
O(1)-Round MPC Algorithms for
Multi-Dimensional Grid Graph Connectivity,
Euclidean MST and DBSCAN
Junhao Gan #

The University of Melbourne, Australia

Anthony Wirth #

The University of Melbourne, Australia

Zhuo Zhang #

The University of Melbourne, Australia

Abstract
In this paper, we investigate three fundamental problems in the Massively Parallel Computation
(MPC) model: (i) grid graph connectivity, (ii) approximate Euclidean Minimum Spanning Tree
(EMST), and (iii) approximate DBSCAN.

Our first result is a O(1)-round Las Vegas (i.e., succeeding with high probability) MPC algorithm
for computing the connected components on a d-dimensional c-penetration grid graph ((d, c)-grid
graph), where both d and c are positive integer constants. In such a grid graph, each vertex is
a point with integer coordinates in Nd, and an edge can only exist between two distinct vertices
with ℓ∞-norm at most c. To our knowledge, the current best existing result for computing the
connected components (CC’s) on (d, c)-grid graphs in the MPC model is to run the state-of-the-art
MPC CC algorithms that are designed for general graphs: they achieve O(log log n + log D) [10]
and O(log log n + log 1

λ
) [8] rounds, respectively, where D is the diameter and λ is the spectral gap

of the graph. With our grid graph connectivity technique, our second main result is a O(1)-round
Las Vegas MPC algorithm for computing approximate Euclidean MST. The existing state-of-the-art
result on this problem is the O(1)-round MPC algorithm proposed by Andoni et al. [5], which only
guarantees an approximation on the overall weight in expectation. In contrast, our algorithm not
only guarantees a deterministic overall weight approximation, but also achieves a deterministic
edge-wise weight approximation. The latter property is crucial to many applications, such as finding
the Bichromatic Closest Pair and Single-Linkage Clustering. Last, but not least, our third main
result is a O(1)-round Las Vegas MPC algorithm for computing an approximate DBSCAN clustering
in O(1)-dimensional Euclidean space.

2012 ACM Subject Classification Theory of computation → Massively parallel algorithms

Keywords and phrases Massively Parallel Computation, Graph Connectivity, Grid Graphs, Euclidean
Minimum Spanning Tree, DBSCAN

Digital Object Identifier 10.4230/LIPIcs.ICDT.2025.7

Related Version Full Version: https://arxiv.org/abs/2501.12044 [23]

Funding This work is in part supported by ARC DE190101118 and DP230102908.

1 Introduction

Effective parallel systems for large scale datasets, such as MapReduce [17], Dryad [27],
Spark [37], Hadoop [34], have received considerable attention in recent years. The Massively
Parallel Computation (MPC) model [28, 24, 9] has been proposed to provide a solid theoretical
abstraction for the modern study of parallelism.

© Junhao Gan, Anthony Wirth, and Zhuo Zhang;
licensed under Creative Commons License CC-BY 4.0

28th International Conference on Database Theory (ICDT 2025).
Editors: Sudeepa Roy and Ahmet Kara; Article No. 7; pp. 7:1–7:20

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:junhao.gan@unimelb.edu.au
https://orcid.org/0000-0001-9101-1503
mailto:anthony.wirth@sydney.edu.au
https://orcid.org/0000-0003-3746-6704
mailto:zhuo.zhang@student.unimelb.edu.au
https://doi.org/10.4230/LIPIcs.ICDT.2025.7
https://arxiv.org/abs/2501.12044
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

7:2 O(1)-Round MPC Algorithms for Grid Graph Connectivity, EMST and DBSCAN

In this paper, we propose several O(1)-round Las Vegas algorithms, each succeeding with
high probability, in the MPC model, for solving three fundamental problems: (i) connectivity
and minimum spanning forest (MSF) on multi-dimensional grid graphs, (ii) approximate
Euclidean Minimum Spanning Tree (EMST), and (iii) approximate DBSCAN.

The MPC Model. In the MPC model, the input is of size n and evenly distributed among
m machines. Each machine is equipped with a strictly sub-linear local memory of size Θ(s),
where s = n/m = nα for some constant α ∈ (0, 1) [5, 28, 24]. An MPC algorithm runs in
(synchronous) rounds; each round proceeds two phases one after another : the communication
phase first, and then the local computation phase. In the communication phase, each machine
can send to and receive from other machines, in total, O(s) data. In the computation
phase, each machine performs computation on the O(s) data stored in its local memory, and
prepares what data can be sent to which machine in the communication phase of the next
round. The efficiency of an MPC algorithm is measured by the total number of rounds.

Main Result 1: Connectivity on Grid Graphs

We consider a class of graphs called d-dimensional c-penetration grid graphs (for short,
(d, c)-grid graphs). Specifically, a graph G = (V, E) is a (d, c)-grid graph if it satisfies: (i)
the dimensionality d ≥ 2 is a constant and c ≥ 1 is an integer; (ii) each node in V is a
d-dimensional point with integer coordinates in Nd space; (iii) for each edge (u, v) ∈ E,
0 < ∥u, v∥∞ ≤ c holds, i.e., u and v are distinct vertices and their coordinates differ by at
most c on every dimension. It can be verified that, when c is a constant, by definition, each
node in a (d, c)-grid graph can have at most (2c + 1)d − 1 ∈ O(1) neighbours, and hence, a
(d, c)-grid graph is sparse, i.e., |E| ∈ O(|V |). In particular, for c = 1, a (d, 1)-grid graph is a
common well-defined d-dimensional grid graph.

In real-world applications, grid graphs are often useful in the modeling of 3D meshes and
terrains [11]. More importantly, grid graphs are extremely useful in many algorithmic designs
for solving various computational geometry problems, such as Approximate Nearest Neighbour
Search [7], Euclidean Minimum Spanning Tree [26], DBSCAN [4] and etc. Therefore, the
study of algorithms on grid graphs has become an important topic in the research community.
Our first result is this theorem:

▶ Theorem 1 ([*]). Given a (d, c)-grid graph G = (V, E) with c ∈ O(1), there exists a
Las Vegas MPC algorithm with local memory Θ(s) ⊆ Θ(|V |α) per machine, for an arbitrary
constant α ∈ (max{d+1

d+2 , 4
5}, 1), which computes all the connected components of G in O(1)

rounds with high probability. Specifically, the algorithm assigns the ID of the connected
component to each node, of which the node belongs to.

Computing connected components (CC’s) of sparse graphs in the MPC model is notoriously
challenging. In particular, the well accepted 2-CYCLE Conjecture [36, 32] says that:

Every MPC algorithm, using n1−Ω(1) local memory per machine and O(n) space in
total, requires Ω(log n) rounds to correctly solve, with high probability, the 1-vs-2-
Cycle problem which asks to distinguish whether the input graph consists of just one
cycle with n nodes or two cycles with n/2 nodes each.

Theoretically speaking, the 2-CYCLE Conjecture can be disproved as “easy” as finding just
a single constant α < 1 and an algorithm that solves the 1-vs-2-Cycle problem with O(nα)
per-machine local memory and O(n) total space in o(log n) rounds. However, according to
the recent hardness results, the conjecture is robust and hard to be refuted [32].

J. Gan, A. Wirth, and Z. Zhang 7:3

Even worse, since the input instance of the 1-vs-2-Cycle problem is so simple, it eliminates
the hope of computing CCs for many classes of “simple” graphs, such as path graphs, tree
graphs and planar graphs, which are often found to be simpler cases for many fundamental
problems. As a result, it is still very challenging to find a large class of graphs on which the
CC problem can be solved in o(log n) rounds.

State-of-the-art works [6, 8, 10, 13] consider general sparse graphs that are paramet-
erised by the diameter D and the spectral gap λ. Specifically, Andoni et al. [6] propose
a O(log D log log n)-round randomized algorithm, where n is the number of nodes. Assadi et
al. [8] give an algorithm with O(log log n + log 1

λ) rounds. Recently, Behnezhad et al. [10]
improve the bound by Andoni et al. to O(log D + log log n) randomized, while Coy and
Czumaj [13] propose a deterministic MPC algorithm achieving the same round number
bound. However, all these state-of-the-art general algorithms still require O(log n) rounds
for solving the CC problem on (d, c)-grid graphs in the worst case, as the diameter D of a
(d, c)-grid graph can be as large as n and the spectral gap, λ, can be as small as 1

n .
Therefore, our Theorem 1 is not only an immediate improvement over these state-of-the-

art known results the CC problem on (d, c)-grid graphs, but, interestingly, also suggests a
large class of sparse graphs, (d, c)-grid graphs with c ∈ O(1), on which the CC problem can
be solved in O(1) rounds.

We note that it is the geometric property of (d, c)-grid graphs making them admit O(1)-
round CC algorithms. As we shall discuss in Section 2, our key technique is the so-called
Orthogonal Vertex Separator for multi-dimensional grid graphs proposed by Gan and Tao [22]
which was originally proposed to efficiently compute CC’s on (d, 1)-grid graphs in External
Memory model [3]. However, in the MPC model, it appears difficult to compute such
separators in O(1) rounds. To overcome this, we relax the Orthogonal Vertex Separator to a
“weaker yet good-enough” version for our purpose of designing O(1)-round MPC algorithms
and extend this technique 1 to (d, c)-grid graphs which are crucial to our O(1)-round EMST
and DBSCAN algorithms.

