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Abstract
Given a maritime liner network, the cargo routing problem consists of determining which maritime
routes containers will take to be transported from their loading port to their destination port.
This constrained optimization problem is an essential task in the context of maritime commodity
transportation, both in terms of network design and operational implementation. Several variants of
this problem have been considered depending on their usage (e.g. for designing the network or for
carrying containers in practice), the constraints taken into account or the criterion to be optimized.

In this article, we address several variants of this problem, relying on the flexibility of Constraint
Programming. First, we propose two general COP models. Then, we describe a local search method
that can be easily adapted to the desired context. Finally, we experimentally compare our two
models and the proposed method.

2012 ACM Subject Classification Computing methodologies → Artificial intelligence

Keywords and phrases Constraint optimization problem, modeling, solving, industrial application

Digital Object Identifier 10.4230/LIPIcs.CP.2025.11

Supplementary Material
Dataset: https://pageperso.lis-lab.fr/cyril.terrioux/Cargo_Routing/instances.zip

Funding This work has been funded by Bpifrance under the PIA project Transformation Numérique
du Transport Maritime (TNTM).

1 Introduction

Containerized shipping plays a crucial role in global trade, as evidenced by the report of
the United Nations Conference on Trade and Development (UNCTAD). More than 80%
of the volume of international trade is currently transported by sea, with 1.95 billion tons
transported in containers. There are two main container sizes: 20-foot and 40-foot containers.
So, the vessels’ storage space is divided into 40-foot units, allowing for the stacking of either
40-foot or 20-foot containers. The Twenty-foot Equivalent Unit (TEU) is the unit generally
used to count containers, where a 40-foot container is equivalent to 2 TEUs. Moreover,
containers can be divided in three main categories. Dry containers are the most commonly
used and are suitable for transporting dry commodities (e.g. textiles or electronics). Reefers
are designed for transporting temperature-sensitive commodities (e.g. perishable foodstuffs
or pharmaceuticals). These containers are equipped with temperature control systems to
maintain specific conditions throughout the trip and so require a connection to the vessel’s
electrical network. Empty containers correspond to dry or reefer containers that have been
emptied of their commodities after delivery. They must be transported to ports where they
will be refilled.
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Figure 1 A liner network with four rotations (including a complex one) relying on eleven ports.
A rotation is defined here by the set of arcs of the same nature.

Containers are transported in a regular liner shipping network that can be defined as a
set R of rotations (or services). Each rotation r of R is defined by a sequence sr of ports
(sr = (pr

1, pr
2, . . . , pr

|sr|)). Note that a port can appear multiple times in a given rotation. In
such a case, the rotation is said complex. For instance, Figure 1 proposes a network with four
rotations among which rotation (5, 8, 9, 10, 8, 11) is complex. Each rotation must visit the
ports on a regular schedule (usually weekly [9]). Assuming a weekly schedule, the maritime
company assigns to the rotation as many vessels as the number of weeks that are needed to
make a complete trip and these vessels must belong to the same vessel type. Each vessel type
gathers the vessels having the same features (like the size, the draft, the number of plugs for
reefers, or the fuel consumption). For example, all vessels of type v can transport up to κ(v)
containers (expressed in TEU) and have ρ(v) electrical plugs for reefers. We denote Vr the
set of vessel types compatible with the visited ports of rotation r (e.g. based on size, draft
restrictions, port infrastructure, or other operational constraints).

For sake of simplicity, containers having the same features (e.g. origin, destination and
nature) are gathered into commodities. Each commodity k is then viewed as a number
q(k) of containers (expressed in TEU) to be transported from the origin port pol(k) to the
destination port pod(k), with a revenue rev(k) per TEU and a nature nat(k) (reefer, dry or
empty). To optimize cargo transportation, it is possible to divide a commodity into s parts
if necessary, each part taking a different route. The route taken by a commodity (or one of
its parts) is defined by the sequence of ports and rotations through which it transits. The
route can be direct when the origin and destination ports of the commodity are on the same
rotation. Otherwise, the commodity will need to transit through multiple rotations. The
transition from one rotation to another is an operation called transshipment, which takes
place at a port common to both rotations. We denote tsmax(k) the maximum number of
transshipments authorized for the commodity k. This number generally depends on the
nature of the commodity. For example, reefers are rarely transshipped in practice to ensure
that temperatures are respected. We denote ts(p) the cost generated by transshipping one
TEU at port p.

The cargo routing problem in a liner shipping network can be defined as follows: given a
predefined network R regularly serving a set P of ports in a determined order, the set K0
of commodities, and a set V of vessel types compatible with the visited ports, the problem
consists in determining which maritime routes the commodities will take to be transported
from their port of origin to their port of destination while optimizing a given criterion.
Depending on the needs, different criteria can be exploited, ranging from maximizing the
revenues generated by the transportation of commodities, to optimizing the total quantity of
commodities transported, or even minimizing the distances traveled by the containers.

This problem has various crucial applications in logistics management and planning
operations. It allows shipping companies to optimize their networks by identifying the best
routes to transport containers more efficiently and profitably. Furthermore, by understanding
long-term transport demands and container flow patterns, investments in new vessels can
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be more precisely planned, thus minimizing financial risks and ensuring adequate capacity
to meet future demand. Another possible use is related to event simulation, such as the
inability to pass through the Suez Canal, in order to find the most appropriate response,
possibly by routing the commodities differently.

