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—— Abstract

Differential privacy (DP) can be achieved in a distributed manner, where multiple parties add
independent noise such that their sum protects the overall dataset with DP. A common technique
here is for each party to sample their noise from the decomposition of an infinitely divisible
distribution. We analyze two mechanisms in this setting: 1) the generalized discrete Laplace (GDL)
mechanism, whose distribution (which is closed under summation) follows from differences of i.i.d.
negative binomial shares, and 2) the multi-scale discrete Laplace (MSDLap) mechanism, a novel
mechanism following the sum of multiple i.i.d. discrete Laplace shares at different scales. For ¢ > 1,
our mechanisms can be parameterized to have O (A3675) and O (min (A3<fa7 Azefza/s)) MSE,
respectively, where A denote the sensitivity; the latter bound matches known optimality results.
Furthermore, the MSDLap mechanism has the optimal MSE including constants as € — co. We
also show a transformation from the discrete setting to the continuous setting, which allows us to
transform both mechanisms to the continuous setting and thereby achieve the optimal O (A2672E/ 3)
MSE. To our knowledge, these are the first infinitely divisible additive noise mechanisms that achieve
order-optimal MSE under pure DP for either the discrete or continuous setting, so our work shows
formally there is no separation in utility when query-independent noise adding mechanisms are
restricted to infinitely divisible noise. For the continuous setting, our result improves upon Pagh
and Stausholm’s Arete distribution which gives an MSE of O (Azefa/‘l) [39]. Furthermore, we give
an exact sampler tuned to efficiently implement the MSDLap mechanism, and we apply our results
to improve a state of the art multi-message shuffle DP protocol from [7] in the high & regime.
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1 Introduction

Differential Privacy (DP) [15] is a formal notion of privacy which bounds the sensitive
information revealed by an algorithm. While there are many “flavors” of DP, most relevant
to this work is so-called pure-DP or e-DP which bounds the privacy loss via the parameter €.

» Definition 1 ([15]). A randomized mechanism M : X¢ — Y is e-DP if, for all x, 2" € X
differing' in a single entry, Pr[M(z) € S] < e - Pr[M () € S] for all measurable S C .

1 For this work, we may consider any neighboring notion. We use the substitution notion for simplicity.

© Charlie Harrison and Pasin Manurangsi;

oY licensed under Creative Commons License CC-BY 4.0
6th Symposium on Foundations of Responsible Computing (FORC 2025).
Editor: Mark Bun; Article No. 12; pp. 12:1-12:24

\\v Leibniz International Proceedings in Informatics
LIPICS Schloss Dagstuhl — Leibniz-Zentrum fiir Informatik, Dagstuhl Publishing, Germany


https://orcid.org/0009-0003-5332-3145
https://orcid.org/0000-0002-1052-2801
https://doi.org/10.4230/LIPIcs.FORC.2025.12
https://arxiv.org/abs/2504.05202
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics
https://www.dagstuhl.de

12:2

Infinitely Divisible Noise for Differential Privacy

We focus on the so-called low-privacy regime where € > 1. Despite its name, this regime still
provides meaningful privacy protection and is the setting most often employed in practical
applications of DP (e.g. [1, 4, 44]). The bounds we state throughout will focus on this regime.

A challenge in deploying DP is doing so while also producing useful results. In this work,
we focus on the mean squared error (MSE) of a query ¢ subject to a query-independent
additive noise mechanism, i.e. M(z) = ¢(x) + Z where Z is a random variable. There is
a rich body of work on optimizing MSE in this setting. Notably, the staircase mechanism
([18, 17, 19]) was shown to have the optimal MSE of all e-DP, query-independent additive
noise mechanisms. In the continuous setting, it achieves a MSE of O (Aze*%/?’). In the
discrete setting, its MSE interpolates between O (A3e’5) and O (Aze*%/?’). For A =1, the
optimal discrete staircase mechanism is the discrete Laplace (aka Geometric) mechanism [25].

A probability distribution D is infinitely divisible iff for every positive integer n, there exists
a distribution D/,, such that, when we sample n i.i.d. random variables Z1,--- , Z, ~ D/,
their sum Z = Y I | Z; is distributed as D. In distributed DP, a common technique (see
[26] for an overview) is for n parties to each sample Z; such that the sum is distributed
according to D, which can be shown to protect the dataset with DP. The infinite divisibility
property of D allows for distributed protocols where an arbitrary n > 1 number of parties
can participate. Under the more restrictive setting where the additive noise mechanism M
must sample the noise Z from an infinitely divisible distribution, there was previously no
known mechanism in either the discrete or continuous settings which matched the MSE of
the staircase mechanism. We resolve this gap in this paper for both settings.

1.1 Related work

Distributed noise generation for differential privacy is well studied even for distributions that
are not infinitely divisible. In fact, the idea dates back to the very early days of DP [14].
Moreover, several works have studied the setting where Z1,...,Z, samples from some
distribution D and directly argue about the distribution of their summation Z = Z; +- - -+ Z,,.
Examples include the case where D is a Bernoulli distribution [13, 20], for which Z is a
Binomial random variable, and the case where D is a discrete Gaussian distribution [33], for
which Z is “close” to discrete Gaussian random variable. The drawback here is that the
distribution of Z are different for different values of n, meaning that the privacy analysis
often requires n to be sufficiently large (e.g. [20]) or sufficiently small (e.g. [33]). Using
infinitely divisible distribution overcomes this issue since the distribution of the total noise
Z is always D regardless of the value of n, leading to a privacy analysis that works for all
regimes of n. Due to this, infinitely divisible noise distributions have gained popularity in
distributed settings of differential privacy (e.g. [26, 7, 22, 23, 2, 12, 6, 21]).

As discrete distributions are typically easier to embed in multi-party cryptographic
protocols and avoid implementation issues [36] with floating point representations, they tend
to be more well-studied in distributed DP. The infinite divisibility of the discrete Laplace
into negative binomial? shares has been studied in [26, 7, 6]. In [6] the authors explicitly
analyzed privacy in the face of dropouts, or parties that fail to properly add their noise share.

In the continuous setting, the infinitely divisible Arete distribution was introduced in
[39] specifically to target the low-privacy, high & pure-DP regime. It was designed to match
the performance of the (continuous) staircase mechanism which is not infinitely divisible

2 Throughout this work, we use the term negative binomial to refer to the distribution generalized to a
real valued stopping parameter r. In other works, this is sometimes called the Pdélya distribution.
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and therefore unusable in the distributed setting. While the continuous staircase mechanism
achieves O(A%e~2¢/3) MSE, the authors only proved the Arete mechanism has an MSE of
O(AZ%e¢/%), though we believe this is not tight (Conjecture 30).

Distributed noise is relevant in other notions of differential privacy as well. The afore-
mentioned discrete Gaussian mechanism [11, 33] satisfies zero-concentrated DP [10], and the
Skellam mechanism [2, 43, 41] satisfies Rényi DP [37].3 Both mechanisms were proposed in
the context of federated learning via a secure aggregation multi-party protocol [34, 9, 8].

The GDL mechanism was explored informally in a prior blog post by the first author [27].
Concurrent to this work, the GDL distribution was studied in the context of (g, d) shuffle DP
in [5]. There the authors analyzed a shifted and truncated GDL distribution that achieves an
approximate DP bound guarantee, vs. the pure DP one in this work which does not perform
any truncation. Their primary result in the shuffle setting involving nearly matching the
utility of the central discrete Laplace mechanism. On the other hand, as explained below, we
improve on the central discrete Laplace mechanism for sufficiently large e.

1.2 Our contributions

Table 1 Summary of our results (bold) compared to known noise distributions satisfying e-DP.
MSEs exclude constant factors.

