
Data Management Perspectives on Prescriptive
Analytics
Alexandra Meliou # Ñ

University of Massachusetts Amherst, MA, USA

Azza Abouzied #Ñ

New York University, Abu Dhabi, UAE

Peter J. Haas # Ñ

University of Massachusetts Amherst, MA, USA

Riddho R. Haque #

University of Massachusetts Amherst, MA, USA

Anh Mai #

New York University, Abu Dhabi, UAE

Vasileios Vittis #Ñ

University of Massachusetts Amherst, MA, USA

Abstract
Decision makers in a broad range of domains, such as finance, transportation, manufacturing, and
healthcare, often need to derive optimal decisions given a set of constraints and objectives. Traditional
solutions to such constrained optimization problems are typically application-specific, complex, and
do not generalize. Further, the usual workflow requires slow, cumbersome, and error-prone data
movement between a database, and predictive-modeling and optimization packages. All of these
problems are exacerbated by the unprecedented size of modern data-intensive optimization problems.
The emerging research area of in-database prescriptive analytics aims to provide seamless domain-
independent, declarative, and scalable approaches powered by the system where the data typically
resides: the database. Integrating optimization with database technology opens up prescriptive
analytics to a much broader community, amplifying its benefits. We discuss how deep integration
between the DBMS, predictive models, and optimization software creates opportunities for rich
prescriptive-query functionality with good scalability and performance. Summarizing some of our
main results and ongoing work in this area, we highlight challenges related to usability, scalability,
data uncertainty, and dynamic environments, and argue that perspectives from data management
research can drive novel strategies and solutions.
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Figure 1 Different types of analytics rely on different tools that range in complexity. Data
management research spans this spectrum, though prescriptive analytics has received relatively less
attention.

1 Introduction

The unprecedented growth in the size and availability of data has contributed to fundamental
shifts in systems, technology, and reasoning, revolutionizing a broad spectrum of applications
through enhanced data-driven capabilities. Notably, this applies to decision-making: in a
broad range of domains, including finance, transportation, manufacturing, and healthcare,
decision makers need to derive optimal decisions given a complex set of interacting constraints
and objectives over large datasets. Constraints arise from competition between activities
for scarce resources such as time, budget, workers, trucks, tools, etc., as well as from users’
tolerance for risk in uncertain environments; objective functions formalize organizational
goals such as minimizing costs or delays, maximizing revenue, or minimizing disease mortality.

Constrained optimization problems fall under the umbrella of prescriptive analytics [11,
15] – analyzing data, using models, and solving optimization problems to identify the best
action to achieve certain goals. Prescriptive analytics introduces significant specification and
evaluation challenges compared to other types of analytics (Figure 1), because it requires
more complex mathematical tools and representations. Nevertheless, other forms of analytics
are also central to the development of optimization models. Optimization models rely on
predictive analytics – using historical data to predict future trends as well as the future effects
of current actions – in order to assess which actions will yield the best results. Predictive
models can take the form of complex mechanistic simulation models that incorporate deep
domain knowledge or data-driven models such as classical regression models or time series
models or, more recently, predictive and generative machine learning models. Moreover,
descriptive analytics – analyzing historical data to discover patterns and relationships – and
diagnostic analytics – such as root cause analysis – also play a key role by informing the
process of building optimization models so that they capture the most important relationships.
Despite the fundamental interplay between descriptive, diagnostic, predictive, and prescriptive
analytics, the latter has received much less attention from the database community.

DB research over the analytics spectrum

A common classification groups analytics tasks into descriptive, diagnostic, predictive, and
prescriptive, based on the underlying questions they seek to address: “what happened”, “why
it happened”, “what will happen”, and “how to make it happen”, respectively. In all cases,
we seek to derive information from data, but the output and algorithmic tools employed
differ. Crucially, there is typically an increase in computational complexity as we move along
this spectrum (Figure 1).
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Stock_Investments

ID Stock Price Category Gain

1 AAPL 195.71 tech 2.13
2 PFE 26.1 pharm 0.15
3 MSFT 373.04 tech 2.89
4 SHEL 65.95 energy -3.2
. . . . . . . . . . . . . . .

