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—— Abstract

Discrete optimization models often reason about discrete sets of objects, but discrete optimization
solvers only deal with integers. One of the key challenges when building models for discrete
optimization problems is avoiding bugs. Because the model only defines constraints, decisions, and
an objective that are then run on a solver, bugs in the model can be very difficult to track down.
Hence, modelling languages should have strong type systems to detect as many bugs as possible
at the modelling level. In this paper, we propose unit types for MiniZinc. Unit types allow us
to differentiate between different integers appearing in the model. Almost all integer decisions in
models are either about a set of objects or some measurable resource type. Using unit types, we
can add more type safety to our models by avoiding confusion of decisions on different resource
types. Compared to other programming languages, unit types in our proposal are unusual. MiniZinc
models often deal with multiple levels of granularity of the same resource, e.g., scheduling to the
minute, but doing resource allocation on the half day, or use an unspecified granularity, e.g., the
same job-shop scheduling model could use task durations given in minutes or days. Our proposed
unit types also differentiate between coordinate unit types, e.g., the time when an event occurred,
and the usual delta unit types, e.g., the time difference between two events. Errors arising from
mixing coordinate and delta types can be very challenging to debug, so we extend the type system
to track this for us.
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1 Introduction

Consider the following MiniZinc model of the knapsack problem where we need to choose
exactly k different products from a given set PRODUCT, so that the total weight is under the
limit, and we maximize profit.
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int: k; % number of products to choose
int: limit; % available weight limit
enum PRODUCT; % set of products available

array [PRODUCT] of int: wght;

array [PRODUCT] of int: profit;
array[l..k] of var PRODUCT: chosen;
constraint all_different (chosen);

constraint sum(i in 1..k) (profit[chosen[i]]) <= limit;

solve maximize sum(i in 1..k) (profit[chosen[i]]);

The model runs and will give us answers, but unfortunately it does not define the correct
problem. The modeller has used profit instead of wght on line 8. In line 8 we are summing
up profits to see that they are under the weight limit. This is a unit type error of the model,
comparing integers that represent two different kinds of things.

While there are unit type extensions for almost any programming language, in practice
they are not commonly used. The problem is that the overhead of adding unit types to
the program has to pay off in comparison to the extra development time to be worth it.
For safety critical code this is clearly worthwhile (as the sad demise of the $125M Mars
Climate Orbiter indicates'). Given that debugging constraint models can be quite difficult,
particularly if the solver simply fails after a large amount of computation, an important role
of types in modelling languages is to provide type safety. Many subtle errors can be avoided
if we use strong type checking based on the types. Here we introduce unit types for MiniZinc.
Interestingly, the question of unit types for modelling languages for combinatorial problems
is different from that of procedural languages, and we find the necessity for introducing new
kinds of unit types to help prevent type errors in models.

The contributions of this paper are:

A proposed definition of unit types for MiniZinc, including dimensions and units.

The introduction of abstract units, and coercions between them, which results from the

fact that we are often dealing with integer decisions, so arbitrary multiplication or division

of units is not obviously meaningful.

The introduction of counting types, used in models which count the occurrence of objects,

a new form of unit type.

The introduction of coordinate instead of the usual difference unit types to differentiate

variables representing coordinates from those representing distances. These have been

defined for other programming languages but less frequently.

The definition of a unit type checker based on type erasure at the model level, resulting

in zero overhead at solving time compared to models that do not use unit types.

An exploration of existing MiniZinc models to determine how many of them could improve

type safety utilizing unit types.

2  Unit Types

Unit types are refinements of numeric types that attach units of measurement to the numeric
objects. They aim to find more type errors. Note that we introduce unit types as an addition
on top of the current MiniZinc type system. Although the enhanced type system might reject
models that use unit types, it does not influence the correctness of existing MiniZinc models.

1 An investigation indicated that the failure resulted from a navigational error due to commands from
Earth being sent in English units (in this case, pound-seconds) without being converted into the metric
standard (Newton-seconds).
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Figure 1 Graph for dimension distance.

A dimension is a kind of measurement, for example distance, time, mass, and worth are
basic dimensions. Dimensions can be declared as “unit type dimension”. We assume m
distinct dimensions are available. A basic unit is an identifier such as metre (metre), sec
(second), kg (kilogram), or dollar which has a dimension. A basic unit type can then be
declared as “unit dimension: u”, where dim(u) = dimension. Or it can also be derived

' where

from an earlier declared or defined unit type v’ as “unit dimension: u = cQu
dim(u) = dim(u") = dimension. The basic unit types for a dimension dimension define a
graph with a node for each basic unit type and edges (u,«’) with weight ¢ for each declared
unit type definition.?

One basic unit type u can be downcast to another v of the same dimension by multiplying
by the product of constants appearing in the path from u to v, denoted J(u,v), which equals
L if no path exists. We use L to represent a type error/ill-defined type. We define the
meet, largest common subunit, of two basic unit types of the same dimension MMy (u,v) as the
nearest common ancestor of u and v in the graph, or L if none exists.

Figure 1 shows the graph resulting for dimension distance from the sample declarations
on the left below. For example, M(kmmile) = cm, and My (km,mykd) = L; similarly | (mile,mm)
= 1609394 x 10, while |(mm,km) = L. Note how we can have multiple declared basic units
for the same dimension, but we cannot coerce from one to the other.

unit type distance; unit type time;

unit distance: mm; unit time: sec;

unit distance: cm = 10Q@mm; unit time: minute = 60@sec;
unit distance: metre = 100@cm; unit time: hour = 60@minute;
unit distance: km = 1000Q@m; unit type: mass;

unit distance: mile = 160934@cm; unit mass: gram;

unit distance: myd; unit mass: kg = 1000@gram;
unit distance: mykd = 1000@myd; unit type worth;

unit worth: dollar;