Discrete Distributions

Distribution MSE Inf. Div. | Reference
Discrete Laplace e~s/A 4 [25]
Discrete Staircase min{Ade¢ A%e=%/3} X [18, 17, 19]
((ée]r)u;r;ahzed Discrete Laplace A3e™¢ for € > 24 1og(A) v Theorem 15
&lggf:;;e Discrete Laplace min{A%e™%, A%e~2%/3} 4 Corollary 19
Continuous Distributions
Distribution MSE Inf. Div. | Reference
Laplace A?/e? 4 [15]
Staircase A%em2%/3 X [18, 17, 19]
Arete AZee/4 4 [39]
Continuous MSDLap AZe=2/3 v Theorem 21

In Section 3, we introduce the GDL and MSDLap mechanisms, two discrete noise-adding
mechanisms having optimal O(A3e~¢) MSE for fixed A and any sufficiently large e. Inspired
by the discrete staircase mechanism, we also extend the MSDLap mechanism with a parameter
optionally allowing it to satisfy O(A2e=2¢/3) MSE, allowing it to achieve asymptotically-
optimal error for any fixed A and € > 1. Notably, the MSDLap mechanism matches the
MSE of the discrete staircase including constants as € — oo.

3 Mechanisms satisfying Rényi DP or zero-concentrated DP naturally also satisfy approximate DP.
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The GDL mechanism, as the difference of two i.i.d. negative binomial noise shares,
generalizes the distributed discrete Laplace mechanisms in [26, 7, 6] in the face of unexpected
dropouts when a larger fraction of parties than expected fail to add their noise shares,
providing a “smooth” closed-form privacy guarantee.

In Section 4, we introduce a method to transform a discrete infinitely divisible additive
mechanism into a continuous one up to a small loss in parameters. This allows us to
achieve the asymptotically-optimal O (A2€_26/ 3) MSE by transforming either the GDL or
the MSDlap mechanisms, improving on the Arete mechanism’s bound of O (AQe_E/ 4) in [39].

Our noise distributions and previously known distributions are summarized in Table 1.

While its utility exceeds the GDL’s, the MSDLap mechanism naively requires sampling
from O(A) independent negative binomial random variables. In Section 5 we outline an
improved exact sampling algorithm which runs in only O(1) steps in expectation for relevant
regimes. This algorithm may be of independent interest for general purpose multivariate
negative binomial sampling in the sparse regime where most samples are 0.

Finally, in Section 6, we improve the multi-message “split and mix” real summation shuffle
protocol of [7] with our results, attaining the O (e72%/3) bound on MSE where previous
results could only achieve O (1 / 52) from the discrete Laplace.

2 Preliminaries

For any n € N, we write [n] as a shorthand for {1,...,n}.

Function identities. We introduce a few functions and identities used in our proofs. Let
I'(z) = [;°t*"te~'dt be the gamma function. We denote the rising factorial (aka the Poch-
hammer symbol) by (), = (z)(x +1)--- (v +n—1) = F(Fwé)") Denote the hypergeometric

function by 2 F1 [a, b; ¢; 2] [38], where

(c)ss! I'(c+ s)s!

o F [a,b;c;Z]ZZ(a)j(z)szs— ZFa—!—s b+8)zs. (1)
s=0 '

S=

Let 1(z) denote the digamma function, where 1(z) = < log(I'(z)) = ?((;)). The following
observation is well-known (see e.g. [3]):

» Observation 2. v is increasing and ¢’ is decreasing on (0, 00).

Finally, we state the so-called “hockey-stick identity” (e.g. [32]):

» Lemma 3. For any non-negative integers £, m, Z;n:[ (z) = ("Z:ll)

Distributions. For convenience, we write a random variable (r.v.) and its distribution
interchangeably.

For a discrete distribution D with support on X', denote its probability mass function
(PMF) as fp(k) for k € X. When we say that a discrete distribution is infinitely divisible,
we assume implicitly that D/, are also discrete. Relevant to this work are the following
well-known discrete distributions (where a,7 € Rsq,p € (0,1)):

The negative binomial (NB) distribution, denoted NB(r, p) and with support on Z>¢, has

PMF fxp(rp) (k) = (1 —p)*p % It is infinitely divisible, as Y .- NB(r/n,p) ~

NB(r,p). Its variance is Var(NB(r,p)) = (1;75)7‘. For r € N, the negative binomial
distribution models the number of failures before the first r successes in a sequence of

i.i.d. Bernoulli trials with success probability p.
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The geometric distribution, denoted Geo(p) is a special case of NB with r = 1.

The discrete Laplace distribution, denoted DLap(a) and with support on Z, has PMF
forap(a)(k) = tanh(a/2)e~**. Since DLap(a) ~ NB(1,1 — e~%) — NB(1,1 — e™9), it
inherits infinite divisibility from NB. Its variance is Var(DLap(a)) =

D S
cosh(a)—1"

k=1
The Bernoulli distribution, denoted Ber(p), has PMF fpe,(py (k) = {11) Lo
—p k=

For a continuous distribution D on X, let fp(x) for x € X be its probability density
function (PDF) at x. Recall the following continuous distributions (where k,60,b € R<q):

The gamma distribution, denoted I'(k, #), with support on Ry has PDF fp ¢ (2) =

W -zk=1e=*/% Tt is infinitely divisible as >_;", T'(k/n,0) ~ I'(k, 0).

The Laplace distribution, denoted Lap(b), with support on R has PDF fr.,u)(z) =

e~ 121/% Tts variance is 2b2. It is infinitely divisible as S, (I'(1/n,b) — IT'(1/n,b)) ~

Lap(b).

We will also use the following simple observations (where Z, Z1, Z5 are r.v.s):
» Observation 4. If Z is infinitely divisible, c - Z is infinitely divisible for any constant c.

» Observation 5. If 71,75 are infinitely divisible and independent, Zy + Z5 is infinitely
divisible.

We say that a distribution D is closed under summation if D is infinitely divisible and
additionally, D,, follows the same distribution family as D for all n € N. This additional
property provides benefits in the distributed setting as it ensures the mechanism’s privacy is
well-understood even as parties drop out or join the protocol.

Max Divergence and DP. Let D, (P || Q) denote the max divergence between two distri-
Ip(z)

butions P, Q, i.e., SUP,cqupp(P) Tol@)" We state the following well-known properties.
» Lemma 6 (Post-Processing). For any (possibly randomized) function f and any random
variables U,V , we have Do (f(U) || f(V)) < Do (U || V).

» Lemma 7 (Triangle Inequality). For any distributions P,Q, R, Do (P || Q) < Dw (P || R)+
Do (R || Q).

For a query function ¢ : X4 — Y, we let A(q) = max, . |¢(x) —q(z’)| where the maximum
is over all pairs z and 2’ differing on one entry. The D-noise addition mechanism for a query
function ¢ is the mechanism M (z) that outputs ¢(z) + Z where Z is drawn from D. For a
discrete (resp. continuous) distribution D and A € N (resp. A € Rsg), we say the D-noise
addition mechanism is e-DP for sensitivity A iff the D noise addition mechanism is e-DP for
all queries q : X% — 7Z (resp. q : X% — R) such that A(q) < A. It follows from the definition
of DP and max divergence that this condition translates to the following (see e.g. [18]):

» Lemma 8. For a discrete (resp. continuous) distribution D, the D-noise addition mech-
anism is e-DP for sensitivity A iff Doo (D+ &£ || D) <€ forallé € {—A,—(A—-1),...,A}
(resp. if* Doo (D+& || D) < e for all £ € [-A,A]).

