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Abstract
Low Diameter Decompositions (LDDs) are invaluable tools in the design of combinatorial graph
algorithms. While historically they have been applied mainly to undirected graphs, in the recent
breakthrough for the negative-length Single Source Shortest Path problem, Bernstein, Nanongkai, and
Wulff-Nilsen [FOCS ’22] extended the use of LDDs to directed graphs for the first time. Specifically,
their LDD deletes each edge with probability at most O( 1

D
· log2 n), while ensuring that each strongly

connected component in the remaining graph has a (weak) diameter of at most D.
In this work, we make further advancements in the study of directed LDDs. We reveal a natural

and intuitive (in hindsight) connection to Expander Decompositions, and leveraging this connection
along with additional techniques, we establish the existence of an LDD with an edge-cutting
probability of O( 1

D
· log n log log n). This improves the previous bound by nearly a logarithmic factor

and closely approaches the lower bound of Ω( 1
D

· log n). With significantly more technical effort, we
also develop two efficient algorithms for computing our LDDs: a deterministic algorithm that runs
in time Õ(m poly(D)) and a randomized algorithm that runs in near-linear time Õ(m).

We believe that our work provides a solid conceptual and technical foundation for future research
relying on directed LDDs, which will undoubtedly follow soon.
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1 Introduction

In the design of combinatorial graph algorithms, decomposing graphs into smaller regions
where problems become naturally easy to solve has emerged as a remarkably powerful
paradigm. Two such graph decompositions stand out as particularly successful: Low-
Diameter Decompositions (LDDs) and Expander Decompositions (EDs) (defined formally
in Definition 1 and Section 3, respectively). Both decompositions remove some edges from
the graph so that the remaining components either have a low diameter and thus behave
nicely with respect to distance-type problems (in the case of LDDs), or are expanders which
are well-suited for flow-type problems (in the case of EDs). This paradigm is particularly
appealing as it typically leads to natural and efficient implementations in parallel, distributed
and dynamic models, and often also to deterministic algorithms.

The vast majority of algorithmic results following this broader framework have been
established for undirected graphs. However, a recently increasing number of papers have
successfully applied this paradigm also to directed graphs [14, 16, 29, 22, 13], despite the
serious technical difficulties that typically arise compared to the undirected setting. One
celebrated example is the breakthrough near-linear time algorithm for negative-length Single-
Source Shortest Paths by Bernstein, Nanongkai and Wulff-Nilsen [16]. In fact, their work
was the first to define and apply Low-Diameter Decompositions in directed graphs.

Given these rapid and recent developments, it is to be expected that many new results
will follow in this line of research. Consequently, anticipating a wave of researchers in need of
directed Low-Diameter Decompositions, we initiate the systematic study of directed LDDs.
Our main technical contribution is a near-optimal LDD – near-optimal with respect to the loss
parameter and the near-linear running time. Beyond improving the state of the art, we also
unveil a compelling and novel connection between directed Low-Diameter Decompositions
and Expander Decompositions, bringing together two previously studied concepts that are
independently well-established. We believe this connection to be the main take-away of our
paper, and are confident that it will inspire further applications.

1.1 Low-Diameter Decompositions
Low-Diameter Decompositions in undirected graphs have been introduced almost 40 years
ago by Awerbuch [7], and, have since evolved into an irreplaceable tool in the design of
combinatorial algorithms [9, 10, 8, 32, 11, 17, 33, 34, 26, 21, 15, 27, 16]. More generally, LDDs
have been utilized in the development of diverse graph-theoretic structures such as oblivious
routings [37], hopsets, neighborhood covers, and notably probabilistic tree embeddings [11,
12, 25] (where the rough goal is to approximate an arbitrary (graph) metric by a simpler
tree metric with polylogarithmic stretch) and low-stretch spanning trees [4, 24, 1, 31, 3, 2].
These structures in turn have led to further applications in approximation algorithms, online
algorithms and network design problems [11, 18, 28].

While the precise definitions of LDDs differed at first, all of them had in common that the
graph was decomposed by removing few edges (on average) so that the remaining connected
components have bounded diameter. More precisely, the modern definition is that an LDD
is a probability distribution over edge cuts that cut each individual edge with probability
at most L/D (for some small loss factor L) so that the resulting connected components
have diameter at most D. For undirected graphs, the best-possible loss factor turns out
to be L = Θ(logn) with natural matching upper and lower bounds (see e.g. [11, 25] and
Footnote 1).
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Only very recently, low-diameter decompositions debuted in directed graphs. They
played a key role in the near-linear time algorithm for the Single-Source Shortest Paths
problem in graphs with negative edge lengths by Bernstein, Nanongkai and Wulff-Nilsen [16]
(following the paradigm outlined before). Curiously, before their seminal work, low-diameter
decompositions for directed graphs were mostly unexplored – to the extent that it was even
unclear what the definition should be. An even more recent application of directed LDDs is
in the context of restricted (i.e., bicriteria) shortest paths [6].

▶ Definition 1 (Directed Low-Diameter Decomposition). A directed low-diameter decomposi-
tion with loss L for a directed edge-weighted graph G = (V,E, ℓ) and a parameter D ≥ 1 is a
probability distribution over edge sets S ⊆ E that satisfies the following two properties:

For any two nodes u, v ∈ V that are part of the same strongly connected component in
G \ S, we have dG(u, v) ≤ D and dG(v, u) ≤ D.
For all edges e ∈ E, it holds that Pr(e ∈ S) ≤ ℓ(e)

D · L.

That is, for directed graphs we require that all remaining strongly connected components
have diameter D in the sense that each pair of nodes is at distance at most D in the original
uncut graph (this property is also called a “weak” diameter guarantee; see more details in
the paragraph towards the end of Section 1.1).