Moreover, with standard modifications, our CC algorithm can also compute the Minimum
Spanning Forests (MSF) on (d, c)-grid graphs:

▶ Corollary 2 ([*]). Given an edge-weighted (d, c)-grid graph G = (V, E) with c ∈ O(1),
there exists a Las Vegas MPC algorithm with local memory Θ(s) ⊆ Θ(|V |α) per machine,
for arbitrary constant α ∈ (max{d+1

d+2 , 4
5}, 1), which computes a Minimum Spanning Forest in

O(1) rounds with high probability.

Main Result 2: Approximate EMST

By enhancing our MSF technique for (d, c)-grid graphs, our second main result is a new
O(1)-round Las Vegas MPC algorithm for computing approximate Euclidean Minimum
Spanning Tree (EMST). Specifically, the problem is defined as follows. Given a set, P , of n

points with integer coordinates in d-dimensional space Nd, where d is a constant and the
coordinate values are in [0, ∆] with ∆ = nO(1), let G = (V, E) be an implicit edge-weighted
complete graph on P such that: V = P and the weight of each edge (u, v) ∈ E is the
Euclidean distance between u and v. The goal of the EMST problem is to compute an MST

1 A similar technique of using small-size geometric separators (though they are not the same as ours)
is applied to computing Contour Trees on terrains [33] in O(1) rounds in the MPC model. Moreover,
the idea of a crucial technique in our separator computation, ε-approximation, actually stems from the
KD-tree construction in the MPC model in [2].

ICDT 2025

7:4 O(1)-Round MPC Algorithms for Grid Graph Connectivity, EMST and DBSCAN

on the implicit complete graph, G, of P . The EMST problem is one of the most fundamental
and important problems in computational geometry and has sparked significant attention
for machine learning [18, 25, 30], data clustering [15, 14] and optimization problems [16, 31].
The existing state-of-the-art result is an O(1)-round Monte-Carlo MPC algorithm proposed
by Andoni et al. [5] for computing an approximate EMST. Their algorithm possesses the
following properties: (i) it can achieve O(1) rounds in the worst case and works for all
constant α ∈ (0, 1); and (ii) in expectation, it returns a spanning tree T of the implicit graph
G whose total edge weight is at most (1 + ρ) times of the total edge weight of the exact
EMST T ∗, where the approximation factor ρ > 0 is a constant. In comparison, we have the
following theorem:

▶ Theorem 3 ([*]). Given a set P of n points in d-dimensional space Nd with coordinate
values in [0, ∆] for ∆ = nO(1) and a constant approximation factor ρ > 0, there exists a Las
Vegas MPC algorithm with local memory Θ(s) ⊆ Θ(nα) per machine, for arbitrary constant
α ∈ (max{d+1

d+2 , 4
5}, 1), which computes a spanning tree T of the implicit graph G of P in

O(1) rounds with high probability and T deterministically satisfyies the following:
Overall Weight Approximation: the total edge weight of T is at most (1 + ρ) times
the total edge weight of the exact EMST T ∗;
Edge-Wise Weight Approximation: for every edge (u, v) in T ∗ with weight w(u, v),
there must exist a path from u to v in T such that the maximum weight of the edges on
this path is at most (1 + ρ) · w(u, v).

Our algorithm improves Andoni et al.’s approximate EMST algorithm in two folds. First,
our algorithm computes a feasible ρ-approximate EMST deterministically, while theirs can
only guarantee this in expectation. Second, and most importantly, the approximate EMST
computed by our algorithm can further guarantee the edge-wise approximation which Andoni
et al.’s algorithm cannot achieve. We note that the edge-wise approximation guarantee is
crucial to solving many down-stream algorithmic problems, such as ρ-approximate bichromatic
closest pair [1], Single-Linkage Clustering [38] and other related problems [35, 19].

Main Result 3: Approximate DBSCAN

Our third main result is a O(1)-round MPC algorithm for computing ρ-approximate DBSCAN
clustering as defined in [20]. To our best knowledge, this is the first O(1)-round algorithm in
the MPC model for solving the DBSCAN problem.

▶ Theorem 4 ([*]). Given a set P of n points in d-dimensional space Rd, where d is a
constant, two DBSCAN parameters: ε and minPts, and a constant approximation factor
ρ > 0, there exists a Las Vegas MPC algorithm with local memory Θ(s) ⊆ Θ(nα) per machine,
for arbitrary constant α ∈ (max{d+1

d+2 , 4
5}, 1), which computes an ρ-approximate DBSCAN

clustering of P in O(1) rounds with high probability.

Derandomization

As we shall see shortly, the randomness of all our Las Vegas algorithms only comes from the
randomized computation of an 1

r -approximation for some r. Indeed, it is known that such
approximations can be computed in O(1) MPC rounds deterministically [2]. And therefore,
all our algorithms can be derandomized, yet slightly shrinking the feasible value range of the
local memory parameter, α, to (max{d+1

d+2 , 6
7}, 1).

J. Gan, A. Wirth, and Z. Zhang 7:5

Full Paper

The proofs of all the theorems, lemmas and claims marked with [*] can be found in the full
version of this paper, on arXiv [23].

2 Grid Graph Connectivity and MSF

In this section, we introduce our O(1)-round MPC algorithms for computing CC’s and MSF’s
on (d, c)-grid graphs with c ∈ O(1) with high probability.

Implicit Graphs and Implicit (d, c)-Grid Graphs. For the ease of explanation of our
techniques for solving the EMST problem in the next section, we first introduce the notion
of implicit graphs, denoted by G = (V, E).

▶ Definition 5 (Implicit Graph). An implicit graph G = (V, E) is a graph consisting of a
node set V and an edge formation rule, E, where:

each node u in V is associated with O(1) words of information, e.g., O(1)-dimensional
coordinates;
the edge formation rule, E, is a function (of size bounded by O(1) words) on distinct
node pairs: for any two distinct nodes u, v ∈ V , E(u, v) returns, based on the O(1)-word
information associated with u and v: (i) whether edge (u, v) exists in G, and (ii) the
weight of (u, v) if edge (u, v) exists and the weight is well defined.

By the above definition, the size of every implicit graph is bounded by O(|V |). An implicit
graph can be converted to an explicit graph by materialising all the edges with the edge
formation rule E . If the corresponding explicit graph of an implicit graph G = (V, E) is a
(d, c)-grid graph, we say G = (V, E) is an implicit (d, c)-grid graph. For example, given a set
P of n points in Nd with coordinate values in [0, ∆], the implicit complete Euclidean graph
Gcomp of P can be considered as an implicit (d, ∆)-grid graph G = (P, E), where E(u, v)
returns dist(u, v), the Euclidean distance between u and v, as the edge weight. Another
example is the unit-disk graph [12] in Nd space with l∞-norm, which can be essentially
regarded as the implicit (d, 1)-grid graph with an edge formation rule: there exists an edge
between two vertices if and only if their l∞-norm distance is at most 1. However, as we will
see in our EMST algorithm, the notion of implicit (d, c)-grid graphs is more general due
to the flexibility on the edge formation rule specification. For example, in addition to the
coordinates, each node can also bring an ID of the connected component that it belongs to,
and the edge formation rule can further impose a rule that there must be no edge between
two nodes having the same connected component ID.

2.1 Pseudo s-Separator and Its Existence
In this subsection, we extend the notion of Orthogonal Vertex Separator [22] to a weaker
yet good-enough version for our algorithm design purpose for solving the CC and MSF
problems on implicit (d, c)-grid graphs in the MPC model. We call this new notion a Pseudo
s-Separator; recall that O(s) is the size of local memory, per machine, in the MPC model:

▶ Definition 6 (Pseudo s-Separator). Consider an implicit (d, c)-grid graph G = (V, E) and a
parameter s < |V |. A set S ⊆ V is a pseudo s-separator of G if it satisfies:
|S| ∈ O(c·|V |

s1/d · log s)
Removing the vertices in S disconnects G into h ∈ O(|V |/s) sub-graphs Gi = (Vi, E),
i ∈ [1, h], such that Vi ∩ Vj = ∅ for all i ̸= j, Vi ⊂ V and |Vi| ∈ O(s).

ICDT 2025

7:6 O(1)-Round MPC Algorithms for Grid Graph Connectivity, EMST and DBSCAN

、

、

Figure 1 A (d, c)-grid graph G with d = 2 and c = 2 and a separator. The blue regions are the
target c-dividers: the vertices in them are separator vertices. Removing all the separator vertices
disconnects G into 5 sub-graphs.

Figure 1 shows an example. Next, we show that if 1 ≤ c ≤ s
1

d3 and |V | > s, a pseudo
s-separator must exist in an implicit (d, c)-grid graph G = (V, E). While our proof mimics
that in [22], it does require some new non-trivial ideas. We introduce some useful notations.

