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Abstract
In this article, we study the computational complexity of counting weighted Eulerian orientations,
denoted as #EO. This problem is considered a pivotal scenario in the complexity classification
for Holant, a counting framework of great significance. Our results consist of three parts. First,
we prove a complexity dichotomy theorem for #EO defined by a set of binary and quaternary
signatures, which generalizes the previous dichotomy for the six-vertex model. Second, we prove a
dichotomy for #EO defined by a set of so-called pure signatures, which possess the closure property
under gadget construction. Finally, we present a polynomial-time algorithm for #EO defined by
specific rebalancing signatures, which extends the algorithm for pure signatures to a broader range of
problems, including #EO defined by non-pure signatures such as f40. We also construct a signature
f56 that is not rebalancing, and whether #EO(f56) is computable in polynomial time remains open.
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1 Introduction

In fields such as statistical physics, economics, machine learning, and combinatorics, the role
of counting problems is becoming increasingly significant. Three well-founded frameworks
have been put forth for the study of the complexity of counting problems: #GH, #CSP,
and Holant. These frameworks are capable of expressing a wide range of natural counting
problems and are of great significance in counting complexity. For example, counting vertex
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covers in a graph can be expressed in #GH, while counting perfect matchings is a Holant
problem. The definitions of these frameworks are as follows; see [9, Section 1.2] and [16,
section 2.1] for details. In this paper, we always restrict the variables in these counting
problems to the Boolean domain, where each variable can only take values in {0, 1}, by
default.

We begin by introducing some basic concepts. A Boolean variable takes values from a
Boolean domain consisting of two symbols {0, 1}. Sometimes we treat it as F2, the finite
field of size 2, to characterize special tractable classes.

A signature f with r variables is a mapping from {0, 1}r to C. The value of f on an
input α is denoted as fα or f(α). The set of all variables of f is denoted by Var(f), and its
size by arity(f).

▶ Definition 1 (#GH). A counting weighted graph homomorphisms problem #GH(F) paramet-
erized by a binary signature f is as the following: The input is a directed graph2 G = (V,E).
The output is

ZG =
∑

σ:V →{0,1}

∏
(u,v)∈E

f(σ(u), σ(v))

▶ Definition 2 (#CSP). A counting constraint satisfaction problem #CSP(F) parameterized
by a set F is as the following: The input is an instance of #CSP(F), which consists of a finite
set of variables {x1, x2, · · · , xn} and a finite set C of clauses. Each clause in C contains a
signature f ∈ F of arity k and a sequence of variables of length k (xi1 , xi2 , · · · , xik

) from
{x1, x2, · · · , xn} 3. The output is∑

x1,x2,··· ,xn∈{0,1}

∏
(f,xi1 ,xi2 ,··· ,xik

)∈C

f(xi1 , xi2 , · · · , xik
)

▶ Definition 3 (Holant). A Holant problem Holant(F) parameterized by a set F is as the
following: The input is an signature grid Ω(G, π) over F , denoted by I. Here, G is a graph
and π : V → F × S(E(v)) assigns a signature fv ∈ F of arity |E(v)| to v and a linear
order to E(v) for each v ∈ V (G), where E(v) are the edges adjacent to v. The output is the
partition function of Ω,

Z(I) = HolantΩ =
∑

σ:E(G)→{0,1}

∏
v∈V (G)

fv(σ|E(v))

The bipartite Holant problem Holant(F | G) is a Holant problem over the signature grid
(G, π), where G = (U, V,E) is a bipartite graph, and π assigns signatures from F to vertices
in U and signatures from G to vertices in V .

The framework of Holant is capable of expressing counting weighted graph homomorphisms
(#GH) and counting constraint satisfaction problems (#CSP). Consequently, Holant is widely
regarded as one of the most general and significant frameworks in counting complexity.

Significant progress has been made in the study of #GH [38, 35, 29, 6, 28, 33, 12, 11],
#CSP [6, 8, 27, 5, 22, 31, 34, 4, 7, 30, 25, 13, 10], #EO [19, 16, 43], and Holant [22, 23, 24, 21,
1, 26, 2, 37, 17, 42]. Moreover, the computational complexity of #GH and #CSP has been
fully characterized by dichotomy theorems [12, 25]. In contrast, the complexity classification
for Holant remains unresolved.

2 In this article, graphs refer to multigraphs. It is always permissible for self-loops and parallel edges to
be present.

3 A variable can appear in the sequence more than one time.
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There have been several constructive attempts on Holant. A signature is said to be
symmetric if all its values for inputs with the same number of 1’s are identical. A complete
dichotomy is established when all signatures are symmetric [21]. When signatures are not
restricted to be symmetric, a complete dichotomy has been proven for nonnegative-weighted
signatures [37] and real-weighted signatures [42]. Additionally, dichotomies exist for several
special forms of complex-weighted Holant, such as Holant∗ [24], Holant+ [1], and Holantc [2],
with some given auxiliary signatures.

Recently, counting weighted Eulerian orientation problems (#EO) have also attracted re-
searchers’ attention, as real-weighted Holant can express #EO problems defined by signatures

with the ARS property [16] under a holographic transformation by Z = 1√
2

(
1 1
i −i

)
, while

complex-weighted Holant can express #EO problems under the same transformation. The
complexity classification for complex-weighted #EO problems remains open, and therefore
this article seeks a more generalized characterization of #EO complexity.

1.1 Counting weighted Eulerian orientation
We first introduce the concept of #EO. We use HW< to denote the set of strings with fewer
1’s than 0’s. For example, 00110 ∈ HW< since the number of 1’s (which is 2) is strictly less
than the number of 0’s (which is 3). We similarly define HW=, HW≤, HW>, and HW≥.
The support of a signature f , denoted supp(f), is the set of all inputs for which f is non-zero.
If supp(f) ⊆ HW=, we call f an EO signature.

