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Abstract
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1 Introduction

There are two important clusters of computational problems that are not known to be
in the complexity class P: the first is related to numeric computation, and contains the
sums-of-square-roots problem [34, 26], the Euclidean shortest path problem, PosSLP [7], and
the feasibility problem for semidefinite programs [50, 54]. The second cluster is related to
tropical geometry, and contains for instance the model checking problem for the propositional
µ-calculus [28, 27], parity games [47, 49], mean payoff games [25], and/or scheduling [48],
stochastic mean payoff games [8], and simple stochastic games [22]. So far, no polynomial-
time reduction from a problem of one of the clusters to a problem from the other cluster was
known. We show that all of the mentioned problems from the second cluster can be reduced
in polynomial time to the feasibility problem for semidefinite programs from the first cluster.

Semidefinite programming is a generalisation of linear programming with many important
algorithmic applications in discrete and continuous optimisation, both from a theoretical and
a practical perspective [36, 12, 43]. However, already the feasibility problem for semidefinite
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145:2 Reducing Stochastic Games to Semidefinite Programming

programs is not known to be in P. By Ramana’s duality [54], the problem is either in the
intersection of NP and coNP, or outside of the union of NP and coNP. The semidefinite
feasibility problem falls into the existential theory of the reals, which is known to be in
PSPACE [20]. However, it has been observed by Khachiyan that the smallest feasible solution
to an SDP might be of doubly exponential size (see, e.g., [51]), which is an obstacle for the
polynomial-time algorithmic methods known for linear programming. In fact, it is possible
to reduce the PosSLP problem (testing positivity of a value computed by a Straight Line
Program) to semidefinite programming [59]. PosSLP has been introduced in [7], motivated by
the “generic task of numerical computation”. For example, the sums-of-square-roots problem,
which is a numeric computational problem not even known to be in NP and the barrier for
polynomial-time tractability for numerous problems in computational geometry, such as the
Euclidean shortest path problem, has a polynomial-time reduction to PosSLP [7].

Mean payoff games are turn-based two-player games on graphs [25, 60]; it is a famous
open problem in theoretical computer science whether there is a polynomial-time algorithm
to decide for a given graph which of the players has a winning strategy. Finding the winning
region in mean payoff games is polynomial-time equivalent to various other computational
problems in theoretical computer science, for instance scheduling with and-or-constraints [48],
the max-atoms problem [14], as well as solvability of max-plus systems and tropical linear
feasibility [2, 1]. The latter can be seen as the tropical analog of testing feasibility of
linear inequalities (which for classical geometry is known to be in P, e.g., via the ellipsoid
method [41, 36]).

Furthermore, there is a simple reduction from parity games to mean payoff games by
using the priorities of the parity game with a suitably large basis [52]. Parity games are
polynomial-time equivalent to the model-checking problem of the propositional µ-calculus [27],
which has been called ‘the most important logics in model checking’ [18]. For parity games, a
quasipolynomial algorithm has been found recently [19]. Subsequent work indicates that the
various quasipolynomial methods that have been obtained lately for parity games [45, 39, 44]
do not extend to mean payoff games [21].

Mean payoff games can be generalised to stochastic mean payoff games (sometimes called
2 1

2 -player games), where the graph might contain stochastic nodes. If the strategy of one of
the two players in such a game is fixed, the game turns into a Markov decision process, for
which polynomial-time algorithms based on linear programming are known [53]. Stochastic
mean payoff games are equivalent under polynomial-time Turing reductions to Condon’s
simple stochastic games [8] (we may even assume that the simple stochastic games are
stopping, see the discussion in Section 2.2), which are known to be in the intersection of NP
and coNP [22]. There are many other variants of games that all have the same complexity,
see [8].

One approach to analyze mean payoff games consists in reducing these games to constraint
satisfaction problems (CSPs). More precisely, it is known that mean payoff games are
equivalent to the max-atom problem [9, 48], while the more expressive stochastic mean payoff
games can be reduced to max-plus-average constraints, which are still in NP ∩ coNP [16]. We
introduce a fragment of max-plus-average constraints, which we call max-average constraints.
There is a polynomial-time reduction from stopping simple stochastic games to max-average
constraints (Section 3). Max-average constraints have the advantage that they can be further
reduced to the feasibility problem for semidefinite programs, as we will show here. This
implies that all the mentioned computational problems from the second cluster can be reduced
to semidefinite programming. See Figure 1 for an overview of the mentioned computational
problems and their relationship.



