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Abstract
Molecular dynamics analysis is a fundamental topic in chemistry, in particular the study of the
formation and dissolution of hydrogen bonds over time. The dynamics of these bonds create and
break cycles which are crucial to the structure of the molecules. The challenge in cycle analysis is
twofold: there is an exponential number of cycles, and some cycles are very close.

We introduce a graph-based approach using minimum cycle bases to assist in molecular dynamics
analysis. Given a set of graphs representing a molecule trajectory, we determine, for each graph,
a minimum cycle basis and construct a graph of cycles which represents the cycles of minimum
bases and their interactions. Then, we aggregate all information from these graphs of cycles into a
polygraph. Each vertex of the polygraph represents a class of cycles appearing in different minimum
bases and playing equivalent roles in the trajectory.

This paper introduces our approach, establishes the complexity of associated problems, and
suggests an implementation. Simulations are conducted on both real and generated data to evaluate
the performance of our approach.
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Introduction

This article proposes a new graph-based approach for analyzing the structural dynamics
of molecular trajectories. Such a trajectory represents the temporal evolution of the three-
dimensional positions of a set of atoms, discretely sampled over time [9]. From the resulting
series of 3D images, a sequence of molecular graphs is derived, referred to as conformers.
These conformers share identical vertices and are characterized by chemical bonds induced by
the distances in three-dimensional space. A chemical bond denotes an attractive interaction
between two atoms, classified into covalent bonds, representing strong bonds formed by
electron sharing, and hydrogen bonds, weaker electrostatic interactions compared to covalent
bonds. Covalent bonds persist across all conformers within a trajectory, while hydrogen
bonds may appear or disappear over time.
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1:2 Polymorphic Cycles for Molecular Dynamic Trajectory Analysis

A molecular dynamics (MD) trajectory is a sequence of conformers that share
identical vertices and a common subset of edges that represent covalent bonds. Analyzing
such a trajectory consists in examining the structural evolution of the molecule, which
manifests itself as alterations in the topologies of these conformers. Previous studies [11, 15]
have suggested the interest in representing the molecular structure based on interactions
among elementary cycles within the molecular graph, particularly for the classification and
characterization of sets of molecules.

Given the potentially extensive number of cycles in a graph, a practical representation
of the structure of a molecule often involves minimum cycle bases [5] of the molecular
graphs [6, 19]. Such minimum cycle bases are already used in chemistry to represent the
molecular structure [12, 20]. Cycle bases can be used to study the similarity between
molecular graphs [9, 19]. However, to the best of our knowledge, no study has yet addressed
the analysis of a set of conformers or focused on searching for similar cycle bases.

In this study, the hypothesis is that, between consecutive conformers in a trajectory, each
cycle contributing to the structure can either appear, disappear, or evolve (a partial change
of its set of edges based on the evolution of hydrogen bonds). Consequently, we consider a
specific minimum cycle basis for each conformer. In [2, 7], it is experimentally shown that two
distinct cycles from the bases of two different conformers may assume an identical structural
role in them. Thus, we can define the property that two cycles are pairwise polymorphic if
they play the same role in the structure of the conformers in which they appear, i.e. if they
interact in the same way with all the other such cycles in their respective conformers.

This main property, along with two additional practical ones, are precisely defined in
Section 1. These properties lead to the partition of the subset of the union of cycle bases,
restricted to those containing at least one hydrogen bond, into equivalence classes called
polymorphic cycles. These equivalence classes are represented as the vertices in a graph,
denoted as the polygraph. An edge exists between two classes if at least one cycle from each
class appears in the same conformer and their intersection is nonempty. Subsequently, each
conformer is characterized by a subgraph of this polygraph, induced by polymorphic cycles
that are active in that particular conformer. It is the resulting sequence of sub-polygraphs
along the trajectory that facilitates the analysis of molecular structure evolution [2]. Therefore,
the primary objective is, given a trajectory, to determine a minimum cycle basis for each
of its conformers, providing a specific representation of the structure of each conformer.
Following this, we aim to determine the smallest number of equivalent classes. The main
issues are to compute a polygraph with the smallest number of vertices easily and to select
the cycles in each minimum cycle basis to facilitate the computation of such a polygraph.

Section 1 provides a formal definition of the set of cycles for each conformer, along
with the graph modeling of polymorphic cycles and polygraphs. Section 2 demonstrates
that the problem of obtaining a polygraph with minimum number of polymorphic cycles is
NP-complete even for planar graphs, and not approximable. Section 3 proposes an approach
to compute the polygraph. In Section 3.1, the selection of cycle bases for each conformer is
discussed. Section 4 presents a performance evaluation of the approach on various trajectories.

