of [4] for non-clairvoyant algorithms for OSD, we conclude
that our competitive ratio is tight up to a logarithmic factor.

Another problem of interest is online service with deadlines. In this problem, instead
of accumulating delay cost, every request has an associated deadline by which it must be
served. Online service with deadlines is a special case of online service with delay; intuitively,
a request with a deadline corresponds to a request with delay that goes from zero to infinity
at the time of the deadline. Yet, online service with deadlines has been studied explicitly in
the past (e.g., [24, 25, 35]). Theorem 1 for online service with delay also yields Theorem 2
for online service with deadlines as a corollary, providing the first non-clairvoyant algorithm
for online service with deadlines.

▶ Theorem 2. There exists a polynomial-time, deterministic, non-clairvoyant algorithm for
online service with deadlines which is 𝑂 (

√
𝑘 log 𝑘)-competitive.

1.2 Related Work
A class of problems related to online service with delay is online network design with delay,
where connectivity requests are handled by transmitting items. Such problems include
TCP Acknowledgement [21, 29, 17, 28], joint replenishment [18, 15, 11, 19], multilevel
aggregation [9, 16, 31, 6, 8], facility location [6, 7, 10], and set cover with delay [2, 33, 31].
In [7], a general framework for such problems in the clairvoyant model was introduced,
yielding logarithmic competitiveness.

While some problems, such as set cover with delay, retain polylogarithmic competitiveness
in the non-clairvoyant setting [2], others become much harder. This is the case for joint
replenishment, facility location and multilevel aggregation with delay, which have Ω(

√
𝑛)

and Ω(
√
𝑚) lower bounds on the competitiveness of any randomized algorithm [4, 31].

As online service with delay is a generalization of the joint replenishment and multilevel
aggregation problems, these lower bounds extend also to non-clairvoyant service with delay.
An 𝑂 (min(

√︁
𝑛 log 𝑛,

√︁
𝑚 log𝑚))-competitive framework for non-clairvoyant network design

was introduced in [34], nearly matching these lower bounds.
Online service with delay in the clairvoyant setting has also been considered with 𝑘

servers (rather than a single server). Azar et al. [4] presented a 𝑂 (𝑘 · polylog(𝑛))-competitive
randomized algorithm for the problem. The algorithm involved randomly embedding the
metric space into a tree, then solving deterministically on that tree; as the algorithm did
not use randomization in server allocation, its dependence on 𝑘 is linear. Subsequently,
for the special case of a metric space that is a weighted star, Gupta et al. [26] presented
an 𝑂 (log 𝑛 log 𝑘)-competitive randomized algorithm. For a general metric space, Gupta et
al. [25] presented a 𝑂 (polylog(Δ, 𝑛))-competitive algorithm, where Δ is the aspect ratio of the
metric space (largest-to-smallest pairwise-distance ratio). For the special case of a uniform

N. Touitou 74:3

metric space, Krnetic et al. [30] settled the exact competitive ratio admitted by the problem;
interestingly, the upper bound was achieved by a non-clairvoyant algorithm, showing that
clairvoyance is not needed on a uniform space.

Another noteworthy line of work in online algorithms with delay has been on online match-
ing, where matching requests arrive over time and accumulate delay cost while unmatched;
see, e.g., [1, 22, 3, 12, 13, 5, 32, 27, 20]. In most of these works, a main assumption is that
delay accumulation is identical for all requests, which nullifies the need for clairvoyance. (A
notable exception is [20], that considers more general delay models.)

1.3 Our Techniques
Consider the algorithm for clairvoyant online service with delay in [35]. This algorithm
performs services; a service is a sequence of server movements that occurs instantaneously at
a given time. Each service is triggered by a set of requests gathering sufficient delay cost. In
each service, the server moves within a ball of a certain radius around its location, serving
some pending requests subject to a given budget; the radius of the ball and the service
budget are determined by a property called the service’s level.

The prioritization of requests within the ball is according to the future delay accumulation
of requests. Intuitively, this prioritization ensures that if a request “survived” a service 𝜆

at time 𝑡, but then gathers delay cost that triggers another service 𝜆′ at time 𝑡′, then the
requests that were served by 𝜆 would have gathered large delay during [𝑡, 𝑡′] had they been
left pending; this is used to justify a doubling argument, e.g. allowing 𝜆′ to have twice the
budget as 𝜆. Services that use this doubling mechanism are called “secondary”, while other
services are called “primary”.

However, in the non-clairvoyant setting considered in this paper, we cannot predict future
delay, and thus cannot prioritize requests. Instead, we are relegated to spending budget
“blindly”. In our algorithm, this is expressed by solving a prize-collecting Steiner tree problem
in which we aim to visit some locations within a certain ball, where the penalty function
is uniform; i.e., visiting every location is equally important. This results in our algorithm
visiting the most locations subject to a certain budget per location. Conversely – and
crucially – we maintain the property that locations not visited by our solution are expensive
to visit; in fact, every bundle of these requests is expensive. The construction of a poly-time
prize-collecting algorithm with this property is based on the construction in [34], and hinges
on prize-collecting Steiner tree admitting a Lagrangian approximation (as shown, e.g., by
Goemans and Williamson [23]).

Then, we wait for these unvisited locations to gather delay equal to their budget; once
enough locations accumulate this delay, we can charge it to the optimal solution, as both
the incurred delay and the cost of serving these requests are large. However, when unvisited
locations gather large delay, the algorithm must also serve them; it does so greedily, moving
to the request and back. We call these greedy services “tertiary”, and they exist alongside
primary and secondary services.

An additional, more technical component of the algorithm is that of domes. As in [35],
requests have levels in our algorithm, and a service starts when requests of level at most ℓ

gather enough delay in a radius-2ℓ ball, for some level ℓ. However, unlike in [35], inside an
inner ball of radius 2ℓ−1, we only consider delay of requests exactly ℓ, forming a dome-like
structure. The benefit of this structure is in eliminating the slack in service levels that existed
in the doubling argument of [35]. The use of this property in the proof is related to the
investment counters that are maintained per location, rather than per request (as in [35]), as
non-clairvoyance prohibits us from knowing a request’s future delay cost.

STACS 2025

74:4 Nearly-Optimal Algorithm for Non-Clairvoyant Service with Delay

2 Preliminaries

In online service with delay, a metric space 𝐺 of 𝑛 points is given; we denote by 𝛿 (𝑢, 𝑣)
the distance between two points 𝑢, 𝑣 ∈ 𝐺. Requests are released over time in an online
manner, where every request 𝑞 is associated with a point 𝑉 (𝑞) ∈ 𝐺. At any point in time, the
algorithm can move the server from its current location 𝑎 to a new location 𝑎′, paying a cost
of 𝛿 (𝑎, 𝑎′). Then, every request pending 𝑞 where 𝑉 (𝑞) = 𝑎′ becomes served. We denote by
𝑟𝑞 the release time of request 𝑞. Every request 𝑞 also has some continuous, non-decreasing
delay function 𝑑𝑞, which maps from a time 𝑡 ≥ 𝑟𝑞 to the delay cost incurred by 𝑞 if pending
until time 𝑡1; we assume that every request must eventually be served, and thus 𝑑𝑞 tends
to infinity as time advances. Without loss of generality, we also assume that 𝑑𝑞 (𝑟𝑞) = 0
(assuming otherwise would simply add a constant additive term to the cost of all solutions).
We expand this notation to multiple requests: for every subset of requests 𝑄′ ⊆ 𝑄 and time 𝑡,
we define 𝑑𝑄′ (𝑡) :=

∑
𝑞∈𝑄′ 𝑑𝑞 (𝑡). We also define 𝑚 := |𝑄 | to be the total number of requests

in the input sequence.
Our algorithms perform services, which are a set of server movements that take place

instantaneously. Where 𝜆 is a service, we denote by 𝑡𝜆 the time in which the service occurs.
We define 𝑎(𝑡), 𝑎∗ (𝑡) to be the locations of the algorithm’s server and the optimum’s server at
time 𝑡, respectively. Throughout the paper, when we refer to the value of some variable at 𝑡𝜆

for some service 𝜆, we refer to the value immediately before the service. For example, 𝑎(𝑡𝜆) is
the location of the server immediately before 𝜆. As a shorthand, we also define 𝑎𝜆 := 𝑎(𝑡𝜆).

We define 𝐵(𝑣, 𝑟) to be the closed ball centered at 𝑣 of radius 𝑟 (i.e., the set of points
of distance at most 𝑟 from 𝑣). We also sometimes equate the points of the metric space 𝐺

with the nodes of a clique graph, where the edge connecting nodes 𝑢, 𝑣 has weight 𝛿 (𝑢, 𝑣).
This graph representation is useful when discussing charging cylinders, a useful tool in our
analysis.

For ease of notation, we use the superscript + to indicate the positive part of a number.
That is, 𝑥+ := max(0, 𝑥).

3 Online Service with Delay

This section introduces an algorithm for non-clairvoyant online service with delay, proving
Theorem 1. First, we define 𝑘 to be the number of locations on which requests are released in
the input. Note that 𝑘 ≤ min(𝑛, 𝑚); we thus focus on proving 𝑂 (

√
𝑘 log 𝑘)-competitiveness,

which implies the competitiveness bound of Theorem 1.

3.1 The Algorithm
Before describing the algorithm, we first introduce some of its components.

Steiner tree. As part of our algorithm, we formulate and solve a Steiner tree problem. In
Steiner tree, one is given a graph with edge costs and a set of terminal nodes. The goal
is to buy an edge subset of minimal cost that connects the terminals. With terminals 𝑉 ,
and assuming that the graph is known from context, we use ST∗ (𝑉) to denote the optimal
cost of a solution. We also sometimes refer to the (equivalent) rooted version, in which the
terminals must be connected to a designated root node 𝑟; here, we use ST∗ (𝑉 ; 𝑟) to denote
the optimal cost.

1 The continuity assumption is without loss of generality: relaxing this assumption, one could simulate
continuous delay growth upon observing a delay “spike”.

N. Touitou 74:5

Prize-collecting Steiner tree and Lagrangian approximation. In the prize-collecting variant
of the (rooted) Steiner tree problem, we are also given a penalty function 𝜋 mapping from
each terminal to a non-negative penalty; we write the prize-collecting input as (𝑄, 𝜋; 𝑟). The
algorithm must connect terminals to the root by buying edges, and must pay the penalty for
unconnected terminals. The goal of the algorithm is to minimize the sum of edge costs and
penalty costs; we write PCST∗ (𝑄, 𝜋; 𝑟) to refer to the optimal solution to the input (𝑄, 𝜋; 𝑟).
A Lagrangian prize-collecting algorithm is an algorithm that has different approximation
ratios w.r.t. these two costs, such that it is 1-approximate on penalty costs. Specifically,
Goemans and Williamson [23] presented the following algorithm for prize-collecting Steiner
tree.

▶ Theorem 3 (due to [23]). There exists an approximation algorithm PCST for prize-
collecting Steiner tree such that, fixing any input (𝑄, 𝜋; 𝑟), it holds that

PCST𝑏 (𝑄, 𝜋; 𝑟) + 2 · PCST𝑝 (𝑄, 𝜋; 𝑟) ≤ 2 · PCST∗ (𝑄, 𝜋; 𝑟),

where PCST𝑏,PCST𝑝 are the buying and penalty costs of PCST, respectively.

In [34], a simple procedure is presented that converts a Lagrangian prize-collecting
procedure into a procedure which identifies a solution to a maximal subset of requests subject
to a budget per request. Combining this result with the algorithm of [23] yields Lemma 4,
which introduces the procedure PCSolve used in our algorithm.

▶ Lemma 4 (due to [23] and Proposition 21 from [34]). There exists a procedure PCSolve
which, given a prize-collecting Steiner tree input (𝑄, 𝜋; 𝑟), outputs a solution 𝑇 for a request
subset 𝑄′ ⊆ 𝑄 such that:

𝑐(𝑇) ≤ 2 ·∑𝑞∈𝑄′ 𝜋(𝑞).
For every 𝑄′′ ⊆ 𝑄 \𝑄′, it holds that ST∗ (𝑄′′; 𝑟) ≥ ∑

𝑞∈𝑄′′ 𝜋(𝑞).

Levels and pointers. The algorithm maintains for every pending request 𝑞 a level ℓ𝑞, which
is initially −∞. A service 𝜆 also has a level ℓ𝜆, which determines its budget for serving
requests. As services occur, they may increase the levels of requests. The algorithm also
maintains for request 𝑞 a pointer 𝜇𝑞 to the last service that increased the level of 𝑞. (A fine
point, as seen in the algorithm, is that a service may also appear in the pointer 𝜇𝑞 only for
“attempting” to increase ℓ𝑞.) Finally, overloading notation, each service 𝜆 also has a pointer
𝜇𝜆 that points to a prior service; this pointer is equal to the pointer 𝜇𝑞 for some request 𝑞

considered by 𝜆.

Residual delay counters and domes. The algorithm maintains a residual delay counter
𝑔𝑣,ℓ for every location 𝑣 and level ℓ; for time 𝑡, we define 𝑔𝑣,ℓ (𝑡) to be the value of 𝑔𝑣,ℓ

at time 𝑡. This counter grows with the delay cost incurred by level-ℓ requests on 𝑣. In
addition, the counters are occasionally decreased by services made by the algorithm; this can
be interpreted as the service “paying” for incurred delay out of its budget. Positive counters
correspond to incurred delay that has not yet been handled; such counters can trigger a
service, in the manner we now describe.

At any time 𝑡, and for every level ℓ, the algorithm considers positive residual delay
counters of levels at most ℓ inside 𝐵

(
𝑎(𝑡), 2ℓ

)
. Specifically, it considers the total unhandled

residual delay of requests of level at most ℓ inside the ring 𝐵
(
𝑎(𝑡), 2ℓ

)
\ 𝐵

(
𝑎(𝑡), 2ℓ−1), plus

unhandled residual delay of requests of level exactly ℓ inside the internal ball 𝐵
(
𝑎(𝑡), 2ℓ−1).

This forms a dome-like structure, as shown in Figure 1. The algorithm waits until a dome
corresponding to some level ℓ becomes critical, i.e., has a lot of unhandled residual delay,
and then starts a service. These notions are formalized in Definition 5.

STACS 2025

74:6 Nearly-Optimal Algorithm for Non-Clairvoyant Service with Delay

This visualization illustrates the structure of domes. The metric space visualized is a line, shown on
the horizontal axis. The vertical axis shows counter levels. The shapes in color correspond to the
different domes at the current time, which include different levels at different points, according to
their distance from the server.

Figure 1 Visualization of domes.

▶ Definition 5 (domes). For every time 𝑡, level ℓ, and 𝑣 ∈ 𝐵
(
𝑎(𝑡), 2ℓ

)
, define

𝑦ℓ (𝑣, 𝑡) :=
{
(𝑔𝑣,ℓ (𝑡))+ 𝑣 ∈ 𝐵

(
𝑎(𝑡), 2ℓ−1)∑

ℓ′≤ℓ (𝑔𝑣,ℓ′ (𝑡))+ 𝑣 ∈ 𝐵
(
𝑎(𝑡), 2ℓ

)
\ 𝐵

(
𝑎(𝑡), 2ℓ−1)

For time 𝑡 and level ℓ, define 𝑌ℓ (𝑡) :=
∑

𝑣∈𝐵(𝑎 (𝑡) ,2ℓ) 𝑦ℓ (𝑣, 𝑡); where 𝑡 is known from context,
we also write 𝑌ℓ . If 𝑌ℓ ≥ 2ℓ , we say that dome ℓ is critical.

Algorithm’s Description. Whenever dome ℓ becomes critical, we start a service 𝜆 of level
ℓ + 4. (If more than one dome is critical at the same time, we handle the dome of the largest
level first.) The service first considers whether the dome has any positive residual delay from
the inner ball 𝐵

(
𝑎𝜆, 2ℓ−1) = 𝐵

(
𝑎𝜆, 2ℓ𝜆−5). If not, the service 𝜆 is called primary. Otherwise,

consider a location 𝑣 of the inner ball that contributes positive residual delay to the dome;
it must be that 𝑔𝑣,ℓ > 0, which implies (through Proposition 9) that there exists a level-ℓ
pending request on 𝑣. The service arbitrarily chooses such a request 𝜎𝜆, and observes the
last service to modify the level of the request, i.e., 𝜇𝜎𝜆

; denote this service by 𝜆′. Depending
on 𝜆′, the algorithm decides if the service will invest for the future (“secondary” service) or
act greedily (“tertiary” service). Specifically, the algorithm maintains a counter 𝛽(𝜆′) for the
number of times 𝜆′ has triggered tertiary services; if the counter is low, 𝜆 becomes tertiary
and increments this counter; otherwise, 𝜆 will be secondary. After deciding if a service is
primary, secondary, or tertiary, the algorithm zeroes all positive residual delay on locations
in 𝐵

(
𝑎𝜆, 2ℓ𝜆

)
of levels up to ℓ𝜆; in particular, this zeroes the residual delay that triggered 𝜆.

Next, if the service is tertiary, it simply moves the server to 𝜎𝜆 and back, concluding the
service. Otherwise, 𝜆 is primary or secondary, and thus invests in serving pending requests,
through the method ServeEligible. In ServeEligible, the service considers the subset
of locations 𝑉𝜆 inside 𝐵

(
𝑎𝜆, 2ℓ𝜆

)
on which there are pending requests. To each location in 𝑉𝜆,

the algorithm assigns a budget of 𝑥𝜆 = 2ℓ𝜆/
√︁
|𝑉𝜆 | to visiting each such location; the locations

𝑉𝜆, together with their budgets as penalties, are transferred to PCSolve as a prize-collecting
Steiner tree input (where the root is the current location of the server 𝑎𝜆). PCSolve outputs
a tree connecting some locations 𝑄◦

𝜆
⊆ 𝑉𝜆 to 𝑎𝜆; this tree is then traversed by the server in

a DFS fashion, visiting 𝑄◦
𝜆

and ending at 𝑎𝜆. For the remaining locations 𝑉𝜆 \ 𝑄◦𝜆, where

N. Touitou 74:7

PCSolve pays the penalty, the algorithm decreases the delay counters for those locations
by 𝑥𝜆. On those locations, the algorithm makes pending requests of level at most ℓ𝜆 point to
𝜆, and upgrades their level to ℓ𝜆.

Finally, for primary services, the algorithm may move the server to a new location 𝑎′
𝜆
.

Recall that 𝜆 starts upon dome ℓ𝜆 − 4 becoming critical; if the majority of the residual delay
making dome ℓ𝜆 − 4 critical occurs inside a small-radius ball (specifically, radius 2ℓ𝜆−8), then
the center of this ball becomes the new location 𝑎′

𝜆
, at which the server rests at the end of

the service.

The non-clairvoyant algorithm for online service with delay is given in Algorithm 1, and
the ServeEligible method appears in Algorithm 2. We henceforth focus on analyzing
Algorithm 1 and proving Theorem 1.

Algorithm 1 Non-clairvoyant algorithm for online service with delay.

1 Function UponCritical (ℓ)
2 start a service 𝜆, and set ℓ𝜆 ← ℓ + 4.
3 denote by 𝑡 the current time, and by 𝑎𝜆 the current location of the server.
4 let 𝑉

†
𝜆
⊆ 𝐵

(
𝑎𝜆, 2ℓ𝜆−4) be the subset of locations 𝑣 where 𝑦ℓ𝜆−4 (𝑣, 𝑡) > 0.

5 if 𝑉
†
𝜆
∩ 𝐵

(
𝑎𝜆, 2ℓ𝜆−5) = ∅ then

6 say 𝜆 is primary.
7 else
8 let 𝜎𝜆 be an arbitrary request of level ℓ𝜆 − 4 on a point in 𝑉

†
𝜆
∩ 𝐵

(
𝑎𝜆, 2ℓ𝜆−5).

9 define 𝜇𝜆 ← 𝜇𝜎𝜆
.

10 if 𝛽(𝜇𝜆) ≥ 2
√︃��𝑉𝜇𝜆

�� then
11 say 𝜆 is secondary.
12 else
13 say 𝜆 is tertiary.

// if primary and most residual delay is in small-radius ball, mark its center for future
movement.

14 if 𝜆 is primary and ∃𝑎′ ∈ 𝐺: 𝑦ℓ𝜆−4
(
𝐵
(
𝑎′, 2ℓ𝜆−8) ∩𝑉†

𝜆
, 𝑡

)
> 2ℓ𝜆−5 then define 𝑎′

𝜆
:= 𝑎′.

15 foreach 𝑣 ∈ 𝐵
(
𝑎𝜆, 2ℓ𝜆

)
do // zero residual delay inside service ball, of levels at most ℓ𝜆.

16 foreach ℓ′ ≤ ℓ𝜆 do
17 set 𝑔𝑣,ℓ′ ← min(𝑔𝑣,ℓ′ , 0)

18 if 𝜆 is tertiary then
19 visit 𝜎𝜆 with the server, and return to 𝑎𝜆 afterwards†.
20 set 𝛽(𝜇𝜆) ← 𝛽(𝜇𝜆) + 1.
21 return
22 call ServeEligible(𝜆).
23 if 𝜆 is primary then move the server from 𝑎𝜆 to 𝑎′

𝜆
.

24 set 𝛽(𝜆) ← 0.
25 † In Line 19 of this algorithm, and in Line 5 of Algorithm 2, to avoid serving requests without

accounting for their delay, the algorithm does not consider requests of level greater than ℓ𝜆 as
served by the movements in 𝜆. thus, the algorithm might consider some requests as still pending
when they are, in fact, served.

STACS 2025

74:8 Nearly-Optimal Algorithm for Non-Clairvoyant Service with Delay

Algorithm 2 The ServeEligible method.

1 Function ServeEligible(𝜆)
2 let 𝑉𝜆 be the subset of locations in 𝐵

(
𝑎𝜆, 2ℓ𝜆

)
on which there are pending requests.

3 define 𝑥𝜆 ← 2ℓ𝜆√
|𝑉𝜆 |

.

4 run PCSolve(𝑉𝜆, 𝑥𝜆; 𝑎𝜆) to obtain a solution 𝑇 to the subset 𝑄◦
𝜆
⊆ 𝑉𝜆 of locations.

5 traverse 𝑇 with the server using DFS, returning to 𝑎𝜆 at the end; let 𝑄𝜆 be the set of
requests of types in 𝑄◦

𝜆
that are served†.

// upgrade surviving eligible requests, and invest in eligible location counters.
6 foreach 𝑣 ∈ 𝑉𝜆 do
7 foreach request 𝑞 on 𝑣 of level at most ℓ𝜆 do
8 set ℓ𝑞 ← ℓ𝜆.
9 set 𝜇𝑞 ← 𝜆.

10 decrease 𝑔𝑣,ℓ𝜆 by 𝑥𝜆.

3.2 Definitions and Properties
▶ Definition 6. We define the following.
1. Let Λ denote the set of services in the algorithm. We partition Λ into Λ1,Λ2,Λ3, the sets

of primary, secondary, and tertiary services, respectively.
2. For two services 𝜆1, 𝜆2 ∈ Λ where 𝜆2 occurs after 𝜆1, if 𝜇𝜆2 = 𝜆1 we say that 𝜆2 is assigned

to 𝜆1. Note that in this case 𝜆1 ∈ Λ1 ∪ Λ2, 𝜆2 ∈ Λ2 ∪ Λ3.
3. Let 𝜆 ∈ Λ1 ∪Λ2 be a service. If there exists a secondary service 𝜆′ ∈ Λ2 which is assigned

to 𝜆, then we call 𝜆 a certified service, and say that 𝜆′ certified 𝜆. We denote the set of
certified services by Λc ⊆ Λ1 ∪ Λ2.

▶ Proposition 7. For a certified service 𝜆 ∈ Λc, we have the following:
1. The service 𝜆 is certified by exactly one service 𝜆′ ∈ Λ2.
2. It holds that ℓ𝜆′ = ℓ𝜆 + 4.
3. It holds that 𝛿 (𝑎𝜆, 𝑎𝜆′) ≤ 2ℓ𝜆+1.

Proof. First, observing Line 9 of Algorithm 2, we note that if for request 𝑞 we have 𝜇𝑞 = 𝜆,
then it must be the case that ℓ𝑞 = ℓ𝜆 at that time. Note that 𝜆 is only certified by some
𝜆′ ∈ Λ2 if 𝜇𝜎𝜆′ = 𝜆, and thus ℓ𝜎𝜆′ = ℓ𝜆 at 𝑡𝜆′ ; but, ℓ𝜆′ = ℓ𝜎𝜆′ + 4 at 𝑡𝜆′ , proving the
second item. Moreover, note that 𝜎𝜆′ ∈ 𝑉𝜆, and thus 𝛿 (𝑎𝜆, 𝜎𝜆′) ≤ 2ℓ𝜆 . In addition, since
𝜎𝜆′ ∈ 𝐵

(
𝑎𝜆′ , 2ℓ𝜆′−5), we have 𝛿 (𝑎𝜆′ , 𝜎𝜆′) ≤ 2ℓ𝜆′−5 = 2ℓ𝜆−1. The triangle inequality thus implies

𝛿 (𝑎𝜆, 𝑎𝜆′) ≤ 2ℓ𝜆 + 2ℓ𝜆−1 ≤ 2ℓ𝜆+1, proving the third item.
We now prove the first item, i.e., the uniqueness of 𝜆′. Suppose, for contradiction, that

a certified service 𝜆 ∈ Λc is certified by two services 𝜆′, 𝜆′′ ∈ Λ2, and assume without loss
of generality that 𝜆′ occurs before 𝜆′′. We prove that after 𝜆′, there remains no pending
request 𝑞 with 𝜇𝑞 = 𝜆, and thus 𝜆′′ cannot certify 𝜆 later on. Indeed, consider such a
request 𝑞 immediately before 𝜆′; it holds that 𝑞 ∈ 𝑉𝜆 ⊆ 𝐵

(
𝑎𝜆, 2ℓ𝜆

)
, and it must also be

the case that ℓ𝑞 = ℓ𝜆 at that time. But, we’ve shown that 𝛿 (𝑎𝜆, 𝑎𝜆′) ≤ 2ℓ𝜆+1, and thus
𝐵
(
𝑎𝜆, 2ℓ𝜆

)
⊆ 𝐵

(
𝑎𝜆′ , 2ℓ𝜆 + 4

)
= 𝐵

(
𝑎𝜆′ , 2ℓ𝜆′

)
. Thus, 𝑞 ∈ 𝑉𝜆′ , and will either be served by 𝜆′ or

have 𝜇𝑞 be set to 𝜆′, in contradiction to having 𝜇𝑞 = 𝜆 at 𝑡𝜆′′ . ◀

▶ Proposition 8. For every level 𝑖 it holds that 𝑌𝑖 ≤ 2𝑖+2 at every point in time.

The proof of Proposition 8 is in Section B.

N. Touitou 74:9

▶ Proposition 9. For every point 𝑣 ∈ 𝐺, level ℓ and time 𝑡, it holds that 𝑔𝑣,ℓ (𝑡) ≤ 𝑑𝑄′ (𝑡),
where 𝑄′ is the set of pending requests of level exactly ℓ on 𝑣 at time 𝑡. (In particular, when
𝑄′ = ∅, it holds that 𝑔𝑣,ℓ (𝑡) ≤ 0.)

Proof. We prove this by induction as time advances, noting that the proposition holds at
time 0 (before any requests are released). Note that 𝑔𝑣,ℓ (𝑡) grows at the same rate as the
delay of pending requests of level ℓ on 𝑣, and thus delay growth cannot break the invariant.
In addition, counter decreases in services cannot break the invariant. The only risky event
is when a request of level ℓ is upgraded or completed. But, this only happens in a service
𝜆 such that ℓ𝜆 ≥ ℓ and 𝑣 ∈ 𝐵

(
𝑎𝜆, 2ℓ𝜆

)
. Note that in such services, Line 17 of Algorithm 1

ensures that 𝑔𝑣,ℓ is non-positive after the service, maintaining the invariant. ◀

▶ Proposition 10. During a service 𝜆, if the algorithm moves its server from 𝑎𝜆 to 𝑎′
𝜆

in
Line 23 of Algorithm 1, then 2ℓ𝜆−5 − 2ℓ𝜆−8 ≤ 𝛿

(
𝑎𝜆, 𝑎

′
𝜆

)
≤ 2ℓ𝜆−4 + 2ℓ𝜆−8.

Proof. Note that the server only moves to 𝑎′
𝜆

when 𝜆 is primary. In this case, it holds that
𝑉
†
𝜆
∩ 𝐵

(
𝑎𝜆, 2ℓ𝜆−5) = ∅. But, due to Proposition 9, this implies that 𝑔𝑣,ℓ𝜆−4 (𝑡) ≤ 0 for every

𝑣 ∈ 𝐵
(
𝑎𝜆, 2ℓ𝜆−5); thus, for such 𝑣 we have 𝑦ℓ𝜆−4 (𝑣, 𝑡) = 0, and thus 𝑉†

𝜆
is contained in the ring

𝐵
(
𝑎𝜆, 2ℓ𝜆−4) \ 𝐵 (

𝑎𝜆, 2ℓ𝜆−5). But, from the definition of 𝑎′
𝜆
, 𝐵

(
𝑎′
𝜆
, 2ℓ𝜆−8) must contain a point

from 𝑉
†
𝜆
, which completes the proof. ◀

For a service 𝜆, define the cost of the service, denoted 𝑐(𝜆), to be the total movement of
the server during 𝜆 plus the total amount by which the service decreases counters 𝑔𝑣,ℓ .

▶ Proposition 11. ALG ≤ ∑
𝜆∈Λ 𝑐(𝜆).

Proof. To prove the proposition, we just have to prove that the total delay incurred by the
algorithm is upper-bounded by the total amount by which counters are decreased in the
algorithm. First, recall the assumption that the delay of requests tends to infinity as time
advances; thus, every request is eventually served by the algorithm. Thus, once all requests
are served, Proposition 9 implies that 𝑔𝑣,ℓ ≤ 0 for every 𝑣 ∈ 𝐺 and level ℓ, which completes
the proof. ◀

The following observation results from the fact that every counter 𝑔𝑣,ℓ is counted in
exactly one dome (and can also easily be seen in Figure 1).

▶ Observation 12. At any time 𝑡, and for every level ℓ, it holds that∑︁
ℓ′≤ℓ

𝑌ℓ′ =
∑︁

𝑣∈𝐵(𝑎 (𝑡) ,2ℓ)

∑︁
ℓ′≤ℓ
(𝑔𝑣,ℓ′)+.

▶ Lemma 13. ALG ≤ 𝑂 (
√
𝑘) ·∑𝜆∈Λ1 2ℓ𝜆 +𝑂 (

√
𝑘) ·∑𝜆∈Λc 2ℓ𝜆 .

Proof. Applying Proposition 11, it is enough to bound
∑

𝜆∈Λ 𝑐(𝜆). We first bound the cost of
tertiary services

∑
𝜆∈Λ3 𝑐(𝜆). Consider a tertiary service 𝜆 ∈ Λ3; it incurs the following costs:

1. It zeroes any positive counters 𝑔𝑣,ℓ for every 𝑣 ∈ 𝐵
(
𝑎𝜆, 2ℓ𝜆

)
and ℓ ≤ ℓ𝜆. The cost of this is

at most∑︁
𝑣∈𝐵(𝑎𝜆 ,2ℓ𝜆)

∑︁
ℓ≤ℓ𝜆
(𝑔𝑣,ℓ)+ =

∑︁
ℓ≤ℓ𝜆

𝑌ℓ ≤ 2ℓ𝜆+3,

where the equality is due to Observation 12, and the inequality is due to Proposition 8
and summing a geometric sequence.

STACS 2025

74:10 Nearly-Optimal Algorithm for Non-Clairvoyant Service with Delay

2. It moves the server from 𝑎𝜆 to 𝜎𝜆 and back (Line 19 of Algorithm 1). Since 𝜎𝜆 ∈
𝐵
(
𝑎𝜆, 2ℓ𝜆−4), the cost of this is at most 2ℓ𝜆−3.

Overall, the cost of a tertiary service 𝜆 is 𝑂 (2ℓ𝜆).
Now, consider a non-tertiary service 𝜆 ∈ Λ1 ∪ Λ2; there are at most 2 ·

√︁
|𝑉𝜆 | + 1 tertiary

services assigned to 𝜆′, as each such service raises 𝛽(𝜆) by 1 and 𝛽(𝜆) does not exceed
2 ·

√︁
|𝑉𝜆 | + 1; note that 2 ·

√︁
|𝑉𝜆 | + 1 = 𝑂 (

√
𝑘). Moreover, for a tertiary service 𝜆′ assigned to 𝜆

we have ℓ𝜆′ = ℓ𝜆+4. Overall, we have that the cost of tertiary services is 𝑂 (
√
𝑘) ·∑𝜆∈Λ1∪Λ2 2ℓ𝜆 .

Next, we bound the cost of non-tertiary services. The cost of a service 𝜆 ∈ Λ1 ∪ Λ2

consists of the following terms:
1. It zeroes positive counters 𝑔𝑣,ℓ for every 𝑣 ∈ 𝐵

(
𝑎𝜆, 2ℓ𝜆

)
and ℓ ≤ ℓ𝜆. This cost can be

bounded by 𝑂 (1) · 2ℓ𝜆 , using the same argument as for tertiary services.
2. In Algorithm 2, the algorithm moves the server (Line 5) and decreases counters (Line 10).

From the guarantee of PCSolve in Lemma 4, the cost of moving the server is at most
2 · 2 · 𝑥𝜆 ·

��𝑄◦
𝜆

��; the cost of decreasing counters is (|𝑉𝜆 | −
��𝑄◦

𝜆

��) · 𝑥𝜆. Overall, the cost of this
item is at most 𝑂 (1) · |𝑉𝜆 | · 𝑥𝜆, which is at most 𝑂 (1) · 2ℓ𝜆 ·

√︁
|𝑉𝜆 |. Using the fact that

|𝑉𝜆 | ≤ 𝑘, the cost of this item is at most 𝑂 (
√
𝑘) · 2ℓ𝜆 .

