
PrintTalk: A Language for Constraint-Based
3D Modelling
Jef Jacobs #

Software Languages Lab, Vrije Universiteit Brussel, Belgium

Wolfgang De Meuter #

Software Languages Lab, Vrije Universiteit Brussel, Belgium

Jens Nicolay #

Software Languages Lab, Vrije Universiteit Brussel, Belgium

Abstract
Programmatic CAD (PCAD) is an emerging alternative to traditional visual CAD software. However,
state-of-the-art PCAD tools have limited or no support for constraints. Consequently, these tools
depend solely on parametrisation for variability, reusability, and composition of shapes. This leads to
problems such as parameter explosion, leaky compositional abstraction, and prevents a declarative
approach to defining spatial patterns (linear, grid, circular, etc.) for the constituents of a composition.
This paper describes the design of PrintTalk, a PCAD language that supports 3D modelling by
composing shapes and expressing relations between them using first-class constraints. Evaluating
PrintTalk against state-of-the-art PCAD tools demonstrates that its expressive abstraction and
composition mechanisms facilitate the design and promotes the reuse of shapes.

2012 ACM Subject Classification Software and its engineering → Domain specific languages; Software
and its engineering → Multiparadigm languages; Software and its engineering → Constraints

Keywords and phrases Programmatic 3D Modelling, PCAD, Domain specific language, Constraints

Digital Object Identifier 10.4230/LIPIcs.CP.2025.16

Supplementary Material Software: https://doi.org/10.5281/zenodo.15593661

1 Introduction

Computer-aided design (CAD) systems are central to the modern product design process,
in which physical products are represented as digital CAD drawings. Designing digital
3D models often involves sophisticated CAD software, of which the vast majority is visual in
nature. Visual CAD tools typically have built-in constraint mechanisms to aid designers in
taming complexity. For example, geometric constraints [21] (parallelism, concentricity, etc.)
control relationships between components, while dimensional constraints (length, radius, etc.)
help specify precise dimensions of shapes in relation to each other. Designing parametrised
components of which the parameters can subsequently be modified to adjust the entire design
accordingly is called parametric modelling.

While visual CAD approaches can be accessible, intuitive, and well-suited for rapid
prototyping, they lack several key advantages of programmatic approaches. Programmatic
approaches are more amenable to software engineering techniques, enabling finer-grained
control over the design process, facilitating the reuse of complex shapes, and offering
richer automation, version control, and collaboration features. Consequently, programmatic
CAD (PCAD) has emerged as a compelling alternative, where 3D models are constructed
programmatically using parametric modelling. In addition to the inherent benefits of a
code-based approach, PCAD leverages the full power of a programming language (variables,
functions, loops, conditionals, modules, etc.), providing rich and expressive abstraction and
composition mechanisms. This allows designers to think about 3D modelling at a higher

© Jef Jacobs, Wolfgang De Meuter, and Jens Nicolay;
licensed under Creative Commons License CC-BY 4.0

31st International Conference on Principles and Practice of Constraint Programming (CP 2025).
Editor: Maria Garcia de la Banda; Article No. 16; pp. 16:1–16:22

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:Jef.Jacobs@vub.be
https://orcid.org/0000-0002-4939-3453
mailto:Wolfgang.De.Meuter@vub.be
https://orcid.org/0000-0002-5229-5627
mailto:Jens.Nicolay@vub.be
https://orcid.org/0000-0003-4653-5820
https://doi.org/10.4230/LIPIcs.CP.2025.16
https://doi.org/10.5281/zenodo.15593661
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics
https://www.dagstuhl.de


16:2 PrintTalk: A Language for Constraint-Based 3D Modelling

level, using custom abstractions tailored to their specific needs. For this reason, over the past
few years there has been a growing interest in PCAD [10, 17], leading to the development of
several PCAD libraries [5, 19, 14] and languages [13, 18].

1.1 Problem
Despite the benefits of a programmatic approach, a significant shortcoming of the state-of-
the-art PCAD tools we surveyed is that, unlike their visual counterparts, they have limited
or no support for constraints. In the absence of constraints, PCAD tools must exclusively
rely on parametrisation for variability, reusability, and composition of shapes. In all but the
most trivial designs, this reliance on parameters leads to three significant problems.

Parameter explosion. To achieve variability and reusability, designers must expose numerous
parameters. As the complexity of the design and the points of variation increase, the
number of parameters increases dramatically. Additionally, the programmer is responsible
for assigning valid values to all parameters. Any dependencies that may exist between
parameters remain implicit, which makes assigning valid values even more difficult.

Leaky compositional abstraction. Composing a shape out of other shapes using only para-
meters requires exposing internal details as “composition parameters” of constituent
shapes whose only purpose is to make composition possible. For instance, to align a hinge
with a door, the screw hole positions (normally an internal detail of the hinge) must be
exposed as parameters. This breaks encapsulation, as programmers must track intricate
details about composition hierarchies, hindering high-level reasoning and modular design.
The need for composition parameters also contributes to parameter explosion.

Imperative compositional specification. Parameters alone cannot declaratively express the
complex and reusable relations between components. Therefore, creating patterns (linear,
grid, circular, etc.) without constraints requires imperative code using sequences and
loops, coupling the creation of components with their arrangement. This results in
inflexible, non-extensible compositions that cannot be properly abstracted over.

1.2 Solution
This paper introduces PrintTalk, a PCAD language that addresses the limitations of existing
tools by tightly integrating constraint solving with parametric modelling. PrintTalk features
three main concepts: parametrised shapes, constraints, and patterns (which are specialized
constraints for spatial relationships). 3D modelling in PrintTalk involves programmatically
composing shapes and expressing relations between them. Each shape definition declares
a set of parameters that can partake in constraints and through which the shape can be
modified. While shapes and constraints make up the core of the language, PrintTalk also
features expressions that act as abstraction mechanisms and syntactic sugar for defining,
instantiating, and composing shapes and constraints in a scalable and expressive manner.

PrintTalk overcomes the shortcomings of existing PCAD tools that we identified by
meeting the following three criteria.

Criterium 1: Flexible variability and reusability. PrintTalk shapes expose named
parameters to which values can be assigned explicitly by the program, in which case they
act as constructor parameters. Parameters that are not explicitly assigned a value become
constraint variables whose values are determined by the constraint solver when running
the program. Constraints and constraint variables provide a declarative and relational way
to define shapes in PrintTalk. These declarative relationships, together with a reduced
need for specifying explicit parameter values, avoid the problem of parameter explosion
and provides a clean way to balance flexibility and complexity in a design.



J. Jacobs, W. De Meuter, and J. Nicolay 16:3

Criterium 2: Flexible composition. PrintTalk enables flexible composition by allowing
constraints to be placed on the parameters of constituent shapes. A shape can constrain
its own parameters and the parameters of its constituents. This avoids requiring detailed
knowledge of a shape’s internal structure before it can be composed with other shapes in
a valid manner. PrintTalk features a set of primitive constraints (e.g., “equal”, “greater
than”, etc.), but also allows users to define their own constraints as a combination of
other constraints. For example, users can define their own “on-top-of” or “touching”
constraints for composing their shapes.
Criterium 3: Declarative and reusable compositional abstraction. PrintTalk decouples
the logic for creating multiple shapes from arranging them in a particular spatial configur-
ation. Multiple copies of shapes can be declaratively created by means of a for loop. In a
separate step, multiple shapes can be arranged by adding constraints on their parameters.
Because constraints are first-class citizens in PrintTalk, they can be composed and named,
making them reusable. In PrintTalk, these reusable (compound) composition constraints
expressing spatial arrangements are called patterns.

1.3 Overview
Section 2 introduces the PrintTalk language, detailing its core components and design
principles. Section 3 surveys related work in programmatic CAD and constraint-based
systems. Section 4 presents an evaluation of PrintTalk, comparing it to two state-of-the-art
PCAD tools and demonstrating how it addresses the problems outlined in Section 1.1.