1 Definition of polymorphic cycles and polygraphs

A MD trajectory consists of an ordered sequence of conformers induced by the movement of
atoms in 3D space. Figure 1 shows three conformers of the same trajectory. Each conformer
is represented with the cycles containing at least one hydrogen bond (illustrated with dashed
arrows) of a minimum cycle basis. For each conformer, the associated graph of cycles, with



Y. Aboulfath, D. Barth, T. Mautor, D. Watel, and M.-A. Weisser 1:3

O1

C8 O2

N1

C9

C10

C11

O3

N2 C12

C13

C14

N3

O4

C15

C16

C17

N4
O5

C18 C19

C20

O6

N5C21

C22

C23O7

N6

C24

C25C26

N7

O8

(a) Graph G1.

O1

C8 O2

N1

C9

C10

C11

O3

N2 C12

C13

C14

N3

O4

C15

C16

C17

N4
O5

C18 C19

C20

O6

N5C21

C22

C23O7

N6

C24

C25C26

N7

O8

(b) Graph G2.

O1

C8 O2

N1

C9

C10

C11

O3

N2 C12

C13

C14

N3

O4

C15

C16

C17

N4
O5

C18 C19

C20

O6

N5C21

C22

C23O7

N6

C24

C25C26

N7

O8

(c) Graph G3.

N1O8-N5O4

N7O7

N6O5

N5O4

(d) Graph of cycles for G1.

N1O8-N5O4

N7O7 N5O4

N3O3

(e) Graph of cycles for G2.

N2O8-N5O4

N7O7

N6O5

N5O4

N1O8-N2O8-N3O2N1O8-N2O8

(f) Graph of cycles for G1.

Figure 1 Figures 1a, 1b and 1c represent three conformers within the same trajectory (dotted
arrows represent hydrogen bonds), each with a minimum cycle basis. Figures 1d, 1e and 1f are the
corresponding graphs of cycles in which vertices are cycles of the basis and two cycles are linked by
an edge iff they share at least one edge in the conformer.

vertices representing cycles and edges connecting cycles sharing at least one edge in the
conformer, is illustrated. The graph of cycles reflects the structure of molecular conformer.
Note that the cycles without hydrogen bonds may also contribute to the structure but, as
they are present in all conformers, they are not involved in the dynamic of the structure.

Although they are not identical, it is natural to consider that the orange cycles in the
conformers of Figures 1a and 1b play the same structural role as the red cycle of conformer
in Figure 1c. Indeed, they both are in the same position in the molecule, they both have
the same interactions with the other cycles of their bases, and they share several vertices
including a red vertex involved in an hydrogen bond. Therefore, these two cycles are in fact
the same molecular cycle whose form evolves based on the appearance and disappearance
of hydrogen bonds in the trajectory. One may consider the possibility that the orange
cycles could be polymorphic with the brown cycle rather than the red one. However, their
neighborhood in the graphs of cycles are different. Even if we can only conclude about the
cycles that simultaneously appear, the brown cycle appears with the green cycle, the purple
cycle and the blue cycle but does not share an edge with them, while the orange cycles
actually share an edge with each of them. Thus, their neighborhood are conflicting.

The objective of the problem addressed in this article is to determine sets of polymorphic
cycles during the trajectory to analyze the evolution of the molecular structure over time.
Such modeling allows the recognition of equivalence between sets of conformers even if they
are represented by different cycle sets. For example, when considering the three conformers
of Figure 1, the goal is to identify them as representative of the same structure. This
result deviates significantly from the classic straightforward conclusion that each conformer
represents a distinct structure within the molecular system [2].
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1:4 Polymorphic Cycles for Molecular Dynamic Trajectory Analysis

1.1 Modeling a molecular dynamics trajectory with graph theory
As defined in [9, 8], each conformer is modeled as a graph. In these graphs, vertices are
atoms and edges are both covalent and hydrogen bonds. A MD trajectory is described by
a sequence of graphs TG = {G1, G2, . . . , Gnc

} where each graph corresponds to a conformer
(nc: number of conformers). All these graphs share the same set of vertices and the same
set of covalent edges, forming a backbone that is common to all conformers. The granularity
level of the trajectory ensures that consecutive conformers differ by one, or occasionally, two
hydrogen bonds. The same conformer may appear several times in the sequence. The set of
distinct graphs is G = {G1, G2, . . . , Gng

} (ng: number of distinct graphs, ng ≤ nc).
Given a set of graphs G, let E be the union of edge sets of all these graphs. Additionally,

let EH be the subset of E representing the edges corresponding to hydrogen bonds.
As stated in the introduction, we use a minimum cycle basis Bi to represent the molecular

structure of a graph Gi. Recall that a cycle in a graph G is defined as a subgraph in which
each vertex has an even degree. The sum of two cycles is the subgraph that contains the
edges present in one of these two cycles but not in both. This definition leads to a vector
space known as the cycle space of a graph G denoted here as CG. The dimension of the cycle
space is given by µ(G) = |E| − |V | + x, where |E| is the number of edges, |V | is the number
of vertices, and x is the number of connected components in G. A cycle basis of a graph G is
a set of cycles that spans the cycle space of G, meaning that any cycle in G can be expressed
as a linear combination of cycles in the basis (initially proposed in [5]).