A (complex) unit type u for a numeric object o takes the form u = b]*b52 - - - b, where
each b;,1 < ¢ < m is a basic unit type for dimension i, and each n;,1 < i < m is an
integer. The dimension of the type u is dim(by)™ - - - dim(by)™™. For example, a speed may
have unit type metre/sec, which is technically metre'sec 'kg’dollar® and has dimension
'mass®worth®. Note that we do not allow complex unit types with two
basic unit types of the same dimension. We usually omit writing terms where n; = 0. We
denote by 1 the dimensionless unit type (where n, = 0,1 < i < m).

distanceltime™

2 Usually c is an integer. Floating-point constants ¢ are allowed, but they result in automatic casts of
integer expressions to float.
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We can add shorthands for dimension expressions and (complex) unit type expressions.
‘unit type short = de” defines short as a shorthand for the dimension
expression de. de takes the form of dexde, de/de, de™, or d where d is a previously defined
dimension or shorthand and n is an integer. Similarly, (complex) unit type shorthands can
be defined as “unit dimension: wu = ue” where ue is defined as above except that d must
be a basic or shorthand unit type, and dim(ue) = dimension. For example, the declarations
below define velocity as a shorthand for distance over time, and a unit of velocity which is
always treated as its two components.

4

A declaration

unit type velocity = distance/time;
unit velocity: kph = km/hour;

We extend the meet operation to a single dimension with power as follows: Mg(b}", b;";‘)
equals L if dim(b;) # dim(b]) or n; # n}; otherwise it equals My(b;, b})™,n; > 0 or b;* if

1 (bi,h) # L, or 0™ if | (b],b;) # L, or L otherwise. So for positive powers we use the meet

operation, for negative powers we require that one unit is downcastable to the other, and the

resulting type is the downcastable type, inverse powers swap the direction to smaller units.
k1

We can then extend meet to two complex unit types: M(by* -+ - bt it -+ ckm) is defined

as TI; My (b7, ¢F) if none of the dimensional meets results in L, and L otherwise. We can

similarly extend downcasting from one complex type to another as | (b7 --- b7, it - ckm)
asIl; ;>0 4 (bs, i)™ XIL; <0 4 (€3, 0;) ™ if no downcasts resultsin L and n; = k;,1 < i < m,
or L otherwise. This allows us to, for example, determine that M(km?sec™!, m?hour—!) is
m?hour—! and | (km?sec™!, m?hour—!) is 1000% x (60 x 60)~ ! = 3600000000.

We can multiply two complex unit types u®v together: (b ---bm) @ (i - - ckm). This
mtk gtk where @; = by if by = ¢; Vk; = 0, and x; = ¢; if n; = 0,
and the result is L if neither of these conditions hold for any dimension. Note that this
requires that we do not multiply unit types with different basic types for the same dimension
together.® We can invert a unit type u = b}* - - - b%m to obtain 1/u as b; ™ - - b, " Division
of unit types is just inversion followed by multiplication: u/v = u ® (1/v). For example,
km'sec™! ® km! gives unit type km?sec™! and 1/(km'sec™!) = km~!sec!.

Note that while meet and down casting are a bit complex to define, actual models mainly
use simple cases, as there are usually one or two basic unit types for each dimension.

is defined as x

3 Unit Type Checking

The main role of unit types is to prevent making unit type errors. They restrict the possible
correct arithmetic expressions we can write. Below, we give our candidate syntax to work
with unit types in existing MiniZinc models, and the type computation rules for important
classes of arithmetic expression. Importantly, unit types are checked at the model level
(without the data) and then erased, incurring no runtime overhead when solving the problem.

A constant ¢ can be created of arbitrary unit type w using the @ symbol, c@u. The
operator should have a high precedence to ensure it binds tightly to prevent confusion about
which expression it influences. A variable can be declared with a unit type by appending the
unit type onto the type declaration using the @ symbol as follows: “[var|[int|float]@u:id”

3 Tt is possible to introduce automatic coercion during multiplication, but there are quite a few non-obvious
cases, so at present we restrict multiplication. The coercions could always be explicitly added to the
model to allow a multiplication.
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declares identifier id to have unit type u. We can similarly define set or array arithmetic
parameters or decisions with unit types. During type inference/checking, the type of identifier
id is its declared unit type u.
Here are the most important typing rules for this new syntax. The complete set of typing
rules is given in Appendix B.
type(kQu) = u. Constants simply have the annotated unit type.
type(e; + ea) = M(type(er),type(e2)). Addition (and subtraction) require unit types
which have a meet (i.e. they have the same dimensions and there is a coercion to a
common unit).
type(e; X eg) = type(er) Q type(ea). Multiplication of unit types is free in the dimension
of the indices but restrictive in the basic unit types.
type(er div ey) = type(er) @ type(1l/ez). Division of unit types is simply inversion
followed by multiplication.

Most other integer operations act similarly to +. For example, max, min and if-then-
else-endif have type given by the meet of their (last 2) arguments.
Returning to the example from the introduction, we might add units types as follows

include ;% make declared units available
int@kg: limit; % available weight limit

array [PRODUCT] of int@kg: wght;

array [PRODUCT] of int@dollar: profit;

The first line makes the standard library unit declarations available to the model. The
parameters are now specified in terms of units. With these declarations, we immediately get
the following unit type error on the second last line of the original model: unit mismatch:
expected "dollar", but got "kg".

