
Database Theory in Action:
Cypher, GQL, and Regular Path Queries
Amélie Gheerbrant #

Université Paris Cité, CNRS, IRIF, France

Leonid Libkin # Ñ

RelationalAI and IRIF, CNRS, Paris, France
University of Edinburgh, UK

Liat Peterfreund #

The Hebrew University of Jerusalem, Israel

Alexandra Rogova #

Université Paris Cité, CNRS, IRIF, France

Abstract
Cypher has so far been the most commonly used query language for property graphs, and served as
the foundation of the recently standardized graph query language GQL. In designing the features of
GQL, the standards committee addressed the perceived limitations of Cypher. One such limitation
is the inability of Cypher, as originally designed, to express all regular path queries (RPQs). Despite
this claim having been stated many times as a folklore result, we could not find any proof of it. In
this note we formalize the core of Cypher’s pattern matching and formally prove that indeed it falls
short of all RPQs, justifying the inclusion of new pattern matching features in GQL.

2012 ACM Subject Classification Information systems → Graph-based database models

Keywords and phrases Regular path queries, Cypher, GQL, inexpressibility

Digital Object Identifier 10.4230/LIPIcs.ICDT.2025.36

Funding We acknowledge support from: VeriGraph project, ANR-21-CE48-0015 (L. Libkin); Israel
Science Foundation 2355/24 (L. Peterfreund); NCN grant 2018/30/E/ST6/00042 (A. Rogova).

1 Introduction

One of the key goals of the design of the new standard Graph Query Language (ISO/IEC
39075:2024 Information technology – Database languages – GQL, www.iso.org/standard/
76120.html) was to overcome Cypher’s perceived limitation with respect to regular path
queries (RPQs). One finds statements that Cypher falls short of the full power of RPQs in
many sources and surveys, e.g. [5, 2, 1]. There is a strong intuition behind this statement:
in Cypher, the use of Kleene star ∗ is limited to edge labels. Essentially, one can say that
there is a path of edges labeled ℓ between two nodes n and n′, but it seems that one cannot
say that there is a path n = n0 · · ·n1 · · ·n2 · · ·nk−1 · · ·nk = n′ so that each part of this path
between ni and ni+1 for 0 ≤ i < k, satisfies a pattern π more complex than a labeled edge.

This observation led to the substantial extension of GQL’s pattern matching, which also
coincide with available pattern matching in SQL/PGQ, a newly standardized extension of
SQL with mechanisms for property graph querying (see their informal description in [3]).
Namely, a bounded (between n and m times for n < m ∈ N) or unbounded (at least n

times) repetition can be applied to an arbitrary pattern π (currently such patterns cannot
themselves contain repetitions, but a language opportunity1 exists to remove this restriction).

1 In SQL and GQL standards, this means the committee plans to revisit a specific feature.

© Amélie Gheerbrant, Leonid Libkin, Liat Peterfreund, and Alexandra Rogova;
licensed under Creative Commons License CC-BY 4.0

28th International Conference on Database Theory (ICDT 2025).
Editors: Sudeepa Roy and Ahmet Kara; Article No. 36; pp. 36:1–36:5

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:amelie@irif.fr
https://orcid.org/0000-0002-8936-9829
mailto:l@libk.in
http://libk.in
https://orcid.org/0000-0002-6698-2735
mailto:liat.peterfreund@mail.huji.ac.il
https://orcid.org/0000-0002-4788-0944
mailto:rogova@irif.fr
https://orcid.org/0000-0003-3824-445X
https://doi.org/10.4230/LIPIcs.ICDT.2025.36
www.iso.org/standard/76120.html
www.iso.org/standard/76120.html
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

36:2 Database Theory in Action: Cypher, GQL, and Regular Path Queries

This substantial extension of the language was based on a belief that arbitrary regular
properties of paths cannot be expressed in Cypher. Our goal is to justify this decision by
providing a proof of the widely believed – but hitherto unproven – statement.

2 Graph databases and Cypher patterns: an abstraction

Cypher operates on property graphs: these are labeled graphs, potentially with multiple edges
between two nodes, where both edges and nodes carry properties given as key/value pairs.
The latter play no role in comparison with RPQs which only refer to labels; thus we use a
simple model of graph databases where properties are disregarded.

Graph databases. Assume pairwise disjoint countable sets N of node ids, E of edge ids and
L of labels. A graph database is a tuple G = ⟨N, E, λ, σ, τ⟩ where

N ⊂ N is a finite set of node ids used in G;
E ⊂ E is a finite set of directed edge ids used in G;
λ : N ∪ E → L is a labeling function that associates with every id a label from L;
σ, τ : E → N define source and target of an edge.