For any Eulerian graph G, let EO(G) denote all Eulerian orientations of G. For a given
orientation in EO(G), we assign 0 to the head and 1 to the tail of each edge. Therefore, a
Eulerian orientation corresponds to an assignment to both ends of every edge, where for each
vertex, the number of adjacent ends assigned 0 equals those assigned 1.

▶ Definition 4 (#EO). A #EO problem #EO(F) parameterized by a signature set F of EO
signatures is as the following: The input is an EO-signature grid Ω(G, π) over F , denoted
by I. Here, G is a Eulerian graph and π : V → F × S(E(v)) assigns a signature fv ∈ F of
arity |E(v)| to v and a linear order to E(v) for each v ∈ V (G), where E(v) are the edges
adjacent to v. The output is the partition function of Ω,

Z(I) = #EOΩ =
∑

σ∈EO(G)

∏
v∈V

fv(σ|E(v)).

Several complexity results have been established for #EO. In [19], a complexity dichotomy
was proved for a single complex-weighted quaternary signature, known as the six-vertex
model dichotomy. This result was later extended to planar graphs in [18]. Furthermore, [16]
established a complexity dichotomy for signatures satisfying the arrow reversal symmetry
(ARS) property, a setting commonly assumed in physics.

There are two motivations for studying #EO problems. First, specific forms of #EO
problems appear in many areas such as statistical physics and combinatorics. In statistical
physics, both the ice-type model and the six-vertex model [41] are special cases of #EO
problems. The latter model, in particular, has emerged as a prominent focus within statistical
physics and corresponds exactly to #EO defined on 4-regular graphs. In combinatorics,
the resolution of the Alternating Sign Matrix conjecture [3] and the evaluation of the
Tutte polynomial at (3,3) [36] both relate to #EO problems defined on specific graphs with
particular signatures.

ICALP 2025
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Second, we conjecture that resolving #EO problems is essential for establishing the
complete dichotomy for complex-weighted Holant problems. The significance of EO-signatures
was first recognized in [21] during the study of vanishing signatures. Furthermore, [37] suggests
that classifying #EO problems may complement the tensor decomposition lemma for complex-
weighted signatures. Most directly, [42] demonstrates that research on corresponding #EO
problems (defined by signatures with ARS property), initially conducted in [16], constitutes
a crucial component of the proof for the real-weighted Holant dichotomy. Additionally, the
eight-vertex model dichotomy presented in [15], where the problem is defined by a single
quaternary signature whose support confined to HW= ∪ {0000, 1111}, builds upon the six-
vertex model dichotomy in [19]. We believe that some fundamental obstacles to establishing
complete complexity classifications for complex-weighted Holant problems lie hidden within
complex-weighted #EO problems.

1.2 Our results
All results in this paper target and hold for complex-weighted #EO by default. The study
begins with analyzing low-arity signatures, a prevalent research focus in counting problems.
This approach is justified because an EO signature f with arity greater than 4 can generate
various quaternary and binary signatures through gadget construction. Our first result is
stated below, with its detailed version presented in Theorem 20.

▶ Theorem 5. Suppose F is a finite set of EO signatures with arity less or equal than 4.
Then #EO(F) is either polynomial time computable or #P-hard. The classification criterion
is explicit.

To establish a complete complexity classification for #EO problems, we build upon
Theorem 5 as a foundation. We note that the tractable cases exhibit a more complex
structure compared to those in the six-vertex model dichotomy.

Our second result concerns pure signatures. For a set S of 01-strings with length k, the
affine span of S is defined as the minimal affine subspace containing S. Given a signature
f , we denote by Span(f) the affine span of its support supp(f). Given the affine span of a
signature f ’s support, we call f a pure-up (resp. pure-down) signature if it is contained in
HW≥ (resp. HW≤).

Our investigation originates from a quaternary signature f with supp(f) =
{1100, 1010, 1001}. Its affine span {1100, 1010, 1001, 1111} ⊆ HW≥ motivates modify-
ing f to f ′ by assigning a nonzero value at input 1111. Building on [21]’s result that
Holant( ̸=2| [0, 0, a, b, c]) ≡T Holant( ̸=2| [0, 0, a, 0, 0]) (since HW> strings do not contribute
to the partition function), we establish #EO(f ′) ≡T #EO(f). This support augmentation
technique fundamentally motivates our study of pure signatures. Notably, Theorem 6’s
tractable cases generalize those in Theorem 5.

▶ Theorem 6. Suppose F is a finite set of pure-up (pure-down) EO signatures. Then #EO(F)
is either polynomial time computable or #P-hard. The classification criterion is explicit.

The detailed statement of Theorem 6 appear in Theorem 23. To achieve tractability,
a condition called the type condition must be satisfied in Theorem 6. This condition also
plays a crucial role in the subsequent algorithm. Additionally, we define a property called
rebalancing. Intuitively, a signature f is 0-rebalancing (or 1-rebalancing) if fixing some of its
variables to 0 (respectively 1) naturally forces an equal number of variables to be fixed to 1
(respectively 0). When both the type condition and rebalancing condition are satisfied, a
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polynomial-time algorithm becomes applicable. We emphasize that this algorithm represents
the most significant algorithmic contribution of this paper. Our third result is stated below,
with a formal version in Theorem 25.

▶ Theorem 7. #EO(F) is polynomial time computable, if every f ∈ F is 0-rebalancing (or
1-rebalancing), and satisfies the type condition.