3. In Line 23 of Algorithm 1, the server might move to a new location 𝑎′
𝜆
. However,

𝛿
(
𝑎𝜆, 𝑎

′
𝜆

)
≤ 2ℓ𝜆−4 + 2ℓ𝜆−8 due to Proposition 10. Thus, the cost of this movement is also

𝑂 (1) · 2ℓ𝜆 .
Overall, it holds that 𝑐(𝜆) ≤ 𝑂 (

√
𝑘) · 2ℓ𝜆 ; combining this with the bound for tertiary services,

we get

ALG ≤ 𝑂 (
√
𝑘) ·

∑︁
𝜆∈Λ1∪Λ2

2ℓ𝜆 . (1)

Finally, we bound
∑

𝜆∈Λ2 2ℓ𝜆 ≤ 𝑂 (1)∑𝜆∈Λc 2ℓ𝜆 , which completes the proof. Consider a
secondary service 𝜆 ∈ Λ2, which certifies some prior service 𝜆′ = 𝜇𝜆. Through Proposition 7,
it holds that ℓ𝜆′ = ℓ𝜆 − 4, and thus 2ℓ𝜆 ≤ 𝑂 (1) · 2ℓ𝜆′ . Again through Proposition 7, it holds
that 𝜆′ is only certified once (by 𝜆); thus, summing over secondary services yields∑︁

𝜆∈Λ2

2ℓ𝜆 ≤ 𝑂 (1) ·
∑︁
𝜆∈Λ1

2ℓ𝜆 ,

which combined with Equation (1) completes the proof. ◀

3.3 Charging Cylinders

It remains to bound the terms
∑

𝜆∈Λ1 2ℓ𝜆 and
∑

𝜆∈Λc 2ℓ𝜆 . To do so, we restate the notions of
charging balls and charging cylinders introduced in [35].

First, consider our goal. The optimal solution takes some tour through the graph over
time, and we would like to map its resulting cost to the services of the algorithm. To this
end, we give each service 𝜆 temporary “ownership” of a set of edges and edge parts, for
some interval in time. We then charge the cost associated with 𝜆 (i.e. 2ℓ𝜆) to the total cost
incurred by the optimal solution in traversing these edges and edge parts during the given
interval. In doing so, one must ensure that no movement of OPT is charged to twice; this is
ensured by having disjointness, which is the property that no edge part is owned by more
than one service at any point in time.

N. Touitou 74:11

Charging shapes and cylinders. A charging shape is a shape in the metric space that
contains some edges and “parts” of edges. (For the sake of this definition, an edge 𝑒 can be
partitioned into parts whose weights sum up to 𝑐(𝑒).)

A charging ball centered at 𝑣 of radius 𝑟 – which, overloading notation, we denote 𝐵(𝑣, 𝑟)
– is a charging shape such that:

If both 𝑢, 𝑤 are in 𝐵(𝑣, 𝑟) then 𝐵(𝑣, 𝑟) contains the entire edge {𝑢, 𝑤}.
If 𝑢 ∈ 𝐵(𝑣, 𝑟) but 𝑤 ∉ 𝐵(𝑣, 𝑟), then 𝐵(𝑣, 𝑟) contains the part of {𝑢, 𝑤} connected to 𝑢 of
weight 𝑟 − 𝛿 (𝑣, 𝑢).

A charging cylinder is a pair (𝐵, 𝐼) where 𝐼 is a time interval and 𝐵 is a charging shape.

Disjointness. We say that a set of charging shapes is disjoint if the parts of edges that
appear in different charging shapes do not intersect. We say that a set of charging cylinders
is disjoint if for every time 𝑡 it holds that the charging shapes of the cylinders whose time
intervals contain 𝑡 are disjoint.

Intersections. For a set of edges 𝐸 ′ ⊆ 𝐸 and charging shape 𝐵, we define 𝑐(𝐸 ′ ∩ 𝐵) to
be the total weight of edges in 𝐸 ′ that appear in 𝐵. For a cylinder 𝛾 = (𝐵, 𝐼), we define
𝑐(OPT ∩ 𝛾) (called the intersection of OPT with 𝛾) to be the total weight of edges in 𝐸 ′

that appear in 𝐵, where 𝐸 ′ is the set of edges traversed by OPT at least once during 𝐼.
Theorem 14 is due to [35], and is used to relate the total intersection of the cylinder set we

construct to the cost of the optimal solution. The intuition for the theorem is the following:
suppose we are given a set of cylinders Γ whose shapes are balls centered at 𝑁 points. One
can replace every such charging ball of radius 𝑟 with a perforated charging ball, from which
balls of small radius Θ(𝑟/𝑁2) are removed around each of the 𝑁 points; let Γ′ be the set of
cylinders after this perforation process. In Γ′, two cylinders whose shapes are (perforated)
charging balls with radii 𝑟1, 𝑟2 where 𝑟1 ≤ 𝑂 (𝑟2/𝑁2) are guaranteed to be disjoint. Suppose
that in the original set Γ, every two cylinders with radii within a constant factor from each
other are also disjoint; after the perforation, we can partition Γ′ into Θ(log 𝑁) disjoint classes.
This bounds the intersection of Γ′ with OPT by at most Θ(log 𝑁) ·OPT. Moreover, one can
observe that this perforation of a cylinder’s shape decreases its intersection with OPT by at
most a constant times the charging ball’s radius; this relates the intersection of Γ with OPT
to the intersection of Γ′ with OPT. For more intuition regarding cylinders and Theorem 14,
see Figure 2.

▶ Theorem 14 ([35]). Let Γ be a set of cylinders such that for every cylinder 𝛾 ∈ Γ its
charging shape 𝐵

(
𝑣𝛾 , 𝑟𝛾

)
is a ball. Partition Γ into {Γ𝑖} where for every 𝛾 ∈ Γ𝑖 it holds that⌈

log 𝑟𝛾
⌉
= 𝑖. If for every 𝑖 the set of cylinders Γ𝑖 is disjoint, then for every constant 𝑐 > 0 it

holds that∑︁
𝛾∈Γ

𝑐(OPT ∩ 𝛾) ≤ 𝑂 (log 𝑘) ·OPT + 𝑐 ·
∑︁
𝛾∈Γ

𝑟𝛾 ,

where 𝑘 is the number of centers used by cylinders in Γ.

Through constructing and analyzing such cylinders, we prove the following lemmas.

▶ Lemma 15. It holds that
∑

𝜆∈Λ1 2ℓ𝜆 ≤ 𝑂 (log 𝑘) ·OPT.

▶ Lemma 16. It holds that
∑

𝜆∈Λc 2ℓ𝜆 ≤ 𝑂 (log 𝑘) ·OPT.

STACS 2025

74:12 Nearly-Optimal Algorithm for Non-Clairvoyant Service with Delay

(a) cylinders. (b) perforated cylinders.

This figure illustrates the concept of cylinders used in this paper and in the proof of Theorem 14.
Figure 2a shows a metric space 𝐺 which is a line, the points of which appear on the vertical axis.
The tour of the optimal server appears as an axis-aligned curve traversing space over time; the
length of the solid parts of the curve correspond to the movement cost of the optimal solution.
Two charging cylinders appear in the figure, whose charging shapes are balls; those balls appear as
intervals in the one-dimensional metric space, and thus the cylinder appears as a rectangle in the
figure. For each cylinder 𝛾, the part of the optimal tour counted towards 𝑐(OPT ∩ 𝛾) is shown in
red. Note that as the shown cylinders are disjoint, the sum of

∑
𝛾 𝑐(OPT ∩ 𝛾) lower-bounds OPT.

Figure 2b shows the main tool used in proving Theorem 14 in [35], which is perforation; in essence,
lower-radii charging balls are removed from each cylinder around each point in the metric space,
enabling immediate disjointness with all cylinders of much lower radii.

Figure 2 Illustration of cylinders.

The proof of Lemma 15 appears in Section A, while the proof of Lemma 16 appears in
the remainder of this section. We now note that given these lemmas, the proof of the main
theorem is complete.

Proof of Theorem 1. The proof is immediate from Lemma 13, Lemma 15 and Lemma 16. ◀

The remainder of this section proves Lemma 16. For every service 𝜆 ∈ Λc, we denote by
Λ𝜆 the set of tertiary services assigned to 𝜆. We also define Σ𝜆 := {𝜎𝜆′ |𝜆′ ∈ Λ𝜆}; note that
Σ𝜆 ⊆ 𝐸𝜆. Finally, we define Σ◦

𝜆
:= 𝑉 (Σ𝜆).

First, we study the size of the set Σ◦
𝜆
.

▶ Proposition 17. For every 𝜆 ∈ Λc, it holds that
��Σ◦

𝜆

�� = ⌈
2
√︁
|𝑉𝜆 |

⌉
.

Proof. First, note that |Σ𝜆 | is exactly the final value of the counter 𝛽(𝜆), as each tertiary
service assigned to 𝜆 increases 𝛽(𝜆) by 1 (Line 20 of Algorithm 1). A service assigned to 𝜆

will only be tertiary if 𝛽(𝜆) < 2
√︁
|𝑉𝜆 |; otherwise, it would be secondary. Thus, the final value

of the counter is at most
⌈
2
√︁
|𝑉𝜆 |

⌉
. However, we know that a secondary service is assigned to

𝜆, as 𝜆 ∈ Λc. Thus, the final value of 𝛽(𝜆) is exactly
⌈
2
√︁
|𝑉𝜆 |

⌉
, completing the proof. ◀

▶ Definition 18. For a service 𝜆 ∈ Λc, define:
𝐸𝜆 to be the set of pending requests of level at most ℓ𝜆 on points in Σ◦

𝜆
at 𝑡𝜆.

The certified time interval 𝐼c (𝜆) := (min𝑞∈𝐸𝜆
𝑟𝑞 ,max𝜆′∈Λ𝜆

𝑡𝜆′].
The certified cylinder 𝛾c (𝜆) := (𝐵

(
𝑎𝜆, 3 · 2ℓ𝜆

)
, 𝐼c (𝜆)).

We also define the justified residual delay of 𝜆, which is the amount 𝐷∗c,𝜆 :=
∑

𝑣∈𝑉∗
𝜆
𝑥𝜆, where

𝑉∗
𝜆
⊆ Σ◦

𝜆
is the subset of locations which were not visited by the optimal solution during 𝐼c (𝜆).

N. Touitou 74:13

To prove that the intersection of a certified cylinder with the optimal solution is sufficiently
large, we first restate a proposition from [35]. Intuitively, it states that if the set of requested
terminals in a Steiner tree input is concentrated in a ball, a constant fraction of the cost
required for connecting them must be incurred within a padded version of the ball, whose
radius is larger by a constant factor.

▶ Proposition 19 (restatement of Proposition 3.22 from [35]). Let 𝑉 be a set of locations that
are contained in 𝐵(𝑣, 𝑟), for some location 𝑣 and radius 𝑟, and let 𝐺′ ⊆ 𝐺 be any subgraph
connecting 𝑉 . Then it holds that 𝑐(𝐺′ ∩ B(𝑣, 3𝑟)) ≥ ST(𝑉)/2.

▶ Proposition 20. It holds that
∑

𝜆∈Λc 𝐷∗c,𝜆 ≤ OPT.

Proof. We observe charging triplets of the form (𝑣, ℓ, 𝐼), where 𝑣 is a location, ℓ is a level,
and 𝐼 is a time interval. Every certified service 𝜆 ∈ Λc owns triplets. Specifically, for every
service 𝜆 ∈ Λc, location 𝑣 ∈ 𝑉∗

𝜆
, and 𝜆𝑣 the tertiary service assigned to 𝜆 where 𝜎𝜆𝑣

∈ 𝑣, we
say that 𝜆 owns the triplet (𝑣, ℓ𝜆, 𝐼𝑣), where 𝐼𝑣 = [𝑡𝜆, 𝑡𝜆𝑣

] be the time interval between 𝜆 and
the service 𝜆𝑣. We now claim the following:
1. If 𝜆 owns triplet 𝑣, ℓ, 𝐼, then a delay of at least 𝑥𝜆 is incurred by requests of level ℓ on 𝑣

during 𝐼. Moreover, these requests are pending in the optimal solution during the interval
𝐼.

2. No two triplets intersect. That is, there are no two services 𝜆1, 𝜆2 ∈ Λc such that 𝜆1 owns
(𝑣, ℓ, 𝐼1), 𝜆2 owns (𝑣, ℓ, 𝐼2) and 𝐼1 ∩ 𝐼2 ≠ ∅.

The first claim implies that the optimal solution incurs a delay cost of 𝐷∗c,𝜆 per service 𝜆 ∈ Λc,
and the second claim implies that no delay cost is charged twice. Together, these two claims
complete the proof.
Claim 1. Fix service 𝜆 ∈ Λc, location 𝑣 ∈ 𝑉∗

𝜆
, and tertiary service 𝜆𝑣 assigned to 𝜆 where

𝜎𝜆𝑣
∈ 𝑣; let 𝐼𝑣 = [𝑡𝜆, 𝑡𝜆𝑣

], and set ℓ := ℓ𝜆. As 𝑣 ∈ Σ◦
𝜆
⊆ 𝑉𝜆, it holds immediately after 𝜆

that 𝑔𝑣,ℓ𝜆 ≤ −𝑥𝜆 (due to Line 17 of Algorithm 1 and Line 10 of Algorithm 2). However,
at 𝑡𝜆𝑣

, it holds that 𝑦ℓ𝜆𝑣 −4 (𝑣) > 0; moreover, it holds that 𝑣 ∈ 𝐵
(
𝑎𝜆𝑣

, 2ℓ𝜆𝑣 −5), and thus
𝑦ℓ𝜆𝑣 −4

(
𝑣, 𝑡𝜆𝑣

)
= (𝑔𝑣,ℓ𝜆𝑣 −4 (𝑡𝜆𝑣

))+ = (𝑔𝑣,ℓ𝜆 (𝑡𝜆𝑣
))+. Thus, the counter 𝑔𝑣,ℓ𝜆 has increased by at

least 𝑥𝜆 during the time interval 𝐼𝑣 := (𝑡𝜆, 𝑡𝜆𝑣
].

Next, we claim that inside 𝐼𝑣, there was no non-tertiary service 𝜆′ of level at least ℓ such
that 𝑣 ∈ 𝐵

(
𝑎𝜆′ , 2ℓ𝜆

)
. Assume otherwise, and note that 𝜎𝜆𝑣

is pending on 𝑣, and is of level
exactly ℓ; thus, after 𝜆′, it would either be served or have 𝜇𝜎𝜆𝑣

be set to 𝜆′, in contradiction
to 𝜆𝑣 being assigned to 𝜆.

As a result, we claim that every request on 𝑣 of level ℓ𝜆 during 𝐼𝑣 belongs to 𝐸𝜆. First,
note that immediately after 𝜆, all pending level-ℓ requests on 𝑣 are in 𝐸𝜆. Suppose for
contradiction that this is broken at some point; that is, a new level-ℓ request joins. This
could only happen if its level is upgraded by some non-tertiary service during 𝐼𝑣, but there is
no such service due to the previous claim.

Finally, note that the requests of 𝐸𝜆 are pending in the optimal solution during 𝐼𝑣, as
the optimal server did not visit 𝑣 during 𝐼c (𝜆); thus, the optimal solution incurs the same
delay cost of at least 𝑥𝜆.
Claim 2. Assume that two triplets (𝑣, ℓ, 𝐼1), (𝑣, ℓ, 𝐼2) that are owned by services 𝜆1, 𝜆2 ∈ Λc,
are such that 𝐼1 ∩ 𝐼2 ≠ ∅; note that ℓ𝜆1 = ℓ𝜆2 = ℓ. Assume without loss of generality that 𝜆1
is the earlier service; then, 𝑡𝜆2 ∈ 𝐼1. Note that 𝑣 ∈ 𝐵

(
𝑎𝜆2 , 2ℓ𝜆2

)
; however, this cannot be, at

no non-tertiary service 𝜆 of level at least ℓ can occur during 𝐼1 such that 𝑣 ∈ 𝐵
(
𝑎𝜆, 2ℓ𝜆

)
, as

seen in the proof of the first claim. ◀

▶ Proposition 21. For every 𝜆 ∈ Λc, it holds that 2ℓ𝜆−1 ≤ 𝑐(OPT ∩ 𝛾c (𝜆)) + 𝐷∗c,𝜆.

STACS 2025

74:14 Nearly-Optimal Algorithm for Non-Clairvoyant Service with Delay

Proof. Consider the set of locations 𝑊 := Σ◦
𝜆
\𝑉∗

𝜆
, which is a subset of 𝑉𝜆. These locations

were not visited during 𝜆, as the solution computed by PCSolve in Line 4 of Algorithm 2
does not include them. However, due to the guarantee of PCSolve in Lemma 4, this implies
that

ST∗ (𝑊 ; 𝑎𝜆) ≥ 𝑥𝜆 · |𝑊 | = 2ℓ𝜆/
√︁
|𝑉𝜆 | · |𝑊 |.

Noting that 𝑊 ⊆ 𝐵
(
𝑎𝜆, 2ℓ𝜆

)
, we have ST∗ (𝑊) ≥ ST∗ (𝑊 ; 𝑎𝜆) − 2ℓ𝜆 . Applying Propo-

sition 19, denoting by 𝐺∗ the subgraph traversed by OPT during 𝐼c (𝜆), it holds that
𝑐
(
𝐺∗ ∩ 𝐵

(
𝑎𝜆, 3 · 2ℓ𝜆

))
≥ ST∗ (𝑊)/2. Combining the above, we get:

𝑐(OPT ∩ 𝛾c (𝜆)) + 𝐷∗c,𝜆 ≥ ST∗ (𝑊)/2 + (
��Σ◦𝜆�� − |𝑊 |)𝑥𝜆

≥ 2ℓ𝜆−1√︁
|𝑉𝜆 |
· |𝑊 | − 2ℓ𝜆−1 + (

��Σ◦𝜆�� − |𝑊 |) 2ℓ𝜆√︁
|𝑉𝜆 |

≥ 2ℓ𝜆−1 ·
(
|𝑊 |√︁
|𝑉𝜆 |
+

��Σ◦
𝜆

�� − |𝑊 |√︁
|𝑉𝜆 |

− 1
)
= 2ℓ𝜆−1 ·

(��Σ◦
𝜆

��√︁
|𝑉𝜆 |
− 1

)
≥ 2ℓ𝜆−1

where the final inequality is due to the fact that
��Σ◦

𝜆

�� = ⌈
2
√︁
|𝑉𝜆 |

⌉
, due to Proposition 17. ◀

▶ Proposition 22. For every ℓ, the set of cylinders {𝛾c (𝜆) |𝜆 ∈ Λc ∧ ℓ𝜆 = ℓ} is disjoint.

The proof of Proposition 22 appears in Section B.

Proof of Lemma 16. It holds that∑︁
𝜆∈Λc

2ℓ𝜆 ≤ 2
∑︁
𝜆∈Λc

(𝑐(OPT ∩ 𝛾c (𝜆)) + 𝐷∗c,𝜆) ≤ 𝑂 (log 𝑘) ·OPT+𝑂 (1) ·OPT = 𝑂 (log 𝑘) ·OPT

where the first inequality is due to Proposition 21, and the second inequality is due to
Proposition 22 and Proposition 20. ◀

4 Conclusions

In this paper, we presented a 𝑂 (min
{√

𝑛 log 𝑛,
√
𝑚 log𝑚

}
)-competitive algorithm for non-

clairvoyant online service with delay, that is deterministic and runs in polynomial time. This
nearly matches the lower bounds of Ω(

√
𝑛) and Ω(

√
𝑚) on competitiveness that appear in [4].

However, the choice of metric space for the problem greatly affects the achievable
competitive ratio for non-clairvoyant service with delay. The square-root lower bounds in [4]
are obtained for a uniform metric space; however, for a metric space which is a line, an
𝑂 (log 𝑛)-competitive non-clairvoyant algorithm exists [14]. Given this stark difference in
competitive ratio, it would be interesting to identify a salient property of the metric space,
and study competitiveness as a function of this property.

References
1 Itai Ashlagi, Yossi Azar, Moses Charikar, Ashish Chiplunkar, Ofir Geri, Haim Kaplan, Rahul M.

Makhijani, Yuyi Wang, and Roger Wattenhofer. Min-cost bipartite perfect matching with
delays. In Approximation, Randomization, and Combinatorial Optimization. Algorithms
and Techniques, APPROX/RANDOM 2017, August 16-18, 2017, Berkeley, CA, USA, pages
1:1–1:20, 2017. doi:10.4230/LIPIcs.APPROX-RANDOM.2017.1.

https://doi.org/10.4230/LIPIcs.APPROX-RANDOM.2017.1

N. Touitou 74:15

2 Yossi Azar, Ashish Chiplunkar, Shay Kutten, and Noam Touitou. Set cover with delay -
clairvoyance is not required. In Fabrizio Grandoni, Grzegorz Herman, and Peter Sanders,
editors, 28th Annual European Symposium on Algorithms, ESA 2020, September 7-9, 2020,
Pisa, Italy (Virtual Conference), volume 173 of LIPIcs, pages 8:1–8:21. Schloss Dagstuhl –
Leibniz-Zentrum für Informatik, 2020. doi:10.4230/LIPIcs.ESA.2020.8.

3 Yossi Azar and Amit Jacob Fanani. Deterministic min-cost matching with delays. In Ap-
proximation and Online Algorithms - 16th International Workshop, WAOA 2018, Helsinki,
Finland, August 23-24, 2018, Revised Selected Papers, pages 21–35, 2018. doi:10.1007/
978-3-030-04693-4_2.

4 Yossi Azar, Arun Ganesh, Rong Ge, and Debmalya Panigrahi. Online service with delay. In
Proceedings of the 49th Annual ACM SIGACT Symposium on Theory of Computing, STOC
2017, Montreal, QC, Canada, June 19-23, 2017, pages 551–563, 2017. doi:10.1145/3055399.
3055475.

5 Yossi Azar, Runtian Ren, and Danny Vainstein. The min-cost matching with concave delays
problem. In Dániel Marx, editor, Proceedings of the 2021 ACM-SIAM Symposium on Discrete
Algorithms, SODA 2021, Virtual Conference, January 10 - 13, 2021, pages 301–320. SIAM,
2021. doi:10.1137/1.9781611976465.20.

6 Yossi Azar and Noam Touitou. General framework for metric optimization problems with
delay or with deadlines. In 60th IEEE Annual Symposium on Foundations of Computer
Science, FOCS 2019, Baltimore, Maryland, USA, November 9-12, 2019, pages 60–71, 2019.
doi:10.1109/FOCS.2019.00013.

7 Yossi Azar and Noam Touitou. Beyond tree embeddings - a deterministic framework for
network design with deadlines or delay. In 61st IEEE Annual Symposium on Foundations of
Computer Science, FOCS 2020, Durham, NC, USA, November 16-19, 2020, pages 1368–1379.
IEEE, 2020. doi:10.1109/FOCS46700.2020.00129.

8 Marcin Bienkowski, Martin Böhm, Jaroslaw Byrka, Marek Chrobak, Christoph Dürr, Lukáš
Folwarczný, Lukasz Jez, Jirí Sgall, Kim Thang Nguyen, and Pavel Veselý. New results on multi-
level aggregation. Theor. Comput. Sci., 861:133–143, 2021. doi:10.1016/j.tcs.2021.02.016.

9 Marcin Bienkowski, Martin Böhm, Jaroslaw Byrka, Marek Chrobak, Christoph Dürr, Lukáš
Folwarczný, Lukasz Jez, Jiri Sgall, Nguyen Kim Thang, and Pavel Veselý. Online algorithms for
multi-level aggregation. In 24th Annual European Symposium on Algorithms, ESA 2016, August
22-24, 2016, Aarhus, Denmark, pages 12:1–12:17, 2016. doi:10.4230/LIPIcs.ESA.2016.12.

10 Marcin Bienkowski, Martin Böhm, Jaroslaw Byrka, and Jan Marcinkowski. Online facility
location with linear delay. In Amit Chakrabarti and Chaitanya Swamy, editors, Approximation,
Randomization, and Combinatorial Optimization. Algorithms and Techniques, APPROX/RAN-
DOM 2022, September 19-21, 2022, University of Illinois, Urbana-Champaign, USA (Virtual
Conference), volume 245 of LIPIcs, pages 45:1–45:17. Schloss Dagstuhl – Leibniz-Zentrum für
Informatik, 2022. doi:10.4230/LIPIcs.APPROX/RANDOM.2022.45.

11 Marcin Bienkowski, Jaroslaw Byrka, Marek Chrobak, Lukasz Jez, Dorian Nogneng, and Jirí
Sgall. Better approximation bounds for the joint replenishment problem. In Proceedings of the
Twenty-Fifth Annual ACM-SIAM Symposium on Discrete Algorithms, SODA 2014, Portland,
Oregon, USA, January 5-7, 2014, pages 42–54, 2014. doi:10.1137/1.9781611973402.4.

12 Marcin Bienkowski, Artur Kraska, Hsiang-Hsuan Liu, and Pawel Schmidt. A primal-dual online
deterministic algorithm for matching with delays. In Approximation and Online Algorithms -
16th International Workshop, WAOA 2018, Helsinki, Finland, August 23-24, 2018, Revised
Selected Papers, pages 51–68, 2018. doi:10.1007/978-3-030-04693-4_4.

13 Marcin Bienkowski, Artur Kraska, and Pawel Schmidt. A match in time saves nine: De-
terministic online matching with delays. In Approximation and Online Algorithms - 15th
International Workshop, WAOA 2017, Vienna, Austria, September 7-8, 2017, Revised Selected
Papers, pages 132–146, 2017. doi:10.1007/978-3-319-89441-6_11.

STACS 2025

https://doi.org/10.4230/LIPIcs.ESA.2020.8
https://doi.org/10.1007/978-3-030-04693-4_2
https://doi.org/10.1007/978-3-030-04693-4_2
https://doi.org/10.1145/3055399.3055475
https://doi.org/10.1145/3055399.3055475
https://doi.org/10.1137/1.9781611976465.20
https://doi.org/10.1109/FOCS.2019.00013
https://doi.org/10.1109/FOCS46700.2020.00129
https://doi.org/10.1016/j.tcs.2021.02.016
https://doi.org/10.4230/LIPIcs.ESA.2016.12
https://doi.org/10.4230/LIPIcs.APPROX/RANDOM.2022.45
https://doi.org/10.1137/1.9781611973402.4
https://doi.org/10.1007/978-3-030-04693-4_4
https://doi.org/10.1007/978-3-319-89441-6_11

74:16 Nearly-Optimal Algorithm for Non-Clairvoyant Service with Delay

14 Marcin Bienkowski, Artur Kraska, and Pawel Schmidt. Online service with delay on a line.
In Structural Information and Communication Complexity - 25th International Colloquium,
SIROCCO 2018, Ma’ale HaHamisha, Israel, June 18-21, 2018, Revised Selected Papers, pages
237–248, 2018. doi:10.1007/978-3-030-01325-7_22.

15 Carlos Fisch Brito, Elias Koutsoupias, and Shailesh Vaya. Competitive analysis of organization
networks or multicast acknowledgment: How much to wait? Algorithmica, 64(4):584–605,
2012. doi:10.1007/s00453-011-9567-5.

16 Niv Buchbinder, Moran Feldman, Joseph (Seffi) Naor, and Ohad Talmon. O(depth)-competitive
algorithm for online multi-level aggregation. In Proceedings of the Twenty-Eighth Annual
ACM-SIAM Symposium on Discrete Algorithms, SODA 2017, Barcelona, Spain, Hotel Porta
Fira, January 16-19, pages 1235–1244, 2017. doi:10.1137/1.9781611974782.80.

17 Niv Buchbinder, Kamal Jain, and Joseph Naor. Online primal-dual algorithms for maximizing
ad-auctions revenue. In Algorithms - ESA 2007, 15th Annual European Symposium, Eilat, Israel,
October 8-10, 2007, Proceedings, pages 253–264, 2007. doi:10.1007/978-3-540-75520-3_24.

18 Niv Buchbinder, Tracy Kimbrel, Retsef Levi, Konstantin Makarychev, and Maxim Sviridenko.
Online make-to-order joint replenishment model: primal dual competitive algorithms. In
Proceedings of the Nineteenth Annual ACM-SIAM Symposium on Discrete Algorithms, SODA
2008, San Francisco, California, USA, January 20-22, 2008, pages 952–961, 2008. URL:
http://dl.acm.org/citation.cfm?id=1347082.1347186.

19 Ryder Chen, Jahanvi Khatkar, and Seeun William Umboh. Online weighted cardinality joint
replenishment problem with delay. In Mikolaj Bojanczyk, Emanuela Merelli, and David P.
Woodruff, editors, 49th International Colloquium on Automata, Languages, and Programming,
ICALP 2022, July 4-8, 2022, Paris, France, volume 229 of LIPIcs, pages 40:1–40:18. Schloss
Dagstuhl – Leibniz-Zentrum für Informatik, 2022. doi:10.4230/LIPIcs.ICALP.2022.40.

20 Lindsey Deryckere and Seeun William Umboh. Online matching with set and concave delays. In
Nicole Megow and Adam D. Smith, editors, Approximation, Randomization, and Combinatorial
Optimization. Algorithms and Techniques, APPROX/RANDOM 2023, September 11-13, 2023,
Atlanta, Georgia, USA, volume 275 of LIPIcs, pages 17:1–17:17. Schloss Dagstuhl – Leibniz-
Zentrum für Informatik, 2023. doi:10.4230/LIPICS.APPROX/RANDOM.2023.17.

21 Daniel R. Dooly, Sally A. Goldman, and Stephen D. Scott. TCP dynamic acknowledgment
delay: Theory and practice (extended abstract). In Proceedings of the Thirtieth Annual ACM
Symposium on the Theory of Computing, Dallas, Texas, USA, May 23-26, 1998, pages 389–398,
1998. doi:10.1145/276698.276792.

22 Yuval Emek, Yaacov Shapiro, and Yuyi Wang. Minimum cost perfect matching with delays
for two sources. In Algorithms and Complexity - 10th International Conference, CIAC
2017, Athens, Greece, May 24-26, 2017, Proceedings, pages 209–221, 2017. doi:10.1007/
978-3-319-57586-5_18.

23 Michel X. Goemans and David P. Williamson. A general approximation technique for con-
strained forest problems. In Proceedings of the Third Annual ACM-SIAM Symposium on
Discrete Algorithms, SODA ’92, pages 307–316, Philadelphia, PA, USA, 1992. Society for Indus-
trial and Applied Mathematics. URL: http://dl.acm.org/citation.cfm?id=139404.139468.

24 Anupam Gupta, Amit Kumar, and Debmalya Panigrahi. Caching with time windows. In
Konstantin Makarychev, Yury Makarychev, Madhur Tulsiani, Gautam Kamath, and Julia
Chuzhoy, editors, Proccedings of the 52nd Annual ACM SIGACT Symposium on Theory of
Computing, STOC 2020, Chicago, IL, USA, June 22-26, 2020, pages 1125–1138. ACM, 2020.
doi:10.1145/3357713.3384277.

25 Anupam Gupta, Amit Kumar, and Debmalya Panigrahi. A hitting set relaxation for k-server
and an extension to time-windows. In 62nd IEEE Annual Symposium on Foundations of
Computer Science, FOCS 2021, Denver, CO, USA, February 7-10, 2022, pages 504–515. IEEE,
2021. doi:10.1109/FOCS52979.2021.00057.

26 Anupam Gupta, Amit Kumar, and Debmalya Panigrahi. Caching with time windows and
delays. SIAM J. Comput., 51(4):975–1017, 2022. doi:10.1137/20m1346286.

https://doi.org/10.1007/978-3-030-01325-7_22
https://doi.org/10.1007/s00453-011-9567-5
https://doi.org/10.1137/1.9781611974782.80
https://doi.org/10.1007/978-3-540-75520-3_24
http://dl.acm.org/citation.cfm?id=1347082.1347186
https://doi.org/10.4230/LIPIcs.ICALP.2022.40
https://doi.org/10.4230/LIPICS.APPROX/RANDOM.2023.17
https://doi.org/10.1145/276698.276792
https://doi.org/10.1007/978-3-319-57586-5_18
https://doi.org/10.1007/978-3-319-57586-5_18
http://dl.acm.org/citation.cfm?id=139404.139468
https://doi.org/10.1145/3357713.3384277
https://doi.org/10.1109/FOCS52979.2021.00057
https://doi.org/10.1137/20m1346286

N. Touitou 74:17

27 Kun He, Sizhe Li, Enze Sun, Yuyi Wang, Roger Wattenhofer, and Weihao Zhu. Randomized
algorithm for MPMD on two sources. In Jugal Garg, Max Klimm, and Yuqing Kong, editors,
Web and Internet Economics - 19th International Conference, WINE 2023, Shanghai, China,
December 4-8, 2023, Proceedings, volume 14413 of Lecture Notes in Computer Science, pages
348–365. Springer, 2023. doi:10.1007/978-3-031-48974-7_20.

28 Sungjin Im, Benjamin Moseley, Chenyang Xu, and Ruilong Zhang. Online dynamic acknowl-
edgement with learned predictions. CoRR, abs/2305.18227, 2023. doi:10.48550/arXiv.2305.
18227.

29 Anna R. Karlin, Claire Kenyon, and Dana Randall. Dynamic TCP acknowledgment and other
stories about e/(e-1). Algorithmica, 36(3):209–224, 2003.

30 Predrag Krnetic, Darya Melnyk, Yuyi Wang, and Roger Wattenhofer. The k-server problem
with delays on the uniform metric space. In Yixin Cao, Siu-Wing Cheng, and Minming
Li, editors, 31st International Symposium on Algorithms and Computation, ISAAC 2020,
December 14-18, 2020, Hong Kong, China (Virtual Conference), volume 181 of LIPIcs, pages
61:1–61:13. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, 2020. doi:10.4230/LIPIcs.
ISAAC.2020.61.

31 Ngoc Mai Le, Seeun William Umboh, and Ningyuan Xie. The power of clairvoyance for multi-
level aggregation and set cover with delay. In Nikhil Bansal and Viswanath Nagarajan, editors,
Proceedings of the 2023 ACM-SIAM Symposium on Discrete Algorithms, SODA 2023, Florence,
Italy, January 22-25, 2023, pages 1594–1610. SIAM, 2023. doi:10.1137/1.9781611977554.
ch59.

32 Mathieu Mari, Michal Pawlowski, Runtian Ren, and Piotr Sankowski. Online matching with
delays and stochastic arrival times. In Noa Agmon, Bo An, Alessandro Ricci, and William
Yeoh, editors, Proceedings of the 2023 International Conference on Autonomous Agents and
Multiagent Systems, AAMAS 2023, London, United Kingdom, 29 May 2023 - 2 June 2023,
pages 976–984. ACM, 2023. doi:10.5555/3545946.3598737.