In light of this definition, it is natural to study directed LDDs with respect to two
objectives: Minimizing the loss factor L, and computing the LDD efficiently. Both of these
requirements typically translate immediately to algorithmic improvements (e.g., the loss
factor L typically becomes a factor in the running time of algorithmic applications).

Quest 1: Minimizing the Loss L

It is easy to see that a loss factor of L ≥ 1 is necessary: Consider a graph consisting of
disjoint copies of D + 1-cycles (of unit length, say). Any LDD is forced to cut at least one
edge from every cycle, and thus some edges are deleted with probability 1

D+1 . In fact, from
the same lower bound as for undirected graphs one can show that L ≥ Ω(logn) is necessary1

for some directed graphs.
Conversely, Bernstein, Nanongkai and Wulff-Nilsen [16] showed that a loss of O(log2 n)

can be achieved. Their work leaves open whether this factor can be improved, possibly to
O(logn) which would match the existing unconditional lower bound, or whether Ω(log2 n) is
necessary.

Quest 2: Efficient Algorithms

To be useful in algorithmic applications, it is necessary to be able to compute the LDD
(or, formally speaking, to be able to sample from the LDD efficiently). This is a non-
negligible problem as many graph decompositions are much simpler to prove existentially

1 Specifically, using e.g., the probabilistic method, one can construct an undirected n-node graph G with
the following two properties: (i) the graph contains cn edges (for some constant c > 1), and (ii) the
girth of G (i.e., the length of the shortest cycle) is at least g = Ω(log n). Such a graph constitutes an
obstruction against undirected LDDs with parameter D = g

2 − 1, say. Indeed, all connected components
that remain after the LDD cuts edges cannot contain cycles (as any cycle contains two nodes at
distance at least g

2 > D). This means that all connected components are trees, and thus the remaining
graph is a forest containing at most n − 1 edges. Therefore, the LDD has cut at least cn − n = Ω(n)
edges. In particular, the per-edge cutting probability of some edges must be Ω(1) = Ω(log n/D). The
same argument applies for directed LDDs by taking the same undirected graph and making all edges
bidirected.

ICALP 2025
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than constructively and efficiently – for instance, for Expander Decompositions there is
a stark contrast between the extremely simple existential proof and the involved efficient
algorithms based on cut-matching games [35, 30]. The O(log2 n)-loss LDD due to [16] is of
course implementable by an efficient algorithm.

Side Quest: Weak versus Strong

Another dimension is the distinction between “weak” and “strong” diameter guarantees.
Specifically, Definition 1 requires the weak guarantee by requiring that any two nodes in
the same strongly connected component are at distance at most D in the original graph
G. The strong version instead requires that each strongly connected component in G \ S
has diameter at most D in the graph G \ S. While strong LDDs give a theoretically more
appealing guarantee, for most algorithmic applications it turns out that weak LDDs suffice.
The LDD developed by Bernstein, Nanongkai and Wulff-Nilsen [16] has a weak guarantee, but
follow-up work [19] later extended their results to a strong LDD with cubic loss O(log3 n).

In this paper, we will mostly ignore the distinction between weak and strong and follow
Definition 1 as it is. We remark however that all of our existential results do in fact have the
strong diameter guarantee.

2 Results and Technical Overview

In a nutshell, our result is that we establish a directed LDD with near-optimal loss
O(logn log logn). This comes tantalizingly close to the unconditional lower bound of Ω(logn).
It resembles a similar milestone in the development of probabilistic tree embeddings [12], and
also the current state of the art for low-stretch spanning trees [3]. In fact, similar log logn
barriers show up also in different contexts for directed graphs [20]. In a sense, all of these
results with log logn overhead (including ours) apply a careful recursive approach that can
be traced back to work by Seymour [36] (though with strongly varying implementations
depending on the setting).

We state our result in three Theorems 2, 8, and 9, where the first theorem is purely
existential, the latter two are algorithmic, and the last has near-linear running time.

2.1 Near-Optimal LDDs via Expander Decompositions

The main conceptual contribution of our paper is that Low-Diameter Decompositions are
closely and in a very practical way related to Expander Decompositions. Based on this
insight, we prove the following theorem.

▶ Theorem 2. For every directed graph there exists a directed LDD with loss O(logn log logn).

For the remainder of Section 2.1 we will elaborate on the proof of Theorem 2. It involves
two separate steps: reducing the problem to cost-minimizing using the Multiplicative Weight
Update method, and then showing that a so called lopsided expander decomposition is the
desired cost-minimizer. We emphasize that in Section 2.1 we only focus on Quest 1 from the
introduction, which is minimizing the loss L of an LDD. Besides, the statement of Theorem 2
applies in fact to strong LDDs, though for simplicity we will not focus on this distinction in
the overview.
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Reduction to Unit Lengths

Let us assume throughout that we only deal with unit-length graphs (i.e., where ℓ(e) = 1 for
all edges). This assumption is in fact without loss of generality, as we can simply replace each
edge e of length ℓ(e) by a path of ℓ(e) unit-length edges. This transformation may blow up
the graph, but as we focus on the existential result first this shall not concern us.2 Whenever
the LDD cuts at least one of the path edges in the transformed graph, we imagine that the
entire edge in the original graph is cut. This way, when we cut each edge with probability at
most L

D , in the original graph we cut each edge with probability at most ℓ(e)·L
D (by a union

bound) as required.

Reduction to Cost-Minimization

Perhaps it appears surprising that we claim a connection between LDDs – which are inherently
probabilistic objects – and EDs – which rather have a deterministic flavor. As a first step
of bringing these notions together consider the following lemma based on the well-studied
Multiplicative Weight Update [5] method.

▶ Lemma 3 (Multiplicative Weight Update). Let G = (V,E) be a directed graph, and suppose
that for all cost functions c : E → [|V |10] there is a set of cut edges S ⊆ E satisfying the
following two properties:

For any two nodes u, v ∈ V that are part of the same strongly connected component in
G \ S, we have dG(u, v) ≤ D and dG(v, u) ≤ D.
c(S) ≤ c(E) · LD .