We note that very recently, and independently of our work, [43] proposed a polynomial-
time algorithm for 01-weighted #EO parameterized by F consisting of δ1-affine (resp. δ0-
affine) signatures and affine signatures, termed the chain reaction algorithm. Moreover, [43]
establishes a novel connection between the base level of δ1-affine and δ0-affine signatures
(the δ1-affine and δ0-affine kernels) and the Hadamard code, while proving #P-hardness
when δ1-affine and δ0-affine signatures are mixed. Although these results do not constitute a
complete dichotomy and primarily apply to 0-1 weighted signatures, they capture some of
the significant components of our dichotomy and prove highly valuable, as demonstrated in
this work.

Furthermore, building upon this article and utilizing our dichotomy for pure signatures
[40], a complete dichotomy for complex-weighted #EO has been established. However, this
dichotomy is an FPNP versus #P dichotomy, indicating that #EO problems are either in
FPNP or #P-hard. While this dichotomy provides valuable insights and partially clarifies
the complexity classification, it does not yield new polynomial-time algorithms for #EO and
consequently does not include our algorithm for rebalancing signatures.

1.3 Our methods
As presented in Section 1.2, this article contains three parts. In each part, our main
objective is to characterize different classes of signature sets. Indeed, the principal difficulty
lies in providing descriptions of tractable cases that are sufficiently precise to capture all
tractable scenarios. Following this characterization, we separately prove both tractability
and #P-hardness results.

In each part, we perform detailed characterizations of signature sets, including compre-
hensive classifications and rigorous examinations of their properties. Specifically, we focus
on three key aspects: the closure property, the properties of the affine span, and signature
reducibility.

We further summarize that each tractable case in this work must satisfy two requirements:
the support requirement and the type requirement. The support requirement specifies
that each signature’s support must possess a particular form. This specific form enables a
receiving-sending mechanism that is necessary for implementing the corresponding algorithm.
The type requirement states that after applying the receiving-sending mechanism to an
instance, all resulting signatures must form a tractable case in #CSP. A detailed explanation
appears in Section 3.

For the hardness results, we prove #P-hardness based on the dichotomies of both the
six-vertex model and #CSP, primarily using the gadget construction method introduced in
Section 2.3.

1.4 Organization
In Section 2, we introduce preliminaries needed in our proof. We present the detailed version
of our main theorem in Section 3. We conclude our result in Section 4. Detailed proofs of
theorems in Section 3 can be found in the full version [39].

ICALP 2025
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2 Preliminaries

2.1 Definitions and notations
For a 01-string α, we use α to denote the dual string of α, which is obtained by flipping
every bit of α. For s ∈ {0, 1}, we use #s(α) to denote the number of s’s in α. Under this
notation we have:

HW= = {α | #1(α) = #0(α)}, HW≥ = {α | #1(α) ≥ #0(α)}.

A signature f is called a HW= signature (precisely an EO signature) if supp(f) ⊆
HW=. The term “EO signature” was originally introduced in [16] as shorthand for Eulerian
Orientation signature.

If supp(f) ⊆ HW≥, we call f an HW≥ signature. Other similar notations are defined
analogously by replacing “≥” with “≤”, “<”, or “>” in both names and defining formulae.

We use [f0, f1, . . . , fr] to denote a symmetric signature f of arity r, where fi gives the
evaluation for all input strings with Hamming weight i.

By exchanging the values of the symbols in the Boolean domain, we obtain the dual
signature f̃ = [f̃0, f̃1, . . . , f̃r] = [fr, fr−1, . . . , f0]. A signature f is called self-dual if f = f̃ .
The concepts of “dual” and “self-dual” can be naturally generalized to asymmetric signatures,
sets of signatures, Boolean domain counting problems, and tractable classes in dichotomy
theorems.

We use [φ] to denote the truth value of a logical statement φ. It takes values from
{True,False}, or equivalently the isomorphic integer set {1, 0}. For example, [x ̸= y] equals
True (or 1) when x ̸= y, and False (or 0) otherwise. Thus both [x ̸= y] and ̸=2 (x, y) represent
the value of the binary function [0, 1, 0] evaluated at (x, y).

Several sets of frequently used signatures are defined as follows. ∆0 represents the unary
signature [1, 0], with its dual ∆1 = [0, 1]. The binary disequality signature [0, 1, 0] is denoted
by ̸=2 and serves as an example of self-dual signatures. We use EQ to denote the set of
equality signatures where EQ = {=1,=2, . . . ,=r, . . .}, with =r denoting an arity-r signature
[1, 0, . . . , 0, 1]. In other words, =r evaluates to 1 when the input is all 0s or all 1s, and 0
otherwise.

A disequality signature of arity 2d, denoted by ̸=2d, evaluates to 1 when x1 = x2 = · · · =
xd ≠ xd+1 = xd+2 = · · · = x2d, and 0 otherwise. We define DEQ = {≠2, ̸=4, . . . , ̸=2n, . . .} as
the set of all disequality signatures. Moreover, DEQ is closed under variable permutation.
That is, for any π ∈ S2d, a signature f that evaluates to 1 when xπ(1) = xπ(2) = · · · =
xπ(d) ≠ xπ(d+1) = xπ(d+2) = · · · = xπ(2d) (and 0 otherwise) is also considered a disequality
signature.

An alternative definition states that a signature f is a disequality signature if: (1) it is
an EO signature of arity 2d, (2) there exists α ∈ HW= such that supp(f) ⊆ {α, α}, and (3)
f(α) = f(α) = 1. The equivalence of these definitions can be readily verified. Similarly, a
signature f is called a generalized disequality signature (denoted by ̸=a,b

2d ) if the signature
satisfies (1), (2) and (3’) f(α) = a, f(α) = b.