33 Noam Touitou. Nearly-tight lower bounds for set cover and network design with deadlines/delay.
In Hee-Kap Ahn and Kunihiko Sadakane, editors, 32nd International Symposium on Algorithms
and Computation, ISAAC 2021, December 6-8, 2021, Fukuoka, Japan, volume 212 of LIPIcs,
pages 53:1–53:16. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, 2021. doi:10.4230/
LIPIcs.ISAAC.2021.53.

34 Noam Touitou. Frameworks for nonclairvoyant network design with deadlines or delay. In
Kousha Etessami, Uriel Feige, and Gabriele Puppis, editors, 50th International Colloquium
on Automata, Languages, and Programming, ICALP 2023, July 10-14, 2023, Paderborn,
Germany, volume 261 of LIPIcs, pages 105:1–105:20. Schloss Dagstuhl – Leibniz-Zentrum für
Informatik, 2023. doi:10.4230/LIPIcs.ICALP.2023.105.

35 Noam Touitou. Improved and deterministic online service with deadlines or delay. In Barna
Saha and Rocco A. Servedio, editors, Proceedings of the 55th Annual ACM Symposium on
Theory of Computing, STOC 2023, Orlando, FL, USA, June 20-23, 2023, pages 761–774.
ACM, 2023. doi:10.1145/3564246.3585107.

A Proof of Lemma 15

To bound the cost of primary services, we first identify and focus on two subsets of services
in Λ1, namely, Λ1,s and Λ1,f.

▶ Definition 23. We define Λ1,s ⊆ Λ1 to be the subset of services in which the server did
not move to a new location 𝑎′

𝜆
(that is, Line 23 of Algorithm 1 did not run).

We define Λ1,f ⊆ Λ1 \ Λ1,s to be the subset of services 𝜆 in which 𝛿
(
𝑎∗ (𝑡𝜆), 𝑎′𝜆

)
≥ 2ℓ𝜆−7;

that is, in 𝜆 the server moved to a new location that is of distance at least 2ℓ𝜆−7 from the
optimal solution.

STACS 2025

https://doi.org/10.1007/978-3-031-48974-7_20
https://doi.org/10.48550/arXiv.2305.18227
https://doi.org/10.48550/arXiv.2305.18227
https://doi.org/10.4230/LIPIcs.ISAAC.2020.61
https://doi.org/10.4230/LIPIcs.ISAAC.2020.61
https://doi.org/10.1137/1.9781611977554.ch59
https://doi.org/10.1137/1.9781611977554.ch59
https://doi.org/10.5555/3545946.3598737
https://doi.org/10.4230/LIPIcs.ISAAC.2021.53
https://doi.org/10.4230/LIPIcs.ISAAC.2021.53
https://doi.org/10.4230/LIPIcs.ICALP.2023.105
https://doi.org/10.1145/3564246.3585107

74:18 Nearly-Optimal Algorithm for Non-Clairvoyant Service with Delay

▶ Proposition 24.
∑

𝜆∈Λ1 2ℓ𝜆 ≤ 𝑂 (1) ·OPT +𝑂 (1) ·
(∑

𝜆∈Λ1,f 2ℓ𝜆 +𝑂 (1) ·∑𝜆∈Λ1,s 2ℓ𝜆
)
.

The proof of Proposition 24 is similar to that of Proposition A.11 in [35]. Intuitively, we
again define a potential function proportional to the distance between the algorithm’s server
and optimal solution’s server. For a service 𝜆 ∈ Λ1 \ (Λ1,f ∪ Λ1,s), the final movement in
Line 23 of Algorithm 1 shrinks the distance between the algorithm and the optimal solution
such that the resulting decrease in potential is at least 2ℓ𝜆 .

Proof of Proposition 24. Consider the potential function 𝜙(𝑡) := 27 · 𝛿 (𝑎(𝑡), 𝑎∗ (𝑡)). Note
that 𝜙(𝑡) only takes non-negative values, and is initially 0. The potential function can change
upon a movement of the algorithm’s server (Line 23 of Algorithm 1) or the optimal solution’s
server. Note that the total increase in 𝜙 due to movements in OPT is at most 27 · OPT;
also denote by Δ𝜆 the change to 𝜙 due to service 𝜆 ∈ Λ1 in the algorithm. (Note that in
non-primary services, the final location of the server is the same as its initial location, and
thus they do not affect the potential function.) Thus, denoting by 𝜙(∞) the final value of
the potential function, it holds that

0 ≤ 𝜙(∞) ≤
∑︁
𝜆∈Λ1

Δ𝜆 + 27 ·OPT.

Adding
∑

𝜆∈Λ1 2ℓ𝜆 to both sides yields∑︁
𝜆∈Λ1

2ℓ𝜆 ≤
∑︁
𝜆∈Λ1

(2ℓ𝜆 + Δ𝜆) + 27 ·OPT. (2)

First, consider a service 𝜆 ∈ Λ1 \ (Λ1,f ∪ Λ1,s), and let 𝑡 := 𝑡𝜆. In 𝜆, the server moves
from 𝑎𝜆 to 𝑎′

𝜆
, and it is guaranteed that 𝑎∗ (𝑡) ∈ 𝐵

(
𝑎′
𝜆
, 2ℓ𝜆−7). Using Proposition 10, it holds

𝛿
(
𝑎𝜆, 𝑎

′
𝜆

)
≥ 2ℓ𝜆−5 − 2ℓ𝜆−8; thus, 𝛿 (𝑎𝜆, 𝑎∗ (𝑡)) ≥ 2ℓ𝜆−5 − 2ℓ𝜆−7 − 2ℓ𝜆−8 ≥ 2ℓ𝜆−6. However, after the

movement of the algorithm’s server to 𝑎′
𝜆
, the distance between the algorithm’s server and

the optimum’s server is at most 2ℓ𝜆−7; thus, the distance between the servers decreased by at
least 2ℓ𝜆−7, and thus Δ𝜆 ≤ −2ℓ𝜆 . This implies that 2ℓ𝜆 + Δ𝜆 ≤ 0 for every 𝜆 ∈ Λ1 \Λ1,f ∪ Λ1,s;
plugging into Equation (2), we get

∑︁
𝜆∈Λ1

2ℓ𝜆 ≤ 27 ·OPT +
∑︁

𝜆∈Λ1,f∪Λ1,s

(2ℓ𝜆 + Δ𝜆). (3)

Again using Proposition 10, for services 𝜆 ∈ Λ1 where the server moves, it holds that
𝛿
(
𝑎𝜆, 𝑎

′
𝜆

)
≤ 2ℓ𝜆−4 + 2ℓ𝜆−8 ≤ 2ℓ𝜆−3, and thus Δ𝜆 ≤ ·2ℓ𝜆+4. (When the server does not move,

Δ𝜆 = 0.) Thus, it holds that for every 𝜆 ∈ Λ1, 2ℓ𝜆 + Δ𝜆 ≤ 17 · 2ℓ𝜆 . Plugging into Equation (3)
completes the proof. ◀

▶ Definition 25. For a service 𝜆 ∈ Λ1,f ∪ Λ1,s, define:
𝑅𝜆 to be the set of pending requests of level at most ℓ𝜆 − 4 on points in 𝑉

†
𝜆

at 𝑡𝜆.
The primary time interval 𝐼p (𝜆) := (min𝑞∈𝑅𝜆

𝑟𝑞 , 𝑡𝜆].
The primary cylinder 𝛾p (𝜆) :=

(
𝐵
(
𝑎𝜆, 2ℓ𝜆−3) , 𝐼p (𝜆)).

Further define 𝑉∗
𝜆
⊆ 𝑉

†
𝜆

be the set of locations in 𝑉
†
𝜆

not visited by the optimal solution
during 𝐼p (𝜆). Finally, define the justified residual delay of 𝜆, which is the amount 𝐷∗p,𝜆 :=∑

𝑣∈𝑉∗
𝜆
𝑦ℓ𝜆−4 (𝑣, 𝑡𝜆).

The proofs of the following three propositions appear in Section B.

▶ Proposition 26.
∑

𝜆∈Λ1,f∪Λ1,s 𝐷∗p,𝜆 ≤ OPT

N. Touitou 74:19

Proof of Proposition 26. First a service 𝜆 ∈ Λ1,f∪Λ1,s, and define 𝑡 := 𝑡𝜆. We first note that
the delay cost in 𝐷∗p,𝜆 is indeed incurred by the optimal solution. Fix a location 𝑣 ∈ 𝑉∗

𝜆
; by

definition, 𝑦ℓ𝜆−4 (𝑣) =
∑

ℓ≤ℓ𝜆−4 (𝑔𝑣,ℓ (𝑡))+ ≤
∑

ℓ≤ℓ𝜆−4

∑
𝑞∈𝑅′

ℓ
𝑑𝑞 (𝑡), where 𝑅′

ℓ
⊆ 𝑅𝜆 is the subset

of requests on 𝑣 of level exactly ℓ (this inequality is due to Proposition 9). But, from the
definition of 𝐼p (𝜆), the requests of 𝑅𝜆 on 𝑣 are not served in the optimal solution at 𝑡, and
thus the optimal solution incurred

∑
ℓ≤ℓ𝜆−4

∑
𝑞∈𝑅′

ℓ
𝑑𝑞 (𝑡) delay cost for those requests. Next,

note that this delay cost is not charged to the optimal solution for more than one service;
this is ensured by the zeroing of the delay counters in Line 17 of Algorithm 1. ◀

▶ Proposition 27. For every 𝜆 ∈ Λ1,f ∪ Λ1,s, it holds that 2ℓ𝜆−8 ≤ 𝑐
(
OPT ∩ 𝛾p (𝜆)

)
+ 𝐷∗p,𝜆.

Proof of Proposition 27. Consider a service 𝜆 ∈ Λ1,f ∪ Λ1,s, and define 𝑡 := 𝑡𝜆, 𝐵 :=
𝐵
(
𝑎𝜆, 2ℓ𝜆−4), 𝐵′ := 𝐵

(
𝑎𝜆, 2ℓ𝜆−3). Note that 𝐵 is the ball that contains all requests in 𝑅𝜆, and

that 𝐵′ is the shape used for the charging cylinder 𝛾p (𝜆). Let 𝑎, 𝑎∗ denote the locations of
the algorithm’s and optimal solution’s servers at 𝑡, respectively.
Case 1: 𝝀 ∈ 𝚲1,f. Define 𝑎′ := 𝑎′

𝜆
. Define 𝐵★ := 𝐵

(
𝑎′, 2ℓ𝜆−8) , 𝐵★★ := 𝐵

(
𝑎′, 2ℓ𝜆−7); note that

𝐵★ ⊆ 𝐵★★. From the choice of 𝑎′, it holds that 𝑦ℓ𝜆−4 (𝐵★) ≥ 2ℓ𝜆−5. However, 𝑎∗ ∉ 𝐵★★, from
the fact that 𝜆 ∈ Λ1,f. Thus, one of the following holds:

The optimal solution did not visit 𝐵★ during 𝐼p (𝜆). In this case, it holds that 𝐵★ ⊆ 𝑉∗
𝜆
,

and thus 𝐷∗p,𝜆 ≥ 𝑦ℓ𝜆−4 (𝐵★) ≥ 2ℓ𝜆−5, which completes the proof for this case.
The optimal solution visited 𝐵★ during 𝐼p (𝜆); in this case, the optimal server moved
a distance of at least 2ℓ𝜆−7 − 2ℓ𝜆−8 = 2ℓ𝜆−8 inside 𝐵★★ \ 𝐵★ during 𝐼p (𝜆) (since it was
in 𝑎∗ at the end of 𝐼p (𝜆)). Now, note that 𝐵★★ ⊆ 𝐵′, as Proposition 10 states that
𝛿 (𝑎′, 𝑎) ≤ 2ℓ𝜆−4 + 2ℓ𝜆−8; this yields 𝑐

(
OPT ∩ 𝛾p (𝜆)

)
≥ 2ℓ𝜆−7 − 2ℓ𝜆−8 ≥ 2ℓ𝜆−8, completing

the proof.

Case 2: 𝝀 ∈ 𝚲1,s. Denote 𝐵∗ := 𝐵
(
𝑎∗, 2ℓ𝜆−8). From the definition of Λ1,s, it holds that

𝑦ℓ𝜆−4 (𝐵\𝐵∗) ≥ 2ℓ𝜆−5. Suppose the optimal solution’s server does not visit 𝐵\𝐵∗ during 𝐼p (𝜆);
then, it holds that 𝐵\𝐵∗ ⊆ 𝑉∗

𝜆
, and thus 𝐷∗p,𝜆 ≥ 2ℓ𝜆−5, completing the proof.

Otherwise, the optimal solution’s server visited 𝐵\𝐵∗ during 𝐼p (𝜆). There are two subcases
to consider:

Suppose 𝛿 (𝑎∗, 𝑎) ≤ 2ℓ𝜆−3 − 2ℓ𝜆−8. In this case, 𝐵∗ ⊆ 𝐵′. The optimal solution visited 𝐵\𝐵∗
during 𝐼p (𝜆), but was at 𝑎∗ at 𝑡; thus, it moved a distance of at least 2ℓ𝜆−8 inside 𝐵∗, and
thus inside 𝐵′, during 𝐼p (𝜆). This implies that 𝑐

(
OPT ∩ 𝛾p (𝜆)

)
≥ 2ℓ𝜆−8, completing the

proof.
Suppose 𝛿 (𝑎∗, 𝑎) > 2ℓ𝜆−3−2ℓ𝜆−8, and thus the distance of 𝑎∗ from 𝐵 is at least 2ℓ𝜆−4−2ℓ𝜆−8 ≥
2ℓ𝜆−8. Using a similar argument to the previous item, the optimal solution moved
a distance of at least 2ℓ𝜆−8 inside the ring 𝐵

(
𝑎, 2ℓ𝜆−4 + 2ℓ𝜆−8)\𝐵 (

𝑎, 2ℓ𝜆−4) during 𝐼p (𝜆).
Observing that this ring is contained in 𝐵′ yields that 𝑐

(
OPT ∩ 𝛾p (𝜆)

)
≥ 2ℓ𝜆−8, completing

the proof. ◀

▶ Proposition 28. For every ℓ, the set of cylinders
{
𝛾p (𝜆)

��𝜆 ∈ Λ1,f ∪ Λ1,s ∧ ℓ𝜆 = ℓ
}

is disjoint.

Proof of Proposition 28. Suppose for contradiction that there exist 𝜆1, 𝜆2 ∈ Λ1,f ∪ Λ1,s

where ℓ𝜆1 = ℓ𝜆2 = ℓ such that 𝐼p (𝜆1) ∩ 𝐼p (𝜆2) ≠ ∅ and 𝐵
(
𝑎𝜆1 , 2ℓ−3) ∩𝐵 (

𝑎𝜆2 , 2ℓ−3) ≠ ∅. Assume
without loss of generality that 𝑡𝜆1 ≤ 𝑡𝜆2 , and thus 𝑡𝜆1 ∈ 𝐼p (𝜆2). Then, observe that after
𝜆1, all pending requests of level at most ℓ in 𝐵

(
𝑎𝜆1 , 2ℓ

)
are upgraded to level ℓ. However,

in 𝜆2, the requests in 𝑅𝜆2 are of level at most ℓ − 4; moreover, the requests in 𝑅𝜆2 are in
𝐵
(
𝑎𝜆2 , 2ℓ−4) ⊆ 𝐵

(
𝑎𝜆1 , 2ℓ

)
, where the containment is due to the fact that 𝛿

(
𝑎𝜆1 , 𝑎𝜆2

)
≤ 2ℓ−2

(otherwise, we contradict 𝐵
(
𝑎𝜆1 , 2ℓ−3) ∩ 𝐵

(
𝑎𝜆2 , 2ℓ−3) ≠ ∅). This implies that all requests in

𝑅𝜆2 arrived after 𝑡𝜆1 , yielding a contradiction to 𝑡𝜆1 ∈ 𝐼p (𝜆2). ◀

STACS 2025

74:20 Nearly-Optimal Algorithm for Non-Clairvoyant Service with Delay

Proof of Lemma 15. It holds that∑︁
𝜆∈Λ1,f

2ℓ𝜆 +
∑︁

𝜆∈Λ1,s

2ℓ𝜆 ≤
∑︁

𝜆∈Λ1,f∪Λ1,s

28 · (𝑐
(
OPT ∩ 𝛾p (𝜆)

)
+ 𝐷∗p,𝜆)

≤ 𝑂 (log 𝑘) ·OPT +𝑂 (1) ·OPT = 𝑂 (log 𝑘) ·OPT

where the first inequality is due to Proposition 27, and the second inequality is due to
Proposition 28 and Proposition 20. ◀

B Omitted Proofs

Proof of Proposition 8. First, suppose a service 𝜆 occurs, and consider the point im-
mediately after the loop containing Line 17 of Algorithm 1. At that time, we have
𝑌𝑖 ≤

∑
𝑣∈𝐵(𝑎𝜆 ,2𝑖)

∑
𝑖′≤𝑖 (𝑔𝑣,𝑖′)+ = 0 for every 𝑖 ≤ ℓ𝜆. Moreover, for 𝑖 > ℓ𝜆, it holds that

𝑌𝑖 ≤ 2𝑖 (otherwise, dome 𝑖 would be critical, and 𝜆 would have a higher level as a result).
We now prove the proposition as an invariant over time, noting that at time 0 it trivially

holds. Note that the invariant cannot be broken by continuous delay increase; indeed, when
𝑌𝑖 exceeds 2𝑖, a service is immediately started which zeroes 𝑌𝑖. Thus, the only possible event
that could break the invariant is a movement by the server (Line 23 of Algorithm 1).

Suppose for contradiction that this happens after some (primary) service 𝜆, at a time 𝑡+

immediately after 𝜆, as the server moves from 𝑎𝜆 to 𝑎′
𝜆

As before, consider the time during 𝜆

immediately after the loop containing Line 17 of Algorithm 1, and denote it by 𝑡−. We also
apply the superscripts −,+ to 𝑌𝑖 and 𝑔𝑣,𝑖 to refer to their values at times 𝑡− , 𝑡+ respectively.

Consider any class 𝑖. If 𝑖 ≤ ℓ𝜆 − 1, then note that 𝛿
(
𝑎′
𝜆
, 𝑎𝜆

)
≤ 2ℓ𝜆−4 + 2ℓ𝜆−8 < 2ℓ𝜆−1, due

to Proposition 10. Thus, 𝐵
(
𝑎′
𝜆
, 2𝑖

)
⊆ 𝐵

(
𝑎𝜆, 2ℓ𝜆

)
. But, for every 𝑣 ∈ 𝐵

(
𝑎𝜆, 2ℓ𝜆

)
and 𝑖′ ≤ ℓ𝜆,

it holds that 𝑔+
𝑣,𝑖′ = 𝑔−

𝑣,𝑖′ ≤ 0, and thus 𝑌+
𝑖

= 0. Otherwise, 𝑖 ≥ ℓ𝜆; in this case, note that
𝐵
(
𝑎′
𝜆
, 2𝑖

)
⊆ 𝐵

(
𝑎𝜆, 2𝑖+1). Thus:

𝑌+𝑖 ≤
∑︁
𝑖′≤𝑖

𝑌+𝑖′

=
∑︁
𝑖′≤𝑖

∑︁
𝑣∈𝐵(𝑎′𝜆 ,2𝑖)

(𝑔𝑣,𝑖′)+

≤
∑︁
𝑖′≤𝑖

∑︁
𝑣∈𝐵(𝑎𝜆 ,2𝑖+1)

(𝑔𝑣,𝑖′)+

≤
∑︁

𝑖′≤𝑖+1

∑︁
𝑣∈𝐵(𝑎𝜆 ,2𝑖+1)

(𝑔𝑣,𝑖′)+

=
∑︁

𝑖′≤𝑖+1
𝑌−𝑖′ ≤

∑︁
𝑖′≤𝑖+1

2𝑖′ ≤ 2𝑖+2,

where the first inequality stems from {𝑌𝑖′ } being non-negative and the two equalities use the
definition of 𝑌𝑖. The penultimate inequality uses the fact that 𝑌−

𝑖′ ≤ 2𝑖′ for every 𝑖′, as noted
in the beginning of the proof. ◀

Proof of Proposition 22. Fixing any ℓ, assume otherwise that there exist two cylinders
𝛾c (𝜆1), 𝛾c (𝜆2) ∈ {𝛾c (𝜆) |𝜆 ∈ Λc ∧ ℓ𝜆 = ℓ} that are not disjoint. That is, it holds that
𝛿
(
𝑎𝜆1 , 𝑎𝜆2

)
< 6 · 2ℓ , and also 𝐼c (𝜆1) ∩ 𝐼c (𝜆2) ≠ ∅. Let 𝜆′1, 𝜆

′
2 be the level-(ℓ + 4) secondary

services that certify 𝜆1, 𝜆2, respectively; without loss of generality, assume 𝜆′1 occurs before 𝜆′2.
First, we claim that 𝛿

(
𝑎𝜆1 , 𝑎𝜆′1

)
≤ 1.5 · 2ℓ . To prove this, consider 𝑞1 := 𝜎𝜆′1

; it must be

that 𝑞1 ∈ 𝐵
(
𝑎𝜆1 , 2ℓ𝜆1

)
∩ 𝐵

(
𝑎𝜆′1 , 2

ℓ𝜆′1
−5

)
. Since ℓ𝜆1 = ℓ and ℓ𝜆′1 = ℓ + 4, the claim holds.

N. Touitou 74:21

Next, we claim that 𝜆′1 occurs before 𝜆2. Assume otherwise, and consider the request
𝑞2 := 𝜎𝜆′2

. Since 𝜆′2 certifies 𝜆2; moreover, it holds that 𝑞 ∈ 𝐵
(
𝑎𝜆2 , 2ℓ𝜆2

)
. Thus,

𝛿

(
𝑞2, 𝑎𝜆′1

)
≤ 𝛿

(
𝑞2, 𝑎𝜆2

)
+ 𝛿

(
𝑎𝜆2 , 𝑎𝜆1

)
+ 𝛿

(
𝑎𝜆1 , 𝑎𝜆′1

)
≤ 2ℓ + 6 · 2ℓ + 1.5 · 2ℓ ≤ 8.5 · 2ℓ ≤ 2ℓ𝜆′1 .

Thus, 𝑞2 ∈ 𝑉𝜆′1 ; moreover, as 𝑞 was pending at both 𝑡𝜆2 and 𝑡𝜆′2 , it is pending at 𝑡𝜆′1 . Due
to Line 9 of Algorithm 2, after 𝜆′1, 𝑞2 is either served or of level ℓ𝜆′1 = ℓ + 4. But this is a
contradiction to having level ℓ𝜆′2 − 4 = ℓ later on, at 𝑡𝜆′2 ; thus, 𝜆′1 must occur before 𝜆1.

Thus, 𝜆′1 occurs between 𝜆1 and 𝜆2. Note that 𝜆′1 occurs after all the tertiary services
assigned to 𝜆1, and thus 𝜆′1 occurs after 𝐼c (𝜆1). We claim that 𝜆′1 also occurs before the release
of every request in 𝐸𝜆2 , and thus before 𝐼c (𝜆2). This claim would yield that 𝐼c (𝜆1), 𝐼c (𝜆2)
are disjoint, contradicting the assumption that 𝛾c (𝜆1), 𝛾c (𝜆2) are disjoint, and would thus
conclude the proof of the proposition.

To prove the claim, suppose a request 𝑞 ∈ 𝐸𝜆2 on some 𝑣 ∈ 𝑉𝜆2 is released before 𝑡𝜆′1 .
Then, note that 𝛿

(
𝑎𝜆2 , 𝑎𝜆′1

)
≤ 𝛿

(
𝑎𝜆2 , 𝑎𝜆1

)
+ 𝛿

(
𝑎𝜆1 , 𝑎𝜆′1

)
≤ 6 · 2ℓ + 1.5 · 2ℓ = 7.5 · 2ℓ . Thus,

𝐵
(
𝑎𝜆2 , 2ℓ𝜆2

)
⊆ 𝐵

(
𝑎𝜆′1 , 2

ℓ𝜆′1

)
, and thus 𝑣 ∈ 𝑉𝜆′1 . As 𝑞 is pending at 𝑡𝜆′1 , it is of level at least

ℓ𝜆′1 = ℓ + 4 after 𝜆′1; this is in contradiction to ℓ𝑞 ≤ ℓ at 𝜆2, completing the proof. ◀

STACS 2025

Canonical Labeling of Sparse Random Graphs
Oleg Verbitsky
Institut für Informatik, Humboldt-Universität zu Berlin, Germany

Maksim Zhukovskii
School of Computer Science, University of Sheffield, UK

Abstract
We show that if p = O(1/n), then the Erdős-Rényi random graph G(n, p) with high probability
admits a canonical labeling computable in time O(n log n). Combined with the previous results
on the canonization of random graphs, this implies that G(n, p) with high probability admits a
polynomial-time canonical labeling whatever the edge probability function p. Our algorithm combines
the standard color refinement routine with simple post-processing based on the classical linear-time
tree canonization. Noteworthy, our analysis of how well color refinement performs in this setting
allows us to complete the description of the automorphism group of the 2-core of G(n, p).

2012 ACM Subject Classification Mathematics of computing → Random graphs; Mathematics of
computing → Graph algorithms

Keywords and phrases Graph isomorphism, random graphs, canonical labeling, color refinement

Digital Object Identifier 10.4230/LIPIcs.STACS.2025.75

Related Version Full Version: https://arxiv.org/abs/2409.18109 [33]

Funding Oleg Verbitsky: Supported by DFG grant KO 1053/8–2. On leave from the IAPMM, Lviv,
Ukraine.

Acknowledgements The authors would like to thank Michael Krivelevich for helpful discussions.

1 Introduction

On an n-vertex input graph G, a canonical labeling algorithm computes a bijection λG :
V (G) → {1, . . . , n} such that if another graph G′ is isomorphic to G, then the isomorphic
images of G and G′ under respective permutations λG and λG′ are equal. Given the labelings
λG and λG′ , it takes linear time to check whether G and G′ are isomorphic. The existence of
polynomial-time algorithms for testing isomorphism of two given graphs and, in particular,
for producing a canonical labeling remain open. Babai’s breakthrough quasi-polynomial
algorithm for testing graph isomorphism [7] was subsequently extended to a canonical labeling
algorithm of the same time complexity [8]. In the present paper, we address the canonical
labeling problem for the Erdős-Rényi (or binomial) random graph G(n, p). Recall that the
vertex set of G(n, p) is {1, . . . , n}, and each pair of vertices is adjacent with probability
p = p(n), independently of the other pairs.

Babai, Erdős, and Selkow [5] proved that the simple algorithmic routine known as color
refinement (CR for brevity) with high probability produces a discrete coloring of the vertices
of G(n, 1/2), that is, a coloring where the vertex colors are pairwise different. Since the
vertex colors are isomorphism-invariant, this yields a canonical labeling of G(n, 1/2) by
numbering the color names in the lexicographic order. Here and throughout, we say that an
event happens for G(n, p) with high probability (whp for brevity) if the probability of this
event tends to 1 as n → ∞. The result of [5] has a fundamental meaning: almost all graphs
admit an easily computable canonical labeling and, hence, the graph isomorphism problem
has low average-case complexity.

© Oleg Verbitsky and Maksim Zhukovskii;
licensed under Creative Commons License CC-BY 4.0

42nd International Symposium on Theoretical Aspects of Computer Science (STACS 2025).
Editors: Olaf Beyersdorff, Michał Pilipczuk, Elaine Pimentel, and Nguyễn Kim Thắng;
Article No. 75; pp. 75:1–75:20

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

https://orcid.org/0000-0002-9524-1901
https://orcid.org/0000-0001-8763-9533
https://doi.org/10.4230/LIPIcs.STACS.2025.75
https://arxiv.org/abs/2409.18109
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

75:2 Canonical Labeling of Sparse Random Graphs

The argument of [5] can be extended to show [14, Theorem 3.17] that the CR coloring of
G(n, p) is whp discrete for all n−1/5 ln n ≪ p ≤ 1/2. Note that it is enough to consider the
case of p ≤ 1/2 since G(n, 1 − p) has the same distribution as the complement of G(n, p).
Remarkably, the algorithm of Babai, Erdős, and Selkow performs only a bounded number of
color refinement steps and, due to this, works in linear time.

A different algorithm suggested by Bollobás [12] works in polynomial time and whp
produces a canonical labeling of G(n, p) in a much sparser regime, namely when (1+δ) ln n

n ≤
p ≤ 2n−11/12 for any positive constant δ. The next improvement was obtained by Czajka
and Pandurangan [16] who proved that, in a bounded number of rounds, CR yields a discrete
coloring of G(n, p) whp when ln4 n

n ln ln n ≪ p ≤ 1
2 . Finally, Linial and Mosheiff [27] designed

a polynomial time algorithm for canonical labeling of G(n, p) when 1
n ≪ p ≤ 1

2 . As shown
by Gaudio, Rácz, and Sridhar [21], in the subdiapason p ≥ (1+δ) ln n

n for any fixed δ > 0, a
canonical labeling can still be provided by CR in a bounded number of rounds.

The decades-long line of research summarized above leaves open the question whether a
random graph G(n, p) admits efficient canonization in the regime p = O(1/n). Note that
the case of p = o(1/n) is easy. Indeed, as long as pn = 1 − ω(n−1/3), whp G(n, p) is a
vertex-disjoint union of trees and unicyclic graphs (i.e., connected graphs containing exactly
one cycle). Canonization of such graphs is tractable due to the classical linear-time canonical
labeling algorithms for trees [1] and even planar graphs (see [6] for a survey of the early work
on graph isomorphism covering these graph classes). Thus, efficient canonization remains
unknown for all p = p(n) such that, for some C > 0 and all n, 1 − Cn−1/3 ≤ pn ≤ C (even
though G(n, p) stays planar with a non-negligible probability as long as pn = 1 + O(n−1/3);
see [32]). Our first result closes this gap.

▶ Theorem 1. If p = O(1/n), then G(n, p) whp admits a canonical labeling computable in
time O(n log n).

The development of canonical labeling algorithms for G(n, p) is summarized in Table 1.
The sources marked by ∗ show that canonical labeling in the corresponding range can be
obtained by CR in a constant number of refinement rounds. An inspection of the other
algorithms reveals that all of them can be implemented as a combination of the 2-WL

Table 1 Canonical labeling algorithms for random graphs in the full-scale Erdős-Rényi evolutional
model G(n, p).

Edge probability Algorithm

p = 1
2 Babai, Erdős, and Selkow [5]∗

n−1/5 ln n ≪ p ≤ 1/2 Bollobás [14]∗

(1+δ) ln n
n

≤ p ≤ 2n−11/12 Bollobás [12]

ln4 n
n ln ln n

≪ p ≤ 1
2 Czajka and Pandurangan [16]∗

(1+δ) ln n
n

≤ p ≪ n−5/6 Gaudio, Rácz, and Sridhar [21]∗

1
n

≪ p ≤ 1
2 Linial and Mosheiff [27]

p = O(1
n

) this paper

O. Verbitsky and M. Zhukovskii 75:3

(2-dimensional Weisfeiler-Leman) algorithm [34] with tree canonization. The 2-WL is an
extension of CR which computes a canonical coloring of pairs of vertices. Thus, in these
cases, canonical labeling can be obtained in time O(n3 log n), matching the running time
bound for 2-WL (see [23]). If p = O(1/n), the running time is actually O(n log n) because
our algorithm, as discussed below, uses CR along with simple pre- and post-processing.

A simple argument shows that Theorem 1, combined with the previous results, implies
that the Erdős-Rényi random graph G(n, p) whp admits an efficiently computable canonical
labeling whatever the edge probability function p(n).

▶ Corollary 2. There exists a polynomial time algorithm that, for any function p = p(n) with
values in [0, 1], whp produces a canonical labeling of G(n, p).

We now recall some highlights of the evolution of the random graph. Erdős and Rényi [19]
proved their spectacular result that when p passes a certain threshold around 1/n, then the
size of the largest connected component in G(n, p) rapidly grows from Θ(log n) to Θ(n). A
systematic study of the structure of connected components in the random graph when p is
around the critical value 1/n was initiated in the influential paper of Bollobás [13]. For more
details about the phase transition, see, e.g., [24, Chapter 5].

A connected graph is called complex, if it has more than one cycle. The union of all
complex components of a graph G will be called the complex part of G, and the union of
the other components will be referred to as the simple part. As we already mentioned, if
pn = 1 − ω(n−1/3) then the complex part of G(n, p) is whp empty. This is the so-called
subcritical phase. In the critical phase, when pn = 1 ± O(n−1/3), the complex part of G(n, p)
whp has size OP (n2/3) and its structure is thoroughly described in [29, 30]. Here and below,
for a sequence of random variables ξn and a sequence of reals an we write ξn = OP (an)
if the sequence ξn/an is stochastically bounded1. Finally, in the supercritical phase, when
pn = 1 + ω(n−1/3), whp G(n, p) contains a unique complex connected component and this
component has size Θ(n2(p − 1/n)). In particular, when p = O(1/n) and p > (1 + δ)/n for a
constant δ > 0 (we refer to this case as strictly supercritical regime), whp this component
has linear size Ω(n). It is called the giant component as all the other connected components
have size O(log n).

In general, the simple part of a graph G is easily canonizable by the known techniques,
which reduces our problem to finding a canonical labeling for the complex part of G.
Furthermore, recall that the 2-core of a graph H , which we will for brevity call just core and
denote by core(H), is the maximal subgraph of H that does not have vertices of degree 1.
Equivalently, core(H) can be defined as the subgraph of H obtained by iteratively pruning
all vertices in H that have degree at most 1 until there are no more such vertices. Thus, if H

is the (non-empty) complex part of G, then H consists of core(H) and some (possibly empty)
rooted trees planted at the vertices of the core. It follows that if we manage to canonically
label the vertices of core(H), then this labeling easily extends to a canonical labeling of the
entire graph G.

Suppose that CR is run on H. In the most favorable case, it would output a vertex
coloring discrete on core(H). It turns out that, though not exactly true, this is indeed the
case to a very large extent.