To produce meaningful error messages for unit mismatches, the original units as written
by the modeller (or propagated through multiplication or division) are always used in any
user-facing messaging, in addition to the computed normalized units. This ensures that the
modeller is not faced with error messages only mentioning constructs they never wrote, and
the normalized units allow for easy comparison of the two units to see the exact mismatch.
For example, for the following model an error will be produced for the last line stating: unit
mismatch: expected "vel = "m*s"-1" but got "vel/s = mxs -2".

unit velocity: vel = m / s;
float@m: a = 5@m;

float@s: b = 2@s;
float@vel: ¢ = a / b;
float@vel: d = ¢ / b;

3.1 Coercion

In usual unit systems, coercion from one unit to a unit of the same dimension is generally
allowed. The physical quantities being measured by dimensions are typically real, and are
represented by a form of floating point number. This means that creating large or small
values is not problematic. Even in the case that the dimension is arguably not a real number
(e.g., worth might only be meaningful down to 1¢), it is still generally acceptable to use its
smallest unit type (using large integers to represent it).
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Unfortunately, this is not a suitable approach for (discrete) modelling languages such as
MiniZinc. Most MiniZinc models contain integer decision variables, and using the smallest
unit type to represent them can immensely expand the search space. This, in turn, would
lead to large increases in solving time. Hence, we need to be conservative with automatic
casting between units.

We propose a system that only allows automatic downcasts of units over the same
dimension from a larger unit to a smaller unit, e.g. from kg to gram.

var int@kg: x;
var int@gram: y = x + 55@gram;
var intQkg: z = x + y;

which will in effect constrain y = 1000 x x + 55, while the last line with create a unit type
error, since x + y has unit type gram and we cannot automatically upcast to fit into kg.

The user can instead upcast from a smaller unit to a larger unit when required using
provided built-in upcast operations: round, ceil and float. We can correct the error above
by rewriting it as

var int@kg: z = ceil (kg, x + Vy);

which will constrain z = [100100#1. The compiler can automatically create the underlying

upcast function ceil_kg_g and replace the call in the original code by looking up the
appropriate conversion factor:

var int@kg: ceil_kg_g(var int@gram: a) = ceil(a / 1000Q@g) =*1@kg;

Automatic downcasts should be added every time a meet operation does not result in the
same type as its arguments. So an expression x + y where type(z) = u and type(y) = v and
M(u,v) = w will be replaced by J(u, w)*z+ |(v, w)*y. For example, assuming type(p) = mile,
the expression 2@km + p@mile, will be rewritten to 1000 x 100 x 24160934 x p with unit type
cm. Note that if all constants in derived unit type declarations are integers, then automatic
downcasts of an integer expression always remain integer.

Consider a model which schedules tasks to the minute, but tracks machine usage over
each half day in the planning period (where tasks cannot span across multiple half days). A
model that computes in which half days a machine is used from the start times of the tasks
is given below.

unit time: halfday = 12Q@hour;
int@minute: makespan;
set of int@minute: TIME = l@minute..makespan;
int@halfday: halfdays = ceil (halfday,makespan);
set of int@halfday: HALF = 1Q@halfday..halfdays;
array [TASK] of var TIME: start;
array [TASK] of var MACHINE: machine;
array [MACHINE, HALF] of var bool: used;
constraint forall(t in TASK)
(used[machine[t], ceil (halfday, start[t])]);

The translation from start times in minutes to the correct halfday is easily defined by the
user using ceil upcasting. Note that we cannot know which rounding semantics is correct
for this upcast automatically, so we must rely on the modeller.
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Once unit type checking is complete, we add the multiplications required by an automatic
downcasts that arose in the unit type checking, and add definitions for any upcast predicates
used by the modeller. This is the only stage where code needs to be generated. After this, all
unit types can be erased from the model allowing all following compiler phases to continue
unaffected. For example, the model

var int@kg: x;
var int@gram: y = x + 55@gram;
var int@kg: z = ceil(kg,x + y);

will produce the following after unit coercion and erasure.

var int: x;

var int: y = x = 1000 + 55;

var int: z = ceil_kg_g(100xx + y);

function var int: ceil_kg_g(var int: a) = ceil(a / 1000);

3.2 Abstract units

Most MiniZinc models do not reason about a dimension using two different units, but we
often reason about a dimension without specifying exactly what it means. For example,
the knapsack problem of the introduction is equally valid whatever unit we describe mass
in, as long as we use the same unit for both 1imit and wght. Similarly, the unit of worth
could be cents or millions of dollars without changing how the model works. Hence, models
can define abstract units. This does not require any extension to the language. Instead, we
simply define new basic unit types in the model itself. For our knapsack example, we could
introduce a new unit for mass mmass and worth mworth as follows.

[)

include ; % make declared dimensions available
unit mass: mmass;

unit worth: mworth;

int@mmass: limit; % available weight limit

array [PRODUCT] of int@mmass: wght;

array [PRODUCT] of int@mworth: profit;

Every dimension automatically creates a default abstract unit of the same name. Since
in most models we only reason about one unit for a dimension, we can just use this unit. For
example in the above example, we could remove lines 2 and 3, and replace mmass by mass
and mworth by worth to use the default abstract units.

3.3 Units and Data in MiniZinc

Since data for discrete optimization models is usually created outside the model in existing
unitless formats like CSV, JSON, or a database, it is important that we support unitless
data. We assume that datafiles are unitless, and the unit information is attached to the
definition of parameters. For our first example model, a sample (.dzn) data file might be:

k = 3;

PRODUCT = {cooktop, stove, oven, fridge, washer, dryer};
limit = 170;

wght = [16, 70, 32, 90, 70, 30];

profit = [400, 750, 500, 1200, 600, 5001];

10:7
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In the future, interfaces that use MiniZinc from other languages with unit types, such as
MiniZinc Python [6], could provide information about the unit types of the data.