Then there exists a directed LDD for G with loss O(L).

Intuitively, the lemma states that in order to construct an LDD that cuts each edge with
small probability L/D, it suffices to instead find a cut which globally minimizes the total
cost of the cut edges while ensuring that every remaining strongly connected component has
diameter at most D. This however comes with the price of introducing a cost function c

to the graph, and the goal becomes to cut edges which collectively have at most an L/D

fraction of the total cost. For the reader’s convenience, we include a quick proof sketch of
Lemma 3.

Proof Sketch. Assign a unit cost to every edge in the graph, and consider the following
iterative process. In each iteration we find a set of cut edges Si with the desired guarantees,
and adjust the costs of the edges multiplicatively by doubling the cost of any every edge
e ∈ Si. Repeat this process for R = 100 ln |E| ·D/L iterations. We claim that the uniform
distribution over the cut sets Si encountered throughout is an LDD as required.

Clearly the diameter condition holds for each set Si, but it remains to bound the edge-
cutting probability. Each iteration doubles the cost of every cut edge, and hence the total
cost increases by at most c(Si) ≤ c(E) · LD , i.e., by a factor 1 + L

D . After all R repetitions
the total cost is at most |E| · (1 +L/D)R < |E| · |E|100 = |E|101. It follows that each edge is
cut in at most 101 log |E| iterations as otherwise its cost alone would already be more than
|E|101. Thus, the probability of cutting any fixed edge in a randomly sampled cut set Si is
at most 101 log |E|/R = O(L/D). ◀

2 We are assuming throughout that all edge weights are bounded by poly(n), therefore this transformation
leads to a graph on at most n0 ≤ poly(n) nodes. In particular, to achieve a loss of L = O(log n log log n)
on the original graph it suffices to achieve a loss of O(log n0 log log n0) on the transformed graph.

ICALP 2025
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Henceforth, we refer to the process of finding a cut with the properties stated in Lemma 3
as a cost-minimizer, which we aim to construct in the following paragraphs. That is, we now
also consider a cost function c, and our goal is to cut edges S of total cost c(S) ≤ c(E) · LD
(without worrying about a per-edge guarantee), while ensuring that the strongly connected
components in G \ S have diameter ≤ D. We remark that this cost-minimization framework
is quite standard.

Directed Expander Decomposition

In a leap forward, let us rename the costs c to capacities c. Our idea is simple: We want to
use an Expander Decomposition to remove edges of small total capacity so that all strongly
connected components in the graph become expanders and thus, in particular, have small
diameter.

To make this more precise, we first introduce some (standard) notation. A node set
U ⊆ V naturally induces a cut (between U and U = V \ U). We write c(U,U) for the total
capacity of edges crossing the cut from U to U , and define the volume of U as

vol(U) = c(U, V ) =
∑

e∈E∩(U×V )

c(e),

and also write minvol(U) = min{vol(U), vol(U)}. The sparsity of the cut U is defined by

ϕ(U) = c(U,U)
minvol(U) .

We say that U is ϕ-sparse if ϕ(U) ≤ ϕ, and we call a graph without ϕ-sparse cuts a ϕ-expander.
The standard Expander Decomposition can be stated as follows.

▶ Lemma 4 (Directed Expander Decomposition). Let ϕ > 0. For any directed graph G =
(V,E, c) there is an edge set S ⊆ E of total capacity c(S) ≤ c(E) · ϕ log c(E) such that every
strongly connected component in the remaining graph G \ S is a ϕ-expander.

Moreover, an important property of a ϕ-expander decomposition is that the diameter of
its strongly connected components depends on ϕ in the following manner.

▶ Lemma 5. Any ϕ-expander has diameter O(ϕ−1 log vol(V )).

To understand the intuition behind Lemma 5, imagine that we grow a ball (i.e., a breadth-
first search tree) around some node. With each step, the expansion property (related to the
absence of ϕ-sparse cuts) guarantees that we increase the explored capacity by a factor of
(1 + ϕ); thus after O(ϕ log vol(V )) steps we have explored essentially the entire graph.

Already at this point we have made significant progress and can recover the O(log2 n)-loss
LDD: Apply the Expander Decomposition in Lemma 4 with parameter ϕ = log vol(V )/D.
This removes edges with total capacity at most a O(log2 vol(V )/D)-fraction of the total
capacity. In the remaining graph each strongly connected component is a ϕ-expander and thus,
by Lemma 5, has diameter at most O(ϕ−1 log vol(V )) = O(D) (by choosing the constants
appropriately, this bound can be adjusted to ≤ D). Finally, Lemma 3 turns this into an
LDD with loss O(log2 vol(V )) = O(log2 n).

Unfortunately, both log-factors in the Expander Decomposition (fraction of the cut
capacity and diameter) are tight. Nevertheless, with some innovation we manage to bypass
these bounds and improve the O(log2 n) loss. To this end we propose a refined notion of
expanders called lopsided expanders.
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Lopsided Expander Decomposition

The notion of ϕ-sparsity defined above is oblivious to the ratio between vol(V ) and minvol(U).
For example, two cuts U and W can have the same sparsity, even though vol(U)≫ vol(U)
while vol(W ) ≈ vol(W ). It turns out that this leaves some unused potential, and that we
should incentivize cutting cuts with large volume on both sides compared to more lopsided
cuts with large volume only on one side.

