Learning to Bound for Maximum Common
Subgraph Algorithms

Buddhi W. Kothalawala &

The Australian National University, Canberra, Australia

Henning Koehler =

Massey University, Palmerston North, New Zealand

Qing Wang &

The Australian National University, Canberra, Australia

—— Abstract

Identifying the maximum common subgraph between two graphs is a computationally challenging
NP-hard problem. While the McSplit algorithm represents a state-of-the-art approach within a
branch-and-bound (BnB) framework, several extensions have been proposed to enhance its vertex
pair selection strategy, often utilizing reinforcement learning techniques. Nonetheless, the quality of
the upper bound remains a critical factor in accelerating the search process by effectively pruning
unpromising branches. This research introduces a novel, more restrictive upper bound derived from
a detailed analysis of the McSplit algorithm’s generated partitions. To enhance the effectiveness of
this bound, we propose a reinforcement learning approach that strategically directs computational
effort towards the most promising regions within the search space.

2012 ACM Subject Classification Theory of computation — Branch-and-bound; Mathematics of
computing — Combinatorial optimization

Keywords and phrases Combinatorial Search, Branch and Bound, Graph Theory
Digital Object Identifier 10.4230/LIPIcs.CP.2025.22

Supplementary Material Software (Source Code): https://github.com/BuddhiWathsala/mcsplit-
dsb, archived at swh:1:dir:7bbe80724d5f242e89478b8ab3956ac6a35d2daa

Funding This research was supported partially by the Australian Government through the Australian
Research Council’s Discovery Projects funding scheme (project DP210102273).

Acknowledgements We are thankful to Dr Muhammad Farhan for helpful discussions and feedback.

1 Introduction

Graphs are widely employed in various real-world applications due to their effectiveness in
modeling complex structures. A significant challenge in these applications is identifying
common patterns between graphs. Given two graphs, G and H, the task of finding two
induced subgraphs from G and H that are isomorphic and contain the maximum number
of vertices is known as the Mazimum Common Induced Subgraph (MCIS) problem [7]. For
simplicity, the MCIS problem is also referred to as the maximum common subgraph problem.
The MCIS problem is NP-hard [2], making it computationally challenging. Despite its
complexity, it has broad applications across multiple fields. In chemical analysis, it helps
to group chemical compounds based on their structural features [6, 9]. In bioinformatics, it
facilitates the comparison of molecular structures, supporting drug discovery and genomic
analysis [8]. MCIS is also crucial in graph similarity measures, which are commonly used for
anomaly detection in networks [1], as well as in pattern recognition tasks like video analysis
and image processing [20].

© Buddhi W. Kothalawala, Henning Koehler, and Qing Wang;

37 licensed under Creative Commons License CC-BY 4.0
31st International Conference on Principles and Practice of Constraint Programming (CP 2025).
Editor: Maria Garcia de la Banda; Article No. 22; pp. 22:1-22:18

\\v Leibniz International Proceedings in Informatics
LIPICS Schloss Dagstuhl — Leibniz-Zentrum fiir Informatik, Dagstuhl Publishing, Germany

mailto:buddhi.kothalawala@anu.edu.au
https://orcid.org/0000-0003-3023-2905
mailto:h.koehler@massey.ac.nz
https://orcid.org/0000-0002-4688-920X
mailto:qing.wang@anu.edu.au
https://orcid.org/0000-0001-9504-4273
https://doi.org/10.4230/LIPIcs.CP.2025.22
https://github.com/BuddhiWathsala/mcsplit-dsb
https://github.com/BuddhiWathsala/mcsplit-dsb
https://archive.softwareheritage.org/swh:1:dir:7bbe80724d5f242e89478b8ab3956ac6a35d2daa;origin=https://github.com/BuddhiWathsala/mcsplit-dsb;visit=swh:1:snp:21a2389634c593ab33cd43ea66d93ad037549ce5;anchor=swh:1:rev:d2a5c8bfa920a280af49db6afe497f793963dc5e
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics
https://www.dagstuhl.de

22:2

Learning to Bound for Maximum Common Subgraph Algorithms

Several exact [16] and approximate algorithms [19] have been developed to solve the MCIS
problem. The exact algorithms employ various techniques such as constraint programming
[25, 18], maximum clique algorithms [11, 10, 4], and the branch-and-bound (BnB) approach
[16, 24, 17]. Among these, the branch-and-bound algorithm called McSplit, introduced by
McCreesh et al. [16], has shown exceptional performance. The McSplit algorithm effectively
tackles the MCIS problem using two essential heuristics: a branching heuristic that selects
optimal vertex pairs for matching and a bounding heuristic that estimates the maximum
possible size of the common subgraph within a given search branch. For branching, McSplit
prioritizes vertices with higher degrees when choosing vertex pairs, while its bounding
heuristic calculates an upper bound by counting the number of potential matching vertex
pairs.

Several machine learning-based improvements have been introduced to enhance McSplit’s
branching heuristic using reinforcement learning (RL) techniques, all while maintaining its
exactness. Prominent examples include McSplit+RL [12], McSplit+LL [27], GLSearch [3],
and McSplit+DAL [13]. McSplit+RL selects vertex pairs with a high potential to significantly
reduce the bound, using bound reduction as the RL reward. McSplit+LL extends this by
incorporating both long-term and short-term rewards in selecting the next vertex pair and
enables the simultaneous matching of leaf vertices to improve search efficiency. McSplit+DAL
further enhances McSplit+RL’s reward mechanism by prioritizing vertex pairs that simplify
the MCIS problem. It also diversifies vertex pair selection using a hybrid branching policy
that alternates between McSplit+RL and McSplit+DAL. In contrast, GLSearch leverages
a deep Q-network to identify the next vertex pair, focusing on maximizing the size of the
common subgraph rather than simply ending the search quickly, as done in McSplit+RL,
MecSplit+LL, and McSplit+DAL.

While previous research on enhancing the McSplit algorithm in reinforcement learning has
largely focused on optimizing branching strategies, this paper introduces a new perspective
on improving upper bound estimation. We observed that analyzing the internal structure
of matching pairs can provide a tighter upper bound, allowing for earlier pruning of search
branches compared to the current bound calculation. The key contributions of this paper
are as follows:

1. A Tighter Upper Bound for MCIS: We establish a tighter upper bound for the
MCIS problem by utilizing structural graph properties, such as edge cardinality and
degree sequence, to improve pruning efficiency. Since the new bound is theoretically valid,
it preserves the exactness of the MCIS search.

2. Reinforcement Learning to Applying the Bound: We introduce a RL framework
that dynamically prioritizes bound computation in high-potential search regions, reducing
redundant calculations while maintaining solution quality.

3. Empirical Performance Gains: We empirically demonstrate that improvements after
incorporating the proposed bound improves McSplit and its extensions in solving the
MCIS problem.

4. Achieving Near-Maximal Bound Reduction: We empirically show that our bound
closely approximates the theoretically maximum achievable bound reduction in McSplit,
validating its near-optimal pruning effectiveness.

