
An Expansion-Based Approach for Quantified
Integer Programming
Michael Hartisch #

University of Passau, Germany
FAU Erlangen-Nürnberg, Germany

Leroy Chew #

TU Wien, Austria

Abstract
Quantified Integer Programming (QIP) bridges multiple domains by extending Quantified Boolean
Formulas (QBF) to incorporate general integer variables and linear constraints while also generalizing
Integer Programming through variable quantification. As a special case of Quantified Constraint
Satisfaction Problems (QCSP), QIP provides a versatile framework for addressing complex decision-
making scenarios. Additionally, the inclusion of a linear objective function enables QIP to effectively
model multistage robust discrete linear optimization problems, making it a powerful tool for tackling
uncertainty in optimization.

While two primary solution paradigms exist for QBF – search-based and expansion-based
approaches – only search-based methods have been explored for QIP and QCSP. We introduce an
expansion-based approach for QIP using Counterexample-Guided Abstraction Refinement (CEGAR),
adapting techniques from QBF. We extend this methodology to tackle multistage robust discrete
optimization problems with linear constraints and further embed it in an optimization framework,
enhancing its applicability. Our experimental results highlight the advantages of this approach,
demonstrating superior performance over existing search-based solvers for QIP in specific instances.
Furthermore, the ability to model problems using linear constraints enables notable performance
gains over state-of-the-art expansion-based solvers for QBF.

2012 ACM Subject Classification Mathematics of computing → Discrete mathematics; Mathematics
of computing → Solvers; Theory of computation → Discrete optimization; Theory of computation →
Constraint and logic programming; Theory of computation → Algorithm design techniques; Applied
computing → Operations research; Theory of computation → Abstraction

Keywords and phrases Quantified Integer Programming, Quantified Constraint Satisfaction, Robust
Discrete Optimization, Expansion, CEGAR

Digital Object Identifier 10.4230/LIPIcs.CP.2025.12

Related Version Full Version: https://doi.org/10.48550/arXiv.2506.04452

Supplementary Material
Software (Source Code): https://github.com/MichaelHartisch/EQuIPS [36]

archived at swh:1:dir:29f0d2d80f69841007fd3a315a47c2865669f3a6

Funding Furthermore, we acknowledge that this research was partially funded by Deutsche Forschungs-
gemeinschaft (DFG, German Research Foundation) – 534441421 and Austrian Science Fund FWF
Project ESP197.
Michael Hartisch: Partially funded by Deutsche Forschungsgemeinschaft (DFG, German Research
Foundation) – 534441421.
Leroy Chew: funded by Austrian Science Fund FWF Project ESP197.

Acknowledgements We thank the three anonymous reviewers for their helpful comments.

© Michael Hartisch and Leroy Chew;
licensed under Creative Commons License CC-BY 4.0

31st International Conference on Principles and Practice of Constraint Programming (CP 2025).
Editor: Maria Garcia de la Banda; Article No. 12; pp. 12:1–12:26

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:michael.hartisch@uni-passau.de
https://orcid.org/0000-0001-6304-4973
mailto:lchew@ac.tuwien.ac.at
https://orcid.org/0000-0003-0226-2832
https://doi.org/10.4230/LIPIcs.CP.2025.12
https://doi.org/10.48550/arXiv.2506.04452
https://github.com/MichaelHartisch/EQuIPS
https://archive.softwareheritage.org/swh:1:dir:29f0d2d80f69841007fd3a315a47c2865669f3a6
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics
https://www.dagstuhl.de

12:2 An Expansion-Based Approach for Quantified Integer Programming

1 Introduction

1.1 Motivation
Solving Quantified Boolean Formulas (QBF) typically relies on two complementary ap-
proaches: Quantified Conflict-Driven Clause Learning (QCDCL) and expansion-based solving.
QCDCL extends classical SAT solving techniques by incorporating learning and backjump-
ing in a search-based framework – explicitly traversing the assignment tree respecting the
quantifier order – making it particularly effective for QBF instances with deep quantifier
alternations. In contrast, expansion-based solving employs a controlled form of Shannon ex-
pansion, duplicating the formula to eliminate quantifiers, at the cost of a larger formula with
more variables. While expansion methods excel on formulas with few quantifier alternations,
they struggle as the number of alternations increases. QCDCL solvers exhibit the opposite
behavior: they handle deeply nested quantifications well but can be inefficient for problems
where expansion-based approaches are advantageous.

Quantified Integer Programming generalizes QBF by introducing integer variables and
linear constraints, placing it within the broader domain of Quantified Constraint Satisfaction
Problems (QCSP). Existing QIP solvers follow a QCDCL-inspired approach. However, no
expansion-based QIP solver exists, leaving a gap in the landscape of QIP solution methods.
In this work, we address this gap by introducing and investigating a new expansion-based
QIP solver, enabling efficient resolution of problems where search-based methods struggle.

Expansion-based methods are refutationally complete: given that QIP requires bounded
variable domains, a full expansion reduces satisfiability to a finite Integer linear Programming
(IP) problem. However, this naive approach is computationally prohibitive, as the expansion
tree grows exponentially with the number of variables. In practice, proving unsatisfiability
does not require full expansion – an unsatisfiable core often involves only a fraction of
the search space. Inspired by techniques from QBF solving, such as those employed in
RAReQS and QFUN, we leverage Counterexample Guided Abstraction Refinement (CEGAR)
to construct a more targeted expansion. Our method iteratively refines the search space by
alternating between satisfiability and unsatisfiability checks, incorporating counterexamples
(countermoves) to guide the exploration process efficiently.

By bridging the gap between expansion-based solving and QIP, our approach broadens
the applicability of QIP solvers and introduces new avenues for tackling complex quantified
constraint problems.

1.2 Related Work
The study of quantified integer variables dates back at least to the 1990s [27], with the term
QIP being coined in [62]. Early research focused on the complexity of QIP [62, 19, 53] and
treated QIP as a satisfiability problem until optimization aspects were incorporated [47].

Building on these foundations, a search-based approach for solving QIP was proposed
[23, 40], followed by several algorithmic enhancements, including expansion-related relaxation
techniques [35] and pruning heuristics [39]. Extensions enabled restricting universal variable
assignments, confining them beyond their default bounds [37, 38], similar to robust optimiza-
tion under polyhedral uncertainty [31], budgeted uncertainty [7, 32], or decision-dependent
uncertainty [56, 55]. Furthermore, the link to multistage robust discrete optimization has
been established, demonstrating practical applicability [30].

In multistage robust discrete optimization, approaches such as scenario generation [31]
and row-and-column generation (e.g. [1]) iteratively refine relaxed formulations, intrinsically
incorporating optimization. Unlike these, in order to optimize, we repeatedly solve QIP

M. Hartisch and L. Chew 12:3

feasibility problems in a binary search environment to determine the optimal objective
value. For general multistage optimization approaches, most available methods rely on
approximation techniques, typically using either sampling methods [5, 48] or decision rules
[64, 57, 6], which restrict the solution space to strategies with a predefined (often linear)
structure.

Our approach builds upon the expansion-based methods developed for QBF [42, 43, 44],
contrasting with traditional search-based approaches [66, 45], though efforts have been
made to combine both ideas [12]. Theoretical [9] and practical [46] results suggest that
expansion-based solving is advantageous when there are few quantifier alternations and
several limitations of search-based QBF methods have been documented [10, 8, 14, 20].

In QCSP, numerous search-based algorithms exist [49, 26, 65, 54, 15], with only a few
approaches employing ideas related to expansion – one repair-based [61] and one relaxation-
based [25] approach. Early attempts to also incorporate optimization date back to the early
2000s [16]. These efforts primarily relied on search-based methods [4] and were later extended
to more general problem formulations [51]. Similar developments occurred in QBF, where
optimization versions have also been explored [41].

Finally, several extensions of satisfiability modulo theories (SMT) have been developed
to address quantified reasoning [3, 13, 58, 2]. These techniques differ from our QIP-specific
approach, which leverages the linear structures for greater efficiency. A recent approach in
[63] seems related, given the very similar title, but differs in scope, focusing on semi-infinite
problems – optimization problems with finitely many (existentially quantified) variables and
infinitely many (quantified) constraints.

2 Preliminaries

2.1 Quantified Integer Programming
A Quantified Integer Program is a natural extension of an integer linear program in which each
variable is subject to either existential or universal quantification. Consider n integer variables
x1, x2, . . . , xn arranged in order such that if i < i′, variable xi, is said to lie to the left of xi′ .
Each variable xi, i ∈ [n]1, takes values in a bounded domain Di = {xi ∈ Z | li ≤ xi ≤ ui},
where li and ui are the lower and upper integer bounds, respectively. In addition, every
variable xi is associated with a quantifier Qi ∈ {∃,∀}. The quantification level of a variable
is defined as the number of alternations of quantifiers to its left plus one. If there are k ≤ n

such levels, then all variables sharing the same quantification level are grouped together.
For each such level j, the common quantifier Qj ∈ {∃,∀} applies to the vector of variables
XXXj , which collectively range over the domain Dj (the Cartesian product of their individual
domains). We sometimes omit the level index and simply write D, which implies that the
variables must remain integral and adhere to their prescribed bounds.

A QIP feasibility problem can be written in the compact form Q1XXX1 ∈ D1 Q2XXX2 ∈
D2 · · · QkXXXk ∈ Dk : A∃xxx ≤ bbb∃, where the existential constraint system is given by
matrix A∃ ∈ Qm×n and right-hand side vector bbb∃ ∈ Qm, with xxx = (XXX1, . . . ,XXXk). Note,
that throughout the paper we use bold letters, to indicate vectors. We sometimes write
QXXX ∈ D : Φ, decomposing the problem into the problem of finding an assignment for the
first level variables XXX and the remaining QIP Φ that either starts with quantifier Q̄ or only
consists of a constraint system. For QIP Φ and variables XXX of quantification level j ∈ [k],

1 We use [n] = {1, . . . , n} to denote index sets.

CP 2025

12:4 An Expansion-Based Approach for Quantified Integer Programming

we write Φ[τττ] to denote the modified QIP obtained by removing XXX from the quantification
sequence and assigning XXX to τττ ∈ Dj in the constraint system of Φ leading to a change in the
right-hand side vector. Then, the new constraint system is described by A∃

(−XXX)xxx(−XXX) ≤ bbb∃
XXX=τττ ,

where A∃
(−XXX) contains all columns as A∃ without the columns corresponding to XXX, xxx(−XXX)

corresponds to the variable vector xxx without variables XXX, and bbb∃
XXX=τττ = bbb∃ − A∃

(XXX)τττ , where
A∃

(XXX) is the matrix comprising of the columns of A∃ corresponding to XXX.

2.2 QIP Game Semantics
We can think of a QIP as a game between the universal (∀) and existential (∃) player,
where in move j, player Qj assigns variables XXXj of level j with values from domain Dj . The
existential player wins, if the existential constraint system is satisfied after all variables have
been assigned. The universal player wins, if at least one constraint is violated. More formally,
a play is an assignment of all variables XXX1, . . . ,XXXk. A strategy for the assignment of variables
XXXj of level j, is a function sj : D1 × · · · × Dj−1 → Dj . A strategy S = (si)i∈[k],Qi=Q for
player Q consists of a strategy for all variables associated to her. For a given QIP, S is a
winning strategy for the existential player, if

∀XXXi ∈ Di, i ∈ [k], Qi = ∀ : A∃xxx ≤ bbb∃
∧

i∈[k]:
Qi=∃

XXXi = si(XXX1, . . . ,XXXi−1)

is true, i.e., for every assignment of the universally quantified variables, the strategy results
in a satisfied constraint system. Conversely, S is a winning strategy for the universal player,
if

∀XXXi ∈ Di, i ∈ [k], Qi = ∃ : A∃xxx ̸≤ bbb∃
∧

i∈[k]:
Qi=∀

XXXi = si(XXX1, . . . ,XXXi−1)

is true, i.e., if regardless of the assignment of the existentially quantified variables, the
strategy of the universal player leads to a violation of the constraint system.

