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Abstract
In this paper we introduce a constraint programming lazy clause and literal generation solver
embarking ideas from SAT Modulo theories. A key aspect of the solver are Boolean variables with an
associated semantic in difference logic, i.e., systems of binary numeric difference constraints or edges,
making it particularly adapted to scheduling and other temporal problems. We apply this solver to
disjunctive scheduling problems, where edges are used as branching variables, can be inferred via
the edge finding rule as well as by transitivity reasoning, and can in turn strengthen propagation via
temporal graph reasoning. Our experiments on job-shop scheduling show that a deep integration of
these techniques makes our solver competitive with state-of-the-art approaches on these problems.
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1 Introduction

Constraint solvers are constantly evolving. In particular, even tough some restricted form of
nogood learning had been used in CP for a long time [19, 43], conflict-driven clause learning
(CDCL) has had a significant impact on the design of constraint solvers. Bacchus and
Katsirelos proposed to compute explanations of constraints in order to apply the principles
of CDCL on constraint programs [25, 26]. Most hybrid CP/SAT solvers now implement the
approach known as Lazy Clause Generation (LCG) [17, 36]: domains (and domain changes)
are mapped to logical literals (including membership and bound literals), and constraints
are propagated using dedicated algorithms as in CP although they generate explanation
clauses in order to apply CDCL’s conflict analysis method. However, even though there are
successful and established LCG solvers such as Chuffed [12], their implementation choices are
less grounded than in pure CP solvers such as ACE [31], Choco [40, 41]1 or Gecode [44], and
questions about their design remain open.

We introduce Tempo, yet another CP/SAT hybrid solver whose implementation of numeric
variables is inspired from difference logic. This design choice makes it particularly suited for
temporal and in particular scheduling problems. For instance, similar approaches have been
shown to be very efficient on flexible job-shop [45] or on problems with reservoir resources[46],
although such approaches are not limited to this domain. We discuss state-of-the-art solvers
for this type of problems in Section 3 where we argue that in many cases the gains in
performance came together with a significant complexity growth, such as the recourse to
portfolios of algorithms. The overall architecture of Tempo, described in Section 4, is on

1 Note that recent versions of Choco also implements clause learning.
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13:2 Disjunctive Scheduling in Tempo

the contrary relatively simple. One of its key aspects is that bound literals are purely lazy,
that is, a literal [[x ≤ k]] is created in a branch of the search tree only when necessary and it
“exists” in the data structure only in the subtree rooted at this branch. The solver Aries [6, 7]
is built on the same or extremely similar ideas. However, Tempo implements constraint
propagation, including global constraints via a constraint queue with configurable priority
while Aries is restricted to a few simple constraints. The key differences with respect to Aries
are described in Sections 5 and 6.

We report the results in Section 8 of extensive experiments on disjunctive scheduling
demonstrating that it is competitive on these benchmarks with toolkits such as CP Optim-
izer [24], OR-Tools [37] or OptalCP [39], although it is an arguably much simpler approach.

2 Background

In this section we briefly introduce the necessary background on Boolean Satisfiability (SAT),
hybrid CP/SAT solvers, Difference Logic and scheduling.

2.1 Algorithms for Boolean Satisfiability
The Satisfiability problem is to decide if there exists an assignment of a set A of atoms
such that a propositional logic formula φ evaluates to true, that is, whether there exists
a solution to: ∃A.φ. We shall use the symbol a ∈ A to denote both the Boolean variable
and the positive literal standing for this variable being true, while ¬a is the negative literal,
standing for this variable being false. It is often assumed that the formula φ is in Conjunctive
Normal Form (CNF). A CNF is a conjunction of clauses, i.e., a disjunction of literals.

Conflict-driven Clause Learning (CDCL) solvers [34] make branching decisions as other
tree search algorithms, by adding an arbitrary new true literal to the formula. However,
when encountering a failure, instead of undoing the most recent decision, a conflict clause, or
nogood, is generated and added to the clause set. Let F be the list, in chronological order, of
literals currently true in some branch of the search tree, let rk(l) be the rank of literal l in F
and let the explanation (reason(l) =⇒ l) for l be the clause that unit-propagated l (and we
call reason(l) the reason for l). Conflict analysis usually computes a conflict clause with a
unique implication point (UIP) whose rank is higher than or equal to that of the last decision.
Let a conflict set c be a conjunction of literals that entails unsatisfiability of the formula φ,
i.e., such that φ ∧ c |= ⊥. The conflict set is initialized as the negation of the clause that
triggered the failure. Then the literal l ∈ c with maximum rank rk(l) is removed from c and
replaced by its reason reason(l) until exactly one literal in c has a rank superior or equal
to that of the most recent decision (this literal is the first UIP, i.e., 1-UIP). This process is
called conflict-driven clause resolution.2 Then, every branching decision whose rank is higher
than the highest rank of any literal in c but the 1-UIP is undone, the conflict clause ¬c is
added to the formula, and unit-propagation infers the negation of the 1-UIP literal.

2.2 Hybrid Solvers
Hybrid CP-SAT solvers work on the same principle, with two key differences. Firstly, there
is a mapping between Boolean literals and restriction events on the domains of numeric
(often integer) variables. For instance, a literal ai,v may stand for the assignment event

2 We define it using conflict sets because it is more intuitive and convenient, however, those are indeed
resolution steps when adopting the clausal view.
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xi = v and ¬ai,v to the removal event xi ̸= v. Secondly, arbitrary constraint propagation
algorithms can be used as well as clauses to infer new true literals. In order to use conflict
analysis as described above, general constraints must be able to produce explanation clauses.
Given a literal l inferred by some constraint propagation algorithm in a search state defined
by the set of true literals F , an explanation clause is a clause c entailed by the model and
such that unit-propagation on F ∧ c produces the true literal l. The name Lazy Clause
Generation comes from the fact that explanation clauses are generated during search rather
than proactively as an encoding. However, this should not be confused with another type of
laziness: explanation clauses can be generated during constraint propagation, or in a true
“lazy” way, only when we want to replace a literal in the conflict set with its reason. In
Tempo the two options are used, depending on the constraint.

2.3 Difference Logic
Satisfiability Modulo Theories (SMT) solvers decide the satisfiability of formula of the form
∃X .φ with φ a propositional logic formula whose atoms have a semantic in an underlying
theory. Difference Logic is a fragment of linear arithmetics where atoms stand for binary
difference constraints of the form [[x − y ≤ k]] with x, y ∈ X and k a constant.

The duality between shortest path and systems of difference constraints is well know [4].
A conjunction of difference logic constraints E can be mapped to a temporal network, i.e., a
directed graph GE with one vertex per numeric variable, and a labeled edge y

k−→ x for every
difference constraint [[x − y ≤ k]] ∈ E . The system E is satisfiable if and only if GE does not
contain any negative cycle, and the difference constraint [[x − y ≤ k]] is entailed by E if and
only if the length dE(y, x) of the shortest path from y to x in GE is less than or equal to k.
For this reason, we shall refer to difference constraints as edge in this paper.