2 Overview of PrintTalk

This section introduces PrintTalk, a domain-specific language designed for constraint-based
3D modelling. PrintTalk enables the construction of complex 3D shapes by composing simpler
shapes and expressing relations between them using constraints. To promote reusability, the
language provides components for defining and instantiating new shapes and constraints.

The following subsections detail the fundamental components of the PrintTalk language.
First, the concepts of shapes, parameters, instantiation, and the structure for defining com-
posite shapes using scripts and constraints are introduced (Section 2.1). The core mechanism
behind PrintTalk’s flexible, solver-driven composition in which parameters function dually as
constructor arguments or constraint variables, is explained (Section 2.1.1). This discussion
covers implicit parameters used for relative positioning (Section 2.1.2) and the language’s
scoping rules (Section 2.1.3). Next, composite constraints (Section 2.2.1) and spatial patterns
(Section 2.2.2) are presented as mechanisms for structuring and reusing constraints. Finally,
the process for generating a 3D model as output is described (Section 2.3), along with
the integration details of the Z3 constraint solver (Section 2.3.1) and the methodology for
determining the constraint hierarchy (Section 2.3.2). A complete overview of PrintTalk’s
syntax is provided in Appendix A.

2.1 Shapes and Constraints
In PrintTalk, a shape has a name and a set of named, shape-specific parameters, such as
dimensions or quantities. The language provides built-in primitive shapes, including cuboids,
cylinders, cones, and spheres.

A shape is instantiated by referring to it by name and providing it zero or more values
for its named parameters. For example, the expression (sphere #:radius 10) instantiates a
sphere with radius 10.

CP 2025



16:4 PrintTalk: A Language for Constraint-Based 3D Modelling

Listing 1 A PrintTalk program (left) and its resulting shape (right).
1 (shape: capsule (h d)
2 (script:
3 (named: cyl (cylinder #:diameter d #:height (- h d)))
4 (named: sp1 (sphere #:diameter d #:z (/ (- h d) -2)))
5 (named: sp2 (sphere #:diameter d #:z (/ (- h d) 2))))
6 (constraints: (assert: (>= h (+ 10 (* 2 d))))))
7
8 (shape: tray (l w)
9 (script:

10 (named: blk (cuboid #:length l #:width w #:height (/ w 2)))
11 (cut: (named: caps (capsule #:h (- l 10)
12 #:z (/ blk.height 4) #:rot-y 90))))
13 (constraints: (assert: (= caps.d (- blk.width 10)))))
14
15 (print: (tray #:l 150 #:w 30) "tray.stl")

New shapes are defined as a composition of other primitive or composite shapes using
the shape: keyword. PrintTalk represents composite shapes as trees, where leaf nodes are
primitive shapes.

1 (shape: name (<parameters>)
2 (script: <constituents>)
3 (constraints: <assertions>))

The script: section is used for instantiating constituent shapes and defining their basic
composition. By default, shapes instantiated within a script are composed by means of a
union, unless specified otherwise by a (cut: <shape>) operation, in which case the shape
provided as argument to the cut: statement is cut from the preceding shapes in the script.

The order in which constituent shapes are instantiated within a script matters when a
cut: operation is present in the script, as cut: operations are not commutative. The shape
provided as argument to a cut: operation is only cut from previously instantiated shapes,
leaving shapes instantiated after the cut: unaffected. A constituent shape can be given a
name using a (named: <name> <shape>) statement, so that it can be referenced using that
name. Listing 1 shows a PrintTalk program and its resulting shape, a pencil tray. Two
composite shapes are defined: a capsule (lines 1–6) and a tray (lines 8–13). The pencil tray
is obtained by cutting a capsule shape cap from a cuboid (or “block”) shape blk (lines 9–12).
A capsule itself is a composition of a cylinder with spheres at its top and bottom (lines 2–5).

The constraints: section in a shape: definition specifies the constraints used between
the parameters of that shape. For example, the constraint on line 6 in Listing 1 sets a
minimum height for the capsule shape based on its diameter to make sure the capsule has an
“elongated” shape. Constraints are also used for defining the layout and precise relationships
between constituent shapes (Section 2.1.1). An example of this is the equality constraint on
line 13, which defines the relationship between the diameter of the capsule and the width of
the block shape, ensuring that the diameter of the cutout capsule shape is smaller that the
width of the block shape. PrintTalk provides built-in primitive constraints for comparing
values (i.e., =, <, <=, >, >=).

Like shapes, constraints can also be composed as described in Section 2.2.1.



J. Jacobs, W. De Meuter, and J. Nicolay 16:5

2.1.1 Constraint Variables and Composition
The expressive power of PrintTalk stems from the interaction between shape parameters
and constraints. A shape parameter can function in two ways: as a constructor parameter if
explicitly assigned a value during instantiation, or as a constraint variable if left unspecified.
In the latter case, its value is determined by the constraint solver based on the relationships
defined in the program (Section 2.3.1).

Consider the built-in sphere shape definition, which declares radius and diameter para-
meters linked by the constraint (= diameter (* 2 radius)). If a sphere is instantiated with
only a diameter (as on lines 4 and 5 in Listing 1), the solver infers the radius, and vice versa.
This bidirectional capability also allows for validation: if both parameters are provided with
inconsistent values (e.g., (sphere #:radius 10 #:diameter 23)), PrintTalk signals a runtime
error, as the constraint is violated.

Fundamentally, PrintTalk treats all parameters as constraint variables. This unified view
enables flexible instantiation: programmers can provide explicit values for some parameters
(which corresponds to adding an equality constraint), while allowing the solver to derive
others based on declared constraints. This significantly promotes component reusability.

This constraint-based mechanism of deriving unspecified values extends naturally to
shape composition. Relations between constituent shapes are expressed declaratively using
constraints on their parameters, as demonstrated by the relation between the capsule diameter
and block width in the tray example (Listing 1). As another example, to ensure two surfaces
glue together correctly, constraints can enforce that their corresponding dimensions match,
allowing the constituents to adapt to each other. PrintTalk’s extensible constraint system
facilitates defining such complex spatial relationships.

The bidirectional capabilities of constraint solvers make constraints a powerful tool for
expressing relations between shapes. Its ability to both find suitable parameter values
and check the consistency of provided ones enables versatile composition strategies that
are difficult to achieve with purely manual parameter assignment. Without constraints,
programmers must imperatively calculate and assign values for all parameters, often leading
to less flexible and reusable designs.

However, not all parameter values can be derived from constraints, particularly when
a parameter’s value is required structurally before constraint solving commences, or when
it defines the set of shapes upon which a constraint will operate. In such cases, PrintTalk
requires these values to be provided explicitly during instantiation. It is therefore possible to
force parameters to act strictly as constructor parameters by preceding their name with an
exclamation mark in the parameter list. As illustrated later, the !nr-teeth parameter in the
gear shape definition (Listing 2) must be explicit because it determines the number of teeth
to instantiate within a loop. Similarly, the !shapes parameter in the circular spatial pattern
(Listing 2) must be provided, as it specifies the collection of shapes the constraint acts upon.
If an argument for such a forced constructor parameter is omitted during instantiation,
PrintTalk raises a runtime error instead of treating it as a constraint variable whose value
can be derived.

2.1.2 Relative Position and Rotation
In PrintTalk, every shape definition implicitly contains six parameters that determine its 3D
position (x, y, z) and rotation (rot-x, rot-y, rot-z) relative to its parent. Root shapes, which
have no parent, have an absolute position and rotation of (0, 0, 0). Implicit parameters
behave identically to explicit parameters, including how they are bound.

CP 2025



16:6 PrintTalk: A Language for Constraint-Based 3D Modelling

For each implicit parameter, an implicit soft constraint is asserted stating that the values
of these constraint variables is 0 (i.e., equal to the parent’s value). The underlying solver aims
to find a solution that satisfies these soft constraints, but, as discussed in Section 2.3.1, no
error is raised when no such solution exists. Default values for implicit parameters implements
a flexible environmental acquisition mechanism [11] that enables expressing relative positions
and rotations of constituent shapes only when required, while also combatting parameter
explosion. This mechanism is illustrated by the capsule shape definition in Listing 1. A
capsule shape is defined as a combination of a cylinder and two spheres. The z-component of
the spheres is specified, while the other position and rotation parameters are not specified
and thus acquired from the parent shape, meaning their offset is set to 0 through implicit
soft constraints.