For QIP QXXX ∈ D : Φ, a strategy s for assigning XXX (which is just an assignment τττ ∈ D),
is called a winning move, if there exists a winning strategy S containing s. Furthermore, for
QXXX1 ∈ D1Q̄XXX2 ∈ D2 : Φ and assignment τττ ∈ D1 to XXX1, the assignment µµµ ∈ D2 is called a
countermove to τττ , if µµµ is a winning move for the QIP Q̄XXX2 ∈ D2 : Φ[τττ]. We also adopt the
notion of a multi-game as used in [44]. A QIP multi-game is given by QXXX ∈ D : {Φ1 . . . Φℓ},
where each Φi, referred to as a subgame, is a QIP beginning with Q̄ or that solely contains a
constraint system. A multi-game is won by player Q, if there exists a move τττ ∈ D such that
Q has a winning strategy for all subgames Φi[τττ].

2.3 Additional Constraints
To further enhance the modeling power of a QIP, we explicitly enable the restriction of
universally quantified variables. This has been introduced in [37] for QIP and has a similar
notion as QCSP+ [65] and Quantified Linear Implication [24]. In robust optimization, this
corresponds to introducing an uncertainty set [31], while in the context of QBF it is related to
including cubes in the initial formula. To this end, let A∀xxx ≤ bbb∀ be the universal constraint
system with A∀ ∈ Qm̄×n and bbb∀ ∈ Qm̄, m̄ ∈ Z≥0. To ensure that the universal player’s
constraints remain independent of the existential variables, we require that A∀

ℓ,i = 0 for every
i ∈ [n] with Qi = ∃ and for all ℓ ∈ [m̄]. We also assume that {xxx ∈ D | A∀xxx ≤ bbb∀} ≠ ∅, i.e., the

M. Hartisch and L. Chew 12:5

“uncertainty set” is nonempty. In presence of a universal constraint system we speak of a QIP
with polyhedral uncertainty. To this end, we redefine the domains of universally quantified
variables, by making them depended on assignments X̃XX1, . . . , X̃XXj−1 of the preceding levels.
Specifically, for j ∈ [k] with Qj = ∀, we define (with a slight abuse of notation)

Dj(X̃XX1, . . . , X̃XXj−1) =
{

YYY ∈ Dj

∣∣∣∣∣∃XXXj+1 ∈ Dj+1, . . . , XXXk ∈ Dk such that A∀xxx ≤ bbb∀,

with xxx = (X̃XX1, . . . , X̃XXj−1,YYY ,XXXj+1, . . . ,XXXk)

}
,

while for existentially quantified variables, the domain remains unchanged. Note that, due
to the structure of the universal constraint system, only universal variables from preceding
levels can influence this domain. This definition guarantees that when the universal player
selects an assignment YYY at level j, it obeys the lower and upper bounds and there exists an
extension in later levels that results in the satisfaction of the universal constraint system.
This way, no play can result in a violation of the universal constraint system. If m̄ = 0,
i.e., if there are no universal constraints, using the domain described above, boils down to
the bounded domain and we obtain a standard QIP. Hence, for the remainder of the paper,
whenever we write D for a universal domain, it may also be subject to a universal constraint
system and we omit stating the dependence on variables of previous levels.

We also allow for a linear objective function ccc⊤xxx, ccc ∈ Zn, which changes the nature of
the game for the existential player, who now has to both satisfy the constraint system and
minimize the objective value. Suppose Q1 = ∃ and Qk = ∀. Then, the QIP optimization
problem can be stated as

min
XXX1∈D1

max
XXX2∈D2

· · · min
XXXk−1∈Dk−1

max
XXXk∈Dk

ccc⊤xxx : A∃xxx ≤ bbb∃.

In particular, this optimization problem is feasible with optimal objective value z⋆ ∈ Z, if and
only if the following holds: the QIP feasibility problem Q1XXX1 ∈ D1 Q2XXX2 ∈ D2 · · · QkXXXk ∈
Dk : A∃xxx ≤ bbb∃ ∧ ccc⊤xxx ≤ z⋆ can be won by the existential player, while for the QIP
Q1XXX1 ∈ D1 Q2XXX2 ∈ D2 · · · QkXXXk ∈ Dk : A∃xxx ≤ bbb∃ ∧ ccc⊤xxx ≤ z⋆ − 1 no winning strategy for
the existential player exists. The notion of a winning strategy remains the same and we only
add the term optimal winning move for the existential player, which is the winning move
that attains the best worst-case objective.

▶ Example 1. Let us consider an example with n = 5 variables, with domains D1 = {0, 1, 2}
and Di = {0, 1}, for i ∈ {2, 3, 4, 5}. The quantification sequence (without the bounding
domains for sake of presentation) is given by ∃x1∀x2∃x3∀x4∃x5 and we have a universal
constraint system consisting of a single constraint x2 + x4 ≤ 1. Hence, D2 = {0, 1},
D4(x2 = 0) = {0, 1}, and D4(x2 = 1) = {0}. Let the QIP optimization problem be given by

min
x1∈D1

max
x2∈D2

min
x3∈D3

max
x4∈D4

min
x5∈D5

−x1+2x2−3x3+x4+2x5 :

2x1 +x3 −x5 ≤ 4
x1 −x2 +x3 −x5 = 1

+x2 +x3 −x4 −x5 ≤ 2
x1 +x2 +x3 +x4 ≤ 3.

Here, x1 = 0 is not a winning move, as there is a countermove x2 = 1 which renders
the second constraint violated. There are two winning strategies S = (s1, s3, s5) and
T = (t1, t3, t5) for the existential player: s1 = 1, s3 = 1, and s5 = 1− x2 as well as t1 = 2,
t3 = 0, and t5 = 1− x2. Note, that if the universal constraint was not present, neither of
them would be a winning strategy, as the fourth existential constraint is always violated in
case of universal strategy x2 = x4 = 1.

CP 2025

12:6 An Expansion-Based Approach for Quantified Integer Programming

The worst-case objective value of T is equal to 1, stemming from the worst case scenario
x2 = 0, x4 = 1. The same universal assignment also defines the worst-case for S, resulting
in an objective value of −1. Hence, S is a better strategy than T and in fact x1 = 1 is the
optimal winning move. To further clarify the used notation, A∃

(−x1)xxx(−x1) ≤ bbb∃
x1=1 is

+x3 −x5 ≤ 2
−x2 +x3 −x5 = 0
+x2 +x3 −x4 +x5 ≤ 2
+x2 +x3 +x4 ≤ 2,

which is the constraint system of the remaining QIP Φ[τ] after making the optimal winning
move τ = x1 = 1.

3 Expansion-Based Quantified Integer Programming Solver

3.1 The Framework
In this section we present our novel solution approach – the Expansion-based Quantified
Integer Programming Solver (EQuIPS) – that is able to solve QIP problems with polyhedral
uncertainty. EQuIPS is based on an algorithm that iteratively solves abstractions until
convergence is achieved. The idea is essentially the same as in the solvers RAReQS and QFUN
and our pseudo-code is based on the one shown in [44]. We adapt their QBF approach
to general integer domains and linear functions by accounting for semantic and technical
differences, introducing an expansion rule tailored to QIP, and defining a refinement step
specific to QIP. The solution process starts with an empty abstraction of the full QIP – a
trivial problem where only compliance with variable domains (possibly including universal
constraints) have to be followed – and recursively refines the abstraction by adding found
countermoves. This way, it partially expands the inner quantifiers until it is sufficient to
solve the original QIP. The pseudocode in Algorithm 1 shows the main function that calls
itself in a nested fashion. We refer to Appendix A.1 for a formal proof on correctness and
insights regarding the underlying proof system.

Algorithm 1 EQuIPS(QXXX ∈ D : {Φ1 . . . Φℓ}) – Find Winning Move for Multi-Game.
Input: multi-game QXXX ∈ D : {Φ1 . . . Φℓ}
Output: assignment of XXX that wins the multi-game or ⊥ if no winning move exists

1: if each Φl is quantifier free then return wins1(QXXX ∈ D : {Φ1 . . . Φℓ})
2: α← QXXX ∈ D : ∅ ▷ start with empty abstraction
3: while True do
4: τττ ′ ← EQuIPS(α) ▷ find winning move for abstraction
5: if τττ ′ = ⊥ then return ⊥ ▷ no move for abstraction ⇒ no move for multi-game
6: τττ ← extract(τττ ′,XXX)
7: λ← −1
8: for l ∈ [ℓ] do
9: µµµ← EQuIPS (Φl[τττ]) ▷ find countermove to τττ

10: if µµµ ̸= ⊥ then λ← l

11: if λ = −1 then return τττ else α←refine (α, Φl,µµµ) ▷ refine abstraction

The initial input of Algorithm 1 is the QIP QXXX ∈ D : Φ, i.e., a multi-game with a
single subgame. In Line 1, we deal with the case where each subgame of the multi-game is
quantifier free. It is noteworthy, that the wins1 function call significantly differs from the

M. Hartisch and L. Chew 12:7

one used in [44]. The main reason is that in case of QBF and Q = ∀, a winning move for the
universal player can be found by solving a SAT problem consisting of the conjunction of the
negated Boolean formulas of each subgame. Recall, that the goal for the existential player
is to identify a move that ensures each constraint system of every subgame to be violated.
In the case of QIP, it is not immediately clear what the counterpart of a negated Boolean
formula would be for a system of linear constraints. We discuss the wins1 function in more
detail in Section 3.2.

In Line 2 of Algorithm 1 we initialize the abstraction, containing no subgames. A move
that wins the current abstraction is found in (Line 4). If α is the empty abstraction, this call
to EQuIPS will immediately invoke wins1, returning any assignment that satisfies the domain
D. When Q = ∃, any assignment from the bounded domain may be returned. However,
when Q = ∀, compliance with the universal constraint system must also be ensured.

A technical detail to note is that the abstraction may include copies of later-stage variables
(due to the subsequent refine call), necessitating the extraction of only those assignments
corresponding to the variables of interest, XXX, in Line 6. After obtaining the corresponding
move τττ , in case a countermove µµµ exists, the abstraction is refined by adding the subgame
that corresponds to µµµ (Lines 8–11). We will provide more insights into the refine function
in Section 3.3. If we are not able to find a move that wins the abstraction, we know by
construction, that there cannot exist a winning move for the initial multi-game, and return
⊥ in Line 5. Similarly, if no countermove to τττ can be found, this means that τττ is not only a
winning move for the abstraction but also for the entire multi-game. In this case, we return
τττ (see Line 11).

3.2 wins1 on Integer Linear Programs

One crucial aspect of our algorithm is the call wins1(QXXX ∈ D : {Φ1 . . . Φℓ}), where all
subgames Φ1 . . . Φℓ are quantifier free, i.e., they each only contain a constraint system with
variables xxx = XXX. Simply speaking, this call tries to answer the question, whether player Q
can find an assignment of XXX, which is a winning move for all subgames Φ1, . . . , Φℓ. The
notation of wins1 is borrowed from QFUN, and in QFUN, it is more or less a call to a SAT
solver. Our subroutine of wins1, however requires some non trivial modification. In the case
of a QBF, this problem can be stated in a straight-forward manner as if Q = ∃ one has to
find an assignment satisfying the conjunction of the ℓ copies of the Boolean function, while if
Q = ∀ a solution to the conjunction of all negated Boolean formulas must be found. But in
particular regarding the latter case, there is no counterpart in integer programming: there is
no notion of a “negated constraint system”.

For l ∈ [ℓ], let A∃
l xxx ≤ bbb∃

l be the constraint system corresponding to subgame Φl. Recall,
that if Q = ∃, a winning move ensures that the constraint system of each subgame is satisfied.
Hence, in order to find a winning move, we need to find a solution to Problem (1):

A∃
l xxx ≤ bbb∃

l ∀l ∈ [ℓ] (1a)
xxx ∈ D (1b)

This is a standard integer program and can be solved using any standard solver.
If Q = ∀, we need to find an assignment of xxx ∈ D, such that all constraint systems are

violated, while obeying the own domain, i.e., the uncertainty set. Violating a constraint
system means that at least one of its constraints is not satisfied. To the end of modeling this
as an integer linear program, let LLLl ∈ Qm be a vector for each l ∈ [ℓ], where

CP 2025

12:8 An Expansion-Based Approach for Quantified Integer Programming

Ll
j ≤ min

xxx∈D
(A∃

l)j,⋆xxx =
∑
i∈[n]

(A∃
l)j,i<0

(A∃
l)j,iui +

∑
i∈[n]

(A∃
l)j,i≥0

(A∃
l)j,ili

for every j ∈ [m]. In other words, the j-th entry of LLLl provides a lower bound that is not
larger than the minimum possible value of the left-hand side of row j in constraint system l.
As a result, the inequality LLLl ≤ A∃

l xxx is trivially fulfilled for any xxx ∈ D.
These lower bounds only need to be computed once at the start of our solver since the

constraint system remains (basically) the same across all subgames, only differing in the
values of already assigned variables. One also could refine these bounds dynamically for
each subgame by considering already assigned variables, aiming to accelerate the IP solution
process through potentially improved relaxations. However, this approach comes at the cost
of additional computational effort, as the bounds must be recomputed at each invocation
of wins1. In our implementation, we opted for the weaker bounds that only need to be
calculated once.