M. Bodirsky, G. Loho, and M. Skomra 145:3

Semidefinite Program Feasibility

PosSLP

Sums-of-Square-Roots

Max-Average
Constraints

Stochastic Mean
Payoff Games

New!

Mean Payoff Games

Parity Games

Stopping Simple 
Stochastic Games

Euclidean-shortest-paths Model-checking for
propositional µ-calculus

Figure 1 Computational problems that are not known to be in P and not known to be NP-hard,
and their relationship. Arcs indicate polynomial-time (many-one) reductions, the dotted arc indicates
a polynomial-time Turing reduction.

Our reduction consists of two steps. The first step uses a similar idea as the reduction of
Schewe [56] to reduce parity games and mean payoff games to linear programming, which is,
however, not a proper polynomial-time reduction. More precisely, the idea of this first step
is to replace constraints of the form x0 = max(x1, . . . , xk), which occur in the max-atom
problem, by x0 = logb(bx1 + · · · + bxk ) for a sufficiently large b. This reduction is not a
polynomial-time reduction since the numbers bxi may have exponential bit-sizes for any x
that solves the original problem. Following [6], we extend this idea to max-average constraints
and obtain a proper polynomial-time reduction to non-Archimedean SDPs, which are SDPs
defined over a field of formal power series. From there, we use bounds from quantifier
elimination results to translate non-Archimedean SDPs to real SDPs. However, we still
have the obstacle that these SDPs involve coefficients of doubly exponential size, which
means that they have exponential representation size and do not lead to a polynomial-time
reduction. In the second step of our reduction, we overcome this difficulty by using the
duality of semidefinite programming to find small expressions that define coefficients of
doubly exponential size, which combined with the above ideas leads to a polynomial-time
reduction from max-average constraints to (real) SDPs.

Our results imply that if there is a polynomial-time algorithm for SDPs, then all the
mentioned problems in the second cluster can be solved in polynomial time as well. Conversely,
our reduction can be used to translate interesting families of instances for (stochastic) mean
payoff games or parity games into SDP instances, which might yield interesting families of
instances for (algorithmic approaches to) semidefinite programming. For linear programming,
this idea turned out to be very fruitful: certain instances of parity games have been used to
prove exponential lower bounds for several famous pivoting rules for the simplex method in
linear programming [32, 31, 33, 10, 24]. However, these results were not based on a general
polynomial-time reduction from parity games to linear programming (which is not known!).
We also hope that algorithmic ideas for solving games might generalise to (certain classes of)
SDPs.

Our results also show that two large research communities (convex real algebraic geometry,
and more generally convex optimisation on the one hand, and verification and automata
theory on the other hand) were working on closely related computational problems and might
profit from joining forces in the future.

ICALP 2025



145:4 Reducing Stochastic Games to Semidefinite Programming

1.1 Related work

There are multiple works that reduce games to continuous optimization problems. As
mentioned above, one-player mean payoff games (Markov decision processes) can be reduced
to linear programming [53], which implies that they can be solved in polynomial time (but
it is open whether there is a strongly polynomial algorithm). For the case of two-player
deterministic mean payoff games, Schewe [56] proposed a reduction to linear programs with
coefficients of exponential representation size. Such programs can also be interpreted as linear
programs over non-Archimedean ordered fields [4, 3, 5]. The idea of Schewe was generalized
to stochastic games in [17], where the authors prove that stochastic mean payoff games
can be encoded by convex programs with constraints of exponential encoding size. Such
programs can be solved by the ellipsoid method in pseudo-polynomial time provided that
the number of stochastic nodes is fixed. The non-Archimedean approach was generalized
from deterministic games to stochastic games in the work [6], which proves that stochastic
mean payoff games can be reduced to semidefinite programs over non-Archimedean fields.
The paper [6] serves as a basis for our results.

These reductions express mean payoff games as convex optimization problems, but these
problems are “non-standard” in the sense that they either use constraints of exponential
encoding size or are expressed over non-Archimedean fields. There is yet another line of
work deriving polynomial-time reductions from mean payoff games to classical optimization
problems which are not convex. In particular, [23] expressed simple stochastic games as
non-convex quadratic programs. This reduction is further studied in [42]. Another reduction
to (generalized) complementarity problems with P -matrices was proposed in [35, 58] and
extended in subsequent works [40, 30, 37]. Such linear complementarity problems form
a subclass of quadratic programs and belong to the complexity class UniqueEOPL [29].
However, they are in general non-convex and can therefore not be expressed by semidefinite
programs.

