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—— Abstract

Mixed Integer Programming (MIP) is a foundational model in operations research. Although
significant progress has been made in enhancing sequential MIP solvers through sophisticated
techniques and heuristics, remarkable developments in computing resources have made parallel
solving a promising direction for performance improvement. In this work, we propose a novel parallel
MIP solving framework that employs dynamic task decomposition in a divide-and-conquer paradigm.
Our framework incorporates a hardness estimate heuristic to identify challenging solving tasks and a
reward decaying mechanism to reinforce the task decomposition decision. We apply our framework
to two state-of-the-art open-source MIP solvers, SCIP and HiGHS, yielding efficient parallel solvers.
Extensive experiments on the full MIPLIB benchmark, using up to 128 cores, demonstrate that our
framework yields substantial performance improvements over modern divide-and-conquer parallel
solvers. Moreover, our parallel solvers have established new best known solutions for 16 open
MIPLIB instances.

2012 ACM Subject Classification Mathematics of computing — Integer programming; Computing
methodologies — Parallel algorithms; Applied computing — Operations research

Keywords and phrases Mixed Integer Programming, Parallel Computing, Complete Search, Task
Decomposition

Digital Object Identifier 10.4230/LIPIcs.CP.2025.26
Supplementary Material Software: https://github.com/shaowei-cai-group/PartiMIP

Funding This work is supported by National Key R&D Program of China (2023YFA1009500).

1 Introduction

Mixed Integer Programming (MIP) is both a foundational model in operations research
and a central combinatorial optimization problem [40, 2]. Its importance stems from its
ability to model a wide range of problems in diverse fields, from practical applications such
as planning [31] and scheduling [13] to theoretical problems in propositional logic [11] and
graph theory [25].
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MIP is formulated to optimize a linear objective function subject to linear constraints,
where decision variables may be either integer or real-valued. Because solving general MIP
instances is NP-hard [20, 19], practical applications require sophisticated algorithms. Since
solver performance often represents a critical bottleneck when addressing large-scale real-
world instances, improving the efficiency of MIP solvers remains a primary focus for algorithm
developers.

During the past decades, significant advances have been made in the algorithmic efficiency
of MIP solvers, with substantial research efforts primarily focused on the refinement of
sequential solving techniques and heuristic enhancements [21, 2, 23]. In today’s computing
landscape, multi-core architectures are ubiquitous, making parallel computing a natural
approach for improving solver performance and a widely researched topic in constraint
programming [24, 34, 15].

Numerous studies on parallel MIP solving can be categorized into two groups as sum-
marized in [41]: those developed basically from scratch [12, 5, 8, 9, 32] and those that
integrate existing MIP solvers [26, 38, 37, 7, 36, 39]. However, only a few approaches in the
latter group achieved competitive results compared to state-of-the-art sequential solvers [39],
highlighting the persistent challenges in parallel MIP solving. A further obstacle in this field
is that the most effective solvers, both parallel and sequential, are closed-source commercial
products, such as Gurobi [17], CPLEX [29], Xpress [3], and COPT [14]. Consequently, it is
difficult for the academic community to analyze the underlying principles of their parallel
approaches, and when these solvers are used as black-box base solvers, the potential for
parallel interaction is inherently limited [33].

Current academic research on parallel MIP solving can be broadly classified into two
approaches: portfolio-based and divide-and-conquer methods. Portfolio solvers concurrently
execute multiple solvers, or different configurations of a single solver, to address identical
or slightly perturbed MIP instances. Representative examples include the race ramp-up
technique employed in FiberSCIP [36, 39], the DC cutting plane algorithm with multiple
random starts [30], and portfolio methods based on local search [22, 10]. However, the
performance of portfolio methods is inherently constrained by the best possible sequential
performance. In contrast, the divide-and-conquer approach has the potential to outperform
the best sequential methods by accelerating the solving process through the parallelization
of key algorithmic components. For example, FiberSCIP [39] parallelizes the processing of
nodes from sequential branch-and-bound solvers, while HIGHS offers a parallel version that
accelerates the solving of internal linear programming and symmetry detection [18]. Similar
work in the area of stochastic MIP includes PIPS-PSBB [28], which combines parallel linear
programming solving with parallel branch-and-bound tree search. Furthermore, portfolio-
based and divide-and-conquer approaches can be seamlessly integrated to develop highly
effective hybrid solvers. Extensive investigations on hybrid solvers have been predominantly
led by the UG framework of the SCIP team and are well documented in [36, 39].

Our research focuses on the divide-and-conquer strategy for parallel MIP solving. Most of
the existing approaches in this category are tightly coupled with their underlying sequential
algorithms. For instance, FiberSCIP relies on sequential solvers to generate nodes to be
distributed and solved in parallel, thereby forcing the base solver to employ branch-and-bound
methods to maintain the branch-and-bound tree. Consequently, the parallel performance of
such systems is heavily influenced by the search strategies (e.g., branching and node selection)
employed by the sequential solver.

In this work, we propose a novel parallel MIP solving framework that supports search
strategies tailored for parallel environments through dynamic problem decomposition. In
our approach, solving a MIP problem is treated as a task organized within a global task
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tree of the parallel system, which is used to schedule these tasks for parallel execution by
the underlying base solvers. The expansion of the task tree is entirely governed by our
newly designed decomposition algorithms, which integrate the dynamic information from the
parallel solving process to enhance decomposition decisions, and are inherently independent
of the underlying base solver. Consequently, our framework is loosely coupled with the
base solvers, which require only standard input/output interfaces and are not restricted to
branch-and-bound methods. This design enables seamless integration with a wide range of
MIP solvers.

