Understanding the Impact of Value Selection
Heuristics in Scheduling Problems

Tim Luchterhand &
LAAS-CNRS, Toulouse, France
Université de Toulouse, France

Emmanuel Hebrard =&
LAAS-CNRS, Toulouse, France

Sylvie Thiébaux &

LAAS-CNRS, Toulouse, France

Université de Toulouse, France

Australian National University, Canberra, Australia

—— Abstract

It has been observed that value selection heuristics have less impact than other heuristic choices
when solving hard combinatorial optimization (CO) problems. It is often thought that this is

because more time is spent on unsatisfiable sub-problems where the value ordering is irrelevant. In
this paper we investigate this belief in the scheduling domain and come up with a more detailed
explanation. We find that, even though there are less relevant choices to be made on hard instances,
each mistake tends to have a bigger impact, to a point where the potential gain from a value heuristic
predominates. Moreover, we observe two interesting and relatively surprising phenomena when
solving scheduling problems. First, the accuracy of a given value selection heuristic decreases with
the optimality gap. Second, the computational penalty of a mistake increases with the accuracy of
the heuristic. For the first observation, we argue that on hard problems, constraint propagation
removes a large portion of choices that align with the intuition behind the heuristic. This means
that the heuristic faces mostly difficult choices. For the second observation, we argue that simple
heuristics tend to make more mistakes on intuitive choice points, and the computational cost for
refuting these mistakes is smaller than for those made by a more accurate heuristic.

2012 ACM Subject Classification Computing methodologies — Planning and scheduling; Computing
methodologies — Discrete space search; Computing methodologies — Heuristic function construction;
Computing methodologies — Neural networks

Keywords and phrases Scheduling, Branching Heuristics, Constraint Programming
Digital Object Identifier 10.4230/LIPIcs.CP.2025.27

Supplementary Material Software (Source Code): https://gitlab.laas.fr/roc/emmanuel-
hebrard/tempo, archived at swh:1:dir:bbab6415fb8f44fef04878de35e7b50e797596bd

Funding This work was supported by the Artificial and Natural Intelligence Toulouse Institute
(ANITI) under the grant agreement ANR-23-IACL-0002, and received funding from the European
Union’s Horizon Europe Research and Innovation program under the grant agreement TUPLES No
101070149.

1 Introduction

Solvers for combinatorial optimization (CO) problems often strongly rely on branching
heuristics that help explore an exponentially large search space efficiently. Usually, these
can be categorized into two subgroups: wariable selection and value selection heuristics. The
former type selects the next choice point on which a branching decision should be made.
The latter type then selects the actual value the variable will take. It is well known that
the variable ordering can have a significant impact on the overall performance of the solver.

© Tim Luchterhand, Emmanuel Hebrard, and Sylvie Thiébaux;

37 licensed under Creative Commons License CC-BY 4.0
31st International Conference on Principles and Practice of Constraint Programming (CP 2025).
Editor: Maria Garcia de la Banda; Article No. 27; pp. 27:1-27:23

\\v Leibniz International Proceedings in Informatics
LIPICS Schloss Dagstuhl — Leibniz-Zentrum fiir Informatik, Dagstuhl Publishing, Germany

mailto:tim.luchterhand@laas.fr
https://orcid.org/0009-0000-9293-7041
mailto:hebrard@laas.fr
https://orcid.org/0000-0003-3131-0709
mailto:sylvie.thiebaux@laas.fr
https://orcid.org/0000-0002-7434-3976
https://doi.org/10.4230/LIPIcs.CP.2025.27
https://gitlab.laas.fr/roc/emmanuel-hebrard/tempo
https://gitlab.laas.fr/roc/emmanuel-hebrard/tempo
https://archive.softwareheritage.org/swh:1:dir:bbab6415fb8f44fef04878de35e7b50e797596bd;origin=https://gitlab.laas.fr/roc/emmanuel-hebrard/tempo;visit=swh:1:snp:f3fa3dfd7696c9fdb4decc67161bf8e7892b9864;anchor=swh:1:rev:e8a41276e0563e397ffeed83c051390feec458d4
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics
https://www.dagstuhl.de

27:2

Value Selection Heuristics for Scheduling Problems

This is a reason why over the last decades this research area has enjoyed great popularity,
and many effective variable selection heuristics like Variable State Independent Decaying
Sum (VSIDS) [31], weighted degree [6] or Learning Rate Branching (LRB) [27] have been
proposed. More recently, there have even been advances using machine learning (ML) and
deep learning techniques [16, 22, 24].

While there exists work on value selection heuristics, the field did not receive as much
attention as variable ordering [5]. The consensus arising from early works (e.g. [17, 18]) is to
choose values that lead to the least constrained branches as opposed to variable selection,
where usually the most constrained variable should be visited first. So independently of
the problem at hand, designing a good value selection heuristic revolves around estimating
the future constraining effect of a particular choice of value. The crucial part with these
look-ahead value selection strategies is to find a trade-off between accuracy and computational
cost. Later works leverage ideas from variable selection like VSIDS and record statistics
about values during search. These include activity and impact based heuristics [30, 34] as
well as the survivors-first approach of [42]. While the aforementioned heuristics perform
better than a random value selection, the impact of other heuristic choices like variable
ordering heuristics, nevertheless, dominates the overall performance of the solver. Still, in
theory, a perfect value selection would render tree search completely obsolete [15]. One could
therefore legitimately expect the potential gain from clever value selection heuristics to be
significant. Additionally, in optimization problems, reaching solutions with better objective
values faster strengthens constraint propagation based on the dual bound. This in turn can
notably reduce the size of the overall search space. Yet, as opposed to variable selection,
hardly any generic value selection heuristic has ever been adopted. Even domain-specific
value selection strategies that are shown to clearly outperform random selection are relatively
rare. For instance, we conducted comprehensive experiments on value selection heuristics on
scheduling problems. The results in Figure 1 all show a clear trend: a clever value selection
can pay off on easy problems but only marginally outperforms random choices on tight
problems.