Given the set of edges A that appear in a formula, and given a subset E ⊆ A of true
edges (edge literals assigned to “true”), a difference logic reasoner is expected to decide if
E is consistent. If so, it should produce the set E ′ ⊆ (A \ E) of edges entailed by E , along
with their explanations. If not, it should produce an explanation for the inconsistency. It
is possible to compute all the entailed edges in polynomial time, by computing all-pair
shortest paths in the graph GE with e.g., the Floyd-Warshall algorithm. State-of-the-art
implementations do not compute the full transitive closure. Instead, when a new true edge is
added to the system, only the edges that appear in the formula and have become entailed by
the system are computed. This computation can be done incrementally, by maintaining a
potential function and using Dijkstra’s algorithm, after relabeling the edges in the same way
as in Johnson’s algorithm [13, 16].

2.4 Scheduling
The problem of scheduling tasks under resource constraints has been an extremely successful
domain for constraint programming. We are given a set of tasks I, where i ∈ I is defined by
an interval of time of possibly variable length pi ; where si denotes the start time of task i;
and where ei is its end time. Tasks can be subject to precedence constraints, set between
their start or end times. They can also be subject to resource constraints. In this paper we
consider only disjunctive constraints, stating that two tasks using the same resource may not
overlap. Difference logic captures well these problems since precedence constraints are edges
and the NoOverlap constraint (also referred to as disjunctive or unary resource) is defined
a 2-CNF whose atoms are edges:

NoOverlap(I) ⇐⇒ ∀i, j ∈ I, [[ei − sj ≤ 0]] ∨ [[ej − si ≤ 0]] (1)

CP 2025



13:4 Disjunctive Scheduling in Tempo

Moreover, this formulation should make it clear that if all difference logic atoms are assigned a
truth value, and if the resulting difference system is consistent, then the problem is satisfiable.
Indeed, all constraints (precedences and resources) are defined exclusively using difference
logic atoms. Therefore, if we maintain the consistency of the difference logic system, there is
no need to branch on start times, end times or durations in the search tree. In this paper we
only consider problems where the objective function to minimize is the maximum of all the
end times (i.e., the makespan), although several other objectives are of interest.

3 Related Work

IBM’s CP Optimizer [29] has been considered as the state of the art on a range of scheduling
problems for a long time. It is a commercial toolkit, its code is not open and if there is a
significant amount of literature by various contributors, it is difficult to know with a high
degree of certainty which techniques are used. However, the main components are described
in [29]. With respect to constraint propagation, the default parameters are not known, but
it is safe to assume that most if not all propagation rules for the NoOverlap constraint are
implemented in CP Optimizer, and may be switched on or off during search or at preprocessing.
Moreover, CP Optimizer uses the idea of gathering edges into a temporal network that can
be used to make inference. Using Bellman-Ford on this graph to propagate the bounds
of temporal variable is equivalent to using classic constraint propagation on precedences
except that negative cycle can be found more quickly on very large domains. Although this
is not confirmed in [29], we believe that it very likely uses this technique in conjunction
with resource constraints to adjust the bounds of temporal variable in a similar way as we
describe in Section 4.2, since these ideas were described in [27]. A significant effort has been
given to the default search strategy. Large neighborhood search [47] is used to quickly find
high quality solutions. Neighborhood selection (among a portfolios) as well as completion
strategies selection relies on machine learning and some adaptive criterion [28]. When trapped
in local minima the default strategy switches to Failure-Directed Search (FDS) [54]. In this
strategy, branching choices are binary splits on the tasks’ start times. Moreover, it implements
a rather complex system of rating for the choicepoints, with similarities to impact-based
search [42]. It can also be compared to the notion of weight used in the weighted-degree
heuristic [8] or of the activity used in the VSIDS heuristic [35], since it tries to focus on
(and select choicepoints leading to) failures. CP Optimizer does not use clause-learning,
however FDS includes storing and propagating nogoods from restarts [32]. Finally, it uses
a limited form of strong branching [2] by propagating both branches of a subset of binary
choicepoints before actually making a branching choice. This technique is used only on a
subset of promising choicepoints and applied only near the root of the search tree. Google’s
OR-Tools [38] implements many of the features in CP Optimizer, including the integration of
a simplex algorithm, dedicated scheduling algorithms from operation research and CP and
large neighborhood search as well as other local search techniques [14]. However, unlike CP
Optimizer, it is an hybrid CP/SAT solver implementing lazy clause generation techniques
taking inspiration from Chuffed. OptalCP is a commercially released constraint solver, which
shares many traits with CP Optimizer, and a focus on implementation and design choices
geared toward a more efficient use of CPU and caches [53]. It was shown to be even more
efficient than CP Optimizer, in particular on disjunctive scheduling problems.

Those three toolkits are designed to be usable by non-experts. Therefore, they typically
implement highly complex search and parameter tuning strategies as well as inprocessing
techniques in order to be robust, instead of leaving these choices to the user. Finally, they are
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designed to get the most out of multiprocessing, through the use of portfolios of algorithms
and communication between threads. This approach has proven extremely effective and lead
to several successful applications. On the other hand, simpler approaches have been shown to
be very effective on disjunctive scheduling problems: although using a pure CP solver (Mistral),
an early approach using the observation that we only need to branch on edge variables was
used with success on disjunctive scheduling problems [20]. It was in particular the first to solve
every Open-shop instance in Brucker’s data set [9] to optimality [21]. Since this approach did
not use any dedicated resource constraint propagation algorithm, its efficiency had two main
explanations: it explores a search tree whose choicepoints are edges, as explained above; and
the weighted-degree heuristic was shown to be very effective in finding the important variables
to branch on. An extension of this method with a limited form of clause learning was later
shown to be slightly more effective on job-shop benchmarks [48]. More recently, a very
efficient solver, called Aries, based on the same principles, but implementing clause-learning
as well as all the standard CDCL techniques was proposed. [7] This approach used many
of the same ideas on difference logic and edges developed in this paper. With respect to
the constraint model and inference mechanisms, as far as we are concerned with disjunctive
scheduling, Aries can be seen as Mistral plus clause-learning and the approach we propose,
Tempo, can be seen as Aries plus global constraints. The variable heuristics are different
though working on the same principles: Aries uses learning-rate [33] as default heuristic while
the version of Tempo used in our experiments variable state independent decaying sum [35].

4 Principles of the Solver

The key difference between a pure CP and a hybrid CP/SAT solver is that in the latter, the
information about the current domains, and its changes thereof, must be encoded in atomic
referenceable literals. We detail the different types of literals in Tempo in Sections 4.1 and
4.2, and then we show how they affect a core technique in SAT solver: unit-propagation.