Figure 2 In this simplified example of a list of stocks, we assume the gain attribute to be
deterministic, representing the expected gain of buying a stock now and selling it after a specific
time period.

Work in data visualization, data mining, and data summarization, among others, can be
considered under the umbrella of descriptive analytics, where the goal is to identify patterns,
relationships, and statistical trends in the data. Diagnostic analytics typically involves deeper
reasoning about the derivation of the data, and includes work on provenance, explanations,
causality, and what-if analysis. Predictive analytics typically seeks to derive predictive models
from the data, which can then be used to produce new data. Related work often sits at the
integration of databases with probabilistic models and machine learning tools, which can in
turn apply to a variety of problems, such as supporting queries in spatio-temporal databases,
value imputation, and so on. Finally, prescriptive analytics is concerned with determining the
best way to achieve a desirable outcome, which is typically modeled through mathematical
optimization. The search space for these optimization problems can have combinatorial
growth, making the design of practical algorithms over large data particularly challenging.
Machine learning has been helping to automate these different types of analytics, but still
struggles with complex optimization problems.

In-database prescriptive analytics

Optimization problems arise in many application domains, including finance, transportation,
and healthcare. Consider a simplified example (Figure 2) where we seek to select a portfolio of
stocks, excluding the pharmaceutical sector, with total cost less than $1,000, that maximizes
the total gain. A feasible solution to this optimization problem is a collection of stocks, with
possible repetitions, that satisfy individual or base constraints (i.e., category ̸= pharm), as
well as collective or global constraints (i.e., the sum of their costs is less than $1,000). Out of
all feasible portfolios, we seek the one that optimizes the objective (i.e., the sum of gain).

Modeling and solving such problems has typically relied on application-specific solutions.
Such solutions are often complex and do not generalize; a decision maker seeking to apply
optimization techniques in a new application setting must either develop a new custom
model from scratch, or must learn the intricacies of generic optimization software, which can
be daunting for those with domain, but not optimization, expertise. Moreover, the usual
workflow requires that data be extracted from a database and then reformatted and fed into
a separate optimization package, after which the output must be reformatted and inserted
back into the database; this process is slow, cumbersome, and error-prone. These challenges
are further exacerbated by the unprecedented size of modern data-intensive optimization
problems.

ICDT 2025



2:4 Data Management Perspectives on Prescriptive Analytics

In-database prescriptive analytics is an emerging research area that aims to provide
domain-independent, declarative, and scalable approaches, supported and powered by the
system where the data relevant to these problems typically resides: the database. Within this
context, we model an important subclass of constrained optimization problems as package
queries. A package query returns a “package” of tuples that satisfy the query constraints and
optimize its objective. In our simplified portfolio example, each stock i can appear xi times
in the package, where each decision variable xi is a nonnegative integer. Both the package
cost, which is constrained to lie below a threshold, and the gain, which is to be maximized,
are linear functions of the xi decision variables.

In-database support for such optimization problems makes modeling less ad-hoc, and
the overall optimization process, from data preparation through solution and exploration
of results, becomes much more efficient. Desirable data management functionality, such as
efficient retrieval, consistency, persistence, fault tolerance, access control, and data-integration
capability, become an integral part of the system “for free”. Interest in native DB support for
prescriptive analytics has therefore started to grow [10]. One line of research is exemplified
by the SolveDB and SolveDB+ systems [19, 20]. These systems provide semi-declarative
languages for specifying a broad range of optimization problems, allow easy sharing of
optimization models across sub-problems of an overall predictive-analytics problem, and
facilitate plugging in of various prediction models and optimization-problem solvers.