It has been argued that the shortfall of value selection heuristics often is a high computa-
tional cost in the case of look-ahead strategies [42]. But more generally, the usual explanation
for the relatively low impact of value selection heuristics, especially on difficult problems, is
the fact that the solver spends a lot of time in UNSAT regions of the search space. In these
regions, the order of the values explored does not matter [15]!.

In this paper however, we argue that this cannot be the sole reason for the diminishing
impact of value selection. While we confirm that on problems close to the phase transition [9]
the solver spends most of the time in UNSAT subtrees, we also found that the remaining
relevant choices tend to be crucial in finding a solution. This goes to a point where the
penalty for getting these choices wrong dominates the search performance. As a consequence,
a consistently accurate value selection heuristic that can avoid those errors would have a
noticeable positive impact on the overall performance, especially on difficult instances.

Furthermore, we observed two interesting and rather surprising phenomena when solving
scheduling problems as a sequence of satisfaction problems with an increasingly tighter
bound. The first concerns the online accuracy of value selection heuristics which we define
as the ratio between the number of correct branches chosen and the number of all relevant

! It may have an indirect influence via clause learning or weight-based heuristics. Nevertheless, in both
cases there is no known positive correlation with some parameter that could help us decide a priori
which branch is best.

T. Luchterhand, E. Hebrard, and S. Thiébaux

search overhead (JSP) search overhead (OSP)
10! g r
5 F —— GNN 5 L
o = o E
% 100§j MSSG sEsEsEsEsEEEEEEs E E
H = max-slack H r
2 107! impact 3 E
1072k k| =
£ 8 g 8
9 %—J//' [} =
g 107? E 1 / g E
it E P I E T —— GNN MSSG
g 1074 ?_—:—---4 0 g 10-3 ;" max-slack impact
C | | | | E | | | |
1 0.8 0.6 0.4 0.2 0 1 0.8 0.6 0.4 0.2 0
optimality gap optimality gap
search overhead (JSTL) search overhead (RCPSP)
10' ¢
g + —— GNN g C MSSG
'% 100 = MSSG '% L max-slack
H E max-slack H r impact
s r impact s
S i LS
Z107 = - £ 10°
s} T~ s}
= =7 =
o [===
g /:— g L
21072 DD e h I
K E__ _ B
E e &
C | | | | 10—t | | |
1 0.8 0.6 0.4 0.2 0 0.4 0.3 0.2 0.1 0
optimality gap optimality gap

Figure 1 Average / median solve time with respect to random value selection on different sets
of scheduling problems. Dashed lines represent median values. A point (x,y) is interpreted as:
“heuristic h takes y times as much time as random to get to a gap of x”. The red dotted line marks
the performance of the random baseline. Details about the heuristics and the problem instances can
be found in Section 3.1.

choice points. We say a choice point is relevant when there exists both a value selection
for which the resulting subtree contains a solution and one for which it doesn’t. A correct
choice obviously occurs when the heuristic selects the value that spans a SAT subtree. In our
experiments, we found that this accuracy degrades for all tested, informed heuristics as the
optimality gap decreases and the problem becomes more constrained. This again means that
the heuristics tend to be less accurate when the stakes are highest, i.e. when the gap is small

and in turn the cost for making the wrong decision is higher than when the gap is large.

Secondly, we noticed that the cost for making a wrong decision does not only depend on the
difficulty of the problem but also on the accuracy of the heuristic. Our experiments suggest
that, on the one hand, simple heuristics usually make more mistakes than more sophisticated
ones, especially on easy choices, i.e. choices that follow a clear intuition. Yet, these errors
are just as easily refuted, meaning that the cost for failing is low. More intelligent heuristics
on the other hand, make less mistakes but when they do, it usually takes disproportionately
more effort to notice and correct the error.

To support these claims, we present an in-depth analysis of the behavior of different
value selection strategies on a large set of scheduling benchmarks with both disjunctive and
cumulative resources. We additionally demonstrate that the mentioned phenomena also arise
in experiments with an ML-based heuristic.

27:3

CP 2025

27:4

Value Selection Heuristics for Scheduling Problems

Our results show a more complete picture on why developing impactful value selection
heuristics is difficult and identify an interplay of three key observations. First, as the
optimality gap decreases, the penalty for selecting a wrong value increases. This is because
wrong branches lead to increasingly deep UNSAT subtrees. Conversely, when the gap is large,
these UNSAT subtrees tend to be a lot more shallow. So in theory, a heuristic with constant
value prediction accuracy should have more impact the harder the problem gets because
selecting the correct values avoids spending a long time in uninteresting regions. Which
brings us to the second observation, namely the fact that the heuristic accuracy does not
stay constant during the search but rather decreases with the optimality gap. This means
that any heuristic will not only face more important choices but also get them wrong more
often. And finally, the penalty for a wrong decision positively correlates with the accuracy
of the heuristic, i.e. more involved heuristics tend to make less errors in total, but pay a
disproportionately higher price for being wrong.

The remainder of this paper is structured as follows. We first introduce the metrics we
used in our experiments as well as our procedure for measuring them. We then present
the different heuristics we analyzed and the details of our experimental setup. Finally, we
conclude the paper with a discussion of the results.