4.1 Variables and Literals
There are two primitive types of variables in the solver: Boolean and numeric variables. The
domain of a numeric variable is defined by its lower and upper bounds. Bound literals are
constraints of the form [[±x ≤ k]]. We use signed variables so that bound literals are all in
the canonical form of difference logic constraints ([[x ≥ k]] is written [[−x ≤ −k]]), and so
that a smaller right-hand side always corresponds to a tighter literal. We say that [[±x ≤ k]]
is active if it was created (e.g. by constraint propagation) at a decision level lower than
or equal to the current one in the same branch. In other words, a literal [[±x ≤ k]] can be
true without being active, if there is an active literal [[±x ≤ k′]] with k′ < k. For every
signed variable, the list of active literals maintained in decreasing order of their right-hand
sides. For instance, if the lower bound of a numeric variable x changes (to take the value k)
because of constraint c, the literal [[−x ≤ −k]] is inserted at the end of the list for −x and
its explanation is c. Some solvers [26, 17] support lazy bound literal generation. A possible
implementation is essentially equivalent to adding new Boolean variables during search with
a bound semantic attached to it. This means that the corresponding Boolean variable must
live as long as a clause involves such a literal. More generally, adding such literals during
search is easy, however, making sure that the number of literals does not grow too large is
difficult. Therefore, in Tempo, much like in Aries, the literal [[±x ≤ k]] is not linked to any
Boolean variable. It is created when the domain of variable x changes accordingly, and no
longer exists when backtracking over that decision level in the search tree. However, this

CP 2025
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incurs a cost when accessing the informations attached to such a literal. For instance if
one wants to access the explanation for [[±x ≤ k]], one must search for the highest value of
k′ ≤ k such that the literal [[±x ≤ k′]] is currently active. Since [[±x ≤ k′]] entails [[±x ≤ k]],
its explanation is also valid3. Similarly, if the literal [[±x ≤ k]] is inferred e.g., by constraint
propagation, unit-propagation algorithm would access the list of clauses that watch it in
constant time. This is impossible if we do not allocate any memory for literals that are not
active. Our implementation of the watched literals data structure is discussed in Section 4.3.

4.2 Temporal Network
As in SAT Modulo Theories solvers, Boolean variables may be given a semantic in difference
logic, i.e., each literal of a Boolean variable a can be associated to an edge: a =⇒ [[x − y ≤ k]].
The negative literal ¬a can stand for the negation of the edge ([[y − x < −k]]). However, we
allow for the positive and negative literals of the same variable to be associated to any edges,
or no edge at all. This is useful to represent a binary disjuncts with a single variable, e.g.:

[[ei − sj ≤ 0]] XOR [[ej − si ≤ 0]] (2)

The binary disjunct in Eq. 2, stating that tasks i and j do not overlap can be represented
with a single variable ai,j with ai,j =⇒ [[ei − sj ≤ 0]] and ¬ai,j =⇒ [[ej − si ≤ 0]]. This is
also useful for optional tasks, where we might want that a Boolean variable implies an edge,
but its negation leaves the numeric variable free.

The difference logic system in implemented in Tempo uses a reversible directed graph
GE . When the literal [[x − y ≤ k]] is set to true, the edge is directly added to the difference
logic system, modeled by the arc y

k−→ x in GE . Our implementation differs from the method
described by Cotton and Maler [13] in the following ways: Firstly, as explained by Feydy
et al., in typical constraint problems, many more bounds literals are propagated than edge
literals, and hence it is important to have a dedicated procedure for each type [16]. Moreover,
since bounds literals are generated lazily, they do not necessarily appear in the formula
prior to search. We use the common approach to have a distinguished vertex standing for
the constant 0 in the temporal network. This vertex is connected to every other numeric
variable, however implicitly. That is, if [[x ≤ k]] is the tightest true upper bound literal for
variable x, then everything works as if the arc 0 k−→ x was in the graph, i.e., the difference
constraint [[x − 0 ≤ k]], and similarly, [[−x ≤ −k]] indicates the arc x

−k−−→ 0. Those arcs
are not actually added to avoid having several arcs between the same vertices. Therefore,
given the set of edges A that appear in the constraint program and a subset E ⊆ A of true
edges, for each new edge [[x − y ≤ k]], the reasoner achieves three tasks: decide consistency;
compute the set B of bounds literals entailed by E ∪ {[[x − y ≤ k]]}; and compute a set
E ′ ⊆ (A \ (E ∪ {[[x − y ≤ k]]})) of entailed (non-bound) edges.

As in [16], given a new arc y
k−→ x, the first two tasks are done via two calls to a shortest

path algorithm. Let d(0, x) be the length of the shortest path from the origin (0) to x, and
d(x, 0) be the length of the shortest path to the origin from x in GE . The bound literals
[[−x ≤ −d(x, 0)]] and [[x ≤ d(0, x)]] are entailed by E . In other words, all the upper (resp.
lower) bound updates can be done by computing all the shortest paths from (resp. to) 0 in
GE . Since a shortest path can have changed only if it goes through the arc y

k−→ x this can be
done by one call from x and another from y in the converse graph. Notice that the shortest

3 Note that [[±x ≤ k]] cannot be in the explanation of [[±x ≤ k′]] because it would entail that a literal
[[±x ≤ k′′]] with k′ < k′′ ≤ k is active but that would contradict k′ is the highest such value.
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path algorithm can be stopped early when reaching a vertex whose shortest path from (resp.
to) 0 has not changed. Our approach has a worse time complexity than those described
in [13, 16] because we use a version of Dijkstra with a simple FIFO queue but where the
same vertex can enter the queue more than once. The worst-case time complexity of this
algorithm is the same as Bellman-Ford. However, as opposed to Dijkstra’s algorithm, it can
work directly on graphs with negative arcs and is efficient in practice when the new edge
does not entail many bound updates. If the shortest path from the origin to x is updated to
a strictly lower value (say k) and y is its predecessor on the path, via the arc y

k′

−→ x, then
the literal [[x ≤ k]] is inferred, and its explanation is:

[[x − y ≤ k′]] ∧ [[y ≤ k − k′]] =⇒ [[x ≤ k]] (3)

Moreover, there is a negative cycle if and only if the shortest path from 0 to y is updated
in the first call, and the explanation is the set of edges in the negative cycle.

Finally, the main difference with respect to [13, 16] concerns the third task: we do not
infer all the edges entailed by the current set of true edges. Indeed this requires to either
store all the shortest paths and hence quadratic space, or to run the shortest paths algorithms
as explained above, but without the early stop condition. Even though the worst-case time
complexity is the same, it makes a significant difference on dense precedence networks. In
our experiments this turned out to be too costly, and instead we compute only a subset
of entailed edges. The rule to infer that the edge [[x − y ≤ k]] is false corresponds to the
standard propagation rule for binary disjunctions in existing scheduling models. Within the
difference logic system implemented in Tempo, the rule is as follows:

d(x, 0) + d(0, y) < −k =⇒ ¬[[x − y ≤ k]] (4)

Indeed the following difference logic sentence is unsatisfiable

d(x, 0) + d(0, y) < −k ∧ [[0− x ≤ d(x, 0)]] ∧ [[y − 0 ≤ d(0, y)]] ∧ [[x − y ≤ k]] (5)

since it can be reduced to 0 < 0.
For every edge [[x − y ≤ k]] in the difference logic system, there is a propagator that

watches the lower bound literals of the numeric variable x and the upper bound literals of the
y, and triggers exactly as shown in Eq. 4 to produce the literal ¬[[x − y ≤ k]] = [[y − x < −k]].
The explanation can be:

[[0− x ≤ d(x, 0)]] ∧ [[y − 0 ≤ d(0, y)]] =⇒ ¬[[x − y ≤ k]] (6)

We use a slightly improved explanation. Assume that the most recent bound literal is
[[0− x ≤ d(x, 0)]]. Then the explanation for ¬l ⇐⇒ ¬[[x − y ≤ k]] is:

[[0− x ≤ −k − 1− d(0, y)]] ∧ [[y − 0 ≤ d(0, y)]] =⇒ ¬l (7)

Since we only need d(x, 0) + d(0, y) < −k and this explanation is therefore more general.