Furthermore, we need to be able to certify a violation of a constraint. To this end, we
need the following lemma.

▶ Lemma 2. Given a linear constraint
∑

i∈[n] aixi ≤ b with rational coefficients ai, b ∈ Q
and integer variables xi. Then, for any integer assignment x̃xx, it holds that

∑
i∈[n] aix̃i ̸≤ b⇔∑

i∈[n] aix̃i ≥ b + r, where r = 1
d , for d = lcd{a1, . . . , an, b}, being the reciprocal of the lowest

common denominators of the ai and b.

Proof. Let d be the lowest common denominator of the n+1 parameters. Then the constraint
can be rewritten as

∑
i∈[n]

ãi

d xi ≤ b̃
d , with integers ãi and b̃. For any assignment x̃xx with∑

i∈[n] aix̃i > b the gap between the right-hand side and the left-hand side can be stated

as
∣∣∣∣ b̃−

∑
i∈[n]

ãixi

d

∣∣∣∣ > 0, where the numerator is integer. Hence, a lower bound for this gap

is attained if the numerator is equal to one, i.e., 1
d is a lower bound on the violation of the

constraint, which proves the claim. ◀

This lemma shows the need for integrality of universally quantified variables in our approach,
as otherwise, we would not be able to specify a value of minimal violation, as a continuous
variable could violate the right-hand side by an arbitrarily small value. For existentially
quantified variables this in principle is not necessary in our current setting. Now, let rrrl ∈ Qm

be a vector with positive entries less than or equal to the reciprocals of the lowest common
denominators of the rows of A∃

l and bbb∃
l , ensuring for any row j ∈ [m] and any xxx ∈ D that

(A∃
l)j,⋆xxx ̸≤ (bbb∃

l)k ⇔ (A∃
l)j,⋆xxx ≥ (bbb∃

l)k + rl
j . Note that the lowest common denominator of the

n + 1 rational numbers can be computed in polynomial time, using the Euclidean algorithm,
assuming that the denominators of the coefficients are know. But also note that smaller
values to bound the gap between right-hand side and left-hand side are allowed. E.g. for
the constraint 0.5x1 + 2x2 <= 4 the designated value would be 0.5, as the lowest common
denominator of 0.5, 2 and 4 is 2 with a reciprocal of 0.5. On the other hand, finding the
number with the most decimal places also is valid. Let p be this number. Then setting
rl

j = 10−p also suffices. In the above example this equates to setting rl
j = 0.1. The latter

case is what we implemented. Further note, that that if all coefficients are integers, this
value always can be set to one.

M. Hartisch and L. Chew 12:9

Now, consider the following integer linear program (2):

−A∃
l xxx− (LLLl − bbb∃

l − rrrl)yyyl ≤ −LLLl ∀l ∈ [ℓ] (2a)

vl ≤
∑

j∈[m]

yl
j ∀l ∈ [ℓ] (2b)

v ≤ vl ∀l ∈ [ℓ] (2c)
v ≥ 1 (2d)
A∀xxx ≤ bbb∀ (2e)
xxx ∈ D (2f)
v, v1, . . . , vℓ ∈ {0, 1} (2g)
yyyl ∈ {0, 1}m ∀l ∈ [ℓ] (2h)

The idea is that the indicator variable v only can be set to 1, if all ℓ systems are violated by
an assignment of xxx. We can immediately see, that in order to set v to 1, all vl must be set to
1. Hence, for any l ∈ [ℓ] there has to exist at least one constraint j ∈ [m] for which yl

j = 1.
So let us consider the setting of yl

j . Setting yl
j = 0 can never result in a violation of the

respective constraint, as A∃
l xxx ≥ LLLl is always true. On the other hand, it is only feasible to

set yl
j to 1, if (A∃

l)k,∗xxx ≥ (b∃
l)j + rl

j holds, which is only the case, if xxx violates constraint j of
system l. Consequently, vl is an indicator whether constraint system l is violated. Only if we
find some xxx that violates all constraint systems while at the same time obeys the uncertainty
set given by A∀xxx ≤ bbb∀, we can also set v = 1. In other words: If and only if there exists an
assignment of xxx ∈ D with A∃

l xxx ̸≤ bbb∃
l for all l ∈ [ℓ], Problem (2) has a feasible solution.

▶ Example 3. Consider the constraint 0.5x1 + 2x2 <= 4 and variable bounds −2 ≤ x1 ≤ 2
and 0 ≤ x2 ≤ 3. The lower bound L for the left-hand side is −1. We set r = 0.5 to indicate the
minimal violation of this constraint. Consequently, the corresponding Constraint (2a) is given
by −0.5x1 − 2x2 + 5.5y ≤ 1 and in particular, in case of assigning y = 1, 0.5x1 + 2x2 ≥ 4.5
must be true, indicating the violation of the original constraint.

The pseudocode of the wins1 function is presented in Algorithm 2. In our implementation
we utilize the solver GUROBI [33] to solve Problems (1) and (2).

Algorithm 2 wins1(QXXX ∈ D : {Φ1 . . . Φℓ}) – Solve Multi-Game with a Single Move.
Input: multi-game QXXX ∈ D : {Φ1 . . . Φℓ} with all Φl quantifier free
Output: assignment of XXX that wins the multi-game or ⊥ if no winning move exists

1: if Q = ∃ then π ← Problem (1) else π ← Problem (2)
2: if π is feasible then return solution on π else return ⊥

3.3 Refinement by Expansion
It can be argued that the unique aspect of RAReQS and QFUN that sets it apart from other
CEGAR approaches is that they extend the number of variables being looked at in the
abstraction via expansion. This is much easier to spot in the original RAReQS than in QFUN
(our description in Algorithm 1 is based off QFUN). In QFUN and our description this is achieved
by having multiple listed subproblems after the outer quantifier block, as these subgames
technically each have separate variables. The function refine adds an additional subgame
to the abstraction, based on the countermove µµµ, that was found to beat our move τττ in one of
the original subgames.

CP 2025

12:10 An Expansion-Based Approach for Quantified Integer Programming

Given an abstraction α = QXXX ∈ DXXX : {Ψ1, . . . , Ψn}, with subgames Ψi, i ∈ [n], for which
a winning move τττ was found. Let Φ be another subgame, in which τττ is not a winning move,
i.e., there exists a countermove µµµ that wins Φ[τττ]. Let the quantification sequence of Φ start
with Q̄YYY . If Φ = Q̄YYY ∈ DYYY : A∃xxx ≤ bbb∃, then

refine(α, Φ,µµµ) = QXXX ∈ DXXX :
{

Ψ1, . . . , Ψn, A∃
(−YYY)xxx(−YYY) ≤ bbb∃

YYY =µµµ

}
,

i.e., the refined abstraction contains an additional constraint system accounting for the
scenario of the found countermove. If Φ = Q̄YYY ∈ DYYYQZZZ ∈ DZZZ : Λ for a QIP Λ, then

refine(α, Φ,µµµ) = QXXX ∈ DXXXZZZ
(YYY =µµµ)
Φ ∈ DZZZ :

{
Ψ1, . . . , Ψn, Λ(YYY =µµµ)

Φ [µµµ]
}

,

where ZZZ
(YYY =µµµ)
Φ is a copy of ZZZ that represents the move of ZZZ in case YYY is set to µµµ, and the

variables of Λ(YYY =µµµ)
Φ are copies of the variables of Λ having the same annotation as ZZZ

(YYY =µµµ)
Φ .

When ZZZ is universal, we also need to make sure it satisfies the uncertainty set and thus DZZZ

is meant to include the respective constraints on the annotated variables. We sometimes
write ZZZ(µµµ) instead of ZZZ(YYY =µµµ).

▶ Example 4. Consider the QIP ∃x1x2∀z1z2∃td : (x1 + x2 + t − 2d = 0) ∧ (z1 + z2 + t ≥
1) ∧ (−z1 − z2 − t ≥ −2) with all binary domains. Consider the outer level. Initially α, the
abstraction, will be empty, which means that any binary assignment of the variables x1 and
x2 is feasible. If we choose τττ = (0, 0), the universal response is to assign z1 = z2 = 0, at
which point the universal player wins. Hence, a countermove µµµ = (0, 0) to τττ is found and
consequently the abstraction α is refined to become α = ∃x1x2t(00)d(00) : (x1 + x2 + t(00) −
2d(00) = 0) ∧ (t(00) ≥ 1) ∧ (−t(00) ≥ −2). The EQuIPS call on this refined abstraction will
end up in a call of the wins1 function, as after the initial existential quantifier, no further
quantifiers follow. A solution to the respective constraint system is τττ ′ = (0, 1, 1, 1), which
contains assignments of x1, x2, t(00), and d(00). Extracting the values of the relevant variables
x1 and x2 we obtain τττ = (0, 1). We again check whether we find a countermove to τττ , in
which case z1 = z2 = 1 is produced. We once again adapt the abstraction by calling

refine(α,∀z1z2∃td : (x1 +x2 + t−2d = 0)∧ (z1 +z2 + t ≥ 1)∧ (−z1−z2− t ≥ −2), (1, 1)),

yielding the refined abstraction

∃x1x2t(00)d(00)t(11)d(11) :
{(

(x1 + x2 + t(00) − 2d(00) = 0) ∧ (t(00) ≥ 1) ∧ (−t(00) ≥ −2)
)

,(
(x1 + x2 + t(11) − 2d(11) = 0) ∧ (t(11) ≥ −1) ∧ (−t(11) ≥ 0)

)}
,

with two subgames. As each subgames is quantifier free, another call to wins1 is invoked
and the IP solver is called on the constraint system

x1 + x2 + t(00) − 2d(00) = 0 t(00) ≥ 1 −t(00) ≥ −2

x1 + x2 + t(11) − 2d(11) = 0 t(11) ≥ −1 −t(11) ≥ 0

x1, x2, t(00), d(00), t(11), d(11) ∈ {0, 1}.

As this IP is infeasible, we know that there is no move for (x1, x2) that wins the abstraction,
and hence, there cannot exist a move for (x1, x2) that wins the game.

M. Hartisch and L. Chew 12:11

3.4 Optimization
3.4.1 Optimization Method 1: Binary Search
In Section 2, we introduced the QIP optimization problem, for which a search-based solution
approach exists [40]. We now want to utilize the presented expansion-based approach, to
obtain another solution tool for the optimization problem. To this end, we assume that a
linear objective is given with objective coefficients ccc ∈ Zn. For clarity of presentation, we
assume an existential starting player in this case. We have already drawn the connection
between the QIP optimization problem and its decision version, where the objective function
is moved to the constraints and one asks for the existence of a solution with objective value
less than or equal to some value z. As all variables are bounded and the objective value only
attains integer values, we can compute lower and upper bounds on the objective value. In
particular, for the optimal objective value we know z⋆ ∈ [minxxx∈D ccc⊤xxx, maxxxx∈D ccc⊤xxx]. Now,
we can conduct a binary search to close in on the optimal value as shown in Algorithm 3.

Algorithm 3 Optimization Framework utilizing EQuIPS.
Input: QIP optimization problem
Output: ⊥, if instance is infeasible and otherwise the optimal objective value.