4 Counting types

One of the differences of discrete optimization models from normal programs is that they
often reason about counts of different kinds of objects. We want to ensure that we do not
make unit errors in our model when dealing with counting. Consider a variation of our
running model where we use 0/1 variables to define the chosen products.

int: kj; % number of products to choose
int: limit; % available weight limit
enum PRODUCT; % set of products available

array [PRODUCT] of int: wght;
array [PRODUCT] of int: profit;
array [PRODUCT ]

constraint sum(chosen) = k;

of var 0..1: chosen;

constraint sum(p in PRODUCT) (chosen[p]*wght[p]) <= limit;
solve maximize sum(p in PRODUCT) (chosen[p]*profit[p]);

What unit type do k and the chosen variables have? They are counts of PRODUCT. We
extend any enumerated type in MiniZinc to also be used as the unit type for counting that
enumerated type. In this model, the suggested unit type declarations are

int@PRODUCT: k;
int@mmass: limit; $ available weight limit
array [PRODUCT] of int@ (mmass/PRODUCT) : wght;
array [PRODUCT] of int@ (mworth/PRODUCT) : profit;
array [PRODUCT] of wvar (0..1)@PRODUCT: chosen;

number of products to choose

ol

The wght array records mass per PRODUCT, while the profit array records worth per
PRODUCT. Since we are multiplying the counts of PRODUCTs chosen [p] by the product’s
weight wght [p], it is clear that the constraint on line 8 is unit correct.

Note that the two declarations PRODUCT: k and int@PRODUCT: k are quite different, the
first k holds a (non-numeric) product, while the second k holds an integer count of products.

A counting type is simply a new dimension together with a basic unit. So each enumerated
type E adds a new basic unit also named E and a new dimension also named E to the unit
type system, where dim(E) = E.

4.1 Fine counting types

We can actually still generate erroneous models even with the counting types we consider
above. Consider the following model, which is checking that for any two chosen products
their usage of any resource is below the pairwise usage limit for that resource:

enum RESOURCE;
array [PRODUCT, RESOURCE] of int@ (RESOURCE/PRODUCT) : usage;
array [RESOURCE] of int@RESOURCE: limit2;
array [PRODUCT] of var (0..infinity)@PRODUCT: chosen;
constraint forall(pl, p2 in PRODUCT where pl < p2,

r in RESOURCE)

(usage[pl, r] xchosen[pl] +

usage [p2,r] xchosen[pl] <= limit2[r]);
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This is unit type correct, but unfortunately, there is a copy and paste bug. The problem
here is that the counting types are too broad. The erroneous expression usage [p2,r] *
chosen[p1] talks about different products. These types of errors are easy to make when we
reason about two or more resource types in the same arithmetic expression.

To prevent these errors, we allow fine counting types for each member of an enum, as long
as we have the enum as an index in the expression. We can rewrite the model declarations

enum RESOURCE;

array[p of PRODUCT, rr of RESOURCE] of intQ(rr/p): usage;
array[rr of RESOURCE] of int@rr: limit2;

array[p of PRODUCT] of var (0..1)@p: chosen;

The notation v of E gives us access to the value v of the enumerated type E in the rest
of the declaration. In this declaration, we are explicit that each value in the usage array
is specific to the PRODUCT and RESOURCE combination. It defines the resource usage
per product. We similarly define the resource limits and the chosen resources. With these
unit type definitions we can detect that the unit type of usage[pl,r]*chosen[p1] is r, but
the unit type of usage [p2,r]*chosen[pl] is r/p2*pl, and therefore, the last constraint is
erroneous. The right-hand side of the + operator is giving a unit mismatch error: expected
"r" but got "r*p2 -1xpl".

In the formalization, each fine-grained unit type used in the model, e.g., p of PRODUCT,
defines a new basic unit type PRODUCT(e) of dimension PRODUCT for each expression e
appearing in an array lookup at that position. For the example above, we have new unit types
PRODUCT(pl), PRODUCT(p2) and RESOURCE(r). The type of usage [p2,r] is obtained
by replacing the p by p2 and r by rr giving PRODUCT(p2)/ RESOURCE(r), similarly the
type of chosen[pl] is PRODUCT(pl), and the result of the multiplication is invalid (two
units for the same dimension). The printed error message omits the dimension annotation
around the units.

There is no coercion from fine-grained unit type p to the coarse grained unit type PRODUCT,
since allowing it would remove the unit type error in the example above, by coercing both
unit type pl and unit type p2 to PRODUCT.

5 Coordinate types

Consider the following MiniZinc model for a simple scheduling problem with precedences
between pairs of tasks:

enum TASK; set of tasks
array [TASK] of int@minute: d; duration of task (mins)
enum PREC; set of precedences

array[PREC, 1..2] of TASK: pt;
array[TASK] of var int@minute: s;

set of task pairs

o0 o° o° o° oP

start time decisions
constraint forall (p in PREC)

(slptlp,11] + dlptlp,1]1] <= slptlp,211);
constraint disjunctive (d, s);

4 Similar notation has been used for other purposes in the modelling language OPL.
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Each task has a duration d, and we wish to decide its start time s (all in minutes). The
constraint in lines 6-7 ensures that the first task in each row of pt must be completed before
the second task. Finally, no two tasks should overlap. The model is unit type correct, and
runs and can give answers, but it is wrong!

In MiniZinc and almost all languages, we consider the numeric types to be essentially
differences. That is, they are a value that can be added to each other, or subtracted or
multiplied. But there is a different use of numeric types as absolute coordinates in some
numerical system. It does not make sense to add these coordinates usually: consider 11°C
and 25°C, while it certainly makes sense to determine their difference 25°C — 11°C = 8°C,
how are we to interpret 11°C 4 25°C? Adding two temperatures does not make any sense.

This arises in models where we are reasoning both about absolute coordinates in some
unit and the differences. Coordinate unit types and difference unit types are supported in
some other unit type systems [9].

Suppose we are computing the end position we reach, given a fixed duration of running
at a fixed velocity, given an unknown start position. Then the start and end position are
both coordinates (in some coordinate space), while the length, velocity, and duration are
non-coordinate (difference) values. We use the notation coord(u) to define a coordinate
unit type of basic unit type u. The model that separates these different types is written:

var int@coord(m): start;

var int@coord (m): end;

var int@m: len = end - start;

var int@s: duration;

int@ (m/s): velocity;

constraint len = duration % velocity;

Coordinate types are much more restricted than ordinary unit types, they support the
following typed arithmetic operations only:

coord(z) + = = coord(x)

coord(z) — x = coord(x)

coord(z) — coord(z) =z
So we can only add or subtract a (difference) unit value to a coordinate unit value to get
another coordinate, or subtract one coordinate from another to get a (difference) unit value.
Importantly, we cannot add two coordinate type values together, even if they have the same
unit type. Similarly, we cannot multiply or divide a coordinate type, since this is equivalent
to a repeated addition or its inverse.