2 Preliminaries

The set of natural numbers {0, 1, 2, . . . } is denoted by N, and the set of real numbers by R.
We assume familiarity with first-order logic; see, e.g., [38]. Let τ be a signature, i.e., a set of
function and relation symbols. A first-order τ -formula is a formula built from the Boolean
connectives, atomic τ -formulas and quantification in the usual way. If A is a τ -structure and
ϕ is a τ -formula with free variables x1, . . . , xk, then ϕ defines over A the relation

{(a1, . . . , ak) ∈ Ak | A |= ϕ(a1, . . . , ak)}.

A set is called semialgebraic if it has a first-order definition over the field (R; +, ·), allowing
real parameters (we do not need the order in the signature since it is definable from addition
and multiplication). A first-order formula ϕ(x1, . . . , xk) with free variables x1, . . . , xk is
called primitive positive if it is of the form

∃y1, . . . , yℓ(ψ1 ∧ · · · ∧ ψm)

where ψ1, . . . , ψm are atomic formulas over the variables x1, . . . , xk, y1, . . . , yℓ. A relation
is called primitive positive definable in a τ -structure A if there exists a primitive positive
τ -formula which defines the relation over A.
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2.1 Semidefinite Programming
For a symmetric matrix S ∈ Rm×m we write S ⪰ 0 if S is positive semidefinite, i.e., if
x⊤Sx ≥ 0 for all x ∈ Rm, and S ≻ 0 if it is positive definite, i.e., if x⊤Sx > 0 for all
x ∈ Rm \ {0}. A semidefinite program (SDP) is an optimisation problem of the following
form:

inf
n∑

i=1
cixi

such that
n∑

i=1
xiAi −B ⪰ 0 ,

(P)

where A1, . . . , An, B ∈ Rm×m are symmetric and c1, . . . , cn ∈ R. If the data A1, . . . , An, B,
c1, . . . , cn is rational, then the problem of deciding whether the infimum exists, and if so, to
compute the infimum, is a computational problem known as the semidefinite programming
problem. The representation size of the SDP then consists of the sum of the bit lengths of all
the rational numbers in the input.

The expression
∑n

i=1 xiAi −B ⪰ 0 in (P) is called a linear matrix inequality (LMI), and
defines the feasible region of the SDP, which is called a spectrahedron. The representation
size of LMIs is defined analogously as for SDPs. We say that an SDP is strictly feasible if∑n

i=1 xiAi −B ≻ 0 has a solution x ∈ Rn.

▶ Definition 1. Given symmetric matrices A1, . . . , An, B ∈ Qm×m the feasibility problem
for semidefinite programs asks to decide whether there is a solution x ∈ Rn to an LMI

x1A1 + · · · + xnAn −B ⪰ 0 .

Note that spectrahedra are convex and semialgebraic. It has been conjectured that every
convex semialgebraic set is the projection of a spectrahedron (also called a spectrahedral
shadow), but this turned out to be false [55] (see [15] for an alternative proof of an even
stronger inexpressibility result). It is easy to see that the set of spectrahedral shadows is
closed under primitive positive definability, and that for every primitive positive formula ϕ
we may find an LMI for the spectrahedral shadow defined by ϕ whose representation size
is bounded by the sum of the representation sizes of conjuncts of ϕ. We also note that the
definition of a semidefinite program makes sense over any real closed field, not only over
the real numbers. In particular, it is meaningful to consider semidefinite programs over
non-Archimedean real closed fields, such as the field of Puiseux series which we discuss in
Section 4.

The (Frobenius) inner product of two matrices S, T ∈ Rm×m is defined as ⟨S, T ⟩ :=
trace(ST ) =

∑
i,j SijTij . The dual program to the SDP from (P) (to which we refer as the

primal) is given by

sup
Y ⪰0

⟨B, Y ⟩

such that ⟨Ai, Y ⟩ = ci for every i ∈ {1, . . . , n} .
(D)

It is well-known that the value of the primal SDP is bounded from below by the value
of the dual; however, the lower bound might not be tight, i.e., there might be a non-zero
duality gap. Moreover, both primal and dual might not have optimal solutions, i.e., the
supremum may not be a maximum and the infimum might not be a minimum. See [54] for a
more complicated, but exact dual. However, for us the following sufficient condition for a
vanishing duality gap will be enough.

ICALP 2025



145:6 Reducing Stochastic Games to Semidefinite Programming

▶ Theorem 2 (see Theorem 2.4.1 in [12]). If the primal SDP is strictly feasible and bounded
from below, then the dual program attains its supremum and there is no duality gap.