Each cycle c has a weight, denoted by ω(c), which is the number of its edges (i.e. the
length of the cycle). The weight of a cycle basis is the sum of the weights of the cycles
that constitute it. Consequently, a minimum cycle basis is a cycle basis within the cycle
space CG that minimizes its weight. The cardinality of a minimum cycle basis is equal to the
dimension of the cycle space. Note that for a given graph, there may exist multiple minimum
cycle bases. We denote by MCB(G) the set of minimum cycle bases of a graph G.

Various polynomial-time algorithms have been proposed to find a minimum cycle basis [3,
14]. Given a graph Gi and one of its minimum cycle bases Bi ∈ MCB(Gi), the set of selected
cycles Ci ⊆ Bi that contains at least one edge in EH defines the molecular structure of
the conformer. This selection ensures that the dynamic aspect of the molecular structure
is captured. The cycles drawn on top of Figures 1a, 1b and 1c, actually, represent these
selected cycle sets. Due to the multiplicity of minimum cycle bases available for each graph,
the algorithm for computing Bi ∈ MCB(Gi) from Gi is discussed in Section 3.1.

It should be noted that cycles within Ci may interact with each other by sharing edges
in E (including both covalent and hydrogen bonds). The set of edges for a cycle c is denoted
by E(c) ⊂ E. For two cycles c and c′ in Ci, if E(c) ∩ E(c′) ̸= ∅, then c interacts with c′ and
vice versa. Furthermore, considering TG , the set of cycles of the trajectory, denoted by C, is
the union of the selected cycles from all graphs: C =

⋃
1≤i≤ng

Ci.
The selected cycles and their interactions are represented in a graph to illustrate the

modeling of the molecular structure of a conformer. Given a conformer, a graph of cycles,
GCi = (Ci, Ei) is built where ∀c, c′ ∈ Ci, [c, c′] ∈ Ei if E(c) ∩ E(c′) ̸= ∅. Examples of such
graphs of cycles are given in Figures 1d, 1e and 1f. In these graphs, the label of a vertex
(i.e., a cycle) corresponds to the list of its hydrogen bonds.

Please note that the graph of cycles GCi exclusively represents the 2-connected components
of Gi. Consequently, it does not provide any information about the edges connecting these
2-connected subgraphs. Hence, several graphs may correspond to the same graph of cycles.
That’s why the cycle polymorphism partition introduced in the subsequent section takes G
and C as arguments instead of GC (the set of graphs of cycles GC1≤i≤ng

).
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1.2 Cycle polymorphism and polygraph
Given a trajectory TG , a cycle polymorphism partition is denoted by Π < G, C, EH >, and
is defined as a partition Π = {π1, . . . , πm} of C =

⋃
1≤i≤ng

Ci in which each part πj (with
1 ≤ j ≤ m) corresponds to a polymorphic cycle.

▶ Definition 1. A polymorphic cycle (or polycycle) is a set of cycles that satisfies the
following properties.
1. No simultaneous occurrences. Two cycles of a polymorphic cycle never appear

simultaneously in a minimum cycle basis of a graph, i.e., for every πj ∈ Π and every
i, 1 ≤ i ≤ ng, |πj ∩ Ci| ≤ 1.

2. Common hydrogen bond extremity. All the cycles of a polymorphic cycle share at
least one same vertex connected to an edge of EH , i.e., for every 1 ≤ i ≤ m, every cycle
c ∈ πi contains a same vertex v ∈ V that is the extremity of an edge in EH .

3. Same interactions. The interactions between polymorphic cycles must always be the
same. Cycles of a polymorphic cycle interact similarly with cycles from each other
parts (i.e., other polymorphic cycles). In other words, given two cycles of two different
polymorphic cycles, either they always interact or they never do it. Thus, for every
1 ≤ i ̸= j ≤ m, the cycles of any pair of graphs of cycles GCa and GCb satisfy the
following condition: if there exist c, d ∈ Ca and c′, d′ ∈ Cb such that c, c′ ∈ πi and
d, d′ ∈ πj, then Ea(c) ∩ Ea(d) = ∅ if and only if Eb(c′) ∩ Eb(d′) = ∅.

In Figure 1, the orange cycle (in graph G1 and G2) and the red cycle (in G3) are
polymorphic. Indeed, they are different but are in the center of the graphs of cycles and
neighbors with all the other cycles present.

For a more visual and comprehensive representation, we introduce the cycle polymorphism
graph, or polygraph for short. The polygraph has vertices corresponding to the polymorphic
cycles in Π < G, C, EH > and has an edge between two vertices if and only if their corres-
ponding polymorphic cycles interact. The label of a polymorphic cycle is the list of its atoms
involved in its hydrogen bonds.