4.3 Unit-Propagation of Bound Literals
Since bound literals are generated lazily, we cannot have constant-time access to all data
structures storing information on literals. Bound literals are simply stored in order, with
one list for upper bounds and another list for lower bounds. Therefore, the current lower
and upper bound of a given numeric variable can be accessed in constant time. However,
accessing the explanation for a given literal [[x ≤ k]] requires to traverse the list of upper
bounds literals for the variable x. This could be done by binary search, however, since

CP 2025
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conflict analysis usually does not explore literals beyond the current decision level, we chose
to use a linear search starting from the most recent bound instead. Since conflict analysis is
not as time consuming as constraint propagation, this is not a very important issue.

On the other hand, unit-propagation represents a significant proportion of the total
runtime, and the watched-literal data-structure [35] must be adapted. In the standard
method, we have a list of watcher clauses for every literal, containing every clause that
watches it (every clause watches two of its literals). We use the standard implementation
when the watched literal is Boolean. Instead, for bound literals, we have an array indexed
by signed numeric variables, i.e., Wx is the watch-list for the upper bound of x and W−x is
the watch-list for its lower bound (see example in Figure 1). This array maps each signed
variable to a listW±x containing pairs (k, W[[±x≤k]]) where k is a numeric value and W[[±x≤k]]
is the list of clauses currently watching the literal [[±x ≤ k]]. Those pairs are ordered by
increasing value of k. When a literal [[x ≤ k′]] (resp. [[−x ≤ −k′]]) becomes true, we scan the
list W−x (resp. Wx). When encountering a pair (k, W[[±x≤k]]) with k + k′ ≥ 0 we know that
the clauses in W[[±x≤k]] and in all the list after W[[±x≤k]] do not need to be unit propagated
since they watch a literal weaker than [[±x ≤ k′]], and hence no more propagation can occur.

W[[x≤2]] : [[x ≤ 2]] ∨ [[−y1 ≤ −3]] ∨ [[y3 ≤ 6]]; [[x ≤ 2]] ∨ [[y3 ≤ 8]] ∨ [[−y2 ≤ −4]]
W[[x≤5]] : [[x ≤ 5]] ∨ [[−y3 ≤ −7]] ∨ [[−y1 ≤ −3]]; [[x ≤ 5]] ∨ [[−y2 ≤ −5]] ∨ [[y3 ≤ 7]]
W[[x≤10]] : [[x ≤ 10]] ∨ [[y1 ≤ 5]] ∨ [[−y2 ≤ −2]]

Figure 1 Watch structure Wx for a set of clauses watching an upper bound literal on x. If
[[−x ≤ −1]] becomes true, we can stop at the first “sentinel” check since 2 − 1 ≥ 0. If [[−x ≤ −8]]
becomes true, the clauses in W[[x≤2]] and W[[x≤5]] will be unit propagated, but not those in W[[x≤10]].

However, the list W±x must be maintained sorted. Therefore, the additional cost of this
data structure comes when moving a clause from a watch list to another watch list. That is,
suppose that the literal [[±x ≤ k]] watched by clause c is falsified. If the clause c contains an
unwatched, unassigned literal (say [[y ≤ k′]]) then c must be removed from W[[±x≤k]], which
can be done in constant time, and added to the list W[[y≤k′]]. This can also be done in
constant time, however, finding the list W[[y≤k′]] within Wy takes a time linear in the size of
Wy . In other words, the insertion cost will increase linearly with the number of different
bound literals currently watched for the same numeric variable.

5 Edge-Finding: propagation and explanation

The standard Edge-Finding [10] rule for the NoOverlap constraint (see Eq. 1) is imple-
mented in Tempo. We write esti for the earliest start time of a task i, that is, the lower
bound of the start time variable si at a given point in search, and lcti for its latest completion
time, i.e., the upper bound of ei . Moreover we extend this notation to set of tasks, with
estΩ = mini∈Ω esti , lctΩ = maxi∈Ω lcti and pΩ =

∑
i∈Ω pi

The overload rule is a sufficient condition for unsatisfiability of NoOverlap(I):

∃Ω ⊆ I, pΩ > lctΩ − estΩ |= ⊥ (8)

The Edge-Finding rule uses Eq. 8 to infer precedence relations, i.e., edges:

∃Ω ⊆ I, ∃i ∈ Ω, pΩ > lctΩ\{i} − estΩ |= ∀j ̸= i ∈ Ω, [[ej − si ≤ 0]] (9)

It “finds” the set of edges on the right-hand side of the consequence 9, which are entailed
by the fact that if task i is not the last one to be processed in the set Ω, then the latest
completion time would be too early to process all the tasks in Ω. Since in the proposed
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framework we have variables for edges, we can directly set the edge to true. In standard
implementations, however, this inference cannot be directly stored and instead the bounds of
the numeric variables are adjusted accordingly via the two following rules:

∀j ̸= i ∈ Ω ej ≤ min(lctj , lcti − pj) (10)
si ≥ estΩ +

∑
j ̸=i∈Ω pj (11)

Notice that Eq. 10 is redundant when edges are assigned, although Eq. 11 is not, because it
uses the fact that tasks in Ω \ {i} must all be completed before i and they cannot overlap.
This adjustment, however, is weaker than the propagation described in Section 6, and hence
our implementation of Edge-Finding only assigns the corresponding edge literals.

Let Ω ⊆ I, i ∈ Ω such that Eq. 9 is triggered. For each j ̸= i ∈ Ω, the edge [[ej − si ≤ 0]]
can be explained by the following clause:∧

k∈Ω
[[−sk ≤ −estΩ]] ∧

∧
k ̸=i∈Ω

[[ek ≤ lctΩ\{i}]] =⇒ [[ej − si ≤ 0]] (12)

However, we use Vilím’s algorithm [51] for Edge-Finding, which does not explicitly keep
track of a minimal set Ω. For the sake of simplicity, we show here how to explain a failure of
the overload rule (Eq. 8) as it is essentially the same construction in the general explanation.