To efficiently expand the task tree, we propose a dynamic task decomposition method by
partitioning selected tasks into smaller subtasks. The decision on which task to decompose,
as well as the specific decomposition action used, is critical to the overall solving process. To
optimize this, we propose a hardness estimate heuristic to assess the difficulty of task solving,
thus prioritizing the decomposition of more challenging tasks and allocating additional com-
putational resources accordingly. Furthermore, we develop a reward-guided mechanism that
leverages historical feedback from the task tree construction to reinforce future decomposition
decisions. By incorporating a reward decaying strategy, this mechanism strikes a balance
between exploration and exploitation, ultimately enhancing the performance of the parallel
solving process.

We apply our framework to state-of-the-art open-source MIP solvers, including SCIP [6]
and HiGHS [18], as our base solvers. We conducted experiments on the entire MIPLIB
benchmark across a wide range of core configurations from 8 to 128 cores to evaluate the
performance of the resulting parallel solvers. To the best of our knowledge, the 128-core
configuration reported in our work represents the largest core configuration used to test parallel
solvers on the entire MIPLIB benchmark. Overall, the experimental results demonstrate
that our techniques significantly enhance the performance of sequential MIP solvers, yielding
a substantial improvement in the discovery of high-quality solutions and the number of
solved instances. We compare our framework with the default divide-and-conquer strategies
implemented in SCIP (i.e., FiberSCIP) and HiGHS. The comparison shows that our strategy
consistently outperforms the corresponding default parallel approaches, and the parallel solver
developed using our framework achieves state-of-the-art performance among open-source
parallel solvers. Moreover, our framework establishes 16 new records for MIPLIB open
instances by discovering new best known solutions.

To facilitate reproducibility and further research, we have made our solvers, evaluation
scripts, experimental results, and new best known solutions available on GitHub 2.
2  Preliminaries

2.1 Mixed Integer Programming

» Definition 1 (Mixed Integer Programming). Let A € R™*™ be a matriz, b € R™ a vector,
c,lu € R vectors,  C N ={1,...,n} denote a set of indices, and x = {x1,22,...,2,} be
the set of decision variables. The mized integer programming problem is defined as follows:

2 https://github.com/shaowei-cai-group/PartiMIP
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Ax <b,
) T 1<x<u,
min c¢'x s.t. ) (1)
x l'jGZ Vjel,
x € R™.

In this formulation, ¢ "x denotes the objective function, Ax < b represents the general
linear constraints, 1 < x < u specifies the global bounds of decision variables, and the
integrality constraints require x; € Z for all j € I.

Domain Propagation. Domain propagation is a technique to reformulate a MIP problem
into an equivalent formulation that is potentially easier to solve. By iteratively tightening the
variable domains (i.e., ] < x < u) through iterative analysis of constraints and neighboring
variable domains, this technique reduces the complexity of the MIP model by eliminating
redundancies, such as satisfied constraints or fixed variables. Consequently, domain propaga-
tion often effectively excludes considerable portions of the search space, occasionally enabling
proofs of optimality or infeasibility. In practice, modern solvers efficiently implement domain
propagation in their presolving application programming interfaces (APIs) [6, 17, 29]. The
fundamental principles of domain propagation are detailed in [35].

2.2 Parallel Divide-and-conquer Strategies in MIP Solving

Here, we review divide-and-conquer-based parallel strategies employed in state-of-the-art
solvers. Among today’s open-source solvers, SCIP and HiGHS are prominent, each offering
a parallel version. For SCIP, the parallel version, known as FiberSCIP [36, 39], adopts a
divide-and-conquer strategy to parallelize the processing of nodes in the branch-and-bound
tree. In this method, base solvers alternately solve branch-and-bound nodes and transfer the
unsolved child nodes to a load coordinator. The load coordinator maintains a pool of unsolved
nodes and assigns them to idle solvers as they become available. In FiberSCIP, the generation
of nodes is determined by the internal algorithm of the sequential branch-and-bound solver,
while the parallel component is primarily responsible for the collection and distribution
of nodes from the sequential branch-and-bound tree. In contrast, the parallel version of
HiGHS [18] focuses on the parallelization of specific components within its sequential solver,
including the dual simplex algorithm, symmetry detection, and querying of clique tables 3.
Notably, parallel HHGHS has been the top-ranked open-source solver in the MIP rankings for

several consecutive years 4.

Both these two parallel solvers are tightly coupled with their underlying sequential
frameworks, making it challenging to adapt their methods to solvers lacking these specific
components. In contrast, our goal is to develop a general parallel framework that does
not rely on the base solver’s internal algorithms and requires only a standard input/output
interface.

3 https://ergo-code.github.io/HiGHS/dev/parallel/
4 https://mattmilten.github.io/mittelmann-plots/
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3  Our Parallel Framework for Solving MIP

In

this section, we introduce our parallel MIP solving framework with dynamic task decom-

position, named PartiMIP. We first present the basic concepts of the main components and

how they cooperate together. Afterwards, we dive into the motivation and design of each

component. A detailed description of the dynamic task decomposition method is provided in

Sect. 4.
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Figure 1 PartiMIP: A parallel MIP solving framework with dynamic task decomposition.

1 Basic Concept and Process of Framework

As illustrated in Fig. 1, our framework consists of two roles: the scheduler and the worker.
These roles are executed by distinct threads to leverage multiple cores in parallel:

Scheduler: The scheduler maintains a task tree, in which the nodes represent the solving
tasks for the original problem or subproblems of a given MIP instance. It incorporates
a dynamic task decomposition to expand the tree, a status propagator to deduce task
statuses and an objective separator to reduce search spaces.