2.2 Stochastic Games
A stochastic mean payoff game is a two-player game played on a finite edge-weighted directed
graph G⃗ = (V,E, r, p), i.e., V is a finite set of nodes, E ⊆ V 2 is a set of edges, r : E → Q is a
weight function, and p : E → Q∩ [0, 1] specifies edge probabilities. The nodes of the graph are
partitioned into three subsets, V = VMin ⊔ VMax ⊔ VRand. The nodes in VMin are controlled
by player Min, the nodes in VMax are controlled by player Max, and the nodes in VRand are
controlled by nature; the probabilities of the outgoing edges of each vertex in VRand sum
up to one. The players play the game by moving a pawn on the graph. When the pawn is
on a node v ∈ VMin, player Min chooses an outgoing edge (v, u) and moves the pawn to u.
Analogously, player Max chooses the next move when the pawn is on a node v ∈ VMax. When
the pawn is on a node v ∈ VRand, the next move is chosen by nature randomly according to
the probability distribution given by p. To ensure that players can always make a move, we
suppose that all nodes of the graph have at least one outgoing edge. The weights of the edges
of the graph represent payoffs that player Max receives from player Min after each move of
the pawn. In order to state the objectives of both players, we first specify the strategies
that they are allowed to use. A pure and positional strategy (also called a policy) for player
Min is a function σ : VMin → V that to each node controlled by Min associates a neighbor,
(v, σ(v)) ∈ E. Player Min plays according to σ if they always move the pawn to σ(v) when
the pawn lands on v. We analogously define a policy τ : VMax → V of player Max. Note that
if we fix a pair of policies and an initial position of the pawn, then the resulting movement
of the pawn is a Markov chain on the graph (V,E). Given an initial position u ∈ V of the
pawn and a pair of policies (σ, τ), the mean payoff reward of player Max is the quantity

g(σ, τ)u := lim
N→∞

1
N

Eu
σ,τ (ru0u1 + · · · + ruN−1uN

) ,

where u = u0, u1, . . . , uN is the path of the pawn in the first N turns of the game and the
expectation is taken with respect to the Markov chain obtained by fixing (σ, τ). The ergodic
theorem of Markov chains shows that g(σ, τ)u is well-defined. The objective of player Max is
to maximize the mean payoff reward while the objective of player Min is to minimize this
reward. It is known that both players in a stochastic mean payoff game have optimal policies
[46]. In other words, there exist policies (σ∗, τ∗) and a vector χ ∈ RV such that for every u
and every (σ, τ) we have the inequality

g(σ∗, τ)u ≤ χu ≤ g(σ, τ∗)u .

The reward χ = g(σ∗, τ∗) is called the value of the game. In order to make these games
computationally tractable, we suppose that the weights and the probability distributions at
nodes in VRand are rational. The nodes of the graph are also called the states of the game.

A simple stochastic game is a special case of a stochastic mean payoff game. In this game,
every node in VRand has out-degree exactly two and the probability distribution at every
such node is (1/2, 1/2). Furthermore, the graph is equipped with two special terminal states
called Win and Lose. These states are absorbing, i.e., Win has only one outgoing edge that
goes back to Win and Lose has only one outgoing edge that goes back to Lose. The weight
of the edge going from Win to Win is equal to 1, while the weight of all of the other edges of
the graph is equal to 0. In this case, the mean payoff reward of player Max is simply the
probability that the pawn reaches the winning state, g(σ, τ)u = Pu

σ,τ (Reach(Win)).
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A simple stochastic game is called stopping if for every initial position u ∈ V and
every pair of policies (σ, τ), the pawn reaches a terminal state with probability one,
Pu

σ,τ (Reach(Win,Lose)) = 1. In other words, the game is stopping if the Markov chain
obtained by fixing any pair of policies has only two recurrent classes, namely {Win} and
{Lose}.

The computational problem associated with stochastic mean payoff games is the following:
given a stochastic mean payoff game, find its value and a pair of optimal policies. In [8],
Andersson and Miltersen proved that this problem is polynomial-time (Turing) reducible to
the problem of finding the value of a stopping simple stochastic game. By a binary search
argument, the problem of computing the value of a stopping simple stochastic game can be
further reduced to the decision problem, in which we want to decide whether the value of a
given state of such a game is at least 1/2. The details of this reduction can be found, e.g., in
[6] or [57, Section 7.1].