Formally, we define ψ-lopsided sparsity of a cut U as

ψ(U) = c(U,U)
minvol(U) · log vol(V )

minvol(U)

,

where we include the ratio vol(V )
minvol(U) in the denominator. Since vol(V ) > minvol(U), a cut

can only have smaller lopsided sparsity than regular sparsity, so a graph with no sparse cuts
may still have lopsided sparse cuts. A ψ-lopsided expander is defined as a graph with no
ψ-lopsided sparse cuts, and can be thought of as a subclass of expanders which in addition
to having no sparse cuts also has no cuts that are both sufficiently lopsided and sufficiently
sparse.

The lopsided expander decomposition is otherwise identical to the standard expander
decomposition defined previously, except that every strongly connected component is required
to be a ψ-lopsided expander instead of a ϕ-expander. Our Lopsided Expander Decomposition
has the same global “total capacity cut” guarantee as the standard expander decomposition,
as stated in the following lemma coupled with a proof sketch.

▶ Lemma 6 (Lopsided Expander Decomposition). Let ψ > 0. For any directed graph G =
(V,E, c) there is an edge set S ⊆ E of total capacity c(S) ≤ c(E) · ψ log c(E) such that every
strongly connected component in the remaining graph G \ S is a ψ-lopsided expander.

Proof Sketch. Consider the following algorithm: If there are no ψ-lopsided sparse cuts, then
the graph is already a ψ-lopsided expander and we can stop. Otherwise, we cut a ψ-lopsided
sparse cut (add the cut edges to S), and recurse on the remaining strongly connected
components. It is clear that this eventually produces a ψ-lopsided expander decomposition.
In order to prove that the cut edges have capacity at most c(E) ·ψ log c(E), we use a potential
argument. We assign to each edge e a potential of c(e) log c(E). Throughout the procedure
we maintain the invariant that each edge holds a potential of at least c(e) log vol(C), where
C is the strongly connected component containing edge e. When cutting a ψ-lopsided cut
(U,U) in a component C, an edge e on the smaller side by volume (say U) suddenly needs to
hold a potential of c(e) log c(U) instead of c(e) log c(C). In particular, the amount of excess
potential we have freed is∑
e∈E∩(U×V )

c(e)·(log vol(C)−log vol(U)) =
∑

e∈E∩(U×V )

c(e)·log vol(C)
vol(U) = vol(U)·log vol(C)

vol(U) .

Since the cut is ψ-lopsided sparse it follows that the total capacity of the cut edges is at most

c(U,U) ≤ ψ · vol(U) · log vol(C)
vol(U) .

Thus, we can afford to donate to each cut edge e ∈ S a potential of c(e)/ψ while maintaining
our invariant. Since the total potential in the graph is c(E) log c(E) and every cut edge e ∈ S
receives a potential of at least c(e)/ψ, we finally have that c(E) log c(E) ≥ c(S)/ψ and the
claim follows. ◀

ICALP 2025
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The main motivation for defining ψ-lopsided sparsity and taking the ratio vol(V )
minvol(U) into

account lies in the following lemma: Compared to standard expanders, lopsided expanders
only suffer a loglog-factor in the diameter.

▶ Lemma 7. Any ψ-lopsided expander has diameter O(ψ−1 log log vol(V ) + log vol(V )).

Proof Sketch. The proof is similar in spirit to the proof for standard expanders in Lemma 5,
for which we restate the intuition for clarity. Imagine growing a ball (i.e., a breadth-first
search tree) around some node. With each step, the expansion property (related to the
absence of ϕ-sparse cuts) guarantees that we increase the explored capacity by a factor of
(1 + ϕ); thus after O(ϕ log vol(V )) steps we have explored essentially the entire graph.

The difficulty in adopting the same proof for ψ-lopsided expanders stems from the fact
that ψ-lopsided sparsity of a cut U ⊆ V depends on the volume of U , so the expansion of the
ball around a node differs in every step, e.g., if the volume of the ball around some node is
constant, after one ball-growing step it becomes O(ψ log vol(V )). We resolve this challenge
by analyzing the number of steps needed for the volume of the ball to grow from vol(V )/2i+1

to vol(V )/2i. This turns out to be roughly ⌈(ψ · i)−1⌉, implying that after
log vol(V )∑

i=1
⌈(ψ · i)−1⌉ = O(ψ−1 log log vol(V ) + log vol(V ))

steps we have explored essentially the entire graph. ◀

Putting these two lemmas for lopsided expanders together, we indeed obtain the
low-loss LDD in Theorem 2. Specifically, we apply the Lopsided Expander De-
composition from Lemma 6 with parameter ψ = log log vol(V )/D. We cut only a
O(log vol(V ) log log vol(V )/D)-fraction of the total capacity, and end up with a graph in
which every strongly connected component is a ψ-lopsided expander. By Lemma 7 said
components have diameter O(ψ−1 log log vol(V )) = O(D) (which, again, can be made ≤ D
by adjusting constants). Plugging this procedure into Lemma 3 we conclude that there is an
LDD with loss O(log vol(V ) log log vol(V )) = O(logn log logn), completing the proof sketch
of Theorem 2.

2.2 A Deterministic Algorithm
So far we have neglected Quest 2, i.e., the design of efficient algorithms. But how far from
algorithmic is this approach of Section 2.1 really? It turns out that implementing this
framework with some simple tricks leads to the following algorithmic result.

▶ Theorem 8. For every directed graph there exists a directed LDD with loss O(logn log logn)
and support size O(D logn) that can be computed in time Õ(mD2) by a deterministic
algorithm.