Opportunities for database technologies

The capabilities of mathematical optimization software have grown substantially, and modern
solvers are able to handle complex problems. However, a critical challenge with this technology
is that most solvers require the entire optimization problem to fit in memory or handle an
expensive tradeoff between time and memory. Ultimately, optimization problems are NP
hard, and solvers explore the space to find exact answers rather than produce approximations.
As a result, existing solvers are often unable to deal gracefully, if at all, with very large
amounts of data, which is typical for package queries. Thus, the naive use of black-box
solvers is often not viable for modern large-scale optimization problems.

Data management research is well-positioned to tackle this scalability challenge. In
principle, optimization problems typically seek to identify a small target set of tuples
within a large dataset, and the data management community excels in developing such
search technologies. Moreover, many optimization problems over large data exhibit special
properties that can be leveraged in developing targeted solutions. Optimization software
aims to model general-purpose optimization problems, frequently considering a large number
of constraints (e.g., in knapsack problems, the number of constraints grows with the size of
the data). In contrast, many in-database optimization problems exhibit a special structure:
while the data grows large, the number of constraints is typically small. As an example, in
our work [16], we have leveraged this structure to develop a dual simplex algorithm that
outperforms state-of-the-art commercial solvers such as Gurobi and CPLEX.

2 The prescriptive analytics landscape

Package queries extend traditional database queries to express constraints and objectives
over answer sets. Data management systems to not natively support package queries, and
while there are ways to express some cases in SQL, these are cumbersome and inefficient.
For example, in the earlier portfolio scenario, if the package is restricted to contain exactly
three stocks, we can express it as a query with self-joins:
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SELECT *
FROM Stock_Investments S1, Stock_Investments S2, Stock_Investments S3
WHERE S1.category != ’pharm’ AND S2.category != ’pharm’

AND S3.category != ’pharm’
AND S1.price + S2.price + S3.price <= 1000

ORDER BY S1.gain + S2.gain + S3.gain DESC
LIMIT 1

This query is efficient only for constructing packages with very small cardinality (i.e.,
number of tuples): larger cardinality requires a larger number of self-joins, quickly rendering
evaluation time prohibitive. The benefit of this specification is that the optimizer can use
the traditional relational algebra operators, and augment its decisions with package-specific
strategies. However, this method does not apply for packages of unbounded cardinality.

An alternative is to use recursion in SQL. However, that requires generating a powerset
table and evaluating each subset to confirm that it satisfies the query constraints. This
approach is not declarative, the specification is tedious and complex, and it is not amenable
to optimization in existing systems. Crucially, it is also impractical, due to the combinatorial
growth of the powerset table.

2.1 Declarative specification of constrained optimization problems
In prior work, we proposed extensions to the SQL language to allow for the declarative
specification of package queries. Using the Package Query Language (PaQL) [6], the portfolio
example can be expressed as follows:

SELECT Package(*)
FROM Stock_Investments
WHERE category != ’pharm’
SUCH THAT

sum(price) <= 1000
MAXIMIZE sum(gain)

This query includes standard selection predicates on individual tuples (i.e., category !=
’pharm’), as well as high-order package-level constraints (in the SUCH THAT clause) and
objectives (to maximize the total gain). Additional constraints can restrict the package
cardinality and repetitions of tuples in a package; see [5] for a complete language specification.

Uncertain data

In many practical settings, the data we want to analyze may be uncertain. In fact, in our
earlier simplified portfolio example, it is unrealistic to model gain as a deterministic value.
In practice, gain should be modeled as an uncertain attribute, simulated by a stochastic
process; further, an optimization problem over such uncertain data may involve probabilistic
constraints and objectives.

