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Abstract
In the distributed localization problem (DLP), n anonymous robots (agents) A0, . . . , An−1 begin
at arbitrary positions p0, . . . , pn−1 ∈ S, where S is a Euclidean space. Initially, each agent Ai

operates within its own coordinate system in S, which may be inconsistent with those of other
agents. The primary goal in DLP is for agents to reach a consensus on a unified coordinate system
that accurately reflects the relative positions of all points, p0, . . . , pn−1, in S. Extensive research on
DLP has primarily focused on the feasibility and complexity of achieving consensus when agents
have limited access to inter-agent distances, often due to missing or imprecise data. In this paper,
however, we examine a minimalist, computationally efficient model of distributed computing in which
agents have access to all pairwise distances, if needed. Specifically, we introduce a novel variant
of population protocols, referred to as the spatial population protocols model. In this variant each
agent can memorise one or a fixed number of coordinates, and when agents Ai and Aj interact, they
can not only exchange their current knowledge but also either determine the distance dij between
them in S (distance query model) or obtain the vector −→vij spanning points pi and pj (vector query
model). We present here a leader-based localisation protocol with distance queries.
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1 Introduction

Location services are vital for modern computing paradigms like pervasive computing and
sensor networks. Manual configuration and GPS, though effective for determining node
locations, are impractical in large-scale or obstructed environments. Recent network localisa-
tion approaches use beacon nodes with known positions to help other nodes estimate their
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locations via distance measurements. Key challenges include ensuring unique localisability,
managing computational complexity, and addressing deployment issues. In the distributed
localisation problem (DLP), n anonymous robots (agents) A0, . . . , An−1 begin at arbitrary
positions p0, . . . , pn−1 ∈ S, where S is an Euclidean space. Initially, each agent Ai operates
within its own coordinate system in S, which may be inconsistent with those of other agents.
The primary goal in DLP is for agents to reach a consensus on a unified coordinate system
that accurately reflects the relative positions of all points, p0, . . . , pn−1, in S.

A network of agents’ unique localisability is determined by specific combinatorial prop-
erties of its graph and the number of anchors (agents aware of their real location). For
example, graph rigidity theory [2, 5, 6] provides a necessary and sufficient condition for
unique localisability [2]. Specifically, a network of agents located in the plane is uniquely
localisable if and only if it has at least three anchors and the network graph is globally
rigid. However, unless a network is dense and regular, global rigidity is unlikely. Even
without global rigidity, large portions of a network may still be globally rigid, though the
positions of remaining nodes will remain indeterminate due to multiple feasible solutions. The
decision version of this problem, often referred to as the graph embedding or graph realisation
problem, requires determining whether a weighted graph can be embedded in the plane so
that distances between adjacent vertices match the edge weights, a problem known to be
strongly NP-hard [14]. Furthermore, this complexity holds even when the graph is globally
rigid [2]. In sensor networks, where nodes measure distances only within a communication
range r, the network is best represented as a unit disk graph. Here, two nodes are adjacent if
and only if their distance is ≤ r. The corresponding decision problem, known as unit disk
graph reconstruction, requires determining whether a graph can be embedded in the plane
such that distances between adjacent nodes match edge weights, while distances between
non-adjacent nodes exceed r. This problem is also NP-hard [1], indicating that no efficient
algorithm can solve localisation in the worst case unless P = NP . Furthermore, even for
instances with unique reconstructions, no efficient randomised algorithm exists to solve this
problem unless RP = NP [1].

Distributed localisation is also crucial in robotic systems, enabling robots to autonomously
determine their spatial position within an environment – a fundamental requirement for
applications such as navigation, mapping, and multi-robot coordination [18]. Accurate local-
isation allows robots to interact more effectively with their surroundings and with each other,
facilitating tasks from autonomous driving to warehouse automation and search-and-rescue
operations [10, 12]. Localisation approaches generally fall into two broad categories: central-
ised and distributed systems [19]. Centralised localisation systems offer high accuracy but
may struggle with scalability and robustness [9]. In contrast, distributed localisation systems
allow each robot to perform localisation computations independently or in collaboration with
neighbouring robots, enhancing adaptability and resilience, although this may come at the
cost of increased complexity [7, 8]. Within distributed systems, leader-based localisation
mechanisms involve one or more designated robots that serve as reference points or coordin-
ators for localisation [3], which can streamline computations but may create single points of
failure. Leaderless localisation, where all robots contribute equally to position estimation
without relying on specific leader nodes, is advantageous in decentralised applications where
flexibility and fault tolerance are paramount [7, 15]. Both methods have been explored using
probabilistic [17], geometric [11], and graph-based models [7], with leaderless approaches
gaining traction due to their robustness in large-scale and dynamically changing settings.
Various methods leverage tools such as Kalman filters [13], particle filters [9], and graph
rigidity theory [16] to enhance localisation accuracy and efficiency in complex environments.
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1.1 Spatial population protocols
In this paper, we explore a minimalist, computationally efficient model of distributed
computing, where agents have probabilistic access to pairwise distances. Our focus is on
achieving anonymity while maintaining high time efficiency and minimal use of network
resources, including limited local storage (agent state space) and communication. To meet
these goals, we introduce a new variant of population protocols, referred to as the spatial
population protocols model, specified later in this section.