We use ⊗ to denote tensor multiplication. When no ambiguity arises, we sometimes use f
to denote the signature set {f}. We use ≤T and ≡T to respectively denote polynomial-time
Turing reductions and equivalences.

2.2 Relationships between counting problems
We say a framework A is more “general” than B, denoted as B ⪯ A, if each problem in B

can be transformed into a problem in A in polynomial time. The relationship between the
counting frameworks are concluded in the following lemma.
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▶ Lemma 8.

#GH ⪯ #CSP ⪯ #EO ⪯ Holant

Furthermore, Holant constitutes a strictly more expressive framework than #GH, as
evidenced by the fact that while counting perfect matchings cannot be represented as a #GH
problem [20], it can be formulated as a Holant problem.

Lemma 8 follows directly from Lemmas 9–12.

▶ Lemma 9. #GH(f) ≡T #CSP({f}).

▶ Lemma 10 ([16]). #EO(F) ≡T Holant(̸=2| F).

▶ Lemma 11 ([42]). Holant( ̸=2| F) ≡T Holant(Z−1F)

▶ Lemma 12 ([16, Theorem 6.1]). #CSP(F) ≡T #EO(π(F)).

We now clarify the notation used in the preceding lemmas, which will also appear

throughout this article. Here, Z−1 = 1√
2

(
1 −i

1 i

)
, and Z−1F denotes the signature set

derived from F via the holographic transformation defined by Z−1 [44, 14].
While we omit both the formal definition of holographic transformations and the proof

of this lemma since they are not central to our discussion, we strongly recommend readers
consult [9][Section 1.3.2] for deeper understanding, as holographic transformations constitute
a powerful technique in counting complexity theory.

Let f be an EO signature of arity 2d with variable set Var(f) = {x1, x2, · · · , x2d}. For
any pairing P = {{xi1 , xi2}, {xi3 , xi4}, · · · , {xi2d−1 , xi2d

}} of Var(f), we define EOP as the
subset of {0, 1}2d corresponding to P :

EOP = {α | α ∈ {0, 1}2d, αi1 ̸= αi2 , · · · , αi2d−1 ̸= αi2d
},

equivalently expressed as EOP = supp([xi1 ̸= xi2 ] · [xi3 ̸= xi4 ] · · · [xi2d−1 ̸= xi2d
]).

When supp(f) ⊆ EOP , we call f an EOP signature relative to P . If such a pairing P
exists, we call f a pairwise opposite signature (identical to Definition 5.5 in [16]), or simply
an EOM signature.

For an EOP signature f with EOP = supp([xi1 ≠ xi2 ] · [xi3 ≠ xi4 ] · · · [xi2d−1 ̸= xi2d
]), we

define τf (or τ(f)) as the set of arity-d signatures satisfying:

τf = {g | g(xj1 , xj3 , ..., xj2d−1) = f(xi1 , 1 − xi1 , xi3 , 1 − xi3 , . . . , xi2d−1 , 1 − xi2d−1),

xj1 ∈ {xi1 , xi2}, · · · , xj2d−1 ∈ {xi2d−1 , xi2d
}}.

Since P allows swapping variables within pairs, we have |τf | ≤ 2d.
The inverse mapping π is defined for any arity-d signature g as:

πg(x1, y1, x2, y2, . . . , xd, yd) = g(x1, x2, . . . , xd) · [x1 ̸= y1] · · · [xd ̸= yd],

where πg (or π(g)) is clearly an EOP signature with P = {{x1, y1}, {x2, y2}, · · · , {xd, yd}}.
Extending this to signature sets, we define π(F) = {π(f) | f ∈ F}.

The set τ(π(g)) contains g and all signatures obtainable from g by variable flips using
binary disequality. This establishes an equivalence between #EO and #CSP with free binary
disequality. As established in [16], Lemma 12 comes from this observation and the complexity
equivalence between #CSP and #CSP with free binary disequality.

ICALP 2025
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2.3 Gadget construction and signature matrix
This subsection introduces two key concepts: gadget construction and signature matrices.
Gadget construction serves as a fundamental reduction technique in complexity classification,
while signature matrices offer an intuitive representation of signatures and reveal connections
between gadget construction and matrix multiplication.

Given a signature set F , an F -gate resembles a signature grid Ω(G, π) from Definition 3,
but with G = (V,E,D) where V represents vertices, E denotes internal edges (each connecting
two vertices) and D denotes dangling edges (each connecting one vertex). An F-gate
essentially defines a signature whose variables correspond to edges in D. For |E| = n and
|D| = m, with edges in E representing variables {x1, ..., xn} and edges in D representing
{y1, ..., ym}, the F-gate’s signature f satisfies:

f(y1, ..., ym) =
∑

σ:E→{0,1}

∏
v∈V

fv(σ̂|E(v)∪D(v))

where (y1, ..., yn) ∈ {0, 1}n assigns values to dangling edge variables, σ̂ extends σ with these
assignments and fv denotes the signature at vertex v.

We say f is realizable from F via gadget construction when f is an F-gate’s signature.
Crucially, when f is realizable from F , [9, Lemma 1.3] establishes:

Holant(F) ≡T Holant(F ∪ {f})

For #EO problems, F-gates have a modified definition. Since Lemma 10 shows
#EO(F) ≡T Holant(̸=2| F), we add ̸=2 vertices to internal edges and treat the gadget
as a standard Holant gate. Throughout this paper, F-gates in #EO contexts follow this
definition unless stated otherwise.

