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Abstract
Boolean Networks (BNs) serve as a fundamental modeling framework for capturing complex dynamical
systems across various domains, including systems biology, computational logic, and artificial
intelligence. A crucial property of BNs is the presence of trap spaces – subspaces of the state
space that, once entered, cannot be exited. Minimal trap spaces, in particular, play a significant
role in analyzing the long-term behavior of BNs, making their efficient enumeration and counting
essential. The fixed points in BNs are a special case of minimal trap spaces. In this work, we
formulate several meaningful counting problems related to minimal trap spaces and fixed points
in BNs. These problems provide valuable insights both within BN theory (e.g., in probabilistic
reasoning and dynamical analysis) and in broader application areas, including systems biology,
abstract argumentation, and logic programming. To address these computational challenges, we
propose novel methods based on approximate answer set counting, leveraging techniques from answer
set programming. Our approach efficiently approximates the number of minimal trap spaces and the
number of fixed points without requiring exhaustive enumeration, making it particularly well-suited
for large-scale BNs. Our experimental evaluation on an extensive and diverse set of benchmark
instances shows that our methods significantly improve the feasibility of counting minimal trap
spaces and fixed points, paving the way for new applications in BN analysis and beyond.
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1 Introduction

Boolean Networks (BNs) serve as a fundamental modeling framework for representing complex
dynamical systems across domains such as systems biology, computational logic, and artificial
intelligence [19, 31, 56, 58, 73]. Their ability to capture intricate interactions and complex
system behaviors makes them a valuable tool for studying diverse phenomena such as gene
regulatory networks, logical circuits, and reasoning processes [5, 56]. A crucial aspect of BN
dynamics is the existence of trap spaces – subspaces of the state space that, once entered,
cannot be exited [44]. These structures are instrumental in understanding the long-term
behavior of BNs, as they often correspond to stable system configurations or attractors [44].

Among trap spaces, minimal trap spaces (fixed points are a special case of minimal trap
spaces in which all variables are fixed [44]) are of particular interest due to their role in
characterizing the dynamical landscape of a BN [44, 75]. The identification and counting of
minimal trap spaces provide valuable insights into the system stability, attractor structure,
and probabilistic behavior [44, 32]. However, enumerating these structures poses a significant
challenge due to their computational complexity, especially for large-scale BNs encountered in
practical applications [68]. Scalable methods for counting minimal trap spaces are therefore
essential for advancing the BN analysis.

Unfortunately, minimal trap spaces have received little attention in the context of counting
problems for Boolean networks. In contrast, the problem of counting fixed points has been
studied in several works [67, 66, 32, 12]. These works show that fixed point counting is
generally #P-complete and examine its complexity under structural restrictions [67, 66] or
specific classes of Boolean update functions [32]. Some studies also consider scenarios in
which the update logic is only partially known [12]. On the practical side, while no dedicated
implementation exists for fixed point counting, the task can be reduced to propositional
model counting [60] via a CNF encoding of fixed points [20]. To the best of our knowledge, no
prior work – either theoretical or practical – has addressed the problem of counting minimal
trap spaces in Boolean networks.

Our paper addresses the research gap by formulating six meaningful problems related to
counting minimal trap spaces and fixed points in BNs. These counting problems capture
core tasks such as counting all minimal trap spaces or fixed points, counting those that
satisfy a given property (e.g., a phenotype), and counting solutions under perturbations. These
problems provide valuable insights not only within BN theory (e.g., probabilistic reasoning
and dynamical analysis) but also in broader application areas such as abstract argumentation
and logic programming (discussed in Section 4). We subsequently propose novel and efficient
methods to solve the counting problems by exploiting the expressive power of Answer Set
Programming (ASP) [50]. ASP is a declarative problem solving paradigm and has widely
been applied in the field of systems biology [57, 76], in particular in the analysis and control
of BNs [1, 42, 44, 55, 68, 71] (see Section 3). As in existing ASP counting literature [39],
our ASP-based reduction leverages the approximate answer set counter ApproxASP [38],
which employs a hashing-based technique for approximate answer set counting. Finally, we
conduct an extensive experimental evaluation on a diverse benchmark dataset. Our analysis
shows that ApproxASP efficiently estimates the number of minimal trap spaces and fixed
points, and ApproxMC [77] efficiently estimates fixed point counts. Both approaches avoid
exhaustive enumeration, significantly improving the feasibility of counting compared to
enumeration and BDD-based methods used in other tools.

The remainder of the paper is structured as follows. In Section 2, we review the necessary
background on propositional logic, BNs, answer set programming, and model counting.
Section 3 surveys related work. Section 4 defines the six counting problems we consider
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and discusses their applications. Section 5 introduces our ASP-based reduction methods
for solving these problems. Section 6 presents experimental results, demonstrating the
effectiveness of our methods. Finally, Section 7 concludes the paper and outlines potential
directions for future research.

2 Preliminaries

In this section, we present background and some notations from propositional logic, Boolean
networks, and answer set programming.

2.1 Propositional Formulas
In this work, we employ B = {0, 1} as the Boolean domain and B⋆ = {0, 1, ⋆} as the three-
valued domain. Under propositional semantics, each propositional variable v takes its value
from B. A propositional formula is defined recursively: the basic formulas include the Boolean
constants 0 and 1, any variable v, and its negation ¬v. Moreover, if a formula is prefixed
by ¬ (not) or if two formulas are connected by a logical connective – ∧ (conjunction), ∨
(disjunction), and ↔ (bi-implication) – the resulting expression is also a formula. A formula
is in Conjunctive Normal Form (CNF) if it is expressed as a conjunction of disjunctions
of literals (variables or their negations), and it is in Negation Normal Form (NNF) if all
negations are applied directly to propositional variables. Any propositional formula can
be converted into a semantically equivalent CNF or NNF by recursively applying specific
rewriting rules for its logical connectives [10, 51].

2.2 Boolean Networks
A Boolean Network (BN) f is defined as a finite set of Boolean functions over a finite set of
Boolean variables, denoted by Var(f). Each variable v ∈ Var(f) is associated with a Boolean
function fv:B|Var(f)| → B. A function fv is termed constant if it is always either 0 or 1
regardless of the values of its arguments. A variable v is considered a source variable if fv is
the identity function on v, i.e., fv = v. A state s of f is a Boolean vector s ∈ B|Var(f)| that
can be viewed as a mapping: s: Var(f)→ B; we denote the value of variable v in state s by
sv. For convenience, a state is often represented as a string of values (e.g., “0110” instead of
(0, 1, 1, 0)).

At each discrete time step t, each variable v can update its state according to its Boolean
function fv; that is, v’s state at time t + 1 is given by s′

v = fv(s). An update scheme specifies
how these state updates occur over time [58]. The two primary schemes are synchronous, in
which all variables update simultaneously, and fully asynchronous, where a single variable is
chosen non-deterministically to update. Under arbitrary update scheme, the BN transitions
from one state to another – a process known as a state transition. The overall dynamics of
the BN are captured by the State Transition Graph (STG), a directed graph whose nodes
represent states and edges represent transitions. We denote the STG under the synchronous
update scheme as sstg(f) and that under the fully asynchronous scheme as astg(f).

A non-empty set A of states is a trap set if there is no transition from a state in A to a
state outside A in the State Transition Graph (STG) of f (i.e., there is no pair x ∈ A and
y ̸∈ A such that (x, y) is an arc in the STG) [44]. A trap set that is minimal with respect to
set inclusion is termed an attractor. In particular, an attractor containing a single state is
called a fixed point, while one with two or more states is referred to as a cyclic attractor. A
sub-space m of a BN f is a mapping m: Var(f) → B⋆. A variable v ∈ Var(f) is said to be
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fixed (resp. free) in m if m(v) ̸= ⋆ (resp. m(v) = ⋆). For convenience, a sub-space is often
represented as a string of values (e.g., 0⋆ instead of {v1 = 0, v2 = ⋆}). The sub-space m

represents a set of states, denoted by S[m], defined as

S[m] = {s ∈ B|Var(f)| | sv = m(v),∀v ∈ Var(f), m(v) ̸= ⋆}

For example, if m = ⋆11, then S[m] = {011, 111}. If a sub-space is also a trap set, it is a trap
space. Unlike trap sets and attractors, trap spaces are independent of the update scheme
employed [44]. Notably, a fixed point of f is a special trap space in which all variables are
fixed. A trap space m is minimal if there is no trap space m′ such that S[m′] ⊂ S[m]. Since
an attractor is a subset-minimal trap set, a minimal trap space contains at least one attractor
of the BN, regardless of the update scheme employed [44].

▶ Example 1. Let us consider BN f with Var(f) = {a, b}, fa = a ∧ ¬b, and fb = a. The
synchronous STG of f is shown in Figure 1a. The set {00, 01, 11} is a trap set but not a trap
space. It is easy to check that f has three trap spaces: m1 = 00, m2 = 0⋆, and m3 = ⋆⋆.
Among these, m1 is a minimal trap space (also a fixed point) of f . In this case, m1 is also
the only synchronous attractor of f .