While population protocols provide an elegant and resilient framework for randomised
distributed computation, they lack spatial embedding. To address this limitation, we
introduce a new spatial variant of population protocols that extends the transition function
to include basic geometric queries. In particular, in this model each agent can memorise
one or a fixed number of coordinates, and during an interaction of two agents Ai and Aj , in
addition to exchange of their current knowledge, the agents can determine:
(1) the distance dij separating them in S, in distance query model, and
(2) vector −→vij spanning points pi and pj , in vector query model.

2 Leader-based localisation in distance query model

In this section, we discuss a localisation protocol with predefined input stabilising in o(n) time,
i.e., after this time labels of all agents become stable. This protocol is non-self-stabilising.
We assume that one of the agents starts as the leader of the population. If the identity of the
leader is not known, the localisation protocol can be preceded by one of the leader election
protocols discussed in the introduction. The agents’ positions p0, . . . , pn−1 are distributed
in a k-dimensional Euclidean space S, where k is a fixed integer. It is assumed that any
k + 1 agents’ positions span the entire space. For example, in two-dimensional space, this
assumption guarantees that no three points are collinear. Although our algorithms can be
adapted to handle an arbitrary distribution of agents’ positions, the time guarantees of such
adaptations would be weaker. The state of an agent can accommodate a fixed number of
agent positions and distances.

We adopt a symmetric model of communication, which means that when agents Au and
Av interact, they both gain access to each other’s states as well as the distance duv. The
transitions assigned to the leader are distinct from those of the other agents, and the leader
also serves as the initiator of the entire process. Initially, the state of each agent Au stores a
label xu (representing a hypothetical position in S) and its color C[Au]. We assume that
at the beginning, the leader is coloured green, and each non-leader’s colour is set to blue.
Finally, the leader’s label (position in S) is set at the origin of the coordinate system, i.e.,
this label is used as the anchor in the localisation process.

2.1 Localisation via multi-contact epidemic
The localisation protocol presented in this section consists of two parts (see the formal
description of Algorithm 1). In the first part of the protocol, the labels of k + 1 agents
(including the leader) become stable (positions of these agents become fixed), and these
agents become green. The counter i, initially set to 1, of agents with stable (green) labels
is maintained by the leader. In the second part the labels of all remaining (blue) agents
become stable. And this is done by contacting with k + 1 different green agents. And
once the agent is positioned, it becomes green. We refer to this (multilateration) process as
(k + 1)-contact epidemic.
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Positioning of each of the first k agents has to be approved by the leader. More precisely,
after an aspiring to be green agent Av interaction with all i < k green agents is concluded,
to become green Av must meet the leader to get approved. And when this happens, the
leader updates the counter of green agents, and the new green agent Av is ready to calculate
its projection onto the subspace spanned by its i green predecessors and the leader, as well
as its Euclidean distance from this subspace. Namely, the first i coordinates of Av’s label are
determined by this projection, and the (i + 1)-th coordinate (in the newly formed dimension)
is equal to its distance from the aforementioned subspace. When positioning the remaining
agents, we use the fact that interactions with k + 1 green agents allow for the unambiguous
determination of an agent’s position.

Algorithm 1 Positioning in k dimensions.

begin
i = 0; C[leader] = green;
while i<k do

during an interaction between agents Au and Av;
if (Au is leader) ∧ (C[Av] = blue) then

if Av interacted with all i green agents then
position Av and stabilise hv;
C[Av] = green;
i = i + 1

end
end

end
while not all agents are positioned do

during an interaction between agents Au and Av;
if (C[Au] = green) ∧ (C[Av] = blue) then

if Av interacted with k + 1 green agents then
position Av and stabilise hv;
C[Av] = green

end
end

end
end

▶ Theorem 1. Algorithm 1 stabilises labels of all agents in k dimensions in parallel time
O(n(log n/n)1/(k+1)).

3 Concluding remarks

In this paper, we introduce a novel variant of spatial population protocols and explore its
applicability to the distributed localization problem. In the full version of this paper [4],
we explore faster leader-based localisation in one-dimensional space using the model with
distance queries, alongside superfast localisation in the model with vector queries. Any
meaningful advances in this problem could pave the way for developing faster and more
robust lightweight communication protocols suitable for real-world applications. It could
also provide insights into the limitations of what can be achieved in such systems.
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