Coordinate types appear frequently in scheduling and packing problems within the
combinatorial problem class. We can restrict our definitions of scheduling and packing global
constraints to enforce the correct use of coordinate types. For example, for disjunctive the
start times are coordinates while the durations are usual (difference) unit types. With the
unit typed definition (shown in the next section) we discover the error in the model at the
beginning of the section. We have reversed the arguments to disjunctive. They both have
the same units, so there is no unit error, but one is a coordinate type, the other not. The
corrected model rewrites these two lines:

array [TASK] of var int@coord(minute): s;
constraint disjunctive (s, d);

If we only rewrite just one of the two lines, we still get a type error.

Since coordinate types only seem to make sense for a single dimension, we restrict coord(u)
to only be defined for declared or derived basic unit types u. Again, this restriction is made
to get stricter unit types, and hence discover more errors.
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6 Global constraints and Units

One of the strengths of constraint programming modelling languages including MiniZinc is
the wide range of global constraints that they support. In order for units to be truly useful,
we need to extend these global constraint definitions to use units accurately. To do so, we
need to be able to define functions which are parametric in their unit types. We introduce
(unit) type variables $v to appear as unit expressions. In MiniZinc the notation $$V indicates
an arbitrary enumerated type.

6.1 Function parameters with units

There are many arithmetic constraints to which we can attach units to the arguments of
interest. For example, sliding_sum constrains the sum of each consecutive sequence of seq
elements in the array vs to be in the range low..up. The type of this global constraint
including units is simply:

predicate sliding_sum(int@S$u: low,
int@Su: up,
int@SSE: seq,
array [$SE] of var intQ@Su: vs)

Notice how seq is a counting type for the index set of vs.
Similarly, the knapsack constraint deals with at least two units: measuring worth (for
the objective) and weight for the constraint. The unit typed declaration is:

predicate knapsack (array [$SI] of int@ (SW/SSI): w,
array [$SI] of int@(SP/SSI): p,
array [$$I] of var int@S$SI: x,
var int@SwW: W,
var int@SP: P)

where we are explicit about the two units used for the constraint and objective. We can also
define a version using fine counting types:

predicate knapsack (array [i1i of $$I] of intQ (SW/i): w,
array [i of $S$I] of intQ@(SP/i): p,
array [1 of $$I] of var int@i: x,
var int@Sw: W,
var int@SP: P)

Note we can use fine unit types when the index type is an enumerated type.

The counting global constraints have explicit unit types using the counting units. The
among constraint counts how many occurrences of the elements in a subset appear in an
array. Obviously if the array contains elements of an enumerated type, then it returns a
count unit for that type. The parametric type of among is defined as

function var int@S$S$SE: among(array [$X] of var $SE: x,
set of $SE: W)

We can similarly treat global_cardinality constraints. But the ability to use fine counting
types also allows us to define a new version of global_cardinality when we count the
elements of an enumerated type:

function array [t of $$T] of var intQ@t:
global_cardinality(array [$X] of var $ST: x)

10:11
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Finally, packing and scheduling constraints make use of coordinate unit types, and
polymorphic unit type variables. The disjunctive constraint is defined as:

predicate disjunctive (
array[$$T] of var int@coord(S$St): start,
array[$$T] of var int@S$t: duration);

For example, for cumulative, the start time is a coordinate time unit type, while duration
is the usual (difference) version of the same time unit. The resource usage for each task and
capacity uses the same unit for resource. This allows us to give, for example, the capacity in
metric tons and the resource usage in kilograms, with coercion done at the call interface.

predicate cumulative (
array[$$T] of var int@coord(S$St): start,
array[$S$T] of int@$t: duration,
array[$S$ST] of int@Su: usage, int@Su: capacity);

Similarly, the span constraint, which enforces that the optional task defined by start s0O
and duration d0 spans, i.e., goes from the earliest start time to the latest end time, of a set of
optional tasks defined by start times s and durations d, combines coordinate and difference
types with optionality:

predicate span(var opt int@coord(St): sO,
var int@st: dO,
array [$SE] of var opt int@coord(St): s,
array [$SE] of var int@S$t: d)

7 Evaluation

We have developed a prototype implementation of the unit type extension to MiniZinc.® The
implementation performs the type checking for the unit types, adds in the required coercions,
and then erases the unit types from the model. Afterwards, type checking and compilation
of MiniZinc continues as normal.

7.1 Analysis: MiniZinc Challenge

To evaluate the extent of the usefulness of unit types, we examine the MiniZinc Challenge
problems from the last four years, 2021-2024, to see how they would be written with unit
types. In our analysis, we exclude procedurally generated models and the unison.mzn
model because their immense size and lack of documentation prevent us from rewriting these
models. Models used in multiple years have only been included in the counts for their earliest
occurrence. The increase in model character count was calculated by counting the number of
non-whitespace, non-comment characters that were added to each model where unit types
were applicable (reported as a percentage increase). Table 1 gives a summary of the results of
the evaluation, and the models are available at https://www.minizinc.org/unit-types/.

In our analysis, we found that the majority of models can benefit from unit types (Units
applicable column), e.g. 13 out of 18 models in 2021 could be rewritten to use units, and 56
out of 71 overall. Notably, the use of unitless numeric types is nearly eliminated when models

® The prototype is available at https://www.minizinc.org/unit-types/.
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Table 1 A table showing the mean increase in model size for using unit types and usage of the
different unit type features: Chars increase in non-whitespace, non-comment characters; Bytes
increase in raw file size; Count counting types; Fine Fine counting types; Coord coordinate types;
Global unit-specialized globals.