One basic observation is that there are only n(n− 1)/2 non-dominated sets Ω to consider
in Equations 8 and 9 for a resource involving n tasks: given some values for estΩ and lctΩ
we only need to consider the maximal set of tasks wholly within those bounds, and there are
at most n(n − 1)/2 possible distinct values for estΩ and lctΩ. Vilím’s algorithm goes one
step further and achieves all these tests in O(n log n) time thanks to the Theta-Tree data
structure. This algorithm explores tasks in non-decreasing latest completion times. Assume
that tasks 1, . . . , n are numbered accordingly (i.e., so that i < j implies lcti ≤ lctj). Given
task i it computes the “elastic” approximation ect1,...,i of the earliest completion time of sets
of tasks {1, . . . , i}. An replace Eq. 8 with:

ect1,...,i > lct1,...,i =⇒ ⊥ (13)

Within the Theta-tree structure, the following recursion is used to compute the elastic earliest
completion time of a set of tasks Θl ∪Θr, from two disjoint sets such tasks in Θl have lower
earliest start times than tasks in Θr (i.e., such that ∀i ∈ Θl, j ∈ Θr, esti ≤ estj):

ectΘl∪Θr
= max(ectΘr

, ectΘl
+ pΘr

) (14)

There is one such set of tasks per node in the Theta-tree, with each leaf standing for a
singleton set containing one task in I, and internal nodes are computed using Eq. 14. In
order to extract sound and minimal explanations, we keep track of an additional information
in each node of the Theta-tree: the relevant earliest start time, that we write est∗. For a leaf
{i} we have est∗

{i} = esti . Then we use the following recursion:

est∗
Θl∪Θr

=
{

est∗
Θr

if ectΘr
≥ ectΘl

+ pΘr

est∗
Θl

otherwise
(15)

Then, from a set of tasks Ω we can compute a potentially smaller explanation set: explΩ =
{j ∈ Ω | estj ≥ est∗

Ω}. The intuition is that when the earliest computation time of Θl ∪Θr

is computed in Eq. 14, if ectΘr
≥ ectΘl

+ pΘr
then the tasks in Θl are irrelevant and hence

can be removed from the explanation. Eq. 15 keeps track of this information. The following
theorem essentially says that the set explΩ is a solution of Eq. 8, i.e, sufficient to entail a
failure and explainable with Eq. 12.
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▶ Theorem 1. For any node of the theta-tree corresponding to the set of tasks Ω, the following
equality is true: est∗

Ω + pexplΩ = ectΩ

Sketch of proof. The full proof is given in appendix. We use an induction on the size of Ω.
There are two cases corresponding to the two sides of the recursion (Eq. 14). The child nodes
Θl and Θr are strictly smaller than Θl ∪Θr and hence they satisfy the induction hypothesis.
Moreover the composition is straightforward when ectΘl∪Θr

= ectΘr
and only slightly more

involved in the second case. ◀

6 Edge Reasoning

All the edges, from the definition of the problem, from branching decisions, from the temporal
network (Bellman-Ford or Eq. 4), and from Edge-Finding are stored in the temporal
network. We discuss here the possibility of adding yet more edges from transitivity reasoning,
and we show how we use all those edges to strengthen propagation on bound literals.

6.1 Transitivity
We do not use the strongest possible consistency in the difference logic reasoner since
computing the full transitive closure can be very costly. However, within the scope of a
NoOverlap constraint on I, we can compute the transitive closure on the |I|(|I| − 1)/2
edge variables. The transitivity propagation rule is straightforward, and self-explained:

[[ei − sj ≤ 0]] ∧ [[ej − sk ≤ 0]] =⇒ [[ei − sk ≤ 0]] (16)

We use a reversible graph data structure for efficient access to the list of current successors
and predecessors of a task. When an edge [[ei − sj ≤ 0]] becomes true we add the edge
[[ei − sk ≤ 0]] for each successor k of j, and [[ek − sj ≤ 0]] for each predecessor k of i.

6.2 Bounds adjustment
The graph of precedences between tasks sharing the same resource can be leveraged to infer
further propagation. This has been described in the more general context of cumulative
resources [27], however, we focus here on the simple case of a disjunctive resources and use
an algorithm described in Vilím’s Ph.D. thesis [52]. Suppose that we have a task j and a
set of tasks Ω all requiring the same resource, and such that for each i ∈ Ω, [[ej − si ≤ 0]] is
true. Then, although neither the precedences nor the NoOverlap relation can conclude,
the tasks in Ω cannot overlap because of the disjunctive resource, and hence we have:

ej ≤ lctΩ − pΩ (17)

There is as many non-dominated sets Ω to consider than successors of j. Indeed, for any
Ω let i ∈ Ω be the task with highest lcti . The set Ω′ containing every successor of j whose
latest completion time is lower than or equal than lcti is such that pΩ

′ ≥ pΩ and lctΩ′ = lctΩ.
Alg. 1 is not identical, but essentially equivalent to Vilím’s. It first sorts the tasks by

increasing latest completion time. Now, consider a literal created for task j at Line 1. Task
i is a successor of j and each successor whose latest completion time is less than lcti has
been explored earlier (because of the ordering). Therefore, ∆[j] contains the sum of their
durations. Alg. 1 runs in time linear in the number of true edges. It is sound because it
applies the rule in Eq. 17, which is sound, and it is complete because we established that it
goes through all the potentially non-dominated application of the rule.
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Algorithm 1 Disjunctive Temporal Graph Reasoning.

Algorithm: PrecedenceGraphFiltering (A, I, G)
sort I by increasing latest completion time
foreach i ∈ I do

foreach predecessor j of i in G do
∆[j]← ∆[j] + pi

1 add literal [[ej ≤ lcti −∆[j]]]

7 Clause Minimization

Clause minimization is an important part of CDCL. It consists in detecting redundant literals
in the conflict clause (see Section 2.1) and removing them to obtain a stronger clause.

Given a conflict set c for the formula φ, the literal l ∈ c is said redundant if φ∧ (c\ l) |= ⊥.
A sufficient condition is that l is not a decision and its reason reason(l) is a subset of the
conflict set c, or that every literal in the difference reason(l) \ c is itself redundant. This
recursion defines the implication graph, which, in the standard clause minimization algorithm,
is explored up until encountering a decision or when a given depth is reached. In both of
these cases, the literal is considered relevant (non-redundant). Otherwise, the exploration
ended because all the ancestors of l belong to c and l is redundant.

However, this procedure is not as simple in the context of lazy bound literal generation.
Indeed, the definition of membership of a bound literal [[±xi ≤ k]] to a clause c may have more
than one definition. A trivial one is that the clause c contains the literal [[±xi ≤ k]]. However,
another possible definition is that the clause c contains a literal [[±xi ≤ k′]] such that k′ ≤ k.
In this case the literal [[±xi ≤ k]] is a direct consequence of the clause, and hence this weaker
definition of membership yields shorter clauses after minimization. However, one needs to be
careful. Assume that Bellman-Ford infers the bound literal [[xi ≤ k]]. Then it is explained by
a 3-clause of the form [[xi − xj ≤ −pi ]] ∧ [[xj ≤ k + pi ]] =⇒ [[xi ≤ k]] (see Eq. 3). Moreover,
suppose that the edge [[xi − xj ≤ −pi ]] was inferred by Eq. 4. Then it has as explanation
another 3-clause of the form [[xi ≤ k + ϵ]] ∧ [[−xj ≤ −k − pi − ϵ]] =⇒ [[xi − xj ≤ −pi ]]
with ϵ > 0 since the literal [[xi ≤ k + ϵ]] is “older” than [[xi ≤ k]] (i.e., rk([[xi ≤ k + ϵ]]) <

rk([[xi ≤ k]])). The implication graph for this example is shown in Fig. 2, where each vertex
is a literal, and the set of direct predecessors (solid edges) of a literal corresponds to its
explanation. The dashed edge is the “implicit” implication via the semantic of the bounds.
Notice that it introduces a cycle in the implication graph.