2.1.3 Scoping Mechanism
A shape’s parameters are accessible throughout the entire body of its definition (the script:
and constraints: sections). Parameters of named constituent shapes (created with name:)
within a shape definition’s script are visible in subsequent script statements and in the
constraints: section. These parameters must be referenced using dot notation. However,
shapes cannot directly access the parameters of their grandchildren (the constituents of their
constituents). Composite shape definitions can introduce parameters that are bound to a
selection of their constituents’ parameters. This allows a grandparent shape to influence
its grandchildren through intermediate parent parameters. Therefore, while PrintTalk’s
scoping rules promote information hiding, programmers retain control over which parts of a
composite shape’s constituents are exposed upon reuse.

To illustrate this scoping mechanism, consider the PrintTalk program in Listing 1 again.
The composite shape definition capsule declares parameters h (height) and d (diameter) (line
1). These parameters are used in the script and constraints of the capsule shape definition.
Parameter d is bound to the diameter parameters of the constituent cylinder and spheres
in the capsule’s script (lines 2–5). Next, a capsule is instantiated and named caps in the
script of the tray shape (lines 11–12). The capsule’s d parameter is referenced in the tray’s
constraint as caps.d (line 13). However, the tray shape cannot access parameters of the
capsule’s constituents, such as caps.sp1.diameter.

2.2 Constraint Composition and Spatial Patterns

2.2.1 Composite Constraints
Not only shapes, but also constraints can be composed to express more high-level compositions
such as “on-top-of”, “touching”, or “matching-screw-holes”. Composite constraints are defined
using the constraint: keyword followed by a name, a set of parameters, and assertions of
primitive or composite sub-constraints.

1 (constraint: name (<parameters>) <assertions>))

Just like in the constraints: section of shape:, the asserted sub-constraints are joined
by logical conjunction. Unlike composite shape definitions with only constraints: but
without a script:, a composite constraint definition does not create a shape, and is purely
used for combining constraints. As an example, the valid-edge composite constraint ensures
that the edge between an inner and outer diameter has a value between 2 and 20.



J. Jacobs, W. De Meuter, and J. Nicolay 16:7

1 (constraint: valid-edge (innerDia outerDia edge)
2 (assert: (= edge (- outerDia innerDia)))
3 (assert: (>= edge 2))
4 (assert: (<= edge 20)))

Instantiating composite constraints is similar to instantiating shapes, using the same
syntax for binding parameter values, as discussed in Section 2.1. Composite constraints can
be defined or called without specifying named parameters. However, PrintTalk’s primitive
comparative constraints, such as = and <, do not use named parameters. Instead, they
operate on positional arguments, all of which are required.

2.2.2 Spatial Patterns Expressed as Constraints
Often, multiple shapes need to be arranged in a predefined pattern, such as the teeth of a
gear in a circular pattern. PrintTalk’s functionality for expressing spatial patterns is split
into two parts: instantiation and positioning.

PrintTalk includes for loops through which multiple copies of a certain shape can be
instantiated. A for loop contains an identifier, an iterable and a body. The iterable can
either be a range of numbers or a shape. For each iteration of the loop, the identifier is
bound to each number within that range, or each constituent of that shape.

1 (for <identifier> in <iterable>
2 <body>)

The shapes instantiated in the body of a for loop within a shape definition’s script are
composed with other shapes in the script by means of a union, unless specified otherwise
by a cut: operation. To promote expressivity, for loops introduce pseudo-variables i and n
representing the index and the total number of items to iterate over, respectively.

PrintTalk supports anonymous shapes that can be defined and instantiated in the script
of other shapes. Hereby, the constituents instantiated in the body of the anonymous shape
definition are “grouped” within a new shape, facilitating passing them as arguments to
constraints. Apart from the absent name between the shape: keyword and the parameter
list, the syntax for defining anonymous shapes is identical to defining named shapes.

Instantiating anonymous shapes is also identical to instantiating named shapes, by stating
the shape and providing zero or more values for its named parameters. As an example,
Listing 2 defines a gear (lines 1–11), in which a shape representing a single tooth is instantiated
multiple times using a for loop (lines 7–8). These teeth are grouped within an anonymous
shape definition without explicit parameters. The anonymous shape is instantiated (without
arguments), and the instance is named teeth using a named: statement (lines 6–8).

To eliminate the need for repetitive manual positioning, PrintTalk allows spatial patterns
to be expressed as composite constraints that place constraints on the positions of each of
the involved shapes.

As an example, Listing 2 defines the circular pattern (lines 13–17) that is used for
positioning the teeth of the gear. By means of a for loop, each shape in the pattern has its
position along the x- and y-axes constrained, together with its rotation along the z-axis.

2.3 Output Statements
PrintTalk currently defines one output statement print: used for generating a 3D model
and exporting it in the STL format.

CP 2025



16:8 PrintTalk: A Language for Constraint-Based 3D Modelling

Listing 2 Instantiating shapes multiple times using for loops in PrintTalk.
1 (shape: gear (!nr-teeth dia)
2 (script:
3 (cylinder #:diameter dia #:height 4)
4 (cylinder #:diameter (/ dia 2) #:height 4 #:z 4)
5 (cut: (cylinder #:diameter 4 #:height 8 #:z 2))
6 (named: teeth ((shape: ()
7 (script: (for _ in (range nr-teeth)
8 (tooth #:l 4 #:w 3 #:h 4)))))))
9 (constraints:

10 (assert: (circular #:shapes teeth
11 #:radius (* (/ dia 2) 1.05)))))
12
13 (constraint: circular (!shapes radius)
14 (for shape in shapes
15 (assert: (= shape.x (* (cos (* (/ 360 n) i)) radius)))
16 (assert: (= shape.y (* (sin (* (/ 360 n) i)) radius)))
17 (assert: (= shape.rot-z (* (/ 360 n) i)))))
18
19 (print: (gear #:dia 32 #:nr-teeth 20) "gear.stl")

3

PrintTalk
Technology Stack

2

1

PrintTalk Program

Constraint SolverSMT-LIB File

PrintTalk Evaluator

3D Model FileGeometric Modelling Engine

Figure 1 The PrintTalk toolchain.

1 (print: <shape> <filename>)

The print: statement conceptually ties together all necessary components for 3D model
generation. When a shape is printed, that shape and all its constituents are instantiated,
their constraints are checked and solved so that all constraint variables have valid values,
and finally the 3D model is generated. Currently, print: is the only imperative, impure
operation in PrintTalk, and is required to make the language practically usable. Imperative
operations are executed solely for their side-effects and cannot participate in compositions
with shapes or constraints.

2.3.1 Integrating the Z3 Solver
Constraints introduced in a PrintTalk program are solved using the Z3 solver [6]. To do so, the
constraints are first compiled into an SMT-LIB file [2] that serves as the input for Z3. After
solving these constraints, Z3 returns an S-expression containing the values to be assigned to
the constraint variables. This process corresponds to the first part of the PrintTalk toolchain,
depicted in Figure 1. Once all constraint variables have a value assigned to them, PrintTalk
continues by building the 3D model to be exported as an STL file. PrintTalk makes use of
the Open CASCADE Technology (OCCT) geometry library for generating STL files. This
process corresponds to the second part of the PrintTalk toolchain.

Z3 [6] was selected primarily because it is an open-source solver supporting non-linear
constraints, a capability lacking in considered alternatives like Cassowary [1]. PrintTalk
actually uses a version of Z3 to which minor modifications were made in order to better



J. Jacobs, W. De Meuter, and J. Nicolay 16:9

Table 1 Performance metrics of PrintTalk’s constraint solving and 3D model generation processes.