We introduce a novel algorithm, McSplit+DSB (Degree Sequence Bound), which replaces the

original bound calculation of the McSplit algorithm proposed by McCreesh et al. [16]. The

proposed bound calculation is also adaptable to other RIL-based McSplit extensions. Building
on the reinforcement learning extensions McSplit+RL, McSplit+LL, and McSplit+DAL, we
present McSplit+RL+DSB, McSplit+LL+DSB, and McSplit+DAL+DSB, which incorporate

B. W. Kothalawala, H. Koehler, and Q. Wang

Table 1 Comparison of branching and bounding heuristics across different McSplit variants. The
table highlights the selection strategies for bidomains, vertices, and matches in various methods, as
well as the proposed modification to the bounding heuristic in our approach (McSplit+DSB), which
incorporates an additional reduction term ¢ to enhance pruning efficiency.

Branching Heuristics . L
Method Bounding Heuristics
Bidomain Selection Vertex Selection Match Selection

McSplit | maz([Vil, |U]) | da(v) | dir(u) | | S vnsere, min(Vil, [U1])
McSplit+RL no change Sa(v) | Su(u) | no change
MecSplit+LL no change Sa(v) with decay | Ser(v,u) with decay | no change
McSplit+DAL no change S (v) with decay | Sg (v, u) with decay | no change
McSplit+DSB (Ours) ‘ no change no change no change ‘ 2vivepgy Min([Vil, [Ui]) — 6

our new bound calculation into these existing algorithms. To assess the effectiveness of
these approaches, we conducted extensive experiments on benchmark datasets for the MCIS
problem.

The paper is structured as follows: Section 2 introduces the notations and definitions.

Section 3 describes the McSplit algorithm. Section 4 details our degree sequence bound
calculation method and the reinforcement learning approach designed to integrate it into the
search process. Section 5 presents the experimental evaluation, where the proposed method

is compared with state-of-the-art techniques. Finally, Section 6 provides concluding remarks.

2 Preliminaries

Let G be a simple and unweighted graph, where V(G) is the set of vertices and E(G) is the set
of edges. For a vertex v € V(G), the neighborhood of v is defined as N(G,v) = {ue V(G) |
(u,v) € E(G)}. Given a subset of vertices V' < V(G), we use G[V'] to denote the induced

subgraph of G, which contains all vertices in V' and edges in {(u,v) € E(G) | {u,v} < V'}.

To simplify, we use G[V'] € G to indicate that G[V’] is an induced subgraph of G. Let
G be a graph with V(G) = n and dg(v) denote the degree of a vertex v in G. Then, the

degree sequence of GG is a non-decreasing sequence of the degrees of all its vertices, i.e.

Deg(G) = (dg(v1),...,dg(vy)), and the degree sum of G is defined as d(G) = X", da(v;).

Two graphs G and H are isomorphic, denoted as G =~ H, if there exists a bijection f :
V(G) — V(H) such that (v1,v2) € E(G) < (f(v1), f(v2)) € E(H). Two induced subgraphs
G[V'] and H[U'] are called common induced subgraphs of G and H iff G[V'] = H[U']. We

use G to denote the complement graph of a graph G. If G =~ H, then G ~ H, and vice versa.

» Definition 1. Given two graphs G and H, the maximum common induced subgraph
(MCIS) problem is to find two induced subgraphs G[V'] € G and H[{U'] € H such that
G[V'] = H[U'] and there exist no common induced subgraphs of G and H that have a size
larger than |V'|.

Without loss of generality, throughout the paper, we consider two input graphs G and H
where |V(G)| < |V(H)|, with |[V(G)| = n and |V(H)| = m.

3 Branch and Bound for MCIS

The branch-and-bound algorithm demonstrates significantly better performance than other
algorithms for the MCIS problem. It typically employs a depth-first search, starting with
an empty subgraph and adding matching vertex pairs, while partitioning the remaining

22:3

CP 2025

22:4

Learning to Bound for Maximum Common Subgraph Algorithms

vertices based on their connectivity to the selected ones. In the BnB approach to MCIS,
the branching strategy is based on selecting the next matching vertex, and the bound is
calculated by estimating the number of matching pairs that can still be added to the current
common subgraph.

3.1 McSplit: Partitioning-Based Algorithm

McCreesh et al. [16] propose a BnB algorithm to solve the MCIS problem, called McSplit.
Given two graphs G and H, McSplit solves the MCIS problem by finding a maximum-
cardinality mapping M* = {(v1,u1),..., (Um,um)}, where all v; € V(G) and u; € V(H) are
distinct from one another and satisfy the condition (v;,v;) € E(G) < (u;,u;) € E(H) for
any v;,v; with 1 <14 # j < m. Each vertex pair (v;,u;) € M* is called a matching vertex
pair. Such a maximum-cardinality mapping corresponds to the maximum common subgraphs
G[V*] and H[U*] of G and H, where V* = {vy,..., v} and U* = {uy,...,un}.

To find a maximum-cardinality mapping between G and H, McSplit employs a depth-first
search, starting with the empty mapping. It then iteratively extends the mapping with
matching vertex pairs, adding one pair at each iteration until no further extensions are
possible. The key idea of finding matching vertex pairs is based on bidomain partitioning.
This process uses a labelling function that assigns labels to unmatched vertices based on
their connectivity with matched vertices.

» Definition 2 (Labelling). Let M = {(vi,u1),. .., (vk,ur)} be a (not necessarily mazimum-
cardinality) mapping between two graphs G and H, with V' = {v1,...,vx} and U =
{ur,...,ux}. A labeling function £ : V(G) — {0,1}* assigns a label to each vertex w €
V(G\V' 0 V(H\U' such that the it" bit of f(w) is equal to 1 if (w,v;) € E(G) or
(w,u;) € E(H); otherwise, it is 0.

Based on the labels, McSplit partitions unmatched vertices in V(G)\V' UV (H)\U’ into a set of
bidomains Pog = {(V1,U1),...,{V;,Us)} such that Vv € V; and Yu € Uj, i = j < £(v) = £(u),
ensuring that all vertices within a single partition share the same label, while vertices in
different partitions have distinct labels.

Specifically, the McSplit algorithm starts by initializing Pey = {(V(G),V(H))} and
picks a matching bidomain pair (V;,U;). Then, the algorithm selects a vertex v € V; and
v is matched against all the vertices u € U;. Matching v with any u gives M = {(v,u)}.
Then, unmatched vertices in G and H are labelled based on the connectivity of v and wu,
respectively. This leads to bidomain re-partitioning such that each bidomain (V;,U;) € Pgy
is partitioned into two bidomains (V; " N(G,v), Uyn N (H,u)) and (V\N(G,v), U\N (H,u)).
Iteratively, the algorithm selects another vertex pair to expands M. Once v is matched
against all the vertices u € U, the algorithm removes the vertex v from V; and continues
with the search. The removal of v is denoted as matching v with the special symbol L.
The algorithm continues until there are no more matching vertex pairs to select. In every
iteration, alongside the current mapping M being expanded, the algorithm keeps track of
the best solution discovered so far, referred to as the incumbent. It then uses the following
upper bound to eliminate unpromising search branches.

UB«— M|+ >, min(|Vi|,|U]) (1)
Vi, UryePau

If the current mapping M cannot be expanded more than incumbent in size, i.e., UB <
lincumbent|, the algorithm immediately terminate the search, otherwise continues.

