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—— Abstract

Balancing aeronautical assembly lines is a major challenge in modern aerospace manufacturing.
Aircraft manufacturing plants typically have a predetermined production rate, but the production
system requires a period of adaptation at start-up. This phenomenon, known as the learning
effect, refers to the gradual improvement in efficiency through task repetition, thereby reducing task
duration. However, the stability of an assembly line is also a critical factor, as any change in the
production process incurs costs. In this study, Constraint Programming (CP) is used to optimise
assembly line balancing, taking into account the learning effect to address the trade-off between
achieving target production rates and minimising adjustments to the line.
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1 Introduction

The Assembly Line Balancing Problem (ALBP) is a fundamental optimisation challenge in
manufacturing, focused on efficiently assigning tasks to workstations along an assembly line.
The goal is to balance workloads across stations while minimising idle time and ensuring
that the production rate meets demand. Assembly lines are categorised into three types:
single-model, mixed-model, and multi-model, depending on the number of different products
that can be fabricated at the same time on the line. There are different layouts of assembly
lines, including straight lines, U-shaped lines, lines with parallel workstations, and two-sided
lines, but the most common is the straight one. The production rate of an assembly line is
represented by its cycle time, which is the time between the completion of two consecutive
assembled units. Without parallel workstations, the cycle time is also the time required for
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Figure 1 A straight single-model aircraft
assembly line with three workstations. i+ 1, i,

and ¢ — 1 are successive units being assembled.

Figure 2 A log-linear learning curve: the produc-
tion time decreases by 15% recursively each time
the production quantity doubles.

all workstations to complete their assigned tasks before passing the unit to the next station.
Simple aeronautical assembly lines are usually single-model, straight-line systems, where the
aircraft being assembled enter the assembly line, one by one, at the first workstation, and
pass successively through each station until they reach the last, where they are completed and
leave the line (Figure 1). Given the complexity of assembling aircraft components, aerospace
companies must carefully distribute and organise workloads to maximise the production rate
and resource utilisation, reduce costs, and ensure the stability of the production system while
maintaining quality standards. Effective line balancing ensures a smooth workflow, prevents
bottlenecks, and maximises resource utilisation. By continually refining assembly processes,
aerospace companies can improve productivity, meet the industry’s demanding deadlines and
remain competitive in the marketplace.

Aircraft manufacturing plants are designed to produce at a certain rate. However, once
production begins, it takes time for the system to reach this production rate. Workers need to
gain experience, improve their skills, improve the supply chain management and optimise the
production process. Therefore, the initial production rate of plants is always lower than the
target rate, and the difference between the two can be significant. As production progresses,
continuous improvements in workflow optimisation, automation integration and experience
help to narrow this gap. This phenomenon, known as the learning effect, refers to the gradual
improvement in production system efficiency through task repetition, resulting in reduced
task durations [38]. The variation in duration based on the repetition of the same task is
called a learning curve (Figure 2), and the period in which the task duration continuously
improves until it reaches a steady state is referred to as the learning stage. The phase required
for the production system to reach the target production rate is called the ramp-up stage,
which is currently a challenging topic of great interest in manufacturing [12, 21].

Since the time required to perform a task in a manufacturing environment usually
fluctuates over time due to the learning effect, the design of the assembly line and the
assembly process is continually refined. However, the stability of an assembly line is also a
critical factor, as any change in the production process incurs costs. There are a number
of potential causes for this issue, including the time taken to install or deinstall the heavy
machines between workstations, errors made by workers when the assembly process changes
and becomes unfamiliar, or changes in inventory management and the supply chain, etc.
This creates a clear trade-off decision for aircraft manufacturers: pursuit of a continuously
optimised assembly line must be weighed against the cost of making changes to the production
process. Indeed, if the assembly line is continuously optimised, the production time will
consistently decrease, allowing the system to reach the desired production rate more quickly.
However, this process also carries an increased risk and higher associated costs due to the
greater number of changes being implemented on the line.
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In this work, we investigate the use of Constraint Programming (CP) to address the

Resource-Constrained Assembly Line Balancing Problem considering the learning effect.

We denote this problem as RC-ALBP /L. The decision, made under resource-constrained
conditions, involves a trade-off between the ramp-up time — the time required to reach the
target production rate or cycle time — and the number of adjustments to the line. This
decision includes determining the task and resource allocation to each workstation, as well as
setting the cycle time for each production period. Note that while industrial partners have
shown strong interest in the challenge of ramping up production on an assembly line, this
research has been conducted in an academic setting. Meetings are planned with industrial
partners in the near future on this topic.

The paper is structured as follows. After presenting some related works in Section 2,
RC-ALBP/L and its encoding in Optimization Programming Language (OPL) [36] are
formally introduced in Section 3 and Section 4. The results of the experiments we have
performed are presented in Section 5. Finally, we conclude and discuss some perspectives in
Section 6.

2 Related Works

The Assembly Line Balancing Problem (ALBP) is a well-known problem in the literature.

Starting from the Simple ALBP (SALBP) [20], numerous extensions have been proposed over
the years to address its various dimensions [7, 8, 10]. In this study, we specifically focus on
Resource-Constrained ALBP (RC-ALBP), scheduling in the presence of the learning effect,
and ALBP with the learning effect.

Resource-Constrained ALBP. This issue has been referred to by a number of names in the
past [11, 37], but it was not formally defined until 2005 in [2]. The definition of RC-ALBP
was further refined in [16], where the authors pointed out that the resources required by
tasks can be simple or multiple, alternative and/or concurrent. The complexity of RC-ALBP

has been proven to be strongly NP-hard in [29], even without considering scheduling aspects.

When task parallelism is allowed at the workstation level, the decision making process extends
beyond task and resource allocation to include the determination of task start times. This
particular variant of RC-ALBP has been widely studied under the name Multi-Manned
ALBP, which was first introduced in [17]. However, most of these studies still did not consider
cumulative resource scheduling, treating each worker as a separate capacity-one resource,
and assuming that each task required only one worker. A number of solution approaches
have been developed to tackle RC-ALBP, both with and without scheduling considerations,
including techniques based on CP [3, 14, 18, 33, 34, 35, 40]. In [14, 35, 40], the authors
compared the performance of CP with that of Mixed-Integer Linear Programming (MILP)

and some incomplete solution approaches (e.g. Simulated Annealing, Genetic Algorithms).

The results showed that CP outperforms the other approaches in this context.