Given TG , its polygraph is denoted by PolG . For each graph Gi ∈ G and its set of selected
cycles Ci, we denote by GPi the subgraph of PolG induced by Πi ⊆ Π such that for each
πj ∈ Πi, there is πj ∩ Ci ̸= ∅. Note that GPi is isomorphic to the graph of cycles GCi.

Figure 5a illustrates the polymorphic cycles graph in the context of a MD trajectory
composed of conformers of the same molecular system than the ones drawn in Figure 1.

The polygraph PolG offers a potential characterization of the MD trajectory TG . However,
the efficiency of such a characterization depends on the selected cycles in each conformer
and on the ability to obtain a reduced number of polymorphic cycles. These two points will
be discussed in the following sections.

2 Complexity of finding a cycle polymorphism from sets of cycles

This section formally defines the decision problem considered and proves its complexity.

▶ Problem 1 (Cycle Polymorphism Partition, CPP). Given a set of graphs G with the
same set of vertices, a subset of its cycles C, a subset of its edges EH and m ∈ N, does there
exist a cycle polymorphism partition Π < G, C, EH > composed of at most m components?

The associated minimization problem is named min-Cycle Polymorphism Partition
(min-CPP). This problem consists in searching the cycle polymorphism partition with the
smallest number of components.

SEA 2025
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Figure 2 Illustration of the polynomial transformation of an outer-planar graph H1 into G1.

We focus on the complexity of problem CPP restricted to the subset of instances modeling
as possible real molecular graphs (whose properties are not formally defined). Therefore, we
consider here only planar graphs since molecular graphs are generally planar [13, 10]. Since
a trajectory represents the evolution of a same molecule over time, the graphs must have the
same set of vertices.

▶ Theorem 2. Problem Cycle Polymorphism Partition is NP-complete even if each
graph Gi in G is planar and if each edge of EH in a graph Gi in G belongs to at least one
cycle in Ci ∈ C.

We give now the proof of this theorem. First, Problem CPP is in NP. Checking if a
partition Π < G, C, EH > is a cycle polymorphism partition can be done in polynomial time.

Consider now the problem Induced Subgraph Isomorphism, denoted here as ISI. Given two
graphs, H1 and H2, the problem ISI determines if H1 is isomorphic to an induced subgraph
of H2. It has been proven that ISI is NP-complete, even if H1 and H2 are outerplanar graphs
(i.e., a planar graph in which every vertex belongs to the outer face) [21]. Let (H1, H2) be
two outerplanar graphs forming an instance of the problem ISI. The number of vertices in
H1 is denoted by n1 and the number of vertices in H2 is denoted by n2, with n1 ≤ n2. The
transformation of such any instance (H1, H2) of Problem ISI into an instance of Problem
CPP consisting in two graphs G1, G2 with their set of cycles Ci, a set EH , and m ∈ N, is
made of 7 consecutive steps giving a graph G1 from H1 and a graph G2 from H2. Figure 2
illustrates this transformation step by step.

1. A graph G1 with n1 cycles is defined from H1 such that : (a) for each vertex u of H1,
there is a cycle cu composed of δH1(v) + 3 edges where δH1(v) is the degree of v in H1;
(b) for each edge [u, v] of H1, there is an edge e in G1 such that e ∈ cu and e ∈ cv; and
(c) for each cycle cu, there must be one edge that is not connected to any other cycle
(not even by one of its ends) on the outer face. These edges are said, “free” (they are
drawn in dashed red lines in Figure 2b).
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2. A construction similar to 1 is applied from H2 to initialize G2 with n2 cycles.
3. Independent vertices are added to G1 in such a way that the sets of vertices of G1 and

G2 is the same.

Any edge created in those firsts steps belongs to the set EH
1 (respectively EH

2 ). Unless
specified, the edges defined from now belong only to the set {E1−EH

1 } (respectively {E2−EH
2 }).

4. A same 3-cycle x, y, z is added to G1 and G2, with edge [x, y] in EH
1 and edge [x, y] ∈ EH

2 .
5. For each cycle cu in G1, replace a free edge [a, b] of EH

1 by a chain a, x, b in {E1 − EH
1 }.

6. Step 5 is applied to each cycle cu in G2, by replacing edges of EH
2 by chains in {E2 −EH

2 }.
Each cycle cu such obtained belongs to the cycles of G1 (resp. G2) denoted by C1 (resp.
C2). The cycle formed by the vertices x, y, and z also belongs to C1 (resp. C2) and is
denoted by c+

1 (resp. c+
2 ).

7. For each vertex v in G1, an edge [v, x] is added if it doesn’t exist yet. Similarly, for each
vertex w in G2, add an edge [w, x] if necessary. The edges newly defined do not belong to
any cycle of C1 (resp. C2).