Next, we introduce the matrix form of signatures, which provides an orderly way to
enumerate all possible values of a signature. Let f be an arbitrary signature mapping from
{0, 1}r to C. First we fix an ordering of the variables as x1, x2, . . . , xr. The matrix form of f
(or signature matrix of f [9]) with parameter l is a 2l ×2r−l matrix for some integer 0 ≤ l ≤ r,
where the values of x1, x2, . . . , xl determine the row index and the values of xl+1, xl+2, . . . , xr

determine the column index. This matrix is denoted by M(f)x1x2···xl,xl+1xl+2···xr . For
convenience, we sometimes omit (f) and write simply Mx1···xl,xl+1···xr

, or use the abbreviated
form Mf when no ambiguity arises. For signatures with even arity, we typically choose l = r

2 .

▶ Example 13 (Signature matrix). If f is a binary signature and f = (f00, f01, f10, f11), then

Mf = Mx1,x2 =
(
f00 f01
f10 f11

)
.

If g is a quaternary signature, then

Mg = Mx1x2,x3x4 =


g0000 g0001 g0010 g0011
g0100 g0101 g0110 g0111
g1000 g1001 g1010 g1011
g1100 g1101 g1110 g1111

 .

We now establish the connection between matrix multiplication and gadget construc-
tion. Consider two F-gates f and g with arities n and m respectively, where Var(f) =
{x1, x2, . . . , xn} and Var(g) = {y1, y2, . . . , ym}. By connecting a subset of their dangling
edges - specifically pairing {xn−l+1, . . . , xn} with {y1, y2, . . . , yl} for some positive integer l,
we construct a new F-gate h.



B. Meng, J. Wang, and M. Xia 118:9

The resulting signature h has variables Var(h) = {x1, . . . , xn−l, yl+1, . . . , ym}. Through
direct comparison of gadget computation and matrix multiplication, we obtain:

Mh = Mx1···xn−l,yl+1···ym = Mx1···xn−l,xn−l+1···xn ·My1···yl,yl+1···ym = Mf ·Mg.

For #EO problems, the only modification is that edges now represent ̸=2 instead of =2,
yielding:

Mh = Mf · ≠⊗l
2 ·Mg.

This relationship will be frequently employed in subsequent discussions without further
explanation.

We highlight two special forms of gadget construction: self-loop and pinning. In #EO
problems, adding a self-loop to signature f involves selecting two variables x1 and x2
and connecting them with an internal edge, yielding new signature fx1 ̸=x2 . For Var(f) =
{x1, x2, . . . , xn}, since the internal edge represents ̸=2, we obtain:

fx1 ̸=x2(x3, . . . , xn) = f(0, 1, x3, . . . , xn) + f(1, 0, x3, . . . , xn).

This operation can be generalized using ̸=a,b
2 . Instead of directly connecting x1 and

x2, we introduce a new vertex assigned ̸=a,b
2 and connect x1 and x2 to its dangling edges.

The two possible connection orders yield either: f ′(x3, . . . , xn) = af(0, 1, x3, . . . , xn) +
bf(1, 0, x3, . . . , xn) or f ′(x3, . . . , xn) = bf(0, 1, x3, . . . , xn) + af(1, 0, x3, . . . , xn).

Pinning represents the second key operation. While standard Holant and #CSP problems
use ∆0 = (1, 0) or ∆1 = (0, 1) to fix variables, #EO problems employ ̸=1,0

2 self-loops. For
x, y ∈ Var(f), pinning simultaneously fixes x = 1 and y = 0, preserving the EO property.
The resulting signature is denoted fx=1,y=0. Throughout this paper, “pinning signature”
refers unambiguously to ̸=1,0

2 .

2.4 Two known dichotomies for #CSP and Six-vertex model
In this section, we introduce the dichotomies for #CSP and six-vertex model. We start
from defining tractable classes A and P. Let X be a (d + 1)-dimensional column vector
X = (x1, x2, · · · , xd, 1)T over F2. Suppose A is a matrix over F2. The function χAX takes
value 1 when AX = 0, otherwise 0. In other words, χAX describe an affine relation on
variables x1, x2, · · · , xd.

▶ Definition 14 ([25]). We denote by A the set of signatures which have the form λ · χAX ·
iL1(X)+L2(X)+···+Ln(X), where i =

√
−1, λ ∈ C, n ∈ Z+, each Lj is a 0-1 indicator function

of the form ⟨αj , X⟩, where αj is a (d+ 1)-dimensional vector over F2, and the dot product
⟨·, ·⟩ is computed over F2.

▶ Definition 15 ([25]). We denote by P the set of all signatures which can be expressed a
product of unary signatures, binary equality signatures (=2) and binary disequality signatures
(̸=2) (on not necessarily disjoint subsets of variables).

As in [9, chapter 3], A and P are closed under gadget construction. That is, if F ⊆ A

or F ⊆ P, then all F-gates are respectively in A or P. Now we state the dichotomy for
#CSP from [25, Theorem 3.1].

▶ Theorem 16 ([25]). Suppose F is a finite set of signatures mapping Boolean inputs to
complex numbers. If F ⊆ A or F ⊆ P, then #CSP(F) is computable in polynomial time.
Otherwise, #CSP(F) is #P-hard.
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For EO signatures belonging to A or P, they satisfy the following properties.
▶ Lemma 17 ([16, Lemma 5.7]). If an EO signature f has affine support, then f is a pairwise
opposite signature (EOM signature).
▶ Lemma 18 ([16]). f ∈ A (resp. P) if and only if τ(f) ⊆ A (resp. P).