Mean size increase  Benchmarks using the unit type feature

Year Units applicable | Chars Bytes | Count Fine Coord Global
2021 13/18 9.2% 3.2% 6 3 5 4
2022 19/20 8.0% 3.6% 8 3 3 9
2023 13/18 | 4.7% 1.4% 4 4 10 3
2024 11/15 6.9% 5.5% 1 0 5 3
Overall 56/71 7.1% 3.3% 19 10 23 19

are refactored to employ enumerated and unit types. Remaining integer expressions without
unit types generally involve: counting of Boolean conditions, factors to convert between
different units, or reasoning about the numbers themselves (e.g. in pure combinatorial
problems). For example, the mznc2017_aes_opt .mzn model reasons about a cryptographic
algorithm, where integers are used from the perspective of numerics. Using unit types in
a model only results in a small increase in code size in most cases. In fact, they can even
lead to smaller models since having the units alleviates the need to include these in variable
names or comments as is often done.

We observed that use of the already existing any keyword for inferring variable type and
unit significantly reduces repetitive specification of unit types when storing the results of ex-
pressions. Although the removal of the specific types might remove some “self-documentation”
of variable declarations, modern code editors can often display the type that the compiler
determined, and this could be extended to also include the inferred unit.

Furthermore, many models where counting types can be used can utilize fine-grained
counting types. However, the use of fine-grained counting types over general counting types
does not always translate into improved type safety. Most expressions only access a single
counting element at a time. Due to the nature of the unit types implementation, it is easy
for modellers to choose what counting type suits their implementation best.

The most extensive changes in models arise from the introduction of coordinate unit
types. In these models, normal units and their corresponding difference types are stored
together. This suggests that the introduction of coordinate types might offer an opportunity
to detect many subtle problems in optimization models which reason about both coordinates
and differences.

The benchmarks used in the MiniZinc Challenge are mostly designed for benchmarking
purposes and also do not include any floating-point variables, so we did not see extensive use
of the concrete units defined in the units type library, which are most useful when dealing
with real-world physical quantities. In most cases, models were able to use the predefined
dimensions from the units type library, and use their own or default abstract units.

7.2 Case Study: Equipment Placement

To illustrate the use of complex unit types, we show a MiniZinc model for placing equipment
in a two-dimensional array, with restrictions on how close they can be placed in terms of
Manhattan distance. This example is designed to show one of the most intrusive uses of
unit types because we choose to use separate units for width and height as well as Manhattan
distances. We can make a much simpler model if we only use one distance unit, but we can
then mix up the usages of the three types of distance.
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The three units are defined below using coordinate types for the z,y coordinates:

unit distance: dist;

unit distance: width;

unit distance: height;

int@width: W; % width of area

set of int@coord(width): COL = 1@width..W;
int@height: H; % height of area

set of int@coord (height): ROW = 1@height..H;

There are different kinds of equipment that can be placed, with data about it, the cost,
availability, and effectiveness at various distances, defined using fine counting types:

enum EQUIP;
int@dist: maxradius; max protection radius
set of int@dist: DIST = 0@dist..maxradius;

unit worth: mworth;

different equipment available

unit of cost

unit type measure; new dimension "measure"

o° o° o

unit measure: effect; unit of measure "effectiveness"
array[e of EQUIP] of int@ (mworth/e): cost;
array[e of EQUIP] of int@e: avail;

arrayl[e of EQUIP, DIST] of intQ@(effect/e): eff;

cost
availability
effect at dist

o° o° o°

We are given a limit on the total number of equipment placed. The key decisions are where
to place equipment up to some given limit on number, defined as an z and y position and
the type of equipment placed ¢.

int@mworth: budget;
int@EQUIP: limit; max number of equipment;
set of iInt@EQUIP: LEN = 1QEQUIP..limit;

array [LEN] of var opt COL: x;

budget on equipment

o° o

X position of unit (or absent)
array [LEN] of var opt ROW: y;
array [LEN] of var opt EQUIP: t;
var O@EQUIP..limit: used;

y position of unit (or absent)
which equipment at this pos

o o° oo o

number of equipment used

Option types allow us not to use all of LEN to hold actual equipment, only the positions up
to used are actually used. Entries in these arrays at positions greater than used are forced
to be absent:

constraint forall(i in LEN) (i > used <—>
absent (x[i]) /\ absent (y[i]) /\ absent (t[i]));

The most complex part of the unit types is computing Manhattan distances defined as:

function var int@dist: man (var opt int@coord(width): x1,
var opt int@coord (height): yl1,
var opt int@coord (width): x2,
var opt int@coord (height): y2) =
abs (x1 - x2) * 1Q@(dist/width) +
abs (yl - y2) * 1@ (dist/height);
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where we strip the width and height units and add back dist.® Note that the subtraction
of one coordinate type from another to compute a non-coordinate typed result. The most
complicated constraint adds up the effectiveness of each unit at each location, defined as

array [ROW, COL] of var (0..100)@effect: cover;
constraint forall(r in ROW, c in COL)
(cover[r,c] = min(l100@effect, sum(i in 1Q@EQUIP..used)
(let { var int@dist: dst = man(x[i],y[i]l,xr,c); } in
if dst > maxradius then O@effect
else eff[t[i],dst] endif)));

Here for every row and column r,c we sum up the effectiveness of each placed equipment
that covers that location by computing the distance to each placed equipment and, if within
the max radius, adding its effectiveness, capped at 100.