▶ Theorem 3 ([6, Lemma 48]). The problem of computing the value and a pair of optimal
policies of a stochastic mean payoff game is polynomial-time (Turing) reducible to the problem
of deciding whether a given state of a stopping simple stochastic game has value at least 1/2.

3 From stochastic games to max-average constraints

In this section, we focus on the decision problem stated in Theorem 3 above: given a
stopping simple stochastic game we want to decide whether the value of a given state is at
least 1/2. This problem can be reduced to max-average constraint satisfaction problems
(max-average CSPs). The ideas for this reduction are not new, but we are not aware of an
explicit reference for this fact, and we therefore present a short proof in this section. In
the next section, we will show that max-average CSPs then further reduce to the feasibility
problem of non-Archimedean semidefinite programs. The fact that stochastic games can
be encoded as non-Archimedean SDPs was proven in [6] and our reduction is very similar.
While their approach relies on reducing stochastic games to ergodic games, we omit this step
and obtain a slightly more straightforward reduction.

▶ Definition 4. An instance of a max-average CSP is a conjunction of constraints, each of
which has one of the following forms:
1. x0 ≤ max(x1, . . . , xk) where k ∈ N,
2. x0 ≤ x1+x2

2 ,
3. x0 = c where c is a rational constant.

The computational task is to determine whether such a conjunction has a solution over
Q ∪ {−∞} (equivalently, over R ∪ {−∞}).

Note that max-average CSP instances may also use constraints of the form x0 ≤
min(x1, . . . , xk) where k ∈ N, x0 ≤ c, or x0 ≥ c for some rational constant c, because
the respective relations are primitively positively definable over the other relations.

We now show that the problem of solving stochastic mean payoff games can be reduced
to max-average CSPs. A reduction to slightly more general CSPs, including constraints of
the form x0 ≤ c + x1, follows from [6, Theorem 18] and is based on a Collatz–Wielandt
property of order-preserving and additively homogeneous maps. However, for our purposes,
it is useful that the reduction does not use these additional constraints. Instead, we give a
proposition that characterizes the value of a stopping simple stochastic game. It was already
proven in [22] that this value is a unique fixed point of an operator involving min, max, and

ICALP 2025
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averaging operations. By replacing the fixed point equations with inequalities, we obtain a
set of certificates which prove that the value is at least 1/2. This observation is proven, e.g.,
in [13] and gives inequalities very similar to the inequalities on Shapley operators used in [6].

▶ Proposition 5. Consider a stopping simple stochastic game played on a directed graph
G⃗ = ([n], E). Then, the value of a state k ∈ [n] is at least 1/2 if and only if the following
system of inequalities (an instance of a max-average constraint satisfaction problem) has a
solution x ∈ Qn

≥0:

xi ≤ max
(i,j)∈E

{xj} for every i ∈ VMax,

xi ≤ min
(i,j)∈E

{xj} for every i ∈ VMin,

xi ≤ 1
2

∑
(i,j)∈E

xj for every i ∈ VRand,

xLose = 0,
xWin = 1,
xk ≥ 1/2.

(1)

Proof. Let (Q) denote the system of inequalities obtained from (1) by removing the inequality
xk ≥ 1/2. By [22] or [13, Theorem 77], the value of the game satisfies (Q) with inequalities
replaced by equalities. Hence, if the value at state k is at least 1/2, then the value of the
game satisfies (1). Moreover, the value of the game is a rational vector by [22, Lemma 2] or
[13, Corollary 18]. Conversely, if a point x ∈ Qn

≥0 satisfies (Q), then [13, Lemma 83] implies
that for all i ∈ [n], the entry xi is not greater than the value of the game at state i. Hence, if
we further suppose that xk ≥ 1/2, then the value of the game at state k is at least 1/2. ◀

4 From max-average constraints to non-Archimedean SDPs

By “lifting” the inequalities (1) to Puiseux series, we get the reduction from max-average
constraint satisfaction problems to non-Archimedean SDPs. A (formal real) Puiseux series
is a series of the form

x = x(t) = c0t
a/n + c1t

(a−1)/n + c2t
(a−2)/n + . . . ,

where t is a formal parameter, the number n is a positive integer, a is an integer, and the
coefficients ci are real. We further assume that c0 ̸= 0 for every Puiseux series except the zero
series. The number a/n is called the valuation of the series x and is denoted by val(x), with
the convention that val(0) = −∞. Puiseux series can be added and multiplied in the natural
way. Moreover, they can be ordered by defining x ≥ 0 if c0 ≥ 0 and x ≥ y if x − y ≥ 0. It is
known that Puiseux series form a real closed field, see, e.g., [11, Section 2.6] for a detailed
discussion.1 This field is non-Archimedean, meaning that the order does not satisfy the
Archimedean property: the series x(t) = t is larger than any natural number, i.e., t ≥ m

for all m ∈ N. We denote the field of Puiseux series by K. For any x,y ∈ K, the following