00 01

10 11

(a)

00 01

10 11

(b)

Figure 1 (a) Synchronous STG sstg(f) of BN f from Example 1. (b) Synchronous STG sstg(f)
where variable b is subject to a knockout (i.e., its value is forced to 0). Trap spaces (resp. minimal
trap spaces) are enclosed by dashed (resp. solid) rectangular frames.

2.3 Answer Set Programming
An Answer Set Program (ASP) P expresses logical constraints between a set of propositional
variables. In answer set programming, such variables are also called atoms, and the set of
atoms appearing in P is denoted by at(P ). For notational convenience, we will use the terms
“variable” and “atom” interchangeably throughout the paper.
An ASP is a finite set of rules of the form

a1 ∨ . . . ∨ ak ← b1, . . . , bm,∼c1, . . . ,∼cn

where k, m, n ≥ 0 and ∼ denotes default negation [17]. Given a rule r of the above form,
we define h(r) = {a1, . . . , an}, b+(r) = {b1, . . . , bm}, and b−(r) = {c1, . . . , cn} as the head,
positive body, and negative body of r, respectively. The rule r is a fact if b+(r) = b−(r) = ∅
and an (integrity) constraint if h(r) = ∅. We often use the notations ⊤ and ⊥ to denote
empty body (b+(r) ∪ b−(r) = ∅) and empty head (h(r) = ∅), respectively. The rule r is
called normal if |h(r)|≤ 1, and the ASP program is normal (or a normal logic program) if
all its rules are normal. A program is called disjunctive if there is a rule r ∈ P such that
|h(r)|> 1 [7].



M. Kabir, V.-G. Trinh, S. Pastva, and K. S. Meel 17:5

Answer Set Semantics

A subset M of atoms (called an interpretation) satisfies a rule r if (h(r)∪ b−(r))∩M ̸= ∅ or
b+(r) \M ̸= ∅. The interpretation M is a supported model of P if it satisfies all rules of P ,
denoted as M |= P . The Gelfond-Lifschitz (GL) reduct of the program P with respect to
the interpretation M is defined as follows: P M := {h(r)← b+(r)|r ∈ P, M ∩ b−(r) = ∅} [30].
The interpretation M is an answer set (or a stable model) of P if ̸∃ M ′ ⊊ M such that
M ′ |= P M . We use the notation AS(P ) to denote the set of answer sets of P .

Answer Set Counting

Given an ASP P , the answer set counting problem (denoted as #ASP) seeks to compute the
number of answer sets of P , written as |AS(P )|. The projected answer set counting problem
(denoted as #PASP) extends #ASP by counting the number of distinct answer sets of P

with respect to a given set of projection atoms I ⊆ at(P ). Two answer sets are considered
equivalent if they differ only on atoms in at(P ) \ I [25]. We denote the set of projected
answer sets as AS(P, I), so that #PASP computes |{M ∩ I |M ∈ AS(P )}|. As a special case,
when I = at(P ), #PASP reduces to #ASP. We use the notation #PASP(P, I) to denote the
projected answer set count of program P w.r.t. projection atoms I.

In the probably approximately correct (PAC) framework for answer set counting, given a
program P and a projection set I, the goal is to estimate a count cnt satisfying

Pr
[
|AS(P, I)|

(1 + ε) ≤ cnt ≤ (1 + ε)× |AS(P, I)|
]
≥ 1− δ

where 0 < ε < 1 is the tolerance and 0 < δ < 1 is the confidence [38, 14].

3 Related Work

ASP-Based Computation of Fixed Points and Minimal Trap Spaces

Several ASP encodings have been proposed to characterize fixed points and minimal trap
spaces in BNs. In many cases, an ASP encoding for fixed points is derived from its minimal
trap space counterpart by adding integrity constraints to capture the specific properties
of fixed points [69, 72]. The first ASP encoding that requires the computation of prime
implicants for each Boolean function was proposed and implemented in [44]. A major
bottleneck of this encoding is that computing even a single prime implicant is NP-hard
and the total number of prime implicants can be exponential in the number of function
inputs [15]. Subsequent encodings [55, 69, 72] that were proposed to overcome this bottleneck
still suffer from scalability and efficiency issues, particularly for very large and complex
models, primarily because they require the disjunctive normal forms of all the Boolean
functions of the original BN. For fixed points, the ASP encoding by Trinh et al. [71] (called
fASP) uses a negation normal form for each Boolean function, which is much more efficient
to obtain. This encoding was later generalized for minimal trap spaces [68] (called tsconj);
however, when dealing with unsafe formulas that might yield incorrect solutions, it still
requires a disjunctive normal form to ensure the correctness.

BN Encoding of Normal Logic Programs

The theoretical work by Inoue [33] was among the first to establish a connection between
ASP and BNs. It defines a BN encoding for finite ground normal logic programs, which relies
on the notion of the Clark’s completion [17], and points out that the two-valued models of
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the Clark’s completion of a finite ground normal logic program one-to-one correspond to the
fixed points of the encoded BN. The subsequent work [34] points out that the strict supported
classes of a finite ground normal logic program one-to-one correspond to the synchronous
attractors of the encoded BN. Very recently, Trinh et al. [73] related the regular models in a
finite ground normal logic program and the minimal trap spaces in the respective BN, and
further applied these theoretical results to explore graphical conditions for the existence,
uniqueness, and number of regular models.

SAT Characterization of Fixed Points

The set of fixed points of a BN f can be characterized as the set of satisfying assignments of the
propositional formula

∧
v∈Var(f) (v ↔ fv) [20]. Hence, we can apply #SAT tools [64, 13, 60]

to counting the number of fixed points of a BN. To the best of our knowledge, to date, there
is no SAT characterization for the set of minimal trap spaces of a BN.

Answer Set Counting

For general ASP programs, #ASP is # · coNP-complete [27], while #ASP is # · P-complete
for normal ASP programs, which follows from standard reductions [35]. The projected
answer set counting #PASP is simply Σp

2-complete if the set of projection atoms is empty;
otherwise, the complexity is # · Σp

2-complete [25]. Fichte et al. [25, 27] exploited the tree
decomposition-based technique for counting answer sets. Kabir et al. [38] introduced the
hashing-based approximate counting technique for answer set counting.

4 Problem Formulation

In this section, we introduce several counting problems related to minimal trap spaces in
Boolean networks (BNs), covering both minimal trap spaces and fixed points. We begin
with a straightforward counting variant, then propose a specialized variant that requires
solutions to satisfy a specific property, and finally present a more complex variant focused on
phenotype measurement in BNs under perturbations. To highlight the biological utility of
these theoretical problems, a brief case study is also given in Appendix D.

4.1 Counting Minimal Trap Spaces and Fixed Points
We introduce two fundamental counting problems for Boolean networks (BNs): one that
counts the number of minimal trap spaces (Definition 2) and another one counts the number
of fixed points (Definition 3). These problems address the basic question: How many minimal
trap spaces or fixed points does a given BN have?

▶ Definition 2 (C-MTS-1). Given a BN f , compute the number of minimal trap spaces of f .

▶ Definition 3 (C-FIX-1). Given a BN f , compute the number of fixed points of f .

In BN research, both counting problems – C-MTS-1 and C-FIX-1 – are valuable when
full enumeration is infeasible, as in gene regulatory network models with many source
variables [2, 68, 71]. They are also useful when divergent solutions are sought [16]. Notably, the
fixed point counting problem (C-FIX-1) can enhance methods for enumerating asynchronous
attractors by enabling the selection of a smaller candidate set, thereby potentially speeding
up the filtering process [74]. Finally, both C-MTS-1 and C-FIX-1 can lay the groundwork
for probabilistic reasoning in BNs [61].
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Recent research has connected Boolean networks (BNs) with two broad fields: abstract
argumentation and logic programming. Although we omit the preliminaries on Abstract
Argumentation Frameworks (AFs) [18], Abstract Dialectical Frameworks (ADFs) [49], and
Normal Logic Programs (NLPs) [73], interested readers can consult the cited papers for
details. Specifically, Trinh et al. [70] and Dimopoulos et al. [19] demonstrate that the
preferred (resp. stable) extensions of an AF one-to-one correspond to the minimal trap spaces
(resp. fixed points) of the respective BN. Similarly, Heyninck et al. [31] and Azpeitia et
al. [5] demonstrate that ADFs and BNs are identical – in this context, the preferred (resp.
two-valued) interpretations of an ADF match the minimal trap spaces (resp. fixed points)
of the respective BN. In the realm of logic programming, the subset-minimal supported
partial models (resp. supported models) of a finite ground NLP correspond one-to-one with
the minimal trap spaces (resp. fixed points) of the respective BN [33, 73]. Moreover, if the
finite ground NLP is tight [22, 47], then its regular models (resp. stable models) one-to-one
correspond to the minimal trap spaces (resp. fixed points) of the respective BN. These types
of extensions, interpretations, and models are central to the study of AFs, ADFs, and finite
ground NLPs [26, 36, 49].