Figure 3 demonstrates a new version of the portfolio building scenario, in a more realistic
setting. The example query in SPaQL (Stochastic Package Query Language) [7] requests
a portfolio that costs less than $1000 and for which the probability of losing more than
$10 is at most 5% – the latter constraint is called a Value-at-Risk (VaR) constraint. The
package result is a bag of tuples, i.e., a portfolio of stocks and a selling schedule, that satisfies
the constraints while maximizing the expected gain. In recent work [12], we extended the
expressiveness of SPaQL to include Conditional Value-at-Risk (CVaR) constraints, also
called “expected shortfall” constraints [2, 17, 18], expressed in the form:

EXPECTED SUM(Gain)>= -10 IN LOWER 0.05 TAIL

ICDT 2025
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Stock_Investments
ID Stock Price Sell After Gain
1 AAPL 195.71 0.5 days ?
2 AAPL 195.71 1 day ?
3 AAPL 195.71 1.5 days ?
. . . . . . . . . . . . . . .
730 AAPL 195.71 365 days ?
731 MSFT 373.04 0.5 days ?
732 MSFT 373.04 1 day ?
. . . . . . . . . . . . . . .
1460 MSFT 373.04 365 days ?
. . . . . . . . . . . . . . .

Scenarios

ID . . . Gain
1 . . . 2.45
2 . . . 3.45
3 . . . 3.76

. . .
730 . . . 31.45
731 . . . 1.56
732 . . . 0.94

. . .
1460 . . . 8.76

. . .
<latexit sha1_base64="VOX+lFXU4wfg335wNmWtC/DpOu4="></latexit>

ID . . . Gain
1 . . . 0.45
2 . . . 0.56
3 . . . 0.42

. . .
730 . . . -3.15
731 . . . -1.34
732 . . . -2.23

. . .
1460 . . . 11.25

. . .
<latexit sha1_base64="SqO1ClTCX7jxeT9eROx9ycyL6bI="></latexit>

ID . . . Gain
1 . . . -1.53
2 . . . -1.34
3 . . . 0.78

. . .
730 . . . 23.45
731 . . . 0.34
732 . . . 0.23

. . .
1460 . . . -13.34

. . .
<latexit sha1_base64="OE1bhagi9aoNuwGa2FHwVu1CA8s="></latexit>

SPaQL query

SELECT PACKAGE(*)
FROM Stock_Investments
SUCH THAT

SUM(Price) <= 1000 AND
SUM(Gain) <= -10 WITH PROBABILITY

<= 0.05
MAXIMIZE EXPECTED SUM(Gain)

Package result
ID . . . Count
3 . . . 1
126 . . . 2
1358 . . . 1
2245 . . . 1

Figure 3 The gain in the Stock_Investments table is an uncertain attribute, simulated by
stochastic processes. The scenarios represent different simulations (possible worlds). The example
SPaQL query contains a value-at-risk (VaR) constraint, specifying that the probability of total loss
(negative gain) exceeding $10 is at most 5%.

Roughly speaking, the VaR constraint requires that the “bad event” where the loss exceeds
$10 occurs with probability of at most 0.05, whereas the CVaR constraint requires that, given
the occurrence of a high-loss event of the form “loss exceeds $x” having 0.05 probability, the
expected value of the loss does not exceed $10.

2.2 Evaluating deterministic problems

The PackageBuilder system [4, 6] transforms a PaQL specification into an Integer Linear
Program (ILP) and uses an off-the-shelf ILP solver to compute the desired package. When,
as is typical, the number of database rows is large, direct solution by the solver is infeasible
because of the large size of the ILP. In prior work, we developed an iterative approximate
solution algorithm called SketchRefine [6] to handle large numbers of rows while providing
approximation guarantees. Briefly, the algorithm first partitions the rows into groups, where
the rows in each group have similar attribute values, and then computes a representative
for each group. A small ILP using only the representatives can be then easily solved – the
“sketch”. The sketch is then iteratively “refined” by carefully replacing each representative
using the rows that it represents. The process maintains feasibility of the current solution
until the final package is obtained. Limiting the size of each group to be a small number of τ

tuples ensures that each refine phase can be executed efficiently and allows for approximation
guarantees.