3D model Solving time STL generation time
Pencil tray (Listing 1) 96 ms 259 ms
Gear (Listing 2) 511 ms 3464 ms
Lamp (Section 4) 2087 ms 15646 ms

suit PrintTalk’s requirements. PrintTalk employs a version of Z3 extended via its C++ API
to efficiently process both non-linear constraints and the soft constraints generated by the
relative positioning mechanism (Section 2.1.2). This extension handles hard constraints first,
then iteratively tests and adds satisfiable soft constraints in order of decreasing weight. This
approach implements a locally-predicate-better comparator for determining the constraint
hierarchy [4]. For performance considerations, our approach does not aim to maximise
the number of constraints of the same weight that can be satisfied. Instead, constraints
are added in the specific order that they are retrieved from a PrintTalk program (as
described in Section 2.3.2). Soft constraints are rejected when they cannot be satisfied due
to incompatibility with previously added (soft) constraints.

Performance is currently not the primary concern for PrintTalk. However, the constraint
solving time (part 1 of the toolchain) is typically exceeded by the STL generation time
(part 2 of the toolchain), suggesting the solver performance is not a limiting factor. Table 1
visualises the constraint solving and STL generation times for the 3D models described in
this paper, measured on an M1 MacBook Pro.

2.3.2 Determining the Constraint Hierarchy
PrintTalk establishes a deterministic sequence for constraints based on a depth-first traversal
of the shape tree (Section 2.1). Constituent shapes within a node are visited according
to their instantiation order in the parent’s script. During traversal, upon visiting a shape,
its explicit (hard) constraints are first appended to the sequence in their specified order.
Subsequently, the implicit (soft) constraints for default position (x, y, z) and rotation (rot-x,
rot-y, rot-z) parameters are appended in that specific order. The weight associated with
the soft constraints of constituent shapes increases by 1 relative to their parent, making root
node constraints the weakest and leaf node constraints the strongest.

Upon solving the constraints, PrintTalk sorts the soft constraints by weight using a stable
sorting algorithm, ensuring that the order in which the constraints were originally added
to the list of constraints is respected. These rules implement a clear semantics that helps
reasoning over PrintTalk programs and ensures that the output of a PrintTalk program
corresponds to the programmer’s expectations. For example, programmers can anticipate
the eventual positioning of constituent shapes, knowing that soft constraints on the positions
of earlier instantiated constituents have precedence over subsequent constituents.

3 Related Work

This section situates PrintTalk relative to existing approaches. First, we review the state of
the art in programmatic CAD (PCAD) tools, noting their general lack of robust constraint
mechanisms which motivates PrintTalk’s design (Section 3.1). Given the limited approaches
for constraint-solving in PCAD, we explore the extensive body of work on constraints within
the related field of 2D layout planning (Section 3.2). Finally, we cover object-constraint lan-
guages which, similar to PrintTalk, exhibit a multi-paradigm nature by combining declarative
constraints with object-oriented or imperative features (Section 3.3).

CP 2025



16:10 PrintTalk: A Language for Constraint-Based 3D Modelling

3.1 Programmatic CAD Tools

Programmatic CAD tools exist both as stand-alone domain-specific languages (DSLs) and as
libraries to general-purpose languages. This section describes OpenSCAD and CadQuery,
representing the state of the art in PCAD DSLs and libraries, respectively.

3.1.1 OpenSCAD

OpenSCAD [18] is a stand-alone PCAD language that represents shapes as a tree structure,
where the root node represents the complete 3D shape and other nodes represent constituents
that are composed by means of set-theoretic operations (union, difference, or intersection).
PrintTalk and OpenSCAD therefore employ a similar modelling technique that is based
on instantiating shapes and composing instances into more complex shapes. However,
OpenSCAD lacks bidirectional constraints capable of both generating valid parameter values
and validating provided ones. It only offers assert statements to check if parameter values
meet specified requirements, for example when a dimension may not exceed a certain length.
Apart from the declarative definition of 3D shapes, OpenSCAD also includes if statements
and for loops through which 3D models can be constructed imperatively.

3.1.2 CadQuery

CadQuery [5] is a PCAD library for Python. Compared to PrintTalk and OpenSCAD,
CadQuery provides a different way of modelling that relies more on extruding 2D surfaces to
3D shapes. For example, instead of directly instantiating a cylinder, first a circle on plane
must be drawn, followed by an extrusion operation to form a 3D cylinder. CadQuery [5] only
supports a limited set of geometric constraints [21], and the functionality of these constraints
is limited as Python is not a constraint-based language. While programmers can import a
constraint-solving library for Python and manually implement constraints, we consider this
beyond the scope of CadQuery’s inherent functionality. Another limitation of CadQuery is
that the programmer must keep track of all constraints that are added within a design and
make sure that all constraints are solved at appropriate moments by invoking the solve()
method.

3.2 Constraints for 2D Layout

Constraint-solving techniques are frequently applied in domains requiring the precise spatial
arrangement of 2D objects, such as user interface design and graph layout.

3.2.1 UI Design

A plethora of related work describes tools and approaches for developing UI layouts using
constraints that specify how elements should be arranged on a screen [3]. An example of
this is Apple’s UIKit, which integrates the Cassowary solver [1] to support constraints for
designing interfaces of iOS applications. Another layout engine [16] allows UI layouts to be
described using ordinal and linear constraints, so that the UI can be dynamically adjusted by
resolving constraints. Other related work includes ALM [15], a constraint language through
which UI elements can be constrained using both hard and soft constraints. Similar to
PrintTalk, ALM makes use of soft constraints and constraint hierarchies to determine which
constraints have precedence over others in order to find the most optimal layout.



J. Jacobs, W. De Meuter, and J. Nicolay 16:11

3.2.2 Graph Layout
Another related domain concerned with positioning elements in a 2D space is the graph-layout
domain. Several algorithms have been developed to represent 2D graphs in an optimal manner,
where constraints are used for arranging the nodes and edges of graphs on a 2D canvas in
such a way that none of the nodes overlap and none of the edges cross each other. One such
algorithm takes suggested node positions and constraints on these positions as input [12]. The
algorithm aims to find a solution in which the nodes are as close to their suggested positions
as possible, while satisfying all constraints placed on these positions. The suggestions for
node positions have an associated weight, and the algorithm prioritises suggestions with a
higher weight. Another algorithm uses constraints for expressing aesthetic criteria such as
symmetry and alignment [7]. These constraints also have an associated weight through which
the graph layout’s aesthetic can be optimized.

3.3 Object-Constraint Languages
Existing research explores languages that integrate both concepts of object-oriented program-
ming and constraints. Two such languages, s-Comma [20] and Babelsberg [8], share many
similarities with PrintTalk. PrintTalk shapes are similar to classes in s-COMMA, as con-
straints can be placed on the parameters of instances of s-Comma classes, but can also be part
of the class definition. Babelsberg [8] is another object-constraint language that combines
imperative programming with constraints. Babelsberg is implemented by extending Ruby
with constraints and allowing variables to partake in these constraints. Upon evaluating a
Babelsberg program, the interpreter switches between an imperative evaluation mode and a
constraint evaluation mode at appropriate times. PrintTalk has similar characteristics, as a
shape definition’s script is evaluated first, after which all constraints are collected and solved
so that values can be assigned to the constraint variables.

4 Evaluation

We evaluate PrintTalk against OpenSCAD and CadQuery, representing the state of the art
in stand-alone PCAD languages and libraries. Our evaluation focuses on how each tool
addresses the problems outlined in Section 1.1: parameter explosion, leaky compositional
abstraction, and imperative compositional specification. We compare PrintTalk, OpenSCAD,
and CadQuery programs for modelling the same 3D model – a desk lamp illustrated in
Figure 2 – with the same level of detail and features, and offering similar control over shape
parameters. The lamp is composed out of a lamp shade, a base, arms, and caps for the hinge
points. Each program uses the most suitable features that each tool offers for modelling
the lamp. The complete code listings are available as supplementary material,1 and only
the most relevant snippets are included in this section. Appendix B contains an extended
evaluation of PrintTalk, in which two additional 3D models are covered.