Recent work on AFs has focused on counting stable and preferred extensions, yielding
both complexity results [26] and dynamic programming methods [18] (note that the dynamic
programming methods do not support preferred extensions). In contrast, counting problems
for ADFs and finite ground NLPs remain largely unexplored, aside from a few studies on
answer sets [4, 38]. Thanks to the connections between BNs and these formalisms, these
results from C-MTS-1 and C-FIX-1 can be extended to ADFs – where they correspond to
preferred and two-valued interpretations – as well as to general finite ground NLPs (for
supported partial and supported models) and tight finite ground NLPs (for regular and
stable models).

4.2 Counting with Satisfying Properties
We examine a specialized variant of problems C-MTS-1 and C-FIX-1, focusing on counting
minimal trap spaces (Definition 4) and fixed points (Definition 5) that satisfy a specified
property. This formulation addresses the natural question: How many minimal trap spaces
(or fixed points) in a BN exhibit a given property or assumption?

In systems biology, BNs are used to model biological phenotypes, which reflect an
organism’s functional characteristics [48]. Several definitions of phenotype in BNs have been
proposed [9, 45, 46]; in this work, we adopt one of the most widely used notions. Given
a BN f , we define trait as a statement of the form (v ↔ e), where v ∈ Var(f) and e ∈ B⋆.
Note that v ↔ ⋆ is evaluated true if and ony if v = ⋆. A phenotype β is then defined as the
conjunction of a set of traits. A sub-space m satisfies a phenotype β (denoted by m |= β) if,
upon replacing each variable v ∈ β with its value m(v), the resulting formula evaluates to
true under propositional semantics. Unlike minimal trap spaces, fixed points require that all
variables take Boolean values (e ∈ B), and hence phenotypes involving “⋆” are not meaningful
in this context.

In our problem formulation, the property of interest is a desirable phenotype. In systems
biology, a minimal trap space satisfying a phenotype suggests the phenotype’s potential emer-
gence in vivo. Furthermore, this counting variant is applicable beyond systems biology. For
instance, in abstract argumentation frameworks (resp. normal logic programs), a phenotype
may represent the presence of particular set of arguments (resp. atoms) in an extension (resp.
a model) [26, 36], a concept closely linked to credulous reasoning.
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▶ Definition 4 (C-MTS-2). Given a BN f and a phenotype β, compute the number of
minimal trap spaces of f that satisfy β.

▶ Definition 5 (C-FIX-2). Given a BN f and a phenotype β, compute the number of fixed
points of f that satisfy β.

When the specified phenotype is a tautology, C-MTS-2 (resp. C-FIX-2) reduces directly to
C-MTS-1 (resp. C-FIX-1). Thus, all implications discussed for C-MTS-1 and C-FIX-1 also
apply to C-MTS-2 and C-FIX-2, respectively. In the following, we examine these applications
through the lens of abstract argumentation frameworks.

First, C-MTS-2 and C-FIX-2 facilitate more nuanced reasoning between skeptical and
credulous approaches by integrating quantitative and probabilistic methods [23]. For instance,
by running C-MTS-2 (or C-FIX-2) twice – once with a specific set of arguments and once
with a tautology – we can gain insights into preferred (or stable) extensions [26]. Second, this
approach shifts reasoning from simple decision-making (i.e., determining whether a set of
arguments is present in an extension) to probabilistic reasoning (i.e., assessing the likelihood
of a set of arguments appears in an extension). Moreover, this framework supports the
development of advanced probabilistic semantics for abstract argumentation frameworks [41].
To our knowledge, these aspects have not yet been explored in the context of BNs, and our
work paves the way for integrating such reasoning into BN analysis.

▶ Example 6. Consider again the BN f shown in Example 1. It has a unique minimal trap
space m1 = 00, which is also its only fixed point of f . Hence, the answer to C-MTS-1 (resp.
C-FIX-1) is 1. Considering the phenotype β = (b↔ ⋆), the answer to C-MTS-2 is 0.

4.3 Counting Under Perturbations and Measuring Robustness
We consider a main contribution of this paper to be the identification of new, relevant counting
problems (other than C-MTS-2 and C-FIX-2, which were previously known): C-MTS-3 and
C-FIX-3. To formalize these problems, we introduce the concept of a perturbation.

Consider a BN f . A perturbation σ [63] on a set X ⊆ Var(f) of perturbable variables is
defined as a mapping from X → B⋆. In practice, X can be any subset of variables whose
perturbation is biologically meaningful. Since each variable in X can assume one of three
values under perturbation, there are 3|X | possible perturbations. For each v ∈ X , setting
σ(v) = 0 forces fv = 0 (knockout perturbation), setting σ(v) = 1 forces fv = 1 (over-expression
perturbation), and setting σ(v) = ⋆ leaves fv unchanged. Consequently, the perturbed BN,
denoted fσ, is defined by Var(fσ) = Var(f) and, for every v ∈ Var(fσ),

fσ
v =

{
σ(v) if v ∈ X and σ(v) ̸= ⋆

fv otherwise

Note that, the value ⋆ is used to distinguish imperturbable variables and perturbable variables
that are unchanged under a certain perturbation.

In biological systems, a perturbation refers to any disturbance that disrupts the normal
functioning of a BN. Such disturbances may arise from genetic mutations [62], external factors
such as medications [11], or other influences [52]. These perturbations can substantially alter
the phenotypes exhibited by a BN, making it crucial to quantify their effects on network
behavior. In systems biology, this impact is commonly assessed in terms of robustness [43],
which motivates our definitions of problems C-MTS-3 and C-FIX-3.
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▶ Definition 7 (C-MTS-3). Given a BN f , a set of perturbable variables X , and a target
phenotype β, determine the number of perturbations σ on X such that the perturbed BN fσ

exhibits at least one minimal trap space that satisfies β.

▶ Definition 8 (C-FIX-3). Given a BN f , a set of perturbable variables X , and a target
phenotype β, determine the number of perturbations σ on X such that the perturbed BN fσ

exhibits at least one fixed point that satisfies β.

Leveraging the results of C-MTS-3 (or C-FIX-3 if focusing solely on fixed points), we
define the robustness of a phenotype as the fraction of perturbations that preserve the
phenotype relative to the total number of perturbations (3|X |). In other words, robustness
measures the probability that a phenotype remains active following a random, admissible
perturbation is applied to the network. This measure of phenotype robustness can inform
the selection of specific perturbations and guide targeted treatment strategies [9, 65]. A
small case study on an interferon model with 121 variables presents these concepts more
practically in Appendix D.

▶ Example 9. Consider BN f given in Example 1. Consider X = {b} denote the set of
perturbable variables and define the set of desirable phenotype as β = (a ↔ 0 ∧ b ↔ 0).
There are three possible perturbations: σ1 = {b = 0}, σ2 = {b = 1}, and σ3 = {b = ⋆}. The
perturbation σ1 represents the knockout perturbation of variable b and sstg(fσ1) is given
in Figure 1b. It is straightforward to observe that fσ1 has two minimal trap spaces 00 and
10. In constrast, the BN fσ2 has one minimal trap space 01, which does not satisfy the given
phenotype. The BN fσ3 equals f and has one minimal trap space 00. Therefore, for BN f ,
phenotype β and perturbable variables X , the answer to C-MTS-3 is 2 and the perturbation
robustness of phenotype β in BN f w.r.t. X is 2/3.

On the impact of precision. Finally, it should be noted that while these problems are
defined exactly, in practice their results mainly serve as a means of comparison. For example,
the results of C-MTS-2 could be used to compare the abundance of two biological phenotypes.
Then the exact count may not be important, as long as the two phenotypes can be compared
reliably. As such, these problems are particularly suitable for approximate counting. This
also impacts the choice of method parameters (ϵ and δ), as in practice, even low precision
(as used in our benchmarks) can be sufficient to distinguish between significantly different
phenotypes. For closely matched results, the precision can be then increased as needed.

5 Computational Methods

Given a BN f , our approach is to construct an ASP program P such that the answer
sets of P one-to-one correspond to the minimal trap spaces (or fixed points) of f . This
reduction allows us to leverage existing answer set counters to efficiently count the answer
sets of P . For C-MTS-1 and C-FIX-1, we simply use the ASP encodings of tsconj and
fASP, respectively. For C-MTS-2 and C-FIX-2, we complement the encoding of the given
phenotype. For C-MTS-3 and C-FIX-3, we propose a new perturbation encoding, which we
consider to be a main contribution of this paper. Now, we begin by briefly reviewing the
tsconj and fASP encodings.