4 The other direction of the implication for the continuous case does not hold since e.g. the set of z where
foye(x) > € - fp(x) might have measure zero.
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3 Discrete mechanisms

We present two infinitely divisible discrete noises with order-optimal MSEs.

3.1 The generalized discrete Laplace mechanism

This section introduces the generalized discrete Laplace distribution and associated mechan-
ism. We start by the description of the distribution and its PMF:

» Definition 9 ([35]). For 5,a > 0, let GDL(5,a) denote the distribution of Zy — Zy where
71, Zy “ENB (B,1—e™%). Forall x € Z, the PMF of GDL(f,a) at x, i.e. fapr(s,a)(T), is

LB+ |z)
I'(1+ [z))L(B)
The discrete Laplace distribution is a special case of the GDL with g = 1.
The infinite divisibility of NB immediately implies that GDL is also infinitely divisible:

el (1— ) 3y [B, 8 + |l 1+ Jaf; e~ 2)

» Observation 10. GDL is infinitely divisible and closed under summation. In particular, for
independent X1 ~ GDL(fB1,a), -+ , X, ~ GDL(8,,a), we have Y. X; ~ GDL(}_;_, Bi,a).

It will be convenient to consider the extension of the PMF to all real numbers; let
ngL(ﬁ_a) : R — R be the function defined by (2). We start with the following lemma.

» Lemma 11. For g € (0,1), f(ﬂ}{DL(ﬁﬂ) is decreasing and log convex on [0, c0).

Proof. Because the product of log convex and decreasing functions is log convex and

decreasing, and e~ " is both log convex and decreasing, we focus on remaining relevant term.

oFy [B, B+ |z 1+ |x\§€_2a]

(5+‘l’| gi ﬁ—’—s ﬁ+x+s)e—2a5
I+ |z|)T = T(B)PLA+z+s)s!

_Zg 6'1'8 —2as

S'
s=0

where g(z ) = % First we show that ¢'(z) = g(z)(W(z +s+8) —Y(z+s+1)) <0

and that dﬁ logg(z) =v¢'(B+x+s)—v¢'(1+z+s) > 0. The derivatives follow from the
definition of 1, and the inequalities follow from Observation 2. Finally, the result follows as
the sum of decreasing and log convex functions is decreasing and log convex. |

We also need the following technical lemma which, together with Lemma 11, allows us to
consider only f(0)/f(A). Its proof is deferred to Section A.1.

» Lemma 12. Let f : R — R be symmetric about 0, and decreasing and log convez on [0, 00).

Then for any x,x’ such that |x — 2’| < A, we have ]{((;)) < f((g))

We are now ready to state the privacy guarantee of the GDL-noise addition mechanism.

» Theorem 13. For any A € N, 3,a > 0, the GDL(S, a)-noise addition mechanism is e-DP
for sensitivity A iff

2Fi[B,8iLie ] T(A+1)T(8)
al +log mrg s AT ae-=] r(ara) 0 <A<

alA g>1
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Proof. For the 0 < 8 < 1 case, by Lemmas 8 and 12 along with the fact that ngL(B a) is

log-convex on [0,00) and symmetric about 0, the GDL(, a)-noise addition mechanism is
fapLg,a) (@—§) Lemma 12 fepL(s,a)(0)

e-DP for sensitivity A iff £ < maXee(—A,.. A} MaXgez oL s (@ = Foor (A)?

which is exactly the claimed bound.

For 8 > 1, we decompose the mechanism by observing (see Observation 10) that Z ~
GDL(3,a) can be sampled as Z = Z; + Zy where Z; ~ DLap(a), Za ~ GDL(8 — 1, a) are
independent. By post-processing (Lemma 6), the GDL(S, a)-noise addition mechanism is at

least as private as the DLap(a)-noise addition mechanism, which is aA-DP for sensitivity A.

For the tightness claim, first note that Equation (1) yields

0o (B)s(B+k)se 3%
lo fapL(s,a) (k) —aA+1o 5=0 (T+k)ss! PB+EI(1+k+A)
B\ Fovromk+4)) ~ B\ S GaGreac T+ NG+ k+A) |

5=0 " (1+k+A).s!
(B)s(Bak)se”2% o_p Btk
] S— o1 g . .
Observe that —E0e —r = [[72) satasr > 1, because every term in the product is at
(I+k+A)ss! IT+k+At+i

least one. Plugging this into the above, we get

fapL(s.a) (k) PB+ET(1+k+A)\ (1+k)a
log <fGDL<ﬂ,a)(k+A)> 2 al+log <r(1 +k)1“(/3+k+A)> = al+log <(5+k)A> :

fapLs,a) (k)

Thus, limg_,o log (71‘.@“&&)(,6_‘_“

) > aA, meaning that our bound is tight. |
The exact privacy bound for GDL above (for 0 < 8 < 1) is fairly unwieldy. We show a
simplified bound below, as well as a tighter, slightly more complex bound in Section A.2.

» Corollary 14. For any A € N,a > 0,0 € (0,1), the GDL(3, a)-noise addition mechanism
is e-DP for sensitivity A where € < aA + log %.

(B < (B+A).

= (A, We can bound the ratio of the hypergeometric functions by

Proof. Since

2F1 I:B’ ﬂ? 17 67201} . 220:0 (ﬁii(sé)e €—2as 1
. . o—2a] o . A oas =
R ST T, e

A+1DT(B)

Thus, from Theorem 13, the mechanism is e-DP for all € < aA + log F(F(Bﬁ. Observe
also that F(?('g}r)ggﬁ ) — % ‘1 éfl_)lA)il < %. Combining these yields the desired claim. <

Finally, we prove our accuracy guarantee for the GDL mechanism in the high e regime.

» Theorem 15. For any A € N and ¢ > 2 + log A, the GDL (AeQ_E, %)-noise addition
mechanism is e-DP for sensitivity A and has MSE O(A3e™¢).

Proof. Since ¢ > 2 +log A, we have 8 = Ae?2~¢ < 1. Thus, Corollary 14 implies the privacy
2—¢
guarantee. Finally, the MSE is 2 Var(NB (5,1 — e %)) = coshA(;T = O(A3e™9). <

3.2 The multi-scale discrete Laplace mechanism

The (g, A)-multi-scale discrete Laplace ((€,A)-MSDLap) distribution with parameter € >

0, A € N is defined as the distribution of Zle i+ X; where Xq,..., XA Ll DLap(e). From

Observation 4 and Observation 5, the (e, A)-MSDLap distribution is infinitely divisible.
This mechanism is e-DP, and its accuracy guarantee matches that of Theorem 15:

12:7
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» Theorem 16. For any ¢ > 0,A € N, the (¢, A)-MSDLap-noise addition mechanism is
e-DP for sensitivity A. Furthermore, for ¢ > 1, the MSE is O(A3 - e7¢).

Proof. (Privacy) From Lemma 8 and the symmetry of the noise around 0, it suffices to show
Doo (f + Zle i-X; Zle i- Xi) < ¢ for all ¢ € [A]. From Lemma 6, we have

A
Do <§+Zi-Xi
=1

where the last inequality follows from X; ~ DLap(e).
(Accuracy) MSE is Var (Zle i- Xi) = Zle i? - Var(X;) = O(A3 - e79). <

A
Zz’-&) S Do (§+&- Xe || €+ Xe) = Doo (14 Xe || Xe) <5,
i=1

Theorem 16 implies that, for fixed A and sufficiently large ¢, the (e, A)-MSDLap-noise
achieves asymptotically optimal MSE. In fact, below we prove a stronger statement: When
€ — 00, the ratio between MSE of MSDLap and the optimal MSE [17, 19] approaches 1.