1 In this work, we use a convention in which one interprets t as a “very large” parameter. Many authors
use the opposite but equivalent convention in which t is a very small parameter. This explains the
differences in notation between our work and [11].
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properties of the valuation function are immediate from the definitions:

val(x + y) ≤ max{val(x), val(y)} ,
val(xy) = val(x) + val(y) ,

x ≥ y ≥ 0 =⇒ val(x) ≥ val(y) .
(2)

▶ Theorem 6. An instance ϕ with variables x1, . . . , xn of a max-average constraint satisfac-
tion problem has a solution in (Q∪ {−∞})n if and only if the following system of inequalities
Sϕ(t), which is a (quadratic) semidefinite program over Puiseux series, has a solution in Kn:
for every variable xi of ϕ we have a variable xi, and the inequalities are

xi0 ≤ xi1 + · · · + xik
for every constraint xi0 ≤ max(xi1 , . . . , xik

) in ϕ,

x2
i0

≤ xi1xi2 for every constraint xi0 ≤ xi1 + xi2

2 in ϕ,

xi0 = tc for every constraint xi0 = c in ϕ,
xi0 ≥ 0 for every i0 ∈ {1, . . . , n}.

(3)

Proof. Suppose that x = (x1, . . . ,xn) ∈ Kn satisfies (3). Then, val(x) belongs to (Q ∪
{−∞})n and satisfies ϕ by the properties of the valuation function (2). Conversely, if
(x1, . . . , xn) ∈ (Q∪{−∞})n satisfies ϕ, then (tx1 , . . . , txn) (with the convention that t−∞ = 0)
satisfies (3).

This amounts to the feasibility problem for a semidefinite program: the linear (in)equalities
can be expressed by diagonal matrices and each quadratic condition in combination with the
non-negativity of all variables is just the positive semidefiniteness of a symmetric 2-by-2 matrix.

Indeed, the symmetric matrix
(
x1 x3
x3 x2

)
is positive semidefinite if and only if x1 ≥ 0, x2 ≥ 0,

and x1x2 ≥ x2
3. (More generally, a symmetric matrix is positive semidefinite if and only if all

of its principal minors are nonnegative.) These are precisely the inequalities that appear
in (3), together with some linear inequalities. A conjunction of such inequalities can then
be expressed by a single LMI given by block-diagonal matrices (a symmetric block-diagonal
matrix is positive semidefinite if and only if every block is positive semidefinite). ◀

5 From non-Archimedean to real SDPs

To conclude, we aim to reduce the non-Archimedean semidefinite program from (3) to a real
semidefinite program. We will do this in two steps. First, we replace the formal parameter t
by a real number that is sufficiently large (doubly exponential in the size of the instance). In
fact, any non-Archimedean semialgebraic feasiblity problem can be reduced to a semialgebraic
feasibility problem over the reals by replacing t with a sufficiently large real number. This
follows from the quantifier elimination in real closed fields coupled with the definition of the
order in Puiseux series. By using the effective bounds on quantifier elimination discussed,
e.g., in [11], we can give a bound on this “sufficiently large” number. Second, we will show
that this SDP with very large coefficients can be reduced to another SDP that has coefficients
of polynomial bit-size.

Before presenting the proofs, we note that a reduction from non-Archimedean SDPs
coming from games to real SDPs with large coefficients was already studied in [6, Theorem 36].
However, the bounds given in [6] rely on an additional assumption on the underlying game. In
particular, they cannot be applied directly to the SDP given in (3). For max-average systems
coming from games, one could overcome this restriction by perturbing the underlying game
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slightly. Nevertheless, the bounds coming from quantifier elimination which we present below
do not require any additional assumptions and can be of independent interest. We recall
that Tarski’s quantifier elimination allows to eliminate quantifiers of first-order τ -formulas,
with signature τ given by τ = {+, ·, 0, 1,≤}.