While SketchRefine is computationally efficient for datasets with up to tens of millions
of tuples, it has three critical shortcomings:
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False infeasibility: Tight constraints can lead to sketches that are overly restrictive
and exclude feasible solutions.
Suboptimal results: The partitioning results in aggressive pruning that may discard
valuable outlier tuples.
Scalability: With datasets beyond a certain size (about 100 million tuples), Sket-
chRefine can no longer break down the optimization problem effectively, as we will
either have too many partitions or too large partitions.

Progressive Shading [16] addresses these issues by making refinement more gradual. It uses
a partitioning hierarchy, so we can refine over increasingly finer partitions. During this process,
it preserves additional neighboring tuples at every level, to ensure that potentially valuable
tuples are not pruned aggressively. The novel Dynamic Low Variance (DLV) partitioning
algorithm is highly adaptive, and minimizes attribute variance to improve homogeneity
within each partition. Its dynamic nature allows it to efficiently partition datasets with
widely varying distributions and sizes. It is not enough, however, to apply higher level
database systems concepts such as divide-and-conquer over hierarchical partitions to achieve
scalability over billions of tuples. We need to open up the solver black box and bring some
novel ideas from optimizations research: with progressive shading, we mimicked LP rounding
techniques well-studied in OR to solve simpler LP problems across layers, only applying the
ILP at the lowest layer; we also implemented our own custom LP solver that exploits the
unique structure of package queries that have billions of decision variables but only a handful
of constraints.

2.3 Evaluating stochastic problems

Not all data is deterministic; uncertainty is inherent in many application settings, as data may
be sampled from predictive models or simulations. Package queries over uncertain data, or
stochastic package queries, are more computationally demanding than deterministic package
queries, as problems grow not only along the tuple dimension, but also the uncertainty
dimension. To solve the stochastic optimization problem specified by a SPaQL query, we
can approximate it by a deterministic problem via a Monte Carlo technique called Sample
Average Approximation (SAA) [14]. SAA creates numerous scenarios (“possible worlds”),
each comprising a sample realization for every stochastic attribute of every tuple in the
relation, e.g., a realized gain for every Stock–Sell_After pair as in Figure 3. Such scenarios
can be created using the Variable Generation functions of Monte Carlo databases like
MCDB [13]. In the SAA approximation, expectations are replaced by averages over scenarios
and probabilities are replaced by empirical probabilities. E.g., the SAA approximation to
the example query in Figure 3 maximizes the average profit over all the scenarios, with at
most 5% of the scenarios having losses over $10.

A large number of scenarios is necessary for SAA to achieve good accuracy, especially if
the uncertain attributes have high variance. A higher number of tuples further necessitates
an increase in the number of scenarios to maintain accuracy, due to the increase in dimen-
sionality [8]. However, using a large number of scenarios is impractical, as it is not only
inefficient to generate them, but they also quickly cause the optimization problem to grow
too large. Non-convex optimization problems are notorious for requiring large solver runtimes
to optimize, and naive in-memory solvers crash when creating packages from millions of
scenarios.

ICDT 2025
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SummarySearch [7] is the first approach for in-database processing of stochastic
package queries, and introduced two key ideas. First, it uses a small number (in the order
of hundreds) of optimization scenarios to derive a package; then, it validates whether this
package satisfies the constraints over a much larger set of validation scenarios. To prevent
the optimizer from overfitting to the optimization scenarios and creating packages that will
fail validation, SummarySearch combines multiple scenarios into conservative summary
scenarios. These conservative summaries have a smaller feasibility region: a package that
satisfies the constraints over the conservative summary scenarios is guaranteed to satisfy the
constraints over the original scenarios. Thus, the resulting package is more likely to pass
validation. The algorithm automatically tunes its level of conservativeness to avoid over-
restricting the solution space. However, the optimization problems still remain non-convex,
albeit with fewer indicator variables than the naive approach.