In real Cypher, λ can assign sets of labels to a node, and in GQL it can assign sets of labels
to edges as well, but since the separating example does not depend on these features (which
can also be modeled by considering 2L as the new set of labels), we do not use them here.

A path in G is an alternating sequence n0e1n1e2 · · · eknk, for k ≥ 0, of nodes and edges
that starts and ends with a node and so that each edge ei connects ni−1 to ni for i ≤ k.
That is, either ei is a forward edge with σ(ei) = ni−1 and τ(ei) = ni, or a backward
edgewith σ(ei) = ni and τ(ei) = ni−1. If k = 0, the path consists of a single node n0. We
explicitly write out paths as ⟨⟨n0, e1, n1, · · · , ek, nk⟩⟩. Two paths p = ⟨⟨n0, e0, . . . , nk⟩⟩ and
p′ = ⟨⟨n′

0, e′
0, . . . , n′

j⟩⟩ concatenate, if nk = n′
0, in which case their concatenation p · p′ is

defined as ⟨⟨n0, e0, . . . , nk, e′
0, . . . , n′

j⟩⟩.

Cypher Patterns. We refine an abstraction of patterns of GQL from [4], omitting the GQL
specific features, and adding Cypher patterns matching repeated edges of a given label. Let
V be a countably infinite set of variables. Patterns are defined by

π := (x : ℓ) | (x) y:ℓ−→ (z) | (x) y:ℓ←− (z) | (x) ℓ∗

−→ (z) | (x) ℓ∗

←− (z)
| π1 π2 | π1 + π2 | π⟨θ⟩, x, y, z ∈ V

Let V(π) be the set of all variables mentioned in π. The syntactic conditions are:
conditions in π⟨θ⟩ are given by θ, θ′ := (x = x′) | θ ∨ θ′ | θ ∧ θ′ | ¬θ; all variables
mentioned in θ must occur in V(π).
π1 + π2 is only defined when V(π1) = V(π2).

In Cypher variables and labels in edge/node patterns are optional, but we include them
for simplicity. This does not affect the separating example in which we assume one fixed
label for all nodes/edges; the use of variables does not affect expressibility of RPQs. Also,
Cypher’s repetitions of labeled edges of the form n..m (between n and m) or n.. (at least n),
or ..m (at most m) are all expressible with concatenation, union, and Kleene star.

Semantics of Patterns. The semantics JπK of a path pattern π, with respect to a graph
database G, is a set of pairs (p, µ) where p is a path and µ is a mapping V(π) → N ∪ E

as defined in Fig. 1. Two partial mappings µ, µ′ : V → N ∪ E are joinable if µ(x) = µ′(x)

A. Gheerbrant, L. Libkin, L. Peterfreund, and A. Rogova 36:3

J(x)K := {(⟨⟨n⟩⟩, {x 7→ n}) | n ∈ N}r
x→

z
:= {(⟨⟨n1, e, n2⟩⟩, {x 7→ e}) | e ∈ E, σ(e) = n1, τ(e) = n2}r

x←
z

:= {(⟨⟨n2, e, n1⟩⟩, {x 7→ e}) | e ∈ E, σ(e) = n1, τ(e) = n2}r
(x) :ℓ∗−→ (z)

z
:= {(⟨⟨n1, e1, n2, . . . , ek−1, nk⟩⟩, {x 7→ n1, z 7→ nk}) |

e1, . . . , ek−1 ∈ E, σ(ei) = ni, τ(ei) = ni+1, λ(ei) = ℓ for all i < k}r
(x) :ℓ∗←− (z)

z
:= {(⟨⟨n1, e1, n2, . . . , ek−1, nk⟩⟩, {x 7→ nk, z 7→ n1}) |

e1, . . . , ek−1 ∈ E, σ(ei) = ni+1, τ(ei) = ni, λ(ei) = ℓ for all i < k}
Jπ1 + π2K := Jπ1K ∪ Jπ2K

Jπ1 π2K := {(p1 · p2, µ1 ▷◁ µ2) | (p1, µ1) ∈ Jπ1K , (p2, µ2) ∈ Jπ2K ,

µ1, µ2 are joinable and p1, p2 concatenate}
Jπ⟨θ⟩K := {(p, µ) ∈ JπK | µ |= θ} where µ |= x = y iff µ(x) = µ(y)

Figure 1 Semantics of Cypher patterns with respect to G = ⟨N, E, λ, σ, τ⟩.

for each shared x. Their join µ ▷◁ µ′ is then unambiguously defined as the mapping that
coincides with µ(x) for x in the domain of µ and µ′(x) for x in the domain of µ′. In the
figure, we omit the standard conditions for µ |= θ for Boolean connectives.