The cargo routing problem is addressed in the literature at different levels, with a primary
focus on the tactical and operational levels [12, 23, 15]. The tactical level is related to the
design of the liner shipping network [6]. Designing such a network requires defining the
rotations and deciding which type of vessels will operate them, while taking into account the
flow of commodities to be transported. The amount of carried commodities, the revenues or
benefits they generate or the costs associated with the routes they take are important criteria
to assess the quality of the designed network. The problem of cargo routing is therefore a
crucial step in network design. Studying this problem can lead to create more efficient and
profitable networks that are well-suited to the underlying cargo flows. Reinhardt and Pisinger
[16] propose an exact branch-and-cut method to address the combined problem. Their mixed-
integer program integrates the cargo routing problem with transshipments, considering factors
such as the cost of transshipment and complex routes, which are routes in which the same
port is visited twice. Wang and Meng [22] impose transit time restrictions on commodities,
excluding any transshipment between rotations. To address this, they introduced a mixed-
integer non-linear non-convex programming model. This method simultaneously designs
the network and determines the cargo flow through it. Ameln et al. [3] introduce a novel
flow-based formulation for network design, incorporating complex rotation structures and
transshipment costs. Lee et al. [11] propose a framework that simultaneously optimizes
service network design and commodity routing, incorporating total transit time into the
minimization criteria.

The second level is operational in nature. Given an existing liner shipping network and
the types of vessels associated with each rotation, its purpose is to decide how a given set of
commodities is to be transported. It is important to note that here, the commodities are
perfectly known (number of containers, weight, customers, etc.), whereas, at the tactical level,
we are only talking about estimates based on target market shares. Moreover, the focus is
on optimizing the cargo routing within the given network structure. Agarwal and Ergun [1]
present one of the first scalable approaches to this problem. They propose a “route-first-flow-
next” approach, where optimal routes for vessels and the number of vessels deployed on each
route are determined in the first step, and then containers are routed through the network in
the second step. The model incorporated cargo transshipment operations, but transshipment
costs were not considered in the network design stage. The transshipment costs are taken
into account in the work of Alvarez [2], with also a two-step approach used to solve the
problem. This approach applies a matheuristic method to perturb the rotations using a
taboo search scheme, solves the container flow problem using an interior point method, and
generates new rotations from the dual variables obtained from the container flow solutions.
This two-step approach has been successfully applied and expanded in multiple studies (e.g.,
[5, 4, 14, 10, 20, 13, 7]).

Most works in the literature focus on a single type of vessel per rotation, handle only dry
containers and consider either the tactical level or the operational one. In this paper, we
consider a more general approach by handling three types of containers, making it possible
to divide commodities and taking as input a set of vessel types compatible with the visited
ports of the rotation. This latter point allows for using our approach both at the network
design level and the operational level. For network design, considering a set of compatible
vessel types offers the option of choosing the type of vessels to be used for each rotation later.

CP 2025
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The operational level is taken into account by simply considering a singleton for the set of
possible vessels of each rotation. Dividing up commodities can be useful in ensuring a better
vessel filling factor, which is often used as a quality indicator of rotations by shipowners. We
implement our approach thanks to two COP models and a local search method. These latter
are quite flexible and, notably, can exploit various optimization criteria.

This paper is structured as follows. Section 2 introduces the necessary concepts of
constraint programming. Then, in Sections 3 and 4, we present two modeling approaches in
the form of COP instances. In Section 5, we describe a local search method. Finally, we
conduct an experimental comparison of our two models and the local method in Section 6,
before drawing our conclusions in Section 7.

2 Constraint Programming

An instance P of the Constraint Optimization Problem (COP) [17] can be defined as a 4-tuple
(X, D, C, f) where X = {x1, . . . , xn} is the set of variables, D = {Dx1 , . . . , Dxn

} is the set
of domains, the domain Dxi

being related to the variable xi, C = {c1, ..., ce} represents the
set of the constraints which define the interactions between the variables and describe the
allowed combinations of values and f specifies the criterion to be optimized. Solving a COP
instance P = (X, D, C, f) amounts to finding an assignment of all variables of X satisfying
all constraints of C and optimizing the criterion given by f . This is an NP-hard problem.

One of the advantages of constraint programming lies in the existence of specialized
constraints (the global constraints) which will make easier the modeling of problems, but
also, their solving thanks to their dedicated filtering algorithms. In the following, we will
exploit the following global constraints (where ⊙ denotes a relational operator among ≤, <,
=, ̸=, > or ≥ and Y an ordered subset ⟨y1, y2, . . . , y|Y |⟩ of X):

Element(Y, i) = k which ensures that the ith value of Y (using a 0-based indexing) is
equal to k (Y can be here an ordered set of variables or values) [21],
Ordered(Y, ⊙) that imposes y1 ⊙ y2 ⊙ · · · ⊙ y|Y |.
Sum(Y, Λ) ⊙ k which imposes that the sum of the values of Y weighted by the coefficients
of Λ satisfies the condition imposed by the relation ⊙ with respect to k. In the following,
this constraint will be represented in the more explicit form

∑
i

λi.yi ⊙ k.