[[xi ≤ k]][[xi − xj ≤ −pi ]]

[[xj ≤ k + pi ]]

[[xi ≤ k + ϵ]]

[[−xj ≤ −k − pi − ϵ]]

Figure 2 Illustration of the part the implication graph rooted at the literal [[xi ≤ k]].

Suppose that the conflict set (negation of the first UIP clause) contains the literals
[[xi ≤ k]], [[xj ≤ k′]] and [[−xj ≤ −k′′]], with k′ < k + pi and k′′ < k − pi − ϵ. If we query the
procedure sketched above for the redundancy of the literal [[xi ≤ k]], it would explore the
ancestors of [[xi ≤ k]] and finds they are all implied by the conflict set. As a result, it would
wrongfully classify the literal [[xi ≤ k]] as redundant and remove it from the conflict set.
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Therefore, one cannot use the implication [[±xi ≤ k]] =⇒ [[±xi ≤ k + ϵ]] when checking
the redundancy of literal [[±xi ≤ k]]. However, we can apply the following rule:

▶ Proposition 2. Let [[±xi ≤ k]] ∧ c be a conflict set and let r∗([[±xi ≤ k]]) be an arbitrary
conflict set obtained by conflict-driven clause resolution from [[±xi ≤ k]].

If r∗([[±xi ≤ k]]) \ c = [[±xi ≤ k + ϵ]] then, φ ∧ c ∧ [[±xi ≤ k + ϵ]] |= [[±xi ≤ k]]

Proof. The proof is direct from the fact that φ∧ r∗([[±xi ≤ k]]) |= ⊥ (because conflict-driven
clause resolution is correct), and because, c ∧ [[±xi ≤ k′]] = r∗([[±xi ≤ k]]). ◀

Therefore, when Proposition 2 applies, [[±xi ≤ k]] is not redundant, but we can weaken it
to [[±xi ≤ k + ϵ]] in the conflict set, and hence strengthen the corresponding literal in the
conflict clause to ¬[[±xi ≤ k + ϵ]].

8 Experimental Results

We used three types of problems to benchmark our solver: job-shop scheduling, open-shop
scheduling and job-shop with time lags. In all three problems there are m machines and n

jobs each containing m tasks. All machines are disjunctive resources. In job-shop scheduling,
the sequence of the tasks in each job is fixed and each task requires exactly one of the m

machines. Job-shop with time lags are job-shop instances with the extra constraint that the
interval between the end of any task and the start of the next task on the same job should be
less than some value (in the data set it is set to either 0, 0.5, 1, 2, 3 or 10 times the average
length of a task). Finally in Open-shop instances, the sequence in each job is a decision
variable, or in other words, a job is a disjunctive resource in the same way machines are. We
used well known data sets, whose detailed description is given in Table 4 in Appendix.

All experiments ran on a cluster of machines with 3 types of processors: Intel E5-2695
v3 2.3Ghz; Intel E5-2695 v4 2.1Ghz and AMD EPYC 7453 3.4Ghz. All the runs involving
job-shop instances ran on the first type, open-shop instances on the second and job-shop
with time-lags instances on the third, in order to ensure a fair comparison. We compared
against the solvers Aries, CP Optimizer (version 22.11), OptalCP and OR-Tools. We did not
run comparison with other solvers, although we quickly assessed the models for job-shop
scheduling provided in the sources of Gecode and Chuffed and the results did not seem
competitive. We used the following parameter setting for Tempo: the variable selection
heuristic is VSIDS; the strategy to select clauses to forget uses literal activities from VSIDS;
the value selection heuristic follows the choices that lead to the current best solution [5]; a
straightforward insertion heuristic using a randomized mix of earliest start time and minimum
slack is used to construct an initial upper bound; and no initial lower bound is implemented,
besides the Edge-Finding rule. Some further numeric parameter setting were obtained by
running Tempo on 8 instances (4 job-shop, 2 open-shop and 2 job-shop with time lags) and
selecting the best out a few reasonable choices. We found that these parameters did not have
a very significant impact: the clause minimization depth is set to 10, the decay value for
VSIDS is set to 0.99, the ratio of forgotten clauses per restart is 0.7 and a geometric restart
policy is used, with a base limit of 128 failures and a factor of 1.05.

For every solver, we used models of job-shop provided in their distribution, and hence we
assume that they are reasonably well tuned for these standard instances. Aries, CP Optimizer
and OptalCP also provide a default model for open-shop which we used in the same way.
We implemented a model for job-shop with time lags by minimally changing the model for
job-shop in all four solvers, and did the same for open-shop in OR-Tools.
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Table 1 Comparison with the state of the art: number of optimality proofs (#Opt.) and average
objective value (Objective) after 30 minutes on “hard” instances. Best results are in bold font.

instances
OR-Tools Aries CP Optimizer OptalCPFDS Tempo

#Opt. Objective #Opt. Objective #Opt. Objective #Opt. Objective #Opt. Objective
Jobshop Scheduling Problems

abz(30) 0 674.0 0 671.5 8 675.7 0 679.0 2 671.6
cscma(400) 0 5690.7 0 5472.1 0 5364.9 0 6405.5 0 5287.1
ft(10) 10 1165.0 0 1165.0 10 1165.0 10 1165.0 10 1165.0
la(20) 10 1196.3 4 1199.3 19 1193.5 10 1200.0 13 1193.6
rcmax(390) 10 4354.3 90 4193.0 181 4190.2 40 4547.3 170 4180.7
swv(150) 10 2139.9 9 2132.2 34 2088.0 20 2293.8 39 2053.6
ta(710) 44 2652.4 134 2542.6 326 2528.6 54 2830.9 242 2553.0
yn(40) 0 928.0 0 921.5 0 931.0 0 938.5 0 921.4
all(1750) 84 3583.8 237 3452.5 578 3418.1 134 3876.1 476 3404.9

Openshop Scheduling Problems
bru7(10) 0 1048.6 10 1048.0 10 1048.0 10 1048.0 0 1048.0
bru8(40) 30 1014.9 40 1014.5 11 1018.1 40 1014.5 30 1014.5
all(50) 30 1021.7 50 1021.2 21 1024.1 50 1021.2 30 1021.2

Jobshop Scheduling Problems with Time Lags
ft_1(10) 0 inf 10 961.0 10 961.0 10 961.0 10 961.0
la_0(280) 10 2333.0 144 2344.3 40 2385.8 70 2439.9 119 2364.0
la_0,5(300) 0 1680.2 104 1570.4 50 1615.1 100 1613.6 79 1589.7
la_1(290) 9 1504.0 109 1355.1 139 1385.7 170 1374.3 97 1370.4
la_2(30) 11 895.4 29 904.7 30 904.7 30 898.3 30 904.7
la_3(120) 32 1552.8 73 1427.7 80 1427.2 70 1433.8 98 1418.2
la_10(20) 9 1196.5 5 1201.5 20 1194.0 10 1193.5 10 1194.6
all(1050) 71 1778.7 474 1669.2 369 1701.2 460 1712.7 443 1682.9

OptalCP, however, uses two main strategies. The default one focuses on finding high
quality solutions quickly and relies mainly on LNS, while the other focuses on optimality
proofs and relies on FDS. Although the default strategy was remarkably efficient on job-shop,
even proving optimality in many cases (see Table 3), it was unable to prove optimality in
most other cases, and was much less efficient on job-shop with time-lags. Therefore, we
report the results of OptalCPFDS in Table 1 and OptalCPLNS only in Table 3.