Learning Effect and Scheduling. The learning effect was first documented in [38], where
the author introduced a log-linear learning curve (Figure 2) that we incorporate in our
experiments. Since then, numerous types of learning curves have been developed. A historical
review and a meta-analysis of various learning curves are available in [19] and [39]. In
scheduling environments, learning can be approached in two ways: (a) the position-based
approach, where the extent of learning depends on the number of times a task has been carried
out; and (b) the sum-of-processing-time approach, which accounts for the total processing
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time of all similar tasks completed up to that point [9]. There are notable works on the
scheduling problem that consider the learning effect. The multi-mode Resource-Constrained
Project Scheduling Problem (RCPSP) with learning effect is addressed in [31, 32|, where the
duration of each task depends on the amount of resources performed on it. In [22], four CP
formulations for the RCPSP with the learning effect are introduced, along with an empirical
comparison of their scheduling and lower bounding performance. In [26], the authors consider
the learning effect in the high-multiplicity RCPSP, where multiple repetitive projects need
to be scheduled, using CP and prove the existence of symmetrical solutions in this problem.

ALBP with Learning Effect. Although ALBP has been widely studied with many extensions,
only a few have considered the learning effect and most of them apply the position-based
approach. A review of works conducted before 2023 that account for the learning effect in
ALBP can be found in [1]. A relaxed version of SALBP with a learning effect (SALBP /L) was
first addressed in [15]. The authors proved that the optimal task allocation, while minimising
the throughput time of a batch product, is imbalanced in the presence of homogeneous
learning. This work has been extended to SALBP/L in [23]. In [30], a modified branch-
and-bound algorithm and a fast heuristic based on a task priority rule for SALBP/L, while
minimising the number of workstations and the learning stage duration, have been proposed.
However, the learning effect is relaxed since the line is considered pre-filled, all tasks have
the same number of repetitions in each cycle, and the cycle time can only be changed in
predetermined periods. Integer Linear Programming (ILP) and a matheuristic approach,
which is based on variable neighborhood search and dynamic programming, have been used
to address the same problem in [6]. In [27], the authors provided two rebalancing procedure
for SALBP/L to reduce the number of workstations on the line. Nevertheless, this work still
considers a relaxed view of the learning effect when counting the number of task repetitions
for the position-based learning approach. In fact, a task from a later-entered unit can be
processed earlier than one from an earlier unit, and more than one instance of the same task
might be processed simultaneously for different units. More recently, mixed-model ALBP
incorporating the learning effect has been addressed using ILP and matheuristic approaches,
further expanding research in this area [4, 28].

To the best of our knowledge, no work in the literature simultaneously addresses RC-
ALBP considering scheduling aspects with task durations dependent on the learning effect.
As this is a novel problem, we adopt a complete approach (i.e. an approach able to prove
optimality and to provide optimality gaps) in order to establish a baseline. In the literature,
it has been shown that CP outperforms MILP in similar problem contexts, which motivates
our choice for CP. Our contributions through this work are:

Formally define RC-ALBP /L with an individual learning curve associated with each task.

Propose an OPL encoding for RC-ALBP /L.

Introduce a dominance-breaking method, while proving its correctness.

Identify three solving approaches based on the constraint programming model.

Conduct an experiment on industrial aircraft assembly line benchmarks, allowing us to

compare CP-based solving approaches, along with an ILP approach.

3 Problem Description

The assembly line under consideration is single-model and straight. Moreover, due to the
nature of the aircraft assembly line, we have included the notion of a zone that represents a
subpart of the aircraft in which assembly tasks are performed. Each workstation contains
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the same set of different zones, either inside or outside the aircraft. Each zone has a capacity
and can be treated as a cumulative, renewable resource for task execution. Furthermore, for
safety reasons, certain tasks may disable specific zones during their execution. When a zone
is disabled, any task that requires it will be unable to proceed. However, tasks that disable
the same zone can run simultaneously. In this section, we formally describe the components
required to define an instance of the problem we consider, namely RC-ALBP /L, aiming to
minimise the ramp-up time and the number of adjustments to the line. We do not consider
rebalancing or dynamic task allocation in this work.

3.1 Problem Inputs

An instance of RC-ALBP/L is defined by a tuple consisting of the following elements.
The target cycle time ¢4, which is the cycle time we want to reach.
The maximum value of cycle time ¢,,44, Which is the longest allowable time between the
completion of two consecutive assembled units.
The number of workstations W. We denote W = {1,..., W}, or equivalently [1, W], as
the set of workstations. Workstations are ordered from 1 to W on the line.
The number of periods P. A period is the time interval during which a unit stays at a
workstation, and the cycle time in each period corresponds to the duration of this interval.
We denote P = [1, P] as the set of periods.
The set of tasks T (|T| = T), with for each task ¢ € 7, a monotonically decreasing
duration function, denoted as dur; : Z — N, which returns the duration of the task based
on the number of times it has been completely executed before, or zero if the input is
negative. Note that in period number p, the number of complete executions of a task
allocated to station number w is p — w. For instance, the duration of a task ¢ allocated
to workstation 3 in period 2 is dur(2 — 3) = dur;(—1) = 0, since workstation 3 is not yet
in service during period 2. During period 5, its duration will be dur,(5 — 3) = dur(2),
because t has already been executed twice (in periods 3 and 4).
The graph G = (T, .A) represents the precedence relationship between tasks in 7. An arc
(t,u) € A indicates that task ¢t must be finished before the start of task w.
The set of resources R, where, for each resource r € R, capa, denotes the capacity of r,
and cons,: denotes the amount of resource r consumed by task ¢ € 7. Resources can
typically represent a set of machines or a set of workers that are assigned to a workstation
for performing tasks in this workstation.
The set of zones Z, where, for each zone z € Z, capa, denotes the capacity of z, cons, +
denotes the share of zone z occupied by task ¢ € T, and D; C Z is the set of zones that
are disabled during the execution of task ¢.

The workstation-relative time horizon, for each task during each period H = [0, ¢ynaz]-

Assumptions. An instance of RC-ALBP/L is said to be well-formed if and only if the
following assumptions hold. Note that unless said otherwise, all instances considered in the
paper are supposed to be well-formed.
1. The number of periods P is greater than the number of workstations W. Under this
assumption, the set of periods P can be partitioned into two subsets:
PY = [1, W] representing the periods when the line is being filled, called unstable
periods.
PS = [W + 1, P] the stable periods.