3 A First CP Model

The cargo routing problem being one of the sub-problems constituting the liner shipping
network design problem (LSNDP [6]), this first model is inspired by a part of the model
presented in [8]. However, it allows going further by taking into account complex rotations.
The idea of this first model (denoted M1) is to deduce the routes taken by the commodities
from the rotations.

3.1 Commodities
In order to transport as many commodities as possible, we consider the possibility that
a commodity may be split into s parts. Each of these parts can then be transported
independently of the others (i.e., using different routes). Let K be the set of parts obtained
by splitting each commodity in K0 into s parts. We denote Ks

k the set of parts related to
commodity k. Each part has the same POL, POD and nature as the initial commodity.
Note that the sum of the number of TEUs of the parts of commodity k cannot exceed q(k)
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∑
j∈Ks

k

qj ≤ q(k) k ∈ K0 (C.1)

Ordered(⟨qj |j ∈ Ks
k⟩, ≥) k ∈ K0 (C.2)

αj = 1 ⇐⇒ qj > 0 j ∈ K (C.3)

Figure 2 Constraints related to the commodities (used in models M1 and M2).

and a part can be empty. Furthermore, if, for the sake of simplicity, we consider here the
same value s for all commodities, the model could easily be adapted to exploit a value s per
commodity.

For each part j of a commodity k, we introduce an integer variable qj with value in
[0, q(k)] to represent the number of TEUs associated with part j and a Boolean variable αj

indicating whether the part is used or not. Constraint (C.1) (see Figure 2) ensures that the
number of TEUs transported for commodity k does not exceed q(k). Constraint (C.2) allows
to break some symmetries, while constraint (C.3) ensures the consistency between the values
of the variables αj and qj .

3.2 Cargo Flow
For each part j of a commodity k, we consider a variable nbrj with domain [0, tsmax(k) + 1]
to express the total number of rotations used to transport part j. To determine the ports
where each part is loaded or unloaded, we introduce a Boolean variable fromr

j,i (resp. tor
j,i)

which is equal to 1 if part j is loaded (resp. unloaded) at port pr
i of rotation r, 0 otherwise.

Constraint (F.1) (resp. (F.2)) in Figure 3 ensures that a part j is transported if and only
if there exists a rotation in which it is loaded at its port pol(j) (resp. unloaded at its port
pod(j)). The number of rotations used to transport a part j corresponds to the number of
ports in which the part j is (un)loaded (constraints (F.3) and (F.4)). For a port pr

i , a part j

cannot be both loaded and unloaded at the same time (constraint (F.5)). A part j is loaded
(resp. unloaded) in a given port p at most once if it is accepted, 0 otherwise (constraints
(F.6) and (F.7)). If a part j is loaded (resp. unloaded) at a port pr

i distinct from pol(j)
(resp. pod(k)), then it must be unloaded (resp. loaded) at the same port, but for another
rotation (constraints (F.8) and (F.9)). The constraint (F.10) ensures that, for each rotation,
a part j is loaded and unloaded an equal number of times. Let dr be the maximum number
of occurrences of the same port in rotation r. dr is greater than 1 in the case of complex
rotations. For each rotation r, a part j cannot be (un)loaded more than dr times (constraints
(F.11) and (F.12)).

Finally, it is necessary to know which parts are transported at the exit of each port of
each rotation. To achieve this, we introduce a Boolean variable leaver

j,i which equals 1 if part
j is transported by rotation r at the exit of port pr

i , 0 otherwise. Constraints (F.13)–(F.17)
ensure the consistency of the values of variables fromr

j,i, tor
j,i and leaver

j,i. Constraint (F.18)
guarantees that a part j cannot pass through the same port multiple times. Similarly, a part
j cannot leave its destination port (constraint (F.19)).

3.3 Vessels Capacities
We must ensure that when leaving each port, vessels do not exceed their capacities in terms
of the number of containers carried and the number of plugs used for reefer containers. Since
the maximum values of these two quantities are not correlated (in particular, the vessel

CP 2025
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∑
r∈R

∑
pr

i
∈sr|pr

i
=pol(j)

fromr
j,i = αj j ∈ K (F.1)

∑
r∈R

∑
pr

i
∈sr|pr

i
=pod(j)

tor
j,i = αj j ∈ K (F.2)

∑
r∈R

∑
pr

i
∈sr

fromr
j,i = nbrj j ∈ K (F.3)

∑
r∈R

∑
pr

i
∈sr

tor
j,i = nbrj j ∈ K (F.4)

fromr
j,i + tor

j,i ≤ 1 j ∈ K, r ∈ R, pr
i ∈ sr (F.5)

∑
r∈R

∑
pr

i
∈sr|pr

i
=p

fromr
j,i ≤ αj j ∈ K, p ∈ P (F.6)

∑
r∈R

∑
pr

i
∈sr|pr

i
=p

tor
j,i ≤ αj j ∈ K, p ∈ P (F.7)

fromr
j,i = 1⇒

∑
r′∈R\{r}

∑
pr′

i
∈sr′ |pr′

i′ =pr
i

tor′

j,i′ = 1 j ∈ K, r ∈ R, pr
i ∈ sr, pr

i ̸= pol(j) (F.8)

tor
j,i = 1⇒

∑
r′∈R\{r}

∑
pr′

i
∈sr′ |pr′

i′ =pr
i

fromr′

j,i′ = 1 j ∈ K, r ∈ R, pr
i ∈ sr, pr

i ̸= pod(j) (F.9)