Worker: The workers primarily invoke a base MIP solver to solve the tasks. A root
worker is designated solely to solve the original problem, while other general workers are
flexible and can solve any tasks dynamically assigned by the scheduler.

The task tree serves as the central data structure throughout the solving process, where

each task can be in one of three possible statuses:

Running: Tasks that are currently being solved by workers.

26:5
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Closed: Tasks for which the solution result is known (i.e., optimal or infeasible). The
solving of closed tasks is completed, and the entire solving process is completed when the
root task is closed.

Resting: Tasks that are decomposed into subtasks and remain unassigned to workers.
The solution results of resting tasks are inferred from the results of their subtasks.

At a given time, the leaf nodes in the task tree are denoted as leaf tasks, each of which
contains a distinct search space.

Initially, the scheduler designates the given MIP problem as the root task of the task tree
and assigns it to the root worker for solving, enabling quick completion when the instance is
simple, and thereby avoiding the overhead of parallel solving.

Subsequently, the scheduler accelerates the solving process in a divide-and-conquer view,
decomposing the root task into simpler subtasks. During task decomposition, a leaf task
is selected, and the domain of one variable is partitioned into two parts to generate two
new subtasks. The search spaces of these subtasks are further reduced through domain
propagation, and then the new subtasks are inserted as leaf tasks to update the task tree.

Allowing tasks with overlapping search spaces to be solved simultaneously can lead to
the exploration of identical search spaces, which should be avoided as much as possible. In
the task tree, each leaf task contains distinct search spaces. To ensure that each general
worker explores distinct search spaces at the beginning, task decomposition is divided into
two phases:

1. Initial Decomposition Phase: Initially, only the root worker is activated to solve the
root task, while all general workers remain idle. The scheduler iteratively decomposes the
leaf tasks to generate a sufficient number of simpler leaf subtasks to assign to all general
workers, during which the statuses of the decomposed tasks transition to resting. The task
decomposition process is parallelized to enhance resource utilization and accelerate this
phase. Specifically, let A/ denote the available CPU cores. min{/N /2, size(leaf tasks)}
tasks are selected to be decomposed, and the subtasks are generated and simplified in
parallel. Since all selected tasks are leaf tasks, the parallel domain partition and domain
propagation processes are independent and consistent. Once sufficient tasks are generated,
all general workers are activated to solve the leaf tasks, each with distinct search spaces.

2. Dynamic Decomposition Phase: General workers become idle once their assigned
tasks are closed. To utilize these idle workers, the scheduler dynamically decomposes
ongoing tasks into simpler subtasks and assigns them to idle workers. This strategy
ensures that idle workers remain engaged in resolving challenging tasks, thus expediting
the whole solving process.

Once a task is solved successfully, the corresponding worker communicates the solution
result to the scheduler. Additionally, a worker may receive a termination signal from the
scheduler due to task status propagation. In either case, the worker terminates the ongoing
task and releases its computational resources to accommodate upcoming tasks.

The simplicity of interaction with the scheduler allows the worker role to be seamlessly
integrated into most modern MIP solvers via APIs, without requiring modifications to their
internal algorithms. The only requirement for base solvers is the support for a standard
input/output interface (e.g., reading problem files and logging solution results), which allows
the use of any algorithm, not just those based on branch-and-bound methods. This design
offers substantial flexibility in selecting and configuring base solvers, enabling a diverse range
of potential solving approaches.
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3.2 Task Status Propagation

In the task tree, subtasks are generated by partitioning the domain of a variable in their
parent task. Consequently, the union of the search spaces of the subtasks is equivalent to the
search space of their parent task. Based on this, the status propagator is designed to exploit
the relationship between parent and child tasks to deduce the solution results of related tasks,
with the aim of accelerating the solving process. The status propagator monitors signals that
signify the solution result of each task, which originate from two sources:
1. During task decomposition, the domain propagation process may directly prove new
subtasks to optimality or infeasibility.
2. Workers return the solution results of running tasks.
Once a task is solved, the status propagator tries to deduce the statuses of related tasks
through the task tree. The propagation of task status can take place in two directions:
upward and downward.
Upward Propagation: This happens when all child tasks are closed. If all child tasks
are determined to be infeasible, the parent task is closed as infeasible, and the propagation
proceeds upward. If any child task is optimal, the parent task is closed as optimal, and
the propagation continues upward.
Downward Propagation: Once the parent task is proven to be optimal or infeasible, all
child tasks are closed as optimal or infeasible, and the propagation continues downward.

Furthermore, propagation information reflects the quality of the relationship between

parent and subtasks, which is used to improve future task decomposition decisions (Sect. 4.2).

3.3 Objective Conflict Constraint

The differences in search spaces between tasks arise from partitioning variable domains and
simplifying through domain propagation. As a result, the original solution for the root task
can be reconstructed from any given task solution by reintroducing the eliminated variable
assignments. Additionally, the value of the objective function remains unchanged when
reconstructing the original root task solution.

Therefore, with respect to the globally updated best-found objective value O*, finding
solutions worse than O* for new tasks is meaningless. To eliminate redundant search space
that cannot contain a better solution than O* for new tasks, we design the objective separator
to generate the objective conflict constraint. Specifically, the objective separator dynamically
collects the globally updated best-found objective value O* in real time. Relying on O*, for
a task T, the objective separator constructs the latest objective conflict constraint:

Objective Conflict Constraint: crx1 < O* — offsetr (2)

where crx7 represents the product of the variables and their corresponding coefficients in
the objective function of 7, and offsets is the constant term in the objective function of T,
which is derived from variable elimination during the domain propagation process.