Minimum Bounding Space of G. Consider an implicit (d, c)-grid graph G = (V, E); let
[x(i)

min, x
(i)
max] be the value range of V on the i-th dimension (for i ∈ {1, 2, . . . , d}), where x

(i)
min

and x
(i)
max are the smallest and largest coordinate values of the points in V on dimension i,

respectively. The minimum bounding space of G is defined as mbr(V) = [x(1)
min, x

(1)
max] ×

[x(2)
min, x

(2)
max]× · · · × [x(d)

min, x
(d)
max]. Moreover, we denote the projection of mbr(V) on the i-th

dimension by mbr(V)[i] = [x(i)
min, x

(i)
max].

c-Divider. Consider the minimum bounding space mbr(V); a c-divider on the i-th dimension
at coordinate x, denoted by π(i, x), is an axis-parallel rectangular range whose projection
on dimension i is [x, x + c− 1] and the projection on dimension j ̸= i is mbr(V)[j]. With a
c-divider π(i, x), the vertex set V is partitioned into three parts: (i) the left part Vleft = {u ∈
V | u[i] ≤ x− 1}, (ii) the right part Vright = {u ∈ V | u[i] ≥ x + c}, and (iii) the boundary
part Sπ = V ∩ π(i, x), where u[i] is the ith coordinate of a vertex u.

We say that π(i, x) separates G into two sub-graphs induced by the left and right part, i.e.,
Vleft and Vright, respectively. And all the vertices in Sπ are called separator vertices. Observe
that for any u ∈ Vleft and any v ∈ Vright, |u[i]− v[i]| ≥ c + 1 implying ∥u, v∥∞ ≥ c + 1. As a
result, there must not exist any edge between such u and v. With such notation, we show
the following Binary Partition Lemma.

▶ Lemma 7 (Binary Partition Lemma). Consider an implicit (d, c)-grid graph G = (V, E)
with 1 ≤ c ≤ s

1
d3 and |V | > s; there exists a c-divider π(i, x) partitioning V into

{Sπ, {Vleft, Vright}} such that:
|Vleft| ≥ |V |

4(d+1) and |Vright| ≥ |V |
4(d+1) , and

|Sπ| ≤ 2c(1 + d) 1
d |V |1− 1

d .

Proof. We prove this lemma with a constructive algorithm. Given the vertex set, V , our
algorithm first finds two integers, yj and zj , for each dimension j ∈ [1, d]. Specifically, yj is
the largest integer that the number of the vertices in V located to the “left” of yj is at most

|V |
2(1+d) , while zj is the smallest integer that the number of the vertices in V located to the
“right” of zj is at most |V |

2(1+d) . Formally, yj = max{x ∈ N : |{v ∈ V | v[j] < x}| ≤ |V |
2(1+d)}

and zj = min{x ∈ N : |{v ∈ V | v[j] > x}| ≤ |V |
2(1+d)}, where v[j] is the coordinate of v on

dimension j.

J. Gan, A. Wirth, and Z. Zhang 7:7

Consider the hyper-box in Nd, whose projection on each dimension is [yj , zj] for j ∈ [1, d].
By the definition of yj and zj , this box contains in total at least |V |(1− 2d

2(d+1)) = |V |
d+1 vertices

in V . Since the coordinates of the points are all integers, the volume of the box must be at
least |V |

d+1 . That is,
∏d

j=1(zj − yj + 1) ≥ |V |
d+1 . Thus, there must exist some dimension i such

that zi − yi + 1 ≥ (|V |
1+d) 1

d . Next we fix this dimension, i. Let Sπ(i,x) be the set of all vertices
in V falling in a c-divider π(i, x). Within dimension i, each vertex in V can be contained in
at most c consecutive c-dividers. As a result, we have

∑
x′∈[yi,zi−c] |Sπ(i,x′)| ≤ c|V |. Since

there are zi − c− yi + 1 terms in the summation, there exists an integer x ∈ [yi, zi − c] with

|Sπ(i,x)| ≤
c|V |

zi − yi + 1− c
≤ c|V |

(|V |
1+d) 1

d − c
≤ 2c(1 + d) 1

d |V |1− 1
d ,

where the second inequality comes from the bound on zi − yi + 1 and the third inequality is
due to c ≤ s

1
d3 ≤ 1

2 · (
|V |

(1+d)) 1
d as |V | > s. Then such π(i, x) is a desired c-divider.

Next, we bound the size of Vleft with respect to π(i, x): bounding |Vright| is analogous.
Since x ≥ yi, there are only two possible relations between x and yi:

If x > yi, according to the definition of yi, the number of vertices in V to the left of π is
at least |V |(1

2d+2) ≥ |V |
4d+4 .

If x = yi, the number of vertices in V to the left of π is at least |V |
2d+2 − |Sπ(i,x)| ≥

|V |
(

1
2d+2 −

2c(d+1)
1
d

|V |
1
d

)
≥ |V |

4d+4 .

Either way, |Vleft| ≥ |V |
4(d+1) holds; Lemma 7 thus follows. ◀

The Multi-Partitioning Algorithm. Given an implicit (d, c)-grid graph G = (V, E) with
1 ≤ c ≤ s

1
d3 and |V | > s, initialize S ← ∅ and perform the following steps:

apply Lemma 7 on G to obtain {Sπ, {Vleft, Vright}};
S ← S ∪ Sπ;
if |Vleft| > s, recursively apply Lemma 7 on Gleft = (Vleft, E);
if |Vright| > s, recursively apply Lemma 7 on Gright = (Vright, E);

▶ Lemma 8 ([*]). The vertex set S, obtained by the above Multi-Partitioning Algorithm,
is a pseudo s-separator of the implicit (d, c)-grid graph G = (V, E), where 1 ≤ c ≤ s

1
d3 and

|V | > s.

A construction algorithm proves existence, hence:

▶ Theorem 9. For any implicit (d, c)-grid graph G = (V, E) with 1 ≤ c ≤ s
1

d3 and |V | > s,
a pseudo s-separator S of G must exist.

Remark. While our Pseudo s-Separator (PsSep) looks similar to the notation of the
Orthogonal Vertex Separator (OVSep) proposed by Gan and Tao [22], we emphasize that
some crucial differences between them are worth noticing. First, the OVSep was originally
proposed for solving problems on (d, 1)-grid graphs (in the External Memory model). Our
PsSep supports implicit (d, c)-grid graphs for parameter c up to a non-constant s

1
d3 in the

MPC model. This extension, discussed in Section 3, plays a significant role in our O(1)-round
algorithm for computing Approximate EMST’s. Second and most importantly, it is still
unclear how (and appears difficult) to compute the OVSep in O(1) MPC rounds. In contrast,
our PsSep is proposed to overcome this technical challenge and can be computed in O(1)
MPC rounds. However, as discussed in the next sub-section, because of the application of
ε-approximation in the construction algorithm of PsSep, the separator size at each recursion

ICDT 2025

7:8 O(1)-Round MPC Algorithms for Grid Graph Connectivity, EMST and DBSCAN

level no longer geometrically decreases and therefore, leading to a logarithmic blow-up in
the overall separator size in PsSep. Despite of this size blow-up, by setting the parameters
carefully, we show that our PsSep can still fit in the local memory of one machine, and thus,
it is still good enough for the purpose of computing CC’s on implicit (d, c)-grid graphs and
solving the Approximate EMST and Approximate DBSCAN problems in O(1) rounds in the
MPC model.

2.2 O(1)-Round Pseudo s-Separator Algorithm
In this subsection, we show a O(1)-round MPC algorithm for computing a pseudo s-separator
for implicit (d, c)-grid graphs with 1 ≤ c ≤ s

1
d3 . The Multi-Partitioning Algorithm proves

the existence of a pseudo s-separator, but a straightforward simulation of this algorithm in
the MPC model is, however, insufficient to achieve O(1) rounds. To overcome this, we resort
to the technique of ε-approximation [29, 2].

2.2.1 Preliminaries
Range Space and ε-Approximation. A range space Σ is a pair (X,R), where X is a ground
set and R is a family of subsets of X. The elements of X are points and the elements of R
are ranges. For Y ⊆ X, the projection of R on Y is R|Y = {q ∩ Y | q ∈ R}. Given a range
space Σ = (X,R) and ε ∈ [0, 1], a subset X ′ ⊆ X is called an ε-approximation of Σ if for
every range q ∈ R, we have

∣∣∣ |X′∩q|
|X′| −

|q|
|X|

∣∣∣ ≤ ε .

▶ Fact 1 ([29, 2]). Consider the range space (V,R), where the ground set V is a set of n

points in Nd and R = {V ∩□ | ∀ axis-parallel rectangular range □ in Nd}. A random sample
set Ṽ of V with size |Ṽ | ∈ Θ(r2 · log n) is a 1

r -approximate of (V,R) with high probability.

Throughout this paper, we consider axis-parallel rectangular ranges only. For simplicity, we
may just say Ṽ is a 1

r -approximation of V .

2.2.2 Our Pseudo s-Separator Algorithm
Our MPC algorithm comprises several super rounds, each performing:

Obtain an ε-approximation, Ṽ , tuning ε so this fits in the local memory of a machine;
Perform roughly O(sO(1)) “good enough” binary partitions in the local memory.