∑
pr

i
∈sr

fromr
j,i =

∑
pr

i
∈sr

tor
j,i j ∈ K, r ∈ R (F.10)

∑
pr

i
∈sr

fromr
j,i ≤ αj .dr j ∈ K, r ∈ R (F.11)

∑
pr

i
∈sr

tor
j,i ≤ αj .dr j ∈ K, r ∈ R (F.12)

fromr
j,i = 1⇒ leaver

j,i = 1 j ∈ K, r ∈ R, pr
i ∈ sr (F.13)

tor
j,i = 1⇒ leaver

j,i = 0 j ∈ K, r ∈ R, pr
i ∈ sr (F.14)

(fromr
j,i+1 = 0 ∧ tor

j,i+1 = 0) ⇐⇒ leaver
j,i = leaver

j,i+1 j ∈ K, r ∈ R, pr
i ∈ sr (F.15)

(leaver
j,i = 0 ∧ leaver

j,i+1 = 1)⇒ fromr
j,i+1 = 1 j ∈ K, r ∈ R, pr

i ∈ sr (F.16)

(leaver
j,i = 1 ∧ leaver

j,i+1 = 0)⇒ tor
j,i+1 = 1 j ∈ K, r ∈ R, pr

i ∈ sr (F.17)

∑
r∈R

∑
pr

i
∈sr|pr

i
=p

leaver
j,i ≤ αj j ∈ K, p ∈ P (F.18)

∑
r∈R

∑
pr

i
∈sr|pr

i
=pol(j)

leaver
j,i = 0 j ∈ K (F.19)

Figure 3 Cargo flow constraints (used in model M1).
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Element(⟨κ(v)|v ∈ V⟩, vr) = κr r ∈ R (V.1)

Element(⟨ρ(v)|v ∈ V⟩, vr) = ρr r ∈ R (V.2)

∑
j∈K

qj .leaver
j,i ≤ κr r ∈ R, pr

i ∈ sr (V.3)

∑
j∈Kreefers

qj .leaver
j,i ≤ ρr r ∈ R, pr

i ∈ sr (V.4)

Figure 4 Capacity constraints (used in models M1 and M2).

max
∑

j∈K
qj (O.1)

max
∑

j∈K
qj .rev(j) (O.2)

max
∑

j∈K
qj .rev(j) −

∑
j∈K,r∈R|pr

i
̸=pol(j)

tor
j,i.qj .ts(pr

i ) (O.3)

max
∑

j∈K,ℓ∈routes(j)
qj .βℓ

j .costts(route(j, ℓ)) (O.4)

Figure 5 Possible objective functions (used in models M1 and/or M2).

capable of carrying the most containers may not necessarily have the most plugs), we must
ensure the consistency of these two quantities based on the types of vessels available. To
achieve this, we introduce, for each rotation r, a variable vr specifying the type of vessels
considered, and two integer variables κr and ρr representing the maximum capacity in terms
of containers and the maximum number of available plugs, respectively.

Constraints (V.1) and (V.2) ensure the consistency of the maximum capacities based on
the type of vessels, while constraints (V.3) and (V.4) ensure compliance with these maximum
capacities upon departure from each port (Kreefers denotes the set of parts j corresponding
to reefer containers).

3.4 Objective Functions
The function (O.1) (see Figure 5) aims to maximize the number of commodities transported,
while function (O.2) maximizes the revenue generated by the commodities transported.
Function (O.3) aims to minimize the benefits where the benefits are defined as the revenue
generated by commodities minus the transshipment costs. It should be noted that the other
costs (like fuel cost) cannot be taken into account at this level, but are more a matter of the
network design problem.

4 A Second CP Model

In this second model (denoted M2), we consider as input each of the possible routes for
each commodity. To determine these routes, we first construct the rotation graph. This
graph has a vertex for each rotation. There is an edge between two vertices if the two
rotations share at least one port. The edges are then labeled by the shared ports. This
graph allows us to quickly identify the ports where transshipments can take place. For each

CP 2025
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∑
ℓ∈routes(j)

βℓ
j = αj j ∈ K (R.1)

∑
pr

i
∈route(j,ℓ)

βℓ
j = leaver

j,i j ∈ K, r ∈ R, pr
i ∈ sr, pr

i ̸= pod(j) (R.2)

Figure 6 Constraints related to routes (used in model M2).

commodity k, we compute the set of possible routes by calculating all paths starting from
the rotations containing the port pol(k) and arriving at a rotation containing the port pod(k)
and containing at most tsmax(k) transshipments.