2 Analyzing the Behavior of Value Selection Heuristics

Within the scope of this paper we analyze the impact of value selection strategies on solving
different types of scheduling problems. We employ a self-developed constraint programming
(CP) solver we call tempo?. It represents problems using binary and numeric variables. In the
case of scheduling problems, numeric variables are used to model events in a simple temporal
network (STN) [11]. Each task ¢ is composed of two events: a start event s; and an end event
e:. Constraints are represented by edges in the form of maximum distances between the
events. For example, given two events a, b, the constraint a < b (a before b) is represented
by an edge starting in b and ending in ¢ annotated with a negative distance. Furthermore,
numeric variables are also used to model resource consumption and capacities in the case of
cumulative scheduling problems. The objective is modelled as one global schedule interval
that must contain all tasks. The objective variable is the duration of said schedule. As
many constraint optimization solvers [33, 29, 32, 10], tempo minimizes the objective value by
solving a sequence of satisfiability problems with an increasingly tighter upper bound on the
objective variable.

Binary variables on the other hand represent the existence of edges in the STN and are
used as branching points during search. For example, in a disjunctive scheduling problem
the binary variable z;, may represent the ordering of two tasks ¢ and t’. Concretely,
xpp =14 e < sy, ie. t must finish before ¢’ starts, and x4y = 0 < ey < s;. tempo makes
binary branching decisions which have been shown to be superior to d-way branching in
constraint satisfaction problem (CSP) solvers [21]. This means that a binary search tree is
spanned where at each node a variable is selected by the variable selection strategy and then
assigned by the value selection heuristic. tempo uses the state-of-the-art variable selection
strategy VSIDS [31]. It also leverages clause learning or no-good-learning [28] and dynamic
restarts [19]. Whenever a literal appears in a conflict clause or in a resolution step leading to
said clause, its activity value is updated. When clause learning is switched off, tempo uses

2 The public repository can be found at https://gitlab.laas.fr/roc/emmanuel-hebrard/tempo. The
experiments were conducted using the commit identified by the tag cp_2025_val_selection_exp.

https://gitlab.laas.fr/roc/emmanuel-hebrard/tempo

T. Luchterhand, E. Hebrard, and S. Thiébaux

1‘1:1

~ AN

o
S’ S

xQZO

(=)

x3 =0

Figure 2 Depiction of the analysis procedure. Blue arrows are heuristic choices, red arrows are
refutations. Circled variables need to be classified as either ICS or relevant. Only the choice points
x1 and 2 are relevant. The ¢ symbols signify UNSAT branches. The triangle shows a maximal
UNSAT subtree. Note that the dashed arrows are not actually explored by tempo but need to be
visited for the classification.

explanation based weighted degree [6] instead of VSIDS for variable selection. This is possible
since each fail still generates a clause that we use to update literal weights. Finally, we use

an edge-finding algorithm based on [40] for propagating the disjunctive resource constraint.

On cumulative resources we use an algorithm based on [26]. Without going into detail, it
leverages overlaps between tasks. These are usually difficult to detect from numeric variables
representing start times of tasks but much easier from ordering variables.

All in all, tempo achieves state-of-the-art performance on the problems treated in this
paper. Using a custom solver allows us to easily access detailed information that we need for
our analysis such as when and where conflicts are encountered and which specific choices
were made by the heuristics.

2.1 Relevant and Irrelevant Heuristic Choices

Since tempo uses two-way branching, solving each satisfaction problem produces a binary
search tree. When a solution is found the search is restarted from the root of the tree so
that the new tighter upper bound constraint does not have to be retroactively applied to the
search states. The overall search tree is then the concatenation of the trees corresponding to
each satisfiability problem. Each of these search trees has the form shown in Figure 2. We
measure the performance of a given value selection heuristic in each satisfiability problem by
analyzing the corresponding search tree. To that end, we categorize the choice points. The
branch chosen by the value selection heuristic is called a choice (blue arrows in Figure 2). A
refutation is the opposite of a choice (marked with red in the illustration). A choice is correct
when it spans a subtree that contains a solution and incorrect when it doesn’t. However,
some of these choices, correct or not, may be irrelevant. We say a choice is relevant if and
only if its refutation would have lead to a different outcome. That is, if the subtree spanned
by the choice contains a solution and the one spanned by the refutation does not or vice
versa. Consequently, all choices in an UNSAT subtree are irrelevant because neither of the
branches leads to a solution. This type of choice is called irrelevant choice in an UNSAT
subtree (ICU). Moreover, some correct choices are irrelevant if the refutation also leads to a

27:5

CP 2025

27:6

Value Selection Heuristics for Scheduling Problems

solution. These are called irrelevant choices in a SAT subtree (ICS’s). In theory, one could
further distinguish correct choices, i.e. whether both branches lead to equally good solutions
(in terms of objective value) or not. However, we are primarily interested in the solver not
getting stuck in UNSAT subtrees and therefore do not make this distinction.

2.2 Value Selection Heuristic Accuracy

Each time tempo finds a solution S we get the following information.

1. The total number of heuristic choices T" in the current descent. In Figure 2 this is simply
the number of blue arrows.

2. The number of correct choices C, i.e. two in the example.

3. The length L of the branch leading to the solution S (three in the example). Note that L
is in general less than the number of variables since constraint propagation will fix some
variables.