1 I.e. for every ε > 0, there exists C > 0 and n0 such that P(|ξn/an| > C) < ε for all n ≥ n0.

STACS 2025

75:4 Canonical Labeling of Sparse Random Graphs

▶ Theorem 3. Let Gn = G(n, p) and assume that p = O(1/n). Let Hn denote the complex
part of Gn and Cn = core(Hn). When CR is run on Hn, then
1. CR assigns individual colors to all but OP (1) vertices in Cn;
2. the other color classes whp have size 2;
3. whp, every such color class is an orbit of the automorphism group Aut(Hn) consisting of

two vertices with degree 2 in Cn.

▶ Remark 4. From our proofs it is easy to derive that, when np = 1 + o(1), then CR
distinguishes between all vertices of Cn whp.

Theorem 3 allows us to obtain an efficient canonical labeling algorithm for G(n, p), as
stated in Theorem 1, by combining CR with simple post-processing whose most essential
part is invoking the linear-time tree canonization. Another consequence of Theorem 3 is that
CR alone is powerful enough to solve the standard version of the graph isomorphism problem
for the complex part of G(n, p). Specifically, we say that a graph H is identifiable by CR
if CR distinguishes H from any non-isomorphic graph H ′ (in the sense that CR outputs
different multisets of vertex colors on inputs H and H ′). It is not hard to see that H is
identifiable by CR whenever the CR coloring of H is discrete. Fortunately, the properties of
the CR coloring ensured by Theorem 3 are still sufficient for CR-identifiability.

▶ Corollary 5. Under the assumption of Theorem 3,
1. Hn is whp identifiable by CR and, consequently,
2. whp, Gn is identifiable by CR exactly when the simple part of Gn is identifiable.

The CR-identifiability of the simple part of a graph admits an explicit, efficiently verifiable
characterization, which we give in Theorem 14. This characterization can be used to show
that the random graph Gn is identifiable by CR with probability asymptotically bounded
away from 0 and 1.

Our techniques for proving Theorems 1 and 3 can also be used for deriving a structural
information about the automorphisms of a random graph. As proved by Erdős and Rényi [20]
and by Wright [35], G(n, p) for p ≤ 1/2 is asymmetric, i.e., has no non-identity automorphism,
if np − ln n → ∞ as n → ∞. This result is best possible because if, np − ln n ≤ γ for some
constant γ > 0, then the random graph has at least 2 isolated vertices with non-vanishing
probability. It is noteworthy that the asymmetry of G(n, p) in the regime p ≥ (1+δ) ln n

n can
be certified by the fact that CR coloring of G(n, p) is discrete due to the aforementioned result
of Gaudio, Rácz, and Sridhar [21]. In the diapason of p forcing G(n, p) to be disconnected,
the action of the automorphism group can be easily understood on the simple part and on the
tree-like pieces of the complex part, and full attention should actually be given to the core of
the complex part. Theorem 3 provides a pretty much precise information about the action of
Aut(Gn) on Cn. More subtle questions arise if, instead of considering the action of Aut(Gn)
on Cn, we want to understand the automorphisms of Cn itself. It is quite remarkable that
the CR algorithm, applied to Cn rather than to Hn, can serve as a sharp instrument for
tackling this problem (and, in fact, the proof of Theorem 3 is based on an analysis of the
output of CR on Cn).

We begin with describing simple types of potential automorphisms of Cn (with the
intention of showing that, whp, all automorphism of Cn are actually of this kind). If a vertex
x has degree 2 in Cn, then it belongs to a (unique) path from a vertex s of degree at least 3
to a vertex t of degree at least 3 with all intermediate vertices having degree 2. We call such
a path in Cn pendant. It is possible that s = t, and in this case we speak of a pendant cycle.
Clearly, the reflection of a pendant cycle fixing its unique vertex of degree more than 2 is
an automorphism of Cn. Furthermore, call two pendant paths transposable if they have the

O. Verbitsky and M. Zhukovskii 75:5

same length and share the endvertices. Note that Cn has an automorphism transposing such
paths (and fixing their endvertices). Let A1 denote the set of the automorphisms provided by
pendant cycles, and let A2 be the set of the automorphisms provided by transposable pairs of
pendant paths. Moreover, Cn can have a connected component consisting of two vertices of
degree 3 and three pendant paths of pairwise different lengths between these vertices. Such
a component has a single non-trivial automorphism, which contributes in Aut(Cn). The set
of such automorphisms of Cn will be denoted by A3.

Recall that an elementary abelian 2-group is a group in which all non-identity elements
have order 2 or, equivalently, a group isomorphic to the group (Z2)k for some k.

▶ Theorem 6. Let Gn = G(n, p) and assume that p = O(1/n). Let Cn be the core of the
complex part of Gn.
1. The order of Aut(Cn) is stochastically bounded, i.e., | Aut(Cn)| = OP (1).
2. Whp, Aut(Cn) is an elementary abelian 2-group. Moreover, A1 ∪ A2 ∪ A3 is a minimum

generating set of Aut(Cn).2
3. In addition,

(a) if pn ≥ 1 + δ for a constant δ > 0, then both A1 and A2 are non-empty with
non-negligible probability, while A3 = ∅ whp.

(b) If pn = 1 + o(1) and pn = 1 + ω(n−1/3), then A1 ̸= ∅ with non-negligible probability,
while A2 = A3 = ∅ whp.

(c) If pn = 1 ± O(n−1/3), then both A1 and A3 are non-empty with non-negligible
probability, while A2 = ∅ whp.

This theorem makes a final step in the study of the automorphisms group of a random
graph. Recall that Hn is whp empty when np = 1 − ω(n−1/3) and that G(n, p) is connected
and asymmetric when np = ln n + ω(1). We, therefore, focus on the intermediate diapason. If
np → ∞ as n → ∞, then the core of the giant component of G(n, p) is whp still asymmetric,
as proved independently by Łuczak [28] and Linial and Mosheiff [27]. Moreover, Łuczak
described the automorphisms group of the core of the giant component of G(n, p) when
np > γ for a large enough constant γ, and obtained an analogue of Theorem 6 for this case;
see [28, Theorem 4]. Our Theorem 6 not only extends [28, Theorem 4] to the full range of
p = O(1/n) but also refines this result even for np > γ by showing that Aut(Cn) is actually
an elementary 2-group. Another interesting observation is that some automorphisms of the
core do not extend to automorphisms of the entire G(n, p). Indeed, if np = 1 + o(1), then
whp Aut(G(n, p)) acts trivially on the core; see Remark 4.

Related work. As we already mentioned, Theorem 1 combined with the previous results on
canonical labeling of G(n, p) for 1/n ≪ p ≤ 1/2 implies the existence of a polynomial-time
canonical labeling algorithm succeeding on G(n, p) whp for an arbitrary edge probability
function p = p(n). In this form, this result has been independently obtained by Michael
Anastos, Matthew Kwan, and Benjamin Moore [2]. Another result in their paper describes
the action of Aut(G(n, p)) on the core of G(n, p), which follows also from our Theorem 3
and the results of Łuczak [28] and Linial and Mosheiff [27]. The techniques used in [2] and
in our paper are completely different, though both proofs rely on color refinement. The
two approaches have their own advantages. The method developed in [2] is used there also

2 Consequently, whp Cn contains neither a triple of pairwise transposable paths, nor two isomorphic com-
ponents with an automorphism in A3, nor a cyclic component with a single chord between diametrically
opposite vertices. Moreover, whp no two pendant cycles in Cn share a vertex.

STACS 2025

75:6 Canonical Labeling of Sparse Random Graphs

to show that color refinement is helpful for canonical labeling of the random graph when
p ≫ 1/n and to study the smoothed complexity of graph isomorphism. Our method allows
obtaining precise results on the automorphism group of the core (Theorem 6).

Immerman and Lander [23] showed a tight connection between CR-identifiability and
definability of a graph in first-order logic with counting quantifiers. Corollary 5 can, therefore,
be recast in logical terms as follows. If p = O(1/n), then Hn is whp definable in this logic
with using only two first-order variables (where the definability of a graph H means the
existence of a formula which is true on H and false on any graph non-isomorphic to H).
Definability of the giant component of G(n, p) in the standard first-order logic (without
counting quantifiers) was studied by Bohman et al. [11].

The rest of the paper and proof strategy. Section 2 begins with formal description of the
color refinement algorithm in Subsection 2.1 and then, in Subsection 2.2, presents a useful
criterion of CR-distinguishability in terms of universal covers. The concept of a universal
cover appeared in algebraic and topological graph theory [10, 15, 31], and its tight connection
to CR was observed in [3]. Subsection 2.3 pays special attention to the CR-identifiability
of unicyclic graphs, which in Subsection 2.4 allows us to obtain an explicit criterion of
CR-identifiability for general graphs in terms of the complex and the simple part of a graph.
Finally, in Subsection 2.5 we use the relationship between CR and universal covers to prove
useful properties of the CR-coloring of the core of an arbitrary graph.

Theorem 1 and Corollaries 2 and 5 are proved in Section 3. The proofs of Theorem 1
and Corollary 5 are based on Theorem 3. A crucial ingredient of the proof of Theorem 3 is
our Main Lemma (Lemma 20). This lemma says that CR is unable to distinguishe between
two vertices in the core only if they lie either on pendant paths (with the same endvertices)
transposable by an automorphism of the graph or on a pendant cycle admitting a reflection
by an automorphism. Note that this statement alone, which is a part of the information
provided by Theorem 3, is enough to derive Theorem 1 and Corollary 5.

The proof of Main Lemma is outlined in Section 4. It heavily relies on the notion of a
kernel. The kernel K(G) of a graph G is a multigraph obtained from core(G) by contracting
all pendant paths. That is, K(G) is obtained via the following iterative procedure: at
every step if there exists a vertex u with only two neighbors v1, v2, we remove u with both
incident edges and add the edge {v1, v2} instead. Note that this transformation can lead to
appearance of multiple edges and loops.

To prove that CR colors vertices of the core in the described manner, we use the contiguous
models due to Ding, Lubetzky, and Peres [18] in strictly supercritical regime and due to
Ding, Kim, Lubetzky, and Peres in critical regime [17]. They allow to transfer properties of
random multigraphs with given degree sequences to the kernel of the giant component in
the random graph. Another important ingredient in our proofs is the fact that in the kernel
of the supercritical random graph there are whp no small complex subgraphs. We consider
separately two types of vertices: first, we prove that CR colors differently all vertices such that
their neighborhoods induce trees. This is done in Sections 4.1 and 4.2 for p = 1 + ω(n−1/3)
and p = 1 + O(n−1/3) respectively. Then, in Section 4.3, we prove that these vertices are
helpful to distinguish between all the remaining vertices.

A complete proof of Theorem 3 and the proof of Theorem 6 are omitted due to the space
constraints and can be found in the full version of the paper [33].

O. Verbitsky and M. Zhukovskii 75:7

2 Color refinement: From identifiability to canonical labeling

2.1 Description of the CR algorithm

We now give a formal description of the color refinement algorithm (CR for short). CR
operates on vertex-colored graphs but applies also to uncolored graphs by assuming that
their vertices are colored uniformly. An input to the algorithm consists either of a single
graph or a pair of graphs. Consider the former case first. For an input graph G with initial
coloring C0, CR iteratively computes new colorings

Ci(x) =
(

Ci−1(x), {{Ci−1(y)}}y∈N(x)

)
, (1)

where {{}} denotes a multiset and N(x) is the neighborhood of a vertex x. Denote the
partition of V (G) into the color classes of Ci by Pi. Note that each subsequent partition
Pi+1 is either finer than or equal to Pi. If Pi+1 = Pi, then Pj = Pi for all j ≥ i. Suppose
that the color partition stabilizes in the t-th round, that is, t is the minimum number such
that Pt = Pt−1. CR terminates at this point and outputs the coloring C = Ct. Note that if
the colors are computed exactly as defined by (1), they will require exponentially long color
names. To prevent this, the algorithm renames the colors after each refinement step, using
the same set of no more than n color names.

If an input consists of two graphs G and H, then it is convenient to assume that their
vertex sets V (G) and V (H) are disjoint. The vertex colorings of G and H define an initial
coloring C0 of the union V (G)∪V (H), which is iteratively refined according to (1). The color
partition Pi is defined exactly as above but now on the whole set V (G) ∪ V (H). As soon as
the color partition of V (G)∪V (H) stabilizes, CR terminates and outputs the current coloring
C = Ct of V (G) ∪ V (H). The color names are renamed for both graphs synchronously.

We say that CR distinguishes G and H if {{C(x)}}x∈V (G) ≠ {{C(x)}}x∈V (H). If CR fails
to distinguish G and H, then we call these graphs CR-equivalent and write G ≡CR H. A
graph G is called CR-identifiable if G ≡CR H always implies G ∼= H.

2.2 Covering maps and universal covers

A surjective homomorphism from a graph K onto a graph G is a covering map if its restriction
to the neighborhood of each vertex in K is bijective. We suppose that G is a finite graph,
while K can be an infinite graph. If there is a covering map from K to G (in other terms, K

covers G), then K is called a covering graph of G. Let G be connected. We say that a graph
U is a universal cover of a graph G if U covers every connected covering graph of G. A
universal cover U = UG of G is unique up to isomorphism. Alternatively, UG can be defined
as a tree that covers G. If G is itself a tree, then UG ∼= G; otherwise the tree UG is infinite.

A straightforward inductive argument shows that a covering map α preserves the coloring
produced by CR, that is, Ci(u) = Ci(α(u)) for all i, where Ci is defined by (1). It follows
that, if two connected graphs G and H have a common universal cover, i.e., UG ∼= UH ,
then { C(u) : u ∈ V (G)} = { C(v) : v ∈ V (H)}. The converse implication is also true, as a
consequence of the following lemma.

▶ Lemma 7 (cf. Lemmas 2.3 and 2.4 in [26]). Let UG and UH be universal covers of connected
graphs G and H respectively. Furthermore, let α be a covering map from UG to G and β be
a covering map from UH to H. For a vertex x of UG and a vertex y of UH , let UG

x and UH
y

be the rooted versions of UG and UH with roots at x and y respectively. Then UG
x

∼= UH
y

(isomorphism of rooted trees) if and only if C(α(x)) = C(β(y)).

STACS 2025

75:8 Canonical Labeling of Sparse Random Graphs

The union of CR-identifiable graphs does not need be CR-identifiable. However, the
concept of a universal cover allows us to state the following criterion, which is an extension
of [4, Thm. 5.4] (see [4, p. 649] for details).

▶ Lemma 8. Let G1, . . . , Gk be connected CR-identifiable graphs and G be their vertex-
disjoint union. Then G is CR-identifiable if and only if, for every pair of distinct i and j

such that neither Gi nor Gj is a tree, the universal covers of Gi and Gj are non-isomorphic.

2.3 Unicyclic graphs

2.3.1 Universal covers of unicyclic graphs
For a unicyclic graph G, its core(G) is the set of vertices lying on the unique cycle of G. We
use the notation c(G) = | core(G)| for the length of this cycle. For a vertex x in core(G),
let Gx denote the subgraph of G induced by the vertices reachable from x along a path
avoiding the other vertices in core(G). This is obviously a tree. Moreover, we define Gx as
a rooted tree with root at x. Let t(x) denote the isomorphism class of the rooted tree Gx.
We treat t as a coloring of core(G) and write R(G) to denote the cycle of G endowed with
this coloring. Thus, R(G) is defined as a vertex-colored cycle graph. It will also be useful to
see R(G) as a circular word over the alphabet {t(x) : x ∈ core(G)}; see, e.g., [22] and the
references therein for more details on this concept in combinatorics on words. In fact, R(G)
is associated with two circular words, depending on one of the two directions in which we go
along R(G). However, the choice of one of the two words is immaterial in what follows.

Speaking about a word, we mean a standard, non-circular word. Two words are conjugated
if they are obtainable from one another by cyclic shifts. A circular word is formally defined
as the conjugacy class of a word. A word u is a period of a word v if v = uk for some k ≥ 1.
A word u is a period of a circular word w if u is a period of some representative in the
conjugacy class of w. Note that if u is a period of a word v, then any conjugate of u is a
period of some conjugate of v. This allows us to consider periods of circular words themselves
being circular words. We define the periodicity p(w) of a circular word w to be the minimum
length of a period of w. It may be useful to keep in mind that a period of length p(w) is also
a period of every period of w; cf. [22, Proposition 1] (note that our terminology is different
from [22]).

For a unicyclic graph G, we define its periodicity by p(G) = p(R(G)), where R(G) is
seen as a circular word as explained above. Note that p(G) is a divisor of c(G) and that
1 ≤ | {t(x)}x∈core(G) | ≤ p(G) ≤ c(G).

Like trees, unicyclic graphs are also characterizable in terms of universal covers.

▷ Claim 9. A connected graph G is unicyclic if and only if UG has a unique infinite path.

The unique infinite path subgraph of UG will be denoted by P (UG). The structure of
UG is clear: The cycle of G is unfolded into the infinite path P (UG). Moreover, let α be
a covering map from UG to G. Then UG is obtained by planting a copy of the rooted tree
Gα(x) at each vertex x on P (UG). The path P (UG) will be considered being a vertex colored
graph, with each vertex x colored by t(α(x)).

The following observation is quite useful in what follows. Let α be a covering map from
UG to G. The restriction of α to P (UG) is a covering map from the vertex-colored path
P (UG) to the vertex-colored cycle R(G). Note that a covering map must preserve vertex
colors.

O. Verbitsky and M. Zhukovskii 75:9

▶ Lemma 10. Let G and H be connected unicyclic graphs. Then UG ∼= UH if and only if
the circular words R(G) and R(H) have a common period. Moreover, if UG ∼= UH , then
p(G) = p(H).

Proof. In one direction the statement is clear: if R(G) and R(H) have a common period,
then UG ∼= UH by the definition. Let U ∼= UG ∼= UH be a common universal cover of G and
H. We can naturally see P (U) as an infinite word. An arbitrary subword of length p(G) of
P (U) is a period of P (U), and the same is true for an arbitrary subword of length p(H) of
P (U). It follows that P (U) has a period u = u1 . . . uq of length q = gcd(p(G), p(H)). Indeed,
it is sufficient to note that there exist integers β1, β2 such that q = β1p(G) − β2p(H). Thus,
for any u0, uq at distance q in P (U), we get that u0 = uβ1p(G) = uq+β2p(H) = uq.

If α and β are covering maps from U to G and H respectively, then α(u1) . . . α(uq) is a
period of R(G) and β(u1) . . . β(uq) is a period of R(H). Since α and β preserve the vertex
colors, we have the equality α(u1) . . . α(uq) = β(u1) . . . β(uq). This also implies that, in fact,
q = p(G) = p(H). ◀

2.3.2 CR-identifiability of unicyclic graphs
▷ Claim 11. Let G be a connected unicyclic graph. Suppose that G ≡CR H and H consists
of connected components H1, . . . , Hm. Then
1. UHi ∼= UG for all i,
2. every Hi is unicyclic, and
3. c(G) = c(H1) + · · · + c(Hm).

Proof. 1. Fix i ∈ [m]. Let UG and W = UHi and αU , αW be the respective covering maps.
Let y be a vertex in UHi . Since G and H are CR-equivalent, UG must contain a vertex x

such that C(αU (x)) = C(αW (y)). By Lemma 7, Ux
∼= Wy. It follows that U ∼= W .

2. Immediately by Part 1 and Claim 9.
3. Fix a period of R(G) and set T =

∑
x |V (Gx)| where the summation goes over all

x in this period (this definition obviously does not depend on the choice of the period).
Let p = p(G). Note that |V (G)| = c(G)

p T . By Part 1 and Lemma 10, we similarly have
|V (Hi)| = c(Hi)

p T . The required equality now follows from the trivial equality |V (G)| =
|V (H1)| + · · · + |V (Hm)|. ◁

▶ Lemma 12. A connected unicyclic graph G is CR-identifiable if and only if one of the
following conditions is true:

p(G) = 1 and c(G) ∈ {3, 4, 5},
p(G) = 2 and c(G) ∈ {4, 6},
p(G) = c(G).

Proof. (⇐) Suppose that a connected unicyclic graph G satisfies one of the three conditions
and show that it is CR-identifiable. Assuming that H is CR-equivalent to G, we have to
check that G and H are actually isomorphic.

Assume first that H is connected. If H is not unicyclic, then G and H have equal number
of vertices but different number of edges. This implies that G and H have different degree
sequences, contradicting the assumptions that G ≡CR H. Therefore, H must be unicyclic.
By Part 3 of Claim 11, we have c(G) = c(H). Along with Lemma 10, which is applicable
because UG ∼= UH whenever G ≡CR H, this implies that R(G) ∼= R(H). The last relation,
in its turn, implies that G ∼= H.

STACS 2025

75:10 Canonical Labeling of Sparse Random Graphs

Assume now that H is disconnected. Let H1, . . . , Hm be the connected components of H .
Combining Claim 11 and Lemma 10, we see that p(G) = p(H1) ≤ c(H1) < c(G). It follows
that G satisfies one of the first two conditions. The restrictions on c(G), however, rule out the
equality in Part 3 of Claim 11. In particular, if c(G) = 6, then the only possible case is m = 2
and c(H1) = c(H2) = 3. However, it contradicts the equality p(H1) = p(H2) = p(G) = 2.
Thus, the case of disconnected H is actually impossible, that is, all such H are distinguishable
from G by CR.

(⇒) Suppose that all three conditions are false. That is, either p(G) = 1 and c(G) ≥ 6, or
p(G) = 2 and c(G) ≥ 8 (note that c(G) is even in this case), or 3 ≤ p(G) < c(G) (in the last
case, p(G) is a proper divisor of c(G)). In each case, R(G) is CR-equivalent to a disjoint
union of two shorter vertex-colored cycles R1 and R2, both sharing the same period of length
p(G) with R(G). Taking the connected unicyclic graphs H1 and H2 such that R(H1) ∼= R1
and R(H2) ∼= R2, we see that G is CR-equivalent to the disjoint union of H1 and H2 and is,
therefore, not CR-identifiable. ◀

▶ Lemma 13. Let G and H be connected unicyclic graphs with c(H) ≤ c(G). Assume that
both G and H are CR-identifiable. Then UG ∼= UH if and only if {t(x) : x ∈ core(G)} =
{t(x) : x ∈ core(H)} and one of the following conditions is true:

G ∼= H,
p(G) = p(H) = 1 and 3 ≤ c(H) < c(G) ≤ 5,
p(G) = p(H) = 2 and c(H) = 4 while c(G) = 6.

Proof. (⇐) By Lemma 10.

(⇒) Let G and H be CR-identifiable connected unicyclic graphs with c(H) ≤ c(G). Assume
that UG ∼= UH . The equality {t(x) : x ∈ core(G)} = {t(x) : x ∈ core(H)} immediately
follows from Lemma 10. By the same corollary, p(G) = p(H) = p. If p ≥ 3, then Lemma
12 yields the equality c(G) = p(G) = p(H) = c(H), which readily implies G ∼= H by using
Lemma 10 once again. If p ≤ 2, then either c(G) = c(H) and G ∼= H or c(H) < c(G) and
then, by Lemma 12, c(H) and c(G) are as claimed. ◀

2.4 A general criterion of CR-identifiability
Deciding whether a given graph is CR-identifiable is an efficiently solvable problem [4, 25].
For our purposes, it is beneficial to have a more explicit description of CR-identifiable graphs
in terms of the complex and the simple part of a graph. We now derive such a description
from the facts obtained for unicyclic graphs in the preceding subsection.

▶ Theorem 14.
1. A graph G is CR-identifiable if and only if both the complex and the simple parts of G

are CR-identifiable.
2. The simple part of G is CR-identifiable if and only if both of the following two conditions

are true:
(a) every unicyclic component of G is CR-identifiable, i.e., is as described in Lemma 12;
(b) every two unicyclic components of G have non-isomorphic universal covers, i.e., there

is no pair of connected components as described in Lemma 13.

Proof.
1. If G is CR-identifiable, then its complex and simple parts are both CR-identifiable as

a consequence a more general fact: The vertex-disjoint union of any set of connected
components of G is CR-identifiable. This fact is easy to see directly, and it also immediately
follows from Lemma 8.

O. Verbitsky and M. Zhukovskii 75:11

In the other direction, assuming that the complex and the simple parts of G are CR-
identifiable, we have to conclude that G is CR-identifiable. Lemma 8 reduces our task to
verification that if H is a complex connected component of G and S is a simple connected
component of G (a tree or a unicyclic graph), then the universal covers of H and S are
non-isomorphic. The last condition follows from the fact that the universal cover of a
tree is the tree itself and from Claim 9.

2. The second part of the theorem follows immediately from Lemma 8 due to the well-known
fact [23] that every tree is CR-identifiable. ◀

2.5 Coloring the cores of general graphs
We conclude this section by collecting useful general facts about the CR-colors of vertices in
the core of a graph. Let G be an arbitrary graph. If x is a vertex in core(G), then in G we
have a tree growing from the root x that shares with core(G) only the vertex x. We denote
this rooted tree by Tx.

▷ Claim 15. Let G and H be graphs. Let x be a vertex in core(G) and y be a vertex in
core(H). If Tx ̸∼= Ty, then C(x) ̸= C(y).

Proof. Clearly, it suffices to prove this for connected G and H. The condition Tx ̸∼= Ty

readily implies that UG
x ̸∼= UH

y , and the claim follows from Lemma 7. ◁

▷ Claim 16. Let G and H be two graphs (it is not excluded that G = H). For vertices
u ∈ V (G) and v ∈ V (H) assume that C(u) = C(v). Then u ∈ core(G) if and only if
v ∈ core(H).

Proof. Assume that G and H are connected (the general case will easily follow). Let αG be a
covering map from UG to G, and αH be a covering map from UH to H . Consider x ∈ V (UG)
and y ∈ V (UH) such that αG(x) = u and αH(y) = v. Note that u ∈ core(G) if and only if
there is a cycle in UG containing x, and the same is true about v any y. This proves the
claim because UG

x
∼= UH

y by Lemma 7. ◁

In our proofs, we will deal with cores that locally have a tree structure, that is, the
balls of sufficiently large radii around most of its vertices induce trees. In this case, CR
distinguishes vertices that have non-isomorphic neighborhoods.

▷ Claim 17. Let Br(v) denote the set of vertices at distance at most r from a vertex v. Let
v1, v2 ∈ V (G). If, for some r, the r-neighborhoods Br(v1) and Br(v1) induce non-isomorphic
trees rooted in v1 and v2 respectively, then C(v1) ̸= C(v2).

Proof. This is a direct consequence of Lemma 7. ◁

Throughout the paper, we identify the vertex set of the kernel of G with the set of
vertices of core(G) having degrees at least 3 in the core. We now state another consequence
of Lemma 7.

▷ Claim 18. Let G be a graph with minimum degree at least 2 and let K be its kernel.
Let r be a positive integer. For v ∈ V (K), let BK

r (v) be the subgraph of K induced by the
set of vertices at distance at most r from v in K. Let Br(v) ⊂ G be the subdivided version
of BK

r (v). Let v1, v2 be vertices of K such that, for some r, graphs Br(v1), Br(v2) ⊂ G are
non-isomorphic trees rooted in v1, v2. Then CG(v1) ̸= CG(v2).

Finally, we need the fact that the partition produced by CR on a graph refines the
partition produced by CR on its core.

STACS 2025

75:12 Canonical Labeling of Sparse Random Graphs

▷ Claim 19. Let u and v be vertices in core(G). Let C and C ′ be the colorings produced by
CR run on G and core(G) respectively. If C ′(u) ̸= C ′(v), then also C(u) ̸= C(v).

Proof. Clearly, it is enough to prove the claim for a connected graph G. Let us assume
towards a contradiction that C(u) = C(v). Let α be a covering map from UG to G. Let
x, y ∈ V (UG) be such that α(x) = u and α(y) = v. Due to Lemma 7, UG

x
∼= UG

y . Therefore,
U

core(G)
x = core(UG

x) ∼= core(UH
y) = U

core(H)
y . But then, again by Lemma 7, C ′(u) = C ′(v),

a contradiction. ◁

3 Proofs of main results

3.1 Derivation of Corollary 5 from Theorem 3
Part 1. Any isomorphism of graphs obviously respects their cores; cf. Claim 16. Note that
the CR-color of any vertex x in the core Cn contains a complete information about the
isomorphism type of the rooted tree Tx “growing” from this vertex (cf. Claim 15). This has
the following consequence. Let C′

n denote the colored version of Cn where each vertex x

is colored by the isomorphism type of Tx. Then Hn is CR-identifiable if and only if C′
n is

CR-identifiable. In order to show that C′
n is CR-identifiable it suffices to show that C′

n is
reconstructible up to isomorphism from the multiset of the vertex colors produced by CR on
input C′

n. The CR-color partition of C′
n is equal to the restriction of the CR-color partition of

Hn to Cn (recall Claim 16). Theorem 3, therefore, provides us with the following information
(whp):3

(a) every CR-color class of C′
n has size either 1 or 2,

(b) every two equally colored vertices have degree 2,
(c) every two equally colored vertices are transposable by an automorphism of C′

n.
Moreover, our Main Lemma (Lemma 20) ensures that Hn whp has no involutory automorphism
of type A3 described in Section 1. Along with this fact, the above conditions readily imply
that the color classes of size 2 occur either “along” a pair of transposable pendant paths
between two vertices of degree at least 3 or correspond to the reflectional symmetry of a
pendant cycle. Here we use the notions introduced in Section 1 in the context of Aut(Cn),
which should now be refined by taking into account the coloring of C′

n.
If {u} and {v} are two color classes of size 1, then the colors C(u) and C(v) yield the

information on whether the vertices u and v are adjacent or not. For color classes {u} and
{v, v′}, note that u and v are adjacent if and only if u and v′ are adjacent. This adjacency
pattern is as well reconstructible from the colors C(u) and C(v) = C(v′). If {u, u′} and
{v, v′} are two color classes of size 2, then they span either a complete or empty bipartite
graph or a matching (for example, u is adjacent to v, u′ is adjacent to v′, and there is no
other edges between these color classes). Each of these three possible adjacency patterns
is reconstructible from the colors C(u) = C(u′) and C(v) = C(v′). A crucial observation,
completing the proof, is that all ways to put a matching between {u, u′} and {v, v′} lead to
isomorphic graphs.

Part 2. This follows from part 1 by part 1 of Theorem 14.

3 Note that Conditions (b) and (c) are provided by Main Lemma. Condition (a) is not essential for
the argument in Subsections 3.1 and 3.2, which easily extends to the case of more than two mutually
transposable pendant paths.

O. Verbitsky and M. Zhukovskii 75:13

3.2 Derivation of Theorem 1 from Theorem 3
Before proceeding to the proof, we remark that when we say that a canonical labeling
algorithm succeeds on a random graph Gn, we mean that the algorithm works correctly on a
certain efficiently recognizable (closed under isomorphisms) class of graphs C such that Gn

belongs to C whp. Though not explicitly stated in the argument below, it will be clear that,
in our case, C is the class of all graphs satisfying the conditions of Theorem 3. Note that
these conditions are easy to check after running CR on a graph.

First of all, we distinguish the complex and the simple parts of Gn and compute a
canonical labeling of the simple part separately. This is doable in linear time. It remains to
handle the complex part Hn.

It is enough to compute a suitable injective coloring of Hn and subsequently to rename
the colors in their lexicographic order by using the labels that were not used for the simple
part. To this end, we run CR on Hn. This takes time O(n log n) as CR can be implemented
[9] in time O((n + m) log n), where m denotes the number of edges (which is linear for the
sparse random graph under consideration). Then we begin with coloring the vertices of the
core Cn. Theorem 3 along with Claim 16 ensures that the vertices of degree at least 3 already
received individual colors. The duplex colors occur along transposable pendant paths and
pendant cycle (like in Section 3.1, these notions are understood with respect to Hn rather
than to Cn alone). To make such vertex colors unique, we keep the original colors along one
of two transposable paths and concatenate their counterparts in the other path with a special
symbol. We proceed similarly with symmetric pendant cycles. In this way, every vertex x

in the core Cn receives an individual color ℓ(x). In the last phase, we compute a canonical
labeling for each tree part Tx of Hn, regarding Tx as a tree rooted at x. This coloring is not
injective yet because some Tx and Ty can be isomorphic. This is rectified by concatenating
all vertex colors in Tx with ℓ(x).

3.3 Proof of Corollary 2
As well known, if 1/n ≪ p ≤ 1/2 then the core of the giant component of G(n, p) coincides
with the core of the entire graph. Due to the classical linear-time algorithms for canonical
labeling of trees, this observation reduces canonical labeling of G(n, p) with 1/n ≪ p ≤ 1/2
to canonical labeling of its core.

Linial and Mosheiff [27] suggested an algorithm A1 that, for any p with 1
n ≪ p(n) < n−2/3,

whp labels canonically G(n, p) in time O(n4) by distinguishing between all vertices of the
core. In [16], it was proved that, if ln4 n

n ≤ p ≤ 1
2 , then CR whp distinguishes between all

vertices of the entire G(n, p). Finally, our Theorem 1 provides an algorithm A2 that, for any
p = O(1/n), whp labels canonically G(n, p) in time O(n ln n). Now, consider the following
algorithm A:
1. Run CR. If it colors differently all vertices, then halt and output the canonical labeling

produced by CR.
2. If the algorithm does not halt in Step 1, then run A1. If it succeeds (i.e., colors differently

all vertices in the core of the input graph), then halt and output the labeling produced
by A1.

3. If the algorithm does not halt in Steps 1 and 2, then run A2 and output the labeling it
produces (or give up if A2 fails).

Let us show that the algorithm A succeeds whp for any p with p(n) ≤ 1/2. Assume, to
the contrary, that there exist a constant ε > 0 and a sequence (nk)k∈N such that

P(A fails on G(nk, p(nk))) > ε

STACS 2025

75:14 Canonical Labeling of Sparse Random Graphs

for all k. If there is a subsequence (nki)i∈N and a constant C > 0 such that p(nki) < C/nki

for all i, then we get a contradiction with the performance of the algorithm A2. Therefore,
p(nk) ≫ 1

nk
. If there is a subsequence (nki

)i∈N such that p(nki
) < n

−2/3
ki

for all i, then we
get a contradiction with the performance of the algorithm A1. It follows that p(nk) ≥ n

−2/3
k

for all k. This, however, contradicts the result of [16] that CR in this regime produces a
discrete coloring of G(n, p) whp.