4.1 Criterium 1: Flexible Variability and Reusability
PrintTalk

PrintTalk permits parametrised components, such as shapes and composite constraints,
to be instantiated with only a subset of their parameters explicitly assigned values. The
constraint solver subsequently determines values for the remaining unbound parameters.

1 https://doi.org/10.5281/zenodo.15593661

CP 2025

https://doi.org/10.5281/zenodo.15593661


16:12 PrintTalk: A Language for Constraint-Based 3D Modelling

Figure 2 3D model of a lamp used for the evaluation of PrintTalk.

Listing 3 PrintTalk constraints through which valid parameter values can be determined.
40 (shape: lamp-base (dia height screw-dia screw-x screw-y screw-z mnt-l mnt-w mnt-th)
41 (script:
42 (named: base (cylinder #:diameter dia #:height height))
43 (cuboid #:height mnt-l #:width mnt-w #:length mnt-th
44 #:x (/ mnt-th -2) #:y (- (/ dia 2) (+ (/ mnt-w 2) 10)) ... )
45 (cylinder #:diameter mnt-w #:height mnt-th
46 #:x (/ mnt-th -2) #:y (- (/ dia 2) (+ (/ mnt-w 2) 10)) ... )
47 (cut: (named: sh (cylinder #:diameter screw-dia #:height mnt-th
48 #:x (/ mnt-th -2) #:y (- (/ dia 2) (+ (/ mnt-w 2) 10)) ... ))))
49 (constraints:
50 (assert: (>= mnt-l (/ mnt-w 2)))
51 (assert: (>= dia (+ mnt-w 5)))
52 (assert: (>= height 5))
53 (assert: (= screw-x (- x (/ mnt-th 2))))
54 (assert: (= screw-y (+ y (- (/ dia 2) (+ (/ mnt-w 2) 10)))))
55 (assert: (= screw-z (+ z (/ height 2) mnt-l)))))

Constraints incorporated into a component’s definition serve to guide the solver towards
valid solutions, for example ensuring positive dimensions for shapes. These constraints also
improve reusability by validating explicitly provided parameter values, triggering an error if
a value violates an established condition. Responsibility for defining adequate constraints
rests with the programmer, as PrintTalk’s validation capability is confined to the constraints
specified within the component definition.

As an example, Listing 3 defines a shape named lamp-base containing parameters dia
and height representing the diameter and height of the base of the lamp, and constraints are
in place to set minimum dimensions (lines 51–52).

OpenSCAD

Parametrised OpenSCAD shapes can be defined using the module keyword and can, similar
to PrintTalk, also be instantiated with optionally bound parameters. Unbound parameters
in OpenSCAD get an undef value, and a warning message is raised when undef values
are used within the body of the shape’s definition. Like PrintTalk, this body can contain
assertions for ensuring that parameter values are valid. Assertions in OpenSCAD take
expressions representing conditions as argument, and raise an error when these conditions
cannot be satisfied. Contrary to PrintTalk, there is no constraint solver that can improve the
reusability of 3D components by using these assertion for determining suitable parameter
values automatically. To generate valid shapes, programmers must manually find suitable
values for all of a shape’s parameters upon instantiation. In Listing 4, the lamp_base shape
definition contains assert statements modelling the same parameter requirements as the
equivalent PrintTalk lamp-base shape definition in Listing 3.



J. Jacobs, W. De Meuter, and J. Nicolay 16:13

Listing 4 OpenSCAD assertions through which invalid parameter values can be detected.
41 module lamp_base(dia, height, screw_dia, mnt_l, mnt_w, mnt_th) {
42 assert(mnt_l >= mnt_w/2);
43 assert(dia >= (mnt_w + 5));
44 assert(height >= 5);
45 ... }

CadQuery

To modularise CadQuery shapes, programmers must make use of Python’s language features
such as functions or classes for defining new shapes. These allow shapes to be modularized
through function parameters or parametrised constructor methods, respectively. While
Python functions and constructor methods support default parameter values, there is no
mechanism in place that allows programmers to leave parameters unbound, relying on a
constraint solver to find suitable parameters. Furthermore, invalid parameter values cannot
be detected without resorting to writing tedious if tests and raising errors accordingly.

4.2 Criterium 2: Flexible Composition
PrintTalk

Generally, complex 3D shapes are defined by composing simpler constituent shapes. For
example, the lamp is designed out of individual components representing the base, arms,
hinges, and a lamp shade. To correctly compose these shapes, anchor points indicating where
other shapes can be attached in a composition must be defined. In PrintTalk, these points
can be defined within a shape’s definition, and exposed as parameters of that shape.

In the case of our lamp, the lamp-base component exposes compositional parameters
screw-x, screw-y, and screw-z as the anchor point of the base to which a lamp arm can
be attached. Constraints are in place to express the relations between these compositional
parameters and the dimensional parameters of the lamp-base shape (lines 53–55 in Listing 3).

Although anchor points represented as compositional parameters increase the parameter
count of composable shapes, we find this approach to be the sweet spot between reusability
and composability. Because parameters can be left unbound when instatiating PrintTalk
shapes, this provides flexibility in the way that shapes can be reused:

Anchor points are derived from other parameters: By specifying the constituent’s
other parameters, its anchor points can be derived, and are essentially “locked” in place.
In PrintTalk, the anchor point defined through composition parameters can be accessed
and used to align other constituents in the composition with them.
Other parameters are derived from anchor points: By constraining the constituent’s
anchor points, and leaving other parameter values such as dimensions underconstrained,
these dimensions can be derived upon composition, resulting in a shape that fits the
composition, without requiring the designer to manually determine all dimensions.

OpenSCAD

OpenSCAD has no support for anchor points, and the modules through which shapes can
be abstracted and modularised offer no support for exposing information such as anchor
points upon composition. Instead, anchor points must be calculated manually, external to
the shape. Yet, calculating the anchor points of a constituent requires information a how
the constituent is composed itself. This form of “leaky abstraction” complicates the reuse of
shapes in OpenSCAD.

CP 2025



16:14 PrintTalk: A Language for Constraint-Based 3D Modelling

Listing 5 Additional calculations needed to determine the anchor point of the lamp_base shape.
77 base_screw_y=(base_dia/2)-(arm_width/2)-10;
78 base_screw_z = base_height/2+(arm_width-screw_dia);
79
80 lower_arm_pos_delta_y = sin(lower_arm_angle)*(lower_arm_length/2);
81 lower_arm_y=base_screw_y-lower_arm_pos_delta_y;
82 lower_arm_pos_delta_z = cos(lower_arm_angle)*(lower_arm_length/2);
83 lower_arm_z=base_screw_z+lower_arm_pos_delta_z;

Listing 6 Tagging CadQuery geometries in order to use them as composition parameters.
47 hole = base_shape.faces("%PLANE").faces(">Z").faces(">X")\
48 .edges("%CIRCLE").edges(">>Z[-2]")
49 hole.tag("hole")

For example, in Listing 5, additional calculations for determining the anchor point of the
lamp_base shape are needed in order to correctly use that shape in a composition where the
screw hole of the base needs to line up with the screw hole of the lower arm.

CadQuery

CadQuery allows for shapes to be composed in “Assemblies”, and composition happens
either by means of constraints, or by manually specifying the location, rotation, and scale of
each constituent in the composition. CadQuery provides a limited set of constraints that can
be used for expressing relations between parameters of constituent shapes. To determine
their composition parameters, shapes can be queried to obtain their geometries such as
surfaces, edges, and points, which can be tagged using the tag method. For example, the
code snippet in Listing 6 is used to tag the screw hole of the base of the lamp.

After being tagged, geometries can be queried from their shape by using their tag, and
can be used as composition parameters that can partake in composition constraints. Listing 7
illustrates how the screw hole of the base is constrained to line up with the screw hole of the
lower arm of our lamp using CadQuery’s built-in Plane constraint.