4. The number of ICUs (the three blue arrows in the triangle in Figure 2) which is simply
T - L.

In order to obtain the number of ICS’s we need to further analyze the correct choices (circled

variables in Figure 2). To analyze a choice on a variable x, we define a satisfiability problem

based on the initial problem description while adding all choices and refutations leading
from the root to = as constraints. For example, to classify x3 in Figure 2 we would add the
constraints 1 = 0 and x5 = 0 as well as the previous upper bound on the objective and then

call a satisfiability oracle. If the oracle determines that the problem is SAT, i.e. by finding a

different improving solution S’ (as in the figure), the choice is an ICS. Having obtained the

number of ICS’s, we can finally calculate the number of relevant choices

R =T — #ICU — #ICS = L — #ICS (1)
and the number of relevant and correct choices
Rec = C — #ICS. (2)

In our running example, we would get R = 2 and R¢c = 1. Based on this information, we
then define the accuracy of a value selection heuristic h simply as the ratio of relevant and
correct choices to the number of relevant choices:

accuracy(h) = % 3)

In the example shown in Figure 2, the accuracy would be 50%, given that there are two
relevant choices of which one is wrong. We can monitor this accuracy as the search progresses
since tempo logs the required information each time an improving solution is found. We
call the progression of the accuracy over the optimality gap online accuracy. Furthermore,
we are interested in the cost of a wrong relevant choice. We define this error penalty P
proportional to the average size of a maximal UNSAT subtree which is simply the number
of ICUs divided by the number of mistakes. Since we want to compare this number across
problems of different size, we normalize it by additionally dividing by the total number of
choices. Thus, we get

(4)

#ICU .
p— m, if RC’ < R,
0, otherwise

T. Luchterhand, E. Hebrard, and S. Thiébaux

In Figure 2, the average size of maximal UNSAT subtrees would be three and P = 0.5. This
measure gives us an indication of how bad an error by the heuristic is on average, i.e. how
much time is wasted in UNSAT regions.

While our procedure gives us detailed information about the behavior of the value selection
heuristic, it is also computationally expensive since each oracle call involves solving a SAT
problem. Still, the number of oracle calls is only O(L) and L is typically much smaller than
the number of variables due to constraint propagation. Also notice that this procedure is not
exact on search trees developed by conflict driven clause learning solvers. This is due to the

fact that the refutation of a choice x = v, where v is some value, is not necessarily x # v.

More precisely, a backjump from the choice x = v may jump to a choice point on a different
variable y. This means that the decision £ = v was not necessarily wrong. Also, all the

decisions strictly between the backjump level and the decision level are not well categorized.

Therefore, when applying this method to a search tree using learning, one should be aware
that the results are only approximations.

3 Experiments

In our experiments we analyzed the behavior of different value selection heuristics on a set of
scheduling problems. These can be viewed as a sequence of satisfiability problems that get
progressively harder as the upper bound on the objective becomes tighter. In accordance
with the theory on phase transitions [9] we identify the optimality gap of our objective value
as an order parameter and argue that for small values the resulting satisfiability problems
are close to the phase transition. This is reasonable given that the number of solutions and
thus the probability of finding one decreases with the gap.

The remaining section is structured into five parts. First we present the studied heuristics
and our experimental setup. In Sections 3.2 and 3.3 we then continue with a detailed analysis
on the progression of the number of irrelevant and relevant choices during search. Next, we
move on to our main observations in Section 3.4. And finally, we conclude our experiments
by discussing our observations and their implications.

3.1 Setup

In our experiments we analyzed four different heuristics. In the following, we explain their
behavior given a binary variable whose values 1 and 0 correspond to the event precedence
constraints a < b and ¢ < d respectively. As a baseline we use the random heuristic that, as
the name suggest, chooses values randomly with uniform probability.

First, the max-slack heuristic uses the following branching rule:

1, if max(b) — min(a) > max(d) — min(c)

()

max-slack(z) =)
0, otherwise,

where min(a) and max(a) are the minimum and maximum values of the domain of the
numeric variable a respectively. Intuitively, the heuristic fixes the edge that leaves the largest
possible slack in the temporal network. The variable x4 in a disjunctive scheduling problem

for example represents the ordering of the tasks t,¢': xyp =1 e < sp, 20 = 0 & ey < sy
g ; :

max-slack would therefore schedule ¢t < ¢’ if max(sy) — min(e;) > max(s;) — min(ey).

27:7

CP 2025

27:8

Value Selection Heuristics for Scheduling Problems

Second, we use an impact based heuristic similar to [34]. It keeps a score i, for each
binary literal x & z = 1, -x & x = 0 in the problem, which is initially zero. Whenever the
heuristic assigns a value to x, we count the number of other variables fixed by subsequent
constraint propagation and update the score?:
k1) _ z')({k) + # variables fixed by propagation

= 5 i

(6)

i
This score is used by the impact heuristic to make decisions according to

1, if iy <i-x

impact(x) = { (7)

0, otherwise.

The intuition is somewhat similar to that behind max-slack: fix variables in a way that
leaves the most freedom for future decisions. The problem with using this rule right from
the beginning is that the impact scores are all zero. Our actual implementation of impact
therefore only follows Equation (7) after a short warm-up period, i.e. after 50% of all literals
have been selected at least once, and falls back on max-slack otherwise.

Next, we combine max-slack and solution-guided search [4] which we call max-slack
solution guided (MSSG). Initially, MSSG uses max-slack until a solution S = (:vl)fil (NeN
the number of binary variables) is found. This solution is then saved. From this point on,
MSSG tries to keep the variable assignment of S. Since at some point the search needs
to deviate from the path to the last solution due to the tighter upper bound, MSSG is
permitted to fall back to max-slack if the discrepancy between the S and the current variable

assignment S = (%;),c,;,1 C {1,..., N} becomes too big. This discrepancy is defined as

(o, 1=9,
discrepancy (S, 5) = {) , 0 the Kronecker delta, (8)
mZieI 1- 5307135717 I 7é 0

i.e. the percentage of assigned variables whose values differ from the corresponding ones in
S. In our experiments we set this discrepancy threshold to 1%. So in short, MSSG behaves
the following way:

max-slack(z), if no solution found yet or discrepancy > 1%,
MSSG(z) =<1, ifx € S, (9)
0, if xe S.

Each time a new improving solution is found, S is updated.