» Corollary 17. For a fized A, the ratio of the MSE of the (e, A)-MSDLap-noise addition
mechanism and that of the e-DP discrete staircase mechanism for sensitivity A [17, 19]
approaches 1 as € — 0.

Proof. As we show in Observation 35 (in Section A.3), the MSE of the e-DP discrete staircase

mechanism for sensitivity A is at least (21A71) . A(A+1;(2A+1) for any sufficiently large e.
A(A+1)(2A+1)
Thus, in this regime, the ratio between the two MSEs is at most - 6<°°'SF‘A<(E)A;11))(2A+1) =
ET(2A-T) 3
14+(2A—1)e° .
T-9e3. 2= Lhe RHS approaches 1 as € — oo as claimed. |

While the naive approach to sample from the MSDLap distribution requires sampling
O(A) random variables, we show in Section 5 an efficient algorithm for the high e regime.

3.2.1 Generalizing the MSDLap mechanism

We can also generalize the MSDLap mechanism to match the error in [18] for every setting of
parameters A, e. We state this below where r € {0,..., A} is a parameter so that it matches
the “r” parameter in the discrete staircase mechanism in [18]. In our results henceforth, we
assume that ¢ > 2 for simplicity; this 2 can be changed to any constant® but we keep it for
simplicity of the distribution description.

» Theorem 18. For anye > 2,A € N andr € {0,..., A}, there is an infinitely divisible dis-
crete noise-addition mechanism that is e-DP for sensitivity A and has MSE O <r2 + E%AS).

r+1
Plugging in r = 0, [e~¢/3A] gives the following, which will be useful later in Section 6.

» Corollary 19. For any e > 2, there exists an infinitely divisible discrete noise-addition
mechanism that is e-DP for sensitivity A with MSE O (A? min{e ¢ A, e=2</3}).

We are now ready to prove Theorem 18. The rough idea is that, instead of using only
the (¢, A)-MSDLap noise, we first add a scaled-up (¢ — 1, Ag)-MSDLap noise where Ag < A.
The scaling up leaves us with “holes” in the noise distribution. To fix this, we additionally
add another DLap noise to “smoothen out the holes”. This idea is formalized below.

5 By changing the distribution of ¥ in the proof of Theorem 18 to DLap(c/r) for some larger ¢ > 1.
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Proof of Theorem 18. The case r = 0 follows from Theorem 16.

Forr > 1,let Ag = |A/r]. Let the noise distribution D be the distribution of Z = r- X+Y
where X ~ (¢ —1,A¢)—MSDLap,Y ~ DLap(1/r) are independent. The infinite divisibility
of D follows from the infinite divisibility of MSDLap, DLap and Observations 4 and 5.

(Privacy) From Lemma 8, it suffices to show Do (€ 4+ Z || Z) < eforall € € {—A,... A}

Let i* = |£/r]| and j* = £ —r-i*. Note that i* € [Ag] and j* € [r]. From Lemmas 6 and 7,

Do(+Z || Z)=Doo(r-i"+j" +7r- X+Y || 7r- X +Y)
<Doo(r-i"+j3"4+r- X+Y ||r i "+7r- X+Y)+Doo(r-i"+7- X +Y || 7- X +Y)
<D (" +Y [ V)4 Do (i" + X | X) <1+ (e —1) =¢,

where the last inequality follows from Y ~ DLap(l/r) and X ~ (¢ — 1,Aq)- MSDLap
(together with Theorem 16 and Lemma 8).
(Accuracy) MSE is r2- Var(X) +Var(Y) < O(r?-A3-e7°)+0(r?) = O(r? +e A3 /r) <«

» Remark 20. We can generalize the poof of Theorem 18 further by considering the (D, Da)-
generalized-multi-scale mechanism that adds noise from two distributions Dy, D2 where

Di-noise addition mechanism is £;-DP for A = 1, and is added at multiple scales

Ds-noise addition mechanism is eo-DP for A = r, and is used to “smoothen out the holes”
Specifically, the noise is r - (Ef;’li~Xi> + Y where Xi,..., Xa, i D1,Y ~ Dy are
independent. The privacy proof proceeds identically to Theorem 18 yielding an (g1 4 £2)-DP
mechanism. This allows us to consider Dy, Dy ~ GDL, which gives us the multi-scale version
of the GDL mechanism; this noise distribution is additionally closed under summation.

We plot the MSE of our new mechanisms and the established baselines in Figure 1.

4 From Discrete to Continuous

We next show simple methods to transform discrete noises to continuous ones. The approach
is similar to Theorem 18, except that we use Laplace noise to “smoothen out the holes”.

» Theorem 21. Fore > 2 and A > 0, there exists a continuous infinitely divisible noise-
addition mechanism that is e-DP for sensitivity A with MSE O(A? - e=2¢/3).

Proof. By scaling, we may assume w.l.o.g. that A = 1.

A=10 A=1,000
L 108
10 \\ 10°
107t 106
103
w 1073 104
(%] 101
=103
—— Discrete Laplace 10-1 10?
1077 GDL -
10-° —<— MSDLap (opt r) \ 10-3 10°
—»— Discrete Staircase (optr)
0 5 10 15 20 25 30 0 5 10 15 20 25 30 0 5 10 15 20 25 30

& & 13

Figure 1 The MSE of the GDL mechanism (Theorem 15) and MSDLap mechanism (Theorem 16)
with optimized r. We include the discrete Laplace and staircase (Section A.3) baselines. In the high
€ regime our mechanisms closely track the MSE of the discrete staircase.
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(a) A=5,=8 (b) A=1
10° 101
10721 1071
@ 10744 1073
£
S, 1076 w 1075
Qo
g 107 1077
s
10-10 4 10791 —*— Arete
—4— Discrete Laplace Continuous GDL
107124 GDL 10-11{ —<— Continuous MSDLap
—<— MSDLap —— Continuous Staircase
10-14 1+ T T T r T T T T T T r r
=15 -10 -5 0 5 10 15 0 5 10 15 20 25 30 35 40

€

Figure 2 (a) The PMF of the GDL distribution parameterized by Theorem 15, the MSDLap
distribution (Theorem 16), and the discrete Laplace distribution with a = ¢/A. GDL has a much
sharper peak around 0, before flattening out and decreasing slower than discrete Laplace. MSDLap
has a “staircase” shaped distribution with sharp drops at A-width intervals. Its PMF appears fully
dominated by the discrete Laplace’s, except at multiples of A. (b) The MSE of the continuous
GDL (Theorem 15) and MSDLap (Theorem 16) after the continuous transformation of Theorem 21
is applied to them. We also plot the Arete [39, Lemma 3] and continuous staircase [18, eq. 51]
mechanisms as baselines.

Let e = e — 1,Aq = [¢/3] and r = A%{. Let Dy be any infinitely divisible discrete

distribution such that the Dg-noise addition mechanism is ¢4-DP for sensitivity Aq with
MSE O(A3 - e7%4). (Such a distribution exists due to Theorem 16.°)
Let D be the distribution of Z = r- X +Y where X ~ Dq,Y ~ Lap (r/2) are independent.
Since X,Y are infinitely divisible, Observations 4 and 5 imply that D is infinitely divisible.
(Privacy) From Lemma 8, it suffices to show Do (€ + Z || Z) < e for all £ € [—1,1]. Let
i* be the closest integer to £/r and let j* = ¢ —r -i*. Note that i* € {—Ay,...,Aq} and”
j* € [-r/2,7/2]. From Lemmas 6 and 7, we have

Dow(+Z || Z)=Doo(r-i"+j +r- X+Y [ r-X+Y)
<Doo(r-i"+j +r- X+Y ||ri"+7r X4+Y)+ Do (r-i"+7r- X+Y || r- X +Y)
<D (7 +Y [ V)4 D (i + X | X) <14 (e - 1) =5,

where the last inequality follows from Y ~ Lap(r/2) and X-noise addition mechanism is
e-DP for sensitivity A4 (and Lemma 8).