Given a commodity k, a route is a sequence (sk
1 , sk

2 , . . . , sk
tk

) of port sequences such that:
sk

ℓ is a sequence of ports (prℓ
1 , prℓ

2 , . . . , prℓ

|sk
ℓ

|) (with |sk
ℓ | ≥ 2) associated with the rotation

rℓ such that prℓ
m is the port preceding the port prℓ

m+1 in the rotation rℓ. The first port in
the sequence sk

ℓ corresponds to the port where the commodity enters rotation rℓ while
the last one is where it leaves this rotation.
pr1

1 = pol(k).
prℓ

|sk
ℓ

| = p
rℓ+1
1 , this means that this port is used for transshipment.

p
rtk

|sk
tk

| = pod(k).
Note that tk minus one is the number of transshipments of commodity k. We denote routes(k)
the set of all possible routes for transporting commodity k and route(k, i) the i-th route of
routes(k). We extend these notations to each part j of each commodity k.

This second model includes the variables qj , αj , leaver
j,i, vr, κr and ρr from the first

model, as well as the constraints presented in Figures 2 and 4. The difference between the
two models lies simply in the way the routes are represented. In this second model, for
each part j, we consider a Boolean variable βℓ

j which equals 1 if route route(j, ℓ) is used to
transport part j, 0 otherwise. Constraint (R.1) (see Figure 6) ensures that a part j uses
at most one route, while constraint (R.2) establishes the link with the variables leaver

j,i.
Regarding the objective functions, we can exploit functions (O.1) and (O.2) from Figure 5
respectively for maximizing the number of carried TEUs and the revenue. Function (O.4)
allows for maximizing the benefits where costts(route(j, ℓ)) denotes the total transshipment
cost per TEU for the ℓ-th route of commodity j.

5 An Incomplete Method

A real instance of the cargo routing problem can easily involve several dozen ports and
several hundred of commodities for a total volume of more than 100,000 TEUs. The ability
of complete solvers to solve such instances in a reasonable time can therefore quickly become
limited. In this section, we present an incomplete method that is intended to be generic, in
the sense that it does not depend on the criterion to be optimized. This method (called
Route, see Algorithm 1) takes, as inputs, the set R of rotations and the set K0 of commodities
to be transported, and will return the best solution Kb

p that it has found according to the
criterion considered. A solution is represented here by a set of triplets (k, n, r) representing
the assignment of n TEUs of commodity k to route r. The Route method begins with
an initialization phase (lines 1-5) during which it computes all possible routes for each
commodity k in K0 (line 2) according to the same process as model M2. A first solution
Kinit

p is used to initialize the current solution Kp (lines 4 and 11). For example, it can be
provided by the user or constructed from scratch using the Assign method (see Algorithm 2).



Y. El Ghazi, D. Habet, and C. Terrioux 11:9

Algorithm 1 Route(R,K0).

1 foreach k ∈ K0 do
2 Compute all the possible routes for k

3 nb[k]← q(k)
4 Kp ← Kinit

p

5 Kb
p ← Kp

6 for j from 1 to #rst do
7 for i from 1 to #trial do
8 Apply Move(Kp) or Remove(Kp, nb)
9 Assign(Kp, nb)

10 if Kp better than Kb
p then Kb

p ← Kp

11 if j < #rst then Kp ← Select(Kinit
p ,Km

p )
12 return Kb

p

Algorithm 2 Assign(Kp, nb).

1 foreach k ∈ K0 do
2 s← |{r|(k, x, r) ∈ Kp}|
3 while nb[k] > 0 and s ≤ smax and routes(Kp, k) ̸= ∅ do
4 (n, r)← best_route(Kp, k)
5 Kp ← Kp ∪ {(k, n, r)}
6 nb[k]← nb[k]− n

7 s← s + 1

Algorithm 3 Move(Kp).

1 foreach (k, n, r) ∈ Kp do
2 s← |{r|(k, x, r) ∈ Kp}|
3 while n > 0 and s ≤ smax and routes(Kp, k) ̸= ∅ do
4 (n′, r′)← best_route(Kp, k)
5 if n ≤ n′ then
6 Kp ← (Kp\{(k, n, r}) ∪ {(k, n′, r′)}
7 n← 0
8 else
9 if s < smax then

10 Kp ← Kp ∪ {(k, n′, r′)}
11 n← n− n′

Algorithm 4 Remove(Kp, nbrem).

1 while |Kp| > 0 and nbrem > 0 do
2 Choose randomly (k, n, r) ∈ Kp

3 Kp ← Kp − {(k, n, r)}
4 nbrem ← nbrem − n

5 nb[k]← nb[k] + n

CP 2025
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Then, the Route method tries to improve the quality of the current solution by alternating
between a phase where it moves or removes commodities (line 8) and a phase where it places
the commodities on routes (line 9). This alternation is repeated #trial times (lines 7-10).
At the end of each iteration, the best solution Kb

p is updated if necessary (line 10). Once the
allotted number of trials for a given initial solution has been completed, we restart the search
from the initial solution or the best solution found to avoid the problem of local optima (line
11). Note that heuristics can be used to choose between moving or removing commodities
(line 8) or restarting from the initial solution or the best solution found (line 11). We give
some examples of such heuristics in Section 6.