B. W. Kothalawala, H. Koehler, and Q. Wang

3.2 McSplit + Reinforcement Learning

Recent studies extend McSplit using reinforcement learning techniques [12, 27, 13], where
an agent explores an environment by taking actions [23]. All these studies consider the
McSplit algorithm as an agent whose goal is to reach a search tree leaf as early as possible
to reduce the overall size of the search tree. The choice of a matching vertex pair (v, w) at
each branching step is modelled as an action. This viewpoint naturally leads to using the
bound reduction as a crucial factor for defining the reward of the action (v, w), and then
incorporating accumulated rewards into heuristics for selecting matching vertex pairs.

3.2.1 McSplit+RL

McSplit+RL [12] extends McSplit by selecting a matching vertex pair (v, u) using a learning-
based method. The main idea behind McSplit+RL is to define the reward for an action (v, u)
based on how much bound is reduced after selecting (v, u) as the matching vertex pair. The
value function maintains two score lists Sg(v) and Sy (u) for all v € V; and w € U; during
the search. Then, at each branch step, a bidomain (V;, U;) is selected in the same way as
McSplit. A vertex v € V; with the highest score S¢(v) is chosen and matched with a vertex
u € U in decreasing order of Sy (u). These together determine the choice of a matching
vertex pair (v,u) in McSplit+RL.

3.2.2 McSplit+LL

McSplit+LL [27] further extends McSplit+RL with two additional operators: 1) long-short
memory, and 2) leaf vertex union match. Essentially, McSplit+LL defines the reward and
maintains the score list Sg(v) in the same way as McSplit+RL. However, it uses a score list
S (v, u) for matching vertex pairs, which is also arranged in decreasing order. Further, the
scores of Sg(v) and Sgp(v,u) are decayed to a half when a matching vertex pair reaches
their thresholds, respectively. When a matching vertex pair (v, w) is chosen, McSplit+LL
allows to match as many unmatched leaf vertex pairs as possible simultaneously to expand
the mapping M.

3.2.3 McSplit+DAL

McSplit+DAL [13] attempts to address two limitations of McSplit+RL: 1) bidomain simplific-
ation relating to different matches are not considered, and 2) vertices with high accumulated
rewards are repeatedly chosen during backtracking. It defines a new reward for an action
(v,u) by adding |Pgg| to the original reward of McSplit+RL, which encourages the reward is
given to more simplified states. Based on the new reward, two score lists Si;(v) and S¢ 5 (v,)
are defined in a similar way as Sg(v) and Sgp(v,u) in McSplit+LL. A hybrid strategy
that combines its proposed heuristic with the heuristic of McSplit+RL is also introduced to
diversify the search space.

3.3 Limitations of Existing Algorithms

Within the branch and bound framework, search heuristics used by algorithms for solving
the MCIS problem can be generally categorized into two types:
Branching heuristic: This typically involves partition selection (selecting a bidomain
V,,Up) from Pgp), node selection (selecting a vertex v from V;), and match selection
(selecting a vertex u from U to form a matching vertex pair (v,u)).

22:5

CP 2025

22:6

Learning to Bound for Maximum Common Subgraph Algorithms

Bounding heuristic: This estimates the maximum number of vertices (i.e., upper bound)
in the maximum common subgraph. If this estimated upper bound is less than the found
common subgraph, it prunes that search branch.

Currently, all existing learning-based methods for McSplit focus on improving branching
heuristics, which essentially involves deciding the “best” matching vertex pair to branch
out, assuming that choosing different matching vertex pairs may lead to different bound
reductions and thus reach the pruning condition at different speeds. They all use the bounding
heuristic of McSplit that estimates the upper bound based on Y.y, 17vep,,,, min(|Vi], [Ui])
(see Equation (1)).

Observation. The bounding heuristic of McSplit is too generous. For instance, if G[V]]
is a clique of five vertices (K5) and H[U;] is the complement graph (K3), the size of their
maximum common subgraphs is one, which is significantly smaller than min(|V;|, |U;|) =5
estimated in the bound.

This observation motivates us to develop a learning-based bounding heuristic that can
adaptively estimate the bound by considering the underlying graph structure. Table 1
summarizes branching and bounding heuristics used in McSplit and the existing learning-
based extensions.

4 Proposed Method

We propose a novel bounding heuristic with two synergistic components: (1) a tight upper
bound calculation leveraging degree sequences and partition degree sums, and (2) a rein-
forcement learning framework that strategically deploys this bound in high-impact regions of
the BnB search space. Before introducing our heuristic, we analyze existing approaches to
motivate the research problem and discuss the unique challenges in developing learning-based
bounding heuristics.

Section 4.1 analyzes the key challenges in developing a novel bound calculation method.
Section 4.2 presents the theoretical foundation of our proposed bound, supported by practical
examples. Finally, Section 4.3 introduces the reinforcement learning (RL) framework designed
to effectively integrate this new bounding strategy.

4.1 Challenges

We consider the McSplit algorithm or any of its extensions McSplit+RL, McSplit+LL, and
McSplit+DAL as an agent. Instead of reaching a search tree leaf as early as possible, the goal
of our agent is to prune branches as early as possible. Thus, unlike existing methods where
an action is to choose the best matching vertex pair, an action in our method is to decide
whether to employ a new and tighter upper bound to prune a branch earlier. However, there
are two major challenges in designing a learning-based bounding heuristic in this setting: (1)
How to design an efficient algorithm that can provide a tighter upper bound than the original
bound of McSplit? (2) How to design the reward and value function that can accurately
predict when a pruning condition can be met under new and tighter bounds? Addressing
these two challenges are the key to enhancing the overall performance of the algorithm. We
discuss our approach below in detail.

B. W. Kothalawala, H. Koehler, and Q. Wang

4.2 Degree Sequence Bound

We begin by proposing a novel upper bound for MCIS, which is tighter than the bound of
McSplit and can be used to reduce the search space for BnB algorithms based on McSplit.
The intuition behind this novel upper bound is simple. Given a bidomain (V}, U;), we derive
an upper bound for maximum common subgraphs between G[V;] and H[U;] based on their

degree sequences, not merely the sizes of |V;| and |U;| as used by min(|V;|, |U;|) in McSplit.

This is because the degree sequence of a graph can provide more useful structural information
than computing the size of the small graph.

Let M*(G, H) denote a maximum-cardinality mapping between two graphs, G and H.

An independent set is a set of pairwise non-adjacent vertices. Based on degree sequences, we
derive the following (recall that degree sequences are monotonically increasing).

» Lemma 3. For a graph G with degree sequence Deg(G) = (dg(v1),...,dg(vk), ..., da(vn)),
the degree sum of any induced subgraph on k vertices is bounded from below by

k n
Yda(vi) = Y da(v)
i=1

j=k+1
If vit1, ..., 0 form an independent set, then this bound is tight.
Proof. Any induced subgraph G[V;] on k can be obtained by removing n— k distinct vertices
from G in some arbitrary order. Removing a vertex v; reduces the degree-sum by precisely
twice the degree of v; in the current subgraph. The degree of v; in any subgraph of G is
upper-bounded by dg(v;), so the degree-sum of the n — k vertices removed to obtain G[Vj]
is upper-bounded by Z?:k +1dc(vi). This shows the lower bound claim.