1: LB ← minxxx∈D ccc⊤xxx

2: UB ← maxxxx∈D ccc⊤xxx

3: z ← UB

4: run EQuIPS on QIP decision problem with additional constraint ccc⊤xxx ≤ z

5: if ⊥ then return “Instance is infeasible”
6: while UB − LB > 0 do
7: z ← (LB + UB)/2
8: run EQuIPS on QIP decision problem with additional constraint ccc⊤xxx ≤ z

9: if feasible then UB ← z else LB ← z + 1
10: return UB

3.4.2 Optimization Method 2: Mixing Methods
Repeatedly running the solver in a binary search can end up being more expensive than
necessary. Our working hypothesis is that the existing search-based solver Yasol [40] is good
at finding solutions, but slow at verifying optimality, while EQuIPS suffers from the opposite
problem: it is much better at showing inconsistencies from objective value bounds that are
too tight, but slow at finding good initial solutions. Therefore we propose to combine the
approaches, by letting Yasol search for good solutions and use EQuIPS to verify optimality.
In particular, every time Yasol finds a new solution – an improved value for UB – we can
call EQuIPS and try to verify that no solution with objective value at most UB − 1 exists
by adding the respective constraint on the objective function. Then, if and only if, UB is
optimal, no winning move for the existential player will be found. Doing this sequentially, i.e.,
stopping the search process of Yasol while EQuIPS tries to verify optimality, of course can
be detrimental, as in the early phase of the optimization process, Yasol tends to find better
solutions quickly. Thus, calling EQuIPS for every newly found solution can become inefficient.
We instead think of initiating a parallel process of EQuIPS while Yasol continues its search.
If EQuIPS certifies that no better solution exists, Yasol can terminate early. Conversely, if
Yasol finds a new solution, the current EQuIPS process can be terminated and restarted with
the updated bound.

CP 2025

12:12 An Expansion-Based Approach for Quantified Integer Programming

It is noteworthy, that if EQuIPS returns a winning move with an objective function
bounded by z, it cannot be concluded that a solution with objective value z exists, but only
that a solution with some value less than or equal to z exists. Hence, Yasol cannot extract
a newly found solution from a call to EQuIPS that does not verify optimality.

In this combined approach we also see options to exploit further synergies, where not only
Yasol profits from EQuIPS, but also the other way around. When Yasol continues the search
process after finding a new incumbent solution, it would incorporate all information it has
gathered during the solution process. Running EQuIPS with a new bound on the objective
function, on the other hand, is essentially starting again from scratch, which we want to
avoid. Since constraints are learned during the search process of Yasol, adding them to
EQuIPS is one way to transfer learned information from one solver to the other. Any learned
constraint holds information on what variable assignments will not lead to a (improved)
solution. It is worth mentioning that Yasol does not explicitly track all its progress through
learning constraints, but also implicitly through branching decisions. But each branch of
the search tree that is completed without a found (better) solution can be interpreted as a
learned constraint. Adding such constraints to the verification instance, has the potential to
improve the runtime of EQuIPS, with the risk of increasing the size of the instance too much,
making it harder for the underlying IP solver to solve Problems (1) and (2). This issue has
similarities to the selection of cutting planes for solving integer programs (see, e.g., [22]) and
further research needs to be done for our special case.

▶ Theorem 5. Let Πϕ be a QIP with Π a quantifier prefix and ϕ an IP and assume Yasol is
a correct clause learning algorithm for QIP and also complete, in that it will eventually find
the optimal solution. Suppose Yasol learns clauses C1 . . . Cn on the way to learning a solution
with objective function value of v. Then Πϕ∧F is false if and only if Πϕ∧C1 . . . Cn ∧D∧F

is false, where F is a constraint saying the objective function is strictly less than v.

Proof. Suppose Yasol has learned clauses C1 . . . Cn and a solution with value v. Let us
consider the QIP feasibility problem Πϕ ∧ C1 . . . Cn ∧ F . This QIP is either true, resulting
in the existence of a strategy with value less than v, or there is no such strategy, rendering
the QIP false. If Πϕ ∧ C1 . . . Cn ∧ F is true, then obviously Πϕ ∧ F also must be true, as it
contains less existential constraints. Now assume Πϕ∧C1 . . . Cn ∧F is false. Assume Πϕ∧F

is true, which means that there exists a solution with objective value strictly less than v. As
Yasol is complete, it eventually has to find this solution. However, Πϕ∧C1 . . . Cn ∧ F being
false, implies that Yasol can no longer find the solution if it restarted after learning C1 . . . Cn

(which is an option for Yasol to perform after clause learning). Consequently, Πϕ ∧ F also
must be false. ◀

4 A New Challenging Problem Class: QRandomParity

QRandomParity is a combination of QParity, which are known to be hard for QCDCL based
QBF solvers [10], and RandomParity which are hard for CDCL based SAT solvers [17].

Given an integer n and a random permutation σ on [n]. Consider the Quantified Boolean
problem

∃x1 . . . xn∀z∃t2 . . . tn∃s2 . . . sn. t2 = (x1 ⊕ x2) ∧ · · · ∧ ti = (ti−1 ⊕ xi), · · · ∧
s2 = (xσ(1) ⊕ xσ(2)) ∧ · · · ∧ si = (si−1 ⊕ xσ(i)), · · · ∧
(z → ¬tn) ∧ (¬z → sn)

M. Hartisch and L. Chew 12:13

Both tn and sn compute the parity of the x variables but use a different ordering. In
particular, tn = sn must be fulfilled. If we take the full expansion we get a contradiction,
because parity is associative and commutative. These families have been shown hard for
CDCL solvers like CaDiCaL in both theory and experiments [17]. This is because of the
standard encodings of the parity problems into clauses. Typically one encodes a = (b⊕ c)
using four clauses (¬a ∨ b ∨ c), (a ∨ ¬b ∨ c), (a ∨ b ∨ ¬c), and (¬a ∨ ¬b ∨ ¬c).

Note that, extension variables can be used to produce formulas easy for resolution. In this
case it has been shown [18] that only O(n log n) many extension variables are needed before
we can get linear size resolution refutation. In pseudo-Boolean constraints the extension
variables come more naturally into a standard encoding of parity, but require a new variable e

for each constraint. Therefore a = (b⊕ c) can be represented by the constraint a + b + c = 2e.
This encoding allows a short cutting planes proof. We simply can add all constraints

to get x1 + · · ·+ xn + tn + 2t2 · · ·+ 2tn−1 − 2e2 · · · − 2en = 0 and this can be repeated for
x1 + · · ·+ xn + sn + 2s2 · · ·+ 2sn−1 − 2f2 · · · − 2fn = 0.

Subtracting one from the other we get tn − sn + 2
∑n

i=2 (ti − ei − (si − fi)) = 0. The
only integer solution to this equality is to have tn = sn, as otherwise an odd number would
be on the left-hand side of the constraint, and cutting planes finds this via the division rule
[29]. The idea is, that IP solvers, which have access to several preprocessing techniques that
utilize constraint aggregation (e.g., see [28, 50, 52]), may be able to handle this as well.

The QRandomParity problem in clausal form (as QBF) is given by the quantification
sequence ∃x1 . . . xn∀u∃t2 . . . tn, s1 . . . sn (with all Boolean variables) and matrix

(x̄1 ∨ x2 ∨ t2) (x1 ∨ x̄2 ∨ t2) (x1 ∨ x2 ∨ t̄2) (x̄1 ∨ x̄2 ∨ t̄2) (3a)
(x̄i ∨ ti−1 ∨ ti) (xi ∨ t̄i−1 ∨ ti) (xi ∨ ti−1 ∨ t̄i) (x̄i ∨ t̄i−1 ∨ t̄i) for i = 3 to n (3b)
(x̄σ(1) ∨ xσ(2) ∨ s2) (xσ(1) ∨ x̄σ(2) ∨ s2) (xσ(1) ∨ xσ(2) ∨ s̄2) (x̄σ(1) ∨ x̄σ(2) ∨ s̄2) (3c)
(x̄σ(i) ∨ si−1 ∨ si) (xσ(i) ∨ s̄i−1 ∨ si) (xσ(i) ∨ si−1 ∨ s̄i) (x̄σ(i) ∨ s̄i−1 ∨ s̄i) for i = 3 to n (3d)
(ū ∨ t̄n) (u ∨ sn), (3e)

where each (3a)-(3d) encodes an XOR relation. In linear form (as QIP), all variables are
binary and their sequence is given by ∃x1 . . . xn∀u∃t2 . . . tn, d2 . . . dn, s1 . . . sn, e2 . . . en, where
a linear encoding of the XOR relation is used, needing auxiliary variables d and e:

x1 + x2 + t2 = 2d2 xσ(1) + xσ(2) + s2 = 2e2 (4a)
ti−1 + xi + ti = 2di si−1 + xσ(i) + si = 2ei for i ∈ {3, . . . , n} (4b)

−u− tn ≥ −1 u + sn ≥ 1. (4c)

5 Experimental Evaluation

For our experiments, we compiled EQuIPS with GUROBI 12.0 and Yasol, which utilizes a
linear programming solver, is compiled with CPLEX 22.1. When installing QFUN with the
respective SAT solvers, we used the provided script and we used DepQBF 6.01 and the latest
version of z3.

5.1 QRandomParity
As argued in Section 4 we expect our expansion-based solver to perform well on instances of
type QRandomParity, compared to search-based algorithms like Yasol [40] and DepQBF [45].
We also tested the solver z3 [21], which is capable of handling such instances. Furthermore,
we are interested in the comparison of EQuIPS against state-of-the-art expansion-based solvers

CP 2025

12:14 An Expansion-Based Approach for Quantified Integer Programming

from the QBF community such as QFUN [44]. QFUN allows the integration of several SAT
solvers, and we compiled it once with CaDiCaL [11] and once with CryptoMiniSat [60], which
we refer to as QFUNcadi and QFUNcms, respectively. Here we expect QFUNcms to perform better
on QRandomParity instances, due to the better handling of XOR clauses by CryptoMiniSat
compared to other SAT solvers. For Yasol and EQuIPS, we use the QIP Encoding (4), while
for the other solvers we use QBF Encoding (3). Notably, we tested both encodings with z3
and observed that it performed better on the QBF formulation than on the QIP formulation.
Consequently, we report only its performance on Encoding (3).

For each of the following experiments, we created 100 instances for each n (only varying
in the random permutation of the variables). Experiments were conducted on an AMD
Ryzen 9 5900X processor (3.70 GHz) with 128 GB RAM, imposing a 1800 seconds time
limit per instance and restricting each process to a single thread. In a first experiment, for
n ∈ {10, 12, . . . , 26} we compare all solvers and show the results in a Cactus plot in Figure 1.

0 200 400 600 800

10−3

10−2

10−1

100

101

102

103

Number of Solved Instances

S
ol
u
ti
on

T
im

e
(s
)

Z3
Yasol
DEPQBF
QFUNcms
QFUNcadi
EQuIPS

Figure 1 Cactus plot. Algorithms that appear further to the right and closer to the bottom solve
more instances faster, indicating better performance.

As expected, we can observe the expansion-based solvers outclass the search-based solvers
DepQBF and Yasol as well as z3. QFUNcadi and QFUNcms basically have the same performance,
while our approach has the most constant behavior, outperforming all solvers for n ≥ 22.

For even larger values of n, QFUNcadi quickly reaches its limit, incapable of solving these
instances before timeout, while QFUNcms still can solve such instances easily. In particular,
for n = 100, no instance was solved by QFUNcadi before the timeout. This is likely due to the
special handling of XOR formulations by CryptoMiniSat, that CaDiCaL lacks. Hence, for
larger values of n we restrict our comparison to QFUNcms and EQuIPS, as shown in Table 1.

Table 1 Median runtimes and (if existent) number of not solved QRandomParity instances.

n 100 200 300 400 500 600 700 800 900 1000

EQuIPS 0.06 0.18 0.37 0.68 0.99 1.31 1.72 2.13 2.64 3.44/10
QFUNcms 1.67 2.21 2.09 2.18 2.37 2.13/1 2.51/2 2.22/3 3.04/4 -/100

For an increasing value of n, our approach consistently outperforms QFUNcms. However,
for very large n, both solvers sometimes fail to return a solution within the time limit. This
is quite surprising, as runtime trends did not indicate a sharp increase in solution times.
We further investigated this by analyzing the behavior of GUROBI on the fully expanded

M. Hartisch and L. Chew 12:15

problem for large values of n. It became evident that for smaller instances, GUROBI could
solve them entirely during preprocessing, without initiating a search. However, for larger
instances, preprocessing terminated prematurely before infeasibility was detected, forcing the
solver into a search phase from which it never returned. For some instances, we were able
to fine tune GUROBI parameters, but not to the extend of solving instances with n ≥ 1500.
We suspect a similar phenomenon occurs with CryptoMiniSat. These observations align
with our hypothesis that aggregation techniques efficiently prove infeasibility for smaller
instances, but as the problem size grows, identifying the right constraints for aggregation
becomes increasingly difficult. This, in turn, leads GUROBI to halt preprocessing prematurely
and initiate an exhaustive search instead.