The objective of the Assign method is to assign as many commodities as possible to
the available routes within the limit of the number smax of possible divisions of the same
commodity k. Thus, for each commodity k for which there are still containers to be placed,
this method will identify the possible routes among the routes initially available for the
commodity k. A route is possible if the rotations it uses are able to accept commodity in
terms of load (for reefer, dry or empty containers) or in terms of electrical plugs (for reefer
containers). The function routes returns the list of possible routes for a commodity k with
respect to the current solution Kp. To do this, it relies on the types of vessels available
for each rotation. The available types are constantly evolving due to the addition, move
or removal of commodities, ensuring that at each step, there is at least one possible vessel
type for each rotation. The best_route function returns the available route r that allows
transporting the most containers of commodity k depending on its nature as well as this
number n of containers. The Move method (see Algorithm 3) is based on a similar principle.
The main difference is that a quantity n of commodity k is initially transported via route r

and that a part or all of this quantity will be transported via a new route r′. The underlying
idea is to free up space (e.g. on a potentially saturated route) to allow the routing of another
commodity. Finally, the Remove method (see Algorithm 4) allows the removal of some
commodities from some routes. With this aim in view, we randomly select a commodity and
a route from Kp and remove the related number of TEUs from this route. We repeat this
process until at least nbrem TEUs have been removed.

Different heuristics can be used to decide the order in which the commodities are
processed in Assign and Move methods. For example, for the Assign method, we can start
by processing the commodities that have the fewest possible routes, or sort them according to
the remaining quantity to be routed. For the Move method, we can prioritize commodities
transported via rotations where vessels are full when leaving certain ports. Furthermore,
several different criteria can be considered (line 10 of Algorithm 1) such as, for example,
maximizing the number of containers transported, the revenue generated or the benefits. The
approach presented here is therefore relatively general and can easily be specialized according
to needs. It is parameterized by the number nbrem of commodities to remove at each call to
the Remove method, the number #rst of restarts and the number #trial of iterations per
restart performed in the Route method. Finally, as we will see in the next section, it can be
used both to help design a network and to route commodities at the operational level.

Algorithm 1 can be considered as a case of the large neighborhood search (LNS) [18, 19].
LNS operates by partially destroying and then repairing a solution while controlling the
search strategy for optimization problems. In Algorithm 1, the move/remove operations (line
8) can be seen as destroying part of the solution, while the assignment step (line 9) serves as
the repairing phase. Restarts from a new solution and moving commodities help diversify the
search. Intensification occurs during the assignment steps of commodities or when restarting
from the best solution, which is saved or accepted throughout the search process.
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6 Experiments

6.1 Experimental Protocol

6.1.1 Benchmark
In the absence of a public dataset for the cargo routing problem, we construct instances as
realistically as possible using data from LINER-LIB [5], which serves as the benchmark for
experiments on LSNDP. We consider the ports and vessel types from LINER-LIB. However,
for vessels, their loading capacity is randomly drawn between 75% and 100% of their maximum
capacity, as they are rarely operated at full capacity due to various factors. Furthermore,
as LINER-LIB does not take into account reefer containers, we randomly set the number
of plugs between 5% and 10% of the vessel’s maximum capacity, to match values typically
observed in practice. Then, concerning the commodities, we use the (POL, POD) pairs
from the LINER-LIB instances. For a given pair, we generate a number of containers and
associated revenues by randomly modulating the values provided by the LINER-LIB. Between
5% and 12% of these containers will be reefer containers, the rest being full ones. Finally,
we randomly add a certain number of empty containers so that for each port, the balance
between the number of incoming and outgoing containers is not unbalanced by more than
25%.

In our experiments, we randomly generate 40 instances using data from the Baltic, WAF,
Mediterranean and Pacific from the LINER-LIB (10 instances per LINER-LIB instance).
These instances have between 12 and 45 ports, from 46 to 1,409 commodities, for a total
number of TEUs between 12,898 and 124,808. For each of these instances, we consider four
different sets of rotations. Each set contains between 3 and 20 rotations, each involving
between 2 and 10 ports. For each rotation, the number of associated vessel types depends
on the use we make of the cargo routing problem. If we consider cargo routing as a step of
network design (i.e. the tactical level), we use all vessel types compatible with the ports
visited by the rotation. In contrast, for operational level, we fix arbitrarily a type of a vessel
consistent with the ports of the rotation. In both cases, we thus obtain 160 instances of the
cargo routing problem1. Each of these instances is solved by considering, on the one hand, a
complete method based on one of the two models M1 or M2 and on the other hand, our
incomplete method.

6.1.2 Implementation Details and Settings
The M1 and M2 models are implemented in OR-Tools (version 9.12.45442) via its Python
interface and solved using the CP-SAT solver of OR-Tools. This choice is guided by the
solver’s efficiency and the ability to use multiple processes. Except for the number of
threads set to 16, we use the solver’s default parameters. The incomplete method Route

is implemented in Python 3 and launched in a single thread. Its number of trials varies
between 10 and 250, and the number of commodities removed is fixed to 20% of the number
of commodities in the current solution. The number of restarts ranges between 1 and 25.
In order to sort commodities, we introduce two counters ck and nbf

k per commodity k. ck

represents the total value of containers of commodity k that are not transported in the