The edges of {E1 − EH
1 } (respectively {E2 − EH

2 }) form a backbone, common to both
graphs and are all connected to x. This backbone corresponds to the blue edges in Figure 2.
Every edge of EH

1 (respectively EH
2 ) in G1 (respectively G2) belong to at least one cycle of

C1 (respectively C2). These edges of EH
1 are the dark ones in Figure 2e.

▶ Lemma 3. The graph G1 (or G2) obtained from H1 (resp. H2) by the proposed transform-
ation is planar.

Proof. Let us verify the planarity of the graph after each step of the transformation.
1. The graph G1 is initialized from a planar representation of H1 (see Figure 2a and 2c).

Each cycle is defined from a vertex of the external face in H1. Also, when two cycles
share an edge in G1, their corresponding vertices are extremities of the same edge in H1.
In such a construction, no edges can cross in G1.

2. For each cycle cu, its free edge is located on the external face of G1. Hence, replacing a
free edge [a, b] by a chain a, x, b cannot induce an edge crossing.

3. According to the embedded plan of the draw of G1, the edges added in the last step can
be drawn from the inside of a cycle cu. See Figure 2e for an example of this third step.

To conclude, the graph obtained by the proposed transformation is planar. ◀

Note that by construction, each edge in the set {E1 − EH
1 } in G1 is incident to x. Any

pair of cycles c ∈ C1 and c′ ∈ C2 checks the two firsts properties of Definition 1 since x is a
vertex connected to an edge in EH contained by all the cycles in C1 ∪ C2. It is obvious that
the construction of G1, G2, C1 and C2 from H1 and H2 is polynomial.

Consider the polynomial transformation given above from an instance (H1, H2) of the
problem ISI to an instance ({G1, G2}, C1 ∪ C2, EH , m = n2 + 1) of Problem CPP. As
explained in Lemma 3, each graph in G = {G1, G2} is planar. The vertices of G1 and G2 are
the same and, by construction, every edge of EH belongs to at least one cycle in C = C1 ∪ C2.

Consider H1 isomorphic to H ′
2, an induced subgraph of H2. There exists an edge

[u, u′] ∈ H ′
2 isomorphic to an edge [v, v′] ∈ H1. By construction, the cycles cu and cu′ in G2

(resp., cv and cv′ in G1) verifies cu ∩ cu′ ̸= ∅ (resp. cv ∩ cv′ ̸= ∅). By construction, cu and cv

in C1 (resp. cu′ and cv′ in C2) share an edge in G1 (resp. G2). Let us consider a partition of
C = C1 ∪ C2 in which for each such pair of edges [u, v], [u′, v′], there are two parts {cu, cu′}
and {cv, cv′}. For any vertex w of H2 not in H ′

2, we consider singleton {cw}. Thus, the so
obtained partition contains k = n2 parts, plus part {c+

1 , c+
2 } and checks Definition 1.

SEA 2025
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Figure 3 Example of a graph PG built from a graph G with the proposed procedure. In Figure 3b,
edges of E are in solid black lines while edges of EH are in dashed blue lines.

Let now be Π a cycle polymorphism of {C1 ∪ C2} of size k = n2 + 1. As this partition
is obtained from two graphs, each part is of size 1 or 2. Since n2 is the number of vertices
of H2, the number of parts of size 2 is n1. Let {c+

1 , c+
2 } be a part. Consider a pair of parts

{cu, cv} and {cu′ , cv′} of size 2 in Π, with u and u′ vertices in H2 and v and v′ vertices in
H1. Since Π checks Definition 1, [u, u′] is an edge in H2 (i.e., cu and cu′ share an edge in G2)
iff [v, v′] is an edge in H1 (i.e., cv and cv′ share an edge in G1), as a consequence of property
“Same interactions” in Definition 1.

Consider sets VS2 =
⋃

{cu,cv}∈Π
u vertex in H2

{u} and VS1 =
⋃

{cu,cv}∈Π
v vertex in H1

{v}, i.e., the vertex set of

H1. The induced subgraphs H2[VS2] of H2 is isomorphic to H1, by considering u isomorphic
to v for any {cu, cv} ∈ Π. Then there is an induced subgraph of H2 isomorphic to H1.

Thus, Problem Cycle Polymorphism Partition is NP-complete, even if each graph G

in G is planar and if each edge of EH in a graph Gi in G belongs to a cycle in Ci ∈ C. This
ends the proof of Theorem 2. We show now that Problem min-CPP cannot be approximated.

▶ Theorem 4. Problem min-Cycle Polymorphism Partition cannot be approximated
with a factor of |C|1/7−ϵ for any ϵ.