CP 2025
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2. The cycle time cannot be changed during the unstable fill-up periods (the first W
periods). This assumption is made to prevent an increase in cycle time during these
periods, particularly when more tasks are assigned to a downstream workstation. Under
this assumption, the cycle time during these periods is equal to the maximum cycle time
among them.

w

The cycle time of the unstable periods is greater than the target cycle time.

P

Any task can be allocated to any workstation. The allocation of a task is the same for all
periods (no dynamic task allocation or rebalancing allowed).

A task cannot be split among workstations (non-preemptive tasks).

In each period, all tasks must be completed.

The precedence graph G is acyclic.

@ Now

Any resource can be allocated to any workstation. The amount of each resource allocated
to each workstation is the same for all periods (no dynamic resource allocation allowed).

» Example 1. We consider a toy example, instance of RC-ALBP/L, consisting of 2 work-
stations, 2 resources {r1,72}, each with a capacity of 6, and a zone z with a capacity of
1. The target cycle time is 12 and the maximum number of periods for the ramp-up is 6.
The maximum value for the cycle time is 20. There are 6 tasks, each with an individual
learning curve, i.e. durations based on the number of complete executions of the task. The
consumption of resources and zone by each task is represented in Figure 3a. Task c is the only
one that disables zone z during its execution. The precedence relationship graph between
tasks is represented in Figure 3b.

Consume . Duration after n complete executions
Task —— Disable
T T2 oz 0 1 2 3 4 5

a 3 1 1 - 9 8 7 6 5 5 a a

b 2 2 1 - 10 7 4 4 4 4

c 1 1 0 z 4 4 4 4 4 4 ‘ a

d 0 3 0 - 8 5 3 3 2 2

e 2 1 1 - 7 6 6 5 5 5

f 1 2 0 - 5 5 4 4 3 3 0 e
(a) Tasks involved in the toy example. (b) Precedence relationship.

Figure 3 Tasks features (a) and precedence relationship (b) for the toy example.

3.2 Assignment, Solution and Optimality

Assignment. An assignment (i.e. a solution attempt) of a RC-ALBP /L instance is defined
by a tuple (wks, raw, start, cyc), where:
wks : T — W is a function that maps, for each task ¢t € T, the workstation w € W to
which it is allocated;
raw : R X W — N is a function that maps, for each pair composed of a resource r € R
and a workstation w € W, the amount of resource r allocated to workstation w;
start : T x P — N is a function that maps, for each task t € T and each period p € P,
the start time of ¢ in the workstation to which ¢ is allocated during that period p;
cyc : P — N is a function that maps, for each period p € P, its cycle time.
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We define an additional function end : 7 x P — N that maps, for each task and each

period, the end time in the workstation to which the task is allocated during that period.

For each task t € T and each period p € P, the value of this function can be calculated as
follows:

end(t,p) = start(t,p) + dur(p — wks(t))

We also have & , = [start(t,p), end(t, p)[ representing the time interval during which the
task t is executed in period p.

Solution. An assignment to a RC-ALBP/L instance is a solution if and only if: it satisfies
the precedence constraints (Equations 1 and 2); respects the resources’ capacity (Equations
3 and 4); respects the zones’ capacity (Equation 5); satisfies the zone disabling constraints
(Equation 6); and respects the characteristics of the cycle time (Equations 7 and 8).

V(t,u) € A, wks(t) < wks(u) (1)
Y(t,u) € A,Vp € P, (wks(t) = wks(u)) = (end(t,p) < start(u,p)) (2)
Vr e R, Z raw(r,w) < capa, (3)
weW
Vr € R,Yw € W,Vp € P,V1 € H, Z consy < raw(r,w) (4)
teT :wks(t)=wATEE: p
Vz € ZYweW,Vp e P, VT eH, Z cons, ¢ < capa, (5)
teT wks(t)=wATEE:
Vte T,VpeP,VreH, (1 €&p) = (Onr=10) (6)
with Oy r = {u € T\ {t} | wks(u) = wks(t), 7 € Eup, 3z € Dy : cons,, > 0}
Vp € P, max(end(t,p)) < cye(p) (7)
vp S Pa Ctgt S Cyc(p) S Cmazx (8>

Optimality. A solution to a RC-ALBP/L instance is said to be optimal (or Pareto-optimal)
if and only if no other solution improves one of the following two optimization criteria
without worsening the other: (i) the ramp-up duration (Equation 9), and (ii) the number of
adjustments to the line (Equation 10). In this work, we consider that an adjustment to the
line is a modification of the cycle time.

Y o) )
PEP:cig<cyc(p)

> (eyelp — 1) # cye(p)) (10)

pePS

» Example 2. An optimal solution for the example previously introduced is shown in
Figure 4. Tasks {a,b} are allocated to workstation 1, while tasks {c,d, e, f} are allocated
to workstation 2. In workstation 1, the order of tasks remains unchanged throughout the
production process. In workstation 2, during period 1, no tasks are performed as the first
assembled unit is still in workstation 1. There is no adjustment during period 2 due to
Assumption 2 (i.e. no adjustment in unstable periods). The production rate adjustments
are made in periods 3 and 5. In period 3, the task schedule (or the task execution order)
remains the same as in period 2, but a decision is made to reduce the cycle time, since the

25:7
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station time during this period is reduced due to the learning effect. In period 5, a decision
is made to change the order of the tasks and further reduce the cycle time to the target
cycle time. The ramp-up time in this example is (19 x 2) + (15 x 2) = 68 and the number of
adjustments to the line is 2.

The complete resource profile for this example is available in the Appendix A (Table 4).
Note that in this example the available amount of resource r; is 6, but only a total of 5 is
allocated to both workstations. The reason for this is that the unavailability of zone z (either
in use or disabled) has prevented the tasks from running in parallel.

cye(1) =19 cye(l) =19
p=1 | ol b | )
o 2 4 6 8 10 12 14 16 18 20 0o 2 4 6 8 10 12 14 16 18 20
PY cye(2) =19 cye(2) =19
. el .
p=2 | o b | : e d! [ 7 1 .
0 2 4 6 8 10 12 14 16 18 20 o 2 4 6 8 10 12 14 16 18 20
cyc(3) =15 cyc(3) =15
. E2 .
p=3 | & [ | : e |2 11 = ]
0o 2 4 6 8 10 12 14 16 18 20 o 2 4 6 8 10 12 14 16 18 20
cyc(4) =15 cyc(4) =15
. 63 .
p=4 [ : I I
0 2 4 6 8 10 12 14 16 18 20 0o 2 4 6 8 10 12 14 16 18 20
s
P cyc(5) =12 = Cigt cyce(b) = 12 = Cigt
. 4 .
c
s - : T T
0 2 4 6 8 10 12 14 16 18 20 0o 2 4 6 8 10 12 14 16 18 20
cyc(6) = 12 = Cigt cyc(6) = 12 = Cigt
. 65 .
) : i
0 2 4 6 8 10 12 14 16 18 20 0 2 4 6 8 10 12 14 16 18 20
‘Workstation 1 Workstation 2

Figure 4 Allocation and scheduling of tasks for the toy example.