Our algorithm then simultaneously recurs on each of the resulting induced sub-graphs, if
applicable, in the next super round. As we will show, each super round would decrease the
size of the graph by a factor of Θ(sO(1)), and there can be at most O(logsO(1)

|V |
s) = O(1)

super rounds. Moreover, by Fact 1, an ϵ-approximation can be obtained by sampling which
can be achieved in O(1) MPC rounds; detailed implementations can be found in the appendix
of our full paper [23]. Therefore, our algorithm runs in O(1) MPC rounds.

Define r = 2s1/d. In order to ensure that a 1
r -approximation Ṽ of V fits the local memory

size, O(s), without loss of generality, in the following, we assume that the dimensionality, d,
is at least 3. Otherwise, for the case d = 2, we can “lift” the dimensionality to 3 by adding a
dummy dimension to all the points in V ; however, the bounds derived for d = 3 apply.

The challenge lies in how to find a good enough (compared to that in Lemma 7) c-divider
π to separate V in the local memory with access to a 1

r -approximation Ṽ only.

J. Gan, A. Wirth, and Z. Zhang 7:9

▶ Lemma 10 ([*]). Given V with |V | > s and d ≥ 3, with only access to a 1
r -approximation

Ṽ of V such that r = 2s1/d and |Ṽ | ∈ O(s), we can find a c-divider π in mbr(V), which
satisfies:
|Vleft| ≥ |V |

8(d+1) and |Vright| ≥ |V |
8(d+1) ,

|Sπ| ≤ 4c(1 + d)1/d|V |s−1/d.

Lemma 10 suggests that, with only access to a 1
r -approximation of V , we can compute a

good enough c-divider π; it separates V into two parts each with size ≥ |V |
8(d+1) ; the size of

the separator Sπ is still bounded by O(c·|V |
s1/d), the same as in Lemma 7.

By a more careful analysis, interestingly, with a sample set Ṽ of size Θ(s), one can derive
that Ṽ indeed is sufficient to be, with high probability, a 1

3r1+l -approximation, with some
constant l ∈ (0, 1

2). The 1
3r1+l -approximation property of Ṽ is sufficient to invoke Lemma 10

for multiple times, i.e., making multiple partitions, with Ṽ in local memory. We formalise
this with the following crucial lemma.

▶ Lemma 11 ([*]). Consider a 1
3r1+l -approximation Ṽ of the range space Σ = (V,R), where

|V | > rls and l = min{ 1
3 , logr

|V |
s } and R is the set of all possible axis-parallel rectangular

ranges in mbr(V). Let □ be an arbitrary range in R. Define V1 = □ ∩ V and Ṽ1 = □ ∩ Ṽ .
If |Ṽ1| ≥ 2|Ṽ |

rl , then we have: (i) Ṽ1 is a 1
r -approximation of Σ′ = (V1,R1), where

R1 = {q ∈ R | q ⊆ V1}, and (ii) |V1| > s. Therefore, Lemma 10 is applicable on V1 and Ṽ1.

Our MPC Algorithm for Computing Pseudo s-Separator

One Super Round Implementation. Based on Lemma 11, given an implicit (d, c)-grid
graph G = (V, E), where d ≥ 3, |V | > rls for l = min{ 1

3 , logr
|V |
s }, 1 ≤ c ≤ s

1
d3 and r = 2s1/d,

the implementation of one super round is shown in Algorithm 1.

Algorithm 1 One Super Round Implementation for Pseudo s-Separator.

Input: an implicit (d, c)-grid graph G = (V, E) stored in a set of contiguous machines
1 Compute a random sample set Ṽ of V in size Θ(s), send it to machine M0;
2 M0 processes locally:
3 Let K ← 2|Ṽ |

rl ,V← {Ṽ }, Π← ∅;
4 while ∃Ṽ1 ∈ V s.t. |Ṽ1| ≥ K do
5 Apply Lemma 10 on Ṽ1; denote the resulting c-divider by π̃, which partitions

Ṽ1 into {S̃π̃, {Ṽleft, Ṽright}} ;
6 Let V← V ∪ {Ṽleft, Ṽright} − {Ṽ1}, Π← Π ∪ {π̃};

7 Broadcast Π to all machines related to V ;
8 Each machine processes locally:
9 Identify the separator vertices stored in their local memory with Π;

10 Group vertices according to the induced sub-graph, according to Π;
11 After sorting, each sub-graph induced by Π is stored in a set of contiguous machines;

The Overall Pseudo s-Separator Algorithm. Given an implicit (d, c)-grid graph G = (V, E),
where d ≥ 3, |V | > rls for l = min{ 1

3 , logr
|V |
s }, 1 ≤ c ≤ s

1
d3 and r = 2s1/d,

perform a new super round simultaneously on each of the induced sub-graphs G′ with
|V ′| > rl′

s for l′ = min{ 1
3 , logr

|V ′|
s };

terminate when no more super rounds can be performed, in which case, all the induced
sub-graphs have no more than s vertices.

ICDT 2025

7:10 O(1)-Round MPC Algorithms for Grid Graph Connectivity, EMST and DBSCAN

▶ Lemma 12 ([*]). After a super round, the input implicit (d, c)-grid graph G = (V, E) is
separated into h disconnected induced sub-graphs Gi = (Vi, E) for i ∈ [1, h] such that h ∈ O(rl)
and |Vi| ∈ O(|V |/rl) for all i ∈ [1, h].

Algorithm 2 Connected Component Algorithm.

Input: implicit (d, c)-grid graph G = (V, E) with c ∈ [1, s
1

d3]
Output: for each vertex v ∈ V , the id of the connected component where v belongs

1 compute the pseudo s-separator with the algorithm in Section 2.2;
2 process each extended sub graph G+

i in their machine:
3 compute the MSF of G+

i , denote the edge set as Ti;
4 compress Ti into an edge set E′

i, s.t. it induces a tree. All leaf nodes of the tree
are in Si, and the internal nodes of the tree are either from S or have degree > 2;

5 send E′
i to machine M0;

6 M0 run:
7 build a graph based on all of the received edges ∪E′

i;
8 solve the CC problem on E′

i, get the CC id of vertices in S;
9 send Si back to the corresponding machine along with their CC id’s;

▶ Lemma 13 ([*]). When our Overall Pseudo s-Separator algorithm terminates, let S be
the set of all the vertices in V falling in target c-dividers in applications of Lemma 10. Set S

is a pseudo s-separator of the input implicit (d, c)-grid graph G.

▶ Lemma 14 ([*]). The total number of super rounds of our overall pseudo s-separator
algorithm is bounded by O(d

α), and the total number of MPC rounds is bounded by O(1).

Putting the above lemmas together, we have:

▶ Theorem 15. Given an implicit (d, c)-grid graph G = (V, E) with d ≥ 3 and 1 ≤ c ≤ s
1

d3 ,
there exists a Las Vegas MPC algorithm with local memory Θ(s) ⊆ Θ(|V |α) per machine, for
all constant α ∈ (0, 1), which computes a pseudo s-separator of G in O(1) rounds with high
probability.

2.3 Grid Graph Connectivity Algorithms
Next, we introduce our MPC algorithms for computing CCs and MSFs for implicit (d, c)-grid
graphs with 1 ≤ c ≤ s

1
d3 .

Bounding the Feasible Range for α. Recall that Theorem 15 shows that a pseudo s-
separator S of G can be computed in O(1) rounds with high probability. This algorithm
works for all constant α ∈ (0, 1). However, as we shall see shortly, both our CC and MSF
algorithms require the pseudo s-separator, S, to fit in the local memory O(s) in a single
machine. As a result, they require |S| ≤ s. From the proofs of Lemma 10 and Lemma 13, we
know that |S| ≤ 4c|V |

s1/d log s. Recalling that s = |V |α, our algorithm works when α ≥ d+1
d+2 for

d ≥ 3. Combining the case of d = 2, a feasible range of α becomes (max{d+1
d+2 , 4

5}, 1).

Connectivity and Minimum Spanning Forest. Consider a pseudo s-separator S of G; let
Gi = (Vi, E) be the induced sub-graphs of G by S, where i ∈ [1, h]. By Definition 6, we have
h = O(|V |

s) and |Vi| ∈ O(s). For each Gi, denote the projection of mbr(Vi) on dimension j by

J. Gan, A. Wirth, and Z. Zhang 7:11

[x(j)
i , y

(j)
i], for i ∈ [1, h] and j ∈ [1, d]. Consider the hyper-box Hi whose projection on each

dimension j is [x(j)
i − c, y

(j)
i + c] for i ∈ [1, h] and j ∈ [1, d]; we say that Hi is the extended

region of Gi. Moreover, we define the extended graph of Gi, denoted by G+
i = (V +

i , E), as
the induced graph by the vertices in V +

i = Vi ∪ Si, where Si = S ∩Hi is the set of separator
vertices falling in the extended region of Gi. Figure 1 shows an example of Gi and G+

i .
Clearly, by choosing a constant α ∈ (max{d+1

d+2 , 4
5}, 1), we know that |S| ∈ O(s) and hence,

|V +
i | ∈ O(s). Therefore, G+

i fits in the local memory in one machine. Moreover, without
loss of generality, we assume that G+

i is stored completely in a machine Mi.
By incorporating the techniques of the existing External Memory CC and MSF algorithms

for grid graphs [22], where the detailed MPC implementations of them are respectively shown
in Algorithm 2 and Algorithm 3 in Appendix A, we have the following theorem:

▶ Theorem 16 ([*]). Given an implicit (edge-weighted) (d, c)-grid graph G = (V, E) with
1 ≤ c ≤ s

1
d3 , there exists a Las Vegas MPC algorithm with local memory Θ(s) ⊆ Θ(|V |α)

per machine, for arbitrary constant α ∈ (max{d+1
d+2 , 4

5}, 1), which computes all the connected
components (resp., minimum spanning forest) of G in O(1) rounds with high probability.