In order to obtain canonical labeling, whp, for all p with p(n) ∈ [0, 1], we run the algorithm
A on input G and if it fails, then we run A once again on the complement of G.

4 CR-coloring of the random graph

In this section, we state and prove our Main Lemma that describes the output of CR on the
random graph. Given a graph G, we call vertices u and v in core(G) interchangeable, if

they both have degree 2 in core(G),
u and v belong to a cycle F ⊂ core(G) with the following property: there exists a vertex
w on the cycle such that w has degree at least 3 in core(G), dF (u, w) = dF (v, w), and all
the other vertices on the cycle, but the vertex opposite to w when |V (F)| is even, have
degree 2 in core(G). In other words, u and v either belong to a pendant cycle or to two
transposable pendant paths, and the respective transposition replaces u and v.

▶ Lemma 20 (Main Lemma). Let γ > 1 be a constant, pn ≤ γ, and Gn = G(n, p). Let Hn be
the union of complex components in Gn, and Cn be its core. If CR is run on Hn, then whp
any pair of vertices in Cn receiving the same color is interchangeable. Under the condition
pn = 1 + ω(n−1/3), this is true also if CR is run on Cn.

The proof of Main Lemma is given in Sections 4.1–4.3. We consider separately large
p (supercritical phase) and small p (critical phase). In both cases, we specify good sets of
vertices and show that all vertices from good sets are distinguished by CR. This is done
in Section 4.1 for large p and Section 4.2 for small p. Finally, in Section 4.3 we complete
the proof: we show that distinguishing between good vertices in the core is sufficient to
distinguish between all pairs in the core that are not interchangeable.

For a graph G, dG(u, v) is the shortest-path distance between u and v in G. Sometimes,
when the graph is clear from the context, we omit the subscript G. For a vertex v and a real
number r, we denote by BG

r (v) the ball of radius r around v in G, i.e., the graph induced on
the set of all vertices at distance at most r from v in G. For a non-negative integer r, we
denote by SG

r (v) ⊂ BG
r (v) the sphere of radius r around v in G, i.e., the graph induced on

the set of all vertices at distance exactly r from v in G.
For a connected graph G, its excess is the difference between the number of edges and

the number of vertices. In particular, a tree has excess −1. We call ℓ-complex a connected
graph with excess ℓ. The total excess of a graph without unicyclic components is the sum of
excesses of all its components.

4.1 Distinguishing good vertices in the core in the supercritical and
strictly supercritical phases

In this subsection, we let p = p(n) be such that γ ≥ np = 1 + ω(n−1/3) for some constant
γ > 1. Denote δn := np − 1. We denote the kernel and the core of the giant component of
Gn ∼ G(n, p) by Kn and Cn. Let Ccore be the coloring produced by CR on Cn.

O. Verbitsky and M. Zhukovskii 75:15

We assign to every edge e of Cn the weight 1/ℓ, where ℓ − 1 is the number of vertices that
subdivide the edge of the kernel e belongs to. The weight of a path is the sum of weights of
its edges. For u, v ∈ V (Cn), let df (u, v) be the fractional distance between u and v, i.e. the
minimum weight of a path between u and v. We denote the respective metric space by Mn.

Fix a positive real s. Let Ds be the set of all v ∈ V (Cn) such that the ball around v

in Mn of radius s induces an acyclic graph. For every vertex v ∈ Ds and integer r < s,
let Pr(v) be the multiset of lengths of edge-disjoint paths from Cn that are produced by
subdividing edges {x, y} ∈ E(Kn), where df (x, v) ≤ r while df (y, v) > r. We will need the
following facts.

▷ Claim 21. Let s ≥ 0.6(ln(δ3
nn))2/3. Whp for any two different u, v ∈ Ds ∩ V (Kn), there

exists an integer r ≤ 0.5(ln(δ3
nn))2/3 such that the multisets Pr(u) and Pr(v) are different.

Proof. We fix s ≥ 0.6(ln(δ3
nn))2/3 and let D := Ds. We prove this claim in the contiguous

models G̃n, defined in [17, Thm. 2] and [18, Thm. 1] and then use these theorems to conclude
that it also holds in Gn. So, in what follows, K̃n = K(G̃n), C̃n = C(G̃n), and D̃ = D(K̃n).

Let us expose K̃n and let u, v ∈ D̃ ∩ V (K̃n). As proved in [17, 18], whp N = |V (K̃n)| =
Θ(δ3

nn). Assume first that the distance between u and v is at most 0.4(ln(δ3
nn))2/3 in K̃n.

Let P be the shortest path between u and v – it is unique due to the definition of D̃.
Let v′ be a neighbor of v in K̃n that does not belong to P . Then, by the definition of
D̃,
∣∣∣SK̃n

r (v′) \ BK̃n
r (v)

∣∣∣ ≥ 2r for all r ∈
[
0.4(ln(δ3

nn))2/3, 0.5(ln(δ3
nn))2/3]. Since u, v ∈ D̃,

we have that BK̃n
s (u) and BK̃n

s (v) are trees. It immediately implies, that for every such r,∣∣∣SK̃n
r+1(v) \ BK̃n

r+1(u)
∣∣∣ ≥ 2r.

We then generate subdivisions of the edges of the kernel from the definition of G̃n in the
following order: for every r =

⌈
0.4(ln(δ3

nn))2/3⌉ , . . . ,
⌊
0.5(ln(δ3

nn))2/3⌋, we, first, subdivide
all edges growing from BK̃n

r+1(u) outside of the ball, and then all edges growing from SK̃n
r+1(v)

outside of BK̃n
r+1(v). Notice that all sets SK̃n

r+1(v) are disjoint for different r. For every
r, as soon as the edges that correspond to the vertex u are subdivided, the event that
Pr+1(u) = Pr+1(v) immediately implies that the random multiset of lengths of paths from
C̃n, that are produced by subdividing edges from K̃n that grow from BK̃n

r+1(v) outside, should
be equal to a predefined value. This multiset has size at least 2r. Since the geometric random
variables considered in [17, 18] do not have atoms with probability measure 1 − o(1), the
latter event has probability at most 2−Θ(r) due to the de Moivre–Laplace local limit theorem.
Eventually,

P
(

Pr+1(u) = Pr+1(v) for all r ∈
[
0.4(ln(δ3

nn))2/3, 0.5(ln(δ3
nn))2/3

])
≤

≤ exp
(

−Θ((log(δ3
nn))4/3)

)
.

Assume now that the distance between u and v is bigger than 0.4(ln(δ3
nn))2/3 in K̃n.

Then, by the definition of D̃, sets BK̃n

0.2(ln(δ3
nn))2/3(v) and BK̃n

0.2(ln(δ3
nn))2/3 are disjoint and sets

SK̃n
r (v) have size at least 2r for all r ∈ [0.15(ln(δ3

nn))2/3, 0.2(ln(δ3
nn))2/3 − 1]. As above, we

get that Pr(u) = Pr(v) for all r ∈
[
0.15(ln(δ3

nn))2/3, 0.2(ln(δ3
nn))2/3 − 1

]
with probability at

most exp
(
−Θ((log(δ3

nn))4/3)
)
.

The union bound over all pairs u, v ∈ D̃ along with [17, Thm. 2] and [18, Thm. 1]
completes the proof. ◁

▷ Claim 22. Let s∗ := ⌊(ln(δ3
nn))2/3⌋ and D = Ds∗ . Whp, Ccore(u) ̸= Ccore(v) for any

distinct u, v ∈ D.

STACS 2025

75:16 Canonical Labeling of Sparse Random Graphs

Proof. Assume that the assertion of Claim 21 holds for s = s∗ and s = s∗ −1 deterministically.
Let u, v ∈ D ∩ V (Kn). Let Bu and Bv be the subdivided versions of BKn

s∗ (u) and BKn
s∗ (v)

in Cn. Since Bu ≇ Bv due to the conclusion of Claim 21, we get that Ccore(u) ̸= Ccore(v)
due to Claim 18. It remains to consider the case v ∈ D \ V (Kn) and v ̸= u ∈ D. Assume
towards contradiction that Ccore(u) = Ccore(v). Then, both u and v have degree 2 in Cn. In
particular, u /∈ V (Kn). Consider the edges eu, ev of Kn that u and v subdivide. Let Pu, Pv

be the subdivided versions of eu, ev. Due to the assertion of Claim 21 applied to s = s∗ − 1,
we get that all vertices of Kn from eu ∪ ev have different colors. On the other hand, by the
definition of CR, the neighbors of u should have exactly the same color as the neighbors of v.
Thus, by induction, we get that the entire paths Pu, Pv are colored identically. It may only
happen if the endpoints of Pu coincide with the endpoints of Pv. By the definition of D, it
means that Pu = Pv =: P . Since the endpoints of P are colored in different colors, it can be
easily shown by induction that all vertices in P are also colored in different colors. Thus,
u = v, yielding a contradiction. ◁

4.2 Distinguishing good vertices in the core in the critical regime
Let A be a large positive number. Let 1 − n−1/3 ln n ≤ pn = 1 + o(1). Whp any complex
component in Gn ∼ G(n, p) has size at least 100A ln n due to the following well-known fact.

▷ Claim 23. Let γ > 1, np ≤ γ, and Gn ∼ G(n, p). There exists ε = ε(γ) such that ε → ∞
as γ → 1 and whp any connected subgraph of Gn of size at most ε ln n is not complex.

Let us say that a path u1 . . . uk extends the path v1 . . . vk if, for some i ∈ {2, . . . , k}
the sets {v1, . . . , vi−1} and {uk−i+2, . . . , uk} are disjoint and u1 = vi, . . . , uk−i+1 = vk. For
convenience, we assume that this notion is closed under rotations of paths, i.e. if u1 . . . uk

extends v1 . . . vk, then it also extends vk . . . v1 and we also say that uk . . . u1 extends both
v1 . . . vk and vk . . . v1 in this case. We call two paths v1 . . . vk and u1 . . . uk weakly disjoint, if
they are either vertex-disjoint or one paths extends the other one.

▷ Claim 24. Whp in Gn there are no two weakly disjoint paths v1 . . . vk and u1 . . . uk of
length k = ⌊A ln n⌋ such that, for every i ∈ {2, . . . , k − 1}, vi has degree 2 if and only if ui

has degree 2.

Proof. Due to Claim 23, whp in Gn there are no complex subgraphs with at most 2k vertices.
For a path P = v1 . . . vk in Gn, let us consider a binary word w(P) = (w2, . . . , wk−1)

defined as follows: wi = 1 if and only if vi has degree 2 in Gn. Notice that, if a path u1 . . . uk

extends the path v1 . . . vk so that u1 = vi, . . . , uk−i+1 = vk and w(v1 . . . vk) = w(u1 . . . uk),
then w(u1 . . . uk) is periodic and defined by w(v1 . . . vi+1) = (w2, . . . , wi).

Let X be the number of pairs of paths as in the statement of the claim and such that
there are at most 2 edges between the paths (we are allowed to assume this since there
are no complex subgraphs of size at most 2k). Fix two weakly disjoint path v = v1 . . . vk

and u = u1 . . . uk and assume without loss of generality that either u extends v, or they
are disjoint. Let i be such that u1 = vi. If there is no such i, i.e. the paths are disjoint,
set i = k + 1. Then, expose edges from all vj , j ≤ i, and assume that they send at most
2 edges to u2, . . . , uk−1, other than the edge {u1, u2}. Then, probability that for every
j ∈ {2, . . . , k − 1}, vj has degree 2 if and only if uj has degree 2, is at most

max
{

(1 − p)n−2k, (1 − (1 − p)n)
}k−4 ≤

(
1 − e−(1+o(1))

)k−4
= o

((
2
3

)k
)

.

O. Verbitsky and M. Zhukovskii 75:17

We then get

EX ≤
k+1∑
i=2

nk+i−1pk+i−3
(

2
3

)k

≤ kn2(1 + o(1))2k

(
2
3

)k

= o(1),

for an appropriate choice of A. Due to Markov’s inequality, P(X ≥ 1) ≤ EX = o(1),
completing the proof. ◁

Let D be the set of all vertices v in Cn = core(Gn) that belong to a complex component of
Gn and such that Bv := BGn

3A ln n(v) is a tree. Let C be the coloring produced by CR on Gn.

▷ Claim 25. Whp, C(u) ̸= C(v) for any u, v ∈ D.

Proof. Assume that the statement of Claim 24 holds deterministically in Gn. Fix two different
u, v ∈ D. Let us show towards contradiction that trees Bv and Bu are not isomorphic.

Take an arbitrary path v1 . . . vk of length k := ⌊1.9A ln n⌋, where v1 = v. Since, by
assumption, Bv

∼= Bu, there exists a path u = u1 . . . uk such that u1 = u and, for every
i ∈ {2, . . . , k − 1}, vi has degree 2 if and only if ui has degree 2. In the same way, since
v ∈ core(Gn) and Bv is a tree, we may consider a path v′

1 . . . v′
k that shares only the vertex

v′
1 = v = v1 with v1 . . . vk. Since Bu

∼= Bv, there should be a path u′ = u′
1 . . . u′

k that shares
with u1 . . . uk the only vertex u′

1 = u = u1 and such that, for every i ∈ {2, . . . , k − 1}, v′
i

has degree 2 if and only if u′
i has degree 2. Since Bv is acyclic and since pairs of paths

v1 . . . vk, u1 . . . uk and v′
1 . . . v′

k, u′
1 . . . u′

k cannot be disjoint due to Claim 24, u must lie on
the path P := vk . . . v1 . . . v′

k. Moreover, since Bu is acyclic, once u or u′ leave P , they never
meet with P again. Thus, the path uk . . . u1 . . . u′

k is divided by P in at most 3 parts: the
first part does not have common vertices with P , the second part is a subpath of P , and
the third part does not have common vertices with P again. Let Q be the longest part of
the three. Then Q has length ℓ ≥ 1

3 (2k − 1) > A ln n. Moreover, since degGn
u = degGn

v by
assumption and u ̸= v, there should be a subpath P ′ ⊂ P such that P ′ and Q are weakly
disjoint, and the degrees of internal vertices in P ′ and Q are aligned in the sense that the
i-th inner vertex of P ′ have degree 2 if and only if the i-th vertex of Q has degree 2. This is
impossible due to Claim 24. Thus, Bv ≇ Bu implying C(u) ̸= C(v) due to Claim 17. ◁

4.3 Completing the proof of Main Lemma (Lemma 20)
Due to Claims 22, 25, and 19, it remains to prove the following:
1. If 1 + ω(n−1/3) = pn ≤ γ, then

Ccore(u) ̸= Ccore(v) for every v ∈ V (Cn) \ D and u ∈ D;
Ccore(u) ̸= Ccore(v) for any non-interchangeable pair u, v ∈ V (Cn) \ D;

2. If 1 − n−1/3 ln n ≤ pn = 1 + o(1), then
C(u) ̸= C(v) for every v ∈ V (Cn) \ D and u ∈ D;
C(u) ̸= C(v) for any non-interchangeable pair u, v ∈ V (Cn) \ D.

We will use the following technical fact, which follows from [17, Thm. 2] and [18, Thm. 1].

▷ Claim 26. Let δ > 0 be a constant, n−1/3 ≪ δn := pn − 1 ≤ δ, and Gn ∼ G(n, p). Then
whp in K(Gn) there are no complex subgraphs of size at most (ln(nδ3

n))3/4.

For the sake of brevity, below we prove both statements in two different regimes simulta-
neously. Thus, with some abuse of notation, in the supercritical phase (i.e., 1 + ω(n−1/3) =
pn ≤ γ), we let Gn := Cn and C := Ccore as we only consider CR on Cn. We also assume
that when 1 + ω(n−1/3) = pn ≤ γ, the core is equipped with the fractional distance df ,

STACS 2025

75:18 Canonical Labeling of Sparse Random Graphs

constituting the metric space Mn. If 1 − n−1/3 ln n ≤ pn ≤ 1 + o(1), then Gn is equipped
with the usual shortest-path distance, that we denote by df as well. We also use the following
notation: d = ⌊(ln(δ3

nn))2/3⌋ when we prove the assertion for 1 + ω(n−1/3) = pn ≤ γ and
d = ⌊3A ln n⌋ when we prove it for 1 − n−1/3 ln n ≤ pn = 1 + o(1). In what follows, we
assume that the assertions of Claims 22, 23, 25, and 26 hold deterministically in Gn.
1. Assume that some v /∈ D and u ∈ D have C(u) = C(v). We know that v is d-close

to a cycle F of length at most 2d. If v ∈ V (F), then let v′ be the closest to v vertex
on F that has degree more than 2 in the core. Otherwise, let v′ = v. Let P be the
shortest path from v′ to F . Let us extend this path by a path P ′ of length 10d beyond
v′. Due to Claim 23 and Claim 26, it has a subpath w . . . w′ of length 5d consisting
of vertices from D only such that df (w, v′) ≤ d. We know that all elements of the
vector c := (C(w), . . . , C(w′)) are different. Then, due to our assumption, u must have a
vertex z at distance at most df (w, v) such that z is the first vertex of a path z . . . z′ with
C(w) = C(z), . . . , C(w′) = C(z′).
We now consider separately two cases: w = z and w ̸= z. In the first case, we have that
the distance from u to the closest cycle (which is F , the same as for v) is at most

df (w, u) + df (w, v′) + df (v′, F) ≤ length of F + 2(df (w, v′) + df (v′, F)) ≤ 6d.

Let P be the shortest path between u and v. Due to Claim 23 and Claim 26, there exists
a path uw̃ . . . w̃′ of length 5d + 1 that does not meet P and consists of vertices from D

only. Due to Claim 22 and Claim 25 all elements of the vector c̃ := (C(w̃), . . . , C(w̃′))
are different and no element of c̃ equals to any element of c. Moreover, by construction,
df (v, w̃) > df (u, w̃). Then, due to our assumption, v must have a neighbor z̃ ̸= w̃ such
that z̃ is the first vertex of a path z̃ . . . z̃′ with C(w̃) = C(z̃), . . . , C(w̃′) = C(z̃′). Note
that w̃ ≠ z̃, . . . , w̃′ ̸= z̃′ due to Claim 23 and Claim 26. Since all vertices in D are
distinguished by C(·), we conclude that all vertices z̃, . . . , z̃′ must be outside D. Due
to Claim 23, Claim 26, and the definition of D, they constitute a (self-avoiding) path
and are d-close to a cycle of length at most 2d. Since the path has length 5d, we get a
contradiction with Claim 23 or Claim 26.
We then assume w ̸= z. It may only happen when z /∈ D. Moreover, all z, . . . , z′ are not
in D. Indeed, otherwise, different paths w . . . w′ and z . . . z′ have common vertices. Then
the path from z to F that goes through w has length greater than d. However, due to
Claim 23 and Claim 26, there are no two different paths from z to F , both of length at
most 12d and, also, there is no other cycle F ′ of length at most 2d such that a path from
z to F ′ has at most d vertices. This contradicts the fact that z /∈ D. Thus, we again get
a (self-avoiding) path consisting of vertices z, . . . , z′ that are d-close to a cycle of length
at most 2d. This contradicts Claim 23 or Claim 26 again, since the path has length 5d.
We conclude that every vertex u ∈ D has C(u) that does not equal to the color of any
other vertex in the core.

2. It remains to prove that, for any two distinct u, v /∈ D that are not interchangeable,
C(u) ̸= C(v). Fix two such vertices u and v. We may assume that Tu

∼= Tv since otherwise
C(u) ̸= C(v) due to Claim 15. Let Fu and Fv be two cycles of length at most 2d that
are closest to u and v respectively (both are at distance at most d from the respective
vertices). If Fu ≠ Fv, then set F := Fu. In this case, we let u′ = u when u /∈ V (F)
and let u′ be the closest vertex of degree 3 in F to u otherwise. If Fu = Fv =: F , then,
without loss of generality we assume that either u is not in F or both u, v are in F . Let
u′ = u when u /∈ V (F) and let u′ be a vertex of F that has degree at least 3 and such
that df (u, u′) ̸= df (v, u′) otherwise. Note that such a vertex exists due to the definition

O. Verbitsky and M. Zhukovskii 75:19

of an interchangeable pair. Consider a path P of length 10d that starts at u′ and does
not meet F . Due to Claim 23 and Claim 26, this path has a vertex w in D such that
d(w, u′) ≤ d. If Fu ̸= Fv, then

df (v, w) ≥ df (Fu, Fv) − df (v, Fv) − df (w, Fu) > df (u, w)

due to Claim 23 and Claim 26. Finally, let Fu = Fv. Assume, in addition, u /∈ V (F).
Then the only possibility for C(u) to be equal to C(v) is to have a path P ′ between v

and w of length df (u, w). Let us extend P ′ by a path of length 10d beyond v. Due to
Claim 23 and Claim 26 this path has a vertex w′ from D such that df (w′, v) ≤ d. But
then df (u, w′) > df (v, w′), implying C(u) ̸= C(v). If u, v ∈ V (F), then

df (v, w) = df (v, u′) + df (u′, w) ̸= df (u, u′) + df (u′, w) = df (u, w).

In either case, we get df (v, w) ̸= df (u, w) or C(u) ̸= C(v). Recalling that w has a unique
color, we readily conclude that C(u) ̸= C(v), completing the proof.

References
1 Alfred V. Aho, John E. Hopcroft, and Jeffrey D. Ullmann. The Design and Analysis of

Computer Algorithms. Addison-Wesley Longman Publishing Co., 1974.
2 Michael Anastos, Matthew Kwan, and Benjamin Moore. Smoothed analysis for graph isomor-

phism, 2024. arXiv:2410.06095.
3 D. Angluin. Local and global properties in networks of processors. In The 12th Annual ACM

Symposium on Theory of Computing, pages 82–93, 1980.
4 Vikraman Arvind, Johannes Köbler, Gaurav Rattan, and Oleg Verbitsky. Graph isomorphism,

color refinement, and compactness. Comput. Complex., 26(3):627–685, 2017. doi:10.1007/
s00037-016-0147-6.

5 L. Babai, P. Erdős, and S. M. Selkow. Random graph isomorphism. SIAM Journal on
Computing, 9(3):628–635, 1980. doi:10.1137/0209047.

6 László Babai. Moderately exponential bound for Graph Isomorphism. In Proc. of the 3rd Int.
Conf. on Fundamentals of Computation Theory (FCT’81), volume 117 of Lecture Notes in
Computer Science, pages 34–50. Springer, 1981. doi:10.1007/3-540-10854-8_4.

7 László Babai. Graph isomorphism in quasipolynomial time. In Proceedings of the forty-
eighth annual ACM symposium on Theory of Computing (STOC’16), pages 684–697, 2016.
doi:10.1145/2897518.2897542.

8 László Babai. Canonical form for graphs in quasipolynomial time: preliminary report. In
Proceedings of the 51st Annual ACM SIGACT Symposium on Theory of Computing (STOC’19),
pages 1237–1246, 2019. doi:10.1145/3313276.3316356.

9 Cristoph Berkholz, Paul Bonsma, and Martin Grohe. Tight lower and upper bounds for the
complexity of canonical colour refinement. Theory of Computing Systems, 60:581–614, 2017.
doi:10.1007/S00224-016-9686-0.

10 N. Biggs. Algebraic graph theory. Cambridge University Press, 2nd edition, 1994.
11 Tom Bohman, Alan M. Frieze, Tomasz Luczak, Oleg Pikhurko, Clifford D. Smyth, Joel Spencer,

and Oleg Verbitsky. First-order definability of trees and sparse random graphs. Comb. Probab.
Comput., 16(3):375–400, 2007. doi:10.1017/S0963548306008376.

12 Bela Bollobás. Distinguishing vertices of random graphs. Ann. Discrete Math., 13:33–50, 1982.
13 Bela Bollobás. The evolution of random graphs. Transactions of the American Mathematical

Society, 286(1):257–274, 1984.
14 Bela Bollobás. Random graphs. Cambridge University Press, 2001.
15 D. M. Cvetković, M. Doob, and H. Sachs. Spectra of graphs. Theory and applications. Leipzig:

J. A. Barth Verlag, 3rd edition, 1995.

STACS 2025

https://arxiv.org/abs/2410.06095
https://doi.org/10.1007/s00037-016-0147-6
https://doi.org/10.1007/s00037-016-0147-6
https://doi.org/10.1137/0209047
https://doi.org/10.1007/3-540-10854-8_4
https://doi.org/10.1145/2897518.2897542
https://doi.org/10.1145/3313276.3316356
https://doi.org/10.1007/S00224-016-9686-0
https://doi.org/10.1017/S0963548306008376

75:20 Canonical Labeling of Sparse Random Graphs

16 Tomek Czajka and Gopal Pandurangan. Improved random graph isomorphism. Journal of
Discrete Algorithms, 6:85–92, 2008. doi:10.1016/J.JDA.2007.01.002.

17 Jian Ding, Jeong Han Kim, Eyal Lubetzky, and Yuval Peres. Anatomy of young giant
component in the random graph. Random Structures & Algorithms, 39(2):139–178, 2011.
doi:10.1002/RSA.20342.

18 Jian Ding, Eyal Lubetzky, and Yuval Peres. Anatomy of the giant component: The strictly
supercritical regime. European Journal of Combinatorics, 35:155–168, 2014. doi:10.1016/J.
EJC.2013.06.004.

19 Paul Erdős and Alfred Rényi. On the evolution of random graphs. Publ. Math. Inst. Hungar.
Acad. Sci., 5:17–61, 1960.

20 Paul Erdős and Alfred Rényi. Asymmetric graphs. Acta Math Acad Sci Hung, 14:295–315,
1963.

21 Julia Gaudio, Miklós Z. Rácz, and Anirudh Sridhar. Average-case and smoothed analysis of
graph isomorphism, 2023. arXiv:2211.16454.

22 László Hegedüs and Benedek Nagy. On periodic properties of circular words. Discrete
Mathematics, 339(3):1189–1197, 2016. doi:10.1016/j.disc.2015.10.043.

23 Neil Immerman and Eric Lander. Describing Graphs: A First-Order Approach to Graph
Canonization, pages 59–81. Springer New York, 1990.

24 Svante Janson, Tomasz Łuczak, and Andrzej Ruciński. Random graphs. John Wiley & Sons,
2000.

25 Sandra Kiefer, Pascal Schweitzer, and Erkal Selman. Graphs identified by logics with counting.
ACM Trans. Comput. Log., 23(1):1:1–1:31, 2022. doi:10.1145/3417515.

26 Andreas Krebs and Oleg Verbitsky. Universal covers, color refinement, and two-variable
counting logic: Lower bounds for the depth. In 30th Annual ACM/IEEE Symposium on
Logic in Computer Science (LICS’15), pages 689–700. IEEE Computer Society, 2015. doi:
10.1109/LICS.2015.69.

27 N. Linial and J. Mosheiff. On the rigidity of sparse random graphs. Journal of Graph Theory,
85(2):466–480, 2017. doi:10.1002/JGT.22073.

28 T. Łuczak. The automorphism group of random graphs with a given number of edges. Math
Proc Camb Phil Soc, 104:441–449, 1988.

29 Tomasz Łuczak. The phase transition in a random graph. In D. Miklós, V.T. Sós, and
T. Szőnyi, editors, Combinatorics, Paul Erdős is Eighty, volume 2, pages 399–422. Bolyai Soc.
Math. Stud. 2, J. Bolyai Math. Soc., Budapest, 1996.

30 Tomasz Łuczak, Boris Pittel, and John C. Wierman. The structure of a random graph
at the point of the phase transition. Transactions of the American Mathematical Society,
341(2):721–748, 1994.

31 W. S. Massey. Algebraic topology: An introduction, volume 56 of Graduate Texts in Mathematics.
Springer, 5th edition, 1981.

32 Marc Noy, Vlady Ravelomanana, and Juanjo Rué. On the probability of planarity of a
random graph near the critical point. Proc. Am. Math. Soc., 143(3):925–936, 2015. doi:
10.1090/S0002-9939-2014-12141-1.

33 Oleg Verbitsky and Maksim Zhukovskii. Canonical labeling of sparse random graphs, 2024.
arXiv:2409.18109.

34 B.Yu. Weisfeiler and A.A. Leman. The reduction of a graph to canonical form and the algebra
which appears therein. NTI, Ser. 2, 9:12–16, 1968. In Russian. English translation is available
at https://www.iti.zcu.cz/wl2018/pdf/wl_paper_translation.pdf.

35 E. M. Wright. Asymmetric and symmetric graphs. Glasgow Math J, 15:69–73, 1974.

https://doi.org/10.1016/J.JDA.2007.01.002
https://doi.org/10.1002/RSA.20342
https://doi.org/10.1016/J.EJC.2013.06.004
https://doi.org/10.1016/J.EJC.2013.06.004
https://arxiv.org/abs/2211.16454
https://doi.org/10.1016/j.disc.2015.10.043
https://doi.org/10.1145/3417515
https://doi.org/10.1109/LICS.2015.69
https://doi.org/10.1109/LICS.2015.69
https://doi.org/10.1002/JGT.22073
https://doi.org/10.1090/S0002-9939-2014-12141-1
https://doi.org/10.1090/S0002-9939-2014-12141-1
https://arxiv.org/abs/2409.18109
https://www.iti.zcu.cz/wl2018/pdf/wl_paper_translation.pdf

Dynamic Unit-Disk Range Reporting
Haitao Wang #

Kahlert School of Computing, University of Utah, Salt Lake City, UT, USA

Yiming Zhao #

Department of Computer Sciences, Metropolitan State University of Denver, CO, USA

Abstract
For a set P of n points in the plane and a value r > 0, the unit-disk range reporting problem is
to construct a data structure so that given any query disk of radius r, all points of P in the disk
can be reported efficiently. We consider the dynamic version of the problem where point insertions
and deletions of P are allowed. The previous best method provides a data structure of O(n log n)
space that supports O(log3+ϵ n) amortized insertion time, O(log5+ϵ n) amortized deletion time,
and O(log2 n/ log log n + k) query time, where ϵ is an arbitrarily small positive constant and k is
the output size. In this paper, we improve the query time to O(log n + k) while keeping other
complexities the same as before. A key ingredient of our approach is a shallow cutting algorithm for
circular arcs, which may be interesting in its own right. A related problem that can also be solved
by our techniques is the dynamic unit-disk range emptiness queries: Given a query unit disk, we
wish to determine whether the disk contains a point of P . The best previous work can maintain
P in a data structure of O(n) space that supports O(log2 n) amortized insertion time, O(log4 n)
amortized deletion time, and O(log2 n) query time. Our new data structure also uses O(n) space but
can support each update in O(log1+ϵ n) amortized time and support each query in O(log n) time.

2012 ACM Subject Classification Theory of computation → Computational geometry; Theory of
computation → Design and analysis of algorithms

Keywords and phrases Unit disks, range reporting, range emptiness, alpha-hulls, dynamic data
structures, shallow cuttings

Digital Object Identifier 10.4230/LIPIcs.STACS.2025.76

Related Version Full Version: https://arxiv.org/pdf/2501.00120

Funding This research was supported in part by NSF under Grant CCF-2300356.

1 Introduction

Range searching is a fundamental problem and has been studied extensively in computational
geometry [2, 3, 26]. In this paper, we consider a dynamic range reporting problem regarding
disks of fixed radius, called unit disks.

Given a set P of n points in the plane, the unit-disk range reporting problem (or UDRR
for short) is to construct a data structure to report all points of P in any query unit disk.
The problem is also known as the fixed-radius neighbor problem in the literature [4,14,16,17].
Chazelle and Edelsbrunner [17] constructed a data structure of O(n) space that can answer
each query in O(log n + k) time, where k is the output size; their data structure can be
constructed in O(n2) time. By a standard lifting transformation [5], the problem can be
reduced to the half-space range reporting queries in 3D; this reduction also works if the radius
of the query disk is arbitrary. Using Afshani and Chan’s 3D half-space range reporting data
structure [1], one can construct a data structure of O(n) space with O(log n + k) query time,
while the preprocessing takes O(n log n) expected time since it invokes Ramos’ algorithm [27]
to construct shallow cuttings for a set of planes in 3D. Chan and Tsakalidis [13] later presented
an O(n log n)-time deterministic shallow cutting algorithm. Combining the framework in [1]
with the shallow cutting algorithm [13], one can build a data structure of O(n) space in
O(n log n) deterministic time that can answer each UDRR query in O(log n + k) time.

© Haitao Wang and Yiming Zhao;
licensed under Creative Commons License CC-BY 4.0

42nd International Symposium on Theoretical Aspects of Computer Science (STACS 2025).
Editors: Olaf Beyersdorff, Michał Pilipczuk, Elaine Pimentel, and Nguyễn Kim Thắng;
Article No. 76; pp. 76:1–76:19

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:haitao.wang@utah.edu
https://orcid.org/0000-0001-8134-7409
mailto:yizhao@msudenver.edu
https://orcid.org/0000-0001-5080-5251
https://doi.org/10.4230/LIPIcs.STACS.2025.76
https://arxiv.org/pdf/2501.00120
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

76:2 Dynamic Unit-Disk Range Reporting

We consider the dynamic UDRR problem in which point insertions and deletions of P

are allowed. By the lifting transformation, the problem can be reduced to dynamic halfspace
range reporting in 3D [7,10,11], which also works for query disks of arbitrary radii. Using
the currently best result of dynamic halfspace range reporting [6], one can obtain a data
structure of O(n log n) space that supports O(log3+ϵ n) amortized insertion time, O(log5+ϵ n)
amortized deletion time, and O(log2 n/ log log n + k) query time, where ϵ is an arbitrarily
small positive constant and k is the output size.

Our result. In this paper, we achieve the optimal O(log n + k) query time, while the space
of the data structure and the update time complexities are the same as above.

A byproduct of our techniques is a static data structure of O(n) space that can be built
in O(n log n) time and support O(log n + k) query time. This matches the above result
of [1,13]. But our method is much simpler. Indeed, the algorithm of [1,13] involves relatively
advanced geometric techniques like computing shallow cuttings for the planes in 3D, planar
graph separators, etc. Our algorithm, on the contrary, relies only on elementary techniques
(the most complicated one might be a fractional cascading data structure [18, 19]). One
may consider our algorithm a generalization of the classical 2D half-plane range reporting
algorithm of Chazelle, Guibas, and Lee [20].