4 Encoding RC-ALBP/L in OPL

In this section, we transcribe in OPL the general mathematical model given in Subsection 3.2
for RC-ALBP/L, and identify some dominance-breaking constraints.

4.1 A Base Model for RC-ALBP/L

To start, we propose a base model for RC-ALBP/L. The construction of this model involves
both interval variables and state functions from OPL. An interval variable represents a period
of time during which a task is carried out, including the start and end times, its duration,
and its nature (mandatory or optional). An optional task may be omitted in the computed
solution to the problem. Note that although there are no optional tasks in RC-ALBP/L,
this feature is still used in the modelling step. The start time, end time and duration of an
interval variable are respectively accessible through functions startOf, endOf and lengthOf.
A state function is a function describing the evolution of a given feature of the environment.
In scheduling context, this function can be used to describe the status of a specific resource
(in this case, the status of a zone). The possible evolution of this function is constrained by
interval variables of the problem using OPL functions (e.g. alwaysEqual).
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In order to encode in OPL the general mathematical model described in Subsection 3.2,
we define the corresponding decision variables for each of the assignment functions as follows:

for each task t € T, wks(t) is represented by an integer variable wks; € W, which
indicates the workstation to which ¢ is allocated.

for each allocated resource r € R and each workstation w € W, raw(r, w) is represented
by an integer variable raw, ,, € [0, capa,], which indicates the amount of r allocated
to w.

for each task ¢ € T, each period p € P, and each workstation w € W, the optional interval

variable itv; , ., € H represents the execution of task ¢ during period p at workstation w.

This variable is present only if ¢ is assigned to w, in which case it can express the value
returned by start(t,p).

for each period p € P, cyc(p) is represented by an integer variable cyc]‘giec € [ctgts Cmazls
which indicates the decided cycle time value of p.

In addition, we also introduce the following additional variables that are useful for stating
some constraints:

for each period p € P, the integer variable cyc;°? € H represents the minimum required
cycle time value of p (or the maximum end time among tasks during p). The value of

this variable is always less than or equal to cycde®

S
for each period p € P, the integer variable cost, € H represents the amount of time
contributed by p to the ramp-up duration minimisation objective. This variable has the

if cyc

dec
P

dec

same value as cyc,

> Cyg¢, and 0 otherwise.

There are some other additional variables used to encode the zone constraints (or, more
specifically, the state function that evolves the status of each zone over time), but these
are not described in this section (because they are not related to our main purpose here,
which is to express ramp-up cycle time constraints and to express dominance constraints). A
complete description of the model in OPL is provided in the Appendix B. The criteria to be
minimised are encoded as follows:

Z cost,, (11)
Z (cost,_1 # costy) (12)

peEPS

The first objective (Equation 11) is to minimise the time required for the assembly line to
reach the target cycle time (or the ramp-up duration). The second objective (Equation 12)
is to minimise the number of adjustments to the cycle time. The addressed problem involves
a trade-off: to achieve the target cycle time more rapidly, it is necessary to reduce the cycle
time of the line as quickly and as extensively as possible, which results in an increase in the
number of adjustments to the cycle time.

In this section, we do not elaborate on how each constraint is encoded using the decision
variables mentioned earlier. In fact, most of these constraints are quite standard in scheduling
problems or have already been discussed in the literature on assembly lines with CP [26, 33, 34].
However, we provide the constraints associated with the ramp-up cycle time variables, which
are novel in this work.

25:9
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VpeP, cyc,®d = te?@g}éwendOf(itvt,p,w, 0) (13)
Vp e PY, cycgec = 5161%)5 cyc;®? (14)
Vp € P5, cycgeC > cyc,™ (15)
Vp e PY, cost, = cycgec (16)
Vp € P9, (cyc;lec > cigt) = (cost, = cycgec) (17)
Vp € PY, (cyc;lec = ¢tqt) = (cost, = 0) (18)

The constraints (13) compute the required cycle time for each period. Constraints (14)
ensure that the decided cycle time during the unstable periods is equal to the maximum
required cycle time among them and cannot be altered during these periods. Constraints
(15) express that the decided cycle time during the stable periods is greater than or equal to
the required cycle time. Next, the constraints (16), (17) and (18) calculate, for each period,
the time contributed to the ramp-up stage. A comprehensive description of this base model
with all the constraints is provided in the Appendix B.

4.2 Dominance-Breaking Constraints

We now introduce some dominance-breaking constraints [13] for RC-ALBP/L. With S
representing the solution space of RC-ALBP /L, we can define two functions obj,,, : S - N
and obj,, : S — N that return the value of the objective calculated by Equation 9 and
Equation 10, respectively.

» Definition 3 (Dominance relation). For any two solutions o and m, a dominance relation
=< is an incomplete, reflexive and transitive relation between o and w, which expresses the
following conditions:

T 20 == (00, () < 0bjy (0)) A (000 () < 0B (0))

The aim of the dominance-breaking constraints is to reduce the solution space from S to
a solution space S%*™ C S without changing the quality of the optimal solutions. In brief,
for every solution ¢ removed by the dominance-breaking constraints, there exists a solution
7w remaining that is at least as good as ¢ in terms of both objectives. Formally:

VUES\Sdom,EIﬂ'ESd"m:ﬂ'jU

Next, we provide a detailed description of each dominance-breaking constraint. For
convenience, in the remainder of this paper, for any assignment o (see Subsection 3.2)
we denote by z(c) the value of a decision variable z corresponding to o (e.g. cyci®®(0)).
Similarly, we denote by f, the value returned by an assignment function f corresponding to

o (e.g. start,(t,p)).