It is only possible to tag geometries that are present in a shape, and it is not possible
to tag arbitrary anchor points relative to the shape. For example, it is not possible to tag
a specific spot where an on-off switch can be added to our lamp, without there being a
geometry that can be tagged on that exact spot.

4.3 Criterium 3: Declarative and Reusable Compositional Abstraction
PrintTalk

Defining shapes that contain constituent shapes placed in a pattern, such as the caps used for
the hinges in our lamp, requires the functionality for instantiating a number of shapes, and
placing each shape in the desired location. This functionality is split over two components in
PrintTalk, facilitating the reuse of spatial patterns through constraints. Similar to shapes,
constraints expressing spatial patterns can be defined once and reused later. Moreover, the

Listing 7 Composing CadQuery shapes by constraining their tagged geometries.
113 .constrain("base?hole", "lower_arm?front_bottom_hole", "Plane", param=0)\



J. Jacobs, W. De Meuter, and J. Nicolay 16:15

Listing 8 Use of the circular spatial pattern in PrintTalk for placing shapes in a circular pattern.
1 (shape: cap (dia height)
2 (script:
3 (cylinder #:diameter dia #:height height)
4 (cut: (named: cutouts ((shape: ()
5 (script:
6 (for _ in (range 10)
7 (cylinder #:diameter (/ dia 4) #:height height))))))))
8 (constraints:
9 (assert: (circular #:shapes cutouts #:radius (* dia 0.55)))))

Listing 9 OpenSCAD code using for loops for placing shapes in a circular pattern.
1 module cap(dia, height){
2 difference(){cylinder(h=height, d=dia, center=true);
3 union(){
4 for(i=[0:9]){
5 translate([cos(36*i)*dia*0.55, sin(36*i)*dia*0.55, 0])
6 cylinder(h=height, d=dia/4, center=true);
7 }}}}

pattern definition is independent of the shapes to be placed in that pattern.
For example, the cap shape definition in Listing 8 reuses the circular pattern defined in

Listing 2 for modelling the 10 cutouts of the caps of the lamp’s hinge-points (line 9).

OpenSCAD and CadQuery

In contrast, OpenSCAD and CadQuery require for loops to achieve the same, hampering
the abstraction of patterns. This is illustrated in the OpenSCAD snippet in Listing 9 that
uses a single for loop for instantiating and positioning the cutouts of the caps of the lamp’s
hinge-points (lines 4–6). As the parameters of shapes are immutable, and it is impossible
to reposition shapes after their instantiation, shapes must be positioned correctly upon
instantiation, which makes it impossible to split the functionalities in a way that allows for
abstracting spatial patterns.

5 Conclusion

We presented PrintTalk, a constraint-based language for programmatic 3D modelling. Print-
Talk enables 3D models to partake in compositions, as constituents to more complex shape,
and features an composition mechanism that allows relations between constituents and their
parameters to be expressed in a declarative manner, using constraints. We implemented
PrintTalk as a domain-specific language on top of Racket. In order to evaluate PrintTalk, we
compared it to state of the art in programmatic modelling tools, represented by OpenSCAD
and CadQuery. From this evaluation, we conclude that PrintTalk’s composition mechanism
promotes the reusability of 3D shapes, with an underlying constraint solver that helps
programmers with finding suitable parameter values for constituents, such that they can be
composed into valid 3D models.

CP 2025



16:16 PrintTalk: A Language for Constraint-Based 3D Modelling

References
1 Greg J. Badros, Alan Borning, and Peter J. Stuckey. The cassowary linear arithmetic

constraint solving algorithm. ACM Transactions on Computer-Human Interaction (TOCHI),
8(4):267–306, December 2001. doi:10.1145/504704.504705.

2 Clark Barrett, Aaron Stump, Cesare Tinelli, et al. The smt-lib standard: Version 2.0. In
Proceedings of the 8th international workshop on satisfiability modulo theories (Edinburgh,
UK), volume 13, page 14, 2010.

3 Alan Borning and Robert Duisberg. Constraint-based tools for building user interfaces. ACM
Trans. Graph., 5(4):345–374, October 1986. doi:10.1145/27623.29354.

4 Alan Borning, Robert Duisberg, Bjorn Freeman-Benson, Axel Kramer, and Michael Woolf.
Constraint hierarchies. In Conference Proceedings on Object-Oriented Programming Systems,
Languages and Applications, OOPSLA ’87, pages 48–60, New York, NY, USA, 1987. Association
for Computing Machinery. doi:10.1145/38765.38812.

5 GitHub - CadQuery/cadquery. https://github.com/CadQuery/cadquery. [Accessed 02-04-
2025].

6 Leonardo de Moura and Nikolaj Bjørner. Z3: An efficient smt solver. In Tools and Algorithms
for the Construction and Analysis of Systems, pages 337–340, Berlin, Heidelberg, 2008. Springer
Berlin Heidelberg. doi:10.1007/978-3-540-78800-3_24.

7 E. Dengler, M. Friedell, and J. Marks. Constraint-driven diagram layout. In Proceedings 1993
IEEE Symposium on Visual Languages, pages 330–335, 1993. doi:10.1109/VL.1993.269619.

8 Tim Felgentreff, Alan Borning, and Robert Hirschfeld. Babelsberg: Specifying and solving
constraints on object behavior, volume 81. Universitätsverlag Potsdam, 2014.

9 Matthias Felleisen, Robert Bruce Findler, Matthew Flatt, Shriram Krishnamurthi, Eli Barzilay,
Jay McCarthy, and Sam Tobin-Hochstadt. A programmable programming language. Commun.
ACM, 61(3):62–71, February 2018. doi:10.1145/3127323.

10 Jessie Frazelle. A new era for mechanical cad. Commun. ACM, 64(10):36–39, September 2021.
doi:10.1145/3464909.

11 Joseph Gil and David H. Lorenz. Environmental acquisition: A new inheritance-like abstraction
mechanism. SIGPLAN Not., 31(10):214–231, October 1996. doi:10.1145/236338.236358.

12 Weiqing He and Kim Marriott. Constrained graph layout. Constraints, 3(4):289–314, 1998.
doi:10.1023/A:1009771921595.

13 ImplicitCad — implicitcad.org. https://www.implicitcad.org/. [Accessed 02-04-2025].
14 GitHub - jscad/OpenJSCAD.org. https://github.com/jscad/OpenJSCAD.org. [Accessed

02-04-2025].
15 Christof Lutteroth, Robert Strandh, and Gerald Weber. Domain specific high-level con-

straints for user interface layout. Constraints An Int. J., 13(3):307–342, 2008. doi:
10.1007/S10601-008-9043-2.

16 Christof Lutteroth and Gerald Weber. User interface layout with ordinal and linear constraints.
In User Interfaces 2006, 7th Australasian User Interface Conference (AUIC 2006), Hobart,
Tasmania, Australia, January 16-19 2005, volume 50 of CRPIT, pages 53–60. Australian
Computer Society, 2006. URL: https://dl.acm.org/doi/10.5555/1151758.1151764.

17 Aman Mathur, Marcus Pirron, and Damien Zufferey. Interactive programming for parametric
cad. Computer Graphics Forum, 39(6):408–425, 2020. doi:10.1111/cgf.14046.

18 OpenSCAD — openscad.org. https://openscad.org/. [Accessed 02-04-2025].
19 GitHub - jeff-dh/SolidPython. https://github.com/jeff-dh/SolidPython. [Accessed 02-04-

2025].
20 Ricardo Soto and Laurent Granvilliers. On the Pursuit of a Standard Language for Object-

Oriented Constraint Modeling, pages 123–133. Springer Berlin Heidelberg, Berlin, Heidelberg,
2008. doi:10.1007/978-3-540-79355-7_12.