2
(Accuracy) MSE is Var (r- X +Y) = r2-Var(X)+Var(Y) < O (Aq - e~ %)+0 ((Ald> )

IN

O(e=%/3), where the last inequality is from our choice Aq = O (e*/?). <

Similar to Remark 20, we may also consider Dy apart from the MSDLap distribution, as
long as it satisfies e4-DP for sensitivity Aq. In particular, we may use the GDL distribution.
We plot the results of transforming the discrete mechanisms from Section 3 in Figure 2.

6 GDL also meets the requirements, but only for a specific regime of e. Specifically, Theorem 15 requires
€a > 2+log(Ag) > 2+¢/3. For eq = € — 1, the continuous transformation of GDL is valid when £ > 4.5.

7 Note that the choice of i* that halves the maximum value of |j*| cannot be directly applied to Theorem 18.
In that theorem, we take Ag = |A/r], while the approach here only works when Ag > A/r.
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5 Efficiently and exactly sampling from the distributed MSDLap

This section outlines an algorithm to efficiently sample from the MSDLap mechanism
described in Theorem 16 in the distributed setting over n parties. Recall that the (g, A)-
MSDLap noise is defined as Zle i+ X; where Xy,..., X & DLap(e) = NB(1,1 —e™¢) —
NB(1,1—e7¢). In other words, each of the n parties need to sample Zle i-(U; —V;) where
Uy, ..., UA Vi, .., VA i NB(1/n,1 —e¢). Thus, the naive algorithm requires each party
to sample from k = 2A negative binomial random variables. For large A, or for A = O(e®/3)
as in Corollary 19, this may be computationally expensive.

Our algorithm resolves this issue, allowing us to sample from exponentially many (in )
negative binomial random variables in time polynomial in €.

» Theorem 22. For input k € N,r,v € Qsq, and p = e~ 7, Algorithm 3 returns non-zero
samples from k i.i.d. samples of NB(?“Ll — e ¢) and completes in O (1 +k-r-e %) steps in
expectation, where € = log # and O hides polynomial factors in €.

We leverage the fact that in the high € regime, most of these NB random variables will
be 0. We re-frame the problem of sampling many negative binomials into two separate
problems:

Sampling from the sum of many i.i.d. NBs.

Fairly allocating the result across each r.v.

While sampling from the sum of many NBs is simple on its face given their infinite
divisibility, standard samplers for NB(r,p) (e.g. [28]) take time linear in r which is not
desirable. Below we will describe an algorithm (Algorithm 1) whose (expected) running time
only scales with the mean of NB(r, p), which is only O(r - €7¢) in our setting.

To fairly allocate across the random variables, we leverage the fact that the conditional
distribution of the sequence of NB random variables given their sum follows the Dirichlet

multinomial distribution denoted DirM(n, &) where e = {a,...,ax} and oy = Zle ;.
. I'(ag)'(n+1 k T(x;+a;
Its PMF is fpirM(n,a)(T) = (FFT)LJF(QJ) T, F((xS)l"j(in-i)-l)'

» Lemma 23 (e.g. [45, 42]). Let X = {X1,..., Xy} be such that X; ~ NB(a;,p) are
independent. Let T = E?Zl X;. Then the conditional distribution X|T =t ~ DirM(¢, ).

Our sampler can be implemented on a finite computer in the Word RAM model avoiding
any real-arithmetic operations. Following [11, Section 5], we focus on the runtime in the
expected number of arithmetic operations, which take only polynomial time in the bit
complexity of the parameters. We make the following assumptions on the availability of
sampling primitives requiring only O(1) arithmetic operations in expectation:

A uniform sampler to draw D € {1,2,...,d} for d € N.
A Ber(n/d) sampler for n,d € N, which trivially follows from the uniform sampler.

A Geo(1 — e™7) sampler for v € Q from [11].

Finally, we assume a map data structure with O(1) accesses and updates in expectation,
and a vector data structure with O(1) random access and append operations.

12:11
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Algorithm 1 Fast NB sampler for p > % Algorithm 2 Dirichlet multinomial sampler.
Input: r € Qsg, p=-e " for v € Qx¢ Input: ne N, keN, a=a/be Qs
Output: A sample from NB(r,p) Output: A sample from

1: loop > NB([r],p) rejection sampler ~DirM(n, {e, ..., a}), encoded as a sparse
2. Sample w <+ INTSAMPLE([7], p) map from variate index to count, with

3. A — (Mw/([M])w zero variates removed.

4: Sample accept < Ber(A4,,) 1: picked <— [] > Vector data structure
5: if accept then return w 2: initialsize < k- a

6: procedure INTSAMPLE(r, p = e~ 7) 3: for ¢ from 0 ton —1 do

7: failures < 0, successes < 0 4 size < initialsize +i-b

8: loop > Use [11] for Geo sampling 9 Sample U < Unif({1,..., size})
9: Sample s « Geo(1 —e™7) 6: if U < initialsize then
10: successes <— successes + s 7 idz + [U/al
11: if successes > r then 8 Append idz to picked
12: return failures 9: else
13: Ffailures « failures + 1 10: idx < [(U — initialsize)/b]

11: Append picked[idx] to picked

12: counter < {} > Map data structure

Algorithm 3 Sparse NB sampler. : )
13: for p in picked do

Input: k,r €N, p=e~7 for v € Q¢ 14: if p in counter then
Output: Non-zero samples X, ..., Xy 15: . counter|p] « counter[p] +1
where X; ~ NB(r,p) 16: else

17: counter[p] < 1

1: Sample T <~ NB(k - 7, p)
2: Sample counter < DirM(T, k,r)
3: return counter

18: return counter

Our Algorithm 3 is straightforward. It consists of

1. Sampling from NB(r,p) with Algorithm 1 to learn the sum of all the terms, handling
rational values of r following the approach in [28] using a simple rejection sampler.

2. Sampling from the Dirichlet multinomial distribution with Algorithm 2, which uses a
version of the Pdlya urn process [31] modified to handle rational fractions of balls. We
sparsely encode the output to avoid storing zero entries, as MSDLap sampling only
requires summing non-zero random variables.

» Proposition 24. For input r,v € Qsq and p = e~ 7, Algorithm 1 returns one sample from
NB(r,1—e~%) and completes in O (1 +r - e~ °) arithmetic operations in expectation, where
e =log ﬁ and O hides polynomial factors in €.

Proof. We begin by analyzing the case r € N, i.e., INTSAMPLE subroutine. Let K be the r.v.
describing the output, and X; be the ith Geo(1 —p) r.v. Denote Z ~ Zle X; ~NB(k,1-p).
Note that P[K = 0] = P[X; > 7] = p" = fxp(rp)(0). For k > 1,

r—1

PIK=Fk=P[Z<r<Z+Xpnl]= Z INB(k.1-p) (2) faeo(1—p) (7)

=0z=r—=z2
1

= i (1—p)’“pz(k+z_1)-(l—p)p‘”
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_ k+lz ]C"‘Z—l pr
k—1 1—p

- k; +r—1
Lemma 3 = (1 — p)kp ( I ) = fNB(rp) (k).

Thus, the output K follows the NB(r, p) distribution as desired.

The expected number of iterations of the loop is exactly 14 E[NB(r, p)]. Each iteration of
the loop takes expected 6(1) time, as the geometric sampler requires arithmetic operations
polynomial in the bit complexity of v (which is O(g)).