» Definition 4 (p-excluded equivalence). For any two assignments o and 7, for any period
p € P, a p-excluded equivalence (noted ﬁ) s a symmetrical, reflexive and transitive relation
between o and m such that all of the following conditions are satisfied:

YVt e T, wksy(t) = wks,(t);

Vr € R, Yw € W, raw,(r,w) = raw,(r, w);

Vi e T, Vg e P\A{p}, start(t,q) = start,(t,q);

Vg € P\ {p}, cycr(a) = cyc,(q)-
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Put simply, Definition 4 means that if ¢ £ 7, then the only decisions that may differ
between o and 7 are the tasks schedule during period p and the cycle time of p. In the
following of this section, we focus on creating dominance-breaking rules that enforce cyc to
become a monotonically decreasing function, which is not necessarily the case for non-optimal
solutions.

» Lemma 5. Let o be a solution and p a period in P° such that cyc;™ (o) < cyci®d(o).
There exists a solution ™ < o such that cyc,* (m) > cyc;®d(r).

Proof. Let m an assignment such that o £ 7 and for any task t € T, start.(t,p—1) =
start.(t,p). As duri(p — 1) > duri(p) (remember that dur; is a monotonically decreasing
function), then end(t,p — 1) > end,(t,p) and thus cyc,* (7) > cyci®d(r) (see Figure 5).
Since ¢ is a solution and o £ 7, then all constraints are satisfied in 7 for periods in P \ {p}.
As i) the start times of tasks during period p in 7 remain the same as during p — 1, and ii)
the tasks during p are finished earlier than during p — 1, then all precedence, resource and
zone constraints will be naturally satisfied (they are relaxed).
Since cycped(r) < cyc,*d(r) = cyc;*% (o) < cycid(o) < cycd®®(o), then we can select
cycdec( ) such that cycdec( ) < cycdec( ) < Cpaz, Which satisfies the cycle time character-
istics and makes 7 a solution. As o £ 7, we have cycdee(m) = cycde®(o) for all ¢ € P \ {p}.
Two possibilities exist:

if p is not an adjustment period in o, then simply selecting cycdec(ﬂ') = cycdec(o) will

make 7 < 0.

if p is an adjustment period in ¢, then any possible value of cycdec( ) such that

cycge(m) < cycy®®(o) will make 7 < 0.

We have ™ < ¢ in both cases. Hence, the lemma is proved. <
Cyc;iq]
c 1
Periodp—1 | a | b [ d |
1 1 1 1
1 1 1
1 1 1 Cyc;efl
1 P 1 [
Period p T ] | b ‘ T a | :

Figure 5 Illustration of Lemma 5’s proof: the task intervals during period p in 7 are covered by
those of period p — 1.

» Lemma 6. Let o be a solution and p an adjustment period in P° such that cycdec( ) <
cycae(o). There exists a solution ™ = o such that cycaes () > cycg® ().

Proof. There are two possible cases: (a) cyc,*(0) > cyc;*d(o); and (b) cyc,*% (o) <
cyc;*9(o).

In case (a), since cyc;®(o) < cyc;™ (o) < cycH®
by simply selecting any possible value of cycdec( ) within the interval [cycy*d(o), cycdec (o)],
while keeping all other decisions from ¢ unchanged. The solution 7 obtained satisfies ™ < o.
In case (b), based on Lemma 5 proved above, we can construct a solution o’ such that
cyc, 4 (0’) > cycj®i(o’) and o’ < ¢. From here, the situation reverts back to case (a)
mentioned earlier. We follow the procedure in case (a) and construct a solution 7 such that
m =< o', and therefore m < 0.

In both cases, we can construct a solution m < ¢. Hence, the lemma is proved. <

dec (), we can construct a solution 7 from o
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With Lemma 5 and Lemma 6 provided above, we can solely consider solutions where cyc
is monotonically decreasing. We conclude this section with another dominance-breaking rule,
which ensures that the minimum possible cycle time is selected in each adjustment period.

» Lemma 7. Let o be a solution and p an adjustment period in P° such that cycgfc1 (o) >
cycg®(o) and cyc

dec dec
cyc,*d(m).

5°¢(0) > cyce;®Y(o). There exists a solution m = o such that cycy®®(m) =

dec (0.) > Cycreq

P P
selecting the value of cycgec(w) = cyc;®9(0), while keeping all other decisions from o

Proof. Since cyc (0), we can construct a solution 7 from o by simply

unchanged. As the ramp-up time in 7 is reduced, we have 7 < . |

From all the proved lemma above, we can safely introduce the following dominance-
breaking constraints for RC-ALBP/L:

Vp € P5, cyc,”) > cycy®d (19)
Vp € P, cycj‘:fc1 > cyc;lec (20)
Vp € P9, (cycgfcl > cycgec) = (cycgec = cyc,*) (21)

The constraints (19) and (20) ensure that both the required and decided cycle times are
never increasing during the stable periods, according to Lemma 5 and 6. Finally, constraints
(21) guarantee that whenever an adjustment is made, the smallest possible value is selected
for the decided cycle time according to Lemma 7.

5 Experimentation

In this section, we present the results of experiments conducted on real-world benchmarks.
The details of the benchmarks are provided first, followed by an analysis of the results.

5.1 Benchmarks

Learning Curves. In this work, we use the log-linear learning curve with a steady learning
state [38, 39, 19]. Such a log-linear curve is the classical model used in the aeronautical
industry. We define for each task ¢ € 7~ (a) the duration for the first execution dur? = dur;(0);
(b) the duration when the learning effect reaches its steady state dury”; and (c) the learning
rate Iy € ]0,1] which is a parameter that determines the slope of the learning curve. The
duration function, based on the number of complete executions n for each task ¢, is given by
the following formula:

duri(n) = dury® + [(dur? —dur®) - (n+ 18] YneN

In our experiments, the ratio dur}/durs® lies between 2 and 10.

Dataset. The experiments are conducted on three different datasets that come from real
aircraft assembly lines [34]. We have adapted these datasets to account for the learning effect
(they are also made available online for further research at [25]). Each dataset consists of
187, 199, and 795 tasks, respectively. The learning rate for each task is randomly selected
from the interval [0.45, 1], which is considered a realistic range. Note that using the actual
values would not affect the applicability of our approach. For each dataset, we create two
instances by varying the number of workstations, the number of periods and the cycle time
features as showed in Table 1. A total of six instances were considered. In the remainder of
this section, we denote by T-W-P the instance consisting of T' tasks, W workstations and P
periods (e.g. 199-2-26).
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Table 1 Features of data instances: number of tasks, number of workstations, number of periods,
target cycle time, maximum value of cycle time, number of resources, capacity of resources, number
of zones, capacity of zones, and learning rate.