Availability constraints are enforced by a unit typed global cardinality (lower and upper
bounds are the 3rd and 4th arguments):

constraint global_cardinality(t, EQUIP, [0@e|e in EQUIP], avail);

Most constraints are only minutely affected by units, if at all. For example, the budget
constraint, and the constraint forcing equipment to be no closer than 3 units of distance are
written as follows:

constraint sum(i in 1@EQUIP..used) (cost([t[i]]) <= budget;
constraint forall(i, j in 1@EQUIP..used where i < 3j)
(man (x[1], y[i]l, x[3J], y[3J]) >= 3@dist);

The three separate units used for distance make this one of the more complicated models
to add strong unit types too. The payoff is that we can no longer mix them up. The only
real complexity arises from computing Manhattan distances, which encapsulated the type
coercion of the distance types. Note that, finally, every integer in the model has a unit type
(or is an enumerated type).

8 Related Work

The concept of unit types in programming languages has a long history. For many years, it
has been clear that programming languages can help avoid crucial problems by incorporating
unit types [10]. The first implementation of these features was in the Pascal and Ada
languages [13, 7, 3]. Since then, extensions have been proposed for many types of programming
languages, including functional languages [11, 12] and object-oriented languages [1].

Research in database systems has also explored the use of unit types. Works like [8]
propose extending database schemas to include unit types. In particular, when dealing with
international data, where the same data might be recorded with different units, the use of
unit types enables robust data storage, retrieval, and manipulation across datasets.

These days, the incorporation of units directly within programming languages and
database systems seems to have dwindled. However, this can be directly attributed to
the “meta” capability of modern systems, allowing the functionality to be implemented as
external libraries. The widespread adoption of libraries like Boost.Units [16], mp-units [15],

5 The function takes optional integers since the 2 and y positions are optional, although it will never be
called with absent values.
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astropy.units [2], Pint [9], postgresql-unit [4], and many others [14] in various programming
environments underscores the continued importance of unit type safety. These libraries
provide extensive unit catalogues and enforce unit consistency during calculations, reducing
the risk of errors in modern day scientific and engineering applications.

In the field of constraint modelling, the Pyomo constraint modelling library [5] is the only
modelling tool that we are aware of that enables the use of unit types. Based on the Pint
Python package, Pyomo allows users to specify units of decision variables and provides helper
functions to check what the units of expressions are and to check whether they are consistent.
Because Python and Pyomo do not use a strong typing system, the user is charged with
ensuring the consistency of the model is checked.

In comparison to Pyomo, once unit types are added to a MiniZinc model, the checking of
these types is always enforced by the compiler. In addition, the static type checking and type
erasure in MiniZinc mean that using unit types incurs no significant time overhead during
the translation. The additional unit type variants, counting types and coordinate types, are
not available in Pyomo. Similar to Pyomo, MiniZinc’s interfaces to other languages, such as
MiniZinc Python, might in the future be extended to connect to existing unit type libraries,
such as Pint. By extending these interfaces to handle unit information from other library,
developers can verify that unit-aware data is consistent with their unit-aware MiniZinc model.

9 Conclusion

Unit types provide stronger type safety than is usual for even strongly typed languages.
While unit type extensions have been defined for almost every programming language,
they are still rarely used, even though they can detect rather subtle bugs, which can have
catastrophic effect (as exemplified by the Mars Climate Orbiter debacle). The problem
with unit types for developers is that the overhead of using them may not appear to pay
off. The trade-off for modelling languages is much more attractive, since debugging subtle
errors in a model is much more challenging than in procedural code. Interestingly, there are
kinds of unit types that only arise in discrete optimization, so-called counting types. In this
paper, we define a lightweight but fairly complete system of unit types suitable for discrete
optimization modelling languages. We have fully implemented this as an extension of the
MiniZinc modelling language. In practice, we see a fairly small overhead for using them,
with potentially large gains in avoiding subtle modelling errors. Unit types will be available
in MiniZinc in a near future release.
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A  MiniZinc Unit Types Syntax

Unit types add syntax to MiniZinc to declare dimensions, dimension expression, basic unit
types, and unit type expressions. The extensions are defined below.

Basic Dimension Declaration d

unit type id ;

Dimension Expression de == id basic

|  coord(id) coordinate dimension

|  dexde multiplication

| de/ de division

| 1 /de inversion

|  de” k power (k is integer)
Dimension Declaration cd = unit type id = de;
Basic Unit Type b t=  unitid : id ; declared

|  unitid : id =k @id; derived (k is arithmetic constant)
Unit Type Expression ue = id basic

|  coord(id) coordinate type

| we* ue multiplication

| ue / ue division

| 1/ wue inversion

| we~k power (k is integer)

The extension to the existing MiniZinc syntax is adding unit type annotations using @,

together with the syntax for fine-grained unit iterators. Note that the @ binds tighter than
all arithmetic operators.
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Expression e = kQue adding unit type (k is arithmetic)
Par/Var Declaration dec

[var] t [@ ue] : id ; unit typed var/par

Index Set is  u=  [id of] enum fine-grained unit id

B  MiniZinc Unit Typing Formalization

We now elaborate on the formal definitions in the paper and provide a full formalization
of the unit typing in MiniZinc. We begin by formalizing unit types, and bottom up the
type inference/checking procedure. We then show how we can add automatic coercions to
programs that use multiple units for the same dimension.

B.1 Typing Rules

We use | to represent a type error. A model contains m different dimensions diy, ..., di,
defined by the dimensions declared (or imported) into the model, and a dimension for each
enumerated type defined in the model. We assume a set B of defined and declared basic unit
types, together with each enumerated type defined in the model, and each fine grained unit
expression. For each b € B, dim(b) = di; for some i. We pick a default basic unit for each
dimension di; denoted defb; simply for notational convenience.

A compound unit type u is of the form b7 b5 --- b where each n;,1 < i < m is an
integer, and dim(b;) = di;, 1 <14 <m. The dimension of u is di{*di5? - - - dil'm.