▶ Theorem 7. Let P1, . . . , Pm ∈ Z[x0, x1, . . . , xn] be a collection of polynomials with integer
coefficients and let ⋄ ∈ {≤,≥, <,>,=, ≠}m be a sign pattern. Consider the semialgebraic set
over Puiseux series defined by

S := {x ∈ Kn : ∀i ∈ [m], Pi(t,x) ⋄i 0} .

Furthermore, for any real L > 0 consider the semialgebraic set over the real numbers defined
by

S(L) := {x ∈ Rn : ∀i ∈ [m], Pi(L, x) ⋄i 0} .

Then, S is nonempty if and only if S(L) is nonempty for all sufficiently large L. More
precisely, there exists an absolute constant C > 0 with the following property. If the maximal
degree of any polynomial Pi is bounded by d ≥ 2 and s denotes the maximal bit-size of any
coefficient of Pi, then either for all L > 2sdCn we have S(L) = ∅, or for all L > 2sdCn we
have S(L) ̸= ∅. In the former case S is empty and in the latter case S is nonempty.

Proof. Both sets S(L) and S can be defined by the same first-order formula with a free
variable x0 that can be substituted by a real number L (to obtain S(L)) or a Puiseux series
t (to obtain S). Let τ = {+, ·, 0, 1,≤} and consider the first-order τ -formula ϕ(x0) given by

∃x1, . . . ,∃xn

m∧
i=1

(Pi(x0, x) ⋄i 0) .

By Tarski’s quantifier elimination theorem [11, Theorem 2.77], there exists a quantifier-free
formula ψ(x0) that is equivalent to ϕ(x0) in the theory of real closed fields. The bounds on
quantifier elimination given in [11, Theorem 14.6] show that ψ(x0) can be taken to be of the
form

I∨
i=1

Ji∧
j=1

Nij∨
k=1

sign(Qijk(x0)) = δijk

 ,

where δijk ∈ {−1, 0, 1} and Qijk ∈ Z[x0] are univariate polynomials with integer coefficients.
Furthermore, every Qijk has degree bounded by dO(n) and every coefficient of every Qijk has
bit-size bounded by sdO(n). Hence, the Cauchy bound [11, Corollary 10.4] implies that every
real root of Qijk has absolute value bounded by 2sdO(n) (provided that Qijk is a non-zero
polynomial). In particular, the sign of Qijk(L) is the same for all L > 2sdO(n) . Therefore,
either S(L) is empty for all such L or S(L) is nonempty for all such L. Moreover, Qijk(t) ∈ K
is a Puiseux series with finitely many terms. By definition, the sign of this series is the same
as the sign of Qijk(L) ∈ R. Hence, S is nonempty if and only if S(L) is nonempty. ◀

In the next proposition and later, we use the following notation. Fix an instance ϕ of a
max-average CSP and let (ci)i be the rational constants used in the constraints of ϕ. For
every i we denote ci = pi/qi where pi ∈ Z and qi ∈ N∗ and we put W := 2 + maxi{|pi| + qi}.

▶ Proposition 8. There exists an absolute integer constant M > 0 such that an instance ϕ
of a max-average constraint satisfaction problem has a solution if and only if the real SDP
Sϕ(L) obtained from Sϕ(t) (see Theorem 6) by replacing t with L > 22Mn log2 W , is feasible.



M. Bodirsky, G. Loho, and M. Skomra 145:11

Proof. Consider the system of inequalities given in (3). Since xi ≥ 0 for all i, any equality
of the form xi = tcj = tpj/qj can be replaced with an equivalent equality x

qj

i = tpj if pj ≥ 0
and t−pj x

qj

i = 1 if pj < 0. If we further replace the parameter t by a variable symbol
x0, (3) becomes a system of polynomial inequalities of degree at most W and such that
the coefficients of the polynomials appearing in these inequalities are integers in {−1, 0, 1}.
Hence, by Theorem 7, there exists M > 0 such that the system (3) has a solution over
Puiseux series if and only if the system obtained by replacing t with L > 22Mn log2 W has a
solution over the real numbers. Therefore, the claim follows from Theorem 6. ◀

In Proposition 8, we obtain a (real) semidefinite program, whose size, however, is
exponential in the size of ϕ and therefore does not provide a polynomial-time reduction to
the semidefinite program feasiblity problem. However, by the following result we can also
reduce to a semidefinite program of polynomial representation size.

▶ Theorem 9. For every n ∈ Z, the singleton set {2n} is the projection of a spectrahedron
whose representation size is polynomial in the bit-size of n.