The objective conflict constraint is in the standard form of a MIP constraint. Incorporating
the objective conflict constraint effectively forces the new task to search exclusively for better
feasible solutions, significantly reducing the search space. The objective conflict constraint
can bring advantages to both the regular solving process and the task decomposition:

Worker’s regular solving: Before solving a newly assigned task, the worker retrieves the

latest objective conflict constraint, which is then incorporated into the MIP model to

reduce the search space. After task solving begins, the worker synchronizes its best-found
objective value in real time with the scheduler, feeding it back to improve the objective
conflict constraint.

26:7
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Task decomposition: The latest objective conflict constraint is added to the new tasks
generated during task decomposition, further enhancing the domain propagation process
for greater simplification. Additionally, task decomposition may provide a new best-found
objective value once the new task is reduced to optimality via domain propagation.

Providing the best-found objective value as early as possible to the objective separator
facilitates the creation of the objective conflict constraint to aid the task decomposition.
Therefore, an additional benefit of starting the root worker before the initial decomposition
phase is that its regular solving can yield the best-found objective value early in the process.

Additionally, since constructing an objective conflict constraint requires a feasible solution,
the application of the objective conflict constraint does not affect the solution result of the
original problem, including its feasibility or optimality.

4 Dynamic Task Decomposition

In this section, we propose a dynamic task decomposition method, the key process to maintain
the entire task tree. This process decomposes challenging tasks into simpler new tasks for
parallel solving. First, we design the hard task selector, which selects complex tasks from
the candidate tasks to be decomposed. Second, we propose the reward-guided partitioner
to partition the selected task based on the feedback from historical decomposition actions.
These two components both combine static task information with dynamic solving data
to enhance decision making. Finally, in Sect. 4.3, we present the complete decomposition
algorithm.

4.1 Hard Task Selector

When maintaining the task tree, the elementary operation involves decomposing a complex
task into smaller subtasks. The first step in this process is to select a task for decomposition.
The strategy used for this selection can influence the structure of the tree by guiding its
expansion, such as in a breadth-first search (BFS) or depth-first search (DFS) manner.
However, simple strategies like BFS or DFS do not consider the characteristics of the MIP
instance in parallel solving, ignoring factors such as load balancing and convergence during
the solving process.

Preliminary experiments indicate that distributing relatively easy tasks to workers can
incur significant overhead on the scheduler. First, frequent communication between the
scheduler and workers is required. Second, continuous decomposition is necessary to generate
new tasks for workers that often remain idle. To mitigate this issue, we propose the hard
task selector, which prioritizes more challenging tasks for decomposition, aiming to allocate
more resources to the complex parts of the task tree.

However, assessing the difficulty of solving a MIP task is NP-hard. To address this, we
define a hardness estimate function to heuristically estimate the difficulty of a task. The
sparsity of a MIP matrix (A in Ax < b) is correlated with the difficulty of solving the
problem [4]. When the constraint matrix is dense, the solving of large models often becomes
computationally intractable, as noted in the HIGHS documentation ®. Therefore, during the
initial decomposition phase, the difficulty of a task is assessed by its non-zero count, defined
as follows:

» Definition 2 (nnz). The nnz of a task is the number of non-zero elements in the constraint
matriz of the task.

5 https://ergo-code.github.io/HiGHS/dev/terminology/#The-constraint-matrix
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As the process transitions into the dynamic decomposition phase, tasks are selected among
those currently running, and additional runtime information becomes available. At any given
moment, tasks that have been running longer are more likely to encounter computational
difficulties due to increased elapsed time. Therefore, we define the duration of a task as
follows:

» Definition 3 (duration). Given a specified time point, the duration of a task is the elapsed
runtime since the task was assigned to a worker for execution.

Consequently, the hard task selector incorporates both the non-zero count and the duration.

Specifically, for a task 7, the hardness estimate function Hardness(7T) is defined as:

nnz of T, initial decomposition phase,
Hardness(T) = (3)
nnz of T x duration of T, dynamic decomposition phase.

4.2 Reward-Guided Partitioner

Given a task selected by the hard task selector, we design a reward-guided partitioner to
choose a specific variable for decomposition. The domain of the selected variable is partitioned
and subsequently the domain propagation is applied to simplify the resulting subtasks. The
partitioner incorporates a reward-guided mechanism for variable selection and employs a
reward decaying strategy to balance exploration and exploitation.

Rewarding Variables. The goal of task decomposition is that the resulting subtasks are more
easily solvable than the parent task. If a parent task is closed due to upward propagation
triggered by the closure of all its child tasks, this indicates that the selected variable for
decomposing the parent task is a favorable choice. This is because the time required to
close all subtasks is shorter than the time required to solve the parent task directly. To
encourage this desirable outcome, we design a variable reward mechanism to reinforce future
task decomposition decisions.

Initially, each variable is associated with a global reward value, denoted Reward(z),
which is initialized to 0. Once the status propagator receives a solution result of a task, it
performs task status propagation to update the task tree. Subsequently, the results of this
task status propagation are then used to reward the corresponding variables. For simplicity,
we denote the variable selected in the decomposition of a parent task 7 as zy. Specifically,
for each closed task in a task status propagation, the rewards of corresponding selected
variables are updated as follows:

Reward(xr) + 1, if T is closed by upward propagation
Reward(x1), otherwise

Reward(zr) := { (4)
These updates ensure that a higher reward for a variable indicates that it has been selected

more frequently in parent tasks that are closed via upward propagation.