8.1 Comparison with the sate of the art
We ran every method on every instance with 10 distinct random seeds. Every run was
stopped after 30 minutes of user time. We then grouped the instances into two categories
“Easy” and “Hard”, where the former corresponds to instances solved to optimality by all
five solvers in every run, and the latter contains all the remaining instances.

8.1.1 Hard instances
Results for hard instances are reported in Table 1. For each data set, the total number of
runs is shown next to the data set name, then we report the number of proofs (#Opt.) and
the average objective value (Objective). No solver is clearly the best on every data set.

On some instances of job-shop with time lags, OR-Tools does not find feasible solutions.
The reason is simple: the cycles in the temporal graph make feasibility hard on this problem,
even without upper bound. However, without upper bound, constraint propagation is
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ineffective and solvers are blind. Other solvers use some form of greedy initialization able to
find a reasonable upper bounds to bootstrap search, which is crucial here. We believe that
either OR-Tools simply does not run such greedy initialization, or that it sometimes fails to
provide an initial feasible solution and hence this observation is not as noteworthy as one
might think. However, the overall results are not as good as other solvers in general on these
instances. It should also be noted that OR-Tools has been designed to be robust on a much
wider range of problems (whereas other solvers are more focused on scheduling) and also to
take full advantage of parallelism and is not as efficient in single-thread mode. We consider
it beyond the scope of the paper to experiment using multi-threading.

The solver Aries, despite not using any dedicated propagator for the NoOverlap
constraint ob-shop with time lags and tied for best on open-shop. In the case of Open-shop,
there are only 5 hard instances in the whole data set, all from [9]. Methods that branch on
edges and explore the search tree extremely fast have been shown to be efficient on those
instances [21]. Moreover, the parameter that is probably the most important here is the
variable selection heuristic. We ran Tempo without the NoOverlap propagators (Edge-
Finding and Precedence-Disjunctive) since it is then very similar to Aries, with the main
difference being the variable selection policy. The results of Tempo are still slightly worse on
those instance than with them. We therefore believe that the explanation is related to the
variable-selection policy. It is not as simple as simply the difference between learning-rate
and VSIDS since we tried both in Tempo, and we did not notice much difference. However,
there are many other decisions and parameters in the implementation of these heuristics
(which set of literals should get their activity bumped on conflict, which value of decay should
be used, etc.). On job-shop with time lags instances, we believe that the reason is mainly
that the time lags constraints make the resource constraints comparatively less important to
propagate than on classic job-shop or in open-shop. Indeed, Tempo without the NoOverlap
propagators has results similar to those of Aries. However, Aries is clearly dominated by CP
Optimizer and Tempo on job-shop, where stronger propagation is important.

CP Optimizer is extremely robust. Overall it produces more proofs than any other
solver, and is clearly dominated only on open-shop. This is not surprising as CP Optimizer
implements a large portfolios of techniques for scheduling problems and is finely tuned on
these instances.

OptalCP is extremely fast. However, as discussed previously, it does not have the same
adaptive search strategy as CP Optimizer, and hence it can be seen as two solvers. OptalCPFDS
is the best on open-shop but is clearly dominated by all other solvers on job-shop. On the
contrary, OptalCPLNS is the best on job-shop, but rarely proves optimality and is overall
worse on open-shop and job-shop with time lags (see Table 3).

Tempo seems at least as robust as CP Optimizer, although it does not use any complex
strategy to adapt the heuristics and parameters during search. If we include OptalCPLNS,
Tempo is second-best on all three problem types. Moreover, it is consistently within the best
solvers in every data set, to the exception of the 10 largest Taillard’s job-shop instances, with
20 machines and, crucially, 100 jobs. In other words each of the 20 NoOverlap constraints
involve 100 tasks and 4950 edge variables. In Tempo, the Edge-Finding propagator is used
unconditionally and without any incremental aspect. As a result, the exploration speed drops
dramatically on these instances. Whereas CP Optimizer finds the optimal solution with a
proof on all 10 runs for each of these 10 instances, the best solution found by Tempo is very
far from optimal. If we ignore those ten instances, the number of proofs is very close for both
solvers (478 for CP Optimizer and 476 for Tempo), moreover the gap in average objective
value is significantly larger (3300.1 for CP Optimizer and 3273.2 for Tempo).
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Table 2 Comparison with state-of-the-art solvers: average CPU Time (CPU Time) and average
number of branches (#Branches) after 30 minutes on “easy” instances. Best results are in bold font.

instances
OR-Tools Aries CP Optimizer OptalCPFDS Tempo

CPU #Bran. CPU #Bran. CPU #Bran. CPU #Bran. CPU #Bran.
Jobshop Scheduling Problems

abz(20) 1.11 9236 0.29 4449 1.12 42660 0.33 27681 0.19 2487
ft(20) 2.97 20036 0.88 8900 2.24 69257 0.46 32846 0.46 3900
la(380) 20.61 78717 11.56 61186 6.62 190685 8.40 329783 3.64 15764
orb(100) 11.88 56344 2.72 23874 3.91 134998 1.23 87903 0.92 7197
rcmax(10) 192.82 577669 5.86 154845 0.21 10522 850.77 15743276 157.34 376972
swv(50) 46.23 205626 1.79 57660 0.39 15104 254.06 7267279 36.36 115931
ta(90) 220.20 605827 37.99 144237 90.42 2072631 27.17 745279 23.01 47046
all(670) 49.49 159276 12.32 64653 16.62 411337 40.28 1079388 10.37 30803

Openshop Scheduling Problems
gp(800) 0.51 8316 0.13 12687 1.31 53780 0.26 25409 0.19 5129
bru(470) 1.77 12197 0.88 8154 3.87 165362 0.39 29342 0.19 2091
ta(600) 4.17 46528 0.26 9497 0.52 15576 3.79 228003 0.91 6525
all(1870) 2.00 21552 0.36 10524 1.70 69567 1.43 91401 0.42 4813

Jobshop Scheduling Problems with Time Lags
car(320) 1.51 25667 0.30 5192 1.30 53948 0.25 25923 0.14 2007
ft(150) 12.89 81471 0.63 7446 6.11 192551 1.20 72274 0.60 4510
la(1140) 50.23 237217 11.86 71476 9.14 323321 4.26 261323 4.20 20275
all(1610) 37.07 180659 8.52 52336 7.30 257598 3.18 196922 3.06 15175

8.1.2 Easy instances
Results for easy instances are reported in Table 2. For each data set, the total number of
runs is shown next to the data set name, then we report the average CPU time (CPU) and
the average number of branching choicepoints explored (#Bran.).