Our techniques may also be useful for solving other problems related to unit disks. In
particular, we can obtain an efficient algorithm for the dynamic unit-disk range emptiness
queries. For a dynamic set P of points in the plane, we wish to determine whether a query unit
disk contains any point of P (and if so, return such a point as an “evidence”). The previous
best solution is to use a dynamic nearest neighbor search data structure [11]. Specifically,
we can have a data structure of O(n) space that supports O(log2 n) amortized insertion
time, O(log4 n) amortized deletion time, and O(log2 n) query time. Using our techniques, we
obtain an improved data structure of O(n) space that supports both insertions and deletions
in O(log1+ϵ n) amortized time and supports queries in O(log n) time.

Our approach. We first discuss our static data structure. We use a set of O(n) grid cells
(each of which is an axis-parallel rectangle) to capture the proximity information for the
points of P , such that the distance between any two points in the same cell is at most 1.
For a query unit disk Dq whose center is q, points of P in the cell C that contains q can be
reported immediately. The critical part is handling other cells that contain points of P ∩ Dq.
The number of such cells is constant and each of them is separated from C (and thus from q)
by an axis-parallel line. The problem thus boils down to the following subproblem: Given a
set Q of points in a grid cell C ′ above a horizontal line ℓ, report the points of Q in any query
unit disk whose center is below ℓ. A point p ∈ Q is in Dq if and only if q lies in the unit disk
Dp centered at p, or equivalently, q is above the arc of the boundary of Dp below ℓ. Let Γ
denote the set of all such arcs for all points p ∈ Q. To find the points of Q in Dq, it suffices
to report the arcs of Γ below q. To tackle this problem, we follow the same framework as
that for the 2D half-plane range reporting algorithm [20], by constructing lower envelope
layers of Γ and building a fractional cascading data structure on them [18,19].

To make the data structure dynamic, we first derive a data structure to maintain the grid
cells dynamically so that each update (point insertions/deletions) can be handled in O(log n)
amortized time. This dynamic data structure could be of independent interest. Next, we
develop a data structure to dynamically maintain arcs of Γ to support the arc-reporting
queries (i.e., given a query point, report all arcs of Γ below it). To this end, we cannot
use the fractional cascading data structure anymore because it is not amenable to dynamic

H. Wang and Y. Zhao 76:3

changes. Instead, we adapt the techniques for dynamically maintaining a set of lines to answer
line-reporting queries (i.e., given a query point, report all lines below the query point; its
dual problem is the halfplane range reporting queries) [6,9–11,23]. To make these techniques
work for the arcs of Γ in our problem, we need an efficient shallow cutting algorithm for Γ.
For this, we adapt the algorithm in [13] for lines and derive an O(|Γ| log |Γ|) time shallow
cutting algorithm for Γ. As shallow cuttings have many applications, our algorithm may be
interesting in its own right.

Outline. The rest of the paper is organized as follows. In Section 2, we introduce notation
and a conforming coverage set of grid cells to capture the proximity information for points
of P . Section 3 discusses our dynamic UDRR data structure. A main subproblem of it is
solved in Section 4. A key ingredient of our method is an efficient algorithm for computing
shallow cuttings for arcs; this algorithm is presented in Section 5. Section 6 demonstrates
that our techniques may be used to solve other related problems, such as dynamic unit-disk
range emptiness queries. Due to the space limit, some details and proofs are omitted but
can be found in the full paper.

2 Preliminaries

We define some notation that will be used throughout the paper. A unit disk refers to a disk
of radius 1. A unit circle is defined similarly. Unless otherwise stated, a circular arc or an
arc refers to a circular arc of radius 1. For a circular arc γ, we call the circle that contains γ

the underlying circle of γ and call the disk whose boundary contains γ the underlying disk.
For any point q, let Dq denote the unit disk centered at q. For any region R and any set P

of points in the plane, let P (R) denote the subset of points of P inside R, i.e., P (R) = P ∩ R.
For any region R in the plane, we use ∂R to denote its boundary, e.g., if R is a disk, then
∂R is its bounding circle.

Unless otherwise stated, ϵ refers to an arbitrarily small positive constant. Depending on
the context, we often use k to denote the output size of a reporting query. For any point p

in the plane, we use x(p) and y(p) to denote the x and y-coordinates of p, respectively.

2.1 Conforming coverage of P

Let P be a set of n points in the plane. We wish to have a data structure for P to answer
the following unit-disk range reporting queries: Given a query unit disk D, report P (D), i.e.,
the points of P in D.

As discussed in Section 1, our method (for both static and dynamic problems) relies on
a set of grid cells to capture the proximity information for the points of P . The technique
of using grids has been widely used in various algorithms for solving problems in unit-disk
graphs [12, 28–32]. However, the difference here is that we need to handle updates to P

and therefore our grid cells will be dynamically changed as well. To resolve the issue, our
definition of grid cells is slightly different from the previous work. Specifically, we define a
conforming coverage set of cells for P in the following.

▶ Definition 1 (Conforming Coverage). A set C of cells in the plane is called a conforming
coverage for P if the following conditions hold.
1. Each cell of C is an axis-parallel rectangle of side lengths at most 1/2. This implies that

the distance of every two points in each cell is at most 1.
2. The union of all cells of C covers all the points of P .

STACS 2025

76:4 Dynamic Unit-Disk Range Reporting

3. Every two cells are separated by an axis-parallel line.
4. Each cell C ∈ C is associated with a subset N(C) ⊆ C of O(1) cells (called neighboring

cells of C) such that for any point q ∈ C, P (Dq) ⊆
⋃

C′∈N(C) P (C ′).
5. For any point q, if q is not in any cell of C, then P ∩ Dq = ∅.

To solve the static problem, after computing a conforming coverage set of cells for P , we
never need to change it in the future. As such, the following lemma from [28] suffices.

▶ Lemma 2 ([28]).
1. A conforming coverage set C of size O(n), along with P (C) and N(C) for all cells C ∈ C,

can be computed in O(n log n) time and O(n) space.
2. With O(n log n) time and O(n) space preprocessing, given any point q, we can do the

following in O(log n) time: Determine whether q is in a cell C of C, and if so, return C

and N(C).

However, for the dynamic problem, due to the updates of P , the conforming coverage set
also needs to be maintained dynamically. For this, we have the following lemma.

▶ Lemma 3. A conforming coverage set C of O(n) cells for P can be maintained in O(n)
space (where n is the size of the current set P) such that each point insertion of P can be
handled in O(log n) worst-case time, each point deletion can be handled in O(log n) amortized
time, and the following query can be answered in O(log n) time: Given a query point q,
determine whether q is in a cell C of C, and if so, return C and N(C).

The proof of Lemma 3, which is lengthy and technical, is in the full paper. Roughly
speaking, if a point p is inserted to P , then at most O(1) cells will be added to C and p will
eventually be inserted into P (C) for the cell C ∈ C containing p. If a point p is deleted from
P , the deletion boils down to the deletion of p from P (C) for the cell C ∈ C containing p.
We do not remove cells from C. Instead, we reconstruct the entire data structure after n/2
deletions; this guarantees that the size of C is always O(n). See the full paper for the details.

3 Dynamic range reporting

Let P be a set of points in the plane. We wish to maintain a data structure for P to answer
unit-disk range reporting queries subject to point insertions and deletions of P . Let n denote
the size of the current set P .

Using Lemma 3, we maintain a conforming coverage set C of O(n) cells for P . To insert
a point p to P , our insertion algorithm for Lemma 3 boils down to inserting p to P (C) for a
cell C ∈ C that contains p. To delete a point p from P , our deletion algorithm for Lemma 3
boils down to deleting p from P (C) for a cell C ∈ C that contains p.

Consider a query unit disk Dq whose center is q. If q is not in a cell of C, then by
Definition 1(5), P (Dq) = ∅ and thus we simply return null. Otherwise, to report P (Dq),
it suffices to report P (C ′) ∩ Dq for all cells C ′ ∈ N(C). In the case of C ′ = C, since the
distance between two points in C is at most 1 by Definition 1(1), we can simply report all
points of P (C). If C ′ ̸= C, C and C ′ are separated by an axis-parallel line by Definition 1(3).
Without loss of generality, we assume that C and C ′ are separated by a horizontal line ℓ

with C ′ above ℓ and C below ℓ. As q ∈ C, q is below ℓ, i.e., q is separated from C ′ by ℓ. Our
goal is to report points of P (C ′) ∩ Dq. Due to the point updates of P (C ′), our problem is
reduced to the following subproblem, called dynamic line-separable UDRR problem.

H. Wang and Y. Zhao 76:5

▶ Problem 1 (Dynamic line-separable UDRR). For a set Q of m points above a horizontal
line ℓ, maintain Q in a data structure to support the following operations. (1) Insertion:
insert a point to Q; (2) deletion: delete a point from Q; (3) unit-disk range reporting query:
given a point q below ℓ, report the points of Q in the unit disk Dq.

We have the following Lemma 4 for the dynamic line-separable UDRR problem.

▶ Lemma 4. For the dynamic line-separable UDRR problem, we can have a data structure
of O(m log m) space to maintain Q to support insertions in O(log3+ϵ m) amortized time,
deletions in O(log5+ϵ m) amortized time, and unit-disk range reporting queries in O(k+log m)
time, where k is the output size, ϵ is an arbitrarily small positive constant, and m is the size
of the current set Q.

We will prove Lemma 4 in Section 4. With Lemmas 3 and 4, we can obtain the following
main result for our original dynamic UDRR problem.

▶ Theorem 5. We can maintain a set P of points in the plane in a data structure of
O(n log n) space to support insertions in O(log3+ϵ n) amortized time, deletions in O(log5+ϵ n)
amortized time, and unit-disk range reporting queries in O(k + log n) time, where k is the
output size, ϵ is an arbitrarily small positive constant, and n is the size of the current set P .

Proof. We build the data structure D in Lemma 3 to maintain a conforming coverage set C
of O(n) cells for P . For each cell C ∈ C that contains at least one point of P , we maintain
a data structure De(C) for P (C) with respect to the supporting line of each edge e of C.
Since the space of each De(C) is O(|P (C)| log |P (C)|), each cell of C has four edges, and∑

C∈C |P (C)| = n, the total space of the overall data structure is O(n log n).
Insertions. To insert a point p to P , we first update D by Lemma 3, which takes O(log n)
worst-case time. The insertion algorithm of Lemma 3 eventually inserts p to P (C) for a cell
C ∈ C that contains p. We insert p to De(C) for each edge e of C, which takes O(log3+ϵ n)
amortized time by Lemma 4. As such, each insertion takes O(log3+ϵ n) amortized time.
Deletions. To delete a point p from P , we first update D by Lemma 3, which takes O(log n)
amortized time. The deletion algorithm of Lemma 3 eventually deletes p from P (C) for a cell
C ∈ C that contains p. We delete p from De(C) for each edge e of C, which takes O(log5+ϵ n)
amortized time by Lemma 4. As such, each deletion takes O(log5+ϵ n) amortized time.
Queries. Given a query unit disk Dq with center q, we first check whether q is in a cell of
C, and if so, find such a cell; this takes O(log n) time by Lemma 3. If no cell of C contains q,
then P ∩ Dq = ∅ and we simply return null. Otherwise, let C be the cell of C that contains
q. We first report all points of P (C). Next, for each C ′ ∈ N(C), by Definition 1(3), C and
C ′ are separated by an axis-parallel line ℓ. Since each edge of C and C ′ is axis-parallel, C ′

must have an edge e whose supporting line is parallel to ℓ and separates C and C ′. Using
De(C ′), we report all points of P (C ′) inside Dq. As |N(C)| = O(1), the total query time is
O(log n + k) by Lemma 4. ◀

4 Proving Lemma 4: Dynamic line-separable UDRR

We now prove Lemma 4. For notational convenience, instead of m, we use n to denote the
size of Q.

Consider a query unit disk Dq with center q below ℓ. The goal is to report Q(Dq).
Observe that a point p ∈ Q is in Dq if and only if q is in the unit disk Dp. The portion
of ∂Dp below ℓ is a circular arc, denoted by γp. Since p is above ℓ, γp is on the lower half

STACS 2025

76:6 Dynamic Unit-Disk Range Reporting

circle of ∂Dp and thus is x-monotone. As such, p is in Dq if and only if q is above the arc γp.
Define Γ to be the set of arcs γp for all points p ∈ Q. Therefore, reporting the points of Q in
Dq becomes reporting the arcs of Γ that are below q, which we call arcs reporting queries.

In what follows, an arc of Γ always refers to the portion below ℓ of a unit circle with
center above ℓ. Our problem thus becomes dynamically maintaining a set Γ of arcs to report
the arcs of Γ below a query point q. The arcs reporting queries can be reduced to the
following k-lowest-arcs queries: Given a query vertical line ℓ∗ and a number k ≥ 1, report
the k lowest arcs of Γ intersecting ℓ∗. We have the following observation, which follows the
proof of Chan [7] for lines.

▶ Observation 6 ([7]). Suppose that we can answer each k-lowest-arcs query in O(log n + k)
time. Then, the arcs of Γ below a query point q can be reported in O(log n + k) time, where
k is the output size.

In light of the above observation, we now focus on the k-lowest-arcs queries. We adapt a
technique for a similar problem on lines (which is the dual problem of the dynamic halfplane
range reporting problem): Dynamically maintain a set of lines (subject to insertions and
deletions) to report the k-lowest lines at a query vertical line. For this problem, Chan [10] gave
a data structure of O(n log n) space that supports O(log6+ϵ n) amortized update time and
O(k + log n) query time. De Berg and Staals [6] improved the result of [10] for dynamically
maintaining a set of planes in 3D. They gave a data structure of O(n log n) space that
supports O(log3+ϵ n) amortized insertion time, O(log5+ϵ n) amortized deletion time, and
O(log2 n/ log log n+k) query time. Their approach is based on the techniques for dynamically
maintaining planes for answering lowest point queries [9, 11, 23] and these techniques in turn
replies on computing shallow cuttings on the planes in 3D [13]. In the following, we will
extend these techniques to the arcs of Γ and prove the following result.

▶ Lemma 7. For the set Γ of arcs, we can have a data structure of O(n log n) space to
support insertions in O(log3+ϵ n) amortized time, deletions in O(log5+ϵ n) amortized time,
and k-lowest-arcs queries in O(k + log n) time, where n is the size of the current set Γ.

Combining Lemma 7 and Observation 6 immediately leads to Lemma 4.
In what follows, we first develop a shallow cutting algorithm for arcs of Γ in Section 4.1

and then using the algorithm to prove Lemma 7 in Section 4.2.

4.1 Shallow cuttings
Without loss of generality, we assume that ℓ is the x-axis. Let R− (resp., R+) be the
half-plane below (resp., above) ℓ. Note that each arc of Γ is x-monotone, every arc has both
endpoints on ℓ, and every two arcs cross each other at most once.

We use R+-constrained unit disk to refer to a unit disk with center in R+ and use
R+-constrained arc to refer to a portion of the arc C ∩ R− for a unit circle C with center
in R+. For any point q ∈ R−, let ρ(q) to denote the vertical downward ray from q. We say
that an arc γ of Γ is below q if it intersects ρ(q). As the center of γ is in R+ and ρq ∈ R−, γ

intersects ρq at most once.
For a parameter r ≤ n and a region R of the plane, a (1/r)-cutting covering R for the

arcs of Γ is a set of interior-disjoint cells such that the union of all cells covers R and each
cell intersects at most n/r arcs of Γ. For each cell ∆, its conflict list Γ∆ is the set of arcs of
Γ that intersect ∆. The size of the cutting is the number of its cells.

H. Wang and Y. Zhao 76:7

For a point p ∈ R−, the level of p in Γ is the number of arcs of Γ below p. For any integer
k ∈ [1, n], the (≤ k)-level of Γ, denoted by L≤k(Γ), is defined as the region consisting of all
points of R− with level at most k. Given parameters r, k ∈ [1, n], a k-shallow (1/r)-cutting
is a (1/r)-cutting for Γ that covers L≤k(Γ).

We use pseudo-trapezoid to refer to a region that has two vertical line segments as left
and right edges, an R+-constrained arc or a line segment on ℓ as a top edge, and an R+-
constrained arc as a bottom edge. In particular, if a pseudo-trapezoid does not have a bottom
edge, i.e., the bottom side is unbounded, then we call it a bottom-open pseudo-trapezoid.

We say that a shallow cutting is in the bottom-open pseudo-trapezoid form if every cell of
it is a bottom-open pseudo-trapezoid. Our main result about the shallow cuttings for Γ is
given in the following theorem.

▶ Theorem 8. There exist constants B, C, and C ′, such that for a parameter k ∈ [1, n], we
can compute a (Bik)-shallow (CBik/n)-cutting of size at most C ′ n

Bik in the bottom-open
pseudo-trapezoid form, along with conflict lists of all its cells, for all i = 0, 1, . . . , logB

n
k ,

in O(n log n
k) total time. In particular, we can compute a k-shallow (Ck/n)-cutting of size

O(n/k), along with its conflict lists, in O(n log n
k) time.

Since the proof of Theorem 8 is technical and lengthy (and is one of our main results in
this paper), we devote the entire Section 5 to it.

4.2 Proving Lemma 7

We now prove Lemma 7. With the shallow cutting algorithm in Theorem 8, we generalize the
techniques of [6, 10] for lines to the arcs of Γ. We first give two deletion-only data structures,
which will be needed in our fully dynamic data structure for Lemma 7.

4.2.1 Deletion-only data structure

Our first deletion-only data structure is given in Lemma 9 (see the full paper for the proof).

▶ Lemma 9. There is a data structure of O(n) size to maintain a set Γ of n arcs to support
O(log n) amortized time deletions and O(

√
n logO(1) n + k) time k-lowest-arcs queries. If a

set Γ of n arcs is given initially, the data structure can be constructed in O(n log n) time.

We have the following lemma for another deletion-only data structure, obtained by
following the same algorithmic scheme as [6, Lemma 6] and replacing their shallow cutting
algorithm for lines with our shallow cutting algorithm for arcs of Γ in Theorem 8.

▶ Lemma 10. [6, Lemma 6] For any fixed r, there is a data structure of O(n log r) size to
maintain a set Γ of n arcs to support O(r log n) amortized time deletions and O(log r+n/r+k)
time k-lowest-arcs queries. If a set Γ of n arcs is given initially, the data structure can be
constructed in O(n log n) time.

4.2.2 Fully-dynamic data structure for Lemma 7

With the two deletion-only data structures in Lemmas 9 and 10, we are now in a position to
describe our fully dynamic data structure for Lemma 7.

STACS 2025

76:8 Dynamic Unit-Disk Range Reporting

Overview. To achieve our result in Lemma 7, roughly speaking, we can simply plug our
shallow cutting algorithm for Γ in Theorem 8 and Lemma 9 into the algorithmic scheme
of [6] or [10]. The algorithms of [6] and [10] are similar. For the method of [10], we can
just replace their shallow cutting algorithm for lines [13] with our shallow cutting algorithm
for Γ in Theorem 8 and replace their deletion-only data structure [24] with a combination
of Lemmas 9 and 10. In addition, a general technique of querying multiple structures
simultaneously from [6, Theorem 1] is also needed. For the method of [6], it was described
for the plane problem in 3D with a query time O(log2 n/ log log n + k). We can follow the
same algorithmic scheme but using our shallow cutting algorithm for Γ in Theorem 8 and
Lemma 9 in the corresponding places. In addition, since our problem is a 2D problem, the
technique of dynamic interval trees in [13] can be used to reduce the query time component
from O(log2 n/ log log n) to O(log n). In the following, we adapt the method from Chan [10].

The data structure is an adaptation of the one for dynamic 3D convex hulls [9, 11, 23]
(the idea was originally given in [9] and subsequent improvements were made in [11,23]). We
first give the following lemma. The lemma is similar to [10, Theorem 3.1], which is based on
the result in [9], but Lemma 11 provides slightly better complexities than [10, Theorem 3.1]
by using the recently improved result of [11] (see the full paper for more details).

▶ Lemma 11 ([9–11,23]). Let Γ be a set of arcs, which initially is ∅ and undergoes n updates
(insertions and deletions). For any b ≥ 2, we can maintain a collection of shallow cuttings
T j

i in the bottom-open pseudo-trapezoid form, i = 1, 2, . . . , ⌈log n⌉, j = 1, 2, . . . , O(logb n), in
bO(1) log5 n amortized time per update such that the following properties hold.
1. Each cutting T j

i is of size O(2i) and never changes until it is replaced by a new one
created from scratch. The total size of all cuttings created over time is bO(1) log3 n.

2. Each cell ∆ ∈ T j
i is associated with a list L∆ of O(n/2i) arcs of Γ. Each list L∆

undergoes deletions only after its creation. The total size of all such lists created over
time is bO(1)n log4 n.

3. For any k ≥ 1, let ik = ⌈log(n/Ck)⌉ for a sufficiently large constant C. For any vertical
line ℓ∗, if an arc γ ∈ Γ is among the k lowest arcs at ℓ∗, then there exists some j such
that γ is in the list L∆j of the cell ∆j ∈ T j

ik
intersecting ℓ∗.

4. At any moment, for each i, the number of cells of the current cuttings T j
i for all j is

O(2i). This implies that the total size of the lists L∆ of all cells ∆ of all current cuttings
T j

i at any moment is O(n log n).

With Lemma 11, we can answer a k-lowest-arcs query as follows. Consider a query
vertical line ℓ∗. By Lemma 11(3), for each j, we compute the cell ∆j of T j

ik
intersecting ℓ∗,

which takes O(log n) time by binary search as the x-projections of T j
ik

partition the x-axis
into intervals. Then, we use “brute-force” to find the k lowest arcs among all arcs in L∆j in
O(k) time as |L∆j | = O(k). Finally, among all arcs found above, we return the k lowest arcs,
which takes O(k logb n) time. As such, the total query time is O((log n + k) logb n).

An improved query algorithm. We now improve the query time. We store each list L∆
by a deletion-only data structure that supports k-lowest-arcs queries. Suppose that such
a deletion-only data structure is of space S0(|L∆|), supports each k-lowest-arcs query in
O(Q0(|L∆|) + k) time and D0(|L∆|) deletion time, and can be built in O(P0(|L∆|)) time.
Then, by Lemma 11(2), each update causes at most bO(1) log4 n amortized number of deletions
to the lists L∆, and thus the amortized update time is

U(n) = bO(1) log5 n + max
∆∈T j

i

D0(|L∆|) · bO(1) log4 n + P0(bO(1)n log4 n)/n. (1)

H. Wang and Y. Zhao 76:9

Note that the last term is obtained due to the following. After every n updates, we reconstruct
the entire data structure and thus the reconstruction time is on the order of

∑
∆∈T j

i
P0(|L∆|),

which is bounded by P0(bO(1)n log4 n) since
∑

∆∈T j
i

|L∆| = bO(1)n log4 n by Lemma 11(2)
(assuming that P0(n) = Ω(n)).

By Lemma 11(4), the total space is

S(n) = O

(log n∑
i=1

2i · S0(n/2i)
)

. (2)

For each query, there are two tasks: (1) Compute the cell ∆j for every j; (2) find the k

lowest arcs of all lists L∆j for all j. In the following, we solve the first task in O(log n+logb n)
time and solve the second task in O(log n + k) time.

For the first task, following the method in [10], for each i, we use a dynamic interval
tree [5] to store the intervals of the x-projections of the cuttings T j

i for all j in an interval
tree Ti. Using Ti, all t intervals intersecting ℓ∗ can be computed in O(log n + t) time. In
our problem, t = O(logb n). Insertions and deletions of intervals on Ti can be supported in
O(log n) amortized time. We can thus maintain all interval trees Ti in additional amortized
log n · bO(1) log3 n time per update as the total size of all cuttings over time is bO(1) log3 n by
Lemma 11(1). This additional update time is subsumed by the first term in (1). In this way,
the first task can be solved in O(log n + logb n) time.

For the second task, instead of brute-force, we use the deletion-only data structures for
the lists L∆j and resort to a technique of querying multiple k-lowest-arcs data structures
simultaneously in [6, Theorem 1], which is based on an adaption of the heap selection
algorithm of Frederickson [22]. Applying [6, Theorem 1], the second task can be accomplished
in O(k + logb n · maxj Q0(|L∆j |)) time, which is O(k + logb n · Q0(O(k))) since the size of
each |L∆j | is O(k).

Combining the complexities of the first and second tasks, the overall query time is

Q(n) = O(log n + logb n + k) + Q0(O(k)) · logb n. (3)

Let m = |L∆|. Depending on m, we use different deletion-only data structures for L∆.
1. If m ≥ log3 n, then we use Lemma 9 to handle L∆ with P0(m) = O(m log m), S0(m) =

O(m), D0(m) = O(log m), Q0(m) = m1/2 logO(1) m. Plugging them into (1), (2), and
(3) and setting b = logϵ n, we obtain U(n) = O(log5+ϵ n), S(n) = O(n log n), and
Q(n) = O(log n + k + k1/2 logO(1) k · log n/ log log n). Since m = O(k), we have k = Ω(m).
As m ≥ log3 n, we have k = Ω(log3 n). Therefore, Q(n) = O(log n + k).

2. If m < log3 n, then we use Lemma 10 to handle L∆ by setting r = log n/ log log n. This re-
sults in P0(m) = O(m log m), S0(m) = O(m log log n), D0(m) = O(log n log m/ log log n),
Q0(m) = O(log log n + m log log n/ log n). Since m < log3 m, we have D0(m) = O(log n).
Plugging them into (1) and (3) and setting b = logϵ n, we obtain U(n) = O(log5+ϵ n) and
Q(n) = O(log n+k + (log log n+k log log n/ log n) · log n/ log log n), which is O(log n+k).
For the space, since m < log3 n, if we plug S0(m) = O(m log log n) into (2), we only
need to consider those i’s such that n/2i < log3 n. There are only O(log log n) such i’s.
Therefore, we obtain S(n) = O(n log2 log n) for all such m’s in this case.

Combining the above two cases leads to U(n) = O(log5+ϵ n), S(n) = O(n log n), and
Q(n) = O(log n + k). We can actually obtain a better bound for the insertion time. If P ′(n)
is the preprocessing time for constructing the data structure for a set of n arcs, then the
amortized insertion time I(n) is bounded by I(n) = O(b logb n · P ′(n)/n) [6, 11]. According

STACS 2025

76:10 Dynamic Unit-Disk Range Reporting

` x

q

q′

Figure 1 Illustration the boundary of Hℓ(Q), where Q is the set of points below the x-axis ℓ.
It consists of three (blue) dashed horizontal line segments of y-coordinates −1, four (red) dotted
R+-constrained arcs with centers on ℓ, and four other solid R+-constrained arcs. The region below
the boundary is Hℓ(Q).

to our above discussion and Lemma 11(4), constructing the deletion-only data structures
for all lists L∆ is O(n log2 n). The shallow cuttings in Lemma 11 can be built in O(n log2 n)
following the method in [11] and using our shallow cutting algorithm in Theorem 8. In this
way, we can bound the amortized insertion time by O(b logb n log2 n), which is O(log3+ϵ n)
with b = logϵ n. This proves Lemma 7.

5 Algorithm for shallow cuttings

In this section, we prove Theorem 8. We follow the notation in Section 4.1.
As in [13], we use parameter K = n/r instead of r. A k-shallow (1/r)-cutting becomes a k-

shallow (K/n)-cutting and we use a (k, K)-shallow cutting to represent it. It has the following
properties: (1) |Γ∆| ≤ K for each cell ∆; (2) the union of all cells covers L≤k(Γ). Theorem 8
says that a (k, O(k))-shallow cutting of size O(n/k) in the bottom-open pseudo-trapezoid
form can be computed in O(n log n

k) time.
Following the analysis of Matoušek [25], we start with the following lemma (see the full

paper for the proof), which shows the existence of the shallow cutting in the pseudo-trapezoid
form, i.e., each cell is a pseudo-trapezoid but not necessarily bottom-open.

▶ Lemma 12. For any k ∈ [1, n], there exists a (k, O(k))-shallow cutting of size O(n/k) in
the pseudo-trapezoid form.

Chan and Tsakalidis [13] introduced a vertex form of the shallow cutting for lines. Here
for arcs of Γ, using vertices is not sufficient. We will introduce a vertex-segment form in
Section 5.2. The definition requires a concept, which we call line-separated α-hulls and is
discussed in Section 5.1. In Section 5.3, we present our algorithm to compute shallow cuttings
in the vertex-segment form.

5.1 Line-separated α-hulls
The line-separated α-hull is an extension of the α-hull introduced in [21]. In [21], α-hull is
considered for all values α ∈ (−∞, ∞). For our problem, we only consider the value α = −1.

Let Q be a set of points in R−. We define the line-separated α-hull Hℓ(Q) of Q with
respect to the x-axis ℓ as the complement of the union of all unit disks with centers in R+

that do not contain any point of Q (so the disk centers and the points of Q are separated by
ℓ, which is why we use “line-separated”; see Fig. 1).

Many of the properties of the α-hulls [21] can be extended to the line-separated case. We
list some of these in the following observation; the proof is a straightforward extension of
that in [21] by adding the “line-separated” constraint.

H. Wang and Y. Zhao 76:11

` x

q

p p′

a

Figure 2 Illustration the wings of the a point
q. The two (red) dotted curves are wing arcs and
the two (blue) dashed segments are wing half-
lines. p and p′ are the left and right wing vertices,
respectively.

` x

q

q′
p p′

Figure 3 Illustration two points q and q′ that
are in far-away position. The two (red) dotted
arcs and the (blue) dashed segments in between
constitute β(q, q′).

▶ Observation 13.
1. Q ⊆ Hℓ(Q), and for any subset Q′ ⊆ Q, Hℓ(Q′) ⊆ Hℓ(Q).
2. A point q ∈ Q is a vertex of Hℓ(Q) if and only if there exists a unit disk with center in

R+ and its boundary containing q such that the interior of the disk does not contain any
point of Q.

3. If there is an R+-constrained arc connecting two points of Q such that the interior of the
underlying disk of the arc does not contain any point of Q, then the arc is an edge of
Hℓ(Q).

For any two points q, q′ ∈ R− that can be covered by a R+-constrained unit disk, there
exists a unique R+-constrained arc that connects q and q′; we use γ(q, q′) to denote that arc.

5.1.1 Algorithm for computing Hℓ(Q)
By slightly modifying the algorithm of [21], Hℓ(Q) can be computed in O(m log m) time,
where m = |Q|. The algorithm also suggests that ∂Hℓ(Q) is x-monotone. In the following,
assuming that the points of Q are already sorted from left to right as q1, q2, . . . , qm, we give
a linear time algorithm to compute Hℓ(Q), which is similar in spirit to Graham’s scan for
computing convex hulls.

Irrelevant points. Note that if a point q ∈ Q whose y-coordinate is smaller than or equal
to −1, then q must be in Hℓ(Q) because every R+-constrained disk does not contain q in the
interior. Hence, in that case q is irrelevant for computing Hℓ(Q) and thus can be ignored.
If all points of Q are irrelevant, then Hℓ(Q) is simply the region below the horizontal line
whose y-coordinate is −1. In the following, we assume that every point of Q is relevant.

Wings. Consider a point q ∈ Q. Let a be a point on the x-axis ℓ with x(a) < x(q) such
that q is on the unit circle Ca centered at a. Let p be the lowest point of Ca. We define the
left wing of q to be the concatenation of the following two parts (see Fig. 2): (1) the arc of
Ca ∩ R− between q and p, called the left wing arc, and the horizontal half-line with p as
the right endpoint, called the left wing half-line. The point p is called the left wing vertex
of q. We define the right wing of q and the corresponding concepts symmetrically. The left
and right wings together actually form the boundary of the line-separated α-hull of {q}. In
Fig. 1, the four (red) dotted arcs are wing arcs and the three (blue) dashed segments are on
wing half-lines.

Far-away position. Consider two points q, q′ ∈ R− such that x(q) < x(q′). We say that
(q, q′) are in far-away position if x(p) < x(p′) holds, where p is the right wing vertex of q

and p′ is the left wing vertex of q′ (see Fig. 3). In this case, q′ is above the right wing of q

STACS 2025

76:12 Dynamic Unit-Disk Range Reporting

and there is no R+-constrained unit disk covering both q and q′. We use β(q, q′) to denote
the concatenation of the right wing arc of q, the segment pp′, and the left wing arc of q′. In
fact, the left wing of q, β(q, q′), and the right wing of q′ together form the boundary of the
line-separated α-hull of {q, q′}. In Fig. 1, q and q′ are also in far-away position.

The algorithm. Define Qi = {q1, . . . , qi} for each 1 ≤ i ≤ m. Our algorithm handles the
points of Q incrementally from q1 to qm. For each qi, the algorithm computes Hℓ(Qi) by
updating Hℓ(Qi−1) with qi. Suppose that qi1 , qi2 , . . . , qit

are the points of Qi that are the
vertices of Hℓ(Qi) sorted from left to right. Then, our algorithm maintains the following
invariant: the boundary ∂Hℓ(Qi) is x-monotone and consists of the following parts from left
to right: the left wing of qi1 , γ(qij

, qij+1) or β(qij
, qij+1), for each j = 1, 2, . . . , t − 1 in order,

and the right wing of qit . Hℓ(Qi) is the region below ∂Hℓ(Qi).
Initially, for q1, we set ∂Hℓ(Q1) to the concatenation of the left wing and the right wing

of q1. In general, suppose we already have ∂Hℓ(Qi−1). We compute ∂Hℓ(Qi) as follows. We
process the points of qi1 , qi2 , . . . , qit

in the backward order. For ease of exposition, we assume
that t > 1; the special case t = 1 can be easily handled.

We first process the point qit
. If qit

and qi are in the far-away position, then we delete
the right wing of qit from Hℓ(Qi−1) and add β(qit , qi) and the right wing of qi. This finishes
computing Hℓ(Qi). Below, we assume that qit

and qi are not in the far-away position.
If qi is below the right wing of qit

, then qi is inside Hℓ(Qi−1). In this case, Hℓ(Qi) is
Hℓ(Qi−1) and we are done. If qi is above the right wing of qit

, then we further check whether
the arc γ(qit , qi) exists (which is true if and only if there exists an R+-constrained unit disk
covering both qit

and qi).
If γ(qit

, qi) does not exist (in this case qit
must be below the left wing of qi and thus qit

does not contribute to Hℓ(Qi) because it is “dominated” by qi), then we “prune” qit from
∂Hℓ(Qi−1), i.e., delete the right wing of qit

and also delete γ(qit−1 , qit
) or β(qit−1 , qit

)
whichever exists in Hℓ(Qi−1). Next, we process qit−1 following the same algorithm.
If γ(qit

, qi) exists, then we further check whether D contains qit−1 , where D is the
underlying disk of γ(qit , qi). If qit−1 ∈ D, then qit must be in Hℓ({qit−1 , qi}) and thus
does not contribute to Hℓ(Qi). In this case, we prune qit

as above and continue processing
qit−1 . If qit−1 ̸∈ D, we delete the right wing of qit from ∂Hℓ(Qi−1) and add the arc
γ(qit

, qi) and the right wing of qi; this finishes computing Hℓ(Qi).