Reward-Guided Multi-level Selection. For task decomposition, we prioritize selecting
the variable with the highest reward, which is dynamically updated as the solving process
progresses. However, when multiple variables share the same highest reward, particularly
before any upward propagation occurs, tiebreaking is necessary. In such cases, static
information about variables is incorporated to guide the task decomposition process.

First, we consider the number of constraints in which each variable appears. The more
constraints a variable appears in, the greater the potential to simplify additional constraints
through domain propagation resulting from the partitioning of the variable’s domain.

26:9
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Additionally, based on our preliminary experiments, we observe that partitioning variables
with very small domains (e.g., less than 0.1) or excessively large domains (e.g., containing
infinity) is often ineffective. Therefore, variables with reasonable domain lengths are priorit-
ized.

Algorithm 1 Reward-Guided Multi-level Selection Heuristic.

Input: 7: A task to be decomposed
Output: z7: A variable to decompose the task T
candidate variables <
normal_variables < {variables with normal domain lengths | all variables in 7 };
if normal_variables # () then
L candidate_variables < normal_variables;

B W N =

else candidate_variables < {all variables in T };
best variables <— argmax yecandidate variables{ Reward(v)};
T 4= ArgMAax yepest variablesithe number of constraints where v appears in T };

N o o

return z7;

Based on these considerations, we design a reward-guided multi-level heuristic to select the
most promising variable for decomposing a task, as detailed in Algorithm 1.

Reward Decaying. In the reward-guided multi-level selection algorithm, reward is the
primary criterion for variable selection. Since subtasks only contain a subset of the original
problem’s variables, the higher a variable’s reward, the greater its chance of becoming
the variable with the highest local reward for a specific task. Therefore, as the dynamic
decomposition phase progresses, the likelihood that a variable is selected increases with
its reward. Being selected, in turn, is a prerequisite for the increase of reward, creating
a positive feedback loop within the algorithm. However, such a mechanism can lead to
premature convergence in the selection process. To enhance selection diversity and strike a
balance between exploration and exploitation, we propose a reward decaying strategy. When
a variable is selected, its reward decays, thereby increasing the likelihood that other variables
will be selected in subsequent iterations. In this sense, the reward of a variable becomes a
global quota, and each time it is selected, a portion of its reward is consumed.

Specifically, for a task 7 to be decomposed, the reward of the selected variable z is
decayed as follows:

Reward(z7) — 1, if Reward(zy) > 0

d =
Reward(z7) { Reward (z7), otherwise

4.3 Task Decomposition Algorithm

Here, based on the proposed ideas, we present the dynamic task decomposition in Algorithm 2.
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Algorithm 2 Task Decomposition Algorithm.

candidate_tasks < {the unclosed leaf tasks | leaf tasks from the task tree};

T 4 argmax reccandidate_tasksihardness estimate function Hardness(7) by Eq. 3};
Update the latest objective conflict constraint of 7 to reduce search space by Eq. 2;
V < a decomposition variable to be partitioned in 7 by Algorithm 1;

Perform reward decaying on V by Eq. 5;

{lb, ub} + the lower bound and upper bound of V within T ;

{Tiett; Trignt } — partition the domain of V on 7T into [Ib, W} and [MT'“’, ubl;
{ﬁeft, ﬁight} + perform domain propagation on {7Ties, Trignt } to simplify tasks;
Add {’f]cft, ’tight} into the task tree as new leaf tasks;

© w0 N O A W N

First, the task and the variable for task decomposition are selected using the hardness

estimate function and the reward-guided multi-level selection heuristic, respectively (lines 1-4).

Next, the reward decaying is applied to the selected variable (line 5). Two subtasks are
generated by partitioning the domain of the selected variable at the midpoint (lines 6-7),
followed by domain propagation to simplify the new tasks (line 8). Finally, the newly
generated tasks are added to the task tree (line 9). Note that the latest objective conflict
constraint is integrated into the task decomposition to facilitate domain propagation, thereby
simplifying additional search spaces (line 3).

5 Experimental Evaluations

This section systematically evaluates the PartiMIP framework through four complementary
dimensions: (1) advantages over state-of-the-art parallel strategies, (2) breakthroughs in
challenging open instances, (3) performance gains over sequential solvers, and (4) ablation
studies on the effectiveness of the reward-guided multi-level selection heuristic. Collectively,
the experimental results demonstrate our framework’s ability to leverage parallel computation
to improve both solution quality and solving efficiency for general MIP instances.

5.1 Experiment Preliminaries

This subsection introduces the setup of the experiment, including the implementation,
benchmarks, base solvers, running environment, and evaluation metrics.

Implementation. Both the scheduler and the workers in our framework are implemented
in C4++ and compiled using g++ 9.4.0 with the -O3 optimization flag. Parallelization is
achieved using the pthread libraries. During task decomposition, domain propagation is
executed by invoking the presolving APIs provided by the HIGHS libraries [18] ©.

Benchmarks. Our experiments are conducted on the entire MIPLIB benchmark, MI-
PLIB2017 [16], which comprises 240 general MIP instances collected from a wide range of
real-world applications 7, which also serves as the criterion for Hans Mittelmann’s bench-
mark 8, which is a widely recognized worldwide MIP solver ranking [27].

5 https://ergo-code.github.io/HiGHS/dev/guide/further/#guide-presolve
" https://miplib.zib.de/downloads/benchmark.zip
8 https://mattmilten.github.io/mittelmann-plots/
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Base Solvers. For our research, we selected two state-of-the-art open-source MIP solvers as
base solvers in the workers: SCIP (v9.2.0) [1, 6] and HiGHS (v1.9.0) [18]. SCIP is one of
the most widely used MIP solvers in both academia and industry; it has been in continuous
development for over 20 years and plays a crucial role in solving various optimization problems.
Similarly, HIGHS has consistently demonstrated superior performance among open-source
solvers in MIP solver rankings over several consecutive years. For comparison, we also
evaluated the parallel versions of these solvers.