RCL-Solve [12] resolves this weakness of SummarySearch by replacing non-convex risk
constraints with special “linearized” risk constraints. The resulting optimization problems
are thus converted to Integer Linear Programs (ILPs). RCL-Solve automatically adjusts
the parameters of the linearized risk constraints to find the closest linear approximation of
the original non-convex optimization problem that results in a near-optimal and constraint-
satisfying package. Stochastic SketchRefine scales RCL-Solve with respect to the
number of tuples using a divide and conquer approach similar to SketchRefine. Like
SketchRefine, it consists of the sketch and refine phases, but contains necessary algorithmic
modifications that address challenges raised by the stochastic nature of the problem. In
particular, partitioning creates groups of tuples with similar values and similar stochastic
behavior, and representative tuples are represented by multiple stochastically identical
duplicates. The latter allows more flexibility to the optimizer to reduce risk by diversifying
packages.

2.4 Dynamic environments
Many datasets are dynamic: values get updated, tuples get added or removed, and the data
distribution may shift over time. A key challenge for in-database constraint optimization is
that even small changes in the data require computationally intensive package queries to be
re-evaluated from scratch. In most practical settings, the overall structure of the constrained
optimization problem is likely to remain the same, even if data and perhaps query parameters
may change frequently. Re-executing such queries from scratch to maintain results up to date
is tedious and computationally expensive, and can render exploratory analysis impractical.
We are currently considering several strategies for dealing with evolving data.

Incremental package maintenance. In this direction, the goal is to update packages
without re-engaging the optimizer. For example, if a tuple gets deleted (e.g., if a stock is
removed), a package containing that tuple could be heuristically updated by looking for
a replacement for that tuple (rather than re-executing the optimization). Similarly, if a
new tuple is introduced, we can check if its addition to the package, potentially replacing
another tuple, improves the result. These approaches are heuristic, but they are likely to
perform well in many cases of small changes.
Data reduction techniques. In this direction, the goal is to re-execute the optimization,
but over a drastically reduced problem dataset. For example, if several new tuples are
added to the data, we could update a previous package result by executing the package
query on the small dataset comprising of the tuples in the previous package result and
the new tuples (rather than executing the query over the entire dataset). Other variants
of this approach can be more sophisticated and use carefully crafted subsets of the data



A. Meliou, A. Abouzied, P. J. Haas, R. R. Haque, A. Mai, and V. Vittis 2:9

seen so far (rather than simply the previous package) since previously non-optimal tuples
might become optimal later on. This can be achieved by clever reasoning about the
likelihood that a certain datapoint could be in a package result. For example, a stock
with high price and poor gain would not be selected by the optimizer for the portfolio
query, and thus it need not be included in the optimization. Generalizing this intuition
has the potential to achieve significant reductions in the data used in the optimization,
thus making re-evaluation of package queries more practical.

How to deal with changing query parameters remains a challenging problem. Optimization
theory, specifically the theory of “sensitivity analysis” – see, e.g., [3, Chapter 5] – provides
some insights on dealing with, for example, small perturbations in bounding values for
constraints, but in general a more sophisticated strategy is needed for deciding which
previous data to retain.

2.5 Challenges and vision
Prescriptive analytics plays a key role in a broad variety of domains, but has received
relatively little attention from the database community. Package queries model a useful class
of optimization problems, but many challenges remain in exploring broader and more general
settings.

Broader classes of optimization problems. Deterministic package queries try to optimize
linear objective functions subject to linear constraints. It would be desirable to extend
this class of queries to encompass a broader range of optimization problems. These include
non-linear objectives and constraints and multi-stage problems involving a sequence of
optimizations in which new information becomes available at each stage. These challenges
carry over to the setting of uncertain data, where even more complexities can arise when
formulating a stochastic package query. For example, we might want to generalize VaR
constraints to require that a set of constraints must simultaneously be satisfied with a
specified probability.