This theorem comes with a strength and a weakness – the strength is that the theorem
is deterministic. Note that the algorithm produces the explicit support of an LDD (of size
O(D logn)); in fact, the probability distribution is simply a uniform distribution over a given
list of cut sets S. For this reason, our algorithm might lead to some derandomized applications
down the road by executing an LDD-based algorithm one-by-one for all O(D logn) cut sets.
Derandomizations of this sort are common and sought after, especially in distributed and
parallel domains. The weakness is that the running time has an overhead of poly(D).
We remark that almost all algorithmic applications of LDDs (with the notable exceptions
of [16, 6]) set D = polylog(n) or D = no(1), in which case the overhead is not dramatic, and
the runtime is possibly near-linear.
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Proof Idea

It can be quickly verified that implementing the Multiplicative Weights Update method
from Lemma 3 is not a problem algorithmically, and requires O(R · T ) time, where R =
O(log |E| ·D/L) and T is the time required by the cost-minimizer. Hence, only computing the
Lopsided Expander Decomposition could be costly. Since this is a strictly stronger definition
that the standard Expander Decomposition, at first glance it appears hopeless that we could
achieve a simple algorithm that avoids the cut-matching games machinery. Luckily, we find
yet another simple insight that allows us to find a simple and intuitive algorithm after all:
While it may generally be hard to find a sparse cut (even NP-hard!), in our case we only
ever need to find a sparse cut in a graph with diameter more than D. Indeed, if the graph
has already diameter at most D, we can stop immediately (recall that we ultimately only
care about the diameter and not the expander guarantee). One way to view the algorithm
is that we construct a truncated ψ-lopsided expander decomposition, where we terminate
prematurely if the diameter is small.

Fueled by this insight, consider the following two-phase process for computing a (truncated)
ψ-lopsided expander decomposition:

Phase (I): We repeatedly take an arbitrary node v and grow a ball around v in the hope of
finding a ψ-lopsided sparse cut. By choosing ψ = Θ(log log vol(V )/D) we can guarantee
two possible outcomes:
(a) We find a sparse cut after, say, radius D

4 , in which case we cut the edges crossing
the cut and recur on both sides (as in the Lopsided Expander Decomposition).

(b) The problematic case happens: the volume of the ball reaches 3
4 · vol(V ). In this

case we have spent linear time but made no progress in splitting off the graph, so
we remember v and move to Phase (II).

Phase (II): We compute a buffer zone around v, which consists of all nodes with distance
D
2 to and from v. We repeatedly take an arbitrary node u from outside this buffer zone
and grow a ball around u in the hope of finding a ψ-lopsided sparse cut. Because we know
that the D

4 -radius ball around v contains most of the volume of the graph, and node u
is picked outside of the D

2 -radius buffer zone, we can prove (using similar techniques to
the proof sketch of Lemma 7) that we will always find a ψ-lopsided sparse cut U around
u. Upon finding it, we cut the edges crossing the cut (U,U) and start Phase (I) for the
graph induced by nodes in U , while continuing Phase (II) in graph G \ U .
When eventually there are no nodes left outside the buffer zone, we stop, since the
remaining graph has diameter ≤ D.
The correctness of the procedure above is straightforward to show: we are essentially con-

structing a ψ-lopsided expander decomposition from Lemma 6, but terminating prematurely if
the diameter is small. Hence, the total capacity of the cut edges is at most the total capacity of
the cut edges in a “complete” ψ-lopsided expander, which is a O(log vol(V ) log log vol(V )/D)-
fraction of the total capacity. The diameter guarantee follows directly from the stopping
condition. By plugging this procedure into the algorithmic version of Lemma 3 we arrive
at an LDD with loss O(log vol(V ) log log vol(V )) = O(logn log logn) in time Õ(m poly(D)),
completing the proof sketch of Theorem 8.

2.3 A Near-Optimal Randomized Algorithm
Our third and final contribution is achieving a near-linear running time, regardless of the
magnitude of the diameter, by a randomized algorithm:

▶ Theorem 9. For every directed graph there exists a directed LDD with loss O(logn log logn)
which can be computed (i.e., sampled from) in expected time O(m log5 n log logn) = Õ(m).
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In contrast to Theorems 2 and 8, our approach to Theorem 9 is rather technical. We try
more directly to extend the ideas of Bernstein, Nanongkai and Wulff-Nilsen [16] (which in
turn borrow ideas from [15]). On a very high level, their algorithm classifies nodes v heavy if
it reaches more than n

2 nodes within distance D
2 , or light otherwise. We can afford to cut

around light nodes v (with a specifically sampled radius r ≤ D), and recur on both sides of
the cut – since v is light, the inside of the cut reduces by a constant fraction which is helpful
in bounding the recursion depth. And if there are only heavy nodes in the graph then we can
stop as the diameter is already at most D – indeed, the radius-D2 balls around heavy nodes
must necessarily intersect. The radius is sampled from a geometric distribution with rate
O(logn/D) inspired by classical LDDs in undirected graphs [11]. The two logarithmic factors
stem from (i) this logn overhead in the sampling rate, and (ii) the logarithmic recursion
depth.

Our approach refines these ideas by classifying not into two classes – heavy or light –
but into log logn different levels. We essentially say that a node v is at level ℓ if it reaches
roughly n/22ℓ nodes within some distance roughly D. We can take advantage of this in two
ways: At the one extreme, we can only cut around few nodes of small level ℓ. Indeed, when
we cut around a node at level ℓ we remove roughly n/22ℓ nodes from the graph, so this can
be repeated at most 22ℓ ≪ n times. For these levels we can afford to sample the radius in
the geometric distribution with a significantly smaller rate, O(2i/D), thereby improving (i).
At the other extreme, whenever we cut around nodes with large level ℓ then in the recursive
call of the inside of the cut there are only n/22ℓ ≪ n nodes. This effectively reduces the
recursion depth of these levels to much less than logn, improving (ii). In our algorithm, we
find a balance between these two extreme cases.

Unfortunately, while this idea works out existentially, there are several issues when
attempting to implement this approach in near-linear time. The first issue – initially
classifying which nodes are at what level in time Õ(m) – can be solved by an algorithm
due to Cohen [23]. However, over the course of the algorithm when we repeatedly remove
nodes and edges from the graphs the level of a node might change. Our solution involves
a cute trick: First we prove that during the execution of our algorithm the level of a node
can only increase (and never decrease). Second, instead of cutting around an arbitrary node
v, we always pick a random node. The argument is as follows: If the classification is still
correct for at least half of the nodes, then in each step we make progress with probability 1

2 .
And otherwise we can in fact afford to reclassify by Cohen’s algorithm as the level of the
nodes can only increase a small number of times, leading to only few repetitions of Cohen’s
algorithm in total.