Experiment Setup. All experiments were carried out on a server equipped with 2 AMD
EPYC 9654 CPUs and 2048 GB of RAM, running Ubuntu 20.04.4. We report the following
metrics for each solver on the MIPLIB benchmark:
SOLVED: The total number of instances that the solver successfully solved, either by
proving optimality or infeasibility.
SOLVED Improvement (S-Imp.): The percentage increase in the total number of
solved instances relative to sequential solvers or comparative parallel solvers, reflecting
the overall enhancement in problem resolution capability.
PAR-2: The penalized runtime score commonly used in SAT competitions ®. The
runtime for an unsolved instance is penalized by twice the time limit, yielding a single
measure that reflects both the runtime efficiency and the number of instances solved.
PAR-2 Improvement (P-Imp.): The percentage reduction in the PAR-2 score relative
to sequential solvers or comparative parallel solvers, indicating the overall efficiency gain.
FEAS: The number of instances for which the solver finds at least one feasible solution,
thereby assessing its ability to identify feasibility.
FEAS Improvement (F-Imp.): The percentage increase in the number of instances
with at least one feasible solution compared to sequential solving or comparative parallel
solvers, reflecting improvements in feasibility detection.
WIN: The number of instances in which the solver achieved the best feasible solution
among compared solvers, measuring the effectiveness in obtaining high-quality solutions.
WIN Improvement (W-Imp.): The percentage increase in the number of instances
in which the solver found the best feasible solution relative to sequential solving or
comparative parallel solvers, highlighting improvements in solution quality.

We compare our framework with sequential solving and with parallel divide-and-conquer
strategies employed in state-of-the-art MIP solvers. The parallel solvers are evaluated on core
configurations of 8, 16, 32, 64, and 128 cores; to our knowledge, the 128-core configuration
reported herein is the largest used to test parallel solvers on the full MIPLIB benchmark. In
our experiments, each instance is solved to a relative gap of 0, consistent with the setting in
the Hans Mittelmann’s benchmark. Each solver is executed with a 300-second time limit per
instance, and the total CPU time consumed by the competitive experiments exceeded 2.3
CPU years. To accelerate experimentation, we run one or more instances concurrently to
fully utilize 128 cores; for example, we may run 16 instances on 8 threads each, 4 instances
on 32 threads each, or a single instance on 128 threads.

Finally, our solver, evaluation scripts, related experimental results, and new best known
solutions have been made available on GitHub '°. Researchers interested in our work are
encouraged to access our solver and explore the experimental details further.

9 https://satcompetition.github.io/
Onttps://github.com/shaowei-cai-group/PartiMIP
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5.2 Comparison to Parallel Divide-and-conquer Strategies

Table 1 Comparison to the parallel divide-and-conquer strategies in state-of-the-art open-source
solvers, where “FiberSCIP_ X” refers to the parallel version of SCIP implemented in FiberSCIP with
X cores. “Parallel-HiGHS X" stands for the parallel version of HIGHS with X cores. “PartiMIP-[base
solver]_X” is the notation for employing base solver within our framework with X cores.

Solver WIN  W-Imp. FEAS F-Imp. SOLVED S-TImp. PAR-2 P-Imp.
FiberSCIP_8 129 0.0% 198 0.0% 79 0.0% 102421.1 0.0%
PartiMIP-SCIP_ 8 159 23.3% 208 5.1% 81 2.5% 100615.9 1.8%
FiberSCIP__16 126 0.0% 200 0.0% 83 0.0% 100803.4 0.0%
PartiMIP-SCIP__16 163  29.4% 210 5.0% 86 3.6% 97747.0 3.0%
FiberSCIP_ 32 125 0.0% 202 0.0% 87 0.0% 98630.5 0.0%
PartiMIP-SCIP__32 168 34.4% 214 5.9% 88 1.1% 96887.0 1.8%
FiberSCIP_ 64 128 0.0% 202 0.0% 93 0.0% 95876.1 0.0%
PartiMIP-SCIP_ 64 167 30.5% 212 5.0% 94 1.1% 94113.6 1.8%
FiberSCIP_ 128 120 0.0% 201 0.0% 92 0.0% 96415.2 0.0%
PartiMIP-SCIP_ 128 168 40.0% 214 6.5% 98 6.5% 92223.4 4.3%
Parallel-HiGHS__8 110 0.0% 192 0.0% 79 0.0% 101955.1 0.0%
PartiMIP-HiGHS_ 8 179  62.7% 200 4.2% 89 12.7%  96903.0 5.0%
Parallel-HiGHS 16 107 0.0% 192 0.0% 79 0.0% 101945.6 0.0%
PartiMIP-HiGHS 16 184 72.0% 206 7.3% 89 12.7% 96480.1 5.4%
Parallel-HiGHS__32 111 0.0% 192 0.0% 79 0.0% 101956.3 0.0%
PartiMIP-HiGHS 32 186 67.6% 209 8.9% 96 21.5% 93368.3 8.4%
Parallel-HiGHS_ 64 101 0.0% 192 0.0% 78 0.0% 102273.5 0.0%
PartiMIP-HiGHS_ 64 190 88.1% 209 8.9% 97 24.4%  92603.9 9.5%
Parallel-HIGHS 128 101 0.0% 192 0.0% 78 0.0% 102322.3 0.0%

PartiMIP-HiGHS 128 190 88.1% 209 8.9% 100 28.2% 90516.2 11.5%

We compare our PartiMIP framework with the default parallel divide-and-conquer
strategies in state-of-the-art open-source solvers.