3 O(1)-Round Approximate EMST

An Overview of Our ρ-Approximate EMST Algorithm. The basic idea of our ρ-approximate
EMST algorithm is to mimic the Kruskal’s algorithm. Specifically, our algorithm firstly uses
those “short” edges to connect different connected components that are found so far, and then
gradually considers “longer” edges. Our algorithm runs in super rounds, each of which takes
O(1) MPC rounds. In the i-th super round, our algorithm constructs a representative implicit
(d, c)-grid graph Gi = (Vi, Ei) which only considers those edges with weight ≤ li = ci(ρ√

d
)i−1,

where c = s
1

d3 . Next, it invokes our O(1)-round MSF algorithm on Gi, and then starts a
new super round repeating this process until a spanning tree T is obtained.

The Algorithm Steps. Consider a set P of n points in d-dimensional space Nd with
coordinate value range [0, ∆]. Let V1 = P and set c = s

1
d3 . Our MPC ρ-approximate EMST

algorithm constructs a series of implicit (d, c)-grid graphs, denoted by Gi = (Vi, Ei), for
i ∈ {1, 2, . . .}.

Augmented Node Information: Each vertex u in Vi is associated with two pieces of
O(1)-size information: (i) a connected component id of u, denoted by u.id, and (ii) the
original point p ∈ P which u currently represents, denoted by u.pt.
Edge Formation Rule: for any two distinct nodes u, v ∈ Vi, in building, Ei: the edge
(u, v) exists if and only if the Euclidean distance dist(u, v) ≤ li, where li = ci(ρ√

d
)i−1; if

it exists, its weight, w(u, v), is 0 if u.id = v.id, otherwise dist(u, v).

Initially, V1 ← P and for each node u ∈ V1, u.id is the id of the point and u.pt is the
point itself. Our ρ-approximate EMST algorithm runs in super rounds; in the i-th super
round (for i = 1, 2, . . .), it works as follows:

Solve Stage: MSF Computation on Gi = (Vi, Ei):
invoke our O(1)-round MPC algorithm (in Theorem 16) to compute an MSF of Gi. In
particular, let u.cid be a temporary variable to denote the current connected component
id of u ∈ Vi in Gi. Observe the difference between u.id and u.cid: the former records
the connected component id of u in the previous super round, and is used to determine
edge weights in Ei in the current round;

ICDT 2025

7:12 O(1)-Round MPC Algorithms for Grid Graph Connectivity, EMST and DBSCAN

Figure 2 A running example of our approximate EMST algorithm.

let T ′
i be the set of edges in the MSF of Gi; remove edges with zero weight from T ′

i ;
initialize Ti ← ∅; for each edge (x, y) ∈ T ′

i , add an edge (x.pt, y.pt) to Ti;
keep tract of the total edge number that are added to T = ∪iTi; when, in total, n− 1
edges are added, stop and return T as an ρ-approximate EMST of P ;

Sketch Stage: Computing Vi+1 from Vi:
initialize Vi+1 ← ∅; impose a grid on Vi with side length of liρ√

d
;

for each non-empty grid cell, g, add the most bottom-left corner point t of g to Vi+1;
moreover, set t.pt← u.pt and t.id← u.cid, where u is an arbitrary node in Vi ∩ g;

MPC Implementation Details.
At the beginning of the Solve Stage, the vertex set Vi is distributed across the machines.
Thus, the MSF algorithm suggested in Theorem 16 is invoked on Gi = (Vi, Ei), and
the resulted set of edges, T ′

i , is distributedly stored across the machines. By local
computations, the edges in T ′

i can be converted to edges in Ti.
To implement the Sketch Stage (i.e., computing Vi+1 from Vi), each machine first computes
the grid cell coordinate for each vertex in Vi locally. Our algorithm sorts all the vertices
in Vi by their grid cell coordinates. After sorting, all the vertices falling in the same
grid cell g are either stored in just one machine or a contiguous sequence of machines.
Next, each machine generates the most bottom-left corner point t, according to our
algorithm, for each grid cell g in its local memory. Duplicate points t are then removed
by Duplicate Removal, an atomic MPC operation whose implementation details can be
found in Appendix A. The vertex set Vi+1 for the next super round is thus constructed.

A Running Example. Figure 2 gives a running example of our approximate EMST algorithm.
The input set P = {v1, . . . , v9} contains nine points in 2-dimensional space with integer
coordinate values in [0, 15]. Our algorithm solves this problem in three super rounds. The
top row of the figures shows the edges that are labeled to be in the result edge set ∪iTi at
the end of the round i. The bottom row shows the vertex set of Vi and the MSF of Gi.

In this example, l1 = 4 and ρ =
√

2
2 . In the first round, our algorithm constructs

G1 = (V1, E1). The vertex set V1 with the augmented node information is shown in the first
figure in at the bottom. The MSF of G1, denoted as T ′

1 , is computed and its edges are
shown in the figure. After the computation of the MSF, each vertex u ∈ V1 computes its

J. Gan, A. Wirth, and Z. Zhang 7:13

component id u.cid. All the zero-weight edges are deleted from T ′
1 and the remaining edges

are highlighted in colour red. For each edge (u1, u2) ∈ T ′
1 , its corresponding edge (u1.pt, u2.pt)

is marked as an output edge, i.e., the edge in the approximate EMST T returned by our
algorithm, as shown in the first top-row figure. Next, the sketch stage starts; G2 = (V2, E2)
is thus constructed as follows. A grid with side length of l1ρ√

d
= 2 is imposed on V1, and then

V2 is generated, shown in the second bottom-row figure. At the end of this second round,
two new edges are added to T , the final output edge set of the approximate EMST. The
same process is repeated with l2 = 8 and l3 = 16 in the third round, and one more edge
is added to T . Since T now contains in total eight edges, it is returned as an approximate
EMST on the input nine points.

Remark on Gi = (Vi, Ei). From the construction of Gi in our algorithm, at first glance,
Gi is an implicit (d, c·liρ√

d
)-grid graph which looks ineligible for our MSF algorithm proposed

in Theorem 16. However, observe that since the coordinate values of the nodes in Vi are all
multiples of liρ√

d
, therefore, by a simple scaling, Gi is indeed an implicit (d, c)-grid graph.

▶ Lemma 17 ([*]). Our ρ-approximate EMST algorithm takes O(1) MPC rounds with high
probability.

Let T be the union of Ti for all i = 1, 2, We prove that T is an (2ρ)-approximate
EMST of P , achieving both overall and edge-wise approximation. By decreasing the constant
approximation parameter ρ by half, an ρ-approximate EMST can be obtained.

▶ Lemma 18 ([*]). T is an Euclidean spanning tree of P .

▶ Lemma 19 (Edge-Wise Approximation Guarantee [*]). Consider an exact EMST T ∗ of P ;
for any edge (u, v) ∈ T ∗, there must exist a path P(u, v) from u to v in T such that every
edge (x, y) on this path has weight w(x, y) ≤ (1 + 2ρ) · w(u, v).

▶ Lemma 20 (Overall Approximation Guarantee [*]). Consider an exact EMST T ∗ of P ; the
total edge weight of T is at most (1 + 2ρ) times the total edge weight of T ∗.

4 O(1)-Round Approximate DBSCAN

4.1 DBSCAN and ρ-Approximate DBSCAN
Core and Non-Core. Let P be a set of n points in d-dimensional Euclidean space Rd, where
the dimensionality d ≥ 2 is a constant. For any two points u, v ∈ P , the Euclidean distance
between u and v is denoted by dist(u, v). There are two parameters: (i) a radius ε ≥ 0 and
(ii) core point threshold minPts ≥ 1 which is a constant integer. For a point v ∈ P , define
B(v, ε) as the ball center at v with radius ε. If B(v, ε) covers at least minPts points in P ,
then v is a core point. Otherwise, v is a non-core point.

Primitive Clusters and Clusters. Consider an implicit core graph G = (Pcore, E), where
Pcore is the set of all the core points in P , and there exists an edge between two core points
u and v if dist(u, v) ≤ ε. Each connected component C of G is defined as a primitive cluster.
For a primitive cluster C, let C ′ be the set of all the non-core points p ∈ P such that
dist(p, C) = minu∈C dist(p, u) ≤ ε. The union of C ∪ C ′ is defined as DBSCAN cluster.

The DBSCAN Problem. Given a set of points P , a radius ε ≥ 0 and a core threshold
minPts ≥ 1, the goal of the DBSCAN problem is to compute all the DBSCAN clusters.