If vg11,...,v, form an independent set, then removing some of them from G will not
affect the degrees of others. Thus the bound is tight for G[V}] = G[vy,. .., vg]. <

» Theorem 4. Let |V(G)| < |V(H)| and Deg(G) = (dg(v1),-..,da(v,)). If
(1) By da(®) = Ty dales) > d(H), or

(2) X i1 da(vy) = X0, dg(vi) > d(H)

then |IM*(G,H)| <k —1, where dz(v;) = |[V(G)| —dg(v;) — 1 fori=1,...,n.

Proof. From Lemma 3, we know that the expression,

k n
Z da(vi) =), da(vy)

j=k+1

represents lower bound for the degree sum of an induced subgraph G[V'] € G with k vertices.

Condition (1) implies that the degree sum of any induced subgraph G[V}] with k vertices
exceeds the degree sum d(H) of graph H. In particular d(G[V}]) exceeds the degree-sum of
any (induced) subgraph Hy, of H, and thus cannot be isomorphic to it. This proves the first
statement. Similarly, by arguing on complement graphs G and H, we can prove the second
statement. |

In light of Theorem 4, when k € [1,n] satisfies the property of being the smallest number
satisfying Case (1) or Case (2), we call k the dividing number of the graphs G and H. Tt
can be proven that Case (1) and Case (2) cannot be satisfied simultaneously, not even for
different values of k, and that they can only be satisfied for k > n/2; so there exists at most
one dividing number k € (n/2,n] between G and H.

22:7

CP 2025

22:8

Learning to Bound for Maximum Common Subgraph Algorithms

Obviously, the bound in Theorem 4 is tighter than the bound of McSplit. To characterize
the impact of Theorem 4 on the upper bounds of maximum common subgraphs of G and H,
we define the bound gap dgp to be the difference between the bound of McSplit and the new
bound in Theorem 4. Let k£ be the dividing number of G and H. Then dgg =n—k+ 1if k
satisfies Case (1) or Case (2). When there does not exist any dividing number k € (n/2, n]
satisfying Case (1) or Case (2), we set dgg = 0. This leads to the following corollary.

» Corollary 5. For any bidomain {V;,U;) € Pan, the size of maxzimum common subgraphs
of G|Vi] and H[Uj] is upper bounded by min(|V;|,|U;|) — 6 where & (the subscript is omitted)
refers to the bound gap of G[Vi] and H[Uj].

Proof. From Theorem 4, we know the ¢ is a valid reduction that we can apply to obtain
a more restricted bound for (V;,U;). So, in McSplit bound in Equation 1, we can replace
min(|Vj],|U;|) with min(|V],|U;|) — é. Hence, the corollary is proved. <

Based on Corollary 5, we define the following new bound:

UBus — M|+) min(Vil, 1) — 8 @)
Vi, UiyePgu

We shall refer to this new bound as the Degree Sequence Bound (DSB).

McSplit is an exact algorithm that guarantees the retrieval of the maximum common
subgraph upon completion. Given that ¢ provides a valid estimate for the maximum common
subgraph of V; and U; as stated in Theorem 4, incorporating the proposed bound from
Equation (2) preserves the exactness of the McSplit algorithm.

4.2.1 Further Insights

In this section, we further explore the theoretical foundations of Theorem 4, examining the
key properties of its conditions. In particular, we demonstrate that the two cases presented
in the theorem are mutually exclusive and analyze the feasibility of meeting these conditions
based on the parameters n and k. These insights offer a deeper understanding of the theorem.

» Lemma 6. Cases (1) and (2) of Theorem 4 are mutually exclusive.

Proof. Assume both conditions hold. From (1) it follows that d(G) > d(H), while (2)

implies that d(G) > d(H). Thus we have d(G) + d(G) > d(H) + d(H), contradicting
V(&) < [V(H)I. <

» Lemma 7. Conditions (1) and (2) of Theorem 4 cannot be satisfied for k < n/2. For
every (n, k) with k > n/2 there exist graph pairs (G1, H1) and (Gz2, Ha) satisfying conditions

(1) and (2).

Proof. For k < n/2 the lower bounds in (1) and (2) become non-positive, and thus cannot
be strictly greater than d(H).

For k > n/2 let G be a cycle of length n, so that all vertices have degree two, and H; the
empty graph. Then the left hand side of the inequality in (1) remains strictly positive, so
the condition in (1) is met. For (2) let (Go, Hs) = (G1, Hy). <

B. W. Kothalawala, H. Koehler, and Q. Wang

4.2.2 Complexity Analysis

McSplit has a time complexity of O(n + m) for calculating the bound in Equation (1). The
new bound requires O(m?) time because the computation of d(H) take O(m?) and the
computation of Deg(G) takes O(n? + nlogn), where n < m. Since calculating the new
bound is asymptotically dominated by the quadratic term m?, it is desirable to impose a
limit of omax on the size of |V;| and |U;| to maintain efficiency, and use the original bound
if the limit is exceeded. This constraint is applied to individual bidomains rather than the
entire input graph. When appropriately chosen (we used o4, = 16), this limit does not
significantly affect pruning power, as Theorem 4 is more effective with smaller bidomains.

4.3 Learning-based Bounding Heuristic

Since computing the new bound requires additional computational time compared to McSplit
bound, it is essential to determine where the new bound can be most effectively utilized

during the search - particularly in areas where there is a high likelihood of pruning branches.

To address this, we propose incorporating a reinforcement learning agent into a learning-based
framework. This agent will dynamically decide when to apply the proposed tighter bound,
aiming to maximize both the efficiency and effectiveness of the pruning process.

We denote power sets by P(-). Let ¢ be a property of bidomains, e.g., given a bidomain
Vi, Up), ¢ may hold if |V;| or |U;|/|V;]| is smaller than a threshold. Then a ¢-activation function
is defined as A : P(V(Q)) x P(V(H)) — {active,inactive} such that A(V',U’) = active if
V', U") satisfies the property ¢. At each branching step, Pgy contains a subset of active
bidomains P, = {(Vi,U;) € Par | A(Vi, Uy) = active}.

The reward for an action on Pgy is based upon the reward for each active bidomain
(V;,U;) € Pgy. This is because the estimated bound gap between the bound of McSplit and
the new bound for Pgpy depends on the estimated bound gaps for its active bidomains. Thus,
we define the reward for a bidomain as the bound gap between the bound of McSplit and
the new bound.

RV, Up) = daviiaug ®)

The value function of a bidomain (V;, U;) maintains a score S(V;, U;), which is initialized to

1 and is then averaged with the previous score each time to capture the historical information.

Let a € [0,1]. When « is close to 1, more weight is given to recent bound reductions
(short-term), whereas when « is close to 0, the bound reductions over the entire history
(long-term) are given more weight.

SV, U0p) < (1 —a)S(V;,Up) + aR(V, Up) (4)

The value function for the set of bidomains maintains a score S(Pgpr) for Py which reflects
the accumulated rewards of its active bidomains.

S(Peu) — Y, SV, (5)
(Vi,U1)ePL
At each branching step, the algorithm checks the following condition to decide whether
to compute the new bounds:

UB — S(Pgp) < |incumbent| (6)

The intention of the above condition is to predict whether computing the new bound can
lead to prune the branch. Thus, if the condition is satisfied, the new bound is computed for
each active bidomain, and the reward and value scores are updated; otherwise the algorithm
uses the bound of McSplit without any changes on rewards and value scores.

22:9

CP 2025

22:10 Learning to Bound for Maximum Common Subgraph Algorithms

Algorithm 1 McSplit+DSB.