FiberSCIP [39]: A famous parallel version of SCIP employing a normal ramp-up phase
process, developed by the SCIP team. We use its latest version 1.0.0, which is based on
SCIP 9.2.0 as its internal base solver.

Parallel HIGHS (v1.9.0) [18]: The parallel version of HiGHS, featuring parallel dual sim-
plex, symmetry detection, and clique table querying ''. According to Hans-Mittermann’s
benchmark, the 8-core HiGHS is the top-ranked open-source solver in the MIP rankings.

Table 1 reports the performance metrics on the MIPLIB benchmark for various config-
urations. Our experimental results clearly demonstrate the advantages of the PartiMIP
framework over conventional parallel strategies. For example, with an 8-core configuration,
PartiMIP-SCIP achieves a 23.3% improvement in the WIN metric, a 5.1% increase in the
FEAS metric, a 2.5% increase in the SOLVED metric, and a 1.8% reduction in the PAR-2
score compared to FiberSCIP. These performance gains not only persist but also improve
with higher core counts; At 128 cores, PartiMIP-SCIP shows a 40.0% improvement in WIN
and a 6.5% enhancement in SOLVED relative to FiberSCIP.

Similarly, PartiMIP-HiGHS consistently outperforms the parallel version of HIGHS across
all configurations. With 8 cores, PartiMIP-HiGHS records a 62.7% improvement in WIN
and a 12.7% in SOLVED. At 128 cores, it attains a 88.1% improvement in WIN and an
28.2% improvement in SOLVED compared to its default counterpart.

"yttps://ergo-code.github.io/HiGHS/dev/parallel/
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Notably, the superior performance of PartiMIP is not confined to a single solver or
configuration. Our framework consistently enhances all metrics, including the total number
of solved instances (SOLVED), the quality of feasible solutions (WIN and FEAS), and overall
runtime efficiency (PAR-2), across both SCIP and HiGHS. These findings robustly validate
our dynamic task decomposition and scheduling strategies, demonstrating that PartiMIP
not only improves the efficiency of parallel MIP solving but also facilitates a robust, scalable
integration with a wide range of MIP solvers.

5.3 New Best Known Solutions to Open Instances

Table 2 PartiMIP establishes new best known solutions for 16 open instances.

Instance name #Variable #Constraint Previous Best PartiMIP
dirl 9142907 1735470 2708148.95990256 2708064.1369803
neos-5151569-mologa 108116 45671 686759699  686750731.344582
bmocbd3 403771 152791 -372986719.737107  -373286017.205902
gmut-76-40 24338 2586 -14169441.78  -14169460.9675000
evalaprime6x6opt 3514 34872  -16.31528287738903 -18.100995280293
dws012-02 51108 26382  122074.2013795086 121112.055928511
neos-4232544-orira 87060 180600  5557371.400000357 5553207.1245239
neos-4292145-piako 32950 75834  29160.50026450142  28122.4999807616
polygonpack5-15 48163 163429  -55494653.8357854  -55494686.5559904
scth 37265 13304 -228.1172303718  -228.119492755556
cmflsp40-36-2-10 28152 4266  66452235.08297937 66452234.49456009
adult-regularized 32674 32709  7022.953543477999  7022.953543474559
supportcase23 24275 40502  -12160.6593559088  -12160.6593571676
neos-5045105-creuse 3848 252 20.57142909929996  20.5714105876044
gsvm2rl9 801 600 7438.181167768 7438.181021170049
s82 1690631 87878  -33.78523764658873  -33.7970576238223

In the MIPLIB dataset, open instances are those for which the optimal solution remains
unproven. The current best known solutions for these instances are published on the MIPLIB
website, and these open instances pose significant research challenges that drive progress in
the field of MIP solving. Notably, PartiMIP has established new best known solutions for 16
open instances, and these solutions have been submitted and accepted by MIPLIB.

As shown in Table 2, these 16 instances vary widely in the number of variables and
constraints, reflecting a wide range of problem structures. This diversity demonstrates the
extensive applicability and robust solveability of our framework.

Overall, these experimental results validate the potential of large-scale parallel solving
to overcome difficult MIP instances. By dynamically decomposing tasks and using parallel
computation, PartiMIP achieves significant gains in both solution quality and efficiency,
providing compelling evidence of its superior performance and extensive applicability on
challenging optimization problems.

5.4 Comparison to Sequential Solving

Here, we evaluate the effectiveness of our dynamic task decomposition framework in enhancing
and accelerating the solving capabilities of sequential solvers on the MIPLIB benchmark.
Table 3 compares sequential solvers with their PartiMIP-enhanced counterparts across various
core configurations, clearly demonstrating that our parallel framework consistently improves
performance for both SCIP and HiGHS.
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Table 3 Comparison to sequential solving in MIPLIB benchmarks. “[base solver] Sequential”
denotes sequential solving of the corresponding base solver, and solvers using our framework are
labeled “PartiMIP-[base solver]” with the number of cores indicated.