T w P Ctgt Cmaz |R| capa,, |Z] capa, Iy

2 26 2830 28800
{187,199,795} 6 <40 48 1 [0.45,1]
4 50 1440 14400

Solving Approaches. Due to Assumption 2, the value returned by o0bj,,, (see Subsection 4.2)
for an instance consisting of W workstations and P periods lies in [1, P — W]. According to
Lemma 6, we do not consider an increase in cycle time as part of a possible adjustment to
the line, as every solution exhibiting this behaviour is always dominated by a solution with
monotonically decreasing cycle time. Therefore, we can transform the original bi-objectives
problem into a series of P — W mono-objective sub-problems. For each m € [1,P — W],
there is such a sub-problem with constraint (22) and the ramp-up objective (Equation 11).

Z (cost,_1 > cost,) <m (22)
pePS

Such constraints express that the maximum number of adjustments to the cycle time, until
the target cycle time is reached, is equal to m. In the experiments, we perform a series of
solving attempts (called runs) of the above mono-objective sub-problems using three different
solving approaches. Each run is defined by a triplet (I, m, A), where I is an instance from the
datasets, m € [1, P — W], and A is one of the three following possible solving approaches:
1. CPO (baseline solving approach): the base model, as described in Subsection 4.1, is used.
2. CPOPB (dominance-breaking solving approach): the enriched model, which corresponds
to the base model together with the dominance-breaking constraints (Equation 19,
Equation 20 and Equation 21), is used.
3. CPOY® (warm-start solving approach): the enriched model is used (as for CPOP®), but
the solving process involves a kind of incremental mechanism. The aim of CPOMS is to
directly generate a set of Pareto-optimal solutions. Actually, it can be easily proved that
any solution to an instance I with the upper-bound value m — 1 is also a solution for I
with the upper-bound value m. Formally, for all m > 1, the final solution returned by
(I,m—1, CPOWS) is used to warm-start (I, m, CPOWS), which means that CPOY® can
only improve the value of the ramp-up objective 0bj,, when m increases.

The numbers of variables and constraints considered in the base model are given in
Table 2. As the number of tasks increases, the numbers of variables and constraints both
grow at an approximately proportional rate. The same phenomenon occurs when we increase
the number of workstations and periods (doubling them results in nearly quadrupling the
number of variables and constraints).

For comparison purposes, we also evaluated an ILP approach. The chosen ILP formulation
is a discrete-time, time-indexed variable encoding. Other MILP encodings exist in the context
of resource-constrained scheduling, using sequencing or event-based variables [5]. However,
in presence of learning effect, task durations become variables, making those encodings
non-linear (they require multiplying decision variables by task durations). Our ILP approach
is not described in the main paper because of its poor performance. In fact, due to the
explosion in the number of variables and constraints (e.g., 560 million variables and 80
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Table 2 Number of variables and constraints in the base model (CPO) for each instance.

Instances ‘187—2—26 199-2-26 795-2-26 187-4-50 199-4-50 795-4-50

4 Variables 12,497 13,133 44,721 47,361 49,773 169,569
4 Constraints 61,176 75,524 235,839 234,328 288,932 901,831

million constraints for the smallest instance, 187-2-26; see Table 5 in the Appendix for other
instances), the ILP approach cannot build a relaxed version of the model after running for 2
hours, and even causes the test computer to run out of memory. Details of this approach are
provided in the Appendix C.

Test Setup. The tests have been launched using IBM CP Optimizer 22.1.2 for the CP-based
approaches and IBM CPLEX 22.1.2 for the ILP approach [24] through the DOcplex API,
on Intel® Xeon® CPU E5-2660v3 2.60-3.30 GHz with 62 GB of RAM. We tried several
search strategies for all CP-based approaches (e.g., priority branching on cycle time variables,
selecting values of variable domains in increasing order, etc.), however, the results obtained
were worse than those of the default strategy. Therefore, we chose to retain the default
setting. As the number of variables and constraints increases significantly with the number
of workstations and periods, the timeout for each run of a 2-workstation instance was set to
900 seconds (15 minutes), and for a 4-workstation instance, it was set to 7,200 seconds (2
hours).

5.2 Results

The results are presented in Table 3. More precisely, for each instance I, we provide
a figure representing the results of runs (I,m, A), for all m € [1,P — W] and for all
approaches A. In such figures, each point (circle e for CPO, triangle ¥ for CPOPB, and star
* for CPOWS) corresponds to a solution for which the vertical axis represents the ramp-up
duration (objective 0bj,,) and the horizontal axis represents the actual number of cycle time
adjustments (objective obj,,). Note that it is possible to have multiple ramp-up duration
values for a given number of adjustments. This means that several values of m (upper bound
for objective 0bj,,,) have permitted to reach the same value of 0bj,,,. Non-dominated and
dominated solutions (defined relative to each solving approach) are respectively represented
with big-coloured and small-black points. Note that solutions which are non-dominated
within a given approach may become dominated in a competitive cross-approach comparison.

We begin our analysis by comparing CPO and CPOP®, and we discuss next the results
obtained with CPO"®,

5.2.1 Comparison Between CPO and CPQP®B

The results corresponding to the solving approaches CPO and CPOP® are represented by
circle o and triangle ¥ in Table 3. There is no clear difference between CPO and CPOP® in
terms of solution quality. Both yield a GAP? value that exceed 60% in the majority of runs.
The figures (embedded in the cells of the table) show that, with these two solving approaches,

2 The difference between the objective value of a given solution o and a lower bound LB computed by
the solver, typically expressed as a percentage. GAP (o) = (0bj,.(9)=LB)/op;, (o)
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Table 3 Comparison between the results of all solving approaches (circle e for CPO, triangle ¥
for CPOPE, and star % for CPOWS). Each bigger coloured point represents a non-dominated solution,
whereas each small black point corresponds to a dominated one. The vertical axis represents the
ramp-up duration, and the horizontal axis represents the actual number of cycle time adjustments.

187-2-26 | 900 seconds 187-4-50 | 7,200 seconds
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a greater upper bound for the number of cycle time adjustments (objective 0bj,,,) does not
guarantee to get a better ramp-up value (objective obj,.,,) within the given timeouts, except
for instance 187-4-50.