1 function DSB(Pgy, M):
2 UBdsb <~ ‘M| +Z<VL,UZ>EPGH mln(|‘/l|a|Ul|)

3 P(T; g < select active bidomains using ¢

4 S(PGH)(_ZGG,UDEPCT;H S(VZ,UI)
5 if UBgsp — S(Pan) > |incumbent| then
6 ‘ return UBggsp
7 | for (V,U) e PL, do
8 0 < compute using Theorem 4
9 SV, U) —« (1 —a)S(V,,Up) + ad
10 UBdsb «— UBdsb)
11 return U By
12
13 function Search(M, Poy):
14 if |M| > |incumbent| then
15 ‘ incumbent — M
16 bound < DSB(Pgy, M)
17 if bound < |incumbent| then
18 ‘ return

1 | VU — max(|Vi|,|U1]) |
20 ve—dg(v) |

21 for we U; do
22 P/, ;; < compute new partitions
23 Search(M v {(v,w)}, Phy)

24 | Vi< Vi\{v}
25 if |V;| = 0 then

26 | | Pou < Pen\{(Vi,Un)}
27 Search(M, Pay)

28

29 function McSplit+DSB(G, H):
30 global incumbent — &

31 Search (&, {V(G),V(H))})
32 return incumbent

4.3.1 Algorithm Description

Algorithm 1 details the proposed algorithm, McSplit+DSB. The function CalcUB calculates
the upper bound UBygp, by first summing min(|V;|, |U;|) for each bidomain {V;,U;) € Pgy
along with the size of the current mapping |M| (Line 2). Active bidomains are then selected
from the partitions Pgy and included in Pg using the ¢-activation function (Line 3). Then,
the score S(Pgp) is calculated by summing S(V;,U;) from these active bidomains (Line
4). If UBys — S(Pgm) is insufficient to prune the branch compared to |incumbent|, UBgsp
is returned (Lines 5-6). Otherwise, for each active bidomain (V;,U;) € Pg 7, the function
calculates 0 using Theorem 4, updates the score S(V;, U;) with d, and subsequently updates
UBgsp based on §. The Search function is similar to the Search function in McSplit [16],
except the bound calculation is replaced by the CalcUB.

B. W. Kothalawala, H. Koehler, and Q. Wang

oo GO
QOO o8

Subgraph G[V/] Subgraph H[U;] !

(b) Subgraphs formed by pairs of matching
partitions V; = {1,2,3,4,6} and
Ul = {b7e7f7g7i}'

(a) Partitions Pgp after matching
(0,a) and (5, 1).

Figure 1 Figure (a) shows the partitions Pgg = {{Vi,U1),{V2,Us2)} after matching (0,a) and
(5,1), where Vi = {1,2,3,4,6}, U1 = {b,e, f,g,i}, Vo = {7,8}, and Uz = {c,d, h}. Figure (b) shows
the subgraphs G[V1] and H[U:1], respectively. Since Deg(G[VA1]) = (2,2,2,3,3) and d(H[U1]) = 4,
by Case (1) of Theorem 4, we have the dividing number k = 4 for G[V1] and H[U:], which yields
|M*(G[W1], H[U1])| < 3 and dg[v;u[v,] = 2- For G[Vz2] and H[U:], we have dg[v,1m[v,] = 0. Hence,
although the bound of McSplit is UB = 8 by Equation (1), the proposed bound is UBgs, = 6 by
Equation (2). Assume that |incumbent| = 7 during the search, we can prune this branch using
UBgsp, while McSplit cannot.

» Example 8. Figure 1(a) shows the partitioning created by the McSplit algorithm after
matching (0,a) and (5,1). Matching (5, 1) means the vertex 5 is removed from fur-
ther matching. This results in Pgy = {{1,2,3,4,6,b,¢e, f,9,h,1),{7,8,¢,d,h)}. Let Vj =
{1,2,3,4,6} and Uy = {b,e, f,g,h,i}, Vo = {7,8}, and Us = {c¢,d,h}. The degree se-
quence of G[Vi] is Deg(G[V1]) = (2,2,2,3,3), and d(H[U;]) = 4. To satisfy the inequality
Zle de(v;) — Z?:,Hl dg(v;) > d(H) in Theorem 4, we need to select the first 4 elements
from Deg(G[V1]), making dividing number & = 4 the minimum value to satisfy the in-
equality. Then, |[M*(G[V1], H[U1])| < 3 and dgv,ja[v,) = 2. For G[Vz] and H|[Uz], we
have dg[v,1m[v,] = 0. Therefore, according to Corollary 5, UBgs, = 6, while the McSplit
previous bound gives us UB = 8. At this point in the search, we have found the incumbent
M = {(0,a),(5,¢),(4,9),(3,e),(7,h),(6,7),(8,d)} of size 7. Thus, this example demon-
strates that the McSplit bound cannot prune this branch, whereas the proposed bound can
successfully prune the branch.

5 Experiments

We use a 13th Gen Intel(R) Core(TM) i9-13900K server with 32 CPUs and 128GB of main
memory. The implementation of our algorithm and other baselines are in C++ and compile
all of them using g++ version 11.4.0 with C++17.

5.1 Benchmarks

We evaluate our approach on multiple standard benchmark datasets for maximum common
subgraph detection. The Images-PR15 dataset [22] features a single large target graph
(4,838 vertices) and 24 pattern graphs (4-170 vertices), creating 24 test pairs generated from
segmented images. The more comprehensive Images CVIU11 dataset [5] offers 6,278 graph

22:11

CP 2025

22:12

Learning to Bound for Maximum Common Subgraph Algorithms

pairs, combining 43 pattern graphs (22-151 vertices) with 146 target graphs (1,072-5,972
vertices). Its counterpart, Meshes CVIU11 [5], provides 3,018 pairs using 6 pattern graphs
(40-199 vertices) and 503 target graphs (208-5,873 vertices). For larger-scale testing, the
LV dataset [16] contains 2,352 pairs (49 patterns, 48 targets, 10-6,671 vertices), while the
LargerLV extension [16] increases this to 3,430 pairs (49 patterns of 10-128 vertices, 70
targets of 138-6,671 vertices). We also include the Scalefree dataset [26, 21] (100 pairs with
targets of 200-1,000 vertices and patterns at 90% target size) and the SI dataset [26, 21]
(1,170 pairs with targets of 200-1,296 vertices and patterns at 20-60% target size). Finally,
the Phase dataset [15] contributes 200 Erdos-Rényi graph pairs (pattern size 30, target size
150), providing a controlled random graph benchmark.

5.2 Solvers

We begin by evaluating our method against the state-of-the-art McSplit algorithm and its vari-
ants. For each of these baseline approaches McSplit [16], McSplit+RL [12], McSplit+LL [27],
and McSplit+DAL [13], we develop enhanced versions (McSplit+DSB, McSplit+RL+DSB,
McSplit+LL4+DSB, and McSplit+DAL+DSB) by integrating our proposed bound calculation
method. Since McSplit and its variations have shown a considerable advantage over other
methods for solving the MCIS problem, such as maximum clique algorithms and constraint
programming, we focused our experiments on McSplit and its extensions.