3 Cypher Vs. RPQs

Recall that an RPQ is a regular expression q over the labels L. The result of q in G, written
q(G), is the set of pairs of nodes (n0, nk) such that there is a path ⟨⟨n0, e0, n1, e1, . . . , ek−1, nk⟩⟩
with the word λ(e0)λ(e1) · · ·λ(ek−1) being in the regular language of q.

A Cypher pattern π with two designated variables xs, xt ∈ V(π) is said to express an
RPQ q in G if q(G) = {(µ(xs), µ(xt)) | (p, µ) ∈ JπK}.

▶ Theorem 1. Cypher patterns, as defined above, cannot express all RPQs. In particular
they cannot express the pattern testing for an even-length path of edges labeled ℓ.

In other words, the regular path query (ℓℓ)∗ cannot be expressed in Cypher.

Proof. Consider graphs Gn with N = {v1, . . . , vn} and E = {e1, . . . , en−1} so that σ(ei) = vi

and τ(ei) = vi+1 for i < n (i.e., directed paths), with each edge labelled ℓ. We can therefore
assume that all edge labels used in patterns are ℓ (if not, such a pattern is not matched, and
thus the entire subpattern in which it occurred cannot be matched, up to + in the parse
tree, and thus can be removed). We can also further assume that no variable is used as both
a node variable and an edge variable (as this would falsify the pattern), nor any explicit
equality between such variables is used in conditional patterns.

We now represent such graphs Gn as first-order structures Sn in the vocabulary R, R∗

with the universe N , and relations interpreted as follows:
R = {(vi, vi+1) | 1 ≤ i < n} is the edge relation;
R∗ = {(vi, vj) | 1 ≤ i ≤ j ≤ n} is the reflexive transitive closure of R.

We next show how patterns are translated into first-order formulae over this vocabulary. We
use R for convenience, as it is definable from R∗ which is isomorphic to a linear order on
{1, . . . , n}. We will then easily obtain the inexpressibility results since FO cannot define even
cardinality of linear orders.

ICDT 2025

36:4 Database Theory in Action: Cypher, GQL, and Regular Path Queries

For the translation, with each pattern π we associate two new variables xs
π, xt

π (intuitively,
to be witnessed by the endpoints of patterns), and with each edge variable z used in a pattern
we associate two first-order variables zs, zt to be used in FO formulas (for source and target
of edges). Then a pattern π with node variables y1, . . . , ym and edge variables z1, . . . , zk

(all distinct) is translated into an FO formula απ(xs
π, xt

π, y1, . . . , ym, zs
1, zt

1, . . . , zs
k, zt

k) . The
condition on the translation is that for a path p = ⟨⟨u0, f0, u1, . . . , fr−1, ur⟩⟩ we have

(p, µ) ∈ JπKGn

⇔ Sn |= απ

(
u0, ur, µ(y1), . . . , µ(ym), σ(µ(z1)), τ(µ(z1)), . . . , σ(µ(zk)), τ(µ(zk))

) (1)

Now suppose the pattern (ℓℓ)∗ is definable in Cypher over graphs Gn by a pattern π as above.
Then β(xs

π, xt
π) := ∃y1, . . . , ym, zs

1, . . . , zt
k απ is true for vi, vj iff the path between them is

of even length and therefore the sentence γ := ∃s, t
(
¬∃s′ R(s′, s) ∧ ¬∃t′ R(t, t′) ∧ β(s, t)

)
states the path from v1 to vn is of even length, which is impossible.

Next, to conclude the proof, we present the translation, recursively.
If π = (y) then απ(xs

π, xt
π, y) := xs

π = xt
π ∧ xt

π = y.

If π = (y1) z:ℓ→ (y2) then απ(xs
π, xt

π, y1, y2, zs, zt) := xs
π = y1 ∧ xt

π = y2 ∧ zs = y1 ∧ zt =
y2 ∧R(y1, y2).

If π = (y1) z:ℓ← (y2) then απ(xs
π, xt

π, y1, y2, zs, zt) := xs
π = y2 ∧ xt

π = y1 ∧ zs = y2 ∧ zt =
y1 ∧R(y2, y1).