For all experiments, QFUN and DepQBF were given instances in the QDIMACS file format.
Surprisingly, testing the QCIR format – where we expected QFUNcms to perform even better –
resulted in worse performance. Additionally, we evaluated EQuIPS on the QBF formulation of
QRandomParity, where all constraints are clauses (see Encoding (3) in the appendix). While
EQuIPS could still solve instances of size 100 within seconds, it failed to solve any instance of
size 200. This further supports our claim that leveraging the modeling capabilities of linear
constraints can be advantageous.

5.2 Multilevel Critical Node Problem
To evaluate our approach on optimization instances, we consider the multilevel critical node
problem (MCN) as introduced in [1]. Details on the problem and the QIP encoding can be
found in Appendix A.2. We compare the performance of Yasol, EQuIPS (utilizing binary
search), and the baseline column- and row-generation approach (MCNCR) from [1]. Note
that MCNCR is essentially a scenario generation approach that uses dualization techniques
to approximate the optimal solution of the adversary problem. In contrast, the approach
provided by Yasol and EQuIPS is much more straightforward and easy to use, requiring
only a problem encoding as QIP. Notably, we do not compare our solver to the enhanced
techniques from [1], as our goal is to demonstrate the model-and-run potential of QIPs as a
baseline for such instances.

The MCNCR algorithm was executed using Python 2.7.18, with mixed-integer linear
programs solved via IBM CPLEX 12.9. Experiments were conducted on an AMD EPYC
9474F 48-Core Processor (3.60 GHz) with 256 GB RAM, imposing a two-hour time limit per
instance and restricting each process to a single thread. We used the provided instances2,
consisting of randomly generated undirected graphs with |V | ∈ {20, 40, 60, 80, 100}, a density
of 5%, and various budget limit configurations (Ω, Φ, and ∆). Figure 2 presents a Cactus
plot, revealing key performance trends. Our approach exhibits higher run times on instances
that are generally solved quickly. However, EQuIPS performs well on larger instances with
inherently higher run times. Overall, our method solves the second-highest number of
instances (465), compared to 431 solved by Yasol and 475 by MCNCR.

5.3 Further Experiments
To further evaluate our expansion-based approach, we conducted additional experiments (see
Appendix A.3 for details). The key findings are as follows. First, using EQuIPS to verify the
optimality of incumbent solutions found during the search process of Yasol is promising.

2 Instances, optimal solutions, and algorithms from [1] were provided at https://github.com/
mxmmargarida/Critical-Node-Problem.

CP 2025

https://github.com/mxmmargarida/Critical-Node-Problem
https://github.com/mxmmargarida/Critical-Node-Problem

12:16 An Expansion-Based Approach for Quantified Integer Programming

0 100 200 300 400 500
10−1

100

101

102

103

104

Number of Solved Instances

S
o
lu
ti
o
n
T
im

e
(s
)

MCNCR

Yasol
EQuIPS

Figure 2 Cactus plot for experiments on MCN test set.

This hybrid approach can be enhanced by incorporating selected learned constraints from
Yasol into the EQuIPS verification instance. Second, EQuIPS does not always outperform
Yasol– especially on instances with multiple quantifier alternations – a result that aligns with
similar observations in QBF. Finally, several heuristic improvements remain to be explored.
For example, solving the IP relaxation to obtain an initial winning move shows potential but
may increase run times when the full expansion is eventually required.

6 Conclusion

In this paper, we presented an expansion-based approach for quantified integer programming,
a rarely explored direction in quantified constraint programming. Our method leverages the
power of state-of-the-art integer linear programming solvers to handle abstractions – partial
expansions of the quantified program.

EQuIPS offers advantages over existing QIP solvers like Yasol and various QBF approaches.
It inherits the benefits of expansion-based solvers over search-based solvers in QBF while
also utilizing the modeling flexibility of linear constraints. Additionally, we observe that
QBF solvers incorporating XOR reasoning and expansion, such as QFUN with CryptoMiniSat,
perform competitively with EQuIPS.

Our experiments show that EQuIPS offers advantages in certain cases. We demonstrate
performance improvements on different families that other approaches neglect, strengthening
the case for combining methods and illustrating how such combinations can be effective in
practice.

Future improvements could integrate machine learning techniques to enhance abstraction
construction. While QFUN employs decision trees, our integer programming setting allows
for numerical machine learning methods such as support vector machines. Additionally,
the counterexample generation in wins1 can be heuristically guided by adding an objective
to the underlying integer programs, e.g., choosing universal assignments that maximize
constraint violation or existential assignments that optimize the objective. To further improve
optimization capabilities, strategy extraction as well as directly incorporating optimization
aspects into our framework are also promising directions. Furthermore, parallelizing both the
exploration of countermoves in each sub-game and the objective-value checks during binary
search should improve performance.

M. Hartisch and L. Chew 12:17

References
1 Andrea Baggio, Margarida Carvalho, Andrea Lodi, and Andrea Tramontani. Multilevel

approaches for the critical node problem. Operations Research, 69(2):486–508, 2021. doi:
10.1287/opre.2020.2014.

2 Haniel Barbosa, Andrew Reynolds, Daniel El Ouraoui, Cesare Tinelli, and Clark Barrett.
Extending SMT solvers to higher-order logic. In Automated Deduction–CADE 27: 27th Inter-
national Conference on Automated Deduction, Natal, Brazil, August 27–30, 2019, Proceedings
27, pages 35–54. Springer, 2019. doi:10.1007/978-3-030-29436-6_3.

3 Clark Barrett and Cesare Tinelli. Satisfiability modulo theories. Handbook of model checking,
pages 305–343, 2018. doi:10.1007/978-3-319-10575-8_11.

4 Marco Benedetti, Arnaud Lallouet, and Jérémie Vautard. Quantified constraint optimization.
In International Conference on Principles and Practice of Constraint Programming, pages
463–477. Springer, 2008. doi:10.1007/978-3-540-85958-1_31.

5 Dimitris Bertsimas and Iain Dunning. Multistage robust mixed-integer optimization with
adaptive partitions. Operations Research, 64(4):980–998, 2016. doi:10.1287/opre.2016.1515.

6 Dimitris Bertsimas and Angelos Georghiou. Binary decision rules for multistage adaptive
mixed-integer optimization. Mathematical Programming, 167:395–433, 2018. doi:10.1007/
s10107-017-1135-6.

7 Dimitris Bertsimas and Melvyn Sim. Robust discrete optimization and network flows. Mathe-
matical programming, 98(1):49–71, 2003. doi:10.1007/s10107-003-0396-4.

8 Olaf Beyersdorff and Benjamin Böhm. Understanding the relative strength of QBF CDCL
solvers and QBF resolution. In James R. Lee, editor, 12th Innovations in Theoretical Computer
Science Conference, ITCS 2021, January 6-8, 2021, Virtual Conference, volume 185 of
LIPIcs, pages 12:1–12:20. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, 2021. doi:
10.4230/LIPIcs.ITCS.2021.12.

9 Olaf Beyersdorff, Leroy Chew, Judith Clymo, and Meena Mahajan. Short proofs in QBF
expansion. In Theory and Applications of Satisfiability Testing–SAT 2019: 22nd International
Conference, SAT 2019, Lisbon, Portugal, July 9–12, 2019, Proceedings 22, pages 19–35.
Springer, 2019. doi:10.1007/978-3-030-24258-9_2.

10 Olaf Beyersdorff, Leroy Chew, and Mikolás Janota. New resolution-based QBF calculi and their
proof complexity. ACM Trans. Comput. Theory, 11(4):26:1–26:42, 2019. doi:10.1145/3352155.

11 Armin Biere, Tobias Faller, Katalin Fazekas, Mathias Fleury, Nils Froleyks, and Florian Pollitt.
CaDiCaL 2.0. In Arie Gurfinkel and Vijay Ganesh, editors, Computer Aided Verification - 36th
International Conference, CAV 2024, Montreal, QC, Canada, July 24-27, 2024, Proceedings,
Part I, volume 14681 of Lecture Notes in Computer Science, pages 133–152. Springer, 2024.
doi:10.1007/978-3-031-65627-9_7.

12 Nikolaj Bjørner, Mikolás Janota, and William Klieber. On conflicts and strategies in QBF. In
LPAR (short papers), pages 28–41, 2015. doi:10.29007/4sk1.

13 Nikolaj S Bjørner and Mikolás Janota. Playing with quantified satisfaction. LPAR (short
papers), 35:15–27, 2015. doi:10.29007/vv21.

14 Benjamin Böhm and Olaf Beyersdorff. QCDCL vs QBF resolution: Further insights. In
Meena Mahajan and Friedrich Slivovsky, editors, 26th International Conference on Theory
and Applications of Satisfiability Testing, SAT 2023, July 4-8, 2023, Alghero, Italy, volume
271 of LIPIcs, pages 4:1–4:17. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, 2023.
doi:10.4230/LIPIcs.SAT.2023.4.

15 Hubie Chen. Beyond Q-resolution and prenex form: A proof system for quantified constraint
satisfaction. Logical Methods in Computer Science, 10, 2014. doi:10.2168/LMCS-10(4:
14)2014.

16 Hubie Chen and Martin Pál. Optimization, games, and quantified constraint satisfaction. In
International Symposium on Mathematical Foundations of Computer Science, pages 239–250.
Springer, 2004. doi:10.1007/978-3-540-28629-5_16.

CP 2025

https://doi.org/10.1287/opre.2020.2014
https://doi.org/10.1287/opre.2020.2014
https://doi.org/10.1007/978-3-030-29436-6_3
https://doi.org/10.1007/978-3-319-10575-8_11
https://doi.org/10.1007/978-3-540-85958-1_31
https://doi.org/10.1287/opre.2016.1515
https://doi.org/10.1007/s10107-017-1135-6
https://doi.org/10.1007/s10107-017-1135-6
https://doi.org/10.1007/s10107-003-0396-4
https://doi.org/10.4230/LIPIcs.ITCS.2021.12
https://doi.org/10.4230/LIPIcs.ITCS.2021.12
https://doi.org/10.1007/978-3-030-24258-9_2
https://doi.org/10.1145/3352155
https://doi.org/10.1007/978-3-031-65627-9_7
https://doi.org/10.29007/4sk1
https://doi.org/10.29007/vv21
https://doi.org/10.4230/LIPIcs.SAT.2023.4
https://doi.org/10.2168/LMCS-10(4:14)2014
https://doi.org/10.2168/LMCS-10(4:14)2014
https://doi.org/10.1007/978-3-540-28629-5_16

12:18 An Expansion-Based Approach for Quantified Integer Programming

17 Leroy Chew, Alexis de Colnet, Friedrich Slivovsky, and Stefan Szeider. Hardness of random
reordered encodings of parity for resolution and CDCL. Proceedings of the AAAI Conference
on Artificial Intelligence, 38(8):7978–7986, March 2024. doi:10.1609/aaai.v38i8.28635.

18 Leroy Chew and Marijn J. H. Heule. Sorting parity encodings by reusing variables. In
Luca Pulina and Martina Seidl, editors, Theory and Applications of Satisfiability Testing
- SAT 2020 - 23rd International Conference, Alghero, Italy, July 3-10, 2020, Proceedings,
volume 12178 of Lecture Notes in Computer Science, pages 1–10. Springer, Springer, 2020.
doi:10.1007/978-3-030-51825-7_1.

19 Dmitry Chistikov and Christoph Haase. On the complexity of quantified integer programming.
In Ioannis Chatzigiannakis, Piotr Indyk, Fabian Kuhn, and Anca Muscholl, editors, 44th
International Colloquium on Automata, Languages, and Programming, ICALP 2017, July
10-14, 2017, Warsaw, Poland, volume 80 of LIPIcs, pages 94:1–94:13. Schloss Dagstuhl –
Leibniz-Zentrum für Informatik, Schloss Dagstuhl – Leibniz-Zentrum für Informatik, 2017.
doi:10.4230/LIPIcs.ICALP.2017.94.