Proof. Given a graph G, the Minimum Chromatic Number (MCG) problem consists of
determining its chromatic number χ(G). The associated decision problem is NP-complete [16].
From (G = (VG, EG), m) an instance of MCG, an instance of min-CPP is built as follows.

A graph PG is built from G with a set of edges EH , according to the following steps : (1)
For each vertex v ∈ VG, build a cycle cv of length 4 defined by v1, v2, v3, v4 with [v1, v4] the
only edge in EH on it; (2) Add a chain of edges in E − EH with three new vertices x, y, z,
and then add an edge [x, z] ∈ EH ; (3) In each cycle cv, replace [v2, v3] by [v2, x] and [v3, z]
both belonging to E − EH ; the cycle thus modified v1, v2, x, z, v3, v4, is still denoted by cv.
Figure 3 illustrates the built of PG from G on an example.

Define, now, a set of graphs G = {P1, . . . , P|EG|} from the graph PG as follows. For each
edge ei = [u, v] ∈ EG, a graph Pi is a subgraph of PG in which for each vertex w ∈ VG −{u, v}
the edge [w1, w4] of cw has been removed.
A set of cycles Ci = {cu, cv} is associated to Pi. Note then that |C| = |VG| where C =

⋃|EG|
i Ci.

Figure 3 illustrates three of the five graphs built from PG drawn in Figure 3.
This transformation of an instance (G = (VG, EG), m) of the MCG problem into an

instance (G, C, EH , m) of CPP is polynomial. All cycles in C share the same vertex x

connected to an edge of EH . Therefore, considering the property of no simultaneous
occurrence of the polycycles, a polymorphism partition < G, C, EH > of size m corresponds
to a partition of size m of VG into stable subsets (i.e., a m-coloring of G).
As indicated in [4], the MCG problem cannot be approximated with a factor of |VG|1/7−ϵ

and this for any ϵ. Therefore, due to the polynomial transformation proposed here, one can
conclude that the same is true for the min-CPP problem. ◀
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(a) The graph P1.
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(b) The graph P2.
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(c) The graph P3.

Figure 4 Example of three graphs from the set G = {P1, . . . , P|EG|}.

3 Computing a polygraph from a trajectory

3.1 Computing the set of selected cycles for each conformer

Given a trajectory, each conformer will correspond to a subgraph of the obtained polygraph.
The evolution of the molecular structure during the trajectory corresponds to the modification
of these subgraphs between each pair of consecutive conformers. It is therefore a question
of obtaining the polygraph which minimizes these modifications as much as possible. This
is directly impacted by the cycle bases chosen for each conformer graph. Indeed, given a
target trajectory, the choice of minimum cycle basis of the conformers can have a significant
impact on the quality of the computed polygraph, in terms of the number of vertices (i.e.,
polycycles). A first natural assumption is that the more cycles the cycle basis chosen for
G graphs have in common, the fewer vertices the polygraph will have. The problem of
determining a minimum cycle basis for each graph maximizing the overall intersection of
these bases is NP-complete [1]. Furthermore, experimentally the correlation between the size
of the intersection and the number of vertices of the polygraph was not very convincing.

Consider a set of graphs G = {G1, G2, . . . , Gng} of an input trajectory. We examine
two possible algorithms for generating a cycle basis for each conformer graph Gi. These
algorithms may be further enhanced with local optimization.

The first approach involves generating a minimum cycle basis Bi of Gi using the Horton
algorithm [14]. Briefly, this algorithm identifies a set of fundamental cycles and then
incrementally selects a cycle base. The cycles are chosen from the set of fundamental cycles
in order of increasing size, provided they cannot be derived by combining the cycles already
present in the base under construction.

The second approach involves using an amended Horton algorithm. The cycles are ordered
by size, with a priority given to those with a larger number of hydrogen bonds. As the cycles
are ordered by size, this algorithm also generates a minimal cycle base.

Let SC be the set of all fundamental cycles generated from all the graphs Gi by the
execution of the first or second algorithm. It may exist cycles in SC which do not appear in
the union of all bases Bi. We define the following local optimization: A pair c, c′ ∈ SC2 is
called swappable iff (i) they do not appear in a same cycle basis Bi, and (ii) c′ can replace
c in all cycle bases Bi in which c appears (i.e., such that the resulting sets remain valid
minimum cycle bases for their corresponding graphs).

Knowing if two cycles are swappable can be computed in polynomial time. For any cycle
c we also define Cost(c) as the ratio between the number of cycle bases in the current set
in which c appears and the number of graphs in G containing c. At each step of the local
optimization we apply the swap maximizing the strict increasing of

∑
c∈SC+ Cost(c), where

SC+ is the subset of cycles of SC appearing in at most one cycle base of the obtained set of
cycle bases after swapping. Thus algorithm ends when no such strictly increasing swapping
exists. In the following, we called Swapped bases the final obtained set of cycle bases.