1 These instances are available at https://pageperso.lis-lab.fr/cyril.terrioux/Cargo_Routing/
instances.zip

2 https://developers.google.com/optimization/cp/cp_solver
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current solution. The value of containers depends on the criterion under consideration. For
instance, it corresponds to the number of TEUs (resp. the revenue generated by the carried
containers) when we maximize the number of containers carried (resp. the global revenue or
the benefits). Initially, ck is initialized with the number nb(k) of containers of commodity k or
the associated revenue nb(k).rev(k) depending on the chosen criterion. nbf

k is the cumulative
number of TEUs of commodity k that are not transported in the solutions already produced.
We initialize this counter with the number of possible routes for commodity k. In the Assign

method, the remaining commodities are processed according to the decreasing ratio ck

nbf
k

.
By so doing, we try to identify the most valuable commodities that are the most difficult
to transport, so that they can be prioritized for placement on board vessels. Regarding
the choice between move and remove operations (line 8), we perform moves as long as they
contribute to improve the current solution, and we carry out a removal phase when this is no
longer the case. When restarting (line 11), we use the best solution found half of the time.
The rest of the time and initially, we start with an empty solution. As some steps of our
incomplete method involve randomness, each instance is solved 50 times. The experiments
are conducted on servers equipped with Intel Xeon Gold 5218R processors clocked at 2.1
GHz and equipped with 192 Go of memory. For complete and incomplete approaches, the
runtime is limited to one hour per instance. Finally, the commodities are divided into at most
two parts (i.e. s = 2). This choice is made to allow comparison between the two models and
the incomplete method. In fact, the runtime of a complete approach increases exponentially
with s, whereas for our incomplete method, increasing s has little impact on runtime.

It should be noted that we cannot compare our results with those of methods from the
literature. On the one hand, these methods do not address exactly the same variant of the
problem. Specifically, they only consider one type of container (i.e. dry containers) and one
type of vessel per rotation. On the other hand, their sources or executables are not available.

6.2 Study of the Behavior of the Incomplete Search
Before comparing the different approaches, we first analyze the behavior of the proposed
incomplete method. First of all, our experiments have shown that the criterion to be
optimized does not influence the time or quality of the results obtained. As the trends are
often similar and due to lack of space, we will not present the results for each criterion
considered hereafter. Such a result is not surprising since the criterion plays a minor role
in Algorithm 1, impacting only line 10. Then, our method is relatively robust. Indeed, it
can be observed that from one execution to another, the results are substantially the same,
with a standard deviation of at most 4.3% in very rare cases and less than 1% in general.
Figure 7(a) presents, for example, the dispersion of the values of the best solution for each of
the ten Pacific instances when maximizing the quantity of transported commodities at the
tactical level for one restart and 250 trials. Figure 7(b) does the same for 25 restarts and 10
trials per restart.

Next, we measure the impact of the number of trials by looking at the trial (out of
250) on which the best solution is found. Figure 8(a) presents the number of instances
for which the best solution is found in a given interval of trials for a single restart. We
consider here both tactical and operational instances. Clearly, for instances from Baltic,
WAF and Mediterranean, whatever criterion, a number of trials of about 10 turns out to be
relevant in most cases. For Pacific instances, it would seem that 50 trials would be more
appropriate. As the runtime increases with the number of trials, the value 10 can generally be
considered as a good trade-off between the runtime and the quality of the obtained solution.
Then, we measure the impact of the number of restarts by looking at the run out of 25 on



Y. El Ghazi, D. Habet, and C. Terrioux 11:13

Table 1 Number of instances (out of 40) for which optimality is proved for M1 and M2.

Tactical level Operational level
TEU Revenue Benefit TEU Revenue Benefit

Baltic 39 / 38 40 / 40 40 / 40 39 / 38 40 / 40 40 / 40
WAF 40 / 40 40 / 40 40 / 40 40 / 40 40 / 40 40 / 40

Mediterranean 35 / 39 34 / 34 0 / 0 36 / 39 36 / 30 0 / 0
Pacific 0 / 0 0 / 0 0 / 0 0 / 0 0 / 0 0 / 0

Total 114 / 117 114 / 114 80 / 80 115 / 117 116 / 110 80 / 80

which the best solution is found. Figure 8(b) presents the number of instances for which
the best solution is found in a given interval of restarts for 10 trials per restart. It appears
that few restarts are often enough to obtain a good-quality solution. Again, the Pacific
instances require an extra effort compared with those of other families. Indeed, the best
results often require a number of restarts greater than 10. This can be explained by the size
of the instances (the largest considered here), but also by the reduced number of iterations
used here. Using 50 trials instead of 10 does imply a significant change (see Figure 7(c)).
Figures 7(d) and (e) provide the dispersion for the quality of the solution and the runtime
when maximizing the quantity of transported commodities for the instance Pacific_9 (at
tactical level). We can observe a slight improvement in the quality when the number of
restarts increases. Here, a 1% improvement in solution quality requires a 9-fold increase in
runtime. So, using a small number of restarts seems to be a good trade-off between runtime
and solution quality when solving the problem of cargo routing at tactical level, as such a
problem will need to be solved a large number of times. In an operational context, focusing
on profitability would require to spend more time on problem-solving, which would involve
using the method with several dozen restarts.

6.3 Comparisons of the Different Approaches
6.3.1 Tactical level
First, we consider the tactical level where the cargo routing problem is used as a liner network
design step. The aim is to evaluate the quality of the network produced according to a given
criterion, such as the number of TEUs transported or the revenue/benefits generated. It
should be noted that network design as a whole is beyond the scope of this paper.