20 Abhimanyu Choudhury and Meena Mahajan. Dependency schemes in CDCL-based QBF
solving: A proof-theoretic study. J. Autom. Reason., 68(3):16, 2024. doi:10.1007/
s10817-024-09707-4.

21 Leonardo Mendonça de Moura and Nikolaj S. Bjørner. Z3: an efficient SMT solver. In C. R.
Ramakrishnan and Jakob Rehof, editors, Tools and Algorithms for the Construction and
Analysis of Systems, 14th International Conference, TACAS 2008, Held as Part of the Joint
European Conferences on Theory and Practice of Software, ETAPS 2008, Budapest, Hungary,
March 29-April 6, 2008. Proceedings, volume 4963 of Lecture Notes in Computer Science,
pages 337–340. Springer, Springer, 2008. doi:10.1007/978-3-540-78800-3_24.

22 Santanu S Dey and Marco Molinaro. Theoretical challenges towards cutting-plane selection.
Mathematical Programming, 170:237–266, 2018. doi:10.1007/s10107-018-1302-4.

23 Thorsten Ederer, Michael Hartisch, Ulf Lorenz, Thomas Opfer, and Jan Wolf. Yasol: an
open source solver for quantified mixed integer programs. In Advances in Computer Games:
15th International Conferences, ACG 2017, Leiden, The Netherlands, July 3–5, 2017, Revised
Selected Papers 15, pages 224–233. Springer, 2017. doi:10.1007/978-3-319-71649-7_19.

24 Pavlos Eirinakis, Salvatore Ruggieri, K Subramani, and Piotr Wojciechowski. On quantified
linear implications. Annals of Mathematics and Artificial Intelligence, 71(4):301–325, 2014.
doi:10.1007/s10472-013-9332-3.

25 Alex Ferguson and Barry O’Sullivan. Relaxations and explanations for quantified constraint
satisfaction problems. In International Conference on Principles and Practice of Constraint
Programming, pages 690–694. Springer, 2006. doi:10.1007/11889205_52.

26 Ian P Gent, Peter Nightingale, Andrew Rowley, and Kostas Stergiou. Solving quantified
constraint satisfaction problems. Artificial Intelligence, 172(6-7):738–771, 2008. doi:10.1016/
j.artint.2007.11.003.

27 Richard Gerber, William Pugh, and Manas Saksena. Parametric dispatching of hard real-time
tasks. IEEE transactions on computers, 44(3):471–479, 1995. doi:10.1109/12.372041.

28 Fred Glover. Surrogate constraints. Operations Research, 16(4):741–749, 1968. doi:10.1287/
opre.16.4.741.

29 Stephan Gocht and Jakob Nordström. Certifying parity reasoning efficiently using pseudo-
Boolean proofs. Proceedings of the AAAI Conference on Artificial Intelligence, 35(5):3768–3777,
2021. doi:10.1609/aaai.v35i5.16494.

30 Marc Goerigk and Michael Hartisch. Multistage robust discrete optimization via quantified
integer programming. Computers & Operations Research, 135:105434, 2021. doi:10.1016/j.
cor.2021.105434.

31 Marc Goerigk and Michael Hartisch. An introduction to robust combinatorial optimization.
International Series in Operations Research and Management Science, 2024. doi:10.1007/
978-3-031-61261-9.

https://doi.org/10.1609/aaai.v38i8.28635
https://doi.org/10.1007/978-3-030-51825-7_1
https://doi.org/10.4230/LIPIcs.ICALP.2017.94
https://doi.org/10.1007/s10817-024-09707-4
https://doi.org/10.1007/s10817-024-09707-4
https://doi.org/10.1007/978-3-540-78800-3_24
https://doi.org/10.1007/s10107-018-1302-4
https://doi.org/10.1007/978-3-319-71649-7_19
https://doi.org/10.1007/s10472-013-9332-3
https://doi.org/10.1007/11889205_52
https://doi.org/10.1016/j.artint.2007.11.003
https://doi.org/10.1016/j.artint.2007.11.003
https://doi.org/10.1109/12.372041
https://doi.org/10.1287/opre.16.4.741
https://doi.org/10.1287/opre.16.4.741
https://doi.org/10.1609/aaai.v35i5.16494
https://doi.org/10.1016/j.cor.2021.105434
https://doi.org/10.1016/j.cor.2021.105434
https://doi.org/10.1007/978-3-031-61261-9
https://doi.org/10.1007/978-3-031-61261-9

M. Hartisch and L. Chew 12:19

32 Marc Goerigk, Jannis Kurtz, and Michael Poss. Min–max–min robustness for combinatorial
problems with discrete budgeted uncertainty. Discrete Applied Mathematics, 285:707–725,
2020. doi:10.1016/j.dam.2020.07.011.

33 Gurobi Optimization, LLC. Gurobi Optimizer Reference Manual, 2024. URL: https://www.
gurobi.com.

34 Michael Hartisch. Quantified integer programming with polyhedral and decision-dependent
uncertainty. PhD thesis, University of Siegen, Germany, 2020. doi:10.25819/ubsi/4841.

35 Michael Hartisch. Adaptive relaxations for multistage robust optimization. In Pacific Rim
International Conference on Artificial Intelligence, pages 485–499. Springer, 2021. doi:
10.1007/978-3-030-89188-6_36.

36 Michael Hartisch and Leroy Chew. MichaelHartisch/EQuIPS. Software, DFG-534441421,
FWF Project ESP197, swhId: swh:1:dir:29f0d2d80f69841007fd3a315a47c2865669f3a6 (vis-
ited on 2025-07-23). URL: https://github.com/MichaelHartisch/EQuIPS, doi:10.4230/
artifacts.24095.

37 Michael Hartisch, Thorsten Ederer, Ulf Lorenz, and Jan Wolf. Quantified integer programs
with polyhedral uncertainty set. In Computers and Games: 9th International Conference,
CG 2016, Leiden, The Netherlands, June 29–July 1, 2016, Revised Selected Papers 9, pages
156–166. Springer, 2016. doi:10.1007/978-3-319-50935-8_15.

38 Michael Hartisch and Ulf Lorenz. Mastering uncertainty: towards robust multistage opti-
mization with decision dependent uncertainty. In PRICAI 2019: Trends in Artificial Intel-
ligence: 16th Pacific Rim International Conference on Artificial Intelligence, Cuvu, Yanuca
Island, Fiji, August 26–30, 2019, Proceedings, Part I 16, pages 446–458. Springer, 2019.
doi:10.1007/978-3-030-29908-8_36.

39 Michael Hartisch and Ulf Lorenz. A novel application for game tree search-exploiting pruning
mechanisms for quantified integer programs. In Advances in Computer Games: 16th Interna-
tional Conference, ACG 2019, Macao, China, August 11–13, 2019, Revised Selected Papers 16,
pages 66–78. Springer, 2020. doi:10.1007/978-3-030-65883-0_6.

40 Michael Hartisch and Ulf Lorenz. A general model-and-run solver for multistage robust discrete
linear optimization. arXiv preprint arXiv:2210.11132, 2022. doi:10.48550/arXiv.2210.11132.

41 Alexey Ignatiev, Mikoláš Janota, and Joao Marques-Silva. Quantified maximum satisfiability.
Constraints, 21:277–302, 2016. doi:10.1007/s10601-015-9195-9.

42 Mikoláš Janota, William Klieber, João Marques-Silva, and Edmund M. Clarke. Solving
QBF with counterexample guided refinement. In Alessandro Cimatti and Roberto Sebastiani,
editors, Proc. 15th International Conference on Theory and Applications of Satisfiability
Testing, volume 7317, pages 114–128. Springer, 2012. doi:10.1007/978-3-642-31612-8_10.

43 Mikoláš Janota and Joao Marques-Silva. Expansion-based QBF solving versus Q-resolution.
Theor. Comput. Sci., 577:25–42, 2015. doi:10.1016/j.tcs.2015.01.048.

44 Mikoláš Janota. Towards generalization in QBF solving via machine learning. Proceedings of
the AAAI Conference on Artificial Intelligence, 32(1):6607–6614, April 2018. doi:10.1609/
aaai.v32i1.12208.

45 Florian Lonsing and Uwe Egly. Depqbf 6.0: A search-based QBF solver beyond traditional
QCDCL. In Automated Deduction–CADE 26: 26th International Conference on Automated
Deduction, Gothenburg, Sweden, August 6–11, 2017, Proceedings, pages 371–384. Springer,
2017. doi:10.1007/978-3-319-63046-5_23.

46 Florian Lonsing and Uwe Egly. Evaluating QBF solvers: Quantifier alternations matter. In
John Hooker, editor, Principles and Practice of Constraint Programming, pages 276–294,
Cham, 2018. Springer International Publishing. doi:10.1007/978-3-319-98334-9_19.

47 Ulf Lorenz and Jan Wolf. Solving multistage quantified linear optimization problems with the
alpha–beta nested benders decomposition. EURO Journal on Computational Optimization,
3:349–370, 2015. doi:10.1007/s13675-015-0038-7.

CP 2025

https://doi.org/10.1016/j.dam.2020.07.011
https://www.gurobi.com
https://www.gurobi.com
https://doi.org/10.25819/ubsi/4841
https://doi.org/10.1007/978-3-030-89188-6_36
https://doi.org/10.1007/978-3-030-89188-6_36
https://archive.softwareheritage.org/swh:1:dir:29f0d2d80f69841007fd3a315a47c2865669f3a6
https://github.com/MichaelHartisch/EQuIPS
https://doi.org/10.4230/artifacts.24095
https://doi.org/10.4230/artifacts.24095
https://doi.org/10.1007/978-3-319-50935-8_15
https://doi.org/10.1007/978-3-030-29908-8_36
https://doi.org/10.1007/978-3-030-65883-0_6
https://doi.org/10.48550/arXiv.2210.11132
https://doi.org/10.1007/s10601-015-9195-9
https://doi.org/10.1007/978-3-642-31612-8_10
https://doi.org/10.1016/j.tcs.2015.01.048
https://doi.org/10.1609/aaai.v32i1.12208
https://doi.org/10.1609/aaai.v32i1.12208
https://doi.org/10.1007/978-3-319-63046-5_23
https://doi.org/10.1007/978-3-319-98334-9_19
https://doi.org/10.1007/s13675-015-0038-7

12:20 An Expansion-Based Approach for Quantified Integer Programming

48 Francesca Maggioni, Fabrizio Dabbene, and Georg Ch. Pflug. Sampling methods for multi-
stage robust optimization problems. Ann. Oper. Res., 347(3):1385–1423, 2025. doi:10.1007/
s10479-025-06545-4.

49 Nikos Mamoulis and Kostas Stergiou. Algorithms for quantified constraint satisfaction problems.
In International Conference on Principles and Practice of Constraint Programming, pages
752–756. Springer, 2004. doi:10.1007/978-3-540-30201-8_60.

50 Hugues Marchand and Laurence A Wolsey. Aggregation and mixed integer rounding to solve
MIPs. Operations research, 49(3):363–371, 2001. doi:10.1287/opre.49.3.363.11211.

51 Toshihiro Matsui, Hiroshi Matsuo, Marius Calin Silaghi, Katsutoshi Hirayama, Makoto Yokoo,
and Satomi Baba. A quantified distributed constraint optimization problem. In Proc. 9th
Int’l. Conf. on Autonomous Agents and Multiagent Systems (AAMAS2010), volume 1, pages
1023–1030. Nagoya Institute of Technology, 2010. URL: https://dl.acm.org/citation.cfm?
id=1838344.

52 George L. Nemhauser and Laurence A. Wolsey. Integer and Combinatorial Optimization.
Wiley interscience series in discrete mathematics and optimization. Wiley, 1988. doi:10.1002/
9781118627372.

53 Danny Nguyen and Igor Pak. The computational complexity of integer programming with
alternations. Mathematics of Operations Research, 45(1):191–204, 2020. doi:10.1287/moor.
2018.0988.

54 Peter Nightingale. Non-binary quantified CSP: algorithms and modelling. Constraints,
14:539–581, 2009. doi:10.1007/s10601-009-9068-1.