Clearly, the runtime for computing Hℓ(Qi) is O(1 + t′), where t′ is the number of points
of qi1 , qi2 , . . . , qit pruned from Hℓ(Qi−1). The overall algorithm for computing Hℓ(Q) takes
O(m) time since once a point is pruned it will never appear on the hull again, which resembles
Graham’s scan for computing convex hulls.

5.1.2 Vertical decompositions

According to the above discussion, Hℓ(Q) has at most 5m vertices with m = |Q|, including
all wing vertices. The vertical downward rays from all vertices partition Hℓ(Q) into at
most 5m bottom-open pseudo-trapezoids and rectangles. We call this partition the vertical
decomposition of Hℓ(Q), denoted by VD(Q).

In our later discussion, we need to combine Q with a set S of pairwise disjoint segments
on ℓ whose endpoints are all in Q. For each segment s ∈ S, we draw a vertical downward ray
from each endpoint of s; let R(s) denote the bottom-open rectangular region bounded by
the two rays and s. The regions R(s) for all segments s ∈ S form the vertical decomposition
of S, denoted by VD(S).

H. Wang and Y. Zhao 76:13

We combine VD(Q) and VD(S) to form a vertical decomposition of (Q, S), denoted by
VD(Q ∪ S) as follows. Let U be the upper envelope of Hℓ(Q) and S. We draw a vertical
downward ray from each vertex of v of U . These rays divide the region below U into cells,
each of which is bounded by two vertical rays from left and right, and bounded from above
by a line segment or an R+-constrained arc. These cells together form the decomposition
VD(Q ∪ S). In the following, depending on the context, VD(Q) may refer to the region
covered by all cells of it; the same applies to VD(S) and VD(Q ∪ S). As such, we have
VD(Q ∪ S) = VD(Q) ∪ VD(S). Note that since the endpoints of all segments of S are in Q

and on ℓ, the boundary ∂VD(Q ∪ S) is x-monotone.

5.2 Shallow cuttings in the vertex-segment form
We introduce a vertex-segment form of the shallow cutting. Given parameters k, K ∈ [1, n]
with k ≤ K, a (k, K)-shallow cutting for the arcs of Γ in the vertex-segment form is a set Q

of points in R− along with a set S of interior pairwise-disjoint segments on ℓ such that the
following conditions hold:
1. The endpoints of all segments of S are in Q.
2. Every point of Q has level at most K in Γ.
3. Every segment of S intersects at most K arcs of Γ.
4. VD(Q ∪ S) covers L≤k(Γ).
The conflict list of a point q ∈ Q, denoted by Γq, is the set of arcs of Γ below q. Note that
|Γq| ≤ K as the level of q is at most K. The conflict list of a segment s ∈ S, denoted by
Γs, is the set of arcs intersecting s. The conflict lists of (Q, S) refer to the conflict lists of
all points of Q and all segments of S. The size of the cutting is defined to be |Q|. Observe
that since the endpoints of all segments of S are in Q and the segments of S are interior
pairwise-disjoint, we have |S| < |Q|. Therefore, VD(Q ∪ S) has O(|Q|) cells, and more
specifically, at most 5|Q| cells. Further, we have following observation.

▶ Observation 14. Suppose that (Q, S) is a (k, K)-shallow cutting for Γ in the vertex-segment
form. Then every cell of VD(Q ∪ S) intersects at most 3K arcs of Γ.

Proof. Consider a cell ∆ of VD(Q ∪ S). Let e be the top edge of ∆. By the definition of
VD(Q ∪ S), e is one of the following: a segment of S, an arc γ(q, q′) for two points q, q′ ∈ Q,
a wing arc of a point q ∈ Q, and a segment of a wing half-line of a point q ∈ Q. Below, we
argue |Γ∆| ≤ 3K for each of these cases, where Γ∆ is the set of arcs of Γ intersecting ∆.

1. If e a segment of S, then recall that |Γe| ≤ K. Also, the size of the conflict list of each
endpoint of e is at most K. For any arc γ ∈ Γ intersecting ∆, since the center of γ is in
R+, γ must either intersect e or in the conflict list of at least one endpoint of e. Therefore,
|Γ∆| ≤ 3K holds.

2. If e is an arc γ(q, q′) for two points q, q′ ∈ Q, then any arc γ ∈ Γ intersecting ∆ must be
in the conflict list of one of q and q′. Hence, we have |Γ∆| ≤ 2K.

3. If e is a wing arc γ of a point q ∈ Q, then q is an endpoint of γ. Let p be the other
endpoint of γ. By definition, the y-coordinate of p is −1. Thus, no arc of Γ is below
p. By definition, the radius of γ is 1 and the center of γ is on ℓ. Hence, any arc of Γ
intersecting ∆ must be in the conflict list of q and thus |Γ∆| ≤ |Γq| ≤ K.

4. If e is a segment s of a wing half-line of a point q ∈ Q, then by definition e is horizontal
and has y-coordinate equal to −1. As centers of all arcs of Γ are in R+, no arc of Γ can
intersect ∆. Hence, |Γ∆| = 0.

Combining all the above cases leads to |Γ∆| ≤ 3K. ◀

STACS 2025

76:14 Dynamic Unit-Disk Range Reporting

In the next two lemmas, we show that shallow cuttings in the vertex-segment form and
in the pseudo-trapezoid form can be transformed to each other.

▶ Lemma 15. A (k, K)-shallow cutting of size t in the pseudo-trapezoid form can be
transformed into a (k, k + K)-shallow cutting in the vertex-segment form of size O(t).

Proof. Let Ξ be a (k, K)-shallow cutting of size t in the pseudo-trapezoid form. Without
loss of generality, we assume that all cells of Ξ intersect L≤k(Γ). Define Q to be the set of
vertices of all cells of Ξ. Define S to be the top edges of all cells of Ξ that are segments of
ℓ. Since the interiors of cells of Ξ are pairwise disjoint, the segments of S are also interior
pairwise-disjoint. As Ξ has t cells, we have |Q| = O(t). In the following, we argue that (Q, S)
is a (k, k + K)-shallow cutting in the vertex-segment form.

First of all, by definition, endpoints of all segments of S are in Q. Consider a point q ∈ Q,
which is a vertex of a cell ∆ ∈ Ξ. As ∆ intersects L≤k(Γ) and |Γ∆| ≤ K, there are at most
k + K arcs of Γ below q. Hence, q has level at most k + K in Γ. For each segment s ∈ S,
since it is a top edge of a cell ∆ ∈ Ξ and |Γ∆| ≤ K, we obtain |Γs| ≤ K.

It remains to argue that VD(Q ∪ S) covers L≤k(Γ). By definition, the union of all cells
of Ξ covers L≤k(Γ). Consider a cell ∆ ∈ Ξ, which is a pseudo-trapezoid. We show that
∆ ⊆ VD(Q ∪ S), which will prove that VD(Q ∪ S) covers L≤k(Γ).

Let e be the top edge of ∆. As ∆ is a pseudo-trapezoid, e is either a segment on ℓ or
an R+-constrained arc. If e is a segment of ℓ, then e ∈ S and thus ∆ is a cell of VD(S).
Hence, ∆ ⊆ VD(S) ⊆ VD(Q ∪ S). If e is an R+-constrained arc, then let q1 and q2 be its
two endpoints; thus e is the arc γ(q1, q2). Since ∆ is a pseudo-trapezoid with γ(q1, q2) as the
top edge, ∆ must be contained in the line-separated α-hull Hℓ({q1, q2}), which is a subset of
Hℓ(Q) by Observation 13(1) as q1, q2 ∈ Q. Recall that VD(Q) is the vertical decomposition
of Hℓ(Q). Hence, we have ∆ ⊆ VD(Q) ⊆ VD(Q ∪ S).

This proves ∆ ⊆ VD(Q ∪ S) and therefore VD(Q ∪ S) covers L≤k(Γ). ◀

▶ Lemma 16. A (k, K)-shallow cutting of size t in the vertex-segment form can be transformed
into a (k, 3K)-shallow cutting of size O(t) in the bottom-open pseudo-trapezoid form.

Proof. Let (Q, S) be a (k, K)-shallow cutting of size t in the vertex-segment form. We intend
to take the vertical decomposition VD(Q, S) as the (k, 3K)-shallow cutting Ξ of size O(t)
in the bottom-open pseudo-trapezoid form. However, a subtle issue is that some cells of
VD(Q, S) might not be pseudo-trapezoids. More specifically, consider a cell ∆ ∈ VD(Q, S).
Let e be the top edge of ∆. According to the definition of VD(Q, S), e belongs to one of the
three cases: (1) e is an R+-constrained arc; (2) e is a segment of ℓ; (3) e is a segment of a
wing half-line of a point of Q. In the first two cases, ∆ is a bottom-open pseudo-trapezoid
and we include ∆ in Ξ. In the third case, ∆ is not a pseudo-trapezoid by our definition since
e is a line segment but not on ℓ. In this case, we extend ∆ by moving e upwards until ℓ to
obtain an extended cell ∆′, which is a bottom-open pseudo-trapezoid; we add ∆′ to Ξ. We
call ∆′ a special cell of Ξ.

We claim that Γ∆′ = ∅, i.e., ∆′ does not intersect any arcs of Γ. Indeed, let e′ be the
top edge of ∆′. Let R be the rectangular region of ∆′ between e and e′ (see Fig. 4). Then,
∆′ = ∆∪R. Consider any point p ∈ R. We argue that no arc of Γ is below p, which will prove
the claim. Assume to the contradiction that there is an arc γ ∈ Γ below p. Without loss of
generality, we assume that γ is the lowest arc of Γ intersecting the vertical downward ray
ρ(p). Let p′ be the intersection of γ and ρ(p). By definition, p′ ∈ L≤0(Γ). Since (Q, S) is a
(k, K)-shallow cutting, VD(Q, S) covers L≤k(Γ) and thus covers L≤0(Γ) as k ≥ 0. Therefore,
VD(Q, S) covers p′. On the other hand, since e is on a wing half-line of a point of Q, the

H. Wang and Y. Zhao 76:15

ℓ

∆

R

e

e′

p

p′
γ

Figure 4 Illustrating the proof of Γ∆′ = ∅, with ∆′ = R ∪ ∆, where R is the gray rectangle and
∆ is the region below e.

y-coordinate of e is −1 and thus no arcs of Γ intersect e. Hence, p′ must be above e. But
since e is the top edge of the cell ∆ ∈ VD(Q, S), p′ cannot be covered by VD(Q, S), a
contradiction. This proves that Γ∆′ = ∅.

Since |Q| = t, VD(Q ∪ S) has O(t) cells. By definition, the size of Ξ is O(t). We next
show that Ξ is a (k, 3K)-shallow cutting in the bottom-open pseudo-trapezoid form. First
of all, by definition, each cell of VD(Q, S) is a bottom-open pseudo-trapezoid. Also, since
VD(Q, S) covers L≤k(Γ) and each cell of VD(Q, S) is either in Ξ or contained in a cell of Ξ,
VD(Q, S) is a subset of Ξ. Therefore, Ξ covers L≤k(Γ). For each ∆ of Ξ, if it is a special
cell, then |Γ∆| = 0 as proved above; otherwise ∆ is also a cell in VD(Q, S) and we have
|Γ∆| ≤ 3K by Observation 14. Therefore, Ξ is a (k, 3K)-shallow cutting in the bottom-open
pseudo-trapezoid form. ◀

Combining Lemmas 12 and 15 leads to the following.

▶ Corollary 17. Given k ∈ [1, n], there exists a (k, O(k))-shallow cutting of size O(n/k) in
the vertex-segment form.

5.3 Computing shallow cuttings in the vertex-segment form
In what follows, by extending the algorithm of [13], we present an algorithm to compute
shallow cuttings for Γ in the vertex-segment form.

We say that a (standard) cutting is in the pseudo-trapezoid form if every cell of the
cutting is a pseudo-trapezoid. The following result was known previously [15,28].

▶ Lemma 18 ([15,28]). Given any constant ϵ > 0, an ϵ-cutting for Γ in the pseudo-trapezoid
form of O(1) size covering the plane, along with its conflict lists, can be computed in O(n)
time.

We say that a shallow cutting (Q, S) in the vertex-segment form is sorted if points of Q

are sorted by their x-coordinates. The following is the main theorem about our algorithm.

▶ Theorem 19. There exist constants B, C, C ′, such that for any parameter k ∈ [1, n],
given a (Bk, CBk)-shallow cutting (QIN, SIN) in the sorted vertex-segment form for Γ of
size at most C ′ n

Bk along with its conflict lists, we can compute a (k, Ck)-shallow cutting
(QOUT, SOUT) in the sorted vertex-segment form for Γ of size at most C ′ n

k along with its
conflict lists in O(n) time.

STACS 2025

76:16 Dynamic Unit-Disk Range Reporting

Proof. Let ϵ be a constant to be set later. We begin by computing the decomposition
VD(QIN, SIN). Since QIN is sorted, Hℓ(QIN) can be computed in O(|QIN|) time using the
algorithm from Section 5.1. As the endpoints of all segments of SIN are in QIN and segments
of SIN are interior pairwise-disjoint on ℓ, the segments of SIN can also be sorted from left
to right in O(|QIN|) time. As such, computing VD(QIN, SIN) can be done in O(|QIN|) time,
which is O(n/k) as |QIN| ≤ C ′ n

Bk .
Next, for each cell ∆ ∈ VD(QIN, SIN), we perform the following two steps.

1. Compute an ϵ-cutting Ξ∆ of size O(1) for Γ∆. We clip the cells of Ξ∆ to lie within ∆
(and redecompose each new cell into pseudo-trapezoids if needed). Let Q∆ denote the
set of vertices of all cells of Ξ∆ and S∆ the set of top edges of the cells of Ξ∆ that are
segments of ℓ.
Since ϵ = O(1), Ξ∆ has O(1) cells and computing Ξ∆ takes O(|Γ∆|) time by Lemma 18.
Hence, both |Q∆| and |S∆| are O(1). As

∑
∆∈VD(QIN,SIN) |Γ∆| = O(n), the total time of

this step for all cells ∆ ∈ VD(QIN, SIN) is O(n).
2. Compute by brute force a smallest subset Q′

∆ ⊆ Q∆, along with a subset S′
∆ ⊆ S∆, such

that the following conditions are satisfied.
a. The endpoints of all segments of S′

∆ are in Q′
∆.

b. Every vertex in Q′
∆ has level in Γ∆ at most Ck.

c. Every segment in S′
∆ intersects at most Ck arcs of Γ∆.

d. For each cell σ ∈ Ξ∆ whose vertices are all in L≤2k(Γ∆), σ is covered by VD(Q′
∆, S′

∆).
As both |Q∆| and |S∆| are O(1), there are O(1) different pairs of Q′

∆ and S′
∆. For each

such pair (Q′
∆, S′

∆), we can check whether the four conditions are satisfied in O(|Γ∆|)
time, because |Q′

∆|, |S′
∆|, and the size of Ξ∆ are all O(1). Hence, finding a smallest

subset Q′
∆ with S′

∆ takes O(|Γ∆|) time. After that, for each point q ∈ Q′
∆, its conflict

list in Γ∆, which is also its conflict list in Γ, can be found in O(|Γ∆|) time. Similarly,
for each segment of S′

∆, its conflict list can be found in O(|Γ∆|) time. As both |Q′
∆|

and |S′
∆| are O(1), finding the conflict lists of (Q′

∆, S′
∆) takes O(|Γ∆|) time. Since∑

∆∈VD(QIN,SIN) |Γ∆| = O(n), the runtime of this step for all ∆ ∈ VD(QIN, SIN) is O(n).

We define QOUT =
⋃

∆∈VD(QIN,SIN) Q′
∆ and SOUT =

⋃
∆∈VD(QIN,SIN) S′

∆. We can sort
the points of QOUT in O(n/k) time as follows. For each ∆ ∈ VD(QIN, SIN), we sort the
points of Q′

∆, which takes O(1) time as |Q′
∆| = O(1). Then, for all cells ∆ ∈ VD(QIN, SIN)

in order from left to right, we concatenate the sorted lists of Q′
∆, and the resulting list is a

sorted list of QOUT. This takes O(n/k) time in total as VD(QIN, SIN) has O(n/k) cells.
The total runtime of the above algorithm is O(n).

Correctness. In the following, we argue the correctness, i.e., prove that (QOUT, SOUT) is
a (k, Ck)-shallow cutting for Γ of size at most C ′ n

k . We first show that (QOUT, SOUT) is a
(k, Ck)-shallow cutting and then bound its size.

Consider a cell ∆ ∈ VD(QIN, SIN). For each point q ∈ Q′
∆, according to our algorithm, q

has level in Γ∆ at most Ck. In light of the definition of VD(QIN, SIN), ∆ is a bottom-open
cell bounded by two vertical rays. Hence, the level of q in Γ∆ is also its level in Γ. Therefore,
q has level in Γ at most Ck.

For each segment s ∈ S′
∆, by definition, s is a top edge of a cell ∆ ∈ VD(QIN, SIN).

According to our algorithm, s intersects at most Ck arcs of Γ∆. Since s ⊆ ∆, any arc of Γ
intersecting s must intersect ∆ and thus is in Γ∆. Therefore, s intersects at most Ck arcs of
Γ. In addition, according to our algorithm, the endpoints of s are in Q′

∆.
To show that (QOUT, SOUT) is a (k, Ck)-shallow cutting, it remains to prove that

VD(QOUT, SOUT) covers L≤k(Γ). Consider a point p ∈ L≤k(Γ). By definition, VD(QIN, SIN)
covers L≤Bk(Γ). By setting B > 1, VD(QIN, SIN) covers L≤k(Γ) and thus p must be in a
cell ∆ of VD(QIN, SIN). In the following, we argue that p is covered by VD(Q′

∆ ∪ S′
∆), which

will prove that VD(QOUT, SOUT) covers L≤k(Γ).

H. Wang and Y. Zhao 76:17

Let σ be the cell of the cutting Ξ∆ that contains p. Since p has level in Γ∆ at most k

and the number of arcs of Γ∆ intersecting σ is at most ϵ · |Γ∆|, every vertex of σ has level
at most k + ϵ · |Γ∆|. Because the size of the conflict list of each point of QIN is at most
CBk, |Γ∆| ≤ 3CBk by Observation 14. Therefore, k + ϵ · |Γ∆| ≤ 2k by setting the constant
ϵ = 1/(3CB). Hence, all vertices of σ are in L≤2k(Γ∆) and thus σ is covered by VD(Q′

∆ ∪S′
∆)

according to our algorithm. As p ∈ σ, we obtain that p is covered by VD(Q′
∆ ∪ S′

∆).

Bounding the size of VD(QOUT, SOUT), i.e., |QOUT|. We now prove |QOUT| ≤ C ′n/k. To
this end, we compare it against a (5k, 5c0k)-shallow cutting (Q∗, S∗) of size at most c′

0n/(5k)
for some constant c′

0, whose existence is guaranteed by Corollary 17. The details can be
found in the full paper. This proves the theorem. ◀

▶ Corollary 20. There exist constants B, C, and C ′, such that for any parameter k ∈ [1, n],
we can compute a (Bik, CBik)-shallow cutting in the sorted vertex-segment form of size
at most C ′ n

Bik , along with its conflict lists, for all i = 0, 1, . . . , logB
n
k in O(n log n

k) total
time. In particular, we can compute a (k, Ck)-shallow cutting of size O(n/k) in the sorted
vertex-segment form, along with its conflict lists, in O(n log n

k) time.

Proof. By Theorem 19, the runtime T (n, k) satisfies the recurrence T (n, k) = T (n, Bk)+O(n)
with the trivial base case T (n, n) = O(n). The recurrence solves to T (n, k) = O(n log n

k). ◀

Proving Theorem 8. We first apply Corollary 20 to compute the shallow cuttings in the
sorted vertex-segment form. Then, we transform them to shallow cuttings in the bottom-open
pseudo-trapezoid form by Lemma 16, which can be done in additional O(n log n

k) time (i.e.,
linear time for each cutting). This proves Theorem 8.

6 Dynamic unit-disk range emptiness queries

Our techniques may be extended to solve other related problems about unit disks. In the
following, we demonstrate one exemplary problem: the dynamic unit-disk range emptiness
queries (see the full paper for a simple solution to the static problem using our techniques).

For a set P of points in the plane, we wish to maintain P in a dynamic data structure
for points insertions and deletions to answer unit-disk range emptiness queries: Given a unit
disk D, determine whether D contains a point of P , and if so, return such a point. One can
solve the problem by using a dynamic nearest neighbor search data structure (i.e., given a
query disk D, using a nearest neighbor query we find a point p ∈ P nearest to the center of
D; D contains a point of P if and only if p ∈ D). The current best dynamic nearest neighbor
search data structure is given by Chan [11]; with that, we can obtain a data structure of
O(n) space in O(n log n) time that supports O(log2 n) amortized insertion time, O(log4 n)
amortized deletion time, and O(log2 n) time for unit-disk range emptiness queries. In the
following, using our techniques, we propose a better result.

As in Section 3 for the dynamic reporting problem, we can use Lemma 3 to reduce the
problem to the following line-separated problem.

▶ Problem 2 (Dynamic line-separable unit-disk range emptiness queries). Given a set Q of
m points above a horizontal line ℓ, build a data structure to maintain Q to support the
following operations. (1) Insertion: insert a point to Q; (2) deletion: delete a point from Q;
(3) unit-disk range emptiness query: given a unit disk D whose center is below ℓ, determine
whether D contains a point of Q, and if so, return such a point.

STACS 2025

76:18 Dynamic Unit-Disk Range Reporting

To solve the line-separable problem, we define the set Γ of arcs using Q in the same way
as before. Let Dq be a unit disk with center q below ℓ. Note that Dq ∩ Q ̸= ∅ if and only
if q is above the lower envelope of Γ. Further, q is above the lower envelope of Γ if and
only if the lowest arc of Γ intersecting ℓq is below q, where ℓq is the vertical line through q.
Therefore, our problem reduces to the following vertical line queries subject to arcs insertions
and deletions for Γ: Given a vertical line ℓ∗, find the lowest arc of Γ that intersects ℓ∗.

To solve the dynamic vertical line query problem among arcs of Γ, we apply Chan’s
framework [8] for the dynamic vertical line query problem among lines (in the dual plane,
a vertical line query is dual to: Finding an extreme point on the convex hull of all dual
points along a query direction). To this end, we need the following two components: (1) a
dynamic data structure of O(m) space with O(log m) query time and mO(1) update time; (2)
a deletion-only data structure of O(m) space that can be built in O(m log m) time, supporting
O(log m) query time and O(log m) amortized deletion time. For (1), we can use our static
data structure as discussed above, i.e., whenever there is an update, we simply rebuild the
data structure. For (2), Wang and Zhao [30] already provided such a data structure. Using
these two components, we can apply exactly the same framework of Chan [8]. Indeed, the
framework still works for the arcs of Γ because every arc is x-monotone. With the framework
and the above two components, we can obtain a data structure of O(m) space that allows
insertions and deletions of arcs of Γ in O(log1+ϵ m) amortized update time and answers a
vertical line query in O(log m) time, where m is the size of the current set Γ. Consequently,
we can solve Problem 2 with the same time complexities. Finally, with Lemma 3 and
our problem reduction, we can have a data structure of O(n) space that allows insertions
and deletions of points of P in O(log1+ϵ n) amortized time and answers a unit-disk range
emptiness query in O(log n) time, where n is the size of the current set P .

References
1 Peyman Afshani and Timothy M. Chan. Optimal halfspace range reporting in three dimensions.

In Proceedings of the 20th Annual ACM-SIAM Symposium on Discrete Algorithms (SODA),
pages 180–186, 2009. doi:10.1137/1.9781611973068.21.

2 Pankaj K. Agarwal. Range searching, in Handbook of Discrete and Computational Geometry,
C.D. Tóth, J. O’Rourke, and J.E. Goodman (eds.), pages 1057–1092. CRC Press, 3rd edition,
2017.

3 Pankaj K. Agarwal. Simplex range searching and its variants: a review. In A Journey Through
Discrete Mathematics, pages 1–30. Springer, 2017. doi:10.1007/978-3-319-44479-6_1.

4 Jon L. Bentley and Hermann A. Maurer. A note on Euclidean near neighbor searching in the
plane. Information Processing Letters, 8:133–136, 1979.

5 Mark de Berg, Otfried Cheong, Marc J. van Kreveld, and Mark H. Overmars. Computational
Geometry — Algorithms and Applications. Springer-Verlag, Berlin, 3rd edition, 2008.

6 Sarita de Berg and Frank Staals. Dynamic data structures for k-nearest neighbor queries.
Computational Geometry: Theory and Applications, 111(101976), 2023. doi:10.1016/j.
comgeo.2022.101976.

7 Timothy M. Chan. Random sampling, halfspace range reporting, and construction of (≤ k)-
levels in three dimensions. SIAM Journal on Computing, 20:561–575, 2000. doi:10.1137/
S0097539798349188.

8 Timothy M. Chan. Dynamic planar convex hull operations in near-logarithmaic amortized
time. Journal of the ACM, 48:1–12, 2001. doi:10.1145/363647.363652.

9 Timothy M. Chan. A dynamic data structure for 3-D convex hulls and 2-D nearest neighbor
queries. Journal of the ACM, 57:16:1–16:15, 2010. doi:10.1145/1706591.1706596.

10 Timothy M. Chan. Three problems about dynamic convex hulls. International Journal of Com-
putational Geometry and Applications, 22:341–364, 2012. doi:10.1142/S0218195912600096.

11 Timothy M. Chan. Dynamic geometric data structures via shallow cuttings. Discrete and
Computational Geometry, 64:1235–1252, 2020. doi:10.1007/s00454-020-00229-5.

https://doi.org/10.1137/1.9781611973068.21
https://doi.org/10.1007/978-3-319-44479-6_1
https://doi.org/10.1016/j.comgeo.2022.101976
https://doi.org/10.1016/j.comgeo.2022.101976
https://doi.org/10.1137/S0097539798349188
https://doi.org/10.1137/S0097539798349188
https://doi.org/10.1145/363647.363652
https://doi.org/10.1145/1706591.1706596
https://doi.org/10.1142/S0218195912600096
https://doi.org/10.1007/s00454-020-00229-5

H. Wang and Y. Zhao 76:19

12 Timothy M. Chan and Dimitrios Skrepetos. All-pairs shortest paths in unit-disk graphs in
slightly subquadratic time. In Proceedings of the 27th International Symposium on Algorithms
and Computation (ISAAC), pages 24:1–24:13, 2016. doi:10.4230/LIPIcs.ISAAC.2016.24.

13 Timothy M. Chan and Konstantinos Tsakalidis. Optimal deterministic algorithms for 2-d
and 3-d shallow cuttings. Discrete and Computational Geometry, 56:866–881, 2016. doi:
10.1007/s00454-016-9784-4.

14 Bernard Chazelle. An improved algorithm for the fixed-radius neighbor problem. Information
Processing Letters, 16:193–198, 1983. doi:10.1016/0020-0190(83)90123-0.

15 Bernard Chazelle. Cutting hyperplanes for divide-and-conquer. Discrete and Computational
Geometry, 9(2):145–158, 1993. doi:10.1007/BF02189314.

16 Bernard Chazelle, Richard Cole, Franco P. Preparata, and Chee-Keng Yap. New upper
bounds for neighbor searching. Information and Control, 68:105–124, 1986. doi:10.1016/
S0019-9958(86)80030-4.

17 Bernard Chazelle and Herbert Edelsbrunner. Optimal solutions for a class of point retrieval
problems. Journal of Symbolic Computation, 1:47–56, 1985. doi:10.1016/S0747-7171(85)
80028-6.

18 Bernard Chazelle and Leonidas J. Guibas. Fractional cascading: I. A data structuring technique.
Algorithmica, 1:133–162, 1986. doi:10.1007/BF01840440.

19 Bernard Chazelle and Leonidas J. Guibas. Fractional cascading: II. Applications. Algorithmica,
1:163–191, 1986. doi:10.1007/BF01840441.

20 Bernard Chazelle, Leonidas J. Guibas, and D.T. Lee. The power of geometric duality. BIT,
25:76–90, 1985. doi:10.1007/BF01934990.

21 Herbert Edelsbrunner, David G. Kirkpatrick, and Raimund Seidel. On the shape of a
set of points in the plane. IEEE Transactions on Information Theory, 29:551–559, 1983.
doi:10.1109/TIT.1983.1056714.

22 G.N. Frederickson. An optimal algorithm for selection in a min-heap. Information and
Computation, 104:197–214, 1993. doi:10.1006/inco.1993.1030.

23 Haim Kaplan, Wolfgang Mulzer, Liam Roditty, Paul Seiferth, and Micha Sharir. Dynamic
planar Voronoi diagrams for general distance functions and their algorithmic applications.
Discrete and Computational Geometry, 64:838–904, 2020. doi:10.1007/s00454-020-00243-7.

24 Jĭrí Matoušek. Efficient partition trees. Discrete and Computational Geometry, 8(3):315–334,
1992. doi:10.1007/BF02293051.

25 Jiří Matoušek. Reporting points in halfspaces. Computational Geometry: Theory and Applica-
tions, 2:169–186, 1992. doi:10.1016/0925-7721(92)90006-E.

26 Jiří Matoušek. Geometric range searching. ACM Computing Survey, 26:421–461, 1994.
doi:10.1145/197405.197408.

27 Edgar A. Ramos. On range reporting, ray shooting and k-level construction. In Proceedings
of the 15th Annual Symposium on Computational Geometry (SoCG), pages 390–399, 1999.
doi:10.1145/304893.304993.

28 Haitao Wang. Unit-disk range searching and applications. Journal of Computational Geometry,
14:343–394, 2023. doi:10.20382/jocg.v14i1a13.

29 Haitao Wang and Jie Xue. Near-optimal algorithms for shortest paths in weighted unit-
disk graphs. Discrete and Computational Geometry, 64:1141–1166, 2020. doi:10.1007/
s00454-020-00219-7.

30 Haitao Wang and Yiming Zhao. Computing the minimum bottleneck moving spanning tree. In
Proceedings of the 47th International Symposium on Mathematical Foundations of Computer
Science (MFCS), pages 82:1–82:15, 2022. doi:10.4230/LIPIcs.MFCS.2022.82.

31 Haitao Wang and Yiming Zhao. An optimal algorithm for L1 shortest paths in unit-disk
graphs. Computational Geometry: Theory and Applications, 110:101960: 1–9, 2023. doi:
10.1016/j.comgeo.2022.101960.

32 Haitao Wang and Yiming Zhao. Reverse shortest path problem for unit-disk graphs. Journal
of Computational Geometry, 14:14–47, 2023. doi:10.20382/jocg.v14i1a2.