Distributed and partitioned data. If the dataset involved in a package query is partitioned
among heterogeneous servers, and if the query must be solved in a timely manner, then
challenges arise as to which partitions should be fetched and the order in which to do the
fetching. Even under a centralized processing model, there may be interesting opportunities
for query optimization when the input table to the package query must be created via joins
and other relational operators.

Expensive scenario generation. As mentioned previously, scenarios are generated in a
Monte Carlo database system such as MCDB via calls to variable-generation (VG) functions.
In the simplest case, a VG function might simply generate a sample from some standard
probability distribution, which can be done very quickly. In complex settings, such as the
stock market, a VG call may require running a stochastic simulation in order to generate
a sample of, e.g., the future value of an exotic option. Such simulations can be expensive
so that the stochastic package query will take too long to solve. One challenge is how to
facilitate quick approximate generation of scenarios. The database community has experience
in concise approximate representations of complex distributions via histograms and other
techniques, and recent work on simulation metamodeling via generative neural networks [9]
may be applicable.

ICDT 2025
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Scheduling applications involve allocating tasks to different computing resources, such
as processors. A scheduling optimization problem needs to derive an allocation that is
consistent (e.g., a processor may only execute one task at a time, or one task may need to
precede another), and that optimizes an objective like latency or throughput. This setting
requires modeling and reasoning about temporal relationships, which is not straightforward
with package queries in their current form. Scheduling problems can grow large in the context
of computing providers, and are complicated by the dynamic nature of the setting (as new
tasks arrive) and the uncertainty in task completion times, successful execution, and so on.

Partitioning maintenance. While we discussed the dynamic setting from the perspective
of updating package results in a manner analogous to continuous queries, changes to the
data pose further challenges to approximation algorithms for package evaluation such as
SketchRefine and Progressive Shading. Since these methods use auxiliary partitioning
structures, these structures need to be maintained dynamically.

High dimensionality. Our work on package queries explored scaling in the data and in the
uncertainty dimensions, but we generally focused on data of low dimensionality, where most
queries focus on a handful of attributes. The existing methods are unlikely to work well on
high-dimensional data, such as vector data, where packages may represent recommendations
with diversity-related constraints and objectives (e.g., retrieving news highlights, identifying
risk-averse opportunities for financial investments, and forming diverse groups from a pool of
applicants). The need for diversity brings forth the need to add constraints to these problem
instances that prevent the solver from choosing tuples that are too similar. Identifying pairs
of tuples that are “close together” in a scalable manner requires non-trivial customizations to
vector database indexing techniques, and system-level considerations to enable parallelization.

Explainability and sensitivity analysis. The complexity of prescriptive analytics tasks implies
the need for supporting explanations for package results. Helping users understand why
certain tuples were selected in the package, why others were excluded, or how results would
change with small perturbations of the query parameters would further enrich in-database
prescriptive analytics support.

Autonomous decision-making agents tightly connect the frameworks of prescriptive
and predictive analytics, leading to further research challenges. Such agents are often guided
by a policy: a function that examines the current state of its environment to select an action
that leads to the highest possible future rewards. Consider an auto-trader, which uses a stock
time-series predictive model to simulate the effects (rewards) of different purchase decisions.
This allows for a planning phase where the agent can experiment with different decisions to
approximate the value of being in different possible states and to learn a policy that allows
the agent to take an action that leads to high-valued states. In this setup, the predictive
model is constantly updated from observations of the real world and the agent constantly
updates its internal value and policy models to better determine which stocks to buy or sell
on a daily basis.

As optimization problems become increasingly data-intensive, database research is poised
to make key contributions to the creation of scalable, seamless, data-centric tools for sup-
porting decision making. It is an area with a wealth of open challenges and high potential
impact in building systems that enable improved, data-driven decision making.
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