5.1 tsconj and fASP Encodings
We first present the common components of the two encodings, followed by their differences.
The ASP encodings represent sub-spaces using atoms p(v) and n(v), indicating whether
variable v is fixed to 1, 0, or left free. The goal is to translate BN trap space and fixed point
properties into ASP rules whose answer sets correspond to these configurations.
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Given a BN f , the encodings compute an ASP program P as follows: for each variable
v ∈ Var(f), two atoms p(v) and n(v) are introduced to indicate positive and negative
assignments of the variable v, respectively. Additionally, for every v ∈ Var(f), one rule of the
form: p(v) ∨ n(v)← ⊤ is added to ensure that each answer set corresponds to a sub-space of
f . The translation from an answer set M to a sub-space m is defined as follows: for each
v ∈ Var(f), we have (i) m(v) = 1 if and only if p(v) ∈ M ∧ n(v) ̸∈ M , (ii) m(v) = 0 if and
only if p(v) ̸∈M ∧ n(v) ∈M , and (iii) m(v) = ⋆ if and only if p(v) ∈M ∧ n(v) ∈M . Recall
that a trap space of f can be characterized by

∧
v∈Var(f)(v ← fv) ∧ (¬v ← ¬fv) [68]. For

every v ∈ Var(f), two ASP rules – (i) γ(v)← γ(NNF(fv)) and (ii) γ(¬v)← γ(NNF(¬fv)) –
are added to P to express the characterization, where NNF(Φ) denotes a negation normal
form of a Boolean formula Φ and γ is a procedure defined as follows:

γ(v) = p(v), γ(¬v) = n(v), v ∈ Var(f),

γ(
∧

1≤j≤J

αj) = γ(α1) ∧ . . . ∧ γ(αJ), γ(
∨

1≤j≤J

αj) = auxk,

where auxk is a new auxiliary atom, k is a global counter starting from 1 and shall be
increased by 1 after each new auxiliary atom is created, and for each j, the rule auxk ← γ(αj)
is added to P .

For the correctness of the tsconj encoding, Trinh et al. [68] defined a syntactic safeness
condition for a Boolean formula Φ: Φ is considered safe if it does not contain any conjunction
of two subformulas Φ1 and Φ2 such that there exists a variable x appearing in Φ1 with ¬x

appearing in Φ2. When both fv and ¬fv are safe for every v ∈ Var(f), then the set of answer
sets of P one-to-one corresponds with the set of minimal trap spaces of f . When a Boolean
formula Φ (fv or ¬fv) is unsafe, the Disjunctive Normal Form (DNF) of Φ is used instead,
which is always safe by definition.

There is no notion of “safeness” in the fASP encoding. Rather an additional rule
⊥ ← p(v), n(v) is added to P , for every v ∈ Var(f) such that the variable v cannot take the
value of ⋆. The answer sets of P one-to-one correspond to the fixed points of f .

Following on, given a BN f , we use the notations P-tsconj(f) and P-fASP(f) to denote
the encoded ASP programs of f , according to the tsconj and fASP encodings, respectively.

5.2 Methods for Problems C-MTS-1 and C-FIX-1
We make use of tsconj and fASP encodings for C-MTS-1 and C-FIX-1, respectively. The
choice of encodings is due to following two reasons: first, these encodings rely on less expensive
representations – specifically, negation normal forms (ref. Section 3). Second, they establish
a one-to-one correspondence between the minimal trap spaces (or fixed points) of the original
BN and the answer sets of the encoded ASP program, whereas other encodings yield a
one-to-one correspondence with the subset-minimal (or subset-maximal) answer sets [3],
which prevents the direct use of existing ASP counters.

5.3 Methods for Problems C-MTS-2 and C-FIX-2
We add the encoding of phenotype to the encodings of tsconj and fASP to solve counting
problems C-MTS-2 and C-FIX-2, respectively. Given a BN f and a phenotype β, we
compute an ASP program ToASP(β) to capture the phenotype β by invoking Algorithm 1.
The algorithm exploits atoms introduced in the tsconj encoding to interpret the phenotype
β. The main idea of Algorithm 1 is exploiting faceted answer set navigation to constrain the
search space of answer sets [24]. We prove that the minimal trap spaces of f satisfying the
phenotype β one-to-one correspond to the answer sets of P-tsconj(f)∪ToASP(β) (Theorem 10).
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Algorithm 1 ToASP(β).
Input: Phenotype β

Output: ASP program Q

1: Q← ∅
2: for each (v ↔ e) ∈ β do
3: if e = 1 then
4: Q.add(⊥ ← ∼p(v), ⊥ ← n(v))
5: else if e = 0 then
6: Q.add(⊥ ← p(v), ⊥ ← ∼n(v))
7: else if e = ⋆ then
8: Q.add(⊥ ← ∼p(v), ⊥ ← ∼n(v))
9: return Q

▶ Theorem 10. Given a BN f and a phenotype β, the minimal trap spaces of f satisfying β

one-to-one correspond to the answer sets of P-tsconj(f) ∪ ToASP(β).

For C-FIX-2, we can apply the fASP encoding and Algorithm 1 similarly. Note that in
the counting problem C-FIX-2, the term e is either 0 or 1, for each (v ↔ e) ∈ β, since fixed
points require all variables to be fixed. We formally prove the correctness of our proposed
method for C-FIX-2 in Theorem 11.

▶ Theorem 11. Given a BN f and a phenotype β, the fixed points of f satisfying β one-to-one
correspond to the answer sets of P-fASP(f) ∪ ToASP(β).

▶ Example 12. Consider the BN f of Example 1. The program P-tsconj(f) is as follows:

p(a) ∨ n(a)← ⊤ p(a)← p(a), n(b) n(a)← aux1 aux1 ← n(a) aux1 ← p(b)
p(b) ∨ n(b)← ⊤ p(b)← p(a) n(b)← n(a)

The program P-tsconj(f) has a unique answer set {n(a), n(b), auxk} corresponding to the
unique minimal trap space 00 of f . Consider the phenotype β = (b↔ ⋆), the BN f has no
minimal trap space satisfying β (see Example 6), thus C-MTS-2 returns 0. Following the
procedure outlined above, the ASP program ToASP(β) is as follows:

⊥ ← ∼p(b) ⊥ ← ∼n(b)

Indeed, the program P-tsconj(f) ∪ ToASP(β) has no answer set.

5.4 Methods for Problems C-MTS-3 and C-FIX-3
Given a BN f , a phenotype β, and a set of perturbable variables X , one possible approach
to solving these problems is to introduce new atoms to represent possible perturbations
over perturbable variables, then correspondingly to intervene in the encoded ASP program
obtained by applying the encodings proposed for C-MTS-2 and C-FIX-2, and finally to apply
projected counting restricted to these new atoms. Instead, we propose a more convenient
approach that reduces C-MTS-3 (resp. C-FIX-3) to C-MTS-2 (resp. C-FIX-2) along with
projected answer set counting.
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▶ Definition 13. Consider a BN f and a set of perturbable variables X ⊆ Var(f), we
construct a new BN g such that for every v ∈ Var(f), if v ∈ Var(f) \ X , then the variable
v ∈ Var(g) and gv = fv, and if v ∈ X , then three variables v, vk, vo ∈ Var(g) and

gv = ¬vk ∧ (vo ∨ fv),
gvk = vk,

gvo = vo ∧ ¬vk.

Instead of modifying the ASP encoding to model perturbations, we construct a perturbed
version of the original BN, thereby preserving the semantics of the original encodings. For
each perturbable variable v ∈ X , we introduce two new variables in g: vk, encoding whether
v is knocked out, and vo, encoding whether it is over-expressed. By construction:

If vk = 1, then vo = 0 and v = 0, modeling a knockout of v.
If vk = 0 and vo = 1, then v = 1, modeling over-expression.
If vk = 0 and vo = 0, then v follows its original update function fv (v is unperturbed).
The case vk = 1 and vo = 1 is infeasible due to the constraint gvo = vo ∧ ¬vk.

Since Var(f) ⊆ Var(g), any phenotype β defined over f remains valid in g. The minimal trap
spaces (resp. fixed points) of g correspond to those of f under all possible perturbations over
X . Thus, the minimal trap spaces (resp. fixed points) of g that satisfy the phenotype β

represent the perturbed solutions of f that also satisfy β. Crucially, for each perturbation,
multiple satisfying minimal trap spaces (or fixed points) are counted once, enabling us
to count the number of satisfying perturbations. Hence, the counting problem C-MTS-3
(resp. C-FIX-3) reduces to the projected version of C-MTS-2 (resp. C-FIX-2) over the newly
defined BN g.