Now we introduce some definitions for the dichotomy for six-vertex model. M is the set
of all ternary signatures whose supports only contain strings of Hamming weight exactly
1. In other words, a quaternary EO signature f ∈ M ⊗ ∆1, if and only if supp(f) ⊆
{1} × {100, 010, 001} = {1100, 1010, 1001}. M̃ is defined similarly, except that the Hamming
weight of each support string is exactly 2. The dichotomy for six-vertex model is as follows.
▶ Theorem 19 ([19]). Let f be a quaternary EO signature, then Holant( ̸=2| f) is #P-hard
except for the following cases:

a. f ∈ P (equivalently, f ∈ EOM and τ(f) ⊆ P);
b. f ∈ A (equivalently, f ∈ EOM and τ(f) ⊆ A );
c. f ∈ M ⊗ ∆1;
d. f ∈ M̃ ⊗ ∆0;
in which cases Holant( ̸=2| f) is computable in polynomial time.

2.5 Insights from tractable cases
Starting from this section, this article presents a number of insights pertaining to the tractable
cases within each dichotomy. The objective is to generalize these tractable cases at a high
level of abstraction, although some statements may be informal. It is our hope that these
generalized characteristics, derived from the tractable cases, will prove a valuable point of
reference for future research.

In the dichotomy of #CSP, both A and P are self-dual signature sets. All signatures
in A and P have affine supports, so having affine support is a necessary condition for
tractability here, and we consider this condition as a support requirement. Informally
speaking, there are two ways to reach tractability based on the support requirement, namely
A type and P type requirements. The two steps explanation for the tractability part in
Theorem 16, will be used as an important template in explaining the following results. We
hope to exhibit an informal evolution process from the known tractable cases to the new
tractable cases in this way.

In the dichotomy for six-vertex model, the support requirement is an union of two parts.
The first part is that the support must be affine. Regardless of variable permutations, it is
exactly an affine subspace of Q = {0101, 1001, 0110, 1010}. This corresponds to the tractable
cases a and b in Theorem 19.

The second part is that the support must be an subset of Q1 = {1100, 1010, 1001} or its
dual, Q0 = {0011, 0101, 0110}. This requirement itself is enough for tractability. Noticing
that if each signature f in the instance satisfies that supp(f) = Q1, then one of its variables
is fixed to 1, say x1. Transmitted by ̸=2, as well as the general binary disequality signatures
in the instance, another edge x2 of a signature g will be fixed to 0. Then the valid part of
supp(g), the set of strings that can appear in an assignment with non-zero evaluation, is of
size at most two and meets the affine support requirement. We denote this process as the
receiving-sending mechanism. This mechanism directly corresponds to the chain reaction
algorithm in [43]. This process may repeat many rounds, until each signature collapses to
EOM. At each round, an opposite pair of variables is somehow fixed by this mechanism. And
the process continues until the rest signatures in the whole instance are in EOM. Hence, this
more general support requirement, can force a signature in an instance to work exactly like
some EOM signature. The analysis of the dual case Q0 is similar.
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3 New notations and our results

There are three parts of results in this paper, which are introduced in Subsection 3.1, 3.2,
3.3 respectively. In Subsection 3.4, we introduce two strange signatures, which serve as
a motivation for some of our study. Finally in Subsection 3.5 we introduce the relations
between these results.

3.1 A set of binary or quaternary signatures
The first part of our results generalizes six-vertex model to #EO problems defined by a set
of EO signatures of arity no more than 4. We define

MA = {f ∈ M | the quotient of any two non-zero values of f belongs to {±1,±i}}.

MA ⊗ ∆1 can be seen as M ⊗ ∆1 with the A type requirement. Similarly, we define

M̃A = {f ∈ M̃ | the quotient of any two non-zero values of f belongs to {±1,±i}}.

The detailed version of Theorem 5 is as follows.

▶ Theorem 20. Suppose F is a set of EO signatures with arity less than or equal to 4. Then
Holant(̸=2| F) is #P-hard unless one of the following conditions holds:

a. F ⊆ P ∪ (M ⊗ ∆1);
b. F ⊆ A ∪ (MA ⊗ ∆1);
c. F ⊆ P ∪ (M̃ ⊗ ∆0);
d. F ⊆ A ∪ (M̃A ⊗ ∆0),
in which cases the problem can be computed in polynomial time.

We summarize current notations as the following tree. A specific example of the A type
requirement is also presented. When a set of signatures can meet all requirements on a path
from the root to the four nodes at the bottom, the corresponding #EO problem is tractable;
otherwise the problem is #P-hard.

Quaternary or binary EO signatures

Meets Q or Q1 support req.

Meets P type req.

Meets A type req. (A ∪ (∆1 ⊗ MA ))

Meets Q or Q0 support req.

Meets P type req. Meets A type req.

3.1.1 Insights from tractable cases
This dichotomy exhibits two dual support requirements represented by {Q,Q1}4 and {Q,Q0}.
Tractability requires satisfying either support requirement along with either an A -type or
P-type requirement.

A key distinction between Theorems 19 and 20 lies in the emergence of MA in the latter.
It can be verified that:

4 Each signature’s support must be a subset of either Q or Q1.
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For Q signatures, A -type and P-type requirements produce the first two tractable classes
in Theorem 19;
Q1 signatures under A -type requirements automatically satisfy P-type conditions,
explaining the third tractable case;
The dual Q0 case similarly generates the fourth tractable case.

Theorem 20 demonstrates the crucial divergence between A -type and P-type require-
ments when handling mixed signature sets.