We omit further details here and refer to the technical sections of the full paper version.

3 Preliminaries

Before diving into the technical results, we state the basic graph notations used throughout the
paper and recap the new non-standard definitions we have introduced throughout Section 2.

Graphs

Throughout we consider directed simple graphs G = (V,E), where E ⊆ V 2, with n = |V |
nodes and m = |E| edges. The edges of the graph can be associated with some value: a length
ℓ(e) or a capacity/cost c(e), all of which we require to be positive. For any U ⊆ V , we write
U = V \U . Let G[U ] be the subgraph induced by U . We denote with δ+(U) the set of edges
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that have their starting point in U and endpoint in U . We define δ−(U) symmetrically. We
also sometimes write c(S) =

∑
e∈S c(e) (for a set of edges S) or c(U,W ) =

∑
e∈E∩(U×W ) c(e)

and c(U) = c(U,U) (for sets of nodes U,W ).
The distance between two nodes v and u is written dG(v, u) (throughout we consider only

the length functions to be relevant for distances). We may omit the subscript if it is clear
from the context. The diameter of the graph is the maximum distance between any pair of
nodes. For a subgraph G′ of G we occasionally say that G′ has weak diameter D if for all
pairs of nodes u, v in G′, we have dG(u, v), dG(v, u) ≤ D. A strongly connected component
in a directed graph G is a subgraph where for every pair of nodes v, u there is a path from v

to u and vise versa. Finally, for a radius r ≥ 0 we write B+(v, r) = {x ∈ V : dG(v, x) ≤ r}
and B−(v, r) = {y ∈ V : dG(y, v) ≤ r}.

Polynomial Bounds

For graphs with edge lengths (or capacities), we assume that they are positive and the
maximum edge length is bounded by poly(n). This is only for the sake of simplicity in
Section 4 (where in the more general case that all edge lengths are bounded by some threshold
W some logarithmic factors in n become log(nW ) instead), and is not necessary for our
strongest LDD developed in the full paper version.

Expander Graphs

Let G = (V,E, ℓ, c) be a directed graph with positive edge capacities c and positive unit edge
lengths ℓ. We define the volume vol(U) by

vol(U) = c(U, V ) =
∑

e∈E∩(U×V )

c(e),

and set minvol(U) = min{vol(U), vol(U)} where U = V \ U . A node set U naturally
corresponds to a cut (U,U). The sparsity (or conductance) of U is defined by

ϕ(U) = c(U,U)
minvol(U) .

In the special cases that U = ∅ we set ϕ(U) = 1 and in the special case that U ̸= ∅ but
vol(U) = 0, we set ϕ(U) = 0. We say that U is ϕ-sparse if ϕ(U) ≤ ϕ. We say that a directed
graph is a ϕ-expander if it does not contain a ϕ-sparse cut U ⊆ V . We define the lopsided
sparsity of U as

ψ(U) = c(U,U)
minvol(U) · log vol(V )

minvol(U)

,

(with similar special cases), and we similarly say that U is ψ-lopsided sparse if ψ(U) ≤ ψ.
Finally, we call a graph a ψ-lopsided expander if it does not contain a ψ-lopsided sparse cut
U ⊆ V .

4 Near-Optimal LDDs via Expander Decompositions

In this section, we show the existence of a near-optimal LDD, thereby proving our first main
theorem:

▶ Theorem 2. For every directed graph there exists a directed LDD with loss O(logn log logn).

We introduce some technical lemmas in order to build up the framework for the proof of
Theorem 2, which can be found in the end of the section.
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4.1 Reduction to Cost-Minimizers
▶ Lemma 3 (Multiplicative Weight Update). Let G = (V,E) be a directed graph, and suppose
that for all cost functions c : E → [|V |10] there is a set of cut edges S ⊆ E satisfying the
following two properties:

For any two nodes u, v ∈ V that are part of the same strongly connected component in
G \ S, we have dG(u, v) ≤ D and dG(v, u) ≤ D.
c(S) ≤ c(E) · LD .

Then there exists a directed LDD for G with loss O(L).

Proof. Let G = (V,E) denote the graph for which we are supposed to design the LDD. Let
us also introduce edge costs that are initially defined as c(e) = 1 for all edges. We will now
repeatedly call the cost-minimizer, obtain a set of cut edges S ⊆ E, and then update the edge
costs by c(e)← 2 · c(e) for all e ∈ S. We stop the process after R = log |E| ·D/L iterations,
and let S denote the collection of all R sets S that we have obtained throughout. We claim
that the uniform distribution on S is the desired LDD for G.

It is clear that all for all sets S ∈ S the diameter condition is satisfied. We show that
additionally for all edges e ∈ E we have that

Pr(e ∈ S) ≤ 10L
D

,

for S sampled uniformly from S. Suppose otherwise, then in particular we have increased
the cost of e to at least

c(e) ≥ 2 10L
D ·R = 210 log |E| = |E|10.

On the other hand, let c′ denote the adapted costs after running the process for one iteration.
Then the total cost increase is∑

e∈E
c′(e)− c(e) =

∑
e∈S

c′(e)− c(e) =
∑
e∈S

c(e) = c(S) ≤ c(E) · L
D
.