We now discuss how we solve C-MTS-3 and C-FIX-3 by applying projected answer set
counting. We focus on the case for minimal trap spaces, and the case of fixed points is trivially
similar. Following Theorem 10, the set of answer sets of P-tsconj(g)∪ToASP(β) represents the
set of minimal trap spaces of g satisfying the phenotype β. Let Ω =

⋃
v∈∆{p(v), n(v)} denote

the set of perturbation-related variables, where ∆ =
⋃

v∈X {vk, vo} be the set of ASP atoms
used in the encoding. It follows that the number of answer sets of P-tsconj(g) ∪ ToASP(β),
projected onto the set Ω is equal to the number of perturbation settings (i.e., assignments to
variables in X ) under which g admits a minimal trap space satisfying β.

▶ Theorem 14. Given a BN f , a set of perturbable variables X ⊆ Var(f), a phenotype β,
and Ω =

⋃
v∈∆{p(v), n(v)}, where ∆ =

⋃
v∈X {vk, vo}, then C-MTS-3 can be computed as

#PASP(P-tsconj(g) ∪ ToASP(β), Ω), where g is the new BN according to Definition 13.

▶ Theorem 15. Given a BN f , a set of perturbable variables X ⊆ Var(f), a phenotype β,
and Ω =

⋃
v∈∆{p(v), n(v)}, where ∆ =

⋃
v∈X {vk, vo}, then C-FIX-3 can be computed as

#PASP(P-fASP(g) ∪ ToASP(β), Ω), where g is the new BN following Definition 13.

▶ Example 16. Consider again Example 9. Following Definition 13, we obtain the BN g:
Var(g) = {a, b, bk, bo}, ga = a ∧ ¬b, gbk = bk, gbo = bo ∧ ¬bk, and gb = ¬bk ∧ (bo ∨ a). (see
Appendix B for the details of P-tsconj(g) and ToASP(β)). Let Ω = {p(bk), n(bk), p(bo), n(bo)}.
Then C-MTS-3 can be computed as #PASP(P-tsconj(g) ∪ ToASP(β), Ω). Indeed, #PASP(
P-tsconj(g)∪ToASP(β), Ω) returns 2, which is consistent with the result shown in Example 9.

6 Experimental Evaluation

This section presents the experimental evaluation of the presented methods. We use existing
minimal trap space and fixed point computation tools as baselines – namely, AEON [8],
k++ADF (ADF) [49], and clingo [29]. The ADF tool is applicable here due to the equivalence
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between ADFs and BNs [5, 31], which supports only C-MTS-1 and C-FIX-1. k++ADF and
Clingo count minimal trap spaces and fixed points via enumeration on the ADF and the
encoded ASP respectively, and AEON via BDD-based encoding. For the fixed point problem
variants, we further considered the propositional model counter [60] (GANAK) and the
approximate model counter [77] (ApproxMC), using the translation to CNF (see Section 3).
However, note that these techniques cannot be directly used for minimal trap space counting.
For approximate answer set counting, we employed the hashing-based approximate answer
set counter ApproxASP [38] with parameters ε = 0.8 and δ = 0.2. Following prior work on
counting [40], we provided ApproxASP with an independent support of a disjunctive ASP
program exploiting Padoa theorem [53]. We also tested the tree decomposition-based answer
set counter DynASP [27]; however, we did not include it in the final analysis because it has
been significantly outperformed by the remaining baselines. Finally, note that we could not
include #SAT-based ASP counters aspmc [21] and sharpASP [37] as baselines, since these
counters are designed for normal logic programs, while tsconj and fASP encodings produce
disjunctive ASP programs.

We compiled our benchmark set from prior studies on minimal trap spaces and fixed points
in BNs [54, 68, 71]. The set comprises 645 BN instances – 245 real-world models and 400
randomly generated – with up to 5,000 variables. To evaluate counting problems C-MTS-2,
C-FIX-2, C-MTS-3, and C-FIX-3, we pseudo-randomly fixed three variables to represent
the target phenotype and selected up to 50 perturbable variables (yielding as many as 350

possible perturbations). Phenotypes are typically not published in machine-readable format,
thus we maintain biological interpretability by deriving the phenotype from a known trap
space, linking it to an existing biological feature of the network. As for the chosen size, only a
few variables are sufficient to identify phenotypes: e.g., in [28], only 10-200 entities are needed
out of 10,000. Since our tests are often significantly smaller, we scaled down the phenotypes
accordingly. Appendix C provides further details about the benchmark. The code and
dataset of experiment evaluation is available at: https://zenodo.org/records/15141045

Environmental Settings. All experiments were conducted on a high-performance computing
cluster, with each node consisting of Intel Xeon Gold 6248 CPUs. Each benchmark instance
was allocated one core, with runtime and memory limits set to 5000 seconds and 8 GB
respectively, for all the tools considered.

6.1 Experimental Results
C-MTS-1 and C-FIX-1. The results for C-MTS-1 and C-FIX-1 are shown in Table 1
and Table 2, respectively. Each table reports the number of instances solved (i.e., instances
for which a count was successfully returned) by each tool and their corresponding PAR2
scores [6] (PAR2 score is a runtime metric that also penalizes benchmark timeouts). Here,
approximate counting (ApproxASP and ApproxMC) clearly outperform all existing solutions.
Even compared to exact model counting (GANAK), this approach achieves significantly better
performance. Note that for C-FIX-1, ApproxASP and ApproxMC are roughly comparable,
but (as discussed in detail later), ApproxASP is faster on simpler instances.

It is worth noting that unsafe formulas are quite rare in 245 real-world models, which is
consistent with the observation in [68]. All 400 randomly generated models have no unsafe
formulas because of the nature of the generation [68].

C-MTS-2 and C-FIX-2. The results for C-MTS-2 and C-FIX-2 are shown in Table 3
and Table 4, respectively, using the same metric (solved instances and PAR2 score) as Table 1
and Table 2. Here, the relative performance of individual tools mirrors that observed for
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Table 1 The performance comparison of different counters on C-MTS-1 counting problem.

AEON ADF clingo ApproxASP

#Solved 179 200 211 364

PAR2 7255 6923 6742 4448

Table 2 The performance comparison of different counters on C-FIX-1 counting problem.

AEON ADF clingo GANAK ApproxMC ApproxASP

#Solved 247 217 227 317 420 413

PAR2 6172 6656 6493 5269 3801 3760

C-MTS-1 and C-FIX-1. However, all tools solved more instances overall, largely due to
the inclusion of the phenotype property, which typically reduces the number of solutions.
Since phenotype properties are generally much simpler than the update functions describing
network dynamics, we expect them to simplify the counting problem – often substantially.

Table 3 The performance comparison of different counters on C-MTS-2 counting problem.

AEON clingo ApproxASP

#Solved 231 308 464

PAR2 6428 5237 2919

Table 4 The performance comparison of different counters on C-FIX-2 counting problem.

AEON clingo GANAK ApproxMC ApproxASP

#Solved 252 236 333 438 429

PAR2 6099 6360 5030 3527 3499

C-MTS-3 and C-FIX-3. The results for problems C-MTS-3 and C-FIX-3 are presented
in Tables 5 and 6, respectively. This benchmark confirms the leading performance of
ApproxASP in minimal trap space and fixed point counting as it was able to solve 644/645
and 645/645 problem instances for C-MTS-3 and C-FIX-3, respectively. Here, ApproxASP
significantly outperforms even ApproxMC, and outperforms all other tools by a factor of 2× or
more. In contrast to C-MTS-2 and C-FIX-2, where all tools benefited from a reduced number
of solutions, the presence of perturbations in this setting generally increases both the number
of solutions and the underlying complexity of BNs. The key performance differentiation lies
in the tools’ ability to handle projected counting. For this problem, the independent support
for XOR constraints is derived from the BN perturbable variables. Since this is only a subset
of the network variables, the independent support size is relatively small, reducing the size
of the XORs. This results in the superior performance of ApproxASP and ApproxMC. Note
that in these countings, the number of perturbable variables is at most 50 and the count is
upper-bounded by 350.
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Figure 2 Performance comparison of different counters across all counting problems. The x axis
shows the number of benchmarks completed before the corresponding CPU runtime on the y axis.

Table 5 The performance comparison of different counters on C-MTS-3 counting problem.

AEON clingo ApproxASP

#Solved 148 84 644

PAR2 7725 8711 283

Table 6 The performance comparison of different counters on C-FIX-3 counting problem.

AEON clingo GANAK ApproxMC ApproxASP

#Solved 248 99 286 600 645

PAR2 6176 8476 5757 2481 150

6.2 Detailed Runtime Analysis
The runtime performance of different tools is depicted in Figure 2. In these cactus plots, a
point (x, y) indicates that a tool successfully completes x benchmark instances, with each
instance taking at most y seconds. The plots highlight the superiority of the hashing-based
counting techniques, ApproxASP and ApproxMC. Notably, even in cases where ApproxASP
solves fewer instances than ApproxMC (e.g. C-FIX-1), it is typically faster on simpler
problem instances, which is also reflected in its PAR2 score.