Finally, inspired by the works of [38, 39], we tested a heuristic based on a pre-trained
graph neural network (GNN). Without going into too much detail, the GNN exploits a graph
representation of the problem, much like the STN. Nodes represent tasks as well as resources,
edges between tasks describe precedence relations and are annotated with timing information.
Edges between tasks and resources describe resource dependencies and are also annotated
with features like resource demand and capacity. From the graph, the GNN calculates a
graph embedding using a message passing scheme similar to that in [3]. From this embedding
the binary values for each edge are derived using a multi-layer perceptron (MLP). Since
running the GNN is costly, the inference is only run at the very beginning of the search.
Additionally, it is rerun whenever a solution is found which tightens the upper bound on the
objective.

3 Our implementation differs from that of the original paper for reasons of simplicity.

T. Luchterhand, E. Hebrard, and S. Thiébaux

irrelevant choices (JSP) irrelevant choices (OSP)
100 100
~
e
80 80 —
Sy X 60l
= 00F ___anN = 00 _anN
8 MSSG 8 MSSG
% 40 - max-slack /I % 40 - max-slack
random /, F random ',’
. 1 . (3
20 impact i l"/ 20 impact “?’}
) \-/";;’," B,
0 B frm g T 0 - = \
0.8 0.6 0.4 0.2 0 0.2 0.15 0.1 5.10"2 0
optimality gap optimality gap
irrelevant choices (JSTL) irrelevant choices (RCPSP)
=
—— GNN ,}I MSSG ,:/-
MSSG M 80 - max-slack LTt
I 7/
60 max-slack 7 random //' 1/
§ random Jf @ 60 — impact W 7
? impact § —”_,,’ ;/}
6 40 — 6 40 [T T =TT s
= \ = /
B E .
~
20
| | | |
1 0.8 0.6 0.4 0.2 0

optimality gap optimality gap

Figure 3 Mean percentage of irrelevant choices distinguished by category. Bold lines represent
the percentage of ICS’s, dashed lines represent the percentage of ICUs.

We evaluated these heuristics on four sets of different scheduling problem types: 48
Open Shop Problems (OSPs) from [7, 20, 43], 24 Job Shop Problem (JSP) instances from
[1, 14, 2, 25, 37, 43, 41], 58 Job Shop instances with time lags (JSTL) from [8] and 20
resource-constrained project scheduling problem (RCPSP) instances from [23]. A complete
list of the instances used is given in Table 1. We ran tempo with each of the five heuristics on

each of those instances with ten different random seeds, totaling in 1500 runs for each heuristic.

An exception to this is the GNN based heuristic that, at the time of the experiments, could
not handle cumulative resources, which is why we do not present results for the GNN on
RCPSPs. Each run was given a timeout of 30 minutes. The results in the next section were

produced without using clause learning in order to avoid the problem mentioned Section 2.2.

However, results with clause learning can be found in Section A.

3.2 Progression of Irrelevant Choices

We begin our analysis by addressing the belief that the solver spends increasingly more time
in UNSAT subtrees as the optimality gap closes. Even though our results seem to align with

this hypothesis, they draw a more complete picture as we analyze ICUs and ICS’s separately.

Figure 3 shows the progression of the share of irrelevant decisions over the course of solving
the problem.

27:9

CP 2025

27:10

Value Selection Heuristics for Scheduling Problems

First, we can see that, in all four problem types, the percentage of ICUs (dashed
lines) increases towards smaller gaps. At the same time, the percentage of ICS’s (bold
lines) decreases. It is also visible that this effect depends on the type of problem. On less
constrained instances like OSPs or JSPs, initially nearly all choices lead to improving solutions
and are therefore irrelevant. This is most pronounced on OSPs due to their symmetry. When
the gap decreases, the upper bound on the objective variable tightens, making the problem
more constrained and ultimately leading to increasingly more failures and therefore more
ICUs. Interestingly, on JSP instances, the ratio of ICS’s actually appears to increase slowly
before falling back off towards the end (not counting random). One possible explanation is
that propagation removes more and more choices and helps the heuristics guide the solver
into easy regions where most choices are ICS’s, as long as the gap is not too small.

The same overall trend can be observed on the JSTL and RCPSP instances. However, the
levels of ICS’s and ICUs are initially much closer together. In JSTLs there exist backwards
links between tasks in the STN due to the time lags. These can easily cause negative timing
cycles and thus failures which explains the higher initial percentage of ICUs and the lower
amount of ICS’s. For the RCPSP instances, both types of irrelevant choices initially make up
a comparatively low share or conversely: there are more relevant choices than in any other
problem type in the beginning of the search. This is due to a particularity of the resource
model used that only performs very limited forward checking. To give an example, let’s say
we have a resource with capacity 10 and three tasks t1,t5,t3 that consume quantities of 3, 5
and 6 resource units respectively. Let’s also say that t; and 2 are currently assigned to run
in parallel. The model does not forbid to also schedule ¢35 in parallel, even though it would
result in a trivial failure. This means that a lot of relevant but rather trivial choices are
created.

Perhaps more interestingly, the amount of irrelevant choices not only depends on the gap
but also on the heuristic itself. Looking at random for example, it produces the most ICUs
and the least ICS’s on both JSP and RCPSP instances. This makes sense because random
is arguably a bad heuristic that makes a lot of mistakes. As a result, the solver will spend
comparatively more time in UNSAT regions, leading to more ICUs. Conversely, random is
less likely to steer the solver into regions where any choice leads to a solution. This effect,
while less pronounced, is also present in the JSTL instances, at least towards smaller gaps.
This is probably due to the fact that all heuristics have a harder time making good decisions
on this type of instance which is why the difference is less noticeable. The same can be seen
on the OSP instances, albeit for the opposite reason. As mentioned before, OSPs have a
high degree of symmetry, meaning that when the gap is large basically any decision, random
or not, leads to a solution. MSSG on the other hand behaves quite the opposite way. As we
will see later, it has one of the highest online accuracies. With this in mind, it seems logical
that it exhibits high ICS and low ICU percentages on all four problem types.