If π = (y1) :ℓ∗

→ (y2) then απ(xs
π, xt

π, y1, y2) := xs
π = y1 ∧ xt

π = y2 ∧R∗(y1, y2)

if π = (y1) :ℓ∗

← (y2) then απ(xs
π, xt

π, y1, y2) := xs
π = y2 ∧ xt

π = y1 ∧R∗(y2, y1).
If π = π1π2 with π1, π2 translated as απ1(xs

π1
, xt

π1
, v1) and απ2(xs

π2
, xt

π2
, v2) respectively

(where vi list variables in those formulae corresponding to node and edge variables in
patterns), then απ(xs

π, xt
π, v1, v2) is defined as

∃xs
π1

, xt
π1

, xs
π2

, xt
π2

(
απ1(xs

π1
, xt

π1
, v1)∧απ2(xs

π2
, xt

π2
, v2)∧xs

π = xs
π1
∧xt

π = xt
π2
∧xt

π1
= xs

π2

)
where in v1, v2 repeated variables are mentioned only once.
If π = π1 + π2 with π1, π2 translated as απ1(xs

π1
, xt

π1
, v) and απ2(xs

π2
, xt

π2
, v) (note that

variables must be the same as the schemas of π1 and π2 coincide), then απ(xs
π, xt

π, v) :=
απ1(xs

π, xt
π, v) ∨ απ2(xs

π, xt
π, v).

If π = π1⟨θ⟩ then απ(xs
π, xt

π, v) := απ1(xs
π, xt

π, v) ∧ θ′ where θ′ is obtained from θ by the
following transformations:

each condition yi = yj stays;
each condition zi = zj is replaced by zs

i = zs
j ∧ zt

i = zt
j ;

these are propagated through the Boolean connectives.
It is straightforward to verify that these translations satisfy (1), completing the proof. ◀

The proof shows that on graphs Gn, Cypher patterns fall far short of RPQs. The latter
can express every regular property of languages in ℓ∗, or in other words test if n belongs to
a set which is a finite union of arithmetic progressions. For Cypher patterns, on the other
hand, the first-order definability of a pattern π in the theory of order implies the existence
of the threshold t such that either (v1, vn) is selected by π for all n > t, or (v1, vn) is not
selected by π for all n > t.

A. Gheerbrant, L. Libkin, L. Peterfreund, and A. Rogova 36:5

4 Conclusions

With formal models of GQL, SQL/PGQ, and Cypher finally available, this note is an example
of how research in database theory can affect the design of new languages. When it comes
to graph languages, industrial developments are far ahead of academic research, creating
opportunities for the academic community to develop tools to evaluate decisions already
made and lay a solid foundation for new language features in upcoming editions of the
standards.

References
1 Renzo Angles, Marcelo Arenas, Pablo Barceló, Aidan Hogan, Juan L. Reutter, and Domagoj

Vrgoč. Foundations of modern query languages for graph databases. ACM Comput. Surv.,
50(5):68:1–68:40, 2017. doi:10.1145/3104031.

2 Angela Bonifati, George H. L. Fletcher, Hannes Voigt, and Nikolay Yakovets. Querying Graphs.
Morgan & Claypool Publishers, 2018. doi:10.2200/S00873ED1V01Y201808DTM051.

3 Alin Deutsch, Nadime Francis, Alastair Green, Keith Hare, Bei Li, Leonid Libkin, Tobias
Lindaaker, Victor Marsault, Wim Martens, Jan Michels, Filip Murlak, Stefan Plantikow,
Petra Selmer, Hannes Voigt, Oskar van Rest, Domagoj Vrgoč, Mingxi Wu, and Fred Zemke.
Graph pattern matching in GQL and SQL/PGQ. In SIGMOD, pages 1–12. ACM, 2022.
arXiv:2112.06217.

4 Nadime Francis, Amélie Gheerbrant, Paolo Guagliardo, Leonid Libkin, Victor Marsault, Wim
Martens, Filip Murlak, Liat Peterfreund, Alexandra Rogova, and Domagoj Vrgoc. GPC: A
pattern calculus for property graphs. In Floris Geerts, Hung Q. Ngo, and Stavros Sintos,
editors, Proceedings of the 42nd ACM SIGMOD-SIGACT-SIGAI Symposium on Principles of
Database Systems, PODS 2023, Seattle, WA, USA, June 18-23, 2023, pages 241–250. ACM,
2023. doi:10.1145/3584372.3588662.

5 Nadime Francis, Alastair Green, Paolo Guagliardo, Leonid Libkin, Tobias Lindaaker, Victor
Marsault, Stefan Plantikow, Mats Rydberg, Petra Selmer, and Andrés Taylor. Cypher:
An evolving query language for property graphs. In Proceedings of the 2018 International
Conference on Management of Data, pages 1433–1445, New York, NY, USA, 2018. Association
for Computing Machinery. doi:10.1145/3183713.3190657.

ICDT 2025

https://doi.org/10.1145/3104031
https://doi.org/10.2200/S00873ED1V01Y201808DTM051
https://arxiv.org/abs/2112.06217
https://doi.org/10.1145/3584372.3588662
https://doi.org/10.1145/3183713.3190657

	1 Introduction
	2 Graph databases and Cypher patterns: an abstraction
	3 Cypher Vs. RPQs
	4 Conclusions