Next we analyze the outer loop which handles r € Q¢ using the accept-reject approach
in [28], ensuring that in each iteration, for a proposed sample W and acceptance event A:

")w r—[r
PW=wAA=PAW =w|P[W =uw] = (FT%)fNB(m,p)(w) =prIrl. INB(r,p) (W).
This implies that the output follows NB(r, p) distribution as desired, and that P[A] =
p"~[71. The latter in turn implies that the number of trials follows a geometric distribution
with success probability p/"1=". Therefore the expected number of trials is O(1/p/"1=") =

O(1/p), and the result follows as O <ﬁ (1+E[NB(r,1— e‘ﬂ)) =0 +71-e79). <

» Proposition 25. For input n,k € N, and o € Q, Algorithm 2 returns one sample from
DirM(n, {a,- -+ ,a}) and requires O(n) arithmetic operations in expectation.

Proof. We first map Algorithm 2 to the Pélya urn model:
To initialize the urn contents, a balls are added to the urn for each of the k colors.
The algorithm proceeds over n steps. At each step, a ball is chosen uniformly at random

from the urn. When a ball is selected, it is replaced, along with b other balls of that color.
For each color, the algorithm returns the count of how many times that color was chosen.

Algorithm 2 implements this, as idz maps to the idxth color ¢;q,, and picked is the list
of selected colors. Note that the return value is sparsely encoded to avoid storing zero entries,
or colors that have never been picked. For purposes of the proof of correctness we assume an
unrolled output of counter equal to X = {z1,--- , 2%}, where each x; counts the number of
times the ¢; color was picked. This can be obtained with a simple post-processing step.

Let S, be the color of the ball chosen at iteration m. The probabihty that S,, = ¢ given

a+2 bé’ _ a+b-z
ka+b(m 1) = k-atb(m—1)>

where z = 37" 1(s; = ¢) denote the number of previous draws of color c.

Note that S, only depends about the current state of the urn, not the order in which
balls are picked. Similarly, note that the denominator of the fraction is independent of any
information about z. From this we can show that the probability of seeing any one particular

the previous draws is: P[S,, = ¢|S1 = s1,...,5m—1 = Sm-1] =

sequence S = {s1,- -, 8, } which has color counts X = {z1,...,z} is
P[Si =1, -, S (Hk a—|—bz—1)HHa+btl
j=1t=1
. Hj/:l bzi(a/b)xi . ﬁ o + xz
b(k-a/b), n+k «) e
Since there are (w1 wzn M) = % sequences S with color count x, we have
P[X =x]= % HJ 1 mii% JoirM(n, {a,....a}) (), Proving the correctness.

12:13

FORC 2025



12:14

Infinitely Divisible Noise for Differential Privacy

For the run time analysis, both loops in the algorithm iterate n times, and each require only
constant arithmetic operations in expectation, assuming O(1) map and vector operations. <

Lemma 23, Proposition 24, and Proposition 25 immediately show Theorem 22.

6 Order optimal MSE in the multi-message shuffle model

We next apply the noises from Section 3 to protocols in the shuffle model of DP.

First, we recall the definition of the shuffle model [13, 16]. An m-message protocol in the
shuffle model consists of a randomizer R : X — Y™ where ) denote the set of all possible
messages and an analyzer A : Y™™ — O where O denotes the output domain. In the shuffle
model, the analyst does not see the output of each randomizer directly but only the randomly
shuffled messages. We write Sg(z1,...,2,) to denote the output of randomly shuffling nm
(random) messages produced by R(x1),...,R(zy) for z1,...,z, € X. The shuffle model
required that these shuffled messages have to satisfy DP, as stated more formally below.

» Definition 26 ([13, 16]). An m-message protocol (R, A) is (g,d)-shuffle-DP if, for every
xz, &' € X" differing in a single entry, Pr[Sg(x) € S] < e® - Pr[Sg(z') € S|+ § for all
S cymm.

In the real summation problem, each x; is a real number in [0,1] and the goal is to
compute Z'Le[n] x;. Our main result of this section can be stated as follows:

» Theorem 27. Fore > 2,4 € (0,1/n), there is an (e, d)-shuffle-DP, O (%&m)-message
protocol for real summation with MSE O (6_25/3) where each message is O (¢ 4 logn) bit.

Prior to this work, the best known protocol has MSE of O(1/2) (even for large €) [7, 24,
23]% and thus our result provides a significant improvement in the large ¢ regime.

To prove this result, it is convenient to define the Z,-summation problem: The input
Z1,...,%, belongs to Z, and the goal is to compute Zie[n] Zg4. Similar to before, an m-
message protocol consists of a randomizer R and an analyzer A. The protocol is ezxact if
the analyzer always output the correct answer. The protocol is o-secure if, for all z, 2’ € Ly
such that ;1 @i = > 2,c(,) 25» We have Dy (Sr(z), Sr(2')) < 277. Building on the “split
and mix” protocol of [30], Balle at al. [7] and Ghazi et al. [24] gave the following protocol:

» Theorem 28 ([7, 24]). For o € (0,1/2) and g € N, there is an o-secure O (1 + @)—
message protocol for Zq-summation in the shuffle model where each message is from Z.

Balle et al. [7] presented an elegant method to translate a secure Z,-summation protocol
to a shuffle-DP real summation protocol. Below, we provide a slight generalization and
improvement?® of their result, which eventually allows us to achieve Theorem 27.

» Lemma 29 (generalization of [7] Lemma 5.2). Suppose that, for some € > 0, A € N, there
is a zero-mean discrete infinitely divisible distribution D such that the D-noise addition
mechanism is e-DP for sensitivity A. Furthermore, suppose that, for some q,n € N with

8 Pagh and Stausholm [39, Corollary 23] claim that their result implies a protocol with absolute error
ﬁ, but, to our knowledge, this is not the case. See the discussion at the end of this section.

9 Originally, their analysis has an additional error term due to “overflow / underflow”. We observe that
this is in fact unnecessary, which reduces the claimed error and also simplifies the analysis.
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q > 2An and o € (0,1/2), there exists an n-party o-secure m-message exact ZLg-summation

protocol in the shuffle model. Then, there is an m-message (g, (1 + e%)277)-shuffle-DP
Var(D)

protocol for real summation with MSE + gAz-

Moreover, the message length is the same as in the Zq-summation protocol.

Proof. Let II = (R, An) be the o-secure exact Zg,-summation protocol. Our protocol
P = (RnoR, Ao An) where R, A are defined as follows!?:

1. R : [0,1] — Z4 on input x; works by first computing a randomized encoding y; =
{1 + |Az;]  w.p. Ax; — |Axy]

. It then outputs (y;+7;) mod g where Z; ~ D/,,.
| Az, | w.p. 1 — (Az; — |Ax;)) (y ) )

r/A if 0 <r<nA,
2. A decodes the result r by returning v’ = ¢ n if nA+1<r<2nA,

0 otherwise.

(Privacy) The proof of privacy proceeds identically to [7, Lemma 5.2] and is omitted here.
(Accuracy) Since II is an exact Z,-summation protocol, its output r is exactly equal to @
mod ¢ where @ = Zie[n] (yit+zi)=2+ Zie[n] y; where Z = 21 + - - - + z, is distributed as D.
Let u=73 ;1
claim!! that |7’ —u| < |@/A — u|. To see that this is true, let us consider the following cases:
Case I: @ ¢ (—nA,2nA). In this case, |a/A —u| >n > |r' — ul.
Case II: @ € [0,nA]. We have ' = @/A and thus the inequality holds as an equality.
Case IIT: @ € (—nA,0). We set ' = 0. Thus, |a/A —u|=u—a/A>u—1"=|r —u]
Case IV: @ € (nA,2nA). We set ' =n. Thus, |G/A —u| =a/A—u>r" —u=|r"—ul.
Thus, in all cases, we have |’ — u| < |a/A — u|. Therefore, the MSE is at most

x; be the true (unnoised) sum. The first step in our accuracy analysis is a

e [/a -] =[] + ¥ B /A -ar] < 524 s -

i€[n]

We can now prove Theorem 27 by plugging our noise to the above lemma.