3.3 Progression of Relevant Choices

Our observations thus far coincide with what is accepted in the literature. Things become
more interesting when we combine both the curves for ICS’s and ICUs, or put differently,
when we look at the number of relevant choices. This can be seen in Figure 4. The results on
the RCPSP are arguably the most intuitive. The amount of relevant choices starts out rather
high and then progressively diminishes as the gap closes. The opposite can be seen on the
OSP instances. Again, it is apparent that on these problems, initially virtually everything is
a solution and choices only start to matter when the gap becomes small. On both types of
Job Shop problems, the results are a bit more complicated to interpret, and the differences

T. Luchterhand, E. Hebrard, and S. Thiébaux

relevant choices (JSP) relevant choices (OSP)
30 20
—— GNN —— GNN
-~ MSSG ~ MSSG
ik/ 20 FE===== v - max-slack é max-slack
©w =Ty ©w
15} random 15} random
3 i t g o impact
g impac E p i
Bl B /]
- 103 + /
g : /
> >
[[
3 3
0 —
| | | | | | |
1 0.8 0.6 0.4 0.2 0 0.4 0.3 0.2 0.1 0
optimality gap optimality gap
relevant choices (JSTL) relevant choices (RCPSP)
—— GNN MSSG max-slack 80 -
. ' random impact .
X D S e
~ ~ 60
w0 w0
@ @
2 =2
2 2 0 MSSG
i i max-slack
g % random
E E 20 - impact
5} o \
~ ~
AE
O —
0= | | | | | | |
1 0.8 0.6 0.4 0.2 0 0.4 0.3 0.2 0.1 0
optimality gap optimality gap

Figure 4 Percentage of relevant choices. Bold lines represent mean values and dashed lines
median values.

between the heuristics are more pronounced. On the JSTLs the percentage of relevant choices
still follows a clear downward trend except when using solution guided search. Interestingly,
random has the highest rate of relevant choices in the beginning. Comparing its graph with
the one form Figure 3, we can see that this is due to random exhibiting both the lowest
percentage of ICS’s and ICUs. It appears logical that random, being a bad heuristic, rarely
guides the solver into a subtree with many ICS’s. Nevertheless, it seems strange that it
initially also exhibits the lowest level of ICUs. One possible explanation could be that random
makes a lot of trivial mistakes that are easily refuted. Consequently, the solver doesn’t spend
a long time in an UNSAT region after a wrong decision. MSSG on the other hand, maintains
a relatively constant level of relevant choices over the whole range of gap values. There is
even a part where the percentage of relevant choices increases over the initial level. Again,
comparing the corresponding curves in Figure 3 we can see that this arises from a very low
level of ICUs and implies that MSSG provides good guidance. When the gap approaches
zero, the number of relevant choices remains at about the same level as in the beginning.
At this point, there remain much fewer ICS’s in the overall search space. The fact that
the number of relevant choices remains high means that MSSG manages to keep the search
in regions where it is still possible to find improving solutions, albeit only through clever
choices. Finally, on the JSP instances there is a clear difference between random and the
other heuristics. As on the OSPs, these problems are not very constrained when the gap is
small which means that most of the choices are ICS’s. The difference between random and

27:11

CP 2025

27:12 Value Selection Heuristics for Scheduling Problems

heuristic accuracy (JSP) heuristic accuracy (OSP)
1 Eses 1
> >
9 9
@ Il
- -
: £ 0
g 0.8~ —— GNN 8
3 MSSG 3
ﬁg max-slack ﬁg 0.6
E 0.6 - randon - . .
impact o4l — GNN MSSG max-slack
' random impact
| | |
0.4 0.3 0.2 0.1 0 0.5 0.4 0.3 0.2 0.1 0
optimality gap optimality gap
heuristic accuracy (JSTL) heuristic accuracy (RCPSP)
1
0.8 —
§ —— GNN §
£ MSSG 5 MSSG 7
§ max-slack g max-slack
random random
06 - impact 0.6 - impact
4 /\v \
MWM\MMWW‘ e e — "N
| | | | | |

|
1 0.8 0.6 0.4 0.2 0 0.4 0.3 0.2 0.1 0
optimality gap optimality gap

Figure 5 Online accuracy over optimality gap. Bold lines represent mean values and dashed lines
median values. In the two top figures, the accuracy has been smoothed using a biased average.

the other heuristics arises from the fact that random makes more errors and thus also has a
higher level of ICUs right from the beginning. What is worth of notice is that for very small
gap values, the percentage of relevant choices actually rises back up, in the case of MSSG
even higher than the initial ratio.

To summarize the results this far, we confirm that all heuristics spend more time in
UNSAT subtrees the smaller the gap becomes. Still, the distinction between ICS’s and ICUs
draws a more complete picture and reveals more details about the behavior of the different
heuristics across the four instance types. The results also differ somewhat from the intuition
in the literature, especially when looking at the number of relevant choices. Only on RCPSP
instances we observe a clear downward trend of the heuristic’s impact as the gap shrinks.
On the other problem types, the trend is either less clear (JSTL), inverses towards the end
(JSP) or goes in the complete opposite direction (OSP). On the latter three types, one would
expect the heuristics to have a greater impact on the performance of the solver, provided of
course that their accuracy does not change. However, the results we will discuss next show
that this is precisely not the case.