By examining the number of solutions successfully computed for different tasks, we
observe that only ApproxASP, ApproxMC, and GANAK can reliably count instances having
a large number of solutions (e.g. ≥ 1030). Here, BDD-based counters like AEON perform
somewhat better on fixed point problems compared to tools using plain enumeration (ADF,
clingo), but cannot compete in the (arguably more complex) trap space problems.

The performance of GANAK and ApproxMC is also severely affected by the time required
to compute their input CNF formulas (ref. Section 3). Here, deriving the CNF problem
representation is often considerably more time-consuming than computing the comparable
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ASP encoding. Our results reveal that, on average, it took about 545 seconds to compute
the CNF formula for each BN. Moreover, for 39 BNs, the corresponding CNF could not
be computed within the 5000-second timeout. In contrast, the ASP encodings for all BNs
– including the more challenging ones with perturbable variables – were generated within
seconds. This demonstrates the superior flexibility of the ASP-based approach.

Note that the approximate counters ApproxMC and ApproxASP provide an (ε, δ)-
guarantee. Thus for each solved instance, we computed the observed tolerance, which is
defined as max(cnt/|AS(P )|, |AS(P )|/cnt)− 1, where cnt is the count returned by ApproxASP or
ApproxMC, and AS(P ) denotes the answer set count of program P . On average, ApproxMC
and ApproxASP exhibit observed tolerances of 0.032 and 0.007, respectively. The maximum
observed tolerances were 0.39 for ApproxASP and 0.07 for ApproxMC, both of which are
well below the theoretical bound of ε = 0.8.

We evaluated ApproxMC and ApproxASP with a tighter guarantee, setting ε = 0.01
and δ = 0.05. In these setting, ApproxASP solved 244, 243, 114, 258, 259, 130 for C-MTS-1,
C-MTS-2, C-MTS-3, C-FIX-1, C-FIX-2, and C-FIX-3, respectively, while ApproxMC solved
263, 259, 120 for C-FIX-1, C-FIX-2, and C-FIX-3, respectively. Consequently, the higher
precision significantly reduces the number of solved instances.

We compared the size of instances solved by different counting techniques across various
counting problems. We observed that, for minimal trap spaces, ApproxASP solved instances
with up to 4000 variables, while tsconj and AEON solved instances with up to 321 variables.
For fixed points, although there were large instances (up to 4000 variables), these did not
contain fixed points, making a direct comparison unfeasible.

7 Conclusion

This paper addresses the problem of counting minimal trap spaces and fixed points in
Boolean networks. These are critical concepts in understanding of long-term BN behavior
and are relevant across a diverse set of application domains, including systems biology,
abstract argumentation, and logic programming. Trap space counting is especially important
in systems biology: due to the inherent robustness of biological phenomena, biologically
motivated BNs admit a high degree of redundancy, resulting in a vast repertoire of closely
related trap spaces (or fixed points) that cannot be explored solely through enumeration.

Here, we propose novel methods for determining trap space and fixed point counts using
approximate answer set counting, thus entirely avoiding costly enumeration. We apply this
methodology to three biologically motivated problems: (a) general counting; (b) counting
occurrences of a known biological phenotype, and (c) projected counting of perturbations that
ensure the emergence of a known biological phenotype. The last problem is particularly timely,
as it allows us to determine perturbation robustness [9, 43], a vital measure that determines
how stable a phenotype appears under external stimuli. Through extensive experiments on a
diverse set of benchmarks, we show that approximate counting substantially improves the
feasibility of counting in this domain, outperforming traditional enumeration-based and exact
approaches whenever applicable.

Our work opens several promising directions for future research: First is to integrate
reduction techniques – previously shown to be effective in BN analysis [56, 59, 65] – to further
improve counting accuracy and scalability. Second direction explores hybrid strategies that
combine exact and approximate counting, aiming to strike a balance between efficiency and
precision. Finally, a deeper investigation into the computational complexity of the counting
problems would help refine our understanding of their theoretical underpinnings.
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A Details of Proofs

▶ Theorem 10. Given a BN f and a phenotype β, the minimal trap spaces of f satisfying β

one-to-one correspond to the answer sets of P-tsconj(f) ∪ ToASP(β).

Proof. To prove the correctness of Theorem 10, we reuse the correctness proof of Theorem 2
of [68], which establishes that the answer sets of P-tsconj(f) one-to-one correspond to the
minimal trap spaces of f . Let us recall the translation between an answer set M of P-tsconj(f)
and its respective minimal trap space m of f : for each variable v ∈ Var(f), m(v) = 1 if and
only if p(v) ∈M ∧ n(v) ̸∈M , m(v) = 0 if and only if p(v) ̸∈M ∧ n(v) ∈M , and m(v) = ⋆ if
and only if p(v) ∈M ∧ n(v) ∈M .

We employ the theories of faceted answer set navigation [24] to prove the correctness
of Theorem 10. According to faceted navigation, for a program P and an atom a ∈ at(P ),
adding the integrity constraint {⊥ ← a} to program P restricts the search space of P , where
no answer set contains the atom a. Conversely, adding the integrity constraint {⊥ ← ∼a} to
program P ensures that every answer set in the modified program contains the atom a.

We prove the correctness of our encoding for each trait (v ↔ e) ∈ β. We show that Algo-
rithm 1 selects facets in such a way that the answer sets of P-tsconj(f)∪ToASP(β) one-to-one
correspond to the minimal trap spaces satisfying β of f . When (v ↔ 1) ∈ β (line 4 in Algo-
rithm 1), two constraints are added to ToASP(β) to ensure that every answer set contains the
atom p(v) and none contains the atom n(v). These constraints effectively assign the value 1
to variable v. When (v ↔ 0) ∈ β (line 6 in Algorithm 1), two added constraints ensure that
every answer set contains the atom n(v) and none contains p(v), thereby assigning the value
0 to variable v. When (v ↔ ⋆) ∈ β (line 8 in Algorithm 1), two added constraints ensure
that every answer set contains both p(v) and n(v). These constraints effectively assign the
value ⋆ to variable v.
Combining all the cases of Algorithm 1, we can claim the correctness of our encoding. ◀

▶ Theorem 11. Given a BN f and a phenotype β, the fixed points of f satisfying β one-to-one
correspond to the answer sets of P-fASP(f) ∪ ToASP(β).

Proof. The proof technique of Theorem 10 can be similarly extended for fixed point counting
with the program P-fASP(f). ◀

To prove Theorems 14 and 15, we prepare the following preliminaries.

▶ Definition 17. The total order ≤t on B⋆ is defined by 0 <t ⋆ <t 1.

▶ Definition 18. The partial order ≤s on B⋆ is defined by 0 <s ⋆, 1 <s ⋆, and it contains
no other relation.

▶ Definition 19. Consider a BN f , a sub-space m of f , and a Boolean expression e over
Var(f). The value of e under sub-space m w.r.t. the Kleene three-valued logic, denoted as
m(e), is recursively defined as follows:
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m(e) =



e if e ∈ B⋆

m(a) if e = a, a ∈ Var(f)
¬m(e1) if e = ¬e1

min≤t(m(e1), m(e2)) if e = e1 ∧ e2

max≤t
(m(e1), m(e2)) if e = e1 ∨ e2

where ¬1 = 0,¬0 = 1,¬⋆ = ⋆, and min≤t
(resp. max≤t

) is the function to get the minimum
(resp. maximum) value of two values w.r.t. the order ≤t.

▶ Theorem 20 (Theorem 1 of [44]). Consider a BN f and a sub-space m of f . A sub-space
m is a trap space of f iff m(fv) ≤s m(v) for every v ∈ Var(f).

▶ Corollary 21. Consider a BN f and a sub-space m of f . A sub-space m is a minimal trap
space of f iff m is a ≤s-minimal trap space of f .

▶ Corollary 22. Consider a BN f and a sub-space m of f . A sub-space m is a fixed point of
f iff m is a trap space of f and m(v) ̸= ⋆ for every v ∈ Var(f).

Now, we show the formal proof of Theorem 14.

▶ Lemma 23. Consider a BN f and a set of perturbable variables X ⊆ Var(f). Let g be the
BN obtained from f , according to Definition 13. Let ∆ be the set

⋃
v∈X {vk, vo}. If m is a

minimal trap space of g, then m(v) ̸= ⋆ for every v ∈ ∆.

Proof. Let m be a minimal trap space of g. Assume that there exists vk ∈ ∆ such that
m(vk) = ⋆ or vo ∈ ∆ such that m(vo) = ⋆. We consider two cases as follows.
Case 1: m(vk) = ⋆. Let m′ be a sub-space of g such that m′(u) = m(u), for every
u ∈ Var(g) \ {vk} and m′(vk) = 0. We have m′(gvk ) = m′(vk). The variable vk only affects
vo and v. Regarding vo, we have m′(gvo) = m′(vo ∧ ¬vk) = min≤t(m′(vo),¬m′(vk)) =
min≤t

(m′(vo), 1) = m′(vo). Regarding v, we have m′(gv) = m′(¬vk ∧ (vo ∨
fv)) = min≤t

(¬m′(vk), max≤t
(m′(vo), m′(fv))) = min≤t

(1, max≤t
(m′(vo), m′(fv))) =

max≤t
(m′(vo), m′(fv)) = max≤t

(m(vo), m(fv)). Following Theorem 20, m(gv) ≤s m(v).
We have m(gv) = m(¬vk ∧ (vo ∨ fv)) = min≤t

(¬m(vk), max≤t
(m(vo), m(fv))) =

min≤t(⋆, max≤t(m(vo), m(fv))). Since m(v) <s max≤t(m(vo), m(fv)) implies m(v) <s

m(gv) which is a contradiction, we derive that max≤t
(m(vo), m(fv)) ≤s m(v). This implies

m′(gv) ≤s m(v) = m′(v). For any u ∈ Var(g) \ {v, vk, vo}, m′(gu) = m(gu) ≤s m(u) = m′(u).
Hence, m′ is trap space of g and m′ <s m, which is a contradiction.
Case 2: m(vo) = ⋆. Let m′ be a sub-space of g such that m′(u) = m(u) for every u ∈
Var(g) \ {vo} and m′(vo) = 0. We have m′(gvo) = m′(vo ∧¬vk) = min≤t

(m′(vo),¬m′(vk)) =
min≤t

(0,¬m′(vk)) = 0 = m′(vo). The variable vo only affects v. We have m′(gv) = m′(¬vk∧
(vo∨fv)) = min≤t

(¬m′(vk), max≤t
(m′(vo), m′(fv))) = min≤t

(¬m′(vk), max≤t
(0, m′(fv))) =

min≤t(¬m′(vk), m′(fv)) = min≤t(¬m(vk), m(fv)). Following Theorem 20, m(gv) ≤s

m(v). We have m(gv) = m(¬vk ∧ (vo ∨ fv)) = min≤t
(¬m(vk), max≤t

(m(vo), m(fv))) =
min≤t(¬m(vk), max≤t(⋆, m(fv))). Suppose that m′(v) = m(v) <s min≤t(¬m(vk), m(fv)). If
m(fv) = 0, then m(v) <s 0 which contradicts to the definition of ≤s. Hence m(fv) ̸= 0, lead-
ing to max≤t

(⋆, m(fv)) = m(fv). Then m(v) <s min≤t
(¬m(vk), m(fv)) = m(gv), which is a

contradiction. Hence, min≤t
(¬m(vk), m(fv)) ≤s m′(v). This implies that m′(gv) ≤s m′(v).

For any u ∈ Var(g) \ {v, vo}, m′(gu) = m(gu) ≤s m(u) = m′(u). Hence, m′ is trap space of g

and m′ <s m, which is a contradiction.
Combining Case 1 and Case 2, we can conclude that for m(v) ̸= ⋆ for every v ∈ ∆. ◀
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▶ Lemma 24. Consider a BN f and a set of perturbable variables X ⊆ Var(f). Let g be the
BN obtained from f , according to Definition 13 and ∆ be the set

⋃
v∈X {vk, vo}. Let m be a

trap space of g such that m(v) ̸= ⋆ for every v ∈ ∆. Let σ be the perturbation of f such that
σ(v) = 1 if and only if m(vk) = 0 and m(vo) = 1, σ(v) = 0 if and only if m(vk) = 1 and
m(vo) = 0, and σ(v) = ⋆ if and only if m(vk) = 0 and m(vo) = 0. Then m′ is a trap space
of fσ where m′(v) = m(v) for every v ∈ Var(f).

Proof. Assume that there exists v ∈ X such that m(vk) = m(vo) = 1. Since m is a trap space
of g, m(gvo) ≤s m(vo). We have m(gvo) = m(vo ∧ ¬vk) = 0, whereas m(vo) = 1, leading to
0 ≤s 1, which contradicts to the definition of ≤s. Hence, the case of m(vk) = m(vo) = 1 is
impossible for every v ∈ X . Since m(v) ̸= ⋆ for every v ∈ ∆, σ is well specified.

Recall that Var(g) = Var(f) ∪∆ and Var(f) = Var(fσ). Consider v ∈ Var(fσ). If v ̸∈ X ,
we have m′(fσ

v ) = m′(fv) = m′(gv) = m(gv) ≤s m(v) = m′(v). If v ∈ X , we have the
following cases:
Case 1: m(vk) = 0 and m(vo) = 0. Then σ(v) = ⋆, thus m′(fσ

v ) = m′(fv). We have
m(gv) = m(¬vk ∧ (vo ∨ fv)) = m(fv) ≤s m(v) = m′(v). Since m′(fv) = m(fv), it follows
that m′(fσ

v ) ≤s m′(v).
Case 2: m(vk) = 1 and m(vo) = 0. Then σ(v) = 0, thus m′(fσ

v ) = 0. We have
m(gv) = m(¬vk ∧ (vo ∨ fv)) = 0 ≤s m(v) = m′(v). Hence, m′(fσ

v ) ≤s m′(v).
Case 3: m(vk) = 0 and m(vo) = 1. Then σ(v) = 1, thus m′(fσ

v ) = 1. We have
m(gv) = m(¬vk ∧ (vo ∨ fv)) = 1 ≤s m(v) = m′(v). Hence, m′(fσ

v ) ≤s m′(v).
Now we can conclude that m′(fσ

v ) ≤s m′(v) for every v ∈ Var(fσ). Hence, m′ is a trap
space of fσ. ◀

▶ Theorem 14. Given a BN f , a set of perturbable variables X ⊆ Var(f), a phenotype β,
and Ω =

⋃
v∈∆{p(v), n(v)}, where ∆ =

⋃
v∈X {vk, vo}, then C-MTS-3 can be computed as

#PASP(P-tsconj(g) ∪ ToASP(β), Ω), where g is the new BN according to Definition 13.

Proof. First, we consider a perturbation σ:X → B⋆ of BN f . Let m∆: ∆→ B be a mapping
such that for every v ∈ X , σ(v) = 1 if and only if m∆(vk) = 0 and m∆(vo) = 1, σ(v) = 0
if and only if m∆(vk) = 1 and m∆(vo) = 0, and σ(v) = ⋆ if and only if m∆(vk) = 0 and
m∆(vo) = 0. Recall that Var(g) = Var(f) ∪∆ and Var(f) = Var(fσ). Let m be a minimal
trap space of fσ and m |= β. Let m′ be a sub-space of g such that m′(v) = m(v) if v ∈ Var(f)
and m′(v) = m∆(v) if v ∈ ∆. We show that m′ is a minimal trap space of g and m′ |= β (1).

Consider v ∈ X , we have m′(gvk ) = m′(vk). If m′(vk) = 0, then m′(vo ∧ ¬vk) = m′(vo).
If m′(vk) = 1, then m′(vo) = 0 due to the definition of m∆, leading to m′(vo ∧ ¬vk) =
0 = m′(vo). Hence, we can derive that m′(gvo) = m′(vo ∧ ¬vk) = m′(vo). Regarding
m′(gv) = m′(¬vk ∧ (vo ∨ fv)), we have the following cases:
Case 1: σ(v) = ⋆. Then m′(vk) = 0 and m′(vo) = 0. We have m′(gv) = m′(fv) =
m(fv) = m(fσ

v ) ≤s m(v) = m′(v).
Case 2: σ(v) = 1. Then m′(vk) = 0 and m′(vo) = 1. We have m′(gv) = 1 = m(fσ

v ) ≤s

m(v) = m′(v).
Case 3: σ(v) = 0. Then m′(vk) = 1 and m′(vo) = 0. We have m′(gv) = 0 = m(fσ

v ) ≤s

m(v) = m′(v). Consider v ∈ Var(f) \ X . We have m′(gv) = m′(fv) = m(fv) = m(fσ
v ) ≤s

m(v) = m′(v).
Now, we can conclude that m′ is a trap space of g. Assume that m′ is not minimal. Then

there is a trap space n of g such that n <s m′. Since m′(v) ̸= ⋆ for every v ∈ ∆, n(v) = m′(v)
for every v ∈ ∆, leading to n(v) ̸= ⋆ for every v ∈ ∆. Following the Lemma 24, n′ is a trap
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space of fσ where n′(v) = n(v) for every v ∈ Var(f). Since n(v) = m′(v) for every v ∈ ∆,
we have n′ <s m, which contradicts to the ≤s-minimality of m w.r.t. fσ. Hence, m′ is a
minimal trap space of g. In addition, since β only contains the variables in Var(f), it is
trivial that m′ |= β.

Second, we consider a minimal trap space m of g such that m |= β. By Lemma 23,
m(v) ̸= ⋆ for every v ∈ ∆. The case of m(vk) = m(vo) = 1 is impossible because if it holds,
then m(gvo) = m(vo ∧ ¬vk) = 0 ≤s m(vo) = 1, which is a contradiction. Let σ be the
perturbation of f such that σ(v) = 1 if and only if m(vk) = 0 and m(vo) = 1, σ(v) = 0 if
and only if m(vk) = 1 and m(vo) = 0, and σ(v) = ⋆ if and only if m(vk) = 0 and m(vo) = 0.
Let m′ be a sub-space of f such that m′(v) = m(v) for every v ∈ Var(f). We show that m′

is a minimal trap space of fσ and m′ |= β (2).
By Lemma 24, m′ is a trap space of fσ. Assume that m′ is not minimal. Then there

is a minimal trap space n of fσ such that n <s m′. Let n′ be a sub-space of g such that
n′(v) = m(v) for every v ∈ ∆ and n′(v) = n(v) for every v ∈ Var(f). By following the same
reasoning for (1), we have n′ is a trap space of g. However, n′ <s m, which contradicts to
the ≤s-minimality of m w.r.t. g. Hence, m′ is a minimal trap space of fσ. In addition, since
β only contains the variables in Var(f), it is trivial that m′ |= β.

From (1) and (2), we can conclude that, given f,X , and β, the result of the counting
problem C-MTS-3 is equivalent to the number of minimal trap spaces of g that satisfy
β where multiple minimal trap spaces with the same values on the variables in ∆ are
only counted once. By Theorem 10, the answer sets of P-tsconj(g) ∪ ToASP(β) one-to-one
correspond to the minimal trap spaces of g satisfying β. The set Ω includes the atoms of
P-tsconj(g) ∪ ToASP(β) corresponding to the variables in ∆ of g. It follows that the number
of answer sets of P-tsconj(g) ∪ ToASP(β) projected to Ω is equal to the number of minimal
trap spaces of g satisfying β projected to ∆. This implies that C-MTS-3 can be computed
as the projected answer set counting query #PASP(P-tsconj(g) ∪ ToASP(β), Ω). ◀

Finally, we show the formal proof of Theorem 15.

▶ Theorem 15. Given a BN f , a set of perturbable variables X ⊆ Var(f), a phenotype β,
and Ω =

⋃
v∈∆{p(v), n(v)}, where ∆ =

⋃
v∈X {vk, vo}, then C-FIX-3 can be computed as

#PASP(P-fASP(g) ∪ ToASP(β), Ω), where g is the new BN following Definition 13.

Proof. The proof technique of Theorem 14 can be similarly extended for C-FIX-3 with the
program P-fASP(g). ◀

B Details of Example ASP Programs

The ASP program P-tsconj(f) considered in Example 16 is:

p(a) ∨ n(a)← ⊤ p(a)← p(a), n(b) n(a)← aux1 aux1 ← n(a) aux1 ← p(b)
p(b) ∨ n(b)← ⊤

p(b)← n(bk), aux2 aux2 ← p(bo) aux2 ← p(a)

n(b)← aux3 aux3 ← p(bk) aux3 ← n(bo), n(a)

p(bk) ∨ n(bk)← ⊤ p(bk)← p(bk) n(bk)← n(bk)

p(bo) ∨ n(bo)← ⊤ p(bo)← p(bo), n(bk) n(bo)← aux4 aux4 ← n(bo) aux4 ← p(bk)
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The ASP program ToASP(β) considered in Example 16 is:

⊥ ← p(a) ⊥ ← ∼n(a)
⊥ ← p(b) ⊥ ← ∼n(b)

C Details of Benchmark Instances

Our benchmarks are based on the 245 real-world biological models from the BBM dataset [54]
available at the time of writing, plus 400 random Boolean networks that were first tested as
part of [68]. The real-world Boolean models range up to 1076 variables, out of which up to
223 are source variables. However, the median network size in this dataset is less than 100
variables. As such, we also consider larger, random Boolean networks ranging between 1,000
and 5,000 variables. All source variables across all networks are left unrestricted, meaning
they can take the value 0 or 1, thereby maximizing the number of admissible trap spaces.

These 645 instances are used directly as inputs for benchmarking the C-FIX-1 and
C-MTS-1 problems. To test C-FIX-2 and C-MTS-2, we augment each network with a
pseudo-random phenotype specification. Here, the specification is chosen as follows: we first
compute an arbitrary, fixed minimal trap space using tsconj. We then randomly select
the values of three fixed variables – excluding all the source variables of the network. The
conjunction of these values represents the tested phenotype. This process ensures that for
each Boolean network, problem C-MTS-2 always has at least one valid minimal trap space
solution (existence of a fixed point solution cannot be guaranteed regardless of the chosen
phenotype).

Finally, to evaluate C-FIX-3 and C-MTS-3, we use the same phenotype but also pseudo-
randomly select up to 50 perturbable variables, excluding both the source variables and those
fixed by the phenotype. For networks with less than 50 such candidates, we simply select all
viable variables as perturbable. We then use the transformation proposed in Definition 13 to
construct a new variant of each benchmark network in which the selected variables can be
perturbed. Each such perturbed network, together with the phenotype, represents the input
for C-FIX-3 and C-MTS-3.

D Phenotype robustness analysis, case study of Interferon 1 model

Model no. 118 in the BBM dataset [54] represents an interaction network related to the
activation of the so-called Interferon 1, a biochemical species closely tied to immune response
present in T-cells. The model was initially derived using [2] and then later tuned by domain
experts to correctly capture relevant biological phenotypes. It consists of 121 variables, of
which 55 are “inputs”, meaning they are not regulated by other variables.

The model defines three phenotype variables, ISG (full name ISG expression antiviral
response phenotype), PCK (full name Proinflammatory cytokine expression inflammation
phenotype), and IFN (full name Type 1 IFN response phenotype). As these are separate
output variables of the network, each trap space can exhibit any combination of active and
inactive phenotype variables.

Since the model defines response of T-cells to immunological stimuli and environmental
factors, it is important to understand how these mechanisms respond to potential permanent
perturbations, either due to genetic mutations or therapeutic treatments. Here, we provide
an overview of the model phenotypes through the lens of phenotype robustness.
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Table 7 Phenotype robustness analysis for the Interferon 1 model. First three columns describe
the desired phenotype (− meaning the value is unconstrained). The C-MTS-3 column lists the
number of perturbations for which said phenotype appears in the network. Finally, robustness r

indicates what portion of the possible perturbations still enable the corresponding phenotype.

ISG PCK IFN C-MTS-3 Robustness (r)
1 – – 3486784401 1.000
– 1 – 2114072298 0.606
– – 1 2313362673 0.663
0 0 0 478296900 0.137
1 0 0 621785970 0.178
0 1 0 478296900 0.137
0 0 1 813104730 0.233
1 1 0 782989740 0.224
1 0 1 1096362783 0.314
0 1 1 813104730 0.233
1 1 1 1409735826 0.404

For simplicity, we selected 20 variables of the model as potential perturbation targets.
In reality, this choice would be further influenced by known genetic risk factors or drug
targets. Consequently, this choice results in 320 = 3486784401 admissible perturbations in our
Boolean system. We then consider two phenotype variants: First, where a single phenotype
variable is expected to be 1 and the remaining phenotype variables are unconstrained (i.e.
they can be 0, 1, or ⋆), yielding three combinations. And second, more specific one, where
each phenotype variable is fixed to either 1 or 0, yielding eight combinations.

The results for C-MTS-3 and the subsequent robustness computation are given in Table 7.
Here, we can notice several biologically interesting outcomes:

Regardless of perturbation, the network always exhibits a trap space with the ISG
phenotype. The remaining phenotypes are usually also present (r = 0.606 and r = 0.663),
but are significantly less robust than ISG. This indicates that (assuming favorable
environmental conditions), expression of ISG as a response to viral activity is robust and
cannot be disrupted by a perturbation.
Among the fully defined phenotypes, 010 and 000 are the least robust while 111 is the
most robust. This shows the general tendency of T-cells to reliably and consistently
respond to immunological stimuli, as the 111 phenotype indicates the maximal level of
immunological activity.
Even though ISG is the most robust phenotype when taken in isolation, phenotypes with
active IFN generally achieve higher robustness when other phenotypes are required to be
inactive.

Such outcomes serve several functions: First, they can be used to validate (or refute)
assumptions about the biological tendencies of the studied system. Second, if observations do
not match model predictions, better quantitative understanding can provide possible sources
of further model refinement. Third, this knowledge can enable us to better (more reliably or
efficiently) select a phenotype that should be targeted by a treatment among several related
but distinct cellular phenotypes. Finally, note that the number of solutions in each case is
significantly higher than what would be countable using standard enumeration, underscoring
the importance of dedicated counting methods, and approximate counting in particular.
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