The CPU time results are not easy to interpret. However, the number of explored
choicepoints is interesting. Tempo very consistently explores the smallest subtree. Aries does
not use costly propagators, and we believe that CP Optimizer and OR-Tools use them more
parsimoniously. There are two data sets where Tempo explores more branches: “rcmax” and
“swv”. However, the number of failures on these instance is still 4 times lower than for CP
Optimizer. In fact, Tempo finds very poor initial solutions, and goes through many more
improving solutions than CP Optimizer before reaching the optimal. Each one is found after
very few failures, but many choicepoints are explored. We believe that LNS is key on these
instances as well as on the large Taillard instances discussed earlier.

8.2 Ablation study
The second part of Table 3 gives the result on an ablation study on some aspects of Tempo:

Tempo\prec stands for Tempo without the precedence reasoning described in Section 6.
Tempo\edge-finding stands for Tempo without the Edge-Finding rule described in Section 5.
Tempo\weakening stands for Tempo without the numeric literal weakening rule described in
Section 7, but with standard clause minimization instead.

The first observation is that the transitivity and temporal graph reasoning does not pay
off. It helps on open-shop and with respect to the best objective on job-shop, but actually
degrades the performances on job-shop with time lags and decreases the number of optimality
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Table 3 Summary of the comparison and ablation study: number of proofs (#Opt.) and average
objective value (Objective) after 30 minutes on “hard” instances. Best results are in bold font.

solver
job-shop open-shop jsp with time lags

#Opt. Objective #Opt. Objective #Opt. Objective

OR-Tools 84 3583.8 30 1021.7 71 1778.7
Aries 237 3452.5 50 1021.2 474 1669.2
CP Optimizer 578 3418.1 21 1024.1 369 1701.2
OptalCPLNS 480 3391.4 0 1024.2 70 1724.0
OptalCPFDS 134 3876.1 50 1021.2 460 1712.7

Tempo 476 3404.9 30 1021.2 443 1682.9
Tempo\prec 485 3406.5 30 1021.4 466 1677.6
Tempo\edge-finding 117 3492.9 30 1021.6 460 1678.8
Tempo\weakening 460 3407.1 30 1021.3 446 1683.8

proofs on job-shop. The Edge-Finding rule, however, is clearly useful on job-shop and
open-shop, although it also degrades the performance on job-shop with time lags. The bound
literal weakening rule has a small but consistently positive impact throughout, however.

Those results are consistent with the comparison between Tempo and Aries: resource
constraint propagation has a significant positive impact on standard job-shop, but a negative
impact on job-shop with time lags. We believe that in the latter, the temporal graph part is
more important and comparatively less propagation comes from resource constraints. This is
supported by the results on individual data sets shown in Table 1: Aries is better on la_0,
la_0,5 and la_1 where the lags constraints are the strongest, while Tempo is better on la_3
and la_10 which are much closer to standard job-shop.

9 Conclusion

We have introduced Tempo, a hybrid algorithm implementing conflict-driven clause generation
on problems defined as constraint programs on Boolean and numeric (bound) variables.
Moreover, this solver uses at its core a difference logic engine, useful on temporal problems
in particular. The integration of these techniques with resource-based constraint propagation
yields a very efficient method for disjunctive scheduling. We believe that the same principles
can be applied to cumulative scheduling, to problems considering both allocation and
scheduling, to time transition constraints and to a range of other complex problems.
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A Appendix

A.1 Proof of Theorem 1
Proof. We prove by induction on the size of Ω, for length 1 the node is a leaf and we have
est∗

{i} = esti and by definition ecti = esti + pi .
Now suppose that the equality is true for sets of size n− 1 and consider a node labeled

with the set Ω such that |Ω| = n + 1. Moreover, let Θl and Θr be its left and right children,
respectively.

Suppose first that ectΘr
≥ ectΘl

+ pΘr
. Then we have

ectΩ = ectΘr and
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est∗
Ω = est∗

Θr
and

pexplΩ = pexplΘr
(since every task in Θl has an earliest start time strictly smaller than

est∗
Θr

)
However, since |Θr| ≤ n we have est∗

Θr
+ pexplΘr

= ectΘr and therefore est∗
Ω + pexplΩ = ectΩ.

Otherwise, if ectΘr
< ectΘl

+ pΘr
. Then we have

ectΩ = ectΘl
+ pΘr and

est∗
Ω = est∗

Θl
and

pexplΩ = pexplΘl
+ pΘr

However, since |Θl| ≤ n we have est∗
Θl

+ pexplΘl
= ectΘl

, and hence est∗
Θl

+ pexplΘl
+ pΘr

=
ectΘl

+ pΘr
and therefore est∗

Ω + pexplΩ = ectΩ. ◀

A.2 Description of the data sets

Table 4 List of data sets, “Size” is the number of instances in the data set, the column “#jobs”,
“#machines” and “Avg. duration” give the minimum and maximum number of jobs, number of
machines, and average duration of task, respectively.

Dataset Type Size #jobs #machines Avg. duration Reference

abz Job-shop 5 10-20 10-15 24-77 [1]
cscmax Job-shop 40 20-50 15-20 95-104 [15]
rcmax Job-shop 40 20-50 15-20 92-105 [15]
ft Job-shop 3 6-20 5-10 5-51 [18]
la Job-shop 40 10-30 5-15 45-56 [30]
orb Job-shop 10 10-10 10-10 24-56 [3]
swv Job-shop 20 20-50 10-15 48-52 [49]
ta Job-shop 80 15-100 15-20 47-52 [50]
yn Job-shop 4 20-20 20-20 29-30 [55]
bru Open-shop 42 4-8 4-8 110-333 [9]
gp Open-shop 80 3-10 3-10 100-333 [22]
ta Open-shop 60 4-20 4-20 41-65 [50]
car Job-shop w. Lags 36 7-10 6-9 483-498 [11]
ft Job-shop w. Lags 18 6-10 6-10 5-51 [11]
la Job-shop w. Lags 233 10-30 5-15 45-56 [11]

A.3 Pairwise comparisons
We plot in Fig. 3 and 4 pairwise comparisons of relative difference in objective value between
Tempo and all other solvers. For every instance i in the “hard” category, let objTempo(i) be the
objective value found by Tempo and objother(i) the objective value found by the other solver,
we plot the values of (objTempo(i)−objother(i))/ max(objTempo(i), objother(i)) in non-decreasing
order.
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(a) (Tempo- CP Optimizer)/max. (b) (Tempo- Aries)/max.

(c) (Tempo- OR-Tools)/max. (d) (Tempo- OptalCPLNS)/max.

Figure 3 Pairwise comparison of objective value on Job-shop scheduling.
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(a) (Tempo- CP Optimizer)/max. (b) (Tempo- Aries)/max.

(c) (Tempo- OR-Tools)/max. (d) (Tempo- OptalCPFDS)/max.

Figure 4 Pairwise comparison of objective value on Job-shop scheduling with time lags.
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