SEA 2025
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3.2 Computing the polygraph
Finally, given a set of cycles for each graph of the trajectory obtained as described in
the previous section, due to the NP-completeness of Problem min-Cycle Polymorphism
Partition and that even for planar graphs, to minimize as possible the number of polycycles
we propose the following greedy algorithm. Let us start from the cycle polymorphism
partition Π < G, C, EH > where each part is a singleton. At each step, two parts πi, πj such
that πi ∪πj is a polymorphic cycle are selected and merged to create a new partition with one
less part. This selection supposes the use of an objective function to evaluate each potential
couple of parts. Therefore, if the union of two polymorphic cycles remains a polymorphic
cycle, we propose the following scoring : S(πi, πj) = |πi ∪ πj | × |V H(πi) ∩ V H(πj)| where
V H(πi) is the set of vertices in the union of cycles of πi being an extremity of an edge in EH .
Using this scoring consists in choosing the fusion on one hand with a large resulting size and
on the other hand the one giving the less constraints on next possible fusions considering
second proposition of Definition 1.

Starting from the cycle polymorphism partition composed of singletons and performing
successive merges, the result is a cycle polymorphism partition. The proposed objective
function can be modified and improved independently of the rest of the algorithm if necessary.

4 Performance evaluation of the whole approach

Effectiveness of the polygraph. The relevance of the polygraph for MD trajectory analysis
has already been demonstrated [2]. Figure 5 illustrates the expected results of the method.
Given a MD trajectory, Figure 5a is the polygraph obtained using Horton’s algorithm to
compute the basis. The polygraph represents the polymorphic cycles and their interactions,
which constitute the structure of the molecule throughout the dynamics. Figure 5b is a
representation of the occurrences of polycycles in conformers over time along the trajectory;
one dot in column i indicates that one cycle of the corresponding polycycle occurs in the ith

snapshots of the trajectory. Some polycycles are almost always present, such as P1, P2 or
P4. Others only appear under certain conditions, such as P3 and P5, which never appear
together. Finally, P6 only appears at the very end of the trajectory. Such an event can be
considered a significant structural change, since it implies a new polycycle. This analysis is
only possible using the polygraph, which has previously grouped together equivalent cycles.
Furthermore, examining Figure 5b, several lines are full, indicating that a cycle from the
set is always present. This also implies that polymorphic cycles exist at the same time and
cannot be merged. This shows that the obtained polygraph is already highly condensed and
it is challenging to further reduce the number of polycycles.

Performances of the approach. To evaluate our approach, we carried out tests on a
few trajectories measured by chemists. Given a trajectory, we systematically compute the
polygraph from cycles obtained by the Horton algorithm and its variant, with or without the
local optimization. Table 1 presents our results. The number of graphs in each trajectory
varies from 60 to 500. In these molecules, the difference between the number of atoms and the
number of covalent bonds indicates that they contain few cycles composed solely of covalent
bonds. For each trajectory, we compute the polygraphs based on the cycles provided by
the Horton algorithm and its variant without and the local optimization. The most crucial
metric is the number of polycycles in the polygraph. A smaller value indicates a better
result. Although the results are close, we observe that using Horton’s algorithm without local
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(a) The polygraph obtained. (b) The apparitions of polycycles in time.

Figure 5 Given a MD trajectory of peptide Zala6 obtained by ab initio molecular dynamics
simulations, the above results were obtained using Horton’s base selection algorithm.

descent may yield a slightly higher number of polycycles. Due to the difficulty of generating
trajectories for chemists, we currently do not have any additional trajectories that would
allow for further exploration of these results.

To extend our study, we generate random trajectories similar to those provided by
chemists. Initially, we create a backbone graph and a set of hydrogen bonds, which serve
for generating each trajectory graph. For a graph with n nodes, we initiate the process by
randomly generating a connected 4-regular graph G = (V, E) with n vertices. From G, we
extract a random spanning tree A = (V, E′). Subsequently, we select a set B of b edges
uniformly at random from E\E′. These edges, combined with those from the spanning
tree, constitute the backbone, representing the covalent links present in all graphs within
the trajectory. Next, we select a set H of h edges from E\(E′ ∪ B) to represent potential
hydrogen bonds. The edges in H are chosen randomly, subject to the following criterion:
each time an edge is selected, the two end vertices are assigned “hydrogen” or “oxygen”
labels. If these labels do not conform to those previously assigned to the end vertices, the
edge is rejected, and a new edge is randomly chosen.

Using the backbone graph (V, E ∪ B) and the set of hydrogen bonds, we generate a
trajectory by producing a sequence of graphs such that no two consecutive graphs differ by
more or less than one hydrogen bond, and each graph contains no more than k hydrogen
bonds. For the initial graph in the sequence, a set of ⌊ k

2 ⌋ edges are randomly selected.
The algorithms used to generate the d-regular graph and the spanning tree are those

provided by the Networkx libraries, which implement the algorithms described in [17] and [18].
The trajectories obtained are close to those provided by chemists, in several aspects. The

Table 1 On the right-hand columns, the number of polycycles in polygraphs obtained for different
trajectories (Chondroitin Disulfate, Zala6 and Gramicidine) according to the four different cycle
base generation methods. Information on the trajectories is shown in the left-hand columns.