A coordinate unit type coord(b) is defined only for declared or derived unit types b € B.
We let dim(coord(b)) = coord(dim(b)). We extend the meet operation to coordinate types
in the obvious way M(coord(by),u) = coord(M(by,bs)) iff u = coord(be) and M(by,bs) # L
and L otherwise. We extend downcasting to coordinate types also, so | (coord(by),u) =
coord(] (b1, b2)) if u = coord(bs) and L otherwise. We extend multiplication of unit types to
coordinate types as follows: u ® coord(b) is coord(b) iff u =1 and L otherwise. Note these
extension definitions implicitly rely on the fact that each operations is commutative.

A unit type is either a proper unit type or a coordinate unit type.

Type expression evaluation is defined as follows.

(1) = deft’defty--- deft’,

7(b) = byby* .- bl where if dim(b) = di;, b; = b,n; = 1.
and b; = defbj,nj =0,1<j#i<m

B coord(t(u)), 7(u)=1"b;,b; €B

o { 4, otherwise

= 7(u)@7[)

[ bbb () = B b

N { L otherwise

= 7(u)@7(1/u)

B by e pm e (y) = bYtby? - - bl ¢ integer constant

B { 4, otherwise

= 7(e), u is a compound unit type defined by u =e

The unit typing rules for arithmetic expressions are defined below. Note that if in typing
expression e some subexpression results in | the whole expression is ill-typed, and we emit
an error message.
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type(k) = 7(1), k is a numeric constant
_ T(u), type(e) =7(1)
type(eQu) = 1, otherwise
type(x) = 7(u), identifier x has declared unit type u
type(bool2int(e)) = 7(1)
_ type(e1), type(e1) = coord(type(ez))
type(er +e2) = { M(type(e1), type(ez2)), otherwise
u, type(e1) = type(e2) = coord(u)
type(er —e2) = type(e1), type(e1) = coord(type(ez))
MN(type(e1), type(ez)), otherwise
type(e1 X e2) = 7(type(e1)) @ type(e2))
type(ei/e2) = 7(type(e1)/type(e2))
type(er aiv es) = 7(tupe(er)/typelea))
t t =7(1
tpeler mod ea) = fpreler) tupeles) = 7(1)
type(abs(e)) = type(e)
type(max(e1,e2)) = T(type(e1), type(ez))
type(min(e1, e2)) = T(type(er), type(ez))

T(type(e1)"e2), ez is a integer constant

type(er ~e2) = (1), type(e1) = type(e2) = 7(1)
1, otherwise
. 7(1 type(e) = 7(1) or type(e) = 7(b) where dim(b) = angle
type(trig(e)) = { J_(, ), Oléﬁegvgise 1) ype(e) (b) (b) g
where ¢rig is a trigonometric function {sin, cos, ... }.
type(u), M(type(u),type(e)) = type(e
type(upeast(u,e)) = { Preteh Tlupelu). tupe(e)) = tupe(c)
upcast is a upcast function ceil, floor, round.
if e;
M(type(ez2),type(es)), type(e1) = bool
sype (h o ) _ [ el tupeles), - typete)
else e3 endif

Container types in MiniZinc can contain objects with unit types. We extended the unit
types to container types in the obvious way. We can define arrayl[is] of u an array with
index set is of objects with unit type u;” set of w a set of objects with unit type u; similarly
for records and tuples. We extend the meet operation to apply to a sequence of types in the

obvious manner M([u1, ..., u,]) = M(ur, MN(uz, ..., (Up-1,Un) ).
Unit typing rules for (some) containers are given below:
type(ler, ... en]) = { frayunn] o i;ejv(v[fsyepe(el),.._ stype(en)],t # L
type({er,...,en}) = { Sft " i;eTv(v[fsyepe(el)"” type(en)),t # L
type(er € e2) = { j)jOI zﬁz:;i)se: u,type(ez) = set of u',M(u,u’) # L
type(erles]) = { j%/’pe(u) (t)?éizgi;i)se: arraylint] of u

Unit typing rules for arithmetic constraints are defined below.

bool, M(type(er),type(es)) # L

type(ey op e2) = { 1 otherwise

op is a mathematical relation =, >, <, >= <=, I=.
Unit typing rules for assignment are defined as:

_ _ bool M(type(z),type(e)) = type(x)
type(x =e) = { 1 otherwise

which requires the type of z to be a smaller unit type than that of e.

7 Just showing the case for one dimensional arrays for simplicity.
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Unit typing rules for predicates and user-defined functions are given below. Here, because
the declared types can be parametric in unit (and other) types, we have to find a consistent
mapping 6 from type variables to fixed types that agrees with the types (including units) of
the arguments.

type(p(e1, .- 1, otherwise

where f is a predicate with unit type u1 X --- X u, — bool
type(0(u)), type(e;) = 7(0(ui)),1 < i < n for type substitution 6

{ 1, otherwise

where f is a user defined function with unit type ui X -+ X unp, — u

en)) = { bool, type(e;) =7(0(us)),1 <i < n for type substitution 6
sy N -

type(f(el, ) 6”1))

A fine-grained unit type is written array[i of enuml] of w(i) where enum is an enu-
merated type, and u(i) is a unit type expression making use of the identifier i.% To allow
fine-grained unit types, we have to extend the type system to include unit type identifiers 4
which are replaced by the appropriate expression during type checking. There are treated as
if they were a new basic type (so B includes all the unit type identifiers used in the model).
Fine-grained types are introduced via variable declarations:

array[i of enum] of wu(i):x

declares a variable = to have (fine-grained) unit type arrayli of enum] of u(i). We
extend the typing rules for array lookups to:

7(u) = w, wisa unit type variable.
type(u) type(e1) = array[int] of u
type(eile2]) = type(u(ez)) type(e1) = array[i of enum] of u(i),e2 is an identifier
1, otherwise

Fine-grained unit type checking does not otherwise change the typing rules. Type
equivalence relies on the unit type identifiers appearing identically in the two types, which
means that all the identifiers must appear identically in each term.

8 We restrict ourselves to one dimensional fine-grained types for simplicity, the extension to more
dimensions is reasonably straightforward.
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