That is, with every step of the process the total cost increases by a factor of (1 + L
D ) and

thus the total cost when the process stops is bounded by

|E| ·
(

1 + L

D

)R

≤ |E| · e L
D ·R = |E| · elog |E| ≤ |E|3,

leading to a contradiction. The same argument shows that all costs are bounded by |E|3 ≤ |V |6
throughout. ◀

▶ Lemma 6 (Lopsided Expander Decomposition). Let ψ > 0. For any directed graph G =
(V,E, c) there is an edge set S ⊆ E of total capacity c(S) ≤ c(E) · ψ log c(E) such that every
strongly connected component in the remaining graph G \ S is a ψ-lopsided expander.

Proof. Consider the following algorithm: If there is no ψ-lopsided sparse cut then the graph
is a ψ-lopsided expander by definition and we stop. Otherwise, there exists a ψ-lopsided
sparse cut (U,U). We then distinguish two cases: If vol(U) ≤ vol(U) then we remove all
edges from U to U , and otherwise we remove all edges from U to U (in both cases placing
these edges in S). Then we recursively continue on all strongly connected components in the
remaining graph G \ S.

It is clear that all strongly connected components in the remaining graph G \ S are
ψ-lopsided expanders, but it remains to show that we cut edges with total capacity at most
c(E)·ψ log c(E). Imagine that initially we associate to each edge e a potential of c(e) · log c(E).
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The total initial potential is thus
∑
e c(e) log c(E) = c(E) log c(E). Throughout the procedure

we maintain the invariant that each edge holds a potential of at least c(e) log vol(C), where C
is the strongly connected component containing edge e. Focus on any recursion step and its
current strongly connected component C, and let C = U ⊔ U denote the current ψ-lopsided
sparse cut. Assume first that vol(U) ≤ vol(U). Observe that an edge e ∈ U suddenly needs to
hold a potential of c(e) log c(U) instead of c(e) log c(C). Hence, the amount of freed potential
in U is at least∑

e∈E∩(U×V )

c(e)(log vol(C)− log vol(U)) =
∑

e∈E∩(U×V )

c(e) · log vol(C)
vol(U)

= vol(U) · log vol(C)
vol(U) .

On the other hand, since (U,U) is a ψ-lopsided sparse cut we have that

ψ ≥ ψ(U) = c(U,U)
minvol(U) · log vol(C)

minvol(U)

= c(U,U)
vol(U) · log vol(C)

vol(U)

.

Putting these together, this means any cut edge e from U to U can get “paid” a potential
of c(e) · ψ−1 while still maintaining the potential invariant. (Note that here we only exploit
the potential freed by the smaller side of the cut U , and forget about the overshoot potential
in the larger side U .) A symmetric argument applies when vol(U) < vol(U).

All in all, we start with a total potential of c(E) log c(E) and pay for each cut edge e ∈ S
with a potential of at least c(e) · ψ−1. This implies that c(E) log c(E) ≥ c(S) · ψ−1 and the
claim follows. ◀

To prove that lopsided expanders have small diameter, we first establish the following
technical lemma.

▶ Lemma 10. Let G = (V,E, c) be a directed graph and let ψ > 0. For any node v ∈ V
there is some radius R = O(ψ−1 log log vol(V ) + log vol(V )) such that one of the following
two properties holds:

vol(B+(v,R)) ≥ 1
2 · vol(V ), or

ψ(B+(v, r)) ≤ ψ for some 0 ≤ r ≤ R.

Proof. We write ∆i = ⌈ 1
iψ ⌉ and define the radii 1 = r⌈log vol(V )⌉ ≤ · · · ≤ r1 by ri = ri+1 + ∆i.

We prove by induction that vol(B+(v, ri)) ≥ 2−i · vol(V ), or alternatively that we find a
sparse cut. This is clearly true in the base case for i = ⌈log vol(V )⌉: Either vol(B+(v, 1)) ≥ 1
or v is an isolated node and therefore ψ(B+(v, r)) = 0.

For the inductive case, suppose for the sake of contradiction that vol(B+(v, ri)) <

2−i ·vol(V ). By induction we know however that vol(B+(v, ri+1)) ≥ 2−i−1 ·vol(V ). It follows
there is some radius ri+1 ≤ r < ri = ri+1 + ∆i such that

vol(B+(v, r + 1))
vol(B+(v, r)) ≤ 21/∆i ≤ 1 + 1

∆i
.

It follows that

c(B+(v, r), B+(v, r)) = vol(B+(v, r + 1))− vol(B+(v, r)) ≤ vol(B+(v, r))
∆i

.
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Therefore the cut induced by B+(v, r) has lopsided sparsity

ψ(B+(v, r)) = c(B+(v, r), B+(v, r))
minvol(B+(v, r)) log vol(V )

minvol(B+(v,r))

≤ c(B+(v, r), B+(v, r))
vol(B+(v, r)) log vol(V )

vol(B+(v,r))

≤ 1
∆i · log vol(V )

vol(B+(v,r))

≤ 1
∆i · log vol(V )

vol(B+(v,ri))

≤ 1
∆i · log(2i)

≤ ψ.

Here, in the second step we have used that minvol(B+(v, r)) = vol(B+(v, r)) as in the
opposite case we have vol(B+(v, r)) ≥ 1

2 · vol(V ) which also proves the claim. This finally
leads to a contradiction since we assume that the graph is a ψ-lopsided expander and thus
does not contain ψ-lopsided sparse cuts.

In summary, the induction shows that vol(B+(v, r1)) ≥ 1
2 ·vol(V ) and thus we may choose

R = r1. To prove that R is as claimed, consider the following calculation:

R = 2 +
⌈log vol(V )⌉∑

i=1
∆i

= 2 +
⌈log vol(V )⌉∑

i=1

⌈
1
iψ

⌉

≤ 2 + ⌈log vol(V )⌉+
⌈log vol(V )⌉∑

i=1

1
iψ

≤ O(log vol(V ) + ψ−1 log log vol(V )),

using the well-known fact that the harmonic numbers are bounded by
∑n
k=1 1/k = O(logn).