Proof of Theorem 27. Let A = [65/3\/51 ,q = 2nA and o = log, (6%1) From Corol-
lary 19, there is a zero-mean discrete infinitely divisible distribution D such that D-noise
addition mechanism is e-DP for sensitivity A where Var(D) < O(A? - e~2¢/3). Furthermore,
Theorem 28 ensures that there exists an n-party o-secure m-message exact Z,-summation

protocol where m = O (1 + logn) =0 (1 + M). Thus, Lemma 29 implies that there

logn

is an (g, d)-shuffle-DP m-message protocol for real summation where each message is of length
O(log q) = O(g + logn) bits and MSE Var D) 4 s < O(e™%/3). <

In the above proof, we use the noise from Corollary 19, which is a modified version of
MSDLap. We note that the continuous noises in Section 4 or [39] cannot be used here, as
the protocol must round each contribution to a finite group Z, prior to summing. Neither
the privacy nor the infinite divisibility of the resulting sum distribution is clear in this case.

10Note that the final protocol P is done by composing the randomizer R / analyzer A with those of II.
1 This claim is indeed our improvement over the error analysis of [7, Lemma 5.2].
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7 Conclusion

This work closes the utility gap for infinitely divisible mechanisms in the high € pure DP
regime. We find no separation in either the discrete or continuous settings by restricting
the private mechanism to infinitely divisible noise addition. The “staircase-like” MSE of
both GDL and MSDLap in the low-privacy regime make them a natural replacement for the
staircase mechanism in the discrete distributed setting, and we hope the results introduced
here can be of practical value. We show one such practical application by extending the [30]
“split and mix” protocol under shuffle DP, resolving the open question posed in [23].

Beyond improving utility, we believe GDL is of independent interest for distributed
private mechanism design due to the fact that it is closed under summation. This makes it
well-suited for cases where “smooth” privacy guarantees are needed for multiple outcomes,
or for a single deployed system (like a secure aggregation MPC protocol over n clients e.g.
[9]) where different people can make different assumptions about what the honest fraction
of the involved clients are. Additionally, this property is useful in post-hoc privacy loss
analysis when honesty assumptions are broken in a production system, and where otherwise
an analyst must resort to numerical approximation of realized privacy loss.

In the continuous setting, our continuous transformations of all of the mechanisms in
Section 3 outperform the existing Arete mechanism (Figure 2). We also note a strong
resemblance between the Arete and the GDL distributions, as the NB distribution converges
to the gamma distribution under certain conditions. See Section A.4 for more detail.

Finally, we hope our optimized MSDLap sampler Algorithm 3 or its constituent parts can
be useful in any context where sparse, exact multivariate NB random generation is needed,
or even where a general NB(r, p) sampler needs to be sublinear in r (Algorithm 1). For
multivariate sampling when p is very close to 1, our approach should be a large improvement
over standard methods. We note that Algorithm 2 can be extended in a straightforward way
(due to Lemma 23) to support NB variates with different r values. The only change to the
algorithm is initializing the urn with varying numbers of balls.

Open questions. In preparing this paper, we studied the Arete mechanism [39] extens-
ively and are convinced it can also achieve the order optimal MSE of O (A26_25/ 3), but the

12

formal proof eluded us. We present the following conjecture'® as an open question:

» Conjecture 30. Let A > 1, € > 10. The Arete(a, 8, \)-noise addition mechanism with
a=e2/3 §=(1+ t)@, and X = (1 +t)e=%/3 where t = o(1) is e-DP for sensitivity A

and has MSE O (A26_25/3).

Our work also raises the following questions:

How close to the optimal MSE including constants can be achieved in the for continuous
and infinite divisible mechanisms? While we match the constants of the discrete staircase
for large €, there is still a sizable gap in the continuous case.

Can the number of messages required for our shuffle-DP protocol in Theorem 27 be
improved? Recall that we use the approach of [7] to translate a secure summation protocol
to a shuffle-DP one. In fact, there is a more direct approach by [23] that achieves a smaller
number of messages. Since their proof also uses infinitely divisible noises, it is plausible
that our noise distribution can be used there. However, their proof is considerably more
involved compared to [7] and does not use the noise distributions in a black-box manner.

12 Bven if this conjecture were proven, the constant factors for the Arete’s MSE still underperform the
continuous multi-scale discrete Laplace.
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A Appendix
A.1 Deferred Proof of Lemma 12
Before we prove Lemma 12, it will be convenient to state the following simple lemma.

» Lemma 31. Let f(x) be log convex on the interval [a,b]. Then for any x € [a,b] and
A € RT such that x + A € [a, b]: % > _f@

) = fla+4)”
Proof. From log-convexity, we have f(O)TJ%Af(aH—A)TJ%A > f(x), and f(O)ﬁf(aH—A)mfA >
f(A). Multiplying the two yields the claimed inequality. <

We are now ready to prove Lemma 12.

Proof of Lemma 12. Assume w.l.o.g. that z < z’. There are three cases to consider.
1. 2 < 0and 2/ < 0. We have £&. < f(=2)

fl@) = f(=a’)"
/ f(x) f(0)
2. £ <0 and 'z > 0. We have ica) < ica)
3.2z > 0and 2/ > 0. By f decreasing on [0,00), we have J{((f,)) < f(i(f)A). Applying
Lemma 31 concludes the proof. |

A.2 Alternative simplified GDL privacy bound

In this section we will outline a tighter version of Corollary 14, which only well-approximates
the privacy loss in the small § regime. This bound well-approximates the privacy loss in all
[ regimes, at the cost of some added complexity in the expression.

» Corollary 32 (to Theorem 13). For any A € N,a > 0,5 € (0,1), the GDL(f, a)-noise
addition mechanism is e-DP for sensitivity A where ¢ < aA + (1 — 8)log(5 + A) + log(T'(5))

Proof. The proof is identical to Corollary 14, except in the last step where we use the
following Wendel’s double inequality [40, eq. 2.6]:

log (F(A + 1)I'(B)

(B +A4) ) < log (T(A)(A +5)' %) = (1 - B)log(F + &) +1og(I(B). <
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Figure 3 The Discrete Staircase PMF from [18, Figure 5].

A.3 Analytical variance of the discrete staircase distribution

In this section we derive the analytical variance of the discrete staircase using the Mathematica
software [29], for the purposes of generating Figure 1.

» Definition 33 ([18]). The discrete staircase distribution with parameters 1 <r < A, e > 0,
and A € N is defined as

a(r) 0<i<r
. a(r)e™* r<i<A
fostair,. A (1) =9 , '
e * fostair,. A (i — kA) kA <i < (k+1)A
fDStairm,A(—i) 1 <0

where a(r) = WM, b=e"¢ and k € N.

