
Analyzing Self-Stabilization of Synchronous Unison
via Propositional Satisfiability
Asma Khoualdia #

MIS UR 4290, Université de Picardie Jules Verne, Amiens, France

Sami Cherif #

MIS UR 4290, Université de Picardie Jules Verne, Amiens, France

Stéphane Devismes #

MIS UR 4290, Université de Picardie Jules Verne, Amiens, France

Léo Robert #

MIS UR 4290, Université de Picardie Jules Verne, Amiens, France

Abstract
Synchronous unison is a classical clock synchronization problem in distributed computing, and
especially in self-stabilization. This paper explores the self-stabilization of a synchronous unison
algorithm proposed by Arora et al. using a propositional satisfiability-based approach. We give
a logical formulation of the algorithm. This formulation includes the uniqueness of clock values
at each node, the updates of clocks based on the minimum clock value in the neighborhood, and
the detection of convergence or divergence. To optimize the models, additional constraints are
introduced to reduce redundant cases of initial configurations to be analyzed. Our approach not
only verifies the algorithm’s behaviour but also offers insights into enhancing its robustness and
applicability to broader distributed systems.

2012 ACM Subject Classification Theory of computation → Distributed algorithms; Theory of
computation → Constraint and logic programming; Theory of computation → Logic and verification

Keywords and phrases Self-stabilization, Synchronous Unison, Satisfiability

Digital Object Identifier 10.4230/LIPIcs.CP.2025.19

Supplementary Material
Software (Source Code and Benchmarks): https://github.com/asmakhoualdia98/SU_SAT_Exec [26]

archived at swh:1:dir:4bc78d189155024f85110cb2dc9ae4aeb470d8bf

Funding This work is supported by the project ANR-24-CE23-6126 (BforSAT), funded by the French
National Research Agency. This work was also granted access to HPC resources of “Plateforme
MatriCS” within University of Picardie Jules Verne, co-financed by the European Union with the
European Regional Development Fund (FEDER) and the Hauts-De-France Regional Council among
others.

1 Introduction

The notion of self-stabilization has been introduced in 1974 by Dijkstra [18] in the context
of distributed systems. A distributed system is a set of computational entities, usually
referred to as processes, that are both autonomous and interconnected. The goal of these
processes is to cooperate to solve a task global to the system. An algorithm is said to be
self-stabilizing if, regardless of the initial configuration of the system on which it is deployed,
it guarantees to recover within finite time, and without external intervention, a so-called
legitimate configuration from which the system specification is satisfied. Although the notion
of failure is not explicit in the definition of self-stabilizing systems, the primary motivation
of this approach is nevertheless fault tolerance. Indeed, after a finite number of transient

© Asma Khoualdia, Sami Cherif, Stéphane Devismes, and Léo Robert;
licensed under Creative Commons License CC-BY 4.0

31st International Conference on Principles and Practice of Constraint Programming (CP 2025).
Editor: Maria Garcia de la Banda; Article No. 19; pp. 19:1–19:21

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:asma.khoualdia@etud.u-picardie.fr
https://orcid.org/0009-0002-1845-9779
mailto:sami.cherif@u-picardie.fr
https://orcid.org/0000-0003-4646-9982
mailto:stephane.devismes@u-picardie.fr
https://orcid.org/0000-0002-8032-9732
mailto:leo.robert@u-picardie.fr
https://orcid.org/0000-0002-9638-3143
https://doi.org/10.4230/LIPIcs.CP.2025.19
https://github.com/asmakhoualdia98/SU_SAT_Exec
https://archive.softwareheritage.org/swh:1:dir:4bc78d189155024f85110cb2dc9ae4aeb470d8bf;origin=https://github.com/asmakhoualdia98/SU_SAT_Exec;visit=swh:1:snp:af5a3ce14a7b5fdca4086ba55a5d21370fe4d3cb;anchor=swh:1:rev:6905da4a2f2dd404ea072c647393ba1f58ba0b4c
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics
https://www.dagstuhl.de

19:2 Analyzing Self-Stabilization of Synchronous Unison via Propositional Satisfiability

failures1, the configuration of a distributed system may be arbitrary and thus no longer
satisfy its specification. A self-stabilizing algorithm then guarantees that the system recovers
from such faults within finite time.

Designing self-stabilizing algorithms may seem complex and subtle at first glance since
processes only have a partial view of the global configuration of the system. Yet, many of
these algorithms turn out to be surprisingly elegant and sometimes even simpler than their
non-stabilizing counterparts. However, formally demonstrating the self-stabilization of an
algorithm is often difficult and error-prone. This is mainly due to the combinatorial nature
of the problem: convergence to a legitimate configuration must be demonstrated from every
possible initial configuration. In the same spirit, our work aims at bringing formal reasoning
techniques to the design and verification of self-stabilizing algorithms. In [19], the authors
propose a formal approach based on propositional Satisfiability that is complementary to
ours. First, as in the present paper, they aim at bringing formal reasoning techniques to the
design and verification of self-stabilizing algorithms dedicated to synchronous distributed
systems. Yet, their focus is on more severe failure patterns as they specifically consider both
transient and Byzantine faults2. However, their analysis is restricted to a fully connected
network topology while our work addresses several classes of loosely connected topologies,
including rings, chains and stars, where each node only accesses a very restrictive view of the
system configuration.

With this in mind, we focus here on a simple problem: Synchronous Unison. We assume
a synchronous system where processes are anonymous and whose topology is arbitrarily
connected. Each process has a local clock whose integer values vary between 0 and m− 1,
where m is called the period. Starting from a configuration where each process’s clock has
a set value in {0, . . . ,m − 1}, the goal is to make the system converge to a configuration
for which all clocks are identical while allowing increment actions (modulo m) at each step.
Arora and al have proposed a simple solution to this problem [4]. The self-stabilization of
their algorithm is demonstrated for all m ≥ max(2, 2D − 1) where D is the diameter of the
network [3,4]. However, the tightness of this bound remains an open question. Actually, this
question is partially answered in [3] where divergence configurations, i.e., configurations from
which executions never stabilize, are exhibited for all even periods strictly smaller than the
bound: the odd cases remaining unresolved to date.

We propose therefore to study how propositional satisfiability can help to address this
question, and more generally how it can help to verify the self-stabilization of distributed
algorithms. Indeed, Propositional Satisfiability (SAT) is a fundamental problem in logic and
symbolic artificial intelligence, which consists in determining whether a given propositional
formula in Conjunctive Normal Form (CNF) can be satisfied by an assignment of the
variables. This problem, which was the first proven NP-complete [15], is attracting growing
interest particularly due to the remarkable efficiency of modern SAT solvers in handling large
instances despite its established difficulty. In addition to its key role in software verification,
artificial intelligence, and cryptography, SAT lies at the intersection of several disciplines
such as logic, graph theory, computer science, and artificial intelligence [6].

In this paper, we introduce a formal SAT-based approach to rigorously analyze the beha-
vior of Arora and al’s synchronous unison algorithm [4]. Clock update rules are translated into
logical constraints in CNF, allowing the use of SAT solvers to verify whether synchronization

1 A transient fault occurs at an unpredictable time, but does not result in a permanent hardware damage.
Moreover, as opposed to intermittent faults, the frequency of transient faults is considered to be low.

2 A Byzantine fault refers to an arbitrary behavior of a node that may no longer follow its local algorithm.

A. Khoualdia, S. Cherif, S. Devismes, and L. Robert 19:3

can be achieved. This methodology provides a systematic framework for studying the stabil-
ization of the algorithm with different topologies and initial configurations, and with different
periods. To optimize this analysis, specific techniques are applied to reduce redundancies
among initial configurations, thereby accelerating model efficiency. Our approach, although
focused on unison, provides formal guarantees regarding synchronization scenarios, while
opening up optimization opportunities in more complex distributed algorithms.

The remainder of this paper is organized as follows. In Section 2, we present the
synchronous unison algorithm and introduce propositional satisfiability. Section 3 is devoted
to the formal modeling of the synchronous unison algorithm of Arora and al [4], where we
detail the variables and notations, as well as the formulation of clock uniqueness, update,
and detection of self-stabilization or its absence. This section also presents additional
constraints that aim at accelerating the solving of the problem. Finally, Section 5 presents
our experimental evaluation on different graph topologies. Finally, we conclude and discuss
future work in Section 6.

2 Preliminaries

2.1 Synchronous Unison
We consider a distributed system of n interconnected processes. The interconnection network
is modeled by an undirected connected graph G = (V,E) where V is a set of vertices
representing the processes and E a set of edges representing bidirectional communication
links between processes. The set of neighbors of a process p will be denoted N(p). Arora
and al’s synchronous unison [4] is showcased in Algorithm 1. It is written in the atomic-state
model, a locally shared memory model of computation where each node can directly read its
state and those of its neighbors, but can only modify its own state.

Given an integer parameter m common to all processes and called period, each process p
holds a single variable p.c ∈ {0, . . . ,m− 1}, which represents its clock. The state of a process
is then its clock value. The configuration of the system is modeled by the vector associating
each process with its state (its clock value). The set of possible configurations of the system
is denoted by Γn,m = {0, . . . ,m− 1}n. The local algorithm of each process p is made of a
single rule of the form guard 7→ action. The guard of the rule of p is a predicate on the
state of p and those of its neighbors. The action part modifies the state of p and, in this
case, is thus an assignment of the clock of p. In a given configuration, a process’s rule is
said to be enabled if its guard is true. A configuration where no rule can be enabled is said
to be terminal. The system is assumed to be synchronous: as long as the system is not in
a terminal configuration, iterations are executed as follows. All processes whose rule can
be enabled in the current configuration γi simultaneously execute their rule’s action, thus
generating a new configuration γi+1, and so on. An execution of the algorithm is therefore a
sequence of configurations γ0, . . . , γi, . . . such that for all i > 0, γi is obtained from γi−1 in
one synchronous iteration of the algorithm.

The goal of the unison algorithm is to reach a configuration where all clocks are syn-
chronized to an identical value. To this end, at each iteration, each process p computes the
minimum clock value cmin in its closed neighborhood (i.e., N(p) ∪ {p}), and then modifies,
if necessary, its clock p.c to (cmin + 1) mod m (see Algorithm 1). Gradually, the smallest
values propagate in the network. This progress can only be disturbed by the appearance of 0
at some processes after their entire closed neighborhood has reached the maximum value
m − 1. However, Arora et al. have shown that when m is chosen sufficiently large (i.e.,
m ≥ max(2.2D − 1) where D is the diameter of G), these local resets cannot prevent the

CP 2025

19:4 Analyzing Self-Stabilization of Synchronous Unison via Propositional Satisfiability

system from converging: regardless of the initial configuration γ0, there necessarily exists
a value t ≥ 0 such that all clocks have the same value in γt. Conversely, if m is chosen
too small, the execution may never converge. In this case, there exists a cycle between
illegitimate configurations (i.e., configurations containing at least two different clock values).

Since the total number of possible configurations is mn, if the system is still in an
illegitimate configuration after mn − 1 iterations, we can claim that the execution will never
converge. Thus, it is sufficient to observe the first tf = mn configurations of an execution in
order to decide whether the execution converges or diverges. This number is very large and
can lead to exponential modeling. We can therefore choose a more reasonable value for tf ,
even if it means not being able to decide in some cases.

▶ Example 1. Consider a process network G=({p0, p1, .., p5}, E) organized as a ring topology.
Let m = 5 and assume the initial configuration γ0 given in Figure 1. From γ0, we obtain
the execution prefix γ0, γ1γ2, γ3 given in Table 1. The unison algorithm therefore reaches a
legitimate configuration after 3 iterations.

2 p0

4
p1

0
p2

1p3

4

p4

4

p5

Figure 1 Initial configuration γ0 in a ring
of 6 nodes with m = 5.

Table 1 Prefix of 4 configurations obtained
after 3 iterations from γ0.

p0 p1 p2 p3 p4 p5

γ0 2 4 0 1 4 4
γ1 3 1 1 1 2 3
γ2 2 2 2 2 2 3
γ3 3 3 3 3 3 3

In the previous example, a legitimate configuration, where the clocks are synchronized, is
eventually reached by the algorithm. However, when m is chosen too small, there may
exist configurations from which the clocks never synchronize. In this case, we will say that
the system diverges. The convergence and divergence properties, formally defined below,
highlight the importance of studying the behavior of distributed algorithms, and particularly
synchronous unison, according to their parameter values (in this case, the period) [16,20].

Algorithm 1 Synchronous unison for a process p.
Inputs :

N(p) : set of the neighbors of p

m : a positive integer, the period
Variable:

p.c ∈ {0, .., m − 1}, the clock of p

Macro :
New(p) = (min({q.c : q ∈ N(p)} ∪ {p.c}) + 1) mod m

Rule :
p.c ̸= New(p) 7→ p.c := New(p)

A. Khoualdia, S. Cherif, S. Devismes, and L. Robert 19:5

▶ Definition 2 (Convergence). Given a period m, the synchronous unison algorithm executed
on a graph G of n vertices converges when, for every initial configuration γ0 ∈ Γn,m, the
system reaches, within a finite number of iterations, a configuration γt ∈ Γn,m where all
clocks have the same value.

▶ Definition 3 (Divergence). The synchronous unison algorithm diverges for a given period
m in a graph G of n vertices when there exists an initial configuration γ0 ∈ Γn,m from which
the clocks never synchronize, i.e., there are infinitely many reached configurations containing
at least two distinct clock values.

▶ Example 4. Consider a network of n = 3 processes whose topology is a chain. Let m = 2
and consider the initial configuration γ0 given in Figure 2. From this initial configuration,
we obtain the execution prefix described in Table 2. Divergence is observable since the the
configuration γ2 is identical to the initial one, γ0, and both are illegitimate.

0

p0

1

p1

1

p2

Figure 2 Initial configuration γ0 in a chain
of 3 nodes, where m = 2.

Table 2 Two iterations of the synchronous
unison in a chain of three nodes, where m = 2.

p0 p1 p2

γ0 0 1 1
γ1 1 1 0
γ2 0 1 1

Our analysis will focus on the impact of graph topology and the period m on synchroniza-
tion. The following theorem provides an interesting general bound on the maximum number
of iterations in a connected graph.

▶ Theorem 5 ([3]). The synchronous unison algorithm is self-stabilizing in every connected
graph of diameter D for m ≥ max{2, 2D − 1}. Its stabilization time, in this case, is at most
3D − 2 iterations.

Finally, we stress out that we have carefully selected the synchronous unison as our case
study with the goal of generalization to a broader class of distributed algorithms in mind.
More precisely, we deal with the atomic-state model because it is the most commonly used
model in the self-stabilizing literature and it is also close to other important models widely
used in distributed computing, e.g., the local and congest models [23,29]. The atomic-state
model is a locally shared memory model so our approach can be straightforwardly generalized
to handle algorithms working in systems where communication is made using communication
registers. Furthermore, Synchronous Unison is representative of classical techniques used in
self-stabilization. For example, the way clocks are updated follows the so-called “min+ 1”
rule that is used in many self-stabilizing algorithms such as the Breadth-First Search (BFS)
spanning tree construction [22] and the asynchronous version of the unison [16]. More
generally, we believe that our guidelines to model the transition relations are very general
while issues related to symmetries that we tackle in the paper are also pretty usual in
self-stabilization.

2.2 Propositional Satisfiability
Let X be a set of propositional variables. A literal is a variable x ∈ X or its negation x.
A clause is a disjunction of literals. A formula in Conjunctive Normal Form (CNF) is a
conjunction of clauses. An assignment I : X → {True, False} associates each variable with a

CP 2025

19:6 Analyzing Self-Stabilization of Synchronous Unison via Propositional Satisfiability

Boolean value and can be represented as a set of literals. A literal is satisfied by an assignment
I if l ∈ I, otherwise it is falsified by I. A clause is satisfied by an assignment I if at least
one of its literals is satisfied by I, otherwise it is falsified by I. A CNF formula is satisfiable
if there exists an assignment that satisfies all its clauses, otherwise it is unsatisfiable. The
satisfiability problem (SAT) thus consists in determining whether a given CNF formula is
satisfiable. Although SAT is NP-complete [15], modern solvers based on the Conflict Driven
Clause Learning (CDCL) [30] algorithm are efficient and can solve instances involving a
large number of variables and clauses. Indeed, beyond clause learning and non-chronological
backtracking, these solvers integrate powerful mechanisms such as lazy structures, dedicated
branching heuristics, and restarts [10]. Moreover, the SAT problem is widely used to model
and solve many complex combinatorial problems from various fields, notably in formal
verification [8, 14], but also in cryptography, bioinformatics and planning, among many
others [10].

Logic-based model checking has been a cornerstone in the formal verification of algorithms
and systems. In particular, Bounded Model Checking (BMC) [7], which verifies whether a
finite-state model satisfies a given specification within a bounded execution length, has gained
significant traction over the past decade, especially when encoded as satisfiability (SAT) or
satisfiability modulo theories (SMT) problems. Early efforts in the formal verification of
distributed self-stabilizing algorithms were led by Lakhnech and Siegel [27,33], who introduced
theoretical frameworks for computer-aided verification, although no practical toolsets emerged
from their work. Subsequent research explored symbolic BMC for distributed algorithms such
as the work of Chen and Kulkarni who applied SMT-based BMC to assess the stabilization
properties of distributed algorithms, particularly Dijkstra’s token ring, Ghosh’s Mutual
Exclusion and a version tree-based mutual exclusion [13]. However, while SMT solvers
offer expressive modeling capabilities, their higher-level abstraction can hinder fine-grained
analysis and scalability. More recently, a SAT-based formal approach was proposed in [19]
to detect Byzantine faults in synchronous systems with complete network topologies. This
propositional encoding demonstrates the viability of SAT-based reasoning for distributed
fault-tolerant systems and opens the door to more scalable and precise verification frameworks
for self-stabilizing algorithms.

In the following sections, we thus focus on modeling the behavior of the synchronous
unison algorithm, applied to an arbitrarily connected graph. The objective is to apply
bounded model checking through SAT to characterize the conditions of convergence or
divergence of the algorithm. This involves modeling the states of the processes using logical
formulas, which must be expressed in such a way that they can be effectively solved by a
SAT solver. Finally, we mention that previous literature introduces cardinality constraints
having the form

∑
i li = 1 where each li is a literal, and which can be efficiently encoded

into CNF form [32].

3 Formal Modeling of Synchronous Unison

In this section, we focus on the formal modeling of the behavior of the synchronous unison
of Arora et al. through propositional satisfiability. We begin by introducing the model
variables. Then, we define the constraints that govern the execution of the algorithm. These
constraints must faithfully represent the evolution of the system, and also allow us to detect
its convergence or divergence. Furthermore, we will introduce specific constraints that allow
us to optimize the model by eliminating redundant initial configurations.

A. Khoualdia, S. Cherif, S. Devismes, and L. Robert 19:7

3.1 Variables and Notations

We recall that the network is modeled by an undirected connected graph G = (V,E) where
V = {0, . . . , n− 1} is a set of n vertices representing the processes and E is a set of edges
representing bidirectional communication links between pairs of processes. M = {0, . . . ,m−1}
denotes the set of possible clock values, where m is the period. We are interested in the
first tf configurations of any execution of the algorithm on G. The configurations will thus
be indexed from 0 to tf − 1 and the set of indices will be denoted T = {0, . . . , tf − 1}.
To model the execution of the algorithm, it is also necessary to reason on the state of the
process clocks in the different configurations. To do this, we introduce the clock variables
hp,t,v, for all (p, t, v) ∈ V × T ×M . Each variable hp,t,v will indicate whether the clock of
process p is equal to the value v in configuration t. This is sufficient to model execution and
detect convergence. However, modeling divergence requires other variables, in particular to
represent the presence of a cycle between illegitimate configurations during execution and to
simplify the transformation of constraints into conjunctive normal form. The set of variables
we will use is detailed below:

Clock variables: hp,t,v where (p, t, v) ∈ V × T × M . These variables are assigned to
True if process p has clock value v in configuration t, False otherwise.
Cycle variables: ct where t ∈ T . These variables are assigned to True if the configuration
t ∈ T and the initial configuration are identical, i.e., if the clock value of each process is
identical in both configurations.
Clock-Similarity variables: sp,t,v where (p, t, v) ∈ V × T × M . These variables are
assigned to True if process p has the same clock value in configuration t ∈ T and the
initial configuration.

3.2 Modeling Unison Execution

First, we focus on formalizing the constraints modeling a valid execution of synchronous
unison. More specifically, we define clock uniqueness constraints as well as update rules
ensuring the correct computation of clock values at each iteration.

3.2.1 Clock Uniqueness

To guarantee a valid execution of the algorithm, it is necessary to maintain the uniqueness of
each process’s clock at each iteration. Specifically, it is necessary to ensure that each process
has one and only one clock value at each configuration of the algorithm. This constraint can
be modeled using the following cardinality constraint:∑

v∈M

hp,t,v = 1 ∀p ∈ V,∀t ∈ T (1)

Note that this constraint can be easily rewritten in CNF form, using a pairwise encoding,
without addition of auxiliary variables as shown below. The constraint (1a) ensures that a
process cannot simultaneously hold two different clock values in a given configuration, while
the constraint (1b) ensures that each process holds at least one valid clock value in each
configuration. The number of clauses induced by these constraints is thus O(n ∗ tf ∗m2) but
more efficient encodings can be used if we allow the use of auxiliary variables [31].

CP 2025

19:8 Analyzing Self-Stabilization of Synchronous Unison via Propositional Satisfiability

∧
(v,v′)∈M2

v<v′

(hi,t,v ∨ hp,t,v′) ∀p ∈ V,∀t ∈ T (1a)

∨
v∈M

hp,t,v ∀p ∈ V,∀t ∈ T (1b)

3.2.2 Clock Update
The process clocks are updated, at each iteration, based on the clock values of their closed
neighborhood. More precisely, each process p computes the minimum values among its own
clock value and those of its neighbors. This value will then be incremented by 1 modulo m.
Finally, the obtained value v is assigned to p.c if p.c ≠ v. To simplify the notations, we denote
Ñ(p) = N(p)∪{p} the closed neighborhood of the process p ∈ V and dp = |Ñ(p)| = |N(p)|+1
its size. The clock update constraint is then modeled as follows:

∧
(vp′)p′∈Ñ(p)∈Mdp

v′=(minp′∈Ñ(p) vp′ +1) mod m

(∨
p′∈Ñ(p)

hp′,t,vp′

)
∨hp,t+1,v′

∀t ∈ T \ {tf − 1},∀p ∈ V (2)

Indeed, for each possible assignment (vp′)p′∈Ñ(p) of the clock values of the closed neigh-
borhood of a process p, we want to ensure that the minimum value incremented by 1
modulo m, denoted v′, is propagated to the process p at the following configuration, i.e.,∧

p′∈Ñ(p) hp′,t,vp′ → hp,t+1,v′ . This last implication perfectly highlights the clock update
mechanism in the context of synchronous unison and is rewritten in conjunctive normal form
in the constraint (2) by adding the necessary iterations on the possible assignments and the
computation of the new value of the clock at the conjunction level. To provide a refined
analysis of the encoding complexity, we denote dmax = maxp∈V (dp − 1) the maximum degree
of the graph. Thus, it is clear that the number of clauses is bounded by O(n∗ tf ∗ ×mdmax+1).
Therefore, it seems that the complexity of our model is strongly correlated to the maximum
degree in the graph and thus it is more suited to graphs in which this value remains relatively
small. In particular, for ring or chain graphs, the complexity will be O(n ∗ tf ∗ ×m3) since,
for these topologies, we have dmax = 2.

3.3 Modeling Convergence
Convergence occurs when the system has reached a legitimate configuration, where all clock
values are identical. An algorithm is said to be convergent if, starting from any initial
configuration, such a legitimate configuration is always reached within a finite number of
iterations. To demonstrate this property, we will reason by contradiction by assuming that
convergence is never reached from some initial configuration. In other words, there exists (at
least) one initial configuration from which no legitimate configuration can be obtained. Since
a legitimate configuration necessarily generates another legitimate configuration after an
iteration of the algorithm, it suffices to show that the last configuration tf − 1 is illegitimate
for some initial configuration. This property is thus translated by the following constraint:∧

v∈M

∨
p∈V

hp,tf −1,v (3)

A. Khoualdia, S. Cherif, S. Devismes, and L. Robert 19:9

Thus, it is clear that the CNF formula ϕ obtained thanks to the constraints (1), (2),
and (3) is unsatisfiable if and only if the synchronous unison algorithm converges. Indeed,
if ϕ is satisfiable, the provided model allows to exhibit an initial configuration λ0 ∈ Γn,m

deduced from the clock variables hp,0,v which are set to true for p ∈ V and v ∈ M , from
which the algorithm does not converge. More specifically, in the valid execution of the unison
algorithm from λ0 (ensured by the constraints (1) and (2)), we exhibit, at the level of the
last configuration λtf −1 and for any possible clock value v ∈ M , a process p ∈ V whose
clock does not hold the value v in λtf −1 (ensured by constraint (3)). In terms of complexity,
since constraint (3) requires only O(m) clauses, our model for convergence requires only
O(n × tf × m) variables with a number of clauses bounded by O(n ∗ tf ∗ mdmax+1) where
dmax is the maximum degree of the graph. We also note that the maximum clause size of
the model is max(m,n+ 2).

Additionally, we can notice that constraint (3) can be further imposed on any subset
of configurations in T ′ ⊆ T \ {tf − 1} as showcased in (4). Adding these redundant
constraints does not alter the overall complexity of the model but may accelerate the
detection of convergence. Specifically, these constraints can enable the solver to identify
a valid configuration without requiring all necessary propagations to simulate the system
execution until the final iteration from a given initial configuration. Consequently, if we
consider the set X = T \ {tf − 1}, the model will ensure that the presence of a legitimate
configuration is verified at each iteration of the algorithm whereas the set P = {0 ≤ t <

tf − 1 | ∃q ∈ N s.t t = tf − 1 − q.m} ∪ {0} guarantees that this verification occurs every m
iterations, while necessarily including the initial configuration. We will thus refer to the
following constraint as IC (for iterative convergence) and we denote ICT ′ the constraint with
the corresponding set T ′ ∈ {P,X}.∧

v∈M

∨
p∈V

hp,t,v ∀t ∈ T ′ (4)

3.4 Modeling Divergence
Divergence implies the existence of two identical illegitimate configurations in the execution.
Indeed, the set of legitimate configurations is trivially closed, and since the algorithm is
synchronous and deterministic, such a cycle repeats itself infinitely. Let two configurations
(t1, t2) ∈ T such that t1 < t2, where the clock values of the processes at t2 are identical to
those at t1. We will call such an occurrence a cycle at the level of configurations (t1, t2). To
establish the divergence, we must therefore model the existence of a cycle at the level of two
possible illegitimate configurations reached by the algorithm. To simplify the modeling, we
consider the existence of a cycle with respect to the initial configuration, i.e., t1 = 0. Indeed,
even if t1 > 0, it is always possible to reduce the analysis to the initial configuration by
taking the configuration in t1 as the initial configuration of the system (n.b., a self-stabilizing
algorithm must converge from any initial configuration). Furthermore, to ensure that the
cycle configurations are illegitimate, it is sufficient to check that the initial configuration is
illegitimate. We recall that the variables ct where t ∈ T , defined previously, represent the
existence of a cycle at configuration t. Thus, the existence of a cycle between illegitimate
configurations can be enforced by the following constraints:∨

t∈T
0<t

ct (5a)

∧
v∈M

∨
p∈V

hp,0,v (5b)

CP 2025

19:10 Analyzing Self-Stabilization of Synchronous Unison via Propositional Satisfiability

Clearly, the constraint (5a) models the existence of a cycle (0, t) where t ∈ T ; while the
constraint (5b) guarantees that configuration 0, and therefore the configurations of the cycle,
are illegitimate. To establish the semantic meaning of the cycle variables, it is necessary to
guarantee that, if these variables are set to true, then there is a cycle (0, t), i.e., the clock
values in configuration t are identical to those in the initial configuration. In this context,
the clock similarity variables sp,t,v where (p, t, v) ∈ V × T × M can play the intermediate
role of guaranteeing the same clock value in configuration t ∈ T and the initial configuration.
Thus, we add the following constraints:

ct ∨
∨

v∈M

sp,t,v ∀t ∈ T, ∀p ∈ V (6a)

(sp,t,v ∨ hp,0,v) ∧ (sp,t,v ∨ hp,t,v) ∀t ∈ T, ∀p ∈ V,∀v ∈ M (6b)

The constraint (6a) thus ensures that the corresponding configuration t ∈ T has the same
clock values as configuration 0 or, more formally, that ct →

∧
p∈V

∨
v∈M sp,t,v. The normal

form presented in the constraint (6a) can be simply obtained by the clausal rewriting of
the implication as well as the distributivity of disjunctions over logical conjunctions. The
constraint (6b) is necessary to establish the semantic meaning of the variables sp,t,v which are
set to True when the process p ∈ V has the same clock value v ∈ V at configurations 0 and t.
More formally, we have sp,t,v → hp,0,v ∧hp,t,v and its normal form presented in the constraint
(6b) can also be deduced by rewriting the implication and applying the distributivity of
disjunction.

It is clear that the CNF formula ψ obtained by the constraints (1), (2), (5) and (6) is
satisfiable if and only if the unison algorithm diverges on the given input network with period
m. Indeed, a model of ψ allows to exhibit an initial configuration λ0 ∈ Γn,m from which a
valid execution of the synchronous unison generates a cycle (0, t) of illegitimate configurations,
given by a cycle variable assigned to True at the level of the clausal constraint (5a). Moreover,
in terms of encoding complexity for divergence, it is clear that the constraints (5) and (6)
introduce a bounded number of clauses in O(n× tf ×m) and, consequently, the model has a
complexity similar to the convergence case, mainly governed by the constraint (2), i.e., in
O(n ∗ tf ∗mdmax+1) where dmax is the maximum degree of the graph. However, the model
requires a larger number of variables, but which remains in O(n× tf ×m).

3.5 Elimination of Initial Configurations
In this section, we aim at reducing the number of initial configurations to be processed by
removing redundant configurations. In other words, the goal is to eliminate configurations
for which the algorithm’s behavior is identical to that of other configurations we already
consider in the analysis. This approach optimizes the algorithm’s execution by avoiding
processing situations that, although different in their representation, do not lead to different
results.

3.5.1 Lexicographic Order
Within the framework of the unison algorithm, the evolution of process clock values depends
exclusively on their local neighborhood and, more specifically, on their closed neighborhood.
In particular, two processes with the same set of neighbors in the studied topology evolve
identically, up to any permutation of their initial clock values. This observation makes
it possible to exploit a structural symmetry to reduce the space of configurations to be
considered by establishing a specific lexicographic order on the initial clock values for processes

A. Khoualdia, S. Cherif, S. Devismes, and L. Robert 19:11

with identical neighborhoods in the topology. To take advantage of this symmetry and
avoid examining multiple equivalent configurations, we introduce constraints imposing a
lexicographic order on the configurations. More precisely, only the minimal configurations
according to this order are considered, which eliminates redundant configurations and reduces
the search space. In our case, we will introduce constraints prohibiting lexicographically
larger configurations on local neighborhoods identical to those selected. This constraint,
which we will denote LO, can be formulated as follows:∧

(p,p′)∈V 2

p<p′,
N(p)=N(p′)

∧
(v,v′)∈M2

v′<v

(xp,0,v ∨ xp′,0,v′) (7)

Thus, if two processes (p, p′) ∈ V 2 such that p < p′ have an identical neighborhood, the
constraint (7) guarantees that p′ cannot take an initial clock value smaller than that of p.
This constraint introduces a number of clauses bounded in O(n2 × m2) and can only be
applied in topologies where some processes have an identical neighborhood, such as in the
star topology, where a central process (hub) is connected to several peripheral processes (see
Figure 5), or in complete graphs.

3.5.2 Rotation Elimination
As previously discussed, when a transformation of an initial configuration does not modify
the overall behavior of the algorithm, it is possible to eliminate redundant configurations to
optimize the search and analysis of relevant cases. A particularly interesting case concerns
graphs, such as rings, where the same configuration can be expressed in several equivalent
forms via a simple rotation of the process indices. In these structures, any initial configuration
can be transformed into another configuration by uniformly shifting the clock values. Since
the rotation does not modify either the neighbor relationships or the algorithm dynamics,
the study can be restricted to a representative subset of possible configurations.

To enforce this restriction, a constraint can be introduced guaranteeing that, among all
equivalent configurations, only those where a specific process has the lowest clock value are
considered. In particular, in a ring graph of n processes, we consider a configuration where
the first process has the lowest clock value among the clock values of the other processes
in the same configuration. Since the rotation, whether in the direct or indirect direction,
preserves the same behavior of the synchronous unison algorithm, we can eliminate any other
initial configuration that is an image of this configuration in order to avoid the analysis of
redundant cases, as proven in Proposition 6, with λ[p] denoting the clock value of p ∈ V

in the configuration λ ∈ Γn,m. This constraint, which we will denote RE, can therefore be
expressed as follows on any ring topology:∧

(v,v′)∈M2

v<v′

∧
p∈V \{0}

(x0,0,v′ ∨ xp,0,v) (8)

▶ Proposition 6. Let G = (V,E) be a ring graph composed of n processes and m a period.
Let ER = {λ ∈ Γn,m | ∃p ∈ V \{0}, λ[p] < λ[0]}. Then, for any initial configuration λ0 ∈ ER,
there exists a configuration λ′

0 ∈ Γn,m \ ER from which a synchronous unison execution
produces the same convergence or divergence behavior.

CP 2025

19:12 Analyzing Self-Stabilization of Synchronous Unison via Propositional Satisfiability

Proof. Without loss of generality, we assume that V = {0, . . . , n − 1}. Let λ0 ∈ ER and
pmin = argminp∈V λ0[p]. We define the configuration λ′

0 such that:

λ′
0[p] =

{
λ[p− pmin] for pmin ≤ p ≤ n− 1,
λ[n− pmin + p] for 0 ≤ p < pmin.

Clearly, λ′
0 is obtained by a rotation of λ0 that brings the smallest value back to process 0.

Therefore, λ′
0 has the same behavior as λ, up to a rotation. Indeed, following an execution

of the synchronous unison algorithm in a ring graph, the relations between neighbors are
preserved under rotation and each process applies exactly the same evolution rules as its
representative in the original configuration. Moreover, since λ′

0[0] = λ0[pmin] = minp∈V λ[p],
there is no process p ∈ V \ {0} such that λ[p] < λ[0] and, therefore, λ′

0 belongs to the kernel
Γn,m \ ER. ◀

The constraint (8) introduces a number of clauses bounded in O(n × m2) and can be
applied to graphs whose topology allows for specific rotations while preserving neighbor
relationships such as rings, or star topologies by applying the constraint only to the peripheral
nodes.

4 Experimental Evaluation

4.1 Experimental Protocol
We consider the following classical network topologies: chains, rings, and stars (see Figures 1, 2,
and 5 respectively) [34]. The properties of the considered graphs and periods are summarized
in Table 3. We encoded our models in Python using the PySAT library [25] 3 and solved
these instances using the state-of-the-art solvers Cadical [9] and MapleSAT [28] 4. Tests
were performed on a machine equipped with an Intel Core i7 processor clocked at 3.80 GHz,
running under Ubuntu 22.04. A timeout of 7200 seconds was set for each instance. We have
generated the instances associated with all our models, totaling 4968 instances. For each type
of topology among rings and chains, we took graph sizes n ranging from 3 to 20 nodes, and
we varied the period m from 2 to 20. For the star topology, we took graph sizes n ranging
from 3 to 10 nodes, and we varied the period m from 2 to 10. In particular, we generated
756 instances (342 for chains and rings and 72 for stars) for the initial model of convergence
(INICNV) which is described by the constraints (1), (2) and (3). Similarly we generated
the same number of instances for the divergence model (INIDIV) described through the
constraints (1), (2), (5) and (6).

Furthermore, for topologies where initial configuration elimination constraints can be
applied, we also generate the corresponding instances. Thus, we generated 828 instances
of convergence and divergence for ring and star topologies with the rotation elimination
(RE) constraint. For the lexicographic order (LO) constraint, we generated 144 instances of
convergence and divergence for the star topology. Moreover, we generated 756 instances of
convergence for ring, chain, and star topologies for each constraint ICP and ICX , added
on top of the initial models. 414 instances of convergence were generated for ring and star
topologies with each combinations RE + ICP and RE + ICX . Finally, we generated 72

3 Our code and benchmark are available in the following GitHub repository
4 For lack of space, we present the results with Cadical and we provide a comparison on the initial models

of convergence and divergence in the appendix (refer to Tables 10, 9 and 8)

https://github.com/asmakhoualdia98/SU_SAT_Exec/tree/main

A. Khoualdia, S. Cherif, S. Devismes, and L. Robert 19:13

20 ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

19 ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ -
18 ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ - - ⟳
17 ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

16 ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ⟳ ⟳ ⟳
15 ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ X X ✓

14 ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ⟳ ⟳ ⟳ ⟳ ⟳
13 ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ X X X ✓ ✓

12 ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ⟳ ⟳ ⟳ ⟳ ⟳ ⟳ ⟳
11 ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ X X X X X X ✓

10 ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ⟳ ⟳ ⟳ ⟳ ⟳ ⟳ ⟳ ⟳ ⟳
9 ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ X X X X X X X X X
8 ✓ ✓ ✓ ✓ ✓ ✓ ✓ ⟳ ⟳ ⟳ ⟳ ⟳ ⟳ ⟳ ⟳ ⟳ ⟳ ⟳
7 ✓ ✓ ✓ ✓ ✓ ✓ ✓ X X X X X X X X X ⟳ ⟳
6 ✓ ✓ ✓ ✓ ✓ ⟳ ⟳ ⟳ ⟳ ⟳ ⟳ ⟳ ⟳ ⟳ ⟳ ⟳ ⟳ ⟳
5 ✓ ✓ ✓ ✓ ✓ X X X X X ⟳ X X X ⟳ ⟳ X X
4 ✓ ✓ ✓ ⟳ ⟳ ⟳ ⟳ ⟳ ⟳ ⟳ ⟳ ⟳ ⟳ ⟳ ⟳ ⟳ ⟳ ⟳
3 ✓ ✓ ✓ ✓ ⟳ X X ⟳ X X ⟳ ⟳ X ⟳ ⟳ X ⟳ ⟳
2 ✓ ⟳ ⟳ ⟳ ⟳ ⟳ ⟳ ⟳ ⟳ ⟳ ⟳ ⟳ ⟳ ⟳ ⟳ ⟳ ⟳ ⟳

m

n
3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

(a) Rings.

20 ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ⟳ ⟳ ⟳ ⟳ ⟳ ⟳ ⟳ ⟳ ⟳
19 ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ X X X ✓ ✓ ✓ ✓ ✓ ✓

18 ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ⟳ ⟳ ⟳ ⟳ ⟳ ⟳ ⟳ ⟳ ⟳ ⟳
17 ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ X X X X X X ✓ ✓ ✓ ✓

16 ✓ ✓ ✓ ✓ ✓ ✓ ✓ ⟳ ⟳ ⟳ ⟳ ⟳ ⟳ ⟳ ⟳ ⟳ ⟳ ⟳
15 ✓ ✓ ✓ ✓ ✓ ✓ ✓ X X X X X X X X ✓ ✓ ✓

14 ✓ ✓ ✓ ✓ ✓ ✓ ⟳ ⟳ ⟳ ⟳ ⟳ ⟳ ⟳ ⟳ ⟳ ⟳ ⟳ ⟳
13 ✓ ✓ ✓ ✓ ✓ ✓ X X X X X X X X X X X ✓

12 ✓ ✓ ✓ ✓ ✓ ⟳ ⟳ ⟳ ⟳ ⟳ ⟳ ⟳ ⟳ ⟳ ⟳ ⟳ ⟳ ⟳
11 ✓ ✓ ✓ ✓ ✓ X X X X X X X X X X X X X
10 ✓ ✓ ✓ ✓ ⟳ ⟳ ⟳ ⟳ ⟳ ⟳ ⟳ ⟳ ⟳ ⟳ ⟳ ⟳ ⟳ ⟳
9 ✓ ✓ ✓ ✓ X X X X X X X X X X X X X X
8 ✓ ✓ ✓ ⟳ ⟳ ⟳ ⟳ ⟳ ⟳ ⟳ ⟳ ⟳ ⟳ ⟳ ⟳ ⟳ ⟳ ⟳
7 ✓ ✓ ✓ X X X X X X X X X X X X X X X
6 ✓ ✓ ⟳ ⟳ ⟳ ⟳ ⟳ ⟳ ⟳ ⟳ ⟳ ⟳ ⟳ ⟳ ⟳ ⟳ ⟳ ⟳
5 ✓ ✓ X X X X X X X X X X X X X X X X
4 ✓ ⟳ ⟳ ⟳ ⟳ ⟳ ⟳ ⟳ ⟳ ⟳ ⟳ ⟳ ⟳ ⟳ ⟳ ⟳ ⟳ ⟳
3 ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

2 ⟳ ⟳ ⟳ ⟳ ⟳ ⟳ ⟳ ⟳ ⟳ ⟳ ⟳ ⟳ ⟳ ⟳ ⟳ ⟳ ⟳ ⟳
m

n
3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

(b) Chains.

Figure 3 Convergence and divergence results of synchronous unison on rings and chains, for
different graph sizes n and periods m. The signs (✓), (⟳), (✓), (⟳), (X) and (−) respectively
indicate that the algorithm converges, diverges, does not converge in the allocated number of
configurations, does not diverge in the allocated number of configurations, neither converge nor
diverge in the allocated number of configurations, or that both convergence and divergence instances
were not solved within the allocated time.

instances of convergence for star topology for each combination LO + ICP and LO + ICX .
The number of allowed configurations is set to tf = 3D for all topologies where D is the
diameter of the considered graph. We also note that the Cardinality Network encoding [5]
was used to rewrite constraint (1) in CNF form.

4.2 Analysis of Convergence and Divergence
The results presented in Figures 3(a), 3(b), and 4 illustrate the behavior of the synchronous
unison in terms of convergence and divergence on the different topologies (rings, chains, and
stars) as a function of size n and period m. For the studied graph topologies, we clearly
notice that the results are coherent with Theorem 5 when m ≥ max{2, 2D − 1}. revealing
a convergence for the corresponding instances. Notably, the generated results demonstrate
unison behavior on many instances across different topologies for which it was previously
unknown. In particular, we were able to detect the convergence of the algorithm for the three
topologies for values of m < max{2, 2D − 1}. However, some instances remain unsolved,
most likely due to the chosen upper limit on the number of allowed steps (i.e., 3D). It is
also interesting to note that our results show that the bound proposed in the theorem 5
is tight in the case of stars. Indeed, this theorem states that convergence is guaranteed in
stars (of diameter 2) from a period m greater than or equal to 3 (max(2, 2 × 2 − 1) = 3).
Our results exhibit a case of divergence with m = 2 in star graphs as shown in Figure 4,
independently of their sizes. Thus, the synchronous unison algorithm converges in a star if
and only if m ≥ 3. We demonstrate this property in following proposition.

Table 3 Properties of the considered graphs. For each topology, we report the considered number
of nodes n, the chosen periods m, the diameter D, and the maximal degree dmax.

Topology n m D dmax

Chain {3, . . . , 20} {2,. . . ,20} n − 1 2
Ring {3, . . . , 20} {2,. . . ,20} ⌊n/2⌋ 2
Star {3, . . . , 10} {2,. . . ,10} 2 n − 1

CP 2025

19:14 Analyzing Self-Stabilization of Synchronous Unison via Propositional Satisfiability

10 ✓ ✓ ✓ ✓ ✓ - - -
9 ✓ ✓ ✓ ✓ ✓ - - -
8 ✓ ✓ ✓ ✓ ✓ - - -
7 ✓ ✓ ✓ ✓ ✓ ✓ - -
6 ✓ ✓ ✓ ✓ ✓ ✓ - -
5 ✓ ✓ ✓ ✓ ✓ ✓ ✓ -
4 ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

3 ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

2 ⟳ ⟳ ⟳ ⟳ ⟳ ⟳ ⟳ ⟳
m

n
3 4 5 6 7 8 9 10

Figure 4 Convergence and
divergence results of synchron-
ous unison on stars, for dif-
ferent graph sizes n and peri-
ods m.

1p0

0p1

0p2

1 pn−1

1 pn−2

0pk−1 1 pk+2

1 pk+10pk

...
...

Figure 5 Initial configura-
tion ensuring divergence on a
star graph with n nodes and for
period to m = 2.

Table 4 Two iterations of
the synchronous unison in a
chain of three nodes, where
m = 2.

p0 p1 . . . pk pk+1 . . . pn−1

γ0 1 0 . . . 0 1 . . . 1
γ1 0 1 . . . 1 0 . . . 0
γ2 1 0 . . . 0 1 . . . 1

▶ Proposition 7. The synchronous unison algorithm diverges for any star graph, regardless
of its number of nodes n ≥ 3, with period m = 2.

Proof. We can always exhibit an initial configuration γ0 ∈ Γn,m that causes the synchronous
unison to diverge. Such a configuration is illustrated in Figure 1, where the initial clock value
of the central node is set to 1, while the clock values of the peripheral nodes take at least
two distinct initial values. The prefix of execution until a cycle is detected is represented in
Table 4 and therefore the algorithm diverges on star graphs when m = 2. ◀

4.3 Performance Analysis
In this section, we analyze the performance of the models on the different topologies in terms
of number of solved instances and average solving time per graph size. The results obtained
for ring and star graphs are presented respectively in Tables 5 and 7, with respect to the
graph sizes, the analyzed property, and the considered model. Due to the lack of space,
the results obtained for chain graphs have been moved to the appendix (refer to Table 6).
The results indicate that the initial model manages to solve most of the instances but it
clearly encounters increasing difficulties with increasing graph sizes, particularly for the star
and ring topologies. It thus manages to solve 329 (resp. 321) instances out of 342 for the
convergence (resp. divergence) check on rings and 58 (resp. 59) instances out of 72 for
the convergence (resp. divergence) check on stars. For chains, all instances were solved for
convergence with the initial model whereas 328 out of 342 were solved for divergence. This
behavior is not surprising especially for stars, since the star topology has a maximum degree
dmax = n− 1, which leads to a combinatorial explosion in the number of clauses generated by
the constraint (2). Indeed, it increases with a complexity of the order O(n× tf ×mn), which
explains the model’s difficulty in handling larger instances. Figures 6 (resp. 7) illustrates
the evolution of the solving time of instances generated for convergence (resp. divergence)
verification for the initial model, as a function of graph size n and period m, for ring, chain
and star topologies. These curves highlight a progressive increase in resolution time as these
two parameters increase. We observe in particular that, in the case of star graphs, this
increase is much more pronounced for relatively smaller values of n and m compared to the
other topologies. This trend, which remains similar both for convergence and divergence
corroborates our previous observations and confirms the increased complexity of the model
for topologies whose maximal node degree is high.

Next, we focus on comparing the initial convergence model (INICNV) with its counterparts
augmented with the IC constraint, specifically ICP and ICX , across ring, star, and chain
topologies. In the ring topology (Table 5), ICX consistently outperforms ICP and INICNV

A. Khoualdia, S. Cherif, S. Devismes, and L. Robert 19:15

(a) Rings. (b) Chains. (c) Stars.

Figure 6 Solving time in seconds for convergence (INICNV) w.r.t. the nodes n and the period m.

(a) Rings. (b) Chains. (c) Stars.

Figure 7 Solving time in seconds for divergence (INIDIV) w.r.t. the nodes n and the period m.

Table 5 Average solving times for detecting convergence and divergence over all periods for a
given graph size (n). For a given graph size n with instances that have reached the time limit,
the number of solved instances is indicated in “[]”. The best results among the convergence and
divergence models are marked in bold.

n CONVERGENCE DIVERGENCE
INICNV RE ICP ICX ER + ICP ER + ICX INIDIV RE

3 0.025 0.023 0.025 0.022 0.025 0.024 0.05 0.02
4 0.69 0.48 0.66 0.62 0.42 0.29 1.48 0.33
5 1.97 1.59 1.85 1.88 1.73 1.79 2.33 0.48
6 7.34 1.13 6.90 6.93 7.21 6.74 9.46 2.71
7 11.58 2.07 11.75 10.87 11.08 11.59 15.00 4.10
8 36.25 29.72 31.62 31.38 26.57 25.66 48.89 12.15
9 55.56 47.01 49.06 46.70 46.40 40.84 68.76 18.87
10 109.10 111.82 100.48 105.55 92.27 88.04 141.30 54.98
11 187.26 161.45 151.87 151.41 149.89 135.45 231.78 82.91
12 331.62 288.23 312.34 275.70 273.22 263.15 427.35 148.67
13 420.22 384.39 387.10 348.26 341.03 360.64 503.95 258.33
14 658.15 629.41 573.85 583.77 749.07 494.72 844.47 417.39
15 858.95 836.12 794.91 871.29 1045.89 743.99 1172.70 532.67
16 1500.84 1324.06 1279.63 1292.98 1216.69 1250.76 852.05 [16] 779.99
17 819.73 [16] 1654.83 1757.84 1446,94 1506.43 [18] 1400.94 1196.05 [16] 996.15
18 73.47 [15] 518.55 [16] 79.97 [15] 58.06 [15] 61.10[15] 504.26 [16] 560.75 [15] 846.22 [17]
19 44.35 [15] 116.42 [15] 77.05 [15] 97.72 [15] 82.12[15] 55.32[15] 1164.60 [14] 862.39 [17]
20 166.89 [17] 310.59 [17] 111.46 [17] 125.39 [17] 283.68[17] 449.56 [17] 502.73 [13] 995.53 [17]

Table 6 Average solving times for detecting convergence and divergence over all periods for a
given graph size (n). For a given size n with instances that have reached the time limit, the number
of solved instances is indicated in “[]”. The best results among the convergence and divergence
models are marked in bold.

n CONVERGENCE DIVERGENCE
INICNV RE LO ICP ICX RE + ICP RE + ICX LO + ICP LO + ICX INIDIV RE LO

3 0.007 0.006 0.002 0.004 0.004 0.004 0.003 0.004 0.004 0.01 0.01 0.02
4 0.04 0.03 0.02 0.045 0.04 0.034 0.03 0.02 0.02 0.09 0.04 0.05
5 1.00 0.86 0.31 0.83 0.95 0.94 0.59 0.31 0.20 0.90 0.49 0.33
6 27.38 19.72 4.19 25.06 28.37 17.41 13.75 7.10 7.14 6.97 4.48 3.43
7 862.27 746.24 97.84 868.23 828.41 634.05 730.64 102.46 696.16 76.61 55.18 28.88
8 553.70 [6] 936.88 [7] 32.60 [6] 652.89 [6] 547.38 [6] 473.89 [6] 171.55 [6] 24.19 [6] 93.25 [6] 146.91[6] 96.12 [6] 23.75 [6]
9 119.25 [4] 542.24 [5] 43.60 [5] 212.08[4] 139.36 [4] 185.13 [4] 184.93 [4] 42.01 [5] 33.88 [5] 166.68[5] 67.94 [5] 16,79 [5]
10 67.71 [3] 487.43 [4] 40.21 [4] 86.60 [3] 75.33 [3] 22.51[3] 598.80 [4] 39.14 [4] 68.56 [4] 76.16[3] 432.92 [4] 52.76 [4]

CP 2025

19:16 Analyzing Self-Stabilization of Synchronous Unison via Propositional Satisfiability

in larger instances, achieving the lowest solving times (-10,21% w.r.t INICNV) and highest
number of solved instances (+3 w.r.t INICNV). For the star topology (Table 6), although
convergence times are higher overall, ICX still shows better performance than ICP in mid-
sized to larger instances. In the chain topology (Table 7), ICX also stands out as it achieves
the lowest convergence times (-5,97% w.r.t INICNV). Overall, ICX added on top of the
initial model emerges as the most effective in convergence detection, balancing low solving
times with a higher number of solved instances.

Finally, we study the formulations augmented by the constraints eliminating the initial
configurations. As illustrated in Tables 5 and 6, the comparison with the initial models
highlights the relevance of introducing these constraints, particularly for the divergence
analysis. The results show a significant reduction in solving time for ring and star topologies
thanks to rotation elimination (RE) and lexicographic order (LO), particularly when they
are combined with Iterative Convergence (IC) constraints. More specifically, for ring graphs,
the ER and ICX combination model achieves the best overall performance, with an average
solving time of 324.10s for convergence. For divergence, RE achieves better performance
with respect to the initial model with an average solving time of 596.52s, across all graph
sizes tested. Compared to the initial model, ER + ICX thus reduces the total solving time
by 10,5% with a higher number of solved instances (+4 w.r.t INICNV) for convergence and
ER reduces it by 55,14% for divergence while solving 15 additional instance with respect to
INIDIV . These results demonstrate the positive impact of the symmetry-breaking constraints
on the analysis of synchronous unison behavior. The star graph reveals a better dynamic with
LO which demonstrates a significant improvement in the divergence time with an average of
15,80s, a reduction of 81.5% compared to the initial model (59,29s) with a higher number of
solved instances (+1 w.r.t INIDIV). On the other hand, LO + ICP presents a significant
reduction in solving time for convergence with a total of 215,23s, a reduction of 90,71%
compared to the initial model (1631,35s) and a higher number of solved instances (+2 w.r.t
INICNV). These observations are also confirmed by Table 6 and highlight the relevance of
this optimization in structures where interactions are highly centralized around a central
node.

5 Conclusion

In this paper, we presented a formal approach based on propositional satisfiability to analyze
the behavior of the self-stabilizing synchronous unison algorithm proposed by Arora et al. [4].
Specifically, we focused on detecting cases where this algorithm converges or diverges. By
representing the problem states and its execution as logical constraints, we showed how SAT
solvers can be used to prove the self-stabilization of a distributed system or, conversely, to
produce a counterexample proving its divergence. This framework allowed us to rigorously
study the self-stabilization of the algorithm in various topologies such as chains, rings and
stars, while taking into account different periods. Furthermore, we optimized the analysis by
proposing specific constraints to eliminate redundant initial configurations, which accelerated
model evaluation and ensured more efficient results. Our models also exhibited specific
behaviors, notably divergence in the case of stars when m = 2.

Several avenues of research remain open. First, extending our analysis to other types
of graphs, such as grids, tori, or binary trees, would allow for a more comprehensive and
detailed examination of the impact of the topology on the algorithm’s self-stabilization. It
could be also relevant to consider refining the choice of the maximum number of allowed
configurations relative to the topology studied. Another interesting perspective involves
considering symmetries for the detection of divergent cycles. These perspectives pave the way

A. Khoualdia, S. Cherif, S. Devismes, and L. Robert 19:17

for a better understanding of synchronization dynamics in complex distributed systems and
for the development of new, more efficient and optimized methods to address a wider range
of application cases. Our work could thus facilitate not only the analysis of synchronous
unison, but more generally that of self-stabilizing algorithms in broader and more diverse
contexts including the asynchronous case [16,17], variants of self-stabilization [11,12], reactive
tasks [1, 24] and the possibility of topological change [2, 21].

References
1 Karine Altisen, Stéphane Devismes, and Anaïs Durand. Concurrency in snap-stabilizing

local resource allocation. Journal Of Parallel and Distributed Computing, 102:42–56, 2017.
doi:10.1016/J.JPDC.2016.11.004.

2 Karine Altisen, Stéphane Devismes, Anaïs Durand, Colette Johnen, and Franck Petit. Self-
stabilizing systems in spite of high dynamics. Theor. Comput. Sci., 964:113966, 2023. doi:
10.1016/J.TCS.2023.113966.

3 Karine Altisen, Stéphane Devismes, Swan Dubois, and Franck Petit. Introduction to Distributed
Self-Stabilizing Algorithms. Synthesis Lectures on Distributed Computing Theory. Morgan &
Claypool, 2019.

4 Anish Arora, Shlomi Dolev, and Mohamed G. Gouda. Maintaining digital clocks in step.
Parallel Processing Letters, 1:11–18, 1991. doi:10.1007/bfb0022438.

5 Roberto Asín, Robert Nieuwenhuis, Albert Oliveras, and Enric Rodríguez-Carbonell. Cardin-
ality networks and their applications. In Oliver Kullmann, editor, Theory and Applications of
Satisfiability Testing – SAT 2009, 12th International Conference, SAT 2009, Swansea, UK,
June 30 – July 3, 2009. Proceedings, volume 5584 of Lecture Notes in Computer Science, pages
167–180. Springer, 2009. doi:10.1007/978-3-642-02777-2_18.

6 Armin Biere. Handbook of satisfiability. In Frontiers in Artificial Intelligence and Applications,
pages 75–98. IOS Press, 2009. doi:10.3233/978-1-58603-929-5-75.

7 Armin Biere. Bounded model checking. In Armin Biere, Marijn Heule, Hans van Maaren,
and Toby Walsh, editors, Handbook of Satisfiability – Second Edition, volume 336 of Frontiers
in Artificial Intelligence and Applications, pages 739–764. IOS Press, 2021. doi:10.3233/
FAIA201002.

8 Armin Biere et al. Symbolic model checking without bdds. In Proceedings of the International
Conference on Tools and Algorithms for the Construction and Analysis of Systems (TACAS),
pages 193–207, 1999.

9 Armin Biere, Tobias Faller, Katalin Fazekas, Mathias Fleury, Nils Froleyks, and Florian Pollitt.
Cadical 2.0. In Arie Gurfinkel and Vijay Ganesh, editors, Computer Aided Verification – 36th
International Conference, CAV 2024, Montreal, QC, Canada, July 24-27, 2024, Proceedings,
Part I, volume 14681 of Lecture Notes in Computer Science, pages 133–152. Springer, 2024.
doi:10.1007/978-3-031-65627-9_7.

10 Armin Biere, Marijn Heule, and Hans van Maaren. Handbook of Satisfiability: Second
Edition. Frontiers in Artificial Intelligence and Applications. IOS Press, 2021. URL: https:
//books.google.fr/books?id=dUAvEAAAQBAJ.

11 James E. Burns, Mohamed G. Gouda, and Raymond E. Miller. Stabilization and pseudo-
stabilization. Distributed Computing, 7(1):35–42, 1993. doi:10.1007/BF02278854.

12 Fabienne Carrier, Ajoy Kumar Datta, Stéphane Devismes, Lawrence L. Larmore, and Yvan
Rivierre. Self-stabilizing (f, g)-alliances with safe convergence. J. Parallel Distributed Comput.,
81-82:11–23, 2015. doi:10.1016/J.JPDC.2015.02.001.

13 Jingshu Chen and Sandeep S. Kulkarni. Smt-based model checking for stabilizing programs, .
In Davide Frey, Michel Raynal, Saswati Sarkar, Rudrapatna K. Shyamasundar, and Prasun
Sinha, editors, Distributed Computing and Networking, 14th International Conference, ICDCN
2013, Mumbai, India, January 3-6, 2013. Proceedings, volume 7730 of Lecture Notes in
Computer Science, pages 393–407. Springer, 2013. doi:10.1007/978-3-642-35668-1_27.

CP 2025

https://doi.org/10.1016/J.JPDC.2016.11.004
https://doi.org/10.1016/J.TCS.2023.113966
https://doi.org/10.1016/J.TCS.2023.113966
https://doi.org/10.1007/bfb0022438
https://doi.org/10.1007/978-3-642-02777-2_18
https://doi.org/10.3233/978-1-58603-929-5-75
https://doi.org/10.3233/FAIA201002
https://doi.org/10.3233/FAIA201002
https://doi.org/10.1007/978-3-031-65627-9_7
https://books.google.fr/books?id=dUAvEAAAQBAJ
https://books.google.fr/books?id=dUAvEAAAQBAJ
https://doi.org/10.1007/BF02278854
https://doi.org/10.1016/J.JPDC.2015.02.001
https://doi.org/10.1007/978-3-642-35668-1_27

19:18 Analyzing Self-Stabilization of Synchronous Unison via Propositional Satisfiability

14 Edmund M. Clarke and E. Allen Emerson. Design and synthesis of synchronization skeletons
using branching-time temporal logic. In Dexter Kozen, editor, Logics of Programs, Workshop,
Yorktown Heights, New York, USA, May 1981, volume 131 of Lecture Notes in Computer
Science, pages 52–71. Springer, 1981. doi:10.1007/BFB0025774.

15 Stephen A. Cook. The complexity of theorem-proving procedures. Proceedings of the Third
Annual ACM Symposium on Theory of Computing (STOC), pages 151–158, 1971. doi:
10.1145/800157.805047.

16 J.-M. Couvreur, N. Francez, and M. G. Gouda. Asynchronous unison (extended abstract). In
12th International Conference on Distributed Computing Systems, (ICDCS’92), pages 486–493.
IEEE Computer Society, 1992. doi:10.1109/ICDCS.1992.235005.

17 Stéphane Devismes, David Ilcinkas, Colette Johnen, and Frédéric Mazoit. Being efficient in
time, space, and workload: a self-stabilizing unison and its consequences. In Olaf Beyersdorff,
Michal Pilipczuk, Elaine Pimentel, and Kim Thang Nguyen, editors, 42nd International
Symposium on Theoretical Aspects of Computer Science, STACS 2025, March 4-7, 2025, Jena,
Germany, volume 327 of LIPIcs, pages 30:1–30:18. Schloss Dagstuhl – Leibniz-Zentrum für
Informatik, 2025. doi:10.4230/LIPICS.STACS.2025.30.

18 Edsger W. Dijkstra. Self-stabilizing systems in spite of distributed control. Commun. ACM,
17(11):643–644, 1974. doi:10.1145/361179.361202.

19 Danny Dolev, Keijo Heljanko, Matti Järvisalo, Janne H. Korhonen, Christoph Lenzen, Joel
Rybicki, Jukka Suomela, and Siert Wieringa. Synchronous counting and computational
algorithm design. J. Comput. Syst. Sci., 82(2):310–332, 2016. doi:10.1016/J.JCSS.2015.09.
002.

20 Danny Dolev and Dahlia Malkhi. Consensus: Perspectives and challenges. In Proceedings
of the Tenth International Workshop on Distributed Algorithms (WDAG), pages 1–12, 1995.
doi:10.1007/3-540-60220-8_1.

21 Shlomi Dolev and Ted Herman. Superstabilizing protocols for dynamic distributed systems.
Chicago Journal of Theoretical Computer Science, 1995.

22 Shlomi Dolev, Amos Israeli, and Shlomo Moran. Self-stabilization of dynamic systems
assuming only read/write atomicity. Distrib. Comput., 7(1):3–16, November 1993. doi:
10.1007/BF02278851.

23 Stéphane Grumbach and Zhilin Wu. Logical locality entails frugal distributed computation over
graphs (extended abstract). In Christophe Paul and Michel Habib, editors, WG, volume 5911 of
Lecture Notes in Computer Science, pages 154–165, 2009. doi:10.1007/978-3-642-11409-0_
14.

24 Rachid Hadid. A stabilising optimal k-out-of- resources allocation algorithm. Int. J. Knowl.
Eng. Data Min., 5(3):173–194, 2018. doi:10.1504/IJKEDM.2018.10014813.

25 Alexey Ignatiev, António Morgado, and João Marques-Silva. Pysat: A python toolkit for
prototyping with SAT oracles. In Olaf Beyersdorff and Christoph M. Wintersteiger, editors,
Theory and Applications of Satisfiability Testing – SAT 2018 – 21st International Conference,
Oxford, UK, July 9-12, 2018, Proceedings, volume 10929 of Lecture Notes in Computer Science,
pages 428–437. Springer, 2018. doi:10.1007/978-3-319-94144-8_26.

26 Asma Khoualdia, Sami Cherif, Stéphane Devismes, and Léo Robert. SAT_for_UNISON. Soft-
ware, swhId: swh:1:dir:4bc78d189155024f85110cb2dc9ae4aeb470d8bf (visited on 2025-07-
16). URL: https://github.com/asmakhoualdia98/SU_SAT_Exec, doi:10.4230/artifacts.
23375.

27 Yassine Lakhnech and Michael Siegel. Deductive verification of stabilizing systems. In Sukumar
Ghosh and Ted Herman, editors, 3rd Workshop on Self-stabilizing Systems, Santa Barbara,
California, USA, August, 1997, Proceedings, pages 201–216. Carleton University Press, 1997.

28 Jia Hui Liang, Vijay Ganesh, Pascal Poupart, and Krzysztof Czarnecki. Learning rate
based branching heuristic for SAT solvers. In Nadia Creignou and Daniel Le Berre, editors,
Theory and Applications of Satisfiability Testing – SAT 2016 – 19th International Conference,

https://doi.org/10.1007/BFB0025774
https://doi.org/10.1145/800157.805047
https://doi.org/10.1145/800157.805047
https://doi.org/10.1109/ICDCS.1992.235005
https://doi.org/10.4230/LIPICS.STACS.2025.30
https://doi.org/10.1145/361179.361202
https://doi.org/10.1016/J.JCSS.2015.09.002
https://doi.org/10.1016/J.JCSS.2015.09.002
https://doi.org/10.1007/3-540-60220-8_1
https://doi.org/10.1007/BF02278851
https://doi.org/10.1007/BF02278851
https://doi.org/10.1007/978-3-642-11409-0_14
https://doi.org/10.1007/978-3-642-11409-0_14
https://doi.org/10.1504/IJKEDM.2018.10014813
https://doi.org/10.1007/978-3-319-94144-8_26
https://archive.softwareheritage.org/swh:1:dir:4bc78d189155024f85110cb2dc9ae4aeb470d8bf;origin=https://github.com/asmakhoualdia98/SU_SAT_Exec;visit=swh:1:snp:af5a3ce14a7b5fdca4086ba55a5d21370fe4d3cb;anchor=swh:1:rev:6905da4a2f2dd404ea072c647393ba1f58ba0b4c
https://github.com/asmakhoualdia98/SU_SAT_Exec
https://doi.org/10.4230/artifacts.23375
https://doi.org/10.4230/artifacts.23375

A. Khoualdia, S. Cherif, S. Devismes, and L. Robert 19:19

Bordeaux, France, July 5-8, 2016, Proceedings, volume 9710 of Lecture Notes in Computer
Science, pages 123–140. Springer, 2016. doi:10.1007/978-3-319-40970-2_9.

29 Nathan Linial. Distributive graph algorithms-global solutions from local data. In 28th Annual
Symposium on Foundations of Computer Science, Los Angeles, California, USA, 27-29 October
1987, pages 331–335. IEEE Computer Society, 1987. doi:10.1109/SFCS.1987.20.

30 João P. Marques-Silva and Karem A. Sakallah. Grasp: A search algorithm for propositional
satisfiability. IEEE Transactions on Computers, 48(5):506–521, 1999. doi:10.1109/12.769433.

31 Steven D. Prestwich. CNF encodings. In Armin Biere, Marijn Heule, Hans van Maaren, and
Toby Walsh, editors, Handbook of Satisfiability – Second Edition, volume 336 of Frontiers
in Artificial Intelligence and Applications, pages 75–100. IOS Press, 2021. doi:10.3233/
FAIA200985.

32 Olivier Roussel and Vasco Manquinho. Pseudo-boolean and cardinality constraints. In Armin
Biere, Marijn Heule, Hans van Maaren, and Toby Walsh, editors, Handbook of Satisfiability
– Second Edition, volume 336 of Frontiers in Artificial Intelligence and Applications, pages
1087–1129. IOS Press, 2021. doi:10.3233/FAIA201012.

33 Michael Siegel. Formal verification of stabilizing systems. In Anders P. Ravn and Hans Rischel,
editors, Formal Techniques in Real-Time and Fault-Tolerant Systems, 5th International
Symposium, FTRTFT’98, Lyngby, Denmark, September 14-18, 1998, Proceedings, volume
1486 of Lecture Notes in Computer Science, pages 158–172. Springer, 1998. doi:10.1007/
BFB0055345.

34 Gerard Tel. Introduction to Distributed Algorithms. Cambridge University Press, 2nd edition,
2000.

A Further Experimental Results

Table 7 Solving times in seconds for chains. The average solving times for detecting convergence
(CONV) and divergence (DIV) over all periods for a given graph size (n) are reported. The results
of other optimized models are also reported allowing additional constraints, and the best results
among the models are marked in bold. For a given size n with instances that have reached the time
limit, the number of solved instances is indicated in “[]”.

n CONVERGENCE DIVERGENCE
INICNV ICP ICX INIDIV

3 0.04 0.043 0.030 0.13
4 0.50 0.49 0.43 1.58
5 2.14 2.00 2.04 5.26
6 6.26 6.32 5.88 15.45
7 15.73 14.84 14.27 29.99
8 36.34 39.42 34.33 77.61
9 68.83 65.79 62.28 136.50
10 110.36 110.56 117.65 203.64
11 140.07 125.27 123.88 332.38
12 22.22 31.38 20.07 374.40
13 25.44 48.88 26.86 579.32
14 48.96 28.80 29.68 693.87
15 67.21 89.78 66.52 733.70 [18]
16 73.89 91.88 79.18 961.18 [18]
17 189.63 109.90 89.17 895.57 [17]
18 199.90 96.98 86.50 646.86 [16]
19 214.00 142.18 105.24 1292.26 [16]
20 185.48 209.33 138.50 1180.25 [15]

CP 2025

https://doi.org/10.1007/978-3-319-40970-2_9
https://doi.org/10.1109/SFCS.1987.20
https://doi.org/10.1109/12.769433
https://doi.org/10.3233/FAIA200985
https://doi.org/10.3233/FAIA200985
https://doi.org/10.3233/FAIA201012
https://doi.org/10.1007/BFB0055345
https://doi.org/10.1007/BFB0055345

19:20 Analyzing Self-Stabilization of Synchronous Unison via Propositional Satisfiability

Table 8 Comparison of Cadical and MapleSAT solving times in seconds on chain topologies for
the initial models of convergence (INICNV) and divergence (INIDIV). The average solving times for
detecting convergence (CONV) and divergence (DIV) over all periods for a given graph size (n) are
reported, with the best results marked in bold. For a given size n with instances that have reached
the time limit, the number of solved instances is indicated in “[]”.

n CONV DIV
Cadical MapleSAT Cadical MapleSAT

3 0.042 0.045 0.13 0.15
4 0.50 0.58 1.58 1.44
5 2.14 2.35 5.26 4.65
6 6.26 7.11 15.45 13.96
7 15.73 20.93 29.99 56.89
8 36.34 49.46 77.61 178.70
9 68.83 109.96 136.50 274.05[18]
10 110.36 234.97 203.64 993.92
11 140.07 377.84 332.38 584.39 [17]
12 22.22 405.42 374.40 668.67 [17]
13 25.44 369.56 579.32 1265.57 [17]
14 48.96 958.41 693.87 1145.67 [15]
15 67.21 319.76 [16] 733.70 [18] 682.19 [13]
16 73.89 688.95 961.18 [18] 1185.94 [13]
17 189.63 432.39 [16] 895.57 [17] 1193.92 [12]
18 199.90 826.68 [16] 646.86 [16] 1036.81 [11]
19 214.00 379.40 [14] 1292.26 [16] 737.62 [10]
20 185.48 459.89 [15] 1180.25 [15] 1001.62 [10]

Table 9 Comparison of Cadical and MapleSAT solving times in seconds on ring topologies for
the initial models of convergence (INICNV) and divergence (INIDIV). The average solving times for
detecting convergence (CONV) and divergence (DIV) over all periods for a given graph size (n) are
reported, with the best results marked in bold. For a given size n with instances that have reached
the time limit, the number of solved instances is indicated in “[]”.

n CONV DIV
Cadical MapleSat Cadical MapleSat

3 0.025 0.018 0.05 0.06
4 0.69 0.71 1.48 1.78
5 1.97 1.74 2.33 3.18
6 7.34 8.31 9.46 16.58
7 11.58 22.32 15.00 44.11
8 36.25 75.15 48.89 220.96
9 55.56 222.82 68.76 554.39
10 109.10 527.96 141.30 810.69 [18]
11 187.26 592.69 [18] 231.78 703.10 [16]
12 331.62 601.80 [17] 427.35 605.34 [15]
13 420.22 1240.20 [17] 503.95 901.28 [15]
14 658.15 691.24 [15] 844.47 636.14 [13]
15 858.95 647.02 [14] 1172.70 1005.36 [13]
16 1500.84 183.36 [13] 852.05 [16] 988.76 [13]
17 819.73 [16] 177.51 [13] 1196.05 [16] 1096.93 [12]
18 73.47 [15] 661.29 [15] 560.75 [15] 1491.43 [13]
19 44.35 [15] 731.77 [15] 1164.60 [14] 952.23 [12]
20 166.89 [17] 833.91 [15] 502.73 [13] 711.09 [10]

A. Khoualdia, S. Cherif, S. Devismes, and L. Robert 19:21

Table 10 Comparison of Cadical and MapleSAT solving times in seconds on star topologies for
the initial models of convergence (INICNV) and divergence (INIDIV). The average solving times for
detecting convergence (CONV) and divergence (DIV) over all periods for a given graph size (n) are
reported, with the best results marked in bold. For a given size n with instances that have reached
the time limit, the number of solved instances is indicated in “[]”.

n CONV DIV
Cadical MapleSat Cadical MapleSat

3 0.007 0.003 0.01 0.0129
4 0.04 0.05 0.09 0.10
5 1.00 0.59 0.90 0.40
6 27.38 17.82 6.97 5.50
7 862.27 701.20 76.61 75.41
8 553.70 [6] 321.57 [6] 146.91 [6] 67.39 [6]
9 119.25 [4] 1302.39 [5] 166.68 [5] 205.43 [5]
10 67.71 [3] 94.48 [3] 76.16 [3] 1537.67 [4]

CP 2025

	1 Introduction
	2 Preliminaries
	2.1 Synchronous Unison
	2.2 Propositional Satisfiability

	3 Formal Modeling of Synchronous Unison
	3.1 Variables and Notations
	3.2 Modeling Unison Execution
	3.2.1 Clock Uniqueness
	3.2.2 Clock Update

	3.3 Modeling Convergence
	3.4 Modeling Divergence
	3.5 Elimination of Initial Configurations
	3.5.1 Lexicographic Order
	3.5.2 Rotation Elimination

	4 Experimental Evaluation
	4.1 Experimental Protocol
	4.2 Analysis of Convergence and Divergence
	4.3 Performance Analysis

	5 Conclusion
	A Further Experimental Results