Note that optimality was proved for both solving approaches on some runs concerning
the instance 187-4-50, using a very small effective tolerance (CPO yielding a slightly greater
number of proved optimal solutions, yet). In most cases, CPO and CPQOPB yields a similar
number of competitive non-dominated solutions. However, an exception is observed for
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the 795-tasks dataset, particularly for the instance 795-2-26, where CPO significantly
outperforms CPOPE. Unfortunately, it is worthwhile to note that some solutions produced
by CPO within the allotted time violate Lemma 6, i.e. there are some periods p for which
cycgicl < cycI‘Jlec
means that CPO would require a post-processing phase in order to satisfy Lemma 6, whereas

. As such solutions would not be acceptable in an industrial setting, it

CcPOPB provides directly acceptable solutions, even with short timeout values.

5.2.2 Results Obtained with CPQWS

We recall that the aim of the solving approach CPO™S is to directly generate a Pareto-front,
as neither CPO nor CPOP® are suited to do so within the specified timeouts except for
instances 187-4-50 and 795-2-26.

The results show that CPO"® (represented by star s in Table 3) is actually capable of
generating such a Pareto-front for most instances. Moreover, the Pareto-front obtained with
CPO™S contains more points than the other solving approaches, which allows a finer analysis

0" allows us to evaluate the gain

of the results. For example, for instance 187-4-50, CP
of each additional cycle time adjustment for m € [1,6], whereas solutions computed with
CPO for m = 4 or m = 6 are dominated. The optimal ramp-up time is also proved only for
this instance, under a very small effective tolerance. CPOM™S also yields a lower average GAP
value compared to the other solving approaches.

That said, CPO™® has some drawbacks. First, warm-starting from the solution of the
previous run might guide the solver into a part of the search space with lower quality solutions.
This is for example the case for instance 795-2-26 where better solutions are found by CPO
and CPOP® for low values of m. Another drawback of CPO™® lies in the requirement for a
sequential execution of all runs, which may lead to very significant extended computational
time, whereas each run in CPO and CPOPB can be executed in parallel. However, we also
observe that most of the descent in the search tree is concentrated in the first few runs,
where solutions improve frequently. This suggests that computational time could probably
be reduced by executing the first few runs with the full time allowance, and decreasing the
timeout for subsequent runs. However, setting a value to these different time-outs might be

strongly linked to the instances and we have not explored that option in this work.

6 Conclusion

In this work, we have a) formally defined the RC-ALBP/L, b) introduced an OPL encoding
while providing some dominance-breaking rules for this problem, and c¢) conducted an
experimentation on industrial aircraft assembly line benchmarks using three different CP-
based solving approaches.

Since RC-ALBP/L involves a trade-off between ramp-up time and the number of line
adjustments, the aim of this work is to generate a Pareto-front, which can be achieved using
our solution approaches within a reasonable time limit. These results can provide valuable
insights for manufacturers in the design and planning of assembly lines — not only in the
aircraft industry, but in production more broadly — especially as minimising ramp-up time is
receiving growing attention from them.

In future research, we could explore other solving methods, such as MaxSAT or meta-
heuristics. We could also investigate scenarios in which the learning effect is transferable
across similar tasks, for example installing the left and right wings of an aircraft. Exploring
the impact of uncertainty in learning efficiency would allow us to handle robustness issues.
Finally, it would be possible to consider that resources are not all available at the beginning
of the ramp-up, but are gradually added, therefore adding another level of decision.
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A

Resource Profile of Example 2

Table 4 Resource profiles of workstations 1 and 2 (WS1 and WS2) of Example 2.
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B A Base Model in OPL for RC-ALBP/L (Full Version)

The decision variables are the following:

For each task t € T, the integer variable wks; € [1, W] indicates the workstation to
which ¢ is allocated.

For each allocated resource r € R and each workstation w € W, the integer variable
raw, ., € [0, capa,] indicates the amount of r allocated to w.

For each task t € T, each period p € P and each workstation w € W, the optional
interval variable itv; ,., € H represents the execution of task ¢ during the period p at
the workstation w. This variable is present only if ¢ is assigned to w.

For each period p € P, the integer variable cyc;®? € H indicates the minimum required
cycle time value of p (or the maximum end times among tasks time during p).

For each period p € P, the integer variable cyc}‘,lec S [[ctgt, Cmaz] indicates the decided
cycle time value of p (or the cycle time applied to the line during p, which is no less than
red). Note that the value of this variable is also the value

P
returned by the assignment function cyc(p) (see Subsection 3.2).

the required cycle time cyc

For each period p € P, the integer variable cost, € H indicates the amount of time
contributed by p to the ramp-up duration minimisation objective. This variable has the

dec ; d .
pec if cycpec > Cyg¢, and 0 otherwise.

For each zone z € Z, each period p € P and each workstation w € W, the state function
zst ., w represents the status of zone z during the periods p at the workstation w.

same value as cyc

Constraints and criteria are encoded as follows:

minimaise
Z cost,, (23)
peEP
Z (cost,_1 # costy) (24)
pePS
such that
Vte T,VpeP,YweW, presenceOf (itvy ;, ,,) = equal(wks;, w) (25)
Vp e P, cyc,*d = te?géwendOf(itVt,p,um 0) (26)
U dec __ req
Vp € P°, cyc,®® = (?61%)5 cycy, (27)
Vp e P9, cycgec > cyc;™ (28)
vp e PY, cost, = cyc;lec (29)
Vp € P7, (cycgec > ¢iq1) = (cost, = cycgec) (30)
Vp € PS5, (cycgec = ¢49t) = (cost, = 0) (31)
V(t,u) € A, wks; < wks, (32)
V(t,u) € A, Vp € P,Yw e W, endBeforeStart(itvy p, v, it Ve, p.w) (33)
Vte T,VpeP,YweW, lengthOf (it vy ., dury(p — w)) = dury(p — w) (34)
Vr € R, Z raw, ., < capa, (35)
weWwW
Vr € R,Vp € P,Yw € W, Z pulse(itvy , o, cons, ) < raw, , (36)

teT
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Vze ZVpeP,YweW, Z pulse(itvy p ., cons, +) < capa, (37)
teT

Ve ZVpePNweWNVteT: ze Dy, alwaysEqual(zst, ;, v, itV p w, 0) (38)

Vze ZNVNpeP,YweW,VteT : cons,, >0, alwaysEqual(zst, , »,itvepw, 1) (39)