3.1.2 Proof outline of hardness result
We say two signature sets A,B mix (in F) if there exists f, g ∈ F such that f ∈ A−B and
g ∈ B −A. We first prove 3 no-mixing lemmas, mainly through signature classification on
support size and gadget construction, showing the following cases are #P-hard:
1. M ⊗ ∆1 and M̃ ⊗ ∆0 mix;
2. A and P mix;
3. A − P and (M ⊗ ∆1) − (MA ⊗ ∆1) mix;
4. A − P and (M̃ ⊗ ∆0) − (M̃A ⊗ ∆0) mix.

Suppose F is a set of binary and quaternary EO signatures. Suppose the problem is not
#P-hard. By Theorem 19, we can assume that F ⊆ A ∪ P ∪ (M ⊗ ∆1) ∪ (M̃ ⊗ ∆0).

As M ⊗ ∆1 and M̃ ⊗ ∆0 do not mix, either F ⊆ A ∪ P ∪ (M ⊗ ∆1) or F ⊆ A ∪ P ∪
(M̃ ⊗ ∆0). Due to the dual property, it is sufficient to focus on the former case.

As A and P do not mix, either F ⊆ P ∪ (M ⊗ ∆1) or F ⊆ A ∪ (M ⊗ ∆1). The former
case is exactly tractable case a in Theorem 20. We focus on the latter case.

As A − P and (M ⊗ ∆1) − (MA ⊗ ∆1) do not mix, either F ⊆ A ∪ (MA ⊗ ∆1) or
F ⊆ (A ∩ P) ∪ (M ⊗ ∆1). The former case is exactly tractable case b in Theorem 20, and
the latter case is subsumed by tractable case a.

3.2 Pure signatures
In this section we focus on pure signatures, which can be seen as a generalization of the
quaternary signatures in M ⊗ ∆1 and M̃ ⊗ ∆0.

▶ Definition 21. An EO signature f is pure-up, if Span(f) ⊆ HW≥. A signature set F is
pure-up, if each signature in it is pure-up. Similarly, An EO signature f is pure-down, if
Span(f) ⊆ HW≤. A signature set F is pure-down, if each signature in it is pure-down.

These two categories are collectively termed pure signatures.

We summarize current notations as the following tree.

Even arity signatures

HW≤ EO

pure-down
EOM

pure-up

HW≥span contained in span contained in
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In the following, we present the dichotomy of pure signatures and the corresponding
definitions. It is worth noticing that in this section, pure-up signatures and pure-down
signatures never mix in F .

▶ Definition 22. Suppose f is an arity 2d EO signature and S ⊆ HW=. f |S is the restriction
of f to S, which means when α ∈ S, f |S(α) = f(α), otherwise f |S(α) = 0.

If for any pairing P of Var(f), f |EOP ∈ A , then we say that f is EOA .
Similarly, if for any pairing P of Var(f), f |EOP ∈ P, then f is EOP .

▶ Theorem 23 (The dichotomy for pure-up EO signatures). Suppose F is a set of pure-up EO
signatures. Then #EO(F) is #P-hard unless all signatures in F are EOA or all of them are
EOP , in which cases the problem can be computed in polynomial time.

3.2.1 Insights from tractable cases
We primarily analyze pure-up signatures, noting that pure-down signatures admit dual
analysis through symmetric arguments. Key properties of pure-up signatures reveal that each
either belongs to EOM, or has at least one variable fixed to 1. These properties enable applic-
ation of the active receiving-sending mechanism. Pure signatures thus induce a generalized
support requirement with two dual cases (intersecting at the self-dual EOM requirement),
where tractability emerges through additional EOA type or EOP type requirements.

3.2.2 Proof outline of hardness result
For a pure signature fof arity 2d, it can be proved that for an arbitrary pairing P of Var(f),
f |EOP = f ′ ⊗ ∆d−k

0 ⊗ ∆d−k
1 where f ′ is an EOM signature of arity 2k. Such f ′ can be realized

by adding d− k self-loops, and f ′ ∈ A (or P) if and only if f |EOP ∈ A (or P).
Consequently, if F is not a subset of EOA or EOP , then there exist EOM signatures

f ′ /∈ A and g′ /∈ P can be realized. By Lemma 12, #EO({f ′, g′}) is equivalent to a
#CSP({f ′′, g′′}) problem, where f ′′ /∈ A and g′′ /∈ P. By Theorem 16 #CSP({f ′′, g′′}) is
#P-hard, and consequently #EO(F) is #P-hard.

3.3 Rebalancing signatures
In this section, we define a property named rebalancing for EO signatures.

▶ Definition 24 (Rebalancing). An EO signature f of arity 2d, is called 0-rebalancing(1-
rebalancing respectively), when the following recursive conditions are met.

d = 0: No restriction.
d ≥ 1: For any variable x in X = Var(f), there exists a variable y = ψ(x) different from
x, such that for any α ∈ {0, 1}X , if αx = αy = 0(αx = αy = 1 respectively) then f(α) = 0.
Besides, the arity 2d− 2 signature fx=0,y=1 is 0-rebalancing(fx=1,y=0 is 1-rebalancing
respectively).

For completeness we view all nontrivial signatures of arity 0, which is a non-zero constant,
as 0-rebalancing(1-rebalancing) signatures. For the d ≥ 1 case, ψ is said to be the first level
mapping of f .

Tractability can also be obtained based on 0-rebalancing/1-rebalancing property.