Our experimental evaluation uses all benchmark graph pairs described previously, with a
strict 1800-second (30-minute) time limit per instance. We classify problem instances into
three categories based on solution time: easy (solved within 10 seconds), moderate (solved
between 10 seconds and 1800 seconds), and hard (unsolved within the time limit). This
categorization enables detailed analysis of performance across different difficulty levels.

0 McSplit+Oracle vs McSplit
3 McSplit+DSB vs McSplit

108
1 1 1 1 1 1 1 1
800 |- . | PEEY
g === 1 % 8
2 W
=} @n w
5 600 2
8 -
g : B
£ 400 gosp \ |
s E \
) ! --- McSplit (Find optimum) z “\
"‘é 200 | McSplit+DSB (Find optimum) | W
2 | _ McSplit (Completion) ol Ul Od 35:::‘;-_.._‘ ——t——— |
| McSplit+DSB (Completion)
| | T T T T T T T T T T
00 500 1,000 1,500 0 1 2 3 4 5 6 7
Runtime (seconds) Bound difference (> z)
Figure 2 Cactus plot of McSplit and Mc- Figure 3 Comparison of the number of
Split+DSB on time taken to complete all the enu- cases with bound differences > z for two dis-
merations and find the optimum. tributions: McSplit+Oracle vs. McSplit and

McSplit+DSB vs. McSplit.

5.3 Comparison with McSplit

A comprehensive comparative analysis reveals that McSplit+DSB outperforms McSplit by
successfully solving a greater number of moderate instances, achieving a notable 3.41%
improvement. This enhancement is visually demonstrated in Figure 2, which compares

B. W. Kothalawala, H. Koehler, and Q. Wang

the performance of McSplit and McSplit+DSB over a 1800-second time frame. The y-axis
represents the number of solved instances, while the x-axis denotes the time in seconds. The
graph employs dotted lines to indicate the time taken to find the maximum common subgraph
(i.e., the optimal solution) and solid lines to represent the time required to exhaustively
explore the entire search space. The results clearly illustrate that the integration of the
proposed bound significantly boosts the number of solved instances within the McSplit
framework. Furthermore, the inclusion of this bound not only accelerates the discovery of
the optimal solution but also reduces the overall time needed to verify and complete the
search process. The 3.41% improvement refers to instances solved within a fixed time limit,
rather than overall running time. Although it may seem modest, this consistent improvement
across diverse instances highlights the generality of our approach.

Additionally, Figure 4a provides a comparative analysis of the number of cases solved by
McSplit and McSplit+DSB in logarithmic scale. The Y-axis shows the number of branches
taken by the McSplit+DSB, while the X-axis shows number of branches taken by McSplit.
Each point (y1,21) represents a single instance, where y; is the branch count with DSB and
21 is the count without it. A reference line y = z is included in the plot for comparison.
Points below this line indicate that our method reduced the number of branches needed,
while points above suggest an increase. As seen in the plots, all the data points lie on or
below the y = z line, highlighting the overall efficiency of our method underscoring the
computational advantages of the proposed bound. These findings collectively highlight the
effectiveness of McSplit+DSB in enhancing both the speed and efficiency of the maximum
common subgraph problem.

%)
St
T
4

%)
S
T

—_
3
T

=
o
T

S
T

McSplit+DSB Branches (In(count))

McSplit+RL+DSB Branches (In(count))

I I
0 5 10 15 20 25 0 5 10 15 20 25

MeSplit Branches (In(count)) McSplit+RL Branches (In(count))
(a) McSplit vs McSplit+DSB. (b) McSplit+RL vs McSplit+RL+DSB.
25 F A

[
=]
T

—
ot
T

-
T

ot
T

=]
T

McSplit+LL+DSB Branches (In(count))
-
S
T

Il
0 5 10 15 20

McSplit+DAL+DSB Branches (In(count)

ol

5 1‘0 15 20 25
McSplit+LL Branches (In(count)) McSplit+DAL Branches (In(count))
(c) McSplit+LL vs McSplit+LL+DSB. (d) McSplit+DAL vs McSplit+DAL+DSB.

Figure 4 Comparison of the number of search branches for McSplit, McSplit+RL, McSplit+LL,
and McSplit+DAL before and after applying the proposed method.

22:13

CP 2025

22:14

Learning to Bound for Maximum Common Subgraph Algorithms

5.4 Comparison with McSplit+RL, McSplit+LL, and McSplit+DAL

Next, we assess the impact of integrating the proposed bound into the machine learning
extensions of McSplit, namely McSplit+RL [12], McSplit+LL [27], and McSplit+DAL [13].
Although the bound leads to a similar number of solved instances across these methods, its
true value lies in the substantial reduction of computational effort. As illustrated in Figure 4b,
Figure 4c, and Figure 4d, the bound dramatically decreases the number of branches explored
in moderate cases, with the majority of solved instances exhibiting a branch ratio greater
than one. This indicates that the proposed bound calculation consistently explores fewer
branches than its counterparts, enhancing efficiency.

However, Figure 4b, Figure 4c, and Figure 4d also reveals a few outlier points that
falls above the y = x line, meaning the original algorithm (without DSB) explores fewer
branches. This phenomenon occurs because, in certain cases, early pruning disrupts the
learning process of dynamic vertex selection models like McSplit+RL. These models rely
on iterative refinement of vertex selection, and pruning initial branches can hinder this
refinement, altering the selection process in subsequent iterations. In contrast, McSplit,
which employs a static degree-based vertex selection method (as shown in Figure 4a), remains
unaffected by such disruptions. This nuanced behavior highlights the trade-offs involved in
integrating the bound with machine learning extensions, emphasizing its benefits in reducing
search complexity while acknowledging its occasional interference with dynamic learning
mechanisms.

5.5 Comparison with Oracle

In this experiment, we evaluate how closely our proposed bound approximates the theoretical
limit of bound tightness based on bidomains alone. While even tighter bounds are possible
in principle by considering relationships between vertices from different bidomains, such
approaches run the risk of becoming too expensive to improve overall performance.

For a given bidomain (V;,U;) € Pgy, the exact upper bound or the ultimate bound
reduction is computed by determining the maximum common subgraph of the induced
subgraphs G[V|] and H[U;]. We refer to this ideal bound calculation as the oracle. Our
objective is to compare the deviations of both the proposed bound and the McSplit bound
from this oracle. To facilitate this comparison, we introduce McSplit+Oracle, a variant of
the McSplit algorithm that replaces its standard bound calculation with the oracle’s method
of computing the MCS for each matching partition as follows:

UBoracle < |M| + 2 ‘MCSPM(G[V}]? H[Ul])‘v (7)
Vi, UryePon

where McSplit(G[V;], H[U;]) returns the maximum common subgraph of the induced sub-
graphs G[V;] and H[U,].

Figure 3 visually contrasts the bound differences between McSplit+Oracle and McSplit
(represented by red bars) and McSplit+DSB and McSplit (represented by blue bars). The
comparison between the red and blue bars allows us to measure the correlation between
McSplit+DSB and McSplit+Oracle. Notably, the red and blue plots align closely at x = 0
and z = 1, indicating strong agreement in McSplit+DSB and McSplit4+Oracle. However, as
x increases beyond 1, both plots exhibit a noticeable decline.