55 Jérémy Omer, Michael Poss, and Maxime Rougier. Combinatorial robust optimization
with decision-dependent information discovery and polyhedral uncertainty. Open Journal of
Mathematical Optimization, 5:1–25, 2024. doi:10.5802/ojmo.33.

56 Michael Poss. Robust combinatorial optimization with variable cost uncertainty. European
Journal of Operational Research, 237(3):836–845, 2014. doi:10.1016/j.ejor.2014.02.060.

57 Krzysztof Postek and Dick den Hertog. Multistage adjustable robust mixed-integer optimization
via iterative splitting of the uncertainty set. INFORMS Journal on Computing, 28(3):553–574,
2016. doi:10.1287/ijoc.2016.0696.

58 Andrew Reynolds, Tim King, and Viktor Kuncak. Solving quantified linear arithmetic by
counterexample-guided instantiation. Formal Methods in System Design, 51:500–532, 2017.
doi:10.1007/s10703-017-0290-y.

59 Alexander Schrijver. Theory of linear and integer programming. Wiley-Interscience series in
discrete mathematics and optimization. Wiley, 1999.

60 Mate Soos, Karsten Nohl, and Claude Castelluccia. Extending sat solvers to cryptographic
problems. In International Conference on Theory and Applications of Satisfiability Testing,
pages 244–257. Springer, 2009. doi:10.1007/978-3-642-02777-2_24.

61 Kostas Stergiou. Repair-based methods for quantified CSPs. In International Conference
on Principles and Practice of Constraint Programming, pages 652–666. Springer, 2005. doi:
10.1007/11564751_48.

62 K Subramani. Analyzing selected quantified integer programs. In International Joint
Conference on Automated Reasoning, pages 342–356. Springer, 2004. doi:10.1007/
978-3-540-25984-8_26.

63 Kerian Thuillier, Anne Siegel, and Loïc Paulevé. CEGAR-based approach for solving
combinatorial optimization modulo quantified linear arithmetics problems. Proceedings
of the AAAI Conference on Artificial Intelligence, 38(8):8146–8153, March 2024. doi:
10.1609/aaai.v38i8.28654.

64 Phebe Vayanos, Daniel Kuhn, and Berç Rustem. A constraint sampling approach for multi-
stage robust optimization. Automatica, 48(3):459–471, 2012. doi:10.1016/j.automatica.
2011.12.002.

https://doi.org/10.1007/s10479-025-06545-4
https://doi.org/10.1007/s10479-025-06545-4
https://doi.org/10.1007/978-3-540-30201-8_60
https://doi.org/10.1287/opre.49.3.363.11211
https://dl.acm.org/citation.cfm?id=1838344
https://dl.acm.org/citation.cfm?id=1838344
https://doi.org/10.1002/9781118627372
https://doi.org/10.1002/9781118627372
https://doi.org/10.1287/moor.2018.0988
https://doi.org/10.1287/moor.2018.0988
https://doi.org/10.1007/s10601-009-9068-1
https://doi.org/10.5802/ojmo.33
https://doi.org/10.1016/j.ejor.2014.02.060
https://doi.org/10.1287/ijoc.2016.0696
https://doi.org/10.1007/s10703-017-0290-y
https://doi.org/10.1007/978-3-642-02777-2_24
https://doi.org/10.1007/11564751_48
https://doi.org/10.1007/11564751_48
https://doi.org/10.1007/978-3-540-25984-8_26
https://doi.org/10.1007/978-3-540-25984-8_26
https://doi.org/10.1609/aaai.v38i8.28654
https://doi.org/10.1609/aaai.v38i8.28654
https://doi.org/10.1016/j.automatica.2011.12.002
https://doi.org/10.1016/j.automatica.2011.12.002

M. Hartisch and L. Chew 12:21

65 Guillaume Verger and Christian Bessiere. Guiding search in QCSP+ with back-propagation.
In International Conference on Principles and Practice of Constraint Programming, pages
175–189. Springer, 2008. doi:10.1007/978-3-540-85958-1_12.

66 Lintao Zhang and Sharad Malik. Conflict driven learning in a quantified Boolean satisfiability
solver. In ICCAD, pages 442–449, 2002. doi:10.1145/774572.774637.

A Appendix

A.1 Underlying Proof System and Correctness
It has been well established that RAReQS works with the QBF proof system ∀Exp+Res [43].
It comes as no surprise that the underlying proof system of EQuIPS acts much the same,
instead of describing the SAT oracle as a resolution system, we describe the IP call as a
cutting planes proof. Figure 3 describes the ∀Exp+Cutting Planes proof systems which is
the underlying proof system for refutations where the first quantifier is existential.

∑
k∈[n]: Qk=∃

akxk +
∑

k∈[n]: Qk=∀

akxk ≤ b in matrix

(Axiom)∑
k∈[n]: Qk=∃

akx
[τττ]
k +

∑
k∈[n]: Qk=∀

akτττ(xk) ≤ b

- τττ is a complete assignment to universal variables that satisfies the universal
constraint system

- For x
[τττ]
k , [τττ] takes only the part of τττ that is left of xk

Addition: From
∑

k∈[n]

akxk ≤ b and
∑

k∈[n]

αkxk ≤ β, derive
∑

k∈[n]

(ak + αk)xk ≤

b + β.
Multiplication: From

∑
k∈[n]

akxk ≤ b, derive
∑

k∈[n]

dakxk ≤ db, where d ∈ Z+.

Division: From
∑

k∈[n]

akxk ≤ b, derive
∑

k∈[n]

ak

d
xk ≤

⌈
b

d

⌉
, where d ∈ Z+ divides

each ak.

Figure 3 The proof system ∀Exp+Cutting Planes.

▶ Theorem 6. ∀Exp+Cutting Planes is a sound and complete proof system for QIP.

Proof. Given a QIP, we take a full Shannon expansion on all universal quantifiers. In case
a universal constraint system is present, only universal variable assignments satisfying this
system are considered. Every potential axiom line is found as a conjunct in this expansion.
The full expansion is satisfiability equivalent with the original QIP and contains no universal
quantifiers. Therefore given the completeness and soundness of the Cutting Planes proof
system, we prove ∀Exp+Cutting Planes is a sound and complete proof system for QIP. ◀

We will now give an overview on the soundness of EQuIPS. We start with an observation
about Algorithm 1 and the description of refinement in Section 3.3.

CP 2025

https://doi.org/10.1007/978-3-540-85958-1_12
https://doi.org/10.1145/774572.774637

12:22 An Expansion-Based Approach for Quantified Integer Programming

▶ Observation 7. At any point in a run of EQuIPS with outer block QXXX ∈ DXXX , for every
subgame of the abstraction there is an assignment µµµ to the first inner block variables YYY such
that the subgame is of one of two forms:
1. Ψi = A∃

(−YYY)xxx(−YYY) ≤ bbb∃
YYY =µµµ when Φli

= Q̄YYY ∈ DYYY : A∃xxx ≤ bbb∃, or
2. Ψi = Λ(YYY =µµµ)

Φli
[µµµ] when Φli

= Q̄YYY ∈ DYYYQZZZ ∈ DZZZ : Λ, where Λ itself is a QIP.

In the first case we have a QIP with only an outer block, in the second case we have a QIP
with at least one inner block, Λ is a QIP representing the rest of blocks and the constraints.

▶ Lemma 8. If EQuIPS returns ⊥ on multi-game ∀XXX ∈ DXXX : {Φ1 . . . Φn} then this multi-game
is won by the existential player.

Proof. We prove this by induction on the quantifier depth. The base case is if Φ1 . . . Φn

are quantifier free, and we solve integer linear program (2) as wins1 is invoked. Then, ⊥
is returned if and only if the universal player is not able to violate the constraint systems
of all subgames as argued in Section 3.2. Therefore ∀XXX ∈ DXXX : {Φ1 . . . Φn} is won by the
existential player.

Now suppose some Φj contains a quantifier. Then, we build an abstraction α of the
multi-game and ⊥ is only returned, if the call to EQuIPS in Line 4 on the abstraction
returns ⊥. Note that the first call to Line 4 on the empty abstraction always returns a
move τττ , as DXXX is always non-empty. Thus, a refinement of the abstraction must have led
to a returned ⊥. Hence, we have to show that a call to EQuIPS for a refined abstraction
∀XXX ∈ DXXX∀ZZZ(YYY =µµµ1)

Φl1
∈ DZZZ . . .ZZZ

(YYY =µµµk)
Φlk

∈ DZZZ : {Ψ1 . . . Ψk} returns ⊥, only if the original
formula is won by the existential player. We know that the abstraction is existentially
feasible by induction hypothesis, in other words there is no assignment to the outer block
that makes all subgames infeasible. We now argue that for any τττ ∈ DXXX , there must be one
subgame that is won by the existential player. Otherwise for each Φj , j ∈ [n] there exists
an assignment τττ i ∈ DZZZ for which Ψi[τττ][τττ i] is lost for the existential player. Then we can
construct τττ ′ = (τττ , τττ l1 , . . . , τττ lk

). This is well defined because XXX (corresponding to τττ) are
the only shared outer variables between the subgames. τττ ′ is also a winning move of the
abstraction and in particular, each subgame Ψi is won by the universal player, against our
assumption. Therefore for each τττ ∈ DXXX there is a subgame Ψi that is won by the existential
player under the assignment to the remaining outer variables. From Observation 7, subgames
Ψi can have one of the following structures:
1. Ψi = A∃

(−YYY)xxx(−YYY) ≤ bbb∃
YYY =µµµ when Φli = ∃YYY ∈ DYYY : A∃xxx ≤ bbb∃, or

2. Ψi = Λ(YYY =µµµ)
Φli

[µµµ] when Φli
= ∃YYY ∈ DYYY ∀ZZZ ∈ DZZZ : Λ, where Λ itself is a QIP.

We argue that one of these being feasible means that its associated µµµ is countermove to τττ

in the original game. If τττ allows Φli
, then Φli

is in the original games. In the first case,
Ψi[τττ] = A∃

(−XXX−YYY)xxx(−XXX−YYY) ≤ bbb∃
XXX=τττYYY =µµµ is feasible so µµµ is a countermove in the original

game that satisfies Φli [τττ]. In the second case Λ(XXX=τττ,YYY =µµµ)
Φli

[τττ ,µµµ] is feasible so µµµ must be a
countermove in the original game that satisfies Φli [τττ]. Therefore every τττ has an existential
countermove. ◀

In the existential case, we can understand soundness through the theoretical existence of
proofs. We unfortunately cannot extract proofs at this stage, as we would need to extract
cutting planes proofs from Gurobi which is not supported.

▶ Lemma 9. If EQuIPS returns ⊥ on multi-game ∃XXX ∈ DXXX : {Φ1 . . . Φn} then there is a
∀Exp+Cutting Planes refutation of ∃XXX ∈ DXXX .Φ1 ∧ · · · ∧ Φn.

M. Hartisch and L. Chew 12:23

Proof. We can prove this via induction on the quantifier depth of ∃XXX ∈ DXXX : {Φ1 . . . Φn}.
For the base case, if all Φ1 . . . Φn are quantifier free, wins1 is invoked. Given the

outer quantifier is ∃, we solve the integer program (1), which is the conjunction of all
constraint systems Φ1 . . . Φn. Since cutting planes is a complete refutational system for
Integer Programming [59] there is a cutting planes proof of this refutation.

Now consider the inductive step. Suppose some Φi has a quantifier. Then EQuIPS goes
into the CEGAR loop and only returns ⊥ if the abstraction α returns ⊥. We have to show
if the abstraction ∃XXX ∈ DXXX∃ZZZ(YYY =µµµ1)

Φl1
∈ DZZZ . . . ∃ZZZ(Y =µµµk)

Φlk
∈ DZZZ : {Ψ1 . . . Ψk} returns ⊥ then

we can construct a ∀Exp+Cutting Planes refutation of the original formula.
By assuming the induction hypothesis we have an ∀Exp+Cutting Planes refutation π

of ∃XXX ∈ DXXX∃ZZZ(Y =µµµ1)
Φl1

∈ DZZZ . . . ∃ZZZ(Y =µµµk)
Φlk

∈ DZZZ : {Ψ1 . . . Ψk}. Note that the quantified
variables in each Ψ1 . . . Ψk are different. The only variables they share are in the outer block
variables XXX.