▶ Theorem 25. If F is composed of 0-rebalancing(1-rebalancing) EOA signatures, or F is
composed of 0-rebalancing(1-rebalancing) EOP signatures, then #EO(F) is polynomial-time
computable.
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▶ Remark 26. It can be verified that every EOM signature satisfies both 0-rebalancing and
1-rebalancing conditions. All pure-up signatures are 0-rebalancing due to the following
arguments. When a pure-up signature f satisfies supp(f) ∩ HW> ̸= ∅, it necessarily contains
a ∆1(x) factor. This factor induces a first-level mapping ψ where all variables except x
map to x, while ψ(x) can be any variable other than itself. This mapping process can be
recursively applied until the signature f is transformed into an EOM signature, which remains
0-rebalancing. Through dual reasoning, all pure-down signatures satisfy 1-rebalancing.

3.3.1 Insights from the algorithm
This section extends the receiving-sending mechanism to rebalancing signatures. While the
active receiving-sending mechanism for pure signatures requires initial ∆1 (∆0) triggers,
rebalancing signatures may lack such initial conditions. Nevertheless, by assuming fixed values
for certain variables, the mechanism still functions through what we term the passive receiving-
sending mechanism. Building on this modified mechanism, we develop a polynomial-time
algorithm for #EO problems defined by 0-rebalancing or 1-rebalancing signatures meeting
A -type or P-type requirements.

Definition 24 for d ≥ 1 specifies two necessary conditions: the existence of mapping ψ
(first-level condition) and the recursive condition. Crucially, the first-level condition remains
unconditional - the relationship between x and ψ(x) persists even when other variables are
fixed. This property enables identification of loops (rather than ∆0/∆1-initiated paths)
in the passive mechanism, while the recursive condition ensures the mechanism’s iterative
applicability.

3.4 Two strange signatures
In this subsection we present the definition of f40 and f56, which are considered as two
important examples in our study. Some of our results are motivated by these signatures. We
first introduce some notations to describe signatures with large arity and a sparse support.

For matrices As×p and Bs×q, we use Cs×(p+q) = [A B] to denote the matrix C satisfying

C(i, j) =
{
A(i, j), 1 ≤ j ≤ p;
B(i, j − p), p+ 1 ≤ j ≤ p+ q.

(1)

Informally speaking, C is a concatenation of A,B. We use A→k to denote the matrix
[A A ... A], which is a concatenation of k copies of matrix A. We also define the following
matrices.

H0 =


0
0
0
0
0

 , H2 =


1 1 1 1 0 0 0 0 0 0
1 0 0 0 1 1 1 0 0 0
0 1 0 0 1 0 0 1 1 0
0 0 1 0 0 1 0 1 0 1
0 0 0 1 0 0 1 0 1 1

 , H4 =


0 1 1 1 1
1 0 1 1 1
1 1 0 1 1
1 1 1 0 1
1 1 1 1 0


For a signature f of arity k, we use the support matrix Rs×k to describe its support. A

string α ∈ {0, 1}k is a support string of f if and only if α equals a row in Rs×k. f40 has the
support matrix R5×40 = [H→3

2 H→2
4 ], f56 has the support matrix R5×56 = [H0 H

→4
2 H→3

4 ]
and both of them are 0-1 weighted. Though the supports of them are sparse, they are not
able to be captured by a number of existing algorithms and hardness results.
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3.5 Relations between results
The first two parts collectively establish complete dichotomies for #EO problems, incorporat-
ing both tractability and hardness results: the first for binary and quaternary signature sets,
the second for pure-up/pure-down signature sets. The hardness results from the first part
form the foundational basis for the hardness classification in complex-weighted #EO, while
those from the second part are equally pivotal for establishing the full #EO dichotomy.

The third part focuses on defining the rebalancing property and presenting a polynomial-
time algorithm for 0-rebalancing/1-rebalancing signatures with type requirements. Notably,
this algorithm subsumes both previous algorithms through its innovative use of support
requirements to emulate the EOM property’s effects. The case of f40 (defined in Section 3.4)
exemplifies this generalization - although not a pure signature, its satisfaction of 0-rebalancing
demonstrates our algorithm’s strictly broader applicability compared to the pure signatures’
algorithm.

We observe that although the results in [43] are restricted to 0-1 weighted #EO problems,
they nevertheless capture essential support requirements for signatures. Specifically, the
pure property inherently implies the δ-affine property, and their chain reaction algorithm
implements what we term the active receiving-sending mechanism.

The complex-weighted #EO dichotomy in [40] adopts the notation ∀k ↑ for pure-up
signatures and ∀k ↓ for pure-down signatures, where our Theorem 23 directly resolves “Case
3a” and “Case 4a”. Notably, the signatures f40 and f56 introduced in our work, whose
non-trivial nature is evident from our analysis, provide concrete examples for “Case 3c”.

4 Conclusion

In this article, we prove two dichotomies for #EO(F): one with F restricted to binary
and quaternary signatures, and another with F restricted to pure signatures. We also
present an algorithm for rebalancing signature sets satisfying EOA or EOP . A more detailed
characterization of pure signatures and rebalancing signatures would be valuable, similar to
what has been achieved for δ-affine kernels in [43]. Indeed, pure signatures clearly exhibit
close connections to δ-affine signatures.

The pursuit of a complete dichotomy for #EO remains an important research direction.
Notably, the signature f56 defined in Section 3.4 is neither pure nor rebalancing. The
complexity of #EO({f56}) remains unresolved and presents significant interest. While some
progress has been made, substantial challenges persist in addressing this problem.

Recent work [40] has established an FPNP versus #P dichotomy for complex-valued #EO,
which includes an interesting polynomial-time algorithm with a specific NP oracle for solving
#EO(f56). This development has also prompted renewed investigation of Boolean constraint
satisfaction problems [32]. Nevertheless, the polynomial-time computability of #EO(f56)
remains an open question, and the most general known polynomial-time algorithm for #EO
is still our rebalancing signature algorithm presented in this work.
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