STACS 2025

https://doi.org/10.4230/LIPIcs.ISAAC.2016.24
https://doi.org/10.1007/s00454-016-9784-4
https://doi.org/10.1007/s00454-016-9784-4
https://doi.org/10.1016/0020-0190(83)90123-0
https://doi.org/10.1007/BF02189314
https://doi.org/10.1016/S0019-9958(86)80030-4
https://doi.org/10.1016/S0019-9958(86)80030-4
https://doi.org/10.1016/S0747-7171(85)80028-6
https://doi.org/10.1016/S0747-7171(85)80028-6
https://doi.org/10.1007/BF01840440
https://doi.org/10.1007/BF01840441
https://doi.org/10.1007/BF01934990
https://doi.org/10.1109/TIT.1983.1056714
https://doi.org/10.1006/inco.1993.1030
https://doi.org/10.1007/s00454-020-00243-7
https://doi.org/10.1007/BF02293051
https://doi.org/10.1016/0925-7721(92)90006-E
https://doi.org/10.1145/197405.197408
https://doi.org/10.1145/304893.304993
https://doi.org/10.20382/jocg.v14i1a13
https://doi.org/10.1007/s00454-020-00219-7
https://doi.org/10.1007/s00454-020-00219-7
https://doi.org/10.4230/LIPIcs.MFCS.2022.82
https://doi.org/10.1016/j.comgeo.2022.101960
https://doi.org/10.1016/j.comgeo.2022.101960
https://doi.org/10.20382/jocg.v14i1a2

	p000-Frontmatter
	Preface
	Conference Organisation

	p001-Atserias
	p002-Dadush
	p003-Das
	p004-DeRezende
	p005-Agrawal
	1 Introduction
	1.1 Our Results, Methods and Overview

	2 Preliminaries
	3 FPT Algorithm for Partial Grundy Coloring
	3.1 Degree Reduction: Proof of Theorem 2
	3.2 FPT Algorithm for Partial Grundy Coloring

	4 FPT Algorithm for Grundy Coloring on K_{i,j}-free Graphs

	p006-Ahn
	1 Introduction
	2 Preliminaries
	2.1 Permutation graphs
	2.2 Trigraphs and twin-width

	3 Permutation diagrams
	4 Linear-time recognition algorithm
	A Appendix

	p007-Akmal
	1 Introduction
	1.1 Our Techniques

	2 Preliminaries
	3 Polynomial Sieving
	4 Coloring Algorithm Template
	4.1 Enumerating Matchings
	4.2 Partition Sieving With Dominating Sets

	5 Edge Coloring Algorithm
	5.1 Removing Low Degree Vertices
	5.2 Instantiating the Template

	6 Conclusion

	p008-Alekseev
	1 Introduction and Organization of this Extended Abstract
	2 General setup
	2.1 Propositional proof complexity
	2.2 Previous proof complexity results relevant to this paper

	3 Tropical arithmetic
	4 Tropical proof systems
	4.1 The basic static proof system, MP-NS
	4.2 The basic dynamic proof system, MP-PC
	4.3 The tropical resolution rule
	4.4 Encoding of Boolean logic: MP-NSR and MP-PCR systems

	5 Preliminary lemmas and the equivalence of encodings
	6 Our results and methods
	6.1 Static systems: Already stronger than Resolution
	6.2 Dynamic systems: Going up to Res(LP)
	6.3 Lower bounds
	6.4 Non-deducibility results

	7 Conclusion and Further Research
	Bibliography

	p009-Alipour
	1 Introduction
	1.1 Notation

	2 Technical Overview and Our Contribution
	3 Improved Approximation Factor Semi-Streaming Algorithm for MPC
	3.1 Analysis of the Approximation Factor of alg1
	3.2 Implementation of alg1 in the Semi-Streaming Model

	4 (1,2)-TSP
	4.1 Implementation of alg4 in the Semi-Streaming Model

	5 Max-TSP
	5.1 Analysis of the Approximation Factor of alg3
	5.2 Implementation of alg3 in the semi-streaming model

	6 Future Work

	p010-Aristote
	1 Introduction
	2 Preliminaries
	2.1 Monads and (Weak) Distributive Laws
	2.2 Regular Categories and Monotone (Weak) Extensions
	2.3 Weak Liftings

	3 Weakly Lifting Weak Distributive Laws
	3.1 The Yang-Baxter Equation for Weak Distributive Laws
	3.2 The π-Yang-Baxter Equation

	4 Weakly Lifting Monotone Weak Distributive Laws
	4.1 Kleisli Categories of Weakly Lifted Monads
	4.2 Monotone Extensions to Kleisli Categories of Weakly Lifted Monads
	4.3 Monotone Weak Distributive Laws in Categories of Algebras

	5 Conclusion

	p011-Arunachalam
	1 Introduction
	1.1 Results
	1.2 Related works and open questions

	2 Preliminaries
	2.1 Quantum States and Measurements
	2.2 Subroutines

	3 Estimating Inner Product
	3.1 Lower bound in main theorem
	3.2 Upper bound in main theorem

	4 Generalized Distributed Inner Product Estimation
	4.1 Upper Bound
	4.2 Lower Bound

	p012-Awofeso
	1 Introduction
	2 Preliminaries
	3 Graph degeneracy and admissibility, related notations and necessary lemmas
	4 Upper bounds strategy and the testing algorithm
	5 Testing C_4-freeness in adm_2-bounded graphs
	6 Testing H-freeness in adm_2-bounded graphs when H has diameter 2
	7 Testing C_6 and C_7-freeness in adm_3-bounded graphs
	8 Lower bounds for testing C_r-freeness for r > = 4

	p013-Baguley
	1 Introduction
	1.1 Discussion of our Results and Techniques

	2 Preliminaries
	3 Degeneracy of Hyperbolic Random Graphs
	4 Clique Number of Hyperbolic Random Graphs
	4.1 The gap between Clique Number and Degeneracy
	4.2 Cliques larger than the Core
	4.3 Upper Bound on the Clique Number

	5 Geometric Inhomogeneous Random Graphs
	6 Conclusion

	p014-Banik
	1 Introduction
	1.1 Our Model, Results, and Methods

	2 Conflict versus Adjacent Conflicts
	3 Dilation 2-Augmentation for K_{d,d}-free Graphs
	3.1 Conflict Graph and Vertex Cover
	3.2 Bounding the Size of the V_c in Annotated Instances
	3.3 Solving Annotated Instances with bounded V_c

	4 Dilation t-Augmentation for Bounded Degree Graphs is FPT
	4.1 Gamma is of Bounded Degree
	4.2 G is of Bounded Degree

	5 Dilation 3-Augmentation For Forest and Stars
	5.1 W[1]-hardness of Dilation 3-Augmentation when G is Forest
	5.2 W[1]-hardness of Dilation 3-Augmentation when Gamma is Star

	6 Conclusion

	p015-Bannach
	1 Introduction
	1.1 Related Work
	1.2 Structure of this Article

	2 Preliminaries: Background in Logic and Structural Graph Theory
	2.1 Descriptive Complexity
	2.2 Treewidth and Tree Decompositions
	2.3 Treewidth of Propositional Formulas and Relational Structures

	3 New Upper Bounds for Second-Order Propositional Logic
	3.1 Treewidth-Aware Encodings from QSAT to SAT
	3.2 Treewidth-Aware Encodings from PMC to #SAT

	4 A SAT Version of Courcelle's Theorem
	4.1 Auxiliary Encodings
	4.2 Indicator Variables for the Quantifiers
	4.3 Evaluation of Atoms
	4.4 The Full Encoding in one Figure

	5 Fagin Definability via Automated Reasoning
	6 Lower Bounds for the Encoding Size of Model Checking Problems
	6.1 An Encoding for Compressing Treewidth

	7 Conclusion and Further Research

	p016-Behrooznia
	1 Introduction
	1.1 The pivot-exchange property
	1.2 Fan graphs
	1.3 A simple greedy algorithm
	1.4 The face-exchange property
	1.5 Our results
	1.6 Related work
	1.7 Outline of this paper

	2 Proof of Theorems 7 and 8
	2.1 The edge labeling
	2.2 Proofs of theorems

	3 Proof of Theorem 10
	4 Open problems

	p017-Bentert
	1 Introduction
	2 Preliminaries
	3 Approximation
	4 Exact Algorithms
	5 Conclusion

	p018-Bienkowski
	1 Introduction
	1.1 Offline Scenario: Previous Results
	1.2 Online Scenario: Previous Results
	1.3 Our Technical Contribution
	1.4 Related Work
	1.5 Preliminaries

	2 Our Algorithm
	2.1 Definition of RAND
	2.2 Constructing the Potential: Insights and Definitions
	2.3 Relating Potential to Algorithm Performance
	2.4 Derandomization of RAND

	3 Bounding Number of Phases
	4 Controlling the Potential
	5 Conclusions
	A Proofs of Technical Claims

	p019-Bordais
	1 Introduction
	2 Preliminaries and Definitions
	2.1 Structures
	2.2 ATL, CTL and LTL formulas
	2.3 Learning decision problem
	2.4 Hitting set problem

	3 Learning with unbounded use of binary operators
	4 Learning with a bounded amount of binary operators
	4.1 Expressivity
	4.2 Abstract recipes
	4.3 LTL learning
	4.4 CTL learning
	4.5 ATL learning

	5 Future Work

	p020-Borelli
	1 Introduction
	2 Related Work
	3 Background
	4 Cascades of automata
	4.1 Definitions and basic properties
	4.2 Languages of cascades of resets
	4.2.1 Cascades of height 1
	4.2.2 Cascades of unbounded-height

	5 Expressiveness results
	5.1 Short Cascades
	5.2 Narrow Cascades
	5.3 General Cascades

	6 Efficient closure properties of cascades of reset automata
	7 Conclusions and Future Work

	p021-Callard
	1 Introduction
	2 Definitions
	2.1 Subshifts
	2.2 Pattern Complexity and Extender Sets
	2.3 Computability Notions
	2.3.1 Arithmetical Hierarchy
	2.3.2 Arithmetical Hierarchy of Real Numbers

	3 Elementary Constructions on Extender Sets
	4 Decision Problems on Extender Sets
	4.1 Inclusion of Extender Sets
	4.2 Computing the Number of Extender Sets
	4.3 Upper Computational Bounds on Extender Entropies

	5 Pi_3 Extender Entropies for Z Effective Subshifts
	5.1 Preliminary: Encoding Integers With Configurations <i>
	5.2 Preliminary: Toeplitz Density in Periodic Configurations
	5.3 Construction: the Effective Z Subshift Z_alpha

	6 Pi_3 Extender Entropies for Z^2 Sofic Subshifts
	6.1 Preliminary: Marking Offsets With Configurations [2i]
	6.2 Construction: the Sofic Z^2 Subshift Y_alpha

	7 Realizing Extender Entropies: Computable Subshifts
	8 Extender Sets of Minimal Subshifts
	9 Extender Sets of Subshifts With Mixing Properties
	9.1 Mixing Z Subshifts
	9.2 Block-gluing Z^d Subshifts

	p022-Campbell
	1 Introduction
	1.1 Our results
	1.2 Organization

	2 Preliminaries
	2.1 Graphs, trees, set systems
	2.2 Logic and transductions

	3 Transducing the laminar-tree
	3.1 Inner node representatives
	3.2 The transduction

	4 Transducing modular decompositions
	4.1 Transducing weakly-partitive trees
	4.2 Application to modular decomposition

	5 Conclusion

	p023-Cerda
	1 Introduction
	2 Preliminaries
	2.1 Finite and infinitary λ-calculi
	2.2 The resource λ-calculus
	2.3 Linear approximation and the conservativity problems

	3 Conservativity wrt. the finite λ-calculus
	4 Non-conservativity wrt. the infinitary λ-calculus
	4.1 Failure of the "mashup" technique
	4.2 The Accordion
	4.3 Proof of the counterexample

	5 The missing ingredient: Uniformity

	p024-Choudhary
	1 Introduction
	2 Preliminaries
	3 Fault Tolerant Preservers
	3.1 Preservers for Source-wise setting
	3.2 Subset Distance Preservers

	4 Other Applications
	4.1 Distance Labeling Schemes
	4.2 Subset Replacement Path Algorithm

	p025-Christiansen
	1 Introduction
	1.1 Local density and results

	2 Preliminaries and related work
	2.1 Densest subgraph in dynamic algorithms
	2.2 Approximate densest subgraph in LOCAL and CONGEST
	2.3 Local density

	3 Results and organisation
	3.A Conceptual results for local density
	3.B Results for dynamic algorithms
	3.C Results in LOCAL
	3.D Results in CONGEST

	4 Conceptual results for local density
	5 Results for dynamic algorithms
	6 Results in LOCAL
	7 Results in CONGEST
	7.1 Algorithm overview
	7.2 Formal algorithm definition
	7.3 Proving our algorithm's correctness

	p026-Chukhin
	1 Introduction
	1.1 Our Result

	2 Notation, Known Facts, and Technical Lemmas
	2.1 Graphs
	2.2 Boolean Functions
	2.3 Boolean Formulas
	2.4 Karchmer–Wigderson Games
	2.5 Formal Complexity Measures

	3 Proof of the Main Result
	3.1 Proof Overview
	3.2 Proof

	p027-Claudet
	1 Introduction
	2 Preliminaries
	3 Generalising Local Complementation
	3.1 Local complementation over independent sets
	3.2 Towards a 2-local complementation
	3.3 Defining generalised local complementation
	3.4 Local Clifford operators and local complementation

	4 Graphical characterisation of the action of local unitaries
	4.1 Minimal local sets and Types
	4.2 Standard Form
	4.3 Graphical characterisation of local equivalence
	4.4 Graph states whose class of LC and LU-equivalence coincide

	5 A hierarchy of generalised local equivalences
	6 Conclusion

	p028-Curticapean
	1 Introduction
	1.1 Main Concept: Linkage Capacity
	1.2 Applications of Linkage Capacity
	1.3 Linkage Capacity and Treewidth

	2 Preliminaries
	2.1 Basic Definitions
	2.2 Linkages

	3 Lower Bounds from Linkage Capacity
	3.1 Instances That Fit into Blowups
	3.2 The Linkage Capacity of a Graph
	3.3 Fitting Instances into Blowups via Linkage Capacity

	4 Switching Networks
	5 Patterns of Superlinear Density
	5.1 Worst Case
	5.2 Average Case

	6 Large-Treewidth Patterns and Concurrent Flows
	7 Implications for Counting Small Induced Subgraphs

	p029-Dereniowski
	1 Introduction
	1.1 Problem statement
	1.2 Overview of our results
	1.3 Comparison with previous works
	1.3.1 Upper bounds for noisy binary search
	1.3.2 Reductions in complexity for expected length setting
	1.3.3 Upper bounds for noisy graph search
	1.3.4 Lower bounds

	1.4 Overview of the techniques
	1.5 Other related work

	2 Preliminaries
	3 Binary Search Algorithm
	3.1 Proof of Theorem 1 (The expected strategy length)
	3.2 Proof of Theorem 3 (Worst-case strategy length)

	4 Graph Searching Algorithm
	4.1 Proof of Theorem 5 (Worst-case strategy length)
	4.2 Proof of Theorem 4 (The expected strategy length)

	A Delegated Proofs

	p030-Devismes
	1 Introduction
	1.1 Context
	1.2 Related Work
	1.3 Contributions
	1.4 Roadmap

	2 Preliminaries
	2.1 Networks
	2.2 Computational Model: the Atomic-state Model

	3 A Glimpse of our Research Process
	3.1 An Unbounded Unison Algorithm
	3.2 A Failed Bounded Unison Algorithm
	3.3 Our Solution

	4 A Unison Algorithm
	4.1 Data Structures
	4.2 Some Predicates
	4.3 The Algorithm
	4.4 An Overview of the Algorithm
	4.5 Some Subtleties

	5 Self-Stabilization and Complexity of the Unison Algorithm
	5.1 Convergence and Move Complexity of the Unison Algorithm
	5.2 Correctness of the Unison Algorithm
	5.3 Round Complexity of the Unison Algorithm

	6 A Synchronizer
	6.1 The Synchronized Algorithm
	6.2 Convergence and Move Complexity of the Synchronized Algorithm
	6.3 Correctness of the Synchronized Algorithm
	6.4 Round Complexity of the Synchronized Algorithm

	7 Conclusion

	p031-Epstein
	1 Introduction
	2 An EPTAS for the makespan minimization problem
	3 An EPTAS for the Santa Claus problem

	p032-Fischer
	1 Introduction
	1.1 Previous Results
	1.2 Our Contribution
	1.3 Overview of Our Techniques
	1.4 Open Problems

	2 Preliminaries
	3 Combinatorial Algorithms for Constrained Correlation Clustering
	4 PIVOT Algorithms for Correlation Clustering
	4.1 Lower Bound
	4.2 Optimal Deterministic PIVOT: 3-Approximation

	p033-Foucaud
	1 Introduction
	2 Preliminaries
	3 Metric Dimension: Algorithms for Vertex Cover Parameterization
	4 Metric Dimension: Lower Bounds Regarding Vertex Cover
	4.1 Preliminary Tools
	4.1.1 Set Identifying Gadget
	4.1.2 Gadget to Add Critical Pairs
	4.1.3 Vertex Selector Gadgets

	4.2 Reduction
	4.3 Correctness of the Reduction

	5 Geodetic Set: Algorithms for Vertex Cover Parameterization
	6 Geodetic Set: Lower Bounds Regarding Vertex Cover
	6.1 Reduction
	6.2 Correctness of the Reduction

	7 Conclusion

	p034-Fraigniaud
	1 Introduction
	1.1 Objective
	1.2 Our Results
	1.3 Related Work

	2 Model and definitions
	2.1 The Model
	2.2 Eccentricity, connectivity, and radius
	2.3 Consensus, oblivious algorithms, and the information flow graph
	2.3.1 Oblivious consensus algorithms

	2.4 Information flow graph

	3 Detailed description of our results
	3.1 Lower bounds for consensus
	3.1.1 A naive lower bound
	3.1.2 Sketch of proof of Theorem 5

	3.2 Beyond the connectivity threshold
	3.2.1 Local consensus
	3.2.2 Consensus beyond the connectivity threshold

	4 Lower Bound for Consensus
	4.1 Information flow graph revisited
	4.2 Proof of Theorem 5

	5 Conclusion

	p035-Gadekar
	1 Introduction
	1.1 Technical Overview

	2 Background on Algorithmic Scatter Dimension
	3 Bicriteria FPT Approximation Scheme
	3.1 Algorithm
	3.2 Analysis
	3.2.1 Bounding runtime using Algorithmic Scatter Dimension
	3.2.2 Bounding success probability

	4 Extensions of the Bicriteria FPT-AS
	5 Coreset
	6 Conclusion

	p036-Gaikwad
	1 Introduction
	1.1 Our results and technical overview

	2 Preliminaries
	2.1 NP-hardness of Maximum Minimal OCT

	3 Maximum Minimal st-Separator parameterized by the solution size
	3.1 Maximum Minimal st-Separator on (q,k)-unbreakable graphs

	4 MAXIMUM MINIMAL OCT parameterized by solution size
	4.1 Maximum Minimal OCT on (q,2k)-unbreakable graphs

	5 Conclusion

	p037-Gallego-Hernandez
	1 Introduction
	2 Approaching complexity bounds with root barriers
	3 Preliminaries
	4 An algorithm for deciding the existential theory
	4.1 Step I (lines 1–6): reducing the variables to integer powers of the base
	4.2 Step II (lines 7 and 8): solving the existential theory over integer powers of the base
	4.3 Step III (line 9): polynomial sign evaluation
	4.4 Correctness and running time of Algorithm 1
	4.5 Handling small bases

	5 Finding solutions over integer powers of the base
	5.1 Quantifier elimination
	5.2 Quantifier relativisation

	6 Proof of Theorem 1: classical numbers with polynomial root barriers
	7 An application: the entropic risk threshold problem
	8 Conclusion and future directions

	p038-Ganguly
	1 Introduction
	1.1 Preliminaries

	2 Compact Data Structures for 2D LCE Queries
	2.1 Achieving Faster Query Time
	2.2 Achieving Faster Query Time
	2.3 Achieving Faster Query Time

	3 Repetition-Aware LCE Data Structure
	3.1 Data Structures
	3.2 Querying
	3.3 Correctness
	3.4 Analysis and Optimization
	3.4.1 Space Analysis
	3.4.2 Optimizing
	3.4.3 Query Time

	4 Applications
	4.1 ISA Queries
	4.2 SA queries
	4.3 Pattern Matching

	5 Open Problems

	p039-Ghorbani
	1 Introduction
	2 Preliminaries
	2.1 Directed Multigraphs
	2.2 Rotor-Routing
	2.3 Arrival and Rotor-Routing Games

	3 Routing Decompositions
	3.1 Destination Graphs
	3.2 Compensated Routings
	3.3 s-Directed Routings

	4 Algorithms for Multi-Arrival on Tree-Like Rotor Graphs
	4.1 Relative Rotor Subgraphs
	4.2 MULTI-ARRIVAL for Tree-Like Multigraphs
	4.3 MULTI-ARRIVAL for Tree-like Simple Graphs

	5 Conclusion

	p040-Goncharov
	1 Introduction
	2 Preliminaries: Relations and Lax Extensions
	3 Functor Actions on Difunctional Relations
	4 Existence of Normal Lax Extensions
	4.1 The case of functors that weakly preserve 4/4-epi pullbacks
	4.2 The case of functors that preserve 1/4-mono pullbacks

	5 Conclusions

	p041-Greilhuber
	1 Introduction
	2 Technical Overview
	2.1 Upper Bounds
	2.2 Lower Bounds

	p042-Gurumukhani
	1 Introduction
	1.1 Our Contributions
	1.2 Proof Strategy

	2 Transversal trees and the TreeSearch algorithm
	2.1 Transversals and Transversal trees
	2.1.1 Important definitions
	2.1.2 Constructing the tree

	2.2 The TreeSearch algorithm for enumerating minimum-size transversals
	2.3 Pruning under random edge ordering

	3 Clause Selection Criterion
	3.1 The disjoint stage

	4 Bounding psi when t0 >= n/4
	5 Clause Selection Criterion: the Controlled Stage
	5.1 Additional notation for the disjoint stage
	5.2 Stage 1: 1-marked nodes
	5.3 Preparation for Stage 2
	5.4 Stage 2: 2-marked nodes with effective width 2 clauses
	5.5 Arbitrary Stage

	6 Bounding psi when t0 <= n/4
	7 Conclusion

	p043-Har-Peled
	1 Introduction
	1.1 Our results

	2 Preliminaries
	2.1 Definitions
	2.2 Reporting all intersecting pairs of disks

	3 From reporting to approximate sampling/counting
	3.1 The data-structure
	3.2 Analysis
	3.2.1 Correctness
	3.2.2 Running times
	3.2.3 Summary

	4 A 2+eps-approximation for densest subset disks
	4.1 Constant approximation via depth
	4.2 The algorithm
	4.3 Analysis

	5 An 1+eps-approximation for densest subset disks
	5.1 Densest subgraph estimation via sampling
	5.1.1 Analysis
	5.1.2 Summary

	5.2 Random sampler
	5.2.1 The algorithm
	5.2.2 Analysis

	5.3 The result

	6 Extension to other geometric intersection graphs
	7 Conclusions
	A Chernoff's inequality

	p044-Hartmann
	1 Introduction
	2 Preliminaries
	3 Independent and Dispersed Sets
	4 Independent Set with Parameter Solution Size
	5 Dispersion for Rational Distances
	6 Dispersion for Irrational Distance
	7 Domination and Covering

	p045-Haun
	1 Introduction
	1.1 Main Results
	1.2 Summary
	1.3 Related Work
	1.4 Connections to Other Fields

	2 Separated Layouts
	2.1 Diamond-Patterns
	2.2 Connection to Twists and Rainbows

	3 Non-separated Matchings and Bounded-Degree Graphs
	4 Critical Graphs
	4.1 Critical Graphs for Separated Layouts
	4.2 Critical Graphs for Non-Separated Layouts

	5 Conclusions

	p046-Hebert-Johnson
	1 Introduction
	1.1 Methods

	2 Preliminaries
	2.1 Permutations and labeled graphs
	2.2 Chordal graphs and related notions
	2.3 Evaporation sequences

	3 Sampling unlabeled chordal graphs
	3.1 Algorithm for sampling unlabeled chordal graphs
	3.2 Correctness of Algorithm 1
	3.3 Running time of Algorithm 1

	4 Counting labeled chordal graphs with a given automorphism
	4.1 Reducing from counting chordal graphs to counting connected chordal graphs
	4.2 Recurrences for counting connected chordal graphs

	5 Conclusion

	p047-Heeger
	1 Introduction
	2 Preliminaries
	3 Hardness of Prj, pj = p Uj
	4 New Analysis of Known Algorithm for Prj, pj = p wj Uj
	5 FPT-Algorithm for Prj, pj = p wj Uj
	6 Conclusion and Future Work

	p048-HellouindeMenibus
	1 Introduction
	2 Configurations and Subshifts
	2.1 Symbolic Dynamics
	2.2 Two-dimensional Automata
	2.3 Recognisable Picture Languages

	3 Plane-walking Automata and Associated Subshifts
	3.1 Definitions
	3.2 Comparison with SFT and Sofic Subshifts

	4 Alternating Hierarchy for Plane-walking Automata
	4.1 Definitions
	4.2 Sunny Side Up
	4.3 The Cone Labyrinth

	5 Conclusion
	5.1 Summary and open questions
	5.2 Strict Hierarchy and Tree-walking Automata
	5.3 An Alternative Approach: Kari-Moore's Rectangles

	p049-Hillebrand
	1 Introduction
	1.1 Our Contribution
	1.2 Technical Overview
	1.3 Related Works

	2 Preliminaries
	2.1 Notations
	2.2 Edge Local Differential Privacy
	2.3 Laplacian Query and Restricted Sensitivity
	2.4 Unbiased Randomized Response
	2.5 Graph Arboricity and Degeneracy

	3 Node-Reordered Graphs and Their Properties
	4 Triangle Counting Algorithm
	5 Odd Length Cycle Counting
	6 Conclusion

	p050-Hoefer
	1 Introduction
	1.1 Related Work

	2 Preliminaries
	3 Optimal Linear Contracts
	4 Optimal General Contracts
	4.1 No Intrinsic Agent Value
	4.2 Binary Boxes
	4.3 I.I.D. with Single Positive Prize for Principal

	p051-Hommelsheim
	1 Introduction
	1.1 Our Contribution
	1.2 Related Work

	2 Preliminaries: Notation, Cut Formulation, Hardness
	3 Exact Algorithms for small q
	3.1 (p,1)-Steiner-Connectivity Preservation
	3.2 (1,2)-Steiner-Connectivity Preservation
	3.3 (p,q)-Global-Connectivity Preservation when p,q < = 2

	4 Approximation Algorithms for large p or q
	4.1 Approximation for the cases with p = 1
	4.2 Extension for larger p

	5 Conclusion

	p052-Houari-Durand
	1 Introduction
	1.1 Our results

	2 Structure of prison-free graphs
	3 Incompressibility of Prison-free Edge Completion
	3.1 Initial observations and support gadgets
	3.2 NP-hardness of Gap Prison-free Edge Completion
	3.3 Compositionality of Prison-Free Edge Completion

	4 Polynomial kernel for Prison-free Edge Deletion
	4.1 Finding a Small Vertex Modulator
	4.2 Consequences on the Structure of G[S}]
	4.3 Marking important vertices

	5 Conclusions

	p053-Hrubes
	1 Introduction
	2 Some properties of determinantal representations
	3 A property of the permanent
	4 Permanent versus determinant
	5 A harder multilinear polynomial

	p054-Jeffery
	1 Introduction
	2 Technical Overview
	2.1 Subspace Graphs
	2.2 Examples
	2.2.1 Switching network for OR
	2.2.2 Switching network for AND
	2.2.3 Any Quantum Algorithm

	2.3 Composition
	2.4 Quantum Divide & Conquer
	2.5 Application to DSTCON

	p055-Jung
	1 Introduction
	2 Preliminaries
	3 Foundations of Separability
	4 Unary Case
	5 Binary Case
	6 Ternary and Beyond
	6.1 Lower Bound for Theorem 22
	6.2 Upper Bound for Theorem 22

	7 Case Study: Graded Modalities
	8 Conclusion

	p056-Katheder
	1 Introduction
	2 Preliminaries
	3 Non-Separated Layouts
	4 Separated Layouts
	5 Conclusions and Open Questions

	p057-Kaul
	1 Introduction
	1.1 Our contributions

	2 Preliminaries
	3 Simultaneous Approximations for the All-Norm Tree Cover Problem
	3.1 Ensuring k trees

	4 All-norm tree cover problem with depots
	5 Computational Hardness
	6 Computational Experiments

	p058-Kawalek
	1 Introduction
	2 Preliminaries
	3 Preparation: Circuits, Expressions and Hypergraphs
	4 Description of the Proof
	4.1 Symmetries of Hypergraphs
	4.2 Reduction Based on the Degree Decreasing Lemma
	4.3 Period of Symmetry-Purified Expressions
	4.4 Main Theorems

	5 Further Perspectives

	p059-Kawase
	1 Introduction
	1.1 Our Results
	1.2 Related Work

	2 Preliminaries
	2.1 Problem Settings
	2.2 Binary Penalty Function
	2.3 Other Penalty Functions

	3 Zero-penalty Set is Nonempty and Non-representable as Multiples
	4 Zero-penalty Set is Multiples of an Integer
	4.1 Upper Bound
	4.2 Lower Bound

	p060-Kazeminia
	1 Introduction
	2 Preliminaries
	2.1 Multi-Sorted Sets and Relational Structures
	2.2 Expansion of relational structures
	2.3 Modular Expansion of Relational Structures

	3 Structural Properties for Counting
	3.1 Rectangularity, Permutability, and Friends

	4 Rigitity and Multi-sorted Structures
	5 An Algorithm for Parity
	6 Hardness and Automorphisms of Direct Products of Structures
	7 Binarization

	p061-Kiefer
	1 Introduction
	2 Existing results and our contributions
	3 Main definitions
	4 Main concepts and the linear algebra toolbox
	4.1 Columns, rows and the structure of minimum rank matrices
	4.2 The weight of columns and rows
	4.3 Weight preservation property and minimum rank
	4.4 Maximal pseudo-columns
	4.5 Dealing with the non-strongly connected case

	5 Computing the rank in NC2
	6 Time and space complexity
	6.1 Square automaton and square digraph
	6.2 Minimum rank in O(n4) time
	6.3 Efficiently constructing a maximal column
	6.4 Finding a matrix of minimum rank
	6.5 Complete DFAs

	7 Conclusions and open problems

	p062-Koana
	1 Introduction
	1.1 Introduction to delta-matroids
	1.2 Our results

	2 Preliminaries
	3 Contraction representation of linear delta-matroids
	3.1 Contraction representations
	3.2 Constructions

	4 Algorithms for fundamental delta-matroid problems
	4.1 Max-weight feasible sets
	4.2 Intersection, Parity, and Delta-Covering

	5 Conclusions

	p063-Kolman
	1 Introduction
	1.1 Our Results
	1.2 Sketch of the Algorithm
	1.3 Preliminaries

	2 New Lower Bound
	3 Approximation Algorithm
	4 Open Problems

	p064-Lafond
	1 Introduction
	2 Preliminaries
	3 Cluster editing on cographs
	4 Cluster Editing on Trivially Perfect Graphs

	p065-Liu
	1 Introduction
	1.1 Main Results
	1.2 Technical Overview: Local-to-Global Reduction For 2CSP
	1.3 Discussions
	1.4 Organization

	2 Preliminaries
	2.1 Problems
	2.2 Hypotheses

	3 Average Baby PIH from Baby PIH
	3.1 Proofs of Main Results
	3.2 Average Baby PIH on Dense and Sparse Instances

	A From Average Baby PIH to Inapproximability of k-ExactCover

	p066-Loff
	1 Introduction
	2 Definitions and upper bounds
	3 Lower bounds
	3.1 TQBF
	3.2 The crucial difficulty: TQBF vs DT
	3.3 First auxiliary function
	3.4 Second auxiliary function
	3.5 The reduction

	4 Open questions
	References

	p067-Lopez
	1 Introduction
	2 Preliminaries
	2.1 Polynomials
	2.2 Polyregular Functions

	3 N-rational Polynomials
	3.1 From N-polyregular functions to polynomials
	3.2 From polynomials to N-polyregular functions
	3.3 From Z to Q

	4 Beyond Polynomials
	5 Outlook

	p068-Nguyen
	1 Introduction
	2 Affine lambda-terms and tree-to-tree lambda-transducers
	3 Tree-walking transducers (last definitions needed for thm:main-affine)
	4 From the Interaction Abstract Machine to (reversible) TWTs
	5 From the almost !-depth 1 IAM to invisible pebbles
	6 Expressiveness of lambda-transducers with preprocessing
	7 Conclusion
	7.1 More related work
	7.2 Perspectives

	p069-Niwinski
	1 Introduction
	2 Basic notions
	3 Problem formulation
	4 The dichotomy game
	5 Intuitions
	6 Soundness
	7 Auxiliary game
	8 Completeness
	9 Definability of ranks in MSO
	10 Closure ordinals
	11 Conclusions

	p070-Patt-Shamir
	1 Introduction
	2 Problem Statement and Notation
	3 Non-Uniform Cost
	3.1 Algorithm B: Specification
	3.2 Analysis

	4 Uniform cost
	4.1 Analysis

	5 Lower Bounds
	5.1 Acyclic Graphs
	5.2 Bipartite Graphs with Unbounded Bond Size

	6 Conclusions

	p071-Schnider
	1 Introduction
	1.1 Results
	1.2 Proof Techniques

	2 Preliminaries
	3 Tractability of the Search Problem
	3.1 Reducing Necklaces
	3.1.1 Reducing to at most two components per colour
	3.1.2 Further reductions until irreducibility

	3.2 Structure of Irreducible Necklaces
	3.3 Splitting Irreducible Necklaces
	3.3.1 The cut labelling problem
	3.3.2 An ILP formulation
	3.3.3 Solving cut labelling for irreducible necklaces

	4 NP-Completeness of the Decision Problem

	p072-Shinagawa
	1 Introduction
	1.1 Background
	1.2 Our Contribution

	2 Preliminaries
	2.1 PSM Protocols
	2.2 Card-Based Protocols

	3 Our Conversion for Special Case
	3.1 PSM Protocol from Five-Card Trick
	3.2 PSM Protocol from Any Single-Shuffle Full-Open Protocol

	4 Our Conversion for General Case
	4.1 Simple Protocols
	4.2 Overview of Our Conversion
	4.3 Our Conversion for Simple Protocols
	4.4 Extension of Our Conversion to Up-Down Cards

	5 Application
	5.1 Lower Bounds of Card-Based Protocols
	5.2 PSM Protocol for Indirect Storage Access Function

	6 Conclusion

	p073-Tkachenko
	1 Introduction
	1.1 Our results
	1.2 Related work
	1.3 Our approach

	2 Preliminaries
	3 The dominating set problem
	3.1 Structural properties
	3.2 The weighted dominating set problem
	3.3 The unweighted case

	4 The discrete k-center problem
	5 The independent set problem
	5.1 The maximum-weight independent set problem
	5.1.1 Algorithm description and correctness
	5.1.2 Algorithm implementation

	5.2 Computing an independent set of size 3

	6 The dispersion problem
	7 The size-3 weighted independent set for points in arbitrary position

	p074-Touitou
	1 Introduction
	1.1 Our Results
	1.2 Related Work
	1.3 Our Techniques

	2 Preliminaries
	3 Online Service with Delay
	3.1 The Algorithm
	3.2 Definitions and Properties
	3.3 Charging Cylinders

	4 Conclusions
	A Proof of Lemma 15
	B Omitted Proofs

	p075-Verbitsky
	1 Introduction
	2 Color refinement: From identifiability to canonical labeling
	2.1 Description of the CR algorithm
	2.2 Covering maps and universal covers
	2.3 Unicyclic graphs
	2.3.1 Universal covers of unicyclic graphs
	2.3.2 CR-identifiability of unicyclic graphs

	2.4 A general criterion of CR-identifiability
	2.5 Coloring the cores of general graphs

	3 Proofs of main results
	3.1 Derivation of Corollary 5 from Theorem 3
	3.2 Derivation of Theorem 1 from Theorem 3
	3.3 Proof of Corollary 2

	4 CR-coloring of the random graph
	4.1 Distinguishing good vertices in the core in the supercritical and strictly supercritical phases
	4.2 Distinguishing good vertices in the core in the critical regime
	4.3 Completing the proof of Main Lemma (Lemma 20)

	p076-Wang
	1 Introduction
	2 Preliminaries
	2.1 Conforming coverage of P

	3 Dynamic range reporting
	4 Proving Lemma 4: Dynamic line-separable UDRR
	4.1 Shallow cuttings
	4.2 Proving Lemma 7
	4.2.1 Deletion-only data structure
	4.2.2 Fully-dynamic data structure for Lemma 7

	5 Algorithm for shallow cuttings
	5.1 Line-separated alpha-hulls
	5.1.1 Algorithm for computing H_{l}(Q)
	5.1.2 Vertical decompositions

	5.2 Shallow cuttings in the vertex-segment form
	5.3 Computing shallow cuttings in the vertex-segment form

	6 Dynamic unit-disk range emptiness queries