Consider an individual axiom step C of π, which involves taking a constraint from Ψi,
and a complete assignment βββ to the universal variables of Ψi that satisfies the universal
constraint system. Note that Ψi can only be a subgame in the abstraction for one of two
reasons:
1. Ψi = A∃

(−YYY)xxx(−YYY) ≤ bbb∃
YYY =µµµ when Φli

= ∀YYY ∈ DYYY : A∃xxx ≤ bbb∃, when µµµ ∈ DYYY .
2. Ψi = Λ(YYY =µµµ)

Φli
[µµµ] when Φli

= ∀YYY ∈ DYYY ∃ZZZ ∈ DZZZ : Λ, when µµµ ∈ DYYY .

In each case, for every Ψi there is a YYY = µµµ statement that corresponds to it. We take π

and rename all the existential variables appearing in the inner blocks to create π′, we rename
w appearing in Ψi to be w

(YYY =µµµ)
Ψi

.
In the first case, we can take the single row j from A∃

(−YYY)xxx(−YYY) ≤ bbb∃
YYY =µµµ that was combined

with βββ to get C. Note that βββ must be empty, because there are no universals left. We take the
same row j of A∃xxx ≤ bbb∃ and combine it with µµµ (which satisfies the uncertainty set) in an axiom
step from our original formula. Then A∃

j xxx ≤ bbb∃
j instantiates to (A∃

(−YYY))jxxx(−YYY) ≤ (bbb∃
(YYY =µµµ))j ,

exactly the same as C and the transformation in π′ does not change this, because there are
no inner existential variables.

In case 2, the inner part of Λ(YYY =µµµ)
Φli

must have a row j that appears as constraint∑
k∈[n]: Qk=∃

a∃
j,kxk +

∑
k∈[n]: Qk=∀

a∃
j,kxk ≤ (bbb∃

(µµµ))j

that combines with βββ to get axiom∑
k∈[n]: Qk=∃

a∃
j,kx

[βββ]
k +

∑
k∈[n]: Qk=∀

a∃
j,kβββ(xk) ≤ (bbb∃

(µµµ))j .

In π′ we can write it as

∑
k∈[n]
xk∈XXX

a∃
j,kxk +

∑
k∈[n]

xk∈ZZZ
(YYY =µµµ)
Φli

a∃
j,kxk +

∑
k∈[n]: Qk=∃

xk inner

a∃
j,kxk

(YYY =µµµ)[βββ]
Φli

+
∑

k∈[n]: Qk=∀

a∃
j,kβββ(xk) ≤ (bbb∃

(µµµ))j .

But notice that all xk ∈ ZZZ
(YYY =µµµ)
Φli

match the renaming annotation in π′. Simplifying again
gets us∑

k∈[n]
xk∈XXX

a∃
j,kxk +

∑
k∈[n]: Qk=∃

x/∈XXX

a∃
j,kxk

(YYY =µµµ)[βββ]
Φli

≤ (bbb∃
(µµµ⊔βββ))j .

CP 2025

12:24 An Expansion-Based Approach for Quantified Integer Programming

We now take the same row in the inner part of Λ and combine it with µµµ ⊔ βββ to get the
axiom ∑

k∈[n]: Qk=∃

akx
[µµµ⊔βββ]
k +

∑
k∈[n]: Qk=∀

akβββ(xk) ≤ (bbb∃)j .

Note that µµµ ⊔ βββ is a disjoint union because YYY is already assigned in Ψi, and each universal
block satisfies its domain given by bounds and universal constraint system. Subtracting both
sides ends us with the axiom exactly as it was in π′, because XXX variables are not changed
under [µµµ ⊔ βββ] and the µµµ annotation is already present in the π′ proof. π′ is therefore a
refutation in the original formula. ◀

A.2 Multilevel Critical Node Problem
We consider the multilevel critical node problem [1]. Given a directed graph G = (V, E).
Two agents act on G: The attacker selects a set of nodes she wants to infect and the defender
tries to maximize the number of saved nodes. The defender can vaccinate nodes before
any infection occurs and protect a set of nodes after the attack. An infection triggers a
cascade of further infections that propagates via the graph neighborhood, only stopped by
vaccinated or protected nodes. For each action (vaccination, infection, protection) a budget
(Ω, Φ, Λ, respectively) exists limiting the number of chosen nodes. For any node v ∈ V

binary variables zv, yv, and xv are used to indicated its vaccination, infection, and protection,
respectively. Variables αv ∈ {0, 1} indicate whether node v ∈ V is saved eventually. Only the
variables yyy are universally quantified. Their domain is restricted by a budget constraint, i.e.,
Uyyy = {yyy ∈ {0, 1}V |

∑
v∈V yv ≤ Φ}. Hence, the universal constraint system only contains the

single budget constraint. A QIP with polyhedral uncertainty set can be stated as follows:

max
zzz∈{0,1}V

min
yyy∈Uyyy

max
xxx∈{0,1}V

ααα∈{0,1}V

∑
v∈V

αv (5a)

s.t. ∃zzz ∈ {0, 1}V ∀yyy ∈ Uyyy ∃xxx ∈ {0, 1}V ααα ∈ {0, 1}V : (5b)∑
v∈V

zv ≤ Ω (5c)∑
v∈V

xv ≤ Λ (5d)

αv ≤ 1 + zv − yv ∀v ∈ V (5e)
αv ≤ αu + xv + zv ∀(u, v) ∈ E (5f)

Constraint (5e) ensures that infected nodes cannot be saved, unless they were vaccinated
and Constraint (5f) describes the propagation of the infection to neighboring nodes that are
neither vaccinated nor protected. This model corresponds exactly to the trilevel program
presented in [1] with the key difference, that we are able to directly plug this model into
our solver to obtain the optimal solution, without having to dualize, reformulate or develop
domain specific algorithms. The same is true for the QIP solver Yasol.

A.3 Further Experiments
A.3.1 Mixing Methods
As outlined in Section 3.4.2, there is potential to link search-based and expansion-based
approaches. To demonstrate this, we conducted an experiment using multilevel critical node
instances. 1. Run Yasol and record the time topt at which the optimal solution z⋆ is first

M. Hartisch and L. Chew 12:25

found (its existence is verified, not its optimality). 2. Run EQuIPS, separately, with the
objective function constraint bound z⋆ + 1 (note the maximization objective function) and
record the verification time tver. This hypothetical solver – running Yasol in parallel with
EQuIPS for verification – with runtime topt + tver solves 27 more instances than Yasol alone
and has strictly lower runtime on 196 instances.

We also tested whether adding learned constraints from Yasol’s search benefits the
expansion-based solver. We modified Yasol to extract every detected conflict as a constraint
until the optimal solution was found (extracting beyond this point might prune the optimal
solution). For a single instance, we obtained 73 learned constraints and created three
variations of the verification instance: one without added constraints, one with all 73
constraints, and one with three hand-picked constraints. Table 2 reports the runtimes
and the number of IP calls in the wins1 function. For this instance, incorporating learned

Table 2 Comparison of three verification instances.

instance type original verification instance org. + 73 constraints org. + 3 constraints

runtime 36.3s 44.4s 22.2s
calls to IP solver 1034 648 550

constraints reduced the iterations (and thus IP calls) for the expansion-based solver. However,
too many constraints may increase IP solver runtime; therefore, selectively transferring the
“most beneficial” constraints to EQuIPS can significantly enhance the verification process.
Although we expected the 73-constraint instance to have fewer IP calls than the one with
three constraints, this discrepancy likely results from testing only a single instance. Averaged
over a larger set, more constraints should decrease the number of IP calls.

A.3.2 Performance of EQuIPS vs. Yasol on other optimization test sets
While the computational experiments in Sections 5.1 and 5.2 show promising results –
suggesting that our expansion-based approach can effectively compete with the search-based
solver Yasol– this cannot be stated as a general conclusion, particularly for optimization
instances. We conducted tests on 1800 multistage robust assignment instances from [30]
and 270 multistage robust scheduling instances from [34]. The former involve combinatorial
matching problems under cost uncertainty, while the latter model aircraft scheduling with
uncertain arrival times. Both datasets include instances with up to seven decision stages. In
both cases, instances can be encoded either with or without polyhedral uncertainty, labeled
with QIPPU and QIP, respectively.

Table 3 Number of solved instances and median runtimes on different test sets.

solved instances median run times (seconds)
Assignment Scheduling MCN Assignment Scheduling MCN

QIP QIPPU QIP QIPPU QIP QIPPU QIP QIPPU

Yasol 1800 1800 262 264 431 0.4 0.4 56.7 29.0 247.8
EQuIPS 1599 1760 194 247 465 10.6 2.7 287.9 51.3 83.8

Table 3 presents the number of instances solved within a 1800-second time limit as
well as the median runtime, highlighting that EQuIPS struggles with these problem types.
Several factors may explain this behavior. First, for assignment instances without a universal

CP 2025

12:26 An Expansion-Based Approach for Quantified Integer Programming

constraint system, the structure requires existentially quantified variables to adapt to any
changes in universally quantified variables. As a result, nearly the entire expansion must
be constructed before a solution can be determined, drastically increasing computational
complexity. Additionally, many of the tested instances feature multiple levels of universally
quantified variables, unlike the MCN instances, which contain only a single universal level.

This aligns with expansion-based solvers in the QBF domain, which perform well with
few quantifier alternations but struggle as the number of universal levels increase.

A.3.3 Adapted wins1 Function in Case of Empty Abstraction
Several aspects of Algorithm 1 allow for a choice between standard techniques and more
sophisticated implementations. One such aspect is selecting a winning move for the empty
abstraction, occurring at Line 4. The call to EQuIPS leads to wins1, which, for Q = ∃,
returns any assignment satisfying the domain constraints. In our implementation, we initially
returned the lower bounds of existentially quantified variables, avoiding the IP solver. While
computationally inexpensive, this can result in an assignment that violates the existential
constraints, making the first countermove less meaningful.

An obvious alternative is to use the IP relaxation, where we solve the existential constraint
system without considering quantification. The goal is to obtain stronger moves that lead to
more relevant countermoves, ultimately reducing the number of subgames to be considered.
Note, that as we observed superior runtimes when using this existential IP relaxation, all
reported results so far, are based on this implementation.

However, solving an IP is more computationally expensive than assigning lower bounds.
We investigated this trade-off using the same test sets as in Appendix A.3.2. Results in
Table 4 show that fewer instances of the assignment test set are solved within the 1800-second
time limit with the existential IP relaxation. However, for other test sets, EQuIPS performance
improves, with median runtimes decreasing overall.

Table 4 Number of solved instances and median runtimes, with EQuIPS using lower bounds (LB)
vs. solving the existential IP relaxation (exist. IP) to find a winning move for the empty abstraction.

solved instances median run times (seconds)
Assignment Scheduling MCN Assignment Scheduling MCN

QIP QIPPU QIP QIPPU QIP QIPPU QIP QIPPU

LB 1600 1770 175 223 461 12.3 3.8 590.9 127.8 121.9
exist. IP 1599 1760 194 247 465 10.6 2.7 287.9 51.3 83.8

	1 Introduction
	1.1 Motivation
	1.2 Related Work

	2 Preliminaries
	2.1 Quantified Integer Programming
	2.2 QIP Game Semantics
	2.3 Additional Constraints

	3 Expansion-Based Quantified Integer Programming Solver
	3.1 The Framework
	3.2 wins1 on Integer Linear Programs
	3.3 Refinement by Expansion
	3.4 Optimization
	3.4.1 Optimization Method 1: Binary Search
	3.4.2 Optimization Method 2: Mixing Methods

	4 A New Challenging Problem Class: QRandomParity
	5 Experimental Evaluation
	5.1 QRandomParity
	5.2 Multilevel Critical Node Problem
	5.3 Further Experiments

	6 Conclusion
	A Appendix
	A.1 Underlying Proof System and Correctness
	A.2 Multilevel Critical Node Problem
	A.3 Further Experiments
	A.3.1 Mixing Methods
	A.3.2 Performance of EQuIPS vs. Yasol on other optimization test sets
	A.3.3 Adapted wins1 Function in Case of Empty Abstraction