» Lemma 34. Let z = e® — 1, then

X1 +$2 +I3

Var(DStair,
ar(DStaltrea) = 5 g o i er@r — 1) 1 28)

Where
x1 = 2r323 — 3r222(2 — 24)
zy =712(1+e* +6A(1 + A) + e (6A(A —1) —2))
x3 = 2e*A(—1+ 4A? + cosh(g) + 2A? cosh(g) — 3A sinh(¢))

Proof. Let X ~ DStair(r,e, A). We will first compute the variance from just the central

“stair”.
r—1 1
C = P;‘H ?a(r) = gr(r = 1)(2r = 1a(r)

Finally we compute the variance from the full support of the distribution.

oo

E[XQ}Z Z $2fDStairr,g,A(x)

T=—00

7C+2ZZ 71A+T+271) fDStalrraA(kA*T*FZ)

k=11i=1

—C—i—ZZZ — DA 47 +i—1)%a(r)e "

k=11i=1
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The result follows from symbolic simplification in Mathematica, and replacing e — 1
terms with z for ease of presentation. <

We also derive the following concrete bound for large €, which facilitates a comparison
with our MSDLap noise.

» Observation 35. For any A and ¢ > log (%), the variance of the discrete

A(A+1)(2A+1)

staircase distribution (for any value of r) is at least eE+(21A—1) . 3

Proof. First, notice that, if r # 1, then fpsiair, . A (0) < % Since the noise is zero-mean, the

variance is thus at least % which is at least — +(21A_1)
Next, consider the case r = 1. In this case, the variance is exactly

oo

Z iz ' fDStairLE,A (Z)
=2 222 ' fDStairl,E,A (Z)
i=1
=2 ZZ(]’ +LA)? . fpstair, . 4 (J + A)
7j=14=0
A oo
23Sty
j=1£=0
A oo
23037 a(1) e D
j=1¢=0

() 5 ) ()

B 1 AA+1)(2A+1)
e+ (2A-1) 3
where a(1) is as defined in Definition 33. <

A.4 Arete convergence

In this section we show a link between the GDL distribution and the Arete distribution from
[39].
» Definition 36. For k,0,\ > 0, let Arete(k,0,\) denote the distribution of Z1 — Zs + Z3
where Zy, Zy "% T(k,0) and Zs ~ Lap()).

The main technical lemma linking the GDL and Arete follows from showing how the
negative binomial distribution converges to the gamma distribution.
> Lemma 37. Let X ~ NB(k,1 — ¢ 74) and Za, ~ X/Ad. Then Za, =5 T(k,0) as
Ad — 0Q.

. A(AH;@AH) by our condition on €.
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Proof. By Lévy’s continuity theorem, convergence in distribution follows from pointwise
convergence of the characteristic function. Denote (D) the characteristic function of the
distribution D. We first note the following facts:

¢(NB(r,p)) = (ﬁﬁ—p))r

©(NB(r,p)/Aq) = (m)
p(T(k,0)) = (1—6t)F
Finally,

k
. . 1—e "a
lim ¢(Z)= lim (1 — e(it—l/G)/Ad>

Ag—o0 Agq—oo
. k
il
o _ . d
L’Hoépital A(ljlng A _ o(it—1/6)/Aq
dAg
__1 A2 b
e 2q
P} it—1/6
<Aﬁoo 0A3 e Ba (it —1/6)
¢ TAa AqtEAg ’
= 1.
it \ K
e Aa
= lim -
<Ad—>00 1-— ztG)
—ito \ k
Z'e Agq0
= lim -
Ag—oo i + 0
. k
B 7
- <i+t9>

» Proposition 38. Let Za, ~ Lap(\) + GDL(k, ﬁ)/Ad. Then Za, dist, Arete(k,0,)\) as
Ad — OQ.

Proof. This follows from Definition 9, Definition 36, and Lemma 37. <

» Remark 39. The convergence result in Proposition 38 shows that the Arete mechanism
is quite similar to the GDL mechanism transformed with real support via the approach in
Theorem 21. The primary difference is how large Aq gets. Using Theorem 21, we only set
Agq = O(ef/3), allowing the resulting (discrete) distribution to have “holes” in its support.
The purpose of the Laplace noise in that case is to smooth out the holes and ensure support
on R. On the other hand the Arete (via Proposition 38) requires Ay — oo (with no holes in
its support), and the purpose of the Laplace noise is to smooth out the resulting singularity
at 0 for sufficiently small values of k.'3 As such, the proof technique for Theorem 21 cannot
be immediately used to help prove (or disprove) Conjecture 30.

13 See [39, Page 3] for further discussion on this point.
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A.5 Parameterized Difference Set and The multi-scale discrete Laplace
Mechanism

Recall that, for privacy analysis, we usually only consider the sensitivity of the function g,
which is defined as A(q) = max, 5 |¢(z) — ¢(z')| where the maximum is over all pairs x and
2’ differing on one entry. In this section, we show that, if we parameterized the potential
different q(x) — ¢(z’) values in a more fine-grained manner, we can achieve an improved error
in certain cases.

For a given query function ¢ : X¢ — R, we define the difference set of ¢, denoted by
Sair(¢), as the set of all possible values of |g(x) — ()| for all pairs « and z’" differing on one
entry. If Sqig(g) is finite, we let the Sqig(g)-multi-scale discrete Laplace Mechanism to be the

mechanism that outputs ¢(z) + 3 ;cg,.1(q) ¢ - Xi Where X; L DLap(e) for all i € Sqig(q)-

» Theorem 40. For any query function q : X% — R such that Sqg(q) is finite, the
Saift (q)-multi-scale discrete Laplace Mechanism is e-DP. Furthermore, for € > 1, its MSE is

0 (6_5 "2 ieSua(a) i2)

Proof. (Privacy) To show that this mechanism is e-DP, it suffices to show that

Deo (q(x) + 2 iesan( b Xi || 4@ + Xics i i Xl-) < ¢ for any pair x,2’ € X9 that
differs on one entry. Consider any such fixed pair of z,2’. Let £ = g(x) — q(2’); due to
symmetry of the noise around zero, we may assume that ¢ > 0. If £ = 0, the statement is
clearly true. Otherwise, from definition of Sqif, we have £ € Sqig.

From Lemma 6, we have

Do | q(z) + Z i X | qla’)+ Z i X
iesdm(q) iESdiH(Q)

=Ds | £+ Z i- X Z i X,
1€Sairr(q) i€Sqig (q)

<Doo (§+&- Xe || € Xe)
=Dy (1+Xe | Xe) <e,

where the last inequality follows from X ~ DLap(e). Thus, the mechanism is e-DP.
(Accuracy) The MSE of the mechanism is

Var Z - X; | = Z i2 - Var(X;) =0 | e - Z i? | . <

1€Sairr (q) 1€Saier(q) 1€Sairr(q)

To see the advantage of the above mechanism, we note a few scenarios where this
mechanism has MSE O(A? - ¢7¢), but where approaches which consider the sensitivity alone

must have MSE at least Q(min{A%e~¢, AZe=2¢/3}) [18, 17, 19], which is asymptotically larger.

In each example we consider a query g with sensitivity A.

Sair(q) C [[A%3]] U {A}, i.e. there is one large possible difference, but possibly many
small ones far from A.

Saie(q) = {n™ : m <log,(A) € Z>o} for fixed n,m > 0 i.e. differences are structured to
form exponential buckets.
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Finally, we note that the setting where |Sqif(¢)| is small (even when A(q) is large) can
occur in practice. As an example, imagine a simple merchant that sells items whose prices
are all in the set S = {5,10,30,100} and they want to privately sum a database of sales
where each row is the sale price of a single item. If a neighboring dataset adds or removes a
row, it is clear the sensitivity of this query is A = 100. For € = 10, the continuous staircase
will have MSE!* 8.5, but the MSDLap mechanism with Sgi(¢) = S will have MSE 1.0,
resulting in nearly an order of magnitude improvement.

M4 MSE results rounded to two significant figures.
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