ICDT 2025

7:14 O(1)-Round MPC Algorithms for Grid Graph Connectivity, EMST and DBSCAN

ρ-Approximate DBSCAN. Given an extra approximation parameter, ρ ≥ 0, the only
difference is in the definition of the primitive clusters. Specifically, consider a conceptual
ρ-approximate core graph Gρ = (Pcore, Eρ), where the edge formation rule Eρ works as follows.
For any two core points u, v ∈ Pcore: if dist(u, v) ≤ ε, Eρ(u, v) must return that (u, v) is in
Gρ; if dist(u, v) > (1 + ρ)ε, Eρ(u, v) must return that (u, v) does not exist in Gρ; otherwise,
what Eρ(u, v) returns does not matter.

Due to the does-not-matter case, Gρ is not unique. Consider a graph Gρ; each connected
component C of Gρ is defined as a primitive cluster with respect to Gρ. And an ρ-approximate
DBSCAN cluster is obtained by including non-core points to a primitive cluster C in the
same way as in the exact version. The goal of the ρ-approximate DBSCAN problem is to
compute the ρ-approximate DBSCAN clusters with respect to an arbitrary Gρ.

4.2 Our MPC Algorithm
Our approximate DBSCAN algorithm consists of three main steps: (i) identify core points;
(ii) compute primitive clusters from a Gρ; and (iii) assign non-core points to primitive clusters.
As shown in the existing ρ-approximate DBSCAN algorithm in [21], the third step, assigning
non-core points, can be achieved by an analogous algorithm of core point identification. Next,
we give an MPC algorithm for the first two steps.

4.2.1 Identify Core Points
We first show how to identify all the core points for a DBSCAN problem instance in O(1

α)
MPC rounds. Our goal is to label each point p ∈ P , as to whether or not it is a core point. In
the following, we assume that the constant parameter α in the MPC model satisfies α ∈ (1

2 , 1),
and hence, m ≤ s, that is, the number of machines is no more than the local memory size s.

Consider a grid imposed in the data space Rd with grid-cell length l = ε/
√

d. Each grid
cell, g, is represented by the coordinates (x1, x2, . . . , xd) of its left-most corner, namely, each
grid cell g is essentially a hyper cube [x1l, (x1 + 1)l)× · · ·× [xdl, (xd + 1)l). Each point p ∈ P

is contained in one and exactly one grid cell, denoted by g(p). The size of a grid cell g,
denoted by |g|, is defined as the number of points in P contained in g. If |g| > 0, then g is a
non-empty grid cell. If a non-empty grid cell g contains at least minPts points of P , then g

is a dense grid cell. Otherwise, g is a sparse grid cell. Given a non-empty grid cell g, the
neighbour grid cell set of g is defined as Neig = {g′ ̸= g | ∃p ∈ g, q ∈ g′, s.t. dist(p, q) ≤ ε}
(note here that p and q are not necessarily points in P). A grid cell, g′, in Neig is called a
neighbour grid cell of g. It can be verified that |Neig| < (2

√
d + 3)d ∈ O(1) [20, 22].

Our core point identification algorithm contains the following three steps:

Put Points into Grid Cells. Given a point p, the coordinates of the grid cell g(p) which
contains p can be calculated with the coordinates of p. Define Pg = P ∩ g as the set of all
the points in P falling in g. By sorting all the points in P by the coordinates of the grid cells
they belong to in lexicographical order, which can be achieved in O(logs n) MPC rounds [24],
all the points in P can be arranged in the machines with the following properties:

Each machine stores points from consecutive (in the sorted order) non-empty grid cells.
Those non-empty grid cells are called the support grid cells of the machine.
The points in a same grid cell g are stored in either only one machine or a contiguous
sequence of machines. Thus, the ID’s of the machines that store Pg – the storage locations
of the grid cell g – constitute an interval and can be represented by the left and right
endpoints (i.e., the smallest and largest machine ID’s) of this interval in O(1) words.
The number of the support grid cells of each machine is bounded by O(s). And the total
non-empty grid cell count is bounded by O(n).

J. Gan, A. Wirth, and Z. Zhang 7:15

Calculate Non-empty Neighbour Grid Cell Storage Locations. In this step, we aim to, for
each non-empty grid cell, compute the locations of all its non-empty neighbour grid cells.
Since the size of Neig is bounded by O((2

√
d + 3)d) ∈ O(1), it takes O(1) space to store the

location intervals of its all (possibly empty) neighbour grid cells.
At high level, our algorithm (Algorithm 4 in Appendix A) takes four super rounds to

compute non-empty neighbour grid cell storage locations, as follows:
Super Round 1: For each support grid cell gj in a machine Mi, for each of its possible
neighbours g′, our algorithm builds a 4-tuple (gj .coord, Mi, g′.coord, g′.loc), where g.coord
denotes the coordinates of grid cell g, Mi denotes the machine ID and g′.loc term is a
placeholder with value NULL at the current stage and will be filled with the storage
location of g′ if g′ is non-empty. Next, these 4-tuples are sorted by the third term, g′.coord,
across all machines. Therefore, at the end of this super round, each machine stores a
subset of these 4-tuples in its memory.
Super Round 2: Each machine M broadcasts the minimal and maximal g′.coord value of
the 4-tuples it stores, denoted by [M. min(g′.coord), M. max(g′.coord)]. As a result, at
the end of this super round, each machine, Mi, has the information of the g′.coord value
range of each other.
Super Round 3: Each machine Mi sends a 2-tuple (gj .coord, gj .loc), for each of its support
grid cells gj , to those machines M having gj .coord ∈ [M. min(g′.coord), M. max(g′.coord)].
Specifically, the second term of the 2-tuple, gj .loc, is the storage location of gj , which
was computed in the previous “put points into grid cells” phase.
Super Round 4: After receiving all gj .loc ∈ [M. min(g′.coord), M. max(g′.coord)] in Super
Round 3, the previous placeholder, the forth term g′.loc, in each 4-tuple stored in machine
M now can be filled properly in M ’s local memory. Each of the resultant 4-tuples
(gj .coord, Mi, g′.coord, g′.loc) are then sent back to machine Mi accordingly.

▶ Lemma 21 ([*]). The above algorithm, i.e., Algorithm 4, takes O(1) rounds. In each
round, the amount of data sent and received by each machine is bounded by O(s).

Output the Point Labels. Algorithm 5 in Appendix A gives a detailed implementation. A
running example of Algorithm 5 is shown in Figure 3. This algorithm labels each point in
P as whether or not it is a core point. If a grid cell g is dense, i.e., |g| ≥ minPts, all of the
points in Pg are labelled as core points. For each point p in each sparse grid cell g(p) (i.e.,
with |g(p)| < minPts) in each machine M , we can count the number of the points of P in
the hyper ball centred at p with radius ε, denoted by B(p, ε). Observe that a point q falls in
B(p, ε) only if either p and q are in the same grid cell or g(q) is a neighbour grid cell of g(p).
Our algorithm, thus, sends p to all the storage locations of (i.e., the machines storing) the
neighbour grid cells of g(p). In the local memory of each of those machines, the distances
between p and all those points in the neighbour grid cells can be computed. And then, the
numbers of points falling in B(p, ε) in those machines are sent back to machine M (where p

is stored). Therefore, the points p in sparse cells can be labelled accordingly.

▶ Lemma 22 ([*]). The above algorithm, i.e., Algorithm 5, performs two MPC rounds. In
each round, the amount of data sent and received by each machine is bounded by O(s).

▶ Lemma 23 (Core Point Identification [*]). Consider a set P of n points; given a radius
parameter ε ≥ 0 and a core point threshold, minPts ≥ 1, which is a constant integer, there
exists an MPC algorithm with local memory Θ(s) ⊆ Θ(nα) per machine, for arbitrary constant
α ∈ (1

2 , 1), which identifies all the core points in O(1
α) rounds.

ICDT 2025

7:16 O(1)-Round MPC Algorithms for Grid Graph Connectivity, EMST and DBSCAN

Figure 3 A running example of Algorithm 5 with minPts = 3. The input points are in six
non-empty grid cells stored across five machines M1, . . . , M5. Specifically, g2, g4, g5 are dense grid
cells and the points in them are core points, while g1, g3, g6 are sparse grid cells. To label the points
in these sparse grid cells, Algorithm 5 performs in two MPC rounds. Take g3 stored in M1 as an
example; the neighbour grid cell set of g3 is Neig3 = {g1, g2, g4}, and the storage locations of them
are: M1 for both g1 and g2, and M2, M3, M4 for g4. The communications between M1 and M1 (i.e.,
local computation) and M2, M3, M4 are incurred, which are shown by the blue arrows in the figure.