We first compare the M1 and M2 models. These two models are relatively close in terms
of performance. Model M1 optimally solves 114 instances compared to 117 for model M2
when maximizing the quantity of transported commodities. For the two other criteria, both
models optimally solve the same number of instances. Whatever the considered criterion, it
turns out that, in general, instances based on Baltic and WAF are optimally solved. These
instances are the smallest and correspond to feedering rotations (i.e. short rotations intended
to supply main lines). In contrast, for instances based on Pacific (i.e. general instances
integrating feedering and main lines), after one hour, the solver is still searching for the
optimal solution, regardless of the model considered. We have observed that, most of the
time, the last best solution is found around the time limit. This means that the solver has
not yet begun the proof of optimality. Finally, we can note that maximizing the benefits
(with a more complex objective function) seems to make the problem harder to solve. In
particular, we can note that no Mediterranean instance is solved optimally.
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Figure 7 Quality dispersion of the incomplete method when maximizing the number of TEUs
transported for a single restart and 250 trials (a) and 25 restarts and 10 trials per restart (b) and
50 trials (c), the quality (d) and runtime (e) for instance Pacific_9 depending on the number of
restarts and 10 trials per restart. Quality dispersion obtained by the incomplete method when it is
respectively run for 1 restart, 25 restarts and 1 hour and comparison with the best solution obtained
by modelsM1 andM2 when maximizing the number of TEUs for Pacific_9 instance (f). All these
figures consider the tactical level.
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Figure 8 Impact of the number of trials (a) and restarts (b).
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Figure 9 Runtime comparison for models M1 and M2 for tactical (a) and operational use (b)
for instance for which the optimality is proved.
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Figure 10 Comparisons of the quality of solutions obtained by the incomplete method (for 25
restarts and 10 trials per restart) vs. the best solution obtained by models M1 and M2 when
maximizing the number of carried TEUs (a) revenue (b) and benefit (c) for tactical level.

If we compare the solving runtime for each model on instances which are optimally solved
(see Figure 9(a)), we note that the solving is often faster with M1 than with M2. However,
if we consider the quality of the best found solution for the other instances, generally, M2
finds slightly better solutions whatever the criterion. Nevertheless, the gap between the two
models does not exceed 3% and it is often less than 1%.

Now, we consider the incomplete Route method and compare the quality of the solution
it finds with the best solution found by one of the two models. Figure 10 allows estimating
the quality of the solutions found by comparing the result of the incomplete search with the
best solution found by one of the two models for all the considered criterion. We consider
here 25 restarts and 10 trials per restart. The reported result for the incomplete search is the
worst result found over the 50 runs performed for each instance. By doing so, we want to
assess the quality of our incomplete approach in the worst case3. This comparison shows that
the incomplete method often obtains results close to those of a complete approach. We can
see that, for some Baltic instances, the incomplete method performs slightly less well when
maximizing the revenue or the benefits. This corresponds to instances for which the number

3 Considering the best result over the 50 runs would only slightly improve the results, as the quality
dispersion is low (see Figure 7).
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of routes per commodity is reduced, making it more difficult for the incomplete method
to find a good solution. Whatever the criterion, a similar trend can be observed for some
Pacific instances with the same explanation. In terms of runtime, it takes a maximum of
around 170 seconds for 25 restarts and 10 trials per restart for the largest instances, whereas
Or-Tools systematically reaches the time-out for these instances although it uses 16 cores
compared with one for the incomplete method. The incomplete method therefore delivers
quality results in a reasonable time whatever the considered criterion. We can see from
Figure 10(f) that a reasonable number of restarts and trials can do better, in some cases,
than a complete approach, and that increasing the runtime still further does not lead to a
significant improvement in results.

6.3.2 Operational use

We consider the case where the cargo routing problem is used in an operational context. At
this stage, the network has already been built, i.e. the rotations have already been defined
and a specific type of vessel is associated with each of them. In this case, the cargo routing
problem is used to decide how commodities should be routed within the network. While this
use can be seen as a special case of the tactical level, it does not make the solving easier. On
the contrary, reducing the possible vessel types to just one per rotation further constrains the
problem. As a result, we can note that model M2 the model solves slightly fewer instances
optimally. Beyond that, the trends observed for the tactical level remain valid and reinforce
the interest of the incomplete approach.

It should be noted that these experiments were carried out with at most two splittings of
each commodity, to enable comparison between the complete approaches and our incomplete
method. Increasing the number of splittings significantly increases the difficulty of the
problem when solved with a complete search. In contrast, our incomplete method can divide
commodities into as many parts as desired without any noticeable increase in time. It is
therefore better suited to use in real-life conditions, in particular to enable shipowners to
achieve good values for quality indicators such as vessel filling factor.

7 Conclusions and Perspectives

In this paper, we have proposed two CP-based models for solving the cargo routing problem,
as well as an incomplete method. The results we have obtained show the difficulty of optimally
solving the cargo routing problem with a complete approach and so highlight the practical
interest of incomplete methods such as the one we propose. This latter turns to be robust
and provides relevant solutions within a very reasonable runtime whatever the criterion we
consider. Our results also point out the difference in difficulty depending on the optimization
criterion considered or the nature of the instances (feedering or general). On this latter point,
a possible improvement for general instances would be to processes feedering and main line
rotations separately.
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