21 Hiromasa Suzuki, Hidetoshi Ando, and Fumihiko Kimura. Geometric constraints and reasoning
for geometrical cad systems. Computers & Graphics, 14(2):211–224, 1990. doi:10.1016/
0097-8493(90)90033-T.

https://doi.org/10.1145/504704.504705
https://doi.org/10.1145/27623.29354
https://doi.org/10.1145/38765.38812
https://github.com/CadQuery/cadquery
https://doi.org/10.1007/978-3-540-78800-3_24
https://doi.org/10.1109/VL.1993.269619
https://doi.org/10.1145/3127323
https://doi.org/10.1145/3464909
https://doi.org/10.1145/236338.236358
https://doi.org/10.1023/A:1009771921595
https://www.implicitcad.org/
https://github.com/jscad/OpenJSCAD.org
https://doi.org/10.1007/S10601-008-9043-2
https://doi.org/10.1007/S10601-008-9043-2
https://dl.acm.org/doi/10.5555/1151758.1151764
https://doi.org/10.1111/cgf.14046
https://openscad.org/
https://github.com/jeff-dh/SolidPython
https://doi.org/10.1007/978-3-540-79355-7_12
https://doi.org/10.1016/0097-8493(90)90033-T
https://doi.org/10.1016/0097-8493(90)90033-T


J. Jacobs, W. De Meuter, and J. Nicolay 16:17

A Formal Syntax of PrintTalk

Figure 3 gives an overview of PrintTalk’s formal syntax. PrintTalk is built on top of
Racket [9] and inherits its s-expression syntax. Similar to Racket, PrintTalk makes use of
prefix-notation, where function applications are structured with the operator preceding the
operands: (operator operand1 operand2 ...).

Identifiers are represented as an arbitrary number of characters, excluding white spaces
and colons. Also similar to Racket, identifiers starting with #: are reserved for named
parameters. Additionally, identifiers starting with an exclamation mark are reserved for
parameters that are forced to act as constructor parameters, as discussed in Section 2.1.1.

Strings are represented as an arbitrary number of characters between double quotes (e.g.,
"this is a string"), and are primarily used for representing filenames that are provided as
arguments to print: statements.

Numbers are either integers (e.g., 42), or floating point numbers (e.g., 0.33).

⟨program⟩ ::= ⟨top-level expression⟩* PrintTalk program

⟨top-level expression⟩ ::= Top-level expressions
⟨expr⟩ Expression

| ⟨definition⟩ Definition
| (print: ⟨expr⟩ string) Exporting shapes

⟨expr⟩ ::= Expressions
⟨var⟩ Variable

| ⟨literal⟩ Literal
| ⟨application⟩ Function application
| ⟨expr⟩.⟨var⟩ Variable reference
| (named: ⟨var⟩ ⟨expr⟩) Naming shapes or drawings
| (for ⟨var⟩ in ⟨expr⟩ ⟨expr⟩*) For loop
| (shape: (⟨var⟩*) (script: ⟨expr⟩*)) Shape constructor
| (shape: (⟨var⟩*) (script: ⟨expr⟩*) (constraints: ⟨assertion⟩*))

Shape constructor

⟨application⟩ ::= (⟨expr⟩ ⟨expr⟩*) Function application

⟨definition⟩ ::= Definitions
(shape: ⟨var⟩ (⟨var⟩*) (script: ⟨expr⟩*)) Shape definition

| (shape: ⟨var⟩ (⟨var⟩*) (script: ⟨expr⟩*) (constraints: ⟨assertion⟩*))
Shape definition

| (constraint: ⟨var⟩ (⟨var⟩*) ⟨assertion⟩*) Constraint definition

⟨assertion⟩ ::= (assert: ⟨expr⟩) Assertion

⟨var⟩ ::= identifier Variables

⟨literal⟩ ::= number or string Literals

Figure 3 PrintTalk’s formal syntax.

CP 2025



16:18 PrintTalk: A Language for Constraint-Based 3D Modelling

B Extended Evaluation

This section provides an extended evaluation in which we consider hinges and building blocks
(Figure 4) as two additional cases for comparing PrintTalk to OpenSCAD and CadQuery
based on the three criteria of Section 1.1. The complete code listings are available as
supplementary material,2 and only the most relevant snippets are included in this section.

(a) hinge (b) brick

Figure 4 3D model of (a) a hinge, and (b) a building brick.

B.1 Criterium 1: Flexible Variability and Reusability
The hinge shape declares several parameters representing dimensions that must be compatible
with each other. For example, the diameter of the screw holes must be smaller than the
widths and heights of the leafs, the diameter of the knuckle must be larger than the thickness
of the leaf, and the diameter of the pin must be in proportion to the length and width of the
leaf.

PrintTalk

In PrintTalk, these dimensional properties can be modelled by constraints, so that the
underlying constraint solver can raise an error when the provided parameter values do not
satisfy the constraints. If a PrintTalk program does not assign a value to a parameter, it
is treated as a constraint variable, and its value is then computed by the constraint solver,
based on applicable constraints, before the 3D model is generated.

Listing 10 PrintTalk constraint for ensuring valid dimensions.
1 (shape: leaf (w t h knuckle-dia screw-dia)
2 (script:
3 (cuboid #:length w #:width t #:height h)
4 (cut: (cylinder #:diameter screw-dia #:height t ...))
5 (cut: (cylinder #:diameter screw-dia #:height t ...))
6 (cuboid #:length (/ knuckle-dia 2) #:width t #:height (/ h 2) ...)
7 (cylinder #:diameter knuckle-dia #:height (/ h 2) ...))
8 (constraints:
9 (assert: (>= screw-dia (/ w 8)))

10 (assert: (< screw-dia w))
11 (assert: (< screw-dia (/ h 2)))
12 (assert: (>= knuckle-dia t))))

2 https://doi.org/10.5281/zenodo.15593661

https://doi.org/10.5281/zenodo.15593661


J. Jacobs, W. De Meuter, and J. Nicolay 16:19

OpenSCAD

In OpenSCAD, it is possible to add assert statements for “constraining” parameters and
raising an error when a provided parameter value does not meet an asserted condition.
However, as there is no underlying constraint solver, OpenSCAD is not able to automatically
compute values for parameters based on assertions.

Listing 11 OpenSCAD assertions for modelling conditions on parameter values.
1 module leaf (w, t, h, knuckle_dia, screw_dia){
2 assert(screw_dia>=w/8);
3 assert(screw_dia<w && screw_dia<h/2);
4 assert(knuckle_dia>=t);
5 ...

CadQuery

While CadQuery itself does not provide features for asserting conditions that parameter
values must adhere to, this functionally can be achieved by manually programming if tests
and raising Python exceptions accordingly. Similar to OpenSCAD, CadQuery is unable to
automatically compute values of parameters for which no value was provided upon shape
instantiation.

Listing 12 CadQuery if-tests and exceptions for modelling conditions on parameter values.
3 def leaf(w, t, h, knuckle_dia, screw_dia):
4 if screw_dia < w/8:
5 raise Exception("minimum value for screw_dia")
6 if screw_dia > w or screw_dia>h/2:
7 raise Exception("maximum value for screw_dia")
8 if knuckle_dia < t:
9 raise Exception("minimum value for knuckle_dia")

10 ...

B.2 Criterium 2: Flexible Composition
A leaf shape, representing the leaf and the solid part of the knuckle, is reused twice for
constructing the complete hinge shape, with a pin attached to one leaf and a hole cut from
the other leaf. To model a valid hinge, the diameters of the pin and the hole must be
determined so that these fit together. Furthermore, the diameter of the knuckle must be
sized accordingly, so that it is larger than the pin and larger than the thickness of the leaf.