4.2.2 Compute Primitive Clusters

Our algorithm works as follows:
construct an implicit (d, c)-grid graph G′ = (V ′, E ′):

initialize V ′ ← ∅; impose a grid on Pcore with side length of 1
2

√
d
ρε;

for each non-empty grid cell g, add the most bottom-left corner point t of g to V ′;
set E ′ to consider those edges (t1, t2) with dist(t1, t2) ≤ (1 + 1

2 ρ) · ε only and returns
dist(t1, t2) as its weight; as a result, G′ is c-penetration with c = (1+ 1

2 ρ)·ε
1

2
√

d
ρε
∈ O(1);

invoke our MPC algorithm in Theorem 16 on the implicit (d, c)-grid graph G′ = (V ′, E ′)
to compute an MSF of G′ and associate the connected component ID to each point t ∈ V ′;
for each point t ∈ V ′, assign t’s connected component ID to each core point in the grid
cell which t represents;
group all the core points in Pcore by their connected component ID’s;
return each group as a primitive cluster; denote the set of these primitive clusters by C;

▶ Lemma 24 ([*]). The above primitive cluster computing algorithm returns legal ρ-
approximate primitive clusters in O(1) rounds with high probability.

5 Conclusion

In this paper, we study the problems of grid graph connectivity, approximate EMST and
approximate DBSCAN in the MPC model with strictly sub-linear local memory space per
machine. We show Las Vegas algorithms (succeeding with high probability), which can
be derandomized, for solving these problems in O(1) rounds. Due to the importance of
the problems studied in this paper, we believe that our O(1)-round MPC algorithms and
then pseudo s-separator technique will be of independent interests for solving other related
problems in the MPC model.

J. Gan, A. Wirth, and Z. Zhang 7:17

References

1 Pankaj K Agarwal, Herbert Edelsbrunner, Otfried Schwarzkopf, and Emo Welzl. Euclidean
minimum spanning trees and bichromatic closest pairs. In Proceedings of the sixth annual
symposium on Computational geometry, pages 203–210, 1990. doi:10.1145/98524.98567.

2 Pankaj K. Agarwal, Kyle Fox, Kamesh Munagala, and Abhinandan Nath. Parallel algorithms
for constructing range and nearest-neighbor searching data structures. In Proceedings of the
35th ACM PODS 2016, pages 429–440. ACM, 2016. doi:10.1145/2902251.2902303.

3 Alok Aggarwal and Jeffrey Scott Vitter. The input/output complexity of sorting and related
problems. Commun. ACM, 31(9):1116–1127, 1988. doi:10.1145/48529.48535.

4 Rakesh Agrawal, Johannes Gehrke, Dimitrios Gunopulos, and Prabhakar Raghavan. Automatic
subspace clustering of high dimensional data for data mining applications. In Proceedings of
the 1998 ACM SIGMOD international conference on Management of data, 1998.

5 Alexandr Andoni, Aleksandar Nikolov, Krzysztof Onak, and Grigory Yaroslavtsev. Parallel
algorithms for geometric graph problems. In Symposium on Theory of Computing, STOC
2014, New York, NY, USA, May 31 - June 03, 2014, pages 574–583. ACM, 2014. doi:
10.1145/2591796.2591805.

6 Alexandr Andoni, Zhao Song, Clifford Stein, Zhengyu Wang, and Peilin Zhong. Parallel graph
connectivity in log diameter rounds. In Mikkel Thorup, editor, 59th IEEE Annual Symposium
on Foundations of Computer Science, FOCS 2018, 2018. doi:10.1109/FOCS.2018.00070.

7 Sunil Arya, David M Mount, Nathan S Netanyahu, Ruth Silverman, and Angela Y Wu. An
optimal algorithm for approximate nearest neighbor searching fixed dimensions. Journal of
the ACM (JACM), 45(6):891–923, 1998. doi:10.1145/293347.293348.

8 Sepehr Assadi, Xiaorui Sun, and Omri Weinstein. Massively parallel algorithms for finding
well-connected components in sparse graphs. In Proceedings of the 2019 ACM Symposium on
Principles of Distributed Computing, PODC 2019, 2019.

9 Paul Beame, Paraschos Koutris, and Dan Suciu. Communication steps for parallel query
processing. Journal of the ACM (JACM), 64(6):1–58, 2017. doi:10.1145/3125644.

10 Soheil Behnezhad, Laxman Dhulipala, Hossein Esfandiari, Jakub Lacki, and Vahab Mirrokni.
Near-optimal massively parallel graph connectivity. In 2019 IEEE 60th Annual Symposium on
Foundations of Computer Science (FOCS), pages 1615–1636. IEEE, 2019. doi:10.1109/FOCS.
2019.00095.

11 Patrick Burger and Hans-Joachim Wuensche. Fast multi-pass 3d point segmentation based on
a structured mesh graph for ground vehicles. In 2018 IEEE Intelligent Vehicles Symposium
(IV), pages 2150–2156. IEEE, 2018. doi:10.1109/IVS.2018.8500552.

12 Brent N Clark, Charles J Colbourn, and David S Johnson. Unit disk graphs. Discrete
mathematics, 86(1-3):165–177, 1990. doi:10.1016/0012-365X(90)90358-O.

13 Sam Coy and Artur Czumaj. Deterministic massively parallel connectivity. In STOC ’22:
54th Annual ACM SIGACT Symposium on Theory of Computing, Rome, Italy, June 20 - 24,
2022, pages 162–175. ACM, 2022. doi:10.1145/3519935.3520055.

14 Sam Coy, Artur Czumaj, and Gopinath Mishra. On parallel k-center clustering. In Proceedings
of the 35th ACM Symposium on Parallelism in Algorithms and Architectures, SPAA 2023,
Orlando, FL, USA, June 17-19, 2023, pages 65–75. ACM, 2023. doi:10.1145/3558481.
3591075.

15 Artur Czumaj, Guichen Gao, Shaofeng H.-C. Jiang, Robert Krauthgamer, and Pavel Veselý.
Fully scalable MPC algorithms for clustering in high dimension. CoRR, abs/2307.07848, 2023.
doi:10.48550/arXiv.2307.07848.

16 Artur Czumaj, Christiane Lammersen, Morteza Monemizadeh, and Christian Sohler. (1+ε-
approximation for facility location in data streams. In Proceedings of SODA 2013, 2013.

17 Jeffrey Dean and Sanjay Ghemawat. Mapreduce: simplified data processing on large clusters.
Commun. ACM, 51(1):107–113, 2008. doi:10.1145/1327452.1327492.

ICDT 2025

https://doi.org/10.1145/98524.98567
https://doi.org/10.1145/2902251.2902303
https://doi.org/10.1145/48529.48535
https://doi.org/10.1145/2591796.2591805
https://doi.org/10.1145/2591796.2591805
https://doi.org/10.1109/FOCS.2018.00070
https://doi.org/10.1145/293347.293348
https://doi.org/10.1145/3125644
https://doi.org/10.1109/FOCS.2019.00095
https://doi.org/10.1109/FOCS.2019.00095
https://doi.org/10.1109/IVS.2018.8500552
https://doi.org/10.1016/0012-365X(90)90358-O
https://doi.org/10.1145/3519935.3520055
https://doi.org/10.1145/3558481.3591075
https://doi.org/10.1145/3558481.3591075
https://doi.org/10.48550/arXiv.2307.07848
https://doi.org/10.1145/1327452.1327492

7:18 O(1)-Round MPC Algorithms for Grid Graph Connectivity, EMST and DBSCAN

18 Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. BERT: pre-training
of deep bidirectional transformers for language understanding. CoRR, abs/1810.04805, 2018.
arXiv:1810.04805.

19 Hu Ding and Jinhui Xu. Solving the chromatic cone clustering problem via minimum spanning
sphere. In International Colloquium on Automata, Languages, and Programming, pages
773–784. Springer, 2011. doi:10.1007/978-3-642-22006-7_65.

20 Junhao Gan and Yufei Tao. Dbscan revisited: Mis-claim, un-fixability, and approximation.
In Proceedings of the 2015 ACM SIGMOD international conference on management of data,
pages 519–530, 2015. doi:10.1145/2723372.2737792.

21 Junhao Gan and Yufei Tao. On the hardness and approximation of euclidean dbscan. ACM
Transactions on Database Systems (TODS), 42(3):1–45, 2017. doi:10.1145/3083897.

22 Junhao Gan and Yufei Tao. An i/o-efficient algorithm for computing vertex separators on
multi-dimensional grid graphs and its applications. J. Graph Algorithms Appl. (JGAA),
22(2):297–327, 2018. doi:10.7155/JGAA.00471.

23 Junhao Gan, Anthony Wirth, and Zhuo Zhang. o(1)-round mpc algorithms for multi-
dimensional grid graph connectivity, emst and dbscan, 2025. arXiv:2501.12044.

24 Michael T Goodrich, Nodari Sitchinava, and Qin Zhang. Sorting, searching, and simulation
in the mapreduce framework. In International Symposium on Algorithms and Computation,
pages 374–383. Springer, 2011. doi:10.1007/978-3-642-25591-5_39.

25 Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image
recognition. In 2016 IEEE Conference on Computer Vision and Pattern Recognition, CVPR
2016, Las Vegas, NV, USA, June 27-30, 2016, pages 770–778. IEEE Computer Society, 2016.
doi:10.1109/CVPR.2016.90.

26 Piotr Indyk. Algorithms for dynamic geometric problems over data streams. In Proceedings
of the thirty-sixth annual ACM Symposium on Theory of Computing, pages 373–380, 2004.
doi:10.1145/1007352.1007413.