◀

One can easily strengthen the lemma as follows. This insight will play a role in the full
paper version where we construct the deterministic algorithm.

▶ Lemma 11. Let G = (V,E, c) be a directed graph and let ψ > 0 and 0 < α < 1. For any
node v ∈ V there is some radius R = O(ψ−1 log log vol(V ) + ψ−1α−1 + log vol(V )) such that
one of the following two properties holds:

vol(B+(v,R)) ≥ (1− α) · vol(V ), or
ψ(B+(v, r)) ≤ ψ for some 0 ≤ r ≤ R.

Proof. Applying the previous lemma with parameter ψ yields R′ = O(ψ−1 log log vol(V ) +
log vol(V )) such that either vol(B+(v,R′)) ≥ 1

2 · vol(V ), or ψ(B+(v, r)) ≤ ψ for some
0 ≤ r ≤ R′. In the latter case we are immediately done, so suppose that we are in the former
case.

Let ∆ = ⌈2α−1ψ−1⌉ and let R = R′ +∆. If vol(B+(v,R)) ≥ (1−α) ·vol(V ) then we have
shown the first case and are done. So suppose that otherwise vol(B+(v,R)) ≤ (1−α) ·vol(V ).
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Then due to the trivial bound vol(B+(v,R)) ≤ vol(V ), there is some radius R′ ≤ r ≤ R =
R′ + ∆ with

vol(B+(v, r + 1))
vol(B+(v, r)) ≤ 21/∆ ≤ 1 + 1

∆ ,

and hence,

c(B+(v, r), B+(v, r)) = vol(B+(v, r + 1))− vol(B+(v, r)) ≤ vol(B+(v, r))
∆ .

For this radius r it further holds that vol(B+(v, r)) ≤ (1−α)·vol(V ) and thus vol(B+(v, r)) ≥
α·vol(V ). In particular, we have that minvol(B+(v, r)) ≥ α

2 ·vol(V ). Putting these statements
together, we have that

ψ(B+(v, r)) = c(B+(v, r), B+(v, r))
minvol(B+(v, r)) log vol(V )

minvol(B+(v,r))

≤ vol(B+(v, r))
∆ · α2 · vol(B+(v, r)) log vol(V )

minvol(B+(v,r))

≤ 1
∆ · α2

≤ ψ,

witnessing indeed the desired sparse lopsided cut. ◀

▶ Lemma 7. Any ψ-lopsided expander has diameter O(ψ−1 log log vol(V ) + log vol(V )).

Proof. Take an arbitrary pair of nodes v, u. Applying Lemma 11 with parameters ψ and
α = 1

4 , say, yields a radius R = O(ψ−1 log log vol(V ) + log vol(V )) such that

vol(B+(v,R)) ≥ 3
4 · vol(V ),

and symmetrically,

vol(B−(u,R)) ≥ 3
4 · vol(V ).

Therefore, there is some edge e = (x, y) contributing to both of these volumes. Thus
x ∈ B+(v,R) and y ∈ B−(u,R). It follows that

dG(u, v) ≤ dG(u, x)+dG(x, y)+dG(y, u) ≤ R+1+R = O(ψ−1 log log vol(V )+log vol(V )).

Since the nodes u, v were chosen arbitrarily this establishes the claimed diameter bound. ◀

Proof of Theorem 2. Let G = (V,E, ℓ) be a directed graph with positive edge lengths. We
show that there is an LDD with loss O(logn log logn) for G. We first deal with two trivial
cases: First, if D ≤ logn/γ (for some constant γ > 0 to be determined later) then we simply
remove all edges and stop. Second, we remove all edges with length more than D from the
graph. In both cases edges can be deleted with probability 1 without harm.

Next, we transform the graph into G′ by replacing each e by a path of ℓ(e) unit-length
edges. In the following it suffices to design an LDD for the augmented graph; if that LDD
cuts any of the edges along the path corresponding to an original edge e we will cut e entirely.
An LDD with loss L in the augmented graph will thus delete an original edge with probability
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at most ℓ(e) · LD by a union bound. All in all, this transformation blows up the number of
nodes and edges in the graph by a factor of at most D (since we removed edges with larger
length). Recall that we throughout assume that D ≤ nc, for some constant c, and thus
|V ′| ≤ nO(1).

By Lemma 3 we further reduce the existence of an LDD of G′ to the following
cost-minimizer task: View G′ as an edge-capacitated graph G′ = (V ′, E′, c) for some
capacities c : E′ → [|V ′|10]. In particular, under this capacity function G′ has volume
vol(V ′) ≤ |V ′|2 · |V ′|10 = |V ′|12 = nO(1). The goal is to delete edges S ⊆ E′ in G′ so all
remaining strongly connected components have (weak) diameter at most D, and the total
cost of all deleted edges is only c(S) ≤ c(E) · LD .

Finally, we apply the Lopsided Expander Decomposition from Lemma 6 on G′. Specifically,
we define

ψ = log log vol(V ′)
ϵD

for some constant ϵ > 0 to be determined later. The Expander Decomposition then cuts
edges S ⊆ E′ so that each remaining strongly connected component is ψ-lopsided expander.
Thus, by Lemma 7 each strongly connected component has diameter

O(ψ−1 log log vol(V ′) + log vol(V ′)) = O(ϵD + γD).

By choosing the constants ϵ and γ to be sufficiently small, the diameter bound becomes D
as desired. Moreover, Lemma 4 guarantees that we cut edges of total capacity

c(S) ≤ c(E′) · ψ log vol(V ′) ≤ c(E′) · log vol(V ′) log log vol(V ′)
ϵD

,

which becomes L
D by choosing

L = log vol(V ′) log log vol(V ′)
ϵ

≤ log |V ′|12 log log |V ′|12

ϵ
= O(logn log logn)

as planned. ◀
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