PrintTalk

In PrintTalk, parameters and constraints can be used for representing dimensions and
expressing relations between them. As an example, the hinge shape of Listing 13 contains
parameters for representing the diameter of the pin (pin-dia), the diameter of the knuckle
(knuckle-dia) and the rim around the pin (pin-rim). From within the hinge’s constraints:
section (lines 22–26), composition constraints are placed on these parameters to ensure that
they are sized appropriately, relative to each other. One of these parameters – knuckle-dia
– is passed as an argument to the corresponding parameter of the leaf constituents (lines
17 and 20). Through PrintTalk’s scoping and parameter-passing mechanism, additional

CP 2025



16:20 PrintTalk: A Language for Constraint-Based 3D Modelling

Listing 13 PrintTalk constraint for expressing a linear pattern.
14 (shape: hinge (w t h screw-dia pin-dia knuckle-dia pin-rim)
15 (script:
16 ;; Leaf with pin
17 (named: leaf1 (leaf ... #:knuckle-dia knuckle-dia #:screw-dia screw-dia))
18 (named: pin (cylinder #:diameter (- pin-dia 1) #:height (/ h 2) ...))
19 ;; Leaf with hole
20 (named: leaf2 (leaf ... #:knuckle-dia knuckle-dia #:screw-dia screw-dia ...)))
21 (cut: (named: pin-hole (cylinder #:diameter pin-dia #:height (/ h 2) ...))))
22 (constraints:
23 (assert: (>= pin-dia (* 0.8 knuckle-dia)))
24 (assert: (< pin-dia knuckle-dia))
25 (assert: (= pin-rim (/ (- knuckle-dia pin-dia) 2)))
26 (assert: (>= pin-rim (/ pin-dia 8)))))

constraints can be added to the knuckle-dia constraint variable from within the constituent
leaf shapes. In this case, an additional constraint stating that the diameter of the knuckle
(knuckle-dia) must be larger than the thickness of the leaf (t) is added from within the leaf
shape (line 12 of Listing 10). In PrintTalk, if the hinge shape is instantiated without values
specified for the pin-dia, knuckle-dia, and pin-rim parameters, these parameters are treated
as constraint variables. Their values are then determined based on constraints originating
from both the hinge shape itself and its constituent leaf shapes.

OpenSCAD and CadQuery

In OpenSCAD and CadQuery, it is not possible to add composition constraints that express
relationships between parameter values of constituents, and automatically derive parameter
values based on these constraints. Instead, parameter values must be determined manually,
and provided as arguments upon shape instantiation. For the hinge shape, this means
that values for pin_dia and knuckle_dia must be provided upon instantiating the shape.
Determining valid values for these parameters, however, requires inspecting the code of the
constituents, taking into account conditions (expressed as assertions or if-tests) on parameter
values and any exceptions these conditions potentially raise.

B.3 Criterium 3: Declarative and Reusable Compositional Abstraction

The brick shape (Figure 4(b) & Figure 5) includes two rows of cylinders on its top surface
and a row of hollow cylinders on its bottom surface. The cylinders within each row are
arranged in a linear pattern.

Figure 5 Brick with linear patterns on its top (left image) and on its bottom (right image).



J. Jacobs, W. De Meuter, and J. Nicolay 16:21

Listing 14 PrintTalk constraint for expressing linear patterns.
1 (constraint: linear-x (!shapes x0 xn dx)
2 (for shape in shapes
3 (assert: (= xn (+ x0 (* (- n 1) dx))))
4 (assert: (= shape.x (+ x0 (* dx i))))))

Listing 15 The brick shape modelled by reusing the linear-x constraint in PrintTalk.
6 (shape: bottom-cyl (height)
7 (script:
8 (cylinder #:diameter 6.5 #:height height)
9 (cut: (cylinder #:diameter 4.8 #:height height))))

10
11 (shape: block (l w h clearance)
12 (script:
13 (cuboid #:length (- (* 8 l) clearance) #:width (- (* 8 w) clearance) ...)
14 (cut: (cuboid #:length (- (- (* 8 l) clearance) 2.4) ...))))
15
16 (shape: brick (!l)
17 (script:
18 (block #:l l #:w 2 #:h 9.6 #:clearance 0.2)
19 (named: bot-cyls ((shape: () (script:
20 (for i in (range (- l 1))
21 (bottom-cyl #:height 8.4 #:z -0.6))))))
22 (named: top-cyls-c1 ((shape: () (script:
23 (for i in (range l)
24 (cylinder #:diameter 4.8 #:height 1.8 #:y -4 #:z 5.7))))))
25 (named: top-cyls-c2 ((shape: () (script:
26 (for i in (range l)
27 (cylinder #:diameter 4.8 #:height 1.8 #:y 4 #:z 5.7)))))))
28 (constraints:
29 (assert: (linear-x #:shapes bot-cyls #:x0 (- (* (- (/ l 2) 1) 8)) #:dx 8))
30 (assert: (linear-x #:shapes top-cyls-c1 #:x0 (- (-(* (/ l 2) 8) 4)) #:dx 8))
31 (assert: (linear-x #:shapes top-cyls-c2 #:x0 (-(-(* (/ l 2) 8) 4)) #:dx 8))))
32
33 (print: (brick #:l 4) "brick-4.stl")

PrintTalk

In PrintTalk, the logic for arranging shapes in a pattern can be abstracted as constraints.
This abstraction eliminates the need to repeat positioning calculations each time shapes
are subsequently placed in that pattern. For example, the linear-x constraint in Listing 14
expresses the pattern used for modelling the rows of cylinders on the top and bottom surfaces
of the brick. As a result, the code for instantiating cylinders can be separated from the code
for positioning them.

OpenSCAD and CadQuery

OpenSCAD and CadQuery do not feature abstraction mechanisms that allow the code for
instantiating shapes to be decoupled from the code for positioning these shapes. As a result,
the calculations for linearly positioning the cylinders on the top and bottom surfaces of the
brick must be repeated for each row of cylinders.

CP 2025



16:22 PrintTalk: A Language for Constraint-Based 3D Modelling

Listing 16 In OpenSCAD, calculations for determining the position of shapes must be repeated
for each row of cylinders.
16 module brick (l){
17 cyl_delta = 8;
18 bottom_cyl_begin_x = -(l/2-1)*cyl_delta;
19 top_cyl_begin_x = -((l/2)*cyl_delta)+cyl_delta/2;
20 union(){
21 block(l=l, w=2, h=9.6, clearance=0.2);
22 for(i=[0:l-2]){
23 translate([bottom_cyl_begin_x+i*cyl_delta, 0, -0.6])
24 bottom_cyl(height=8.4);
25 }
26 for(i=[0:l-1]){
27 translate([top_cyl_begin_x+i*cyl_delta, -4, 5.7])
28 cylinder(h=1.8, d=4.8, center = true);
29 }
30 for(i=[0:l-1]){
31 translate([top_cyl_begin_x+i*cyl_delta, 4, 5.7])
32 cylinder(h=1.8, d=4.8, center = true);
33 }
34 }
35 }


	1 Introduction
	1.1 Problem
	1.2 Solution
	1.3 Overview

	2 Overview of PrintTalk
	2.1 Shapes and Constraints
	2.1.1 Constraint Variables and Composition
	2.1.2 Relative Position and Rotation
	2.1.3 Scoping Mechanism

	2.2 Constraint Composition and Spatial Patterns
	2.2.1 Composite Constraints
	2.2.2 Spatial Patterns Expressed as Constraints

	2.3 Output Statements
	2.3.1 Integrating the Z3 Solver
	2.3.2 Determining the Constraint Hierarchy


	3 Related Work
	3.1 Programmatic CAD Tools
	3.1.1 OpenSCAD
	3.1.2 CadQuery

	3.2 Constraints for 2D Layout
	3.2.1 UI Design
	3.2.2 Graph Layout

	3.3 Object-Constraint Languages

	4 Evaluation
	4.1 Criterium 1: Flexible Variability and Reusability
	4.2 Criterium 2: Flexible Composition
	4.3 Criterium 3: Declarative and Reusable Compositional Abstraction

	5 Conclusion
	A Formal Syntax of PrintTalk
	B Extended Evaluation
	B.1 Criterium 1: Flexible Variability and Reusability
	B.2 Criterium 2: Flexible Composition
	B.3 Criterium 3: Declarative and Reusable Compositional Abstraction