Crucially it shows that in virtually all cases where Oracle improves on the basic McSplit
bound, DSB does as well, and in most of those cases by the same amount. These results
highlight the effectiveness of the proposed bound in bridging the gap toward the ultimate
bound reduction, offering a significant improvement over the baseline McSplit algorithm.

B. W. Kothalawala, H. Koehler, and Q. Wang

Table 2 The Larger Common Subgraph Rate indicates the percentage of hard instances in which
a given algorithm finds a larger common subgraph than its counterpart. The A column represents
the difference between the success rates of the algorithm with the proposed bound and the baseline
version without it.

Larger Common

Algorithm Subgraph Rate (%) A (%)
McSplit 0.28 3.9
McSplit+DSB 4.18
McSplit+RL 2.26 0.32
McSplit+RL+DSB 2.58
McSplit+LL 1.91 173
McSplit+LL+DSB 3.64
McSplit+DAL 5.09 018
McSplit+DAL+DSB 5.27

5.6 Further Analysis

MCIS instances that remain unsolved by each algorithm and its branch sampling extension
within the 1800-second time limit are categorized as hard instances. While these instances
cannot be fully resolved within the given timeframe, identifying a larger common subgraph
during this period remains highly valuable for practical applications [14]. Such partial
solutions provide critical insights or approximations when exact solutions are out of reach,
making them indispensable in real-world scenarios.

Table 2 compares our proposed methods against existing approaches on hard instances
using the Larger Common Subgraph Rate, which quantifies the percentage of cases where our
method identifies a larger common subgraph than its competitors. These larger subgraphs
are subsequently used as lower bounds to prune more branches, significantly reducing
computational time. The results in Table 2 demonstrate that our method consistently
outperforms McSplit and its variants when the proposed bound calculation is applied to

these difficult cases. In all other scenarios, both methods yield subgraphs of equal size.

This performance gain highlights the proposed method’s enhanced pruning efficiency and its
ability to navigate the search space more effectively. These advantages establish it as a robust
and practical solution for tackling complex MCIS problems, particularly under stringent
time constraints. By providing larger subgraphs in hard cases, our method underscores the
importance of integrating bound calculations into MCIS search algorithms.

The frequency with which the new bound is computed depends on both the structure of
the input graph pairs and the behavior of the learned model. In our experiments, we found
that the new bound was activated in approximately 1.64% of the cases, with a standard
deviation of 7.99%.

6 Conclusion

In this research, we demonstrate how leveraging the structural properties of graphs can
tighten the upper bound of the BnB algorithm used to solve the MCIS problem. Our
reinforcement learning-driven approach strategically optimizes computations by focusing
on the most significant areas of the search space. Extensive experiments show that our
method consistently outperforms McSplit and its variants in both execution time and the

22:15

CP 2025

22:16

Learning to Bound for Maximum Common Subgraph Algorithms

number of branches explored. Additionally, we establish that our proposed bound calculation
closely approximates the maximum possible reduction in bounds achievable during the MCIS
search. Further analysis reveals that our approach excels in challenging instances, successfully
identifying larger common subgraphs for MCIS compared to existing methods.

Looking ahead, this work opens several promising directions for future research in
combinatorial search problems. The principles behind our bound computation could be
extended to related problems, such as subgraph isomorphism, to refine bounding strategies
in other graph-based search algorithms. While this study focuses on structural properties
like vertex degree and edge count to improve the upper bound in MCIS, future work could
explore additional graph properties to further enhance bound calculations. Another promising
direction is investigating alternative learning paradigms for more efficient application of these
improved bounds, potentially leading to even greater performance gains in combinatorial
search algorithms.

—— References

1 Leman Akoglu, Hanghang Tong, and Danai Koutra. Graph-based anomaly detection and
description: A survey. Data Mining and Knowledge Discovery, 29, April 2014. doi:10.1007/
510618-014-0365-y.

2 Tatsuya Akutsu and Takeyuki Tamura. On the complexity of the maximum common sub-
graph problem for partial k-trees of bounded degree. In Algorithms and Computation: 23rd
International Symposium, ISAAC 2012, Taipei, Taiwan, December 19-21, 2012. Proceedings
23, pages 146-155. Springer, 2012. doi:10.1007/978-3-642-35261-4_18.

3 Yunsheng Bai, Derek Xu, Yizhou Sun, and Wei Wang. Glsearch: Maximum common subgraph
detection via learning to search. In Marina Meila and Tong Zhang, editors, Proceedings of the
388th International Conference on Machine Learning, ICML 2021, 18-24 July 2021, Virtual
Event, volume 139 of Proceedings of Machine Learning Research, pages 588-598. PMLR, July
2021. URL: http://proceedings.mlr.press/v139/bai2le.html.

4 Egon Balas and Chang Sung Yu. Finding a maximum clique in an arbitrary graph. SIAM
Journal on Computing, 15(4):1054-1068, 1986. doi:10.1137/0215075.

5 Guillaume Damiand, Christine Solnon, Colin de la Higuera, Jean-Christophe Janodet, and
Emilie Samuel. Polynomial algorithms for subisomorphism of nd open combinatorial maps.
Comput. Vis. Image Underst., 115(7):996-1010, 2011. Special issue on Graph-Based Repres-
entations in Computer Vision. doi:10.1016/j.cviu.2010.12.013.

6 Hans-Christian Ehrlich and Matthias Rarey. Maximum common subgraph isomorphism
algorithms and their applications in molecular science: a review. WIRFEs Computational
Molecular Science, 1(1):68-79, 2011.

7 Ruth Hoffmann, Ciaran McCreesh, and Craig Reilly. Between subgraph isomorphism and
maximum common subgraph. In Proceedings of the AAAI Conference on Artificial Intelligence,
volume 31, 2017. doi:10.1609/aaai.v31i1.11137.

8 Xiuzhen Huang, Jing Lai, and Steven Jennings. Maximum common subgraph: Some upper
bound and lower bound results. BMC bioinformatics, 7 Suppl 4:S6, February 2006. doi:
10.1186/1471-2105-7-S4-56.

9 Takeshi Kawabata and Haruki Nakamura. 3d flexible alignment using 2d maximum common
substructure: Dependence of prediction accuracy on target-reference chemical similarity.
Journal of Chemical Information and Modeling, 54(7):1850-1863, 2014. PMID: 24895842.
do0i:10.1021/ci500006d.

10 Ina Koch. Enumerating all connected maximal common subgraphs in two graphs. Theoretical
Computer Science, 250(1-2):1-30, 2001. doi:10.1016/50304-3975(00)00286-3.

11 Giorgio Levi. A note on the derivation of maximal common subgraphs of two directed or
undirected graphs. Calcolo, 9(4):341-352, 1973.

https://doi.org/10.1007/s10618-014-0365-y
https://doi.org/10.1007/s10618-014-0365-y
https://doi.org/10.1007/978-3-642-35261-4_18
http://proceedings.mlr.press/v139/bai21e.html
https://doi.org/10.1137/0215075
https://doi.org/10.1016/j.cviu.2010.12.013
https://doi.org/10.1609/aaai.v31i1.11137
https://doi.org/10.1186/1471-2105-7-S4-S6
https://doi.org/10.1186/1471-2105-7-S4-S6
https://doi.org/10.1021/ci500006d
https://doi.org/10.1016/S0304-3975(00)00286-3

B. W. Kothalawala, H. Koehler, and Q. Wang

12

13

14

15

16

17

18

19

20

21

22

23

24

25

Yanli Liu, Chu-Min Li, Hua Jiang, and Kun He. A learning based branch and bound for
maximum common subgraph related problems. In The Thirty-Fourth AAAI Conference on
Artificial Intelligence, AAAI 2020, The Thirty-Second Innovative Applications of Artificial
Intelligence Conference, IAAI 2020, The Tenth AAAI Symposium on Educational Advances
in Artificial Intelligence, EAAI 2020, New York, NY, USA, February 7-12, 2020, volume 34,
pages 2392-2399. AAAI Press, April 2020. doi:10.1609/aaai.v34i03.5619.