Trajectory Trajectory parameters Number of polycycles
Horton A. Horton Horton A. Horton

|V | |E| |EH | With local opt. Without local opt.
Chond. D. 35 37 13 18 16 16 16

Zala6 41 41 9 6 6 6 6
Gram. 136 143 13 42 41 41 41

SEA 2025



1:12 Polymorphic Cycles for Molecular Dynamic Trajectory Analysis

20 25 30 35 40 45 50 55
Polygraph order

0

5

10

15

20

25

30

35
Nu

m
be

r o
f t

ra
je

ct
or

ie
s

Polygraph order distribution
Mean = 34.30

Horton algo.

20 25 30 35 40 45 50
Polygraph order

0

5

10

15

20

25

30

35

Nu
m

be
r o

f t
ra

je
ct

or
ie

s

Polygraph order distribution
Mean = 30.73

Amended Horton algo. with local opt.

Figure 6 Number of polycycles in polygraphs of 500 trajectories. On the left, the polygraph is
based on the cycles generated from Horton algorithm, on the right with Amended Horton with local
descent. Graphs in the trajectories have 3 cycles in backbones and 15 hydrogen bonds.

Figure 7 The impact of cycle selection methods on the number of polycycles. Each curve
represents the distribution of the difference in the number of polycycles over 500 trajectories between
two algorithms X and Y . The algorithms compared include Horton and its variant without descent
(H- and AH-) and Horton and its variant with descent (H+ and AH+).

maximum degree of the vertices is limited to 4, as in molecules. The graphs are planar or very
close to being planar. The number of cycles without hydrogen bonds is small and controlled
by the b parameter. Hydrogen bonds appear among a set of bonds of size h. Successive
graphs in a trajectory differ by no more than one edge.

For our analysis, we generated 500 random trajectories, each consisting of 500 graphs.
These graphs contain of 25 nodes, 3 backbone cycles, and 15 hydrogen bonds. Figure 6
illustrates the distribution of the number of polycycles in the polygraphs depending on
the algorithm used to generate the cycle bases. Among the 4 available algorithms, Horton
without descent appears to be statistically the least favorable option. On relatively small
graphs with relatively few cycles, switching to the Amended Horton with descent reduces
the number of polycycles from 34 to 30. However, this distribution alone does not allow us
to draw definitive conclusions. It’s possible that there are rare trajectories for which Horton
performs better.

For each trajectory, we compare the results obtained for the four algorithms. Figure 7
illustrates the distribution of the difference in polycycle size for a given pair of algorithms.
The first and last curves confirm that the descent algorithm consistently reduces the size
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of the polycycle, i.e. difference in polycycle size is always negative or zero. The descent
algorithm can significantly reduce the polycycle size when starting from Horton’s algorithm.
However, the reduction is more marginal when using the amended Horton algorithm.

The first three curves indicate that, with the exception of a small number of trajectories,
Horton modified with local optimization is always preferable. Conversely, Horton without
local optimization does not give satisfactory results (lines AH+ vs H-, AH- vs H- and H+ vs
H-). Amended Horton and Horton with descent can be considered relatively similar (AH- vs.
H+ line). It seems that forcing Horton to select hydrogen bonds is a good strategy that the
local optimization manages to compensate for. This compensation comes with a cost in terms
of runtime. On average, the Horton algorithm and its variant each run in about 3 seconds on
a commercial laptop. However, the descent algorithm adds an additional 25 seconds when
starting with cycles generated by Horton, and an extra 21 seconds when starting with cycles
generated by Amended Horton. Statistically, Amended Horton’s solutions not only yield
better results but also require fewer optimization steps to reach a local optimum. We have
generated trajectories containing larger graphs (up to 50 vertices) with more cycles, and so
far the results seem identical, even if the computation time increases.

Conclusion

In this article, in order to deal with a real problem in chemoinformatics, the analysis of
molecular dynamics trajectories, we introduce the min-Cycle Polymorphism Partition
problem. We prove its NP-completeness and establish that it does not admit a |C|1/7−ϵ-
approximation for any ϵ.

However, the heuristic approach that we propose has proven to be effective in practice and
realistic from the point of view of execution time and quality of results. Results on large
sets of random graphs show that using our amended version of Horton algorihtm is highly
effective for initial base selection. The improvement of the bases obtained by the greedy cycle
swapping approach that we propose makes it possible to consider the use of neighborhood
metaheuristics whose performance is to be studied.
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