3.4 Online Accuracy and Error Penalty

In the following part, we only focus on the relevant choices and analyze the actual online
accuracy of the heuristics presented in Figure 5. As expected, random has a constant accuracy
of 50% all the time on all four problem types. All the other heuristics on the other hand

T. Luchterhand, E. Hebrard, and S. Thiébaux

error penalty (JSP) error penalty (OSP)
—— GNN N GNN MSSG
10°! | MSSG 10 F max-slack random
r max-slack L impact h
> L > . /
= random =
< r) 2 1=
=} L impact g
13} I} L
a L a
= i !
o o -
= r = e r//' v
o ¢ |ecrcrecrerrerrercrereo e smt
— [em =T -
10~2 ,,s\M _“:::;=,_-<"—"'
C | | | | 10~2 | | | |
1 0.8 0.6 0.4 0.2 0 1 0.8 0.6 0.4 0.2 0
optimality gap optimality gap
error penalty (JSTL) error penalty (RCPSP)
GNN MSSG 107" B MSSG -slack
0-1E T C max-slac
o = max-slack random . L random impact
= L impact = [
] r = L
=} =}
o [o
Q Q
- (= Y~ 5
2 - n 2
5 | mm———————=—=z=== o)
o (o)
1072
1072 =
L/
L ! ! ! ! C ! ! !
1 0.8 0.6 0.4 0.2 0 0.4 0.3 0.2 0.1 0
optimality gap optimality gap

Figure 6 Error penalty over optimality gap. Bold lines represent mean values and dashed lines
median values.

show a clear drop in accuracy as the gap becomes smaller. MSSG seems to suffer the least
from this problem. So apparently, the relevant choices the heuristics face become more
and more difficult over the course of the search. We hypothesize that this happens due
to an alignment between constraint propagation and value selection heuristics. In short,
constraint propagation often prunes decisions that are in line with the heuristic. Thus, when
the problem is tight and constraint propagation is strong, fewer intuitive decisions are left
to the heuristic which ultimately results in a lower accuracy. We go into more detail in
Section 3.5.

Finally, not only does the heuristic accuracy decrease with the gap, it is also lowest when
the stakes are highest. Figure 6 shows the progression of the error penalty for the different
heuristics. As expected, this penalty increases towards smaller gap values on all instances
and for all heuristics. This means that the average size of the UNSAT subtrees becomes
bigger and mistakes generally occur earlier in the search. In some cases, we can observe
an increase of about a factor of ten (MSSG on JSP or RCPSP). This observation is in line
with the theory on phase transitions [9]. There exists work on the notion of exceptionally
hard problems [35], i.e. problems that are located to the far left of the phase transition and
still are very difficult. However, we did not encounter them in our experiments. A possible
explanation for this is that their difficulty is not necessarily a property of the problems but
also depends on the algorithm and heuristics used [36].

27:13

CP 2025

27:14

Value Selection Heuristics for Scheduling Problems

So even though on some instance types the percentage of relevant choices decreases as
we approach the optimum, the remaining relevant choices tend to be far more impactful.
Moreover, the error penalty also depends on the heuristics themselves. When comparing
Figure 5 and Figure 6, it becomes clear that the most accurate heuristic (MSSG except on
OSP instances) also suffers the biggest error penalty. In contrast, while the error penalty for
random also increases, it usually starts out lowest of all heuristics and ends at smaller values
than MSSG.

For the sake of completeness, we want to mention that we also did some experiments with
tempo with enabled no-good-learning. The results, however, are not accurate as discussed
in Section 2.2. We will therefore not analyze them in detail here, but they can be found in
Section A. The observations mostly coincide with those made in this chapter.

3.5 Discussion

In summary, our experiments reveal three key observations. First, while the percentage of
irrelevant choices in an UNSAT subtree (ICUs) does increase towards smaller gap values,
the percentage of relevant choices does not necessarily decrease at the same time for all
problem types. We found it to be the case on some instance types like RCPSPs and quite
the opposite on OSPs. Moreover, this effect depends on the heuristics themselves: better
heuristics tend to face more relevant choices. Second, the accuracy of all informed heuristics,
that excludes random, becomes less accurate the tighter the problem becomes. And finally,
the error penalty, i.e. the time spent in an UNSAT subtree after a wrong heuristic decision,
increases as the gap decreases. This effect is most pronounced for accurate heuristics.

These three phenomena and especially their interplay give us a better understanding of
why designing impactful generic value selection heuristics is difficult. From our results it
seems clear that the fact that the solver spends most of the time in UNSAT subtrees cannot
be the only explanation for the limited impact of these heuristics on hard instances. A
consistently accurate heuristic should be especially impactful since it would be able to avoid
the increasingly large error penalties. This would create somewhat of a positive feedback
loop. Fewer errors lead to more relevant choices that the heuristic gets mostly right given its
high accuracy which in turn leads to more relevant choices and so on. This is obviously not
the case. There are even instance types where the overall percentage of relevant choices does
not decrease, yet still the search slows down towards smaller gap values.

We therefore present an additional argument, namely that the branching choices become
increasingly non-intuitive the harder the problem gets. This degradation of the heuristic
accuracy can be clearly seen in Figure 5. Our explanation for this is that heuristic branching
choices often align with constraint propagation. For instance, the max-slack heuristic
suggests to sequence two events in a way that leaves the most slack in the timing network, i.e.
it prefers to keep large positive timing values. Notice that constraint propagation of binary
disjunctions precisely excludes any ordering decision that would lead to negative slack. In
general, the principle behind value branching is to first explore branches that are less likely to
be inconsistent and hence less likely to be pruned. Therefore, decisions pruned by constraint
propagation are overwhelmingly those that the value selection heuristic would have gotten
right anyway. As a result, when the gap decreases and the tightness of the problem increases,
constraint propagation gets stronger and is increasingly prevalent in the shape of the search
tree which ultimately means that the heuristic will more likely make the wrong decision on
the choices points that are left. Or put differently, due to the alignment with constraint
propagation, decisions that go against the intuition behind the heuristic become more likely.
Conversely, if the problem is not tight (large gap), constraint propagation is less strong and

T. Luchterhand, E. Hebrard, and S. Thiébaux

more easy choices that follow a clear intuition are left to the heuristic. In future work, it
would be interesting to see whether this phenomenon can be reproduced in settings where
much weaker propagation is used. In our case, it seems to arise for all heuristics, be they
relatively simple like max-slack or more complex like the GNN. A very accurate heuristic
should still get more of the difficult choices right. But given the nature of the problem, a
heuristic that accurately models an exponential number of choices is either impossible to
design or too costly to run.