Solver WIN  W-Imp. FEAS F-Imp. SOLVED S-Imp. PAR-2 P-Imp.
SCIP__Sequential 85 0.0% 198 0.0% 73 0.0% 105616.9  0.0%
PartiMIP-SCIP_8 110 29.4% 208 5.1% 81 11.0% 100615.9  4.7%
PartiMIP-SCIP__16 128 50.6% 210 6.1% 86 17.8%  97747.0 7.5%
PartiMIP-SCIP_ 32 136 60.0% 214 8.1% 88 20.5%  96887.0 8.3%
PartiMIP-SCIP_ 64 142 67.1% 212 71% 94 28.8% 94113.6 10.9%
PartiMIP-SCIP_ 128 149 75.3% 214 8.1% 98 34.2% 922234 12.7%
HiGHS__Sequential 91 0.0% 191 0.0% 76 0.0% 103461.3  0.0%
PartiMIP-HiGHS_ 8 108 18.7% 200 4.7% 89 17.1%  96903.0 6.3%
PartiMIP-HiGHS_ 16 118 29.7% 206 7.9% 89 17.1%  96480.2 6.7%
PartiMIP-HiGHS__ 32 120 31.9% 209 9.4% 96 26.3%  93368.3 9.8%
PartiMIP-HiGHS_ 64 138 51.6% 209 9.4% 97 27.6%  92603.9  10.5%
PartiMIP-HiGHS__ 128 148 62.6% 209 9.4% 100 31.6%  90516.2  12.5%

PartiMIP markedly improves solution quality, as evidenced by substantial improvements
in the WIN metric for both solvers'?. It also improves feasibility detection, demonstrating
that our parallelized decomposition strategy facilitates the rapid identification of feasible
solutions. Moreover, compared to their sequential counterparts, both PartiMIP-SCIP and
PartiMIP-HiGHS achieve a notable increase in the total number of solved instances, accom-
panied by a consistent reduction in the PAR-2 score, indicating that PartiMIP accelerates
the overall solving process.

Across all configurations, from 8 to 128 cores, PartiMIP consistently enhances all perform-
ance metrics, demonstrating its robust scalability in leveraging parallel computing resources.
The consistent improvements observed across different base solvers and core configurations
further validate the robustness and broad applicability of our approach.

5.5 Ablation Study

To evaluate the effectiveness of our proposed reward-guided multi-level selection heuristic
(Algorithm 1), we conducted comparative experiments with a modified variant. Specifically,
we modify PartiMIP by implementing random variable selection for partition tasks, yielding
a modified version designated PartiMIP-R.

As shown in Table 4, PartiMIP consistently outperforms PartiMIP-R in almost all
evaluation metrics. These results confirm that the reward-guided selection is effective and
essential for improving variable selection during task decomposition.

6 Conclusions

In this work, we propose a novel parallel MIP solving framework with dynamic task decom-
position. Our approach is built on two key ideas: a hardness estimate heuristic that identifies
challenging subproblems and a reward decaying mechanism that reinforces decomposition de-
cisions. Using our framework, we developed parallel solvers based on two leading open-source

12The WIN values here are computed by comparing solvers with the same base solver; thus WIN values
are lower than those in Table 1, where only solvers with identical core counts are compared.
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Table 4 Comparison between PartiMIP and its modified version PartiMIP-R.

Solver WIN W-Imp. FEAS F-Imp. SOLVED S-Imp. PAR-2 P-Tmp.
PartiMIP-R-SCIP_8 158 0.0% 203 0.0% 78 0.0% 1025345  0.0%
PartiMIP-SCIP_ 8 170 7.6% 208 2.5% 81 3.8% 100615.9 1.9%
PartiMIP-R-SCIP_16 154 0.0% 208 0.0% 82 00% 1011231  0.0%
PartiMIP-SCIP_16 178  15.6% 210  1.0% 86 4.9% 977470  3.3%
PartiMIP-R-SCIP_ 32 169 0.0% 212 0.0% 79 00% 1019745  0.0%
PartiMIP-SCIP_ 32 176 4.1% 214 0.9% 88 11.4% 96887.0  5.0%
PartiMIP-R-SCIP_ 64 166 0.0% 213 0.0% 81 00%  101101.9  0.0%
PartiMIP-SCTP_ 64 181  9.0% 212 -0.5% 94 16.0% 94113.6  6.9%
PartiMIP-R-SCIP_ 128 162 0.0% 215 0.0% 86 0.0%  98563.1 0.0%
PartiMIP-SCIP_ 128 181 11.7% 214 -05% 98 14.0% 922234  6.4%
PartiMIP-R-HiGHS_8 154 0.0% 199 0.0% 86 0.0%  98939.8  0.0%
PartiMIP-HiGHS_8 164  6.5% 200  0.5% 89 3.5%  96903.0  2.1%
PartiMIP-R-HiGHS_16 148 0.0% 204 0.0% 83 00%  99885.4  0.0%
PartiMIP-HiGHS_ 16 180  21.6% 206  1.0% 89 7.2%  96480.1  3.4%
PartiMIP-R-HiGHS_32 162 0.0% 205 0.0% 86 0.0%  98660.3  0.0%
PartiMIP-HiGHS_ 32 177 9.3% 209  2.0% 96 11.6%  93368.2  5.4%
PartiMIP-R-HiGHS_64 155 0.0% 208 0.0% 87 0.0% 980035  0.0%
PartiMIP-HiGHS_ 64 178  14.8% 209  0.5% 97 11.5% 92603.9  5.5%
PartiMIP-R-HiGHS 128 151 0.0% 206 0.0% 89 00% 971664  0.0%
PartiMIP-HiGHS_ 128 174 15.2% 209  1.5% 100 12.4% 90516.2  6.8%

MIP solvers. Extensive experiments demonstrate that our parallel strategy outperforms the
divide-and-conquer approaches employed by existing state-of-the-art MIP solvers. Moreover,
our parallel solvers have established new best known solutions for 16 open MIPLIB instances.

For future work, our goal is to generalize our framework to address a broader range of
constraint programming problems.
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