The first objective (Equation 23) is to minimize the time required for the assembly line to
reach the target cycle time (or the ramp-up duration). The second objective (Equation 24) is
to minimize the number of adjustments to the cycle time. The addressed problem involves a
trade-off: if we want to reach the target cycle time faster, we need to reduce the cycle time of
the line as soon as possible and as much as possible. The constraints (25) link the presence
of interval variables with the allocation of tasks. Constraints (26) compute the required
cycle time for each period. Constraints (27) ensure that the decided cycle time during the
unstable periods remains fixed and is equal to the maximum required cycle time among them.
Constraints (28) stipulate that the decided cycle time during the stable periods is greater or
equal to the required cycle time. Next, the constraints (29), (30) and (31) calculate, for each
period, the time contributed to the ramp-up stage. The precedence relations are handled
by the constraints (32) and (33). Constraints (34) calculate the duration for each task in
each period. Constraints (35) ensure that the total amount of each resource assigned to all
workstations does not exceed its capacity, and constraints (36) enforce cumulative resource
limitations at the workstation level. Constraints (37) are cumulative constraints on zone
capacity. Finally, the status of the zones during task executions are ensured by constraints
(38) and (39).

C A ILP Model for RC-ALBP/L

C.1 ILP Formulation

As explained in the main paper, in this work, we use a discrete-time, time-indexed variable
ILP encoding for RC-ALBP/L. Other MILP encodings exist in the context of resource-
constrained scheduling, using sequencing or event-based variables [5]. However, in presence
of learning effect, task durations become variables, making those encodings non-linear (they
require multiplying decision variables by task durations).

We first provide a MILP encoding for a relaxed version of the problem. For each task
t € T, each period p € P, each workstation w € W and each time index ¢ € H, we define the
following decision variables:

K 1 if task t is allocated to workstation w
A% St, = .
s 0 otherwise

1 if task ¢ starts at time 4 during period p in workstation w
start; ;, .

0 otherwise

end, . — {1 if task t ends at time 4 during period p in workstation w
o 0 otherwise

raw,. ., € [0, capa,] the amount of resource r allocated to workstation w

cyc,*d € H the minimum required cycle time value of period p

cycgec € [ctgt, Cmaz] the decided cycle time value of period p
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cost, € H the amount of time contributed by period p to the ramp-up duration

1 if the target cycle time is not achieved (or cycgec > Cigt)

target, =
P {0 otherwise

Constraints are encoded as follows:

VteT,VpeP, D) starty ;=1 (40)
weW ieH
VteT,VpeP, Z Z end;,,; =1 (41)
weW ieH
Ve T, > wksp, =1 (42)
wew
Vte T,VpeP,VweW, Z start, p.,; = wks;,,  (43)
ieH
Vi € T,¥p € P,Yw e W, > end; i =wksi,  (44)
=
Vte T,¥peP,YweW, Zz xend; . < cyc,®  (45)
i€H
VpeP, cycgec >cycytd  (46)
vp e PY\ {1}, cych® = cycg®®  (47)
Vp € P9, cyc® > (1 + cyy) x target,  (48)
Vp € PY, cycgec < Cigt + Cmaz X target,  (49)
vp e PY, cost, = cycgec (50)
Vp e P, costy, < cpar X target,, (51)
Vp € PY, cost, > cycgec — Cmaz(1 — target,)  (52)
w w
V(t,u) € A,Yw e W, Zwkst’j > Zwksw- (53)
j=0 J=0
Y(t,u) € A,Vp € P,Yw e W, Z i(endy p i — starty p i) < Cmaz(2 — Wksy ., — WKSy, 1) (54)
=
Vte T, ,VpeP,YweW, Z i(endy pw; — starty p ;) = dury(p — w) X wksy o, (55)
ieH
Vr € R, Z raw, ., < capa, (56)
weW
i
Vr e R,Vp e P,YweW,ieH, Z consr,t(Z(startt,p,w,]— - endt,p,w,]-)> <raw,, (57)
teT j=0
i
Vze Z,VpeP,YweW,icH, Z consz,t(Z(startt,p_,w,j - endt,,hw_,j)) < capa,  (58)
teT j=0

The constraints in this ILP formulation are basically the linear version of those in the

CP-OPL formulation, except for the constraints relating to the neutralized status of zones.

These constraints can be linearised by introducing additional binary variables. However, as
detailed later on, the relaxed model without those variables is already challenging.

Constraints (40) and (41) ensure that each task is fully executed once per period.

Constraints (42) make sure that each task is allocated to only one workstation. Constraints
(43) and (44) link the task allocation variables wks with the start / end variables. The
required cycle time and the decided cycle time for each period are constrained by constraints
(45) and (46), respectively. Constraints (47) ensure that the decided cycle time during the
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unstable periods remains fixed and is equal to the maximum required cycle time among
them. Constraints (48) and (49) link the two variables cyc9e® and target. Next, the time
contributing to the ramp-up stage is constrained by constraints (50) for the unstable periods,
and by constraints (51) and (52) for the stable periods. The precedence relations are handled
by the constraints (53) and (54). Constraints (55) calculate the duration for each task in
each period. Constraints (56) ensure that the total amount of each resource assigned to all
workstations does not exceed its capacity, and constraints (57) enforce cumulative resource
limitations at the workstation level. Finally, constraints (58) are cumulative constraints on
zone capacity.

The criteria remain the same as in the CP-OPL formulation (Equation 23 and 24), which
are to minimise the ramp-up duration and the number of adjustments to the line. The second
criterion is currently non-linear, but can be made linear by adding extra variables. However,
we consider here a relaxed mono-objective version of the problem, which is to minimise only
the ramp-up duration. Note that, although the variable cyc“®® can be withdrawn from this
mono-objective version, we have decided to keep it since it must be present in the complete

dec

problem.

C.2 Experiments Results

The number of variables and constraints of the ILP approach for each instance is presented
in Table 5. The toy instance (Examples 1 and 2) is solved to optimality by this approach
in 1 second, resulting in the same objective value as when using the CP-based approach.
However, for all other instances, the ILP approach fails to build the model even after 2 hours
and causes the test computer to run out of memory due to an explosion in the number of
variables and constraints.

Table 5 Approximate number of variables and constraints for each instance in the ILP model.

Instances ‘ toy 187-2-26 199-2-26 795-2-26 187-4-50 199-4-50 795-4-50

# Variables 2,920 560 x 10° 596 x 10° 2.3 x 10° 1x10° 1.1x10° 4.5x10°
# Constraints | 1,183 80 x 10° 80 x 10° 81 x10° 155 x 10° 155 x10° 156 x 10°
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