The third observation, i.e. the increasing error penalty, only amplifies the effect of the
degrading accuracy. What’s most noteworthy is the fact that the penalty again depends on
the heuristic. As described previously, when the optimality gap is small, the more accurate
heuristics pay a disproportionately high price for selecting the wrong value. Our hypothesis
is that bad heuristics like random make more errors on the one hand that are easily refuted
on the other hand. In contrast, more accurate heuristics make decisions that initially seem
correct but turn out to be wrong much later in the search. In a way this effect offsets the
advantage of a high accuracy and could explain why we have yet to see a superior generic
value selection heuristic. It also gives a new perspective on reasoning about the effectiveness
of these heuristics. The fact that one heuristic is more accurate than another on paper does
not necessarily translate to a better performance in practice.

4 Conclusion and Future Work

In this paper we addressed a common belief in the literature that explains why value selection
heuristics generally have a lower impact on the performance of a CO solver than other heuristic
choices like for example variable selection. To that end we analyzed different value selection
heuristics on a set of scheduling benchmarks. In our experiments, we were able to confirm
that, when the optimality gap shrinks, the solver does spend more time in unsatisfiable
subtrees where the value ordering effectively has no impact. We also argued that this cannot
be the sole reason for the diminishing influence of value selection heuristics and presented
further interesting phenomena in our results. First, the heuristics become less accurate the
smaller the gap, most likely due to the interaction with constraint propagation that prunes

away many easy branching choices and leaves the heuristics with mostly unintuitive decisions.

What makes this worse is our second observation, namely that the penalty for selecting the
wrong value strongly increases for small optimality gaps. This means that the heuristics
fail most often when the stakes are highest. And finally, this error penalty also positively
correlates with the heuristic’s accuracy, meaning that better heuristics pay a higher price
for making mistakes. These observations, on the one hand, explain why the impact of value
selection heuristics diminishes on harder problems. On the other hand, they explain why
the gain in performance from an accurate heuristic is not necessarily as high as expected in
practice. This should be kept in mind when employing methods like ML to improve heuristic
parts of the solver. While ML has been successfully used for variable selection, using it for
value selection seems far less promising. In fact, we found that our GNN based heuristic
was unable to provide any significant advantage — or depending on the instance type any
advantage at all — over the other much simpler heuristics.

At this point we want to stress that our results neither suggest that further research on
value selection heuristics is pointless nor do they contradict works on sophisticated heuristics
like [13, 12]. We simply made some interesting observations that hopefully will help to
better understand the impact of value selection in CO problems like scheduling. To give

27:15

CP 2025

27:16

Value Selection Heuristics for Scheduling Problems

some concrete advice based on our findings: if one is dealing with large industrial problem
instances where finding an optimum is futile, a clever value selection heuristic that aims to
quickly find a high quality solution may prove very effective. Conversely, if optimality is of
interest, “dumb but fast” is probably the way to go.

Finally, we acknowledge that our results are restricted to the scheduling domain and in
some parts to the solver implementation we used. Specifically, our solver tempo uses 2-way
branching and strong propagation mechanisms, and our analysis procedure only obtains
approximate results when using no-good-learning and backjumping. It should be possible to
develop an algorithm that can obtain exact results even with backjumps in order to confirm
our findings. Such a procedure surely exists, even though it might be more computationally
demanding. More importantly however, we think it would be interesting to extend our
experiments to a broader setting, i.e. general CSPs with arbitrary value domains and
different phase transitions. Our explanations for the observations made in this paper are
not directly tied to scheduling which is why we believe that similar phenomena might be
observed on different problem types as well.

—— References

1 Joseph Adams, Egon Balas, and Daniel Zawack. The Shifting Bottleneck Procedure for Job
Shop Scheduling. Management Science, 34(3):391-401, 1988. URL: http://www.jstor.org/
stable/2632051.

2 David Applegate and William Cook. A Computational Study of the Job-Shop Scheduling
Problem. ORSA Journal on Computing, 3(2):149-156, May 1991. doi:10.1287/ijoc.3.2.149.

3 Peter W. Battaglia, Jessica B. Hamrick, Victor Bapst, Alvaro Sanchez-Gonzalez, Vinicius
Zambaldi, Mateusz Malinowski, Andrea Tacchetti, David Raposo, Adam Santoro, Ryan
Faulkner, Caglar Gulcehre, Francis Song, Andrew Ballard, Justin Gilmer, George Dahl, Ashish
Vaswani, Kelsey Allen, Charles Nash, Victoria Langston, Chris Dyer, Nicolas Heess, Daan
Wierstra, Pushmeet Kohli, Matt Botvinick, Oriol Vinyals, Yujia Li, and Razvan Pascanu.
Relational inductive biases, deep learning, and graph networks, June 2018. arXiv:1806.01261.

4 J. Christopher Beck. Solution-Guided Multi-Point Constructive Search for Job Shop Scheduling.
Journal of Artificial Intelligence Research, 29:49-77, May 2