27 Michael Isard, Mihai Budiu, Yuan Yu, Andrew Birrell, and Dennis Fetterly. Dryad: distributed
data-parallel programs from sequential building blocks. In Proceedings of the 2007 EuroSys
Conference, Lisbon, Portugal, March 21-23, 2007, pages 59–72. ACM, 2007. doi:10.1145/
1272996.1273005.

28 Howard J. Karloff, Siddharth Suri, and Sergei Vassilvitskii. A model of computation for
mapreduce. In Proceedings of the Twenty-First Annual ACM-SIAM Symposium on Discrete
Algorithms, SODA 2010, Austin, Texas, USA, January 17-19, 2010, 2010. doi:10.1137/1.
9781611973075.76.

29 Yi Li, Philip M. Long, and Aravind Srinivasan. Improved bounds on the sample complexity of
learning. J. Comput. Syst. Sci., 62(3):516–527, 2001. doi:10.1006/JCSS.2000.1741.

30 Tomás Mikolov, Kai Chen, Greg Corrado, and Jeffrey Dean. Efficient estimation of word
representations in vector space. In 1st International Conference on Learning Representations,
ICLR 2013, Scottsdale, Arizona, USA, May 2-4, 2013, Workshop Track Proceedings, 2013.
URL: http://arxiv.org/abs/1301.3781.

31 Morteza Monemizadeh. Facility location in the sublinear geometric model. In Approximation,
Randomization, and Combinatorial Optimization. Algorithms and Techniques (APPROX/RAN-
DOM 2023), 2023.

32 Danupon Nanongkai and Michele Scquizzato. Equivalence classes and conditional hardness in
massively parallel computations. Distributed computing, 35(2):165–183, 2022. doi:10.1007/
S00446-021-00418-2.

33 Abhinandan Nath, Kyle Fox, Pankaj K Agarwal, and Kamesh Munagala. Massively parallel
algorithms for computing tin dems and contour trees for large terrains. In Proceedings of the
24th ACM SIGSPATIAL, 2016.

34 Tom White. Hadoop - The Definitive Guide: Storage and Analysis at Internet Scale (3. ed.,
revised and updated). O’Reilly, 2012. URL: http://www.oreilly.de/catalog/9781449311520/
index.html.

https://arxiv.org/abs/1810.04805
https://doi.org/10.1007/978-3-642-22006-7_65
https://doi.org/10.1145/2723372.2737792
https://doi.org/10.1145/3083897
https://doi.org/10.7155/JGAA.00471
https://arxiv.org/abs/2501.12044
https://doi.org/10.1007/978-3-642-25591-5_39
https://doi.org/10.1109/CVPR.2016.90
https://doi.org/10.1145/1007352.1007413
https://doi.org/10.1145/1272996.1273005
https://doi.org/10.1145/1272996.1273005
https://doi.org/10.1137/1.9781611973075.76
https://doi.org/10.1137/1.9781611973075.76
https://doi.org/10.1006/JCSS.2000.1741
http://arxiv.org/abs/1301.3781
https://doi.org/10.1007/S00446-021-00418-2
https://doi.org/10.1007/S00446-021-00418-2
http://www.oreilly.de/catalog/9781449311520/index.html
http://www.oreilly.de/catalog/9781449311520/index.html

J. Gan, A. Wirth, and Z. Zhang 7:19

35 Jie Xue. Colored range closest-pair problem under general distance functions. In Proceedings
of ACM-SIAM SODA, pages 373–390. SIAM, 2019. doi:10.1137/1.9781611975482.24.

36 Grigory Yaroslavtsev and Adithya Vadapalli. Massively parallel algorithms and hardness for
single-linkage clustering under lp-distances. In 35th International Conference on Machine
Learning (ICML’18), 2018.

37 Matei Zaharia, Mosharaf Chowdhury, Michael J. Franklin, Scott Shenker, and Ion Stoica.
Spark: Cluster computing with working sets. In 2nd USENIX Workshop on Hot Topics
in Cloud Computing, HotCloud’10, Boston, MA, USA, June 22, 2010, 2010. URL: https:
//www.usenix.org/conference/hotcloud-10/spark-cluster-computing-working-sets.

38 Yan Zhou, Oleksandr Grygorash, and Thomas F Hain. Clustering with minimum spanning
trees. International Journal on Artificial Intelligence Tools, 20(01):139–177, 2011. doi:
10.1142/S0218213011000061.

A Appendix

Here, we include pseudocode for the main algorithms in our paper.

Algorithm 3 MSF Algorithm.

Input: implicit (d, c)-grid graph G = (V, E) with c ∈ [1, s
1

d3]
Output: an MSF of G

1 compute the pseudo s-separator with the algorithm in Section 2.2;
2 process each extended sub graph G+

i in their machine:
3 compute the MSF of G+

i , denote the edge set as Ti;
4 compress Ti into an edge set E′

i as described in Algorithm 2;
5 //each edge e in E′

i corresponds to a path in Ti and the heaviest edge weight in
that path is called the bottleneck edge of e ;

6 set the weight of edges in E′
i the same as its bottleneck edge weight;

7 send E′
i to machine M0;

8 M0 run:
9 build a graph based on all of the received edges E′ = ∪E′

i;
10 solve the MSF problem on E′, denoted as T ′;
11 assign to each edge in E′ a label to indicate whether it is in T ′;
12 send E′

i back to the corresponding machine along with the label;
13 process each extended sub graph G+

i in their machine:
14 for each edge in E′

i labeled as negative, i.e., not included in T ′, (conceptually)
remove its bottleneck edge from G+

i ;
15 //let G+′

i denote the extended sub graph after conceptually removing those edges;
16 calculate the MSF of G+′

i , denote the result as Ti;
17 //the union of all Ti is the MSF of G;

ICDT 2025

https://doi.org/10.1137/1.9781611975482.24
https://www.usenix.org/conference/hotcloud-10/spark-cluster-computing-working-sets
https://www.usenix.org/conference/hotcloud-10/spark-cluster-computing-working-sets
https://doi.org/10.1142/S0218213011000061
https://doi.org/10.1142/S0218213011000061

7:20 O(1)-Round MPC Algorithms for Grid Graph Connectivity, EMST and DBSCAN

Algorithm 4 Location of Non-empty Neighbor Grid Cell.

Input: A set of m machines (M1, . . . , Mm), each machine Mi contains points from
k(i) grid cells (g(i)

1 , · · · , g
(i)
k(i)), the storage location of the grid cell g.loc

Output: Given a non-empty grid cell g, calculate the storage location of every
g′ ∈ Neig

1 for machine Mi, i ∈ [1, m] simultaneously do
2 for each support grid cell gj, j ∈ [1, k(i)] do
3 build 4-tuples (gj .coord, Mi, g′.coord, g′.loc) for each g′ ∈ Neigj ;
4 //the fourth term is a placeholder with value NULL now

5 invoke a sorting algorithm for all of the 4-tuples based on the g′.coord;
6 for machine Mi, i ∈ [1, m] simultaneously do
7 broadcast the minimal and maximal g′.coord ;
8 //each machine also receives that information during the communication phase;
9 for each grid cell gj, j ∈ [1, k(i)] do

10 send the 2-tuple (gj .coord, gj .loc) to the machines M s.t.
gj .coord ∈ [M. min(g′.coord), M. max(g′.coord)];

11 //each machine also receives the 2-tuple during the communication phase;
12 merge the 2-tuple with 4-tuple to fill in the placeholder;
13 for each 4-tuple with g′.loc! = NULL do
14 send the 4-tuple back to Mi;
15 //each machine receive the backward 4-tuple during the communication phase;

Algorithm 5 Output the Point Label.

Input: A set of m machines (M1, · · · , Mm), machine Mi contains points from k(i)

grid cells (g(i)
1 , · · · , g

(i)
k(i)), the storage location of the grid cell g.loc

Output: For each point p, assign to it a label as core or non-core
1 for machine Mi, i ∈ [1, m] simultaneously do
2 for each grid cell gj, j ∈ [1, k(i)] do
3 if gj is a dense grid cell then
4 p.type← core;
5 else
6 for each point p in gj do
7 for each non-empty neighbor g′ of gj do
8 send p.coord to all machines in g′.loc;

9 //each machine receives a set of points Pin;
10 for machine Mi, i ∈ [1, m] simultaneously do
11 for each point p in Pin do
12 count the point number that falls in B(p, ε);
13 send that number back to where point p is from;
14 //each machine receives the number;
15 for each point p in sparse grid cell do
16 count the total point number that falls in B(p, ε);
17 identify the type of p

	1 Introduction
	2 Grid Graph Connectivity and MSF
	2.1 Pseudo s-Separator and Its Existence
	2.2 O(1)-Round Pseudo s-Separator Algorithm
	2.2.1 Preliminaries
	2.2.2 Our Pseudo s-Separator Algorithm

	2.3 Grid Graph Connectivity Algorithms

	3 O(1)-Round Approximate EMST
	4 O(1)-Round Approximate DBSCAN
	4.1 DBSCAN and rho-Approximate DBSCAN
	4.2 Our MPC Algorithm
	4.2.1 Identify Core Points
	4.2.2 Compute Primitive Clusters

	5 Conclusion
	A Appendix