Proof. To prove the claim, we extend the constructions of SDPs with solutions of doubly-
exponential size given in [51, 54]. For n = 0, the set {x ∈ R | x = 1} is the desired
spectrahedron. Suppose that n ̸= 0 and let |n| =

∑k
i=0 b̄k−i2i be the binary representation of

|n| for b̄i ∈ {0, 1}. Let bi = sign(n)b̄i ∈ {−1, 0, 1} for all i, so that n =
∑k

i=0 bk−i2i. We first
show that the set {x ∈ R | x ≥ 2n} is the projection of a spectrahedron S of representation
size that is polynomial in the bit-size of n. Let S be defined by the linear matrix inequality

A0x0 + · · · +Akxk −B =



x0 1
1 2−b0

x1 x0
x0 2−b1

. . .
xk xk−1
xk−1 2−bk


⪰ 0 .

This LMI expresses that

x0 ≥ 2b0 , x1 ≥ 2b1x2
0, . . . , xk ≥ 2bkx2

k−1 .

By induction, for every ℓ ≥ 0 we get xℓ ≥ 2b02ℓ+b12ℓ−1+···+bℓ20 . Moreover, the vector
(x0, . . . , xk) with xℓ = 2b02ℓ+b12ℓ−1+···+bℓ20 for every ℓ ∈ {0, . . . , k} satisfies this LMI, so we
obtain the desired set by projecting S to the last coordinate. We use strong duality to obtain
the singleton set {2n} as follows. Consider the SDP

inf (0 · x0 + · · · + 0 · xk−1 + 1 · xk)

over the spectrahedron S specified above. Then, the dual is of the form sup ⟨B, Y ⟩ such that
⟨Ai, Y ⟩ = ci for every i ∈ {0, . . . , k} and Y ⪰ 0, where (c0, . . . , ck) = (0, . . . , 0, 1). Clearly,
the primal is strictly feasible and bounded by 2n from below, so we may use strong duality
(Theorem 2) and obtain that sup ⟨B, Y ⟩ = 2n and that the supremum is attained for some Y .
Then the following primitive positive formula over spectrahedral sets with one free variable
xk defines the singleton relation {2n}:

∃x0, . . . , xk−1, y1,1, . . . , ym,m : A0x0 + · · · +Akxk −B ⪰ 0
∧ ⟨A0, Y ⟩ = 0 ∧ · · · ∧ ⟨Ak−1, Y ⟩ = 0 ∧ ⟨Ak, Y ⟩ = 1 ∧ Y ⪰ 0

∧ ⟨B, Y ⟩ = xk

(4)
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where Y denotes (yi,j)i,j∈{1,...,m} for m = 2(k+1). As we have mentioned before, spectrahed-
ral shadows are closed under primitive positive definability, and the representation size of the
resulting LMI is polynomially bounded by the representation sizes for the conjuncts. Indeed,
the matrices Ai and B have coefficients in 0,±1/2,±1,±2 and are of size k × k which is
polynomial in the bit-size of n. Hence, the system of matrix inequalities (4) can be encoded
using a number of bits that is polynomial in the bit-size of n. This system of inequalities
can be then encoded by a single block-diagonal LMI as in the proof of Theorem 6. This
increases the number of necessary bits by a polynomial factor. We thus obtain an LMI of
representation size that is polynomial in k. ◀

▶ Corollary 10. There is a polynomial-time reduction from the max-average constraint
satisfaction problem to the feasibility problem for semidefinite programs.

Proof. We have already specified a first reduction to a (real) SDP in Proposition 8. To
obtain a proper polynomial-time reduction, we modify this SDP as follows. Fix an instance
ϕ; let ci, pi, qi, and W be as introduced before Proposition 8. Define D :=

∏
i qi and

K := 2DWMn = D21+Mn log2 W , where M is the integer constant from Proposition 8.
Furthermore, let L := 2K . By Proposition 8, ϕ has a solution if and only if Sϕ(L) has a
solution over the real numbers. This SDP has constraints of the form xi = Lcj = 2cjK . Since
K is an integer divisible by D, the number cjK is an integer for all j. Hence, by introducing
new variables, we may replace the constraints xj = 2cjK by the corresponding LMIs of small
representation size from Theorem 9. The resulting SDP can be computed in polynomial
time. Furthermore, it is feasible if and only if the original SDP is feasible, which proves the
statement. ◀

▶ Corollary 11. There is a polynomial-time reduction from stopping simple stochastic games
to the feasibility problem for semidefinite programs.

Proof. Combine Corollary 10 with Proposition 5. ◀
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