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Abstract
A temporal graph is a graph for which the edge set can change from one time step to the next. This
paper considers undirected temporal graphs defined over L time steps and connected at each time
step. We study the Shortest Temporal Exploration Problem (STEXP) that, given the evolution of
the graph, asks for a temporal walk that starts at a given vertex, moves over at most one edge at
each time step, visits all the vertices, takes at most L time steps and traverses the smallest number
of edges. We prove that every constantly connected temporal graph with n vertices can be explored
with O(n1.5) edges traversed if L is O(n3.5) time steps. This result improves the upper bound of
O(n2) edges when L is Ω(n2). Moreover, we study the case where the graph has a diameter bounded
by a parameter k at each time step and we prove that there exists an exploration which takes O(kn2)
time steps and traverses O(kn) edges. Finally, the case where the underlying graph is a cycle is
studied and tight linear bounds are provided on the number of edges traversed in the worst-case.
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1 Introduction

Many real-life networks are not static objects because their connections may vary over time
(e.g. transportation, communication, social interactions,...). A tool to modelize and study
these networks is temporal graphs whose edge set changes over time. More formally, a temporal
graph G of lifetime L may be defined as a sequence of undirected graphs (G1, G2, ..., GL)
called snapshots. The adaptation of path-related problems from static graphs to temporal
graphs raises several questions: mainly, the notion of path itself, and the optimization criteria
to use. In a static graph, a set of edges connecting two vertices u and v is called a path
between u and v, but in a temporal graph the equivalent is a journey from u to v which is
a sequence of edges successive in time from u to v. It follows that, in temporal graphs, at
least three criteria may be minimized when considering journeys: the length (the number of
edges), the arrival time and the duration (the difference between the arrival time and the
starting time of the agent). An extensive study of these criteria in temporal graphs can be
found in the article of Bui-Xuan et al.[4].
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18:2 Brief Announcement: The Shortest Temporal Exploration Problem

A well studied path-related problem in temporal graphs is the exploration problem introduced
by Michail and Spirakis[3] which aims at finding a journey that visits all the vertices starting
from a given vertex. They make the assumption that the graph is connected at each time
step and that the agent already knows the evolution of the graph because it guarantees
that an exploration exists if the lifetime L is greater than |V |2 where V is the vertex set.
Most following papers studied the Temporal Exploration Problem (TEXP) which, given the
evolution of the graph, starts at a given vertex and aims at minimizing the arrival time
under the assumption that the graph is constantly connected [1]. We denote the Shortest
Temporal Exploration Problem (STEXP) the Temporal Exploration Problem which, under
the same hypothesis, aims at minimizing the number of edges traversed. The static graph
whose edge set is the union of the edge sets of each snapshot is denoted the underlying graph
and the total number of vertices is denoted by n. To the best of our knowledge no specific
study exists on the STEXP. In this brief annoucement the proofs are omitted because of the
limited number of pages. A complete version with proofs can be found online.

2 Preliminaries

▶ Definition 1 (Temporal graph). A temporal graph G with a vertex set VG and a lifetime LG
is a sequence of static graphs (G1, G2, ...GLG ) where Gi = (VG , Ei) is called the snapshot at
the time step i ∈ [1, LG ].The underlying graph of G is G = (VG , E) with E the union of the
edge sets of all the snapshot of G.

In the rest of the paper, if no ambiguity arises, we will note the lifetime by L and the vertex
set by V . We restrict our attention to always-connected graph. Moreover, when talking about
journeys, we often refer to an agent that is supposed to traverse the edges of the journey.

▶ Definition 2 (Path). Let G be a temporal graph. A path between the vertices u ∈ V and
v ∈ V is a set of edges all belonging to the same snapshot and connecting u and v.

We highlight the fact that a path is associated to exactly one snapshot.

▶ Definition 3 (Journey). Let G be a temporal graph. A journey from u ∈ V to
v ∈ V is a sequence of edges of increasing time steps (not necessarily consecutive),
[((v0, v1), t1), ((v1, v2), t2), ..., (vl−1, vl), tl)], where (vi, vi+1) ∈ Ei, v0 = u and vl = v. So an
agent can go from u to v by traversing the edges of the sequence at the time step indicated.
There exist two types of journeys:

the non-strict journeys where the agent can traverse several edges per time step.
the strict journeys where the agent can traverse at most one edge per time step, i.e.
∀i < l, ti < ti+1.

Since constantly connected temporal graphs are studied, if non-strict journeys were allowed,
there would be an exploration in 1 time step with at most 2n − 3 edge traversals. So only
strict journeys are considered which means that at each time step the agent can either stay
on a vertex or traverse an edge.

▶ Definition 4 (Journey parameters). Let G be a temporal graph and the journey J =
((e1, t1), (e2, t2), ..., (ek, tk)) in G.

Length
The length of J is the number of edges of the journey, i.e. k.
Arrival time
The arrival time is the time step where the agent traverses the last edge that is tk.
Duration
The duration is the number of time steps of the journey which is tk − t1 + 1.
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▶ Definition 5 (Shortest Temporal Exploration Problem (STEXP)). Given a temporal graph G
with a lifetime L and a starting vertex s, STEXP asks for a journey in G starting on s that
visits all the vertices of the graph and has a minimum length.
In the rest of the paper we consider that G is a constantly connected tempoal graph i.e. every
snapshot is connected and s is the starting vertex for the exploration. The notation u⇝r v

is used for a journey from u to v in G whose length is less than or equal to r. Similarly, for a
snapshot Gi of G we note u ↔r v a path connecting u and v with a number of edges less
than or equal to r in Gi.

▶ Lemma 6 (Reachability[3]). Let G be a temporal graph of lifetime L ≥ n − 1 and (u, v)
a pair of vertices. Then ∀t ≤ L − n + 2 there is a strict journey from u to v starting at t,
whose duration is at most n − 1.

This lemma implies the following result: considering any temporal graph G, there is an
exploration with an arrival time (and length) inferior or equal to n(n − 1).

3 The STEXP in the general case

Recall that our assumption is that each snapshot is connected and the agent already knows
the evolution of the graph.
Let (u, v) be a pair of vertices and k, 1 ≤ k < n. A sufficient condition for the existence of a
journey of at most k edges from u to v is first given.

▶ Lemma 7. Let G be a temporal graph of n vertices (not necessarily connected at each time
steps) and k such that 1 ≤ k < n, the lifetime of the graph is L ≥ kn.
Let u, v be two distinct vertices of V , such that there exist kn distinct paths (i.e on distinct
snapshots) with a number of edges less than or equal to k connecting u and v, each of these
paths u ↔k v is associated with exactly one time step. Then there exists a journey u⇝k v

in G using only these time steps.

This lemma links the existence of paths of bounded lengths to the existence of one journey
of bounded length between two vertices. With this lemma we can create a journey which is
a concatenation of journeys of at most k edges such that each one visits a different vertex of
S.

▶ Lemma 8. Let G be a temporal graph with S a subset of vertices. Then there exists a
journey visiting O(

√
|S|) vertices of S in O(n2|S|) timesteps with O(n) edge traversals.

The idea of the proof is that, given the set of unvisited vertices S and a time-window of
size Θ(

√
|S|n2), for every integer k < n we can create a subset of S denoted X(S) with the

following property: for every vertex v of S, there is a vertex u of X(S) such that there is a
journey u⇝k v. By Lemma 7, we have that for any subset S and any integer k < n, |X(S)|
is O(n/k) in the time-window of size Θ(

√
|S|n2). So, given S and k, we create a journey

that is a concatenation of shorter journeys (each traversing k edges), each visiting a vertex
of S that belongs to a set X(S) (each time the agent traverses one of these journeys with k

edges, the set S is updated).

▶ Theorem 9. Let G be a temporal graph with a lifetime L which is Ω(n3.5). Then there
exists an exploration of G traversing O(n1.5) edges in O(n3.5) time steps.

The theorem 9 is a corollary of Lemma 8 because we create an exploration in O(n1.5) edge
traversals with the following method. Let S be the set of unvisited vertices and u be the
vertex on which the agent is present at the current time step. Recall that the agent can go
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Figure 1 A representation of the concatenated journeys forming the journey that explores the
graph in O(n1.5) edges where each vertex represented is a vertex that is visited for the first time by
the journey. The set of unvisited vertex is denoted S. A blue arrow is a journey traversing n − 1
edges such as defined in the reachability lemma 6. And each purple arrow traverses at most k edges
which is Θ(n/

√
S), a sequence of these types of journeys (between two journeys of O(n) edges)

represents a journey such as defined in Lemma 8 that traverses in total O(n) edges and visit
√

S

vertices.

to any vertex in n − 1 time steps and by traversing at most n − 1 edges by Lemma 6 so with
this type of journey the agent goes to the starting vertex of a journey such as defined in
the Lemma 8 that visits

√
|S| unvisited vertices. After this journey we update the set of

unvisited vertices S and reiterate the method until the agent visits all the vertices.
This concatenation of journeys forms the exploration such as presented in figure 1.

4 The case of bounded-diameter temporal graphs

▶ Theorem 10. Let G = (V, Et), t ≤ L be a temporal graph of n vertices and 0 < k < n an
integer, the lifetime of the graph is L ≥ kn2. If ∀t ≤ L, the snapshot Gt has a diameter less
than or equal to k, then there exists an exploration of G traversing less than kn edges.

The idea of the proof is that we can construct an exploration that visits all the vertices in an
arbitrary order starting from s. We visit an unvisited vertex every kn time steps with at
most k edge traversals because by assumption the distance between every pair of vertices is
at most k every time step. So, by Lemma 7, in a time-window of size kn, there is a journey
traversing k edges from the vertex on which the agent is present to the unvisited vertex. We
repeat this method n − 1 times to visit all the vertices of the temporal graph.

Erlebach et al.[1] have presented a family of temporal graphs such that each snapshot
has a diameter 2 and all explorations take Ω(n2) time steps with Ω(n) edges traversed. We
have proven that, for each temporal graph with L = Θ(n2), there is an exploration in O(n2)
time steps and O(n) edges traversed if each snapshot of G has a bounded diameter. Hence
our bounds are tight.

5 The case of the cycle as the underlying graph

In this section the following notations are used: C is a temporal cycle which is a temporal
graph whose underlying graph is a cycle, denoted C.

▶ Lemma 11. Let C be a temporal cycle with a lifetime L ≥ 2n − 2. In the worst-case
scenario, the number of edges traversed for an exploration of C is exactly ⌊ 3

2 (n − 1)⌋ edges.



S. Balev, É. Sanlaville, and A. Toullalan 18:5

▶ Lemma 12. For every integer n ≥ 3, there exists a temporal cycle C with n vertices and
a lifetime L = 2n − 3 such that there is only one possible exploration and this exploration
traverses exactly 2n − 3 edges.

An overview of the results described by lemmas 11 and 12 is presented in figure 2. Since
Ilcinkas et al.[2] proved that there is always an exploration if and only if L ≥ 2n − 3, we
start the value of the lifetime at 2n − 3 in figure 2. So the bounds are tight for the number
of edges traversed in STEXP.

Figure 2 A representation of the number of edges traversed in the worst case as a function of the
lifetime L for the temporal cycle.
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