Yanli Liu, Jiming Zhao, Chu-Min Li, Hua Jiang, and Kun He. Hybrid learning with new
value function for the maximum common induced subgraph problem. Proceedings of the AAAI
Conference on Artificial Intelligence, 37(4):4044-4051, June 2023. doi:10.1609/aaai.v37i4.
25519.

Simone Marini, Michela Spagnuolo, and Bianca Falcidieno. From exact to approximate
maximum common subgraph. In Graph-Based Representations in Pattern Recognition: 5th
IAPR International Workshop, GbRPR 2005, Poitiers, France, April 11-18, 2005. Proceedings
5, pages 263—272. Springer, 2005. doi:10.1007/978-3-540-31988-7_25.

Ciaran McCreesh, Patrick Prosser, Christine Solnon, and James Trimble. When subgraph
isomorphism is really hard, and why this matters for graph databases. Journal of Artificial
Intelligence Research, 61:723-759, 2018. doi:10.1613/jair.5768.

Ciaran McCreesh, Patrick Prosser, and James Trimble. A partitioning algorithm for max-
imum common subgraph problems. In Carles Sierra, editor, Proceedings of the Twenty-Sizth
International Joint Conference on Artificial Intelligence, IJCAI 2017, Melbourne, Australia,
August 19-25, 2017, pages 712-719. ijcai.org, 2017. doi:10.24963/ijcai.2017/99.

James J McGregor. Backtrack search algorithms and the maximal common subgraph problem.
Software: Practice and Ezperience, 12(1):23-34, 1982. doi:10.1002/spe.4380120103.

Samba Ndojh Ndiaye and Christine Solnon. Cp models for maximum common subgraph
problems. In Jimmy Lee, editor, Principles and Practice of Constraint Programming — CP
2011, pages 637-644, Berlin, Heidelberg, 2011. Springer Berlin Heidelberg. doi:10.1007/
978-3-642-23786-7_48.

Jochem H. Rutgers, Pascal T. Wolkotte, Philip K.F. Hoélzenspies, Jan Kuper, and Gerard J.M.
Smit. An approximate maximum common subgraph algorithm for large digital circuits. In
2010 13th Euromicro Conference on Digital System Design: Architectures, Methods and Tools,
pages 699-705, 2010. doi:10.1109/DSD.2010.29.

Kim Shearer, Horst Bunke, and Svetha Venkatesh. Video indexing and similarity retrieval by
largest common subgraph detection using decision trees. Pattern Recognition, 34(5):1075-1091,
2001. doi:10.1016/30031-3203(00)00048-0.

Christine Solnon. Alldifferent-based filtering for subgraph isomorphism. Artif. Intell., 174(12-
13):850-864, 2010. doi:10.1016/j.artint.2010.05.002.

Christine Solnon, Guillaume Damiand, Colin de la Higuera, and Jean-Christophe Janodet. On
the complexity of submap isomorphism and maximum common submap problems. Pattern
Recognit., 48(2):302-316, 2015. doi:10.1016/j.patcog.2014.05.019.

Richard S. Sutton and Andrew G. Barto. Reinforcement learning — An introduction, 2nd Edition.
MIT Press, 2018. URL: http://www.incompleteideas.net/book/the-book-2nd.html.

James Trimble. Partitioning algorithms for induced subgraph problems. PhD thesis, University
of Glasgow, UK, 2023. doi:10.5525/GLA.THESIS.83350.

Philippe Vismara and Benoit Valéry. Finding maximum common connected subgraphs using
clique detection or constraint satisfaction algorithms. In Le Thi Hoai An, Pascal Bouvry, and
Pham Dinh Tao, editors, Modelling, Computation and Optimization in Information Systems
and Management Sciences, Second International Conference, MCO 2008, Metz, France —
Luzembourg, September 8-10, 2008. Proceedings, volume 14 of Communications in Computer
and Information Science, pages 358—-368. Springer, 2008. doi:10.1007/978-3-540-87477-5_
39.

22:17

CP 2025

https://doi.org/10.1609/aaai.v34i03.5619
https://doi.org/10.1609/aaai.v37i4.25519
https://doi.org/10.1609/aaai.v37i4.25519
https://doi.org/10.1007/978-3-540-31988-7_25
https://doi.org/10.1613/jair.5768
https://doi.org/10.24963/ijcai.2017/99
https://doi.org/10.1002/spe.4380120103
https://doi.org/10.1007/978-3-642-23786-7_48
https://doi.org/10.1007/978-3-642-23786-7_48
https://doi.org/10.1109/DSD.2010.29
https://doi.org/10.1016/S0031-3203(00)00048-0
https://doi.org/10.1016/j.artint.2010.05.002
https://doi.org/10.1016/j.patcog.2014.05.019
http://www.incompleteideas.net/book/the-book-2nd.html
https://doi.org/10.5525/GLA.THESIS.83350
https://doi.org/10.1007/978-3-540-87477-5_39
https://doi.org/10.1007/978-3-540-87477-5_39

22:18

Learning to Bound for Maximum Common Subgraph Algorithms

26

27

Stéphane Zampelli, Yves Deville, and Christine Solnon. Solving subgraph isomorphism
problems with constraint programming. Constraints, 15:327-353, July 2010. doi:10.1007/
s10601-009-9074-3.

Jianrong Zhou, Kun He, Jiongzhi Zheng, Chu-Min Li, and Yanli Liu. A strengthened branch
and bound algorithm for the maximum common (connected) subgraph problem. In Proceedings
of the Thirty-First International Joint Conference on Artificial Intelligence, IJCAI-22, 2022.
doi:10.24963/ijcai.2022/265.

https://doi.org/10.1007/s10601-009-9074-3
https://doi.org/10.1007/s10601-009-9074-3
https://doi.org/10.24963/ijcai.2022/265

	1 Introduction
	2 Preliminaries
	3 Branch and Bound for MCIS
	3.1 McSplit: Partitioning-Based Algorithm
	3.2 McSplit + Reinforcement Learning
	3.2.1 McSplit+RL
	3.2.2 McSplit+LL
	3.2.3 McSplit+DAL

	3.3 Limitations of Existing Algorithms

	4 Proposed Method
	4.1 Challenges
	4.2 Degree Sequence Bound
	4.2.1 Further Insights
	4.2.2 Complexity Analysis

	4.3 Learning-based Bounding Heuristic
	4.3.1 Algorithm Description

	5 Experiments
	5.1 Benchmarks
	5.2 Solvers
	5.3 Comparison with McSplit
	5.4 Comparison with McSplit+RL, McSplit+LL, and McSplit+DAL
	5.5 Comparison with Oracle
	5.6 Further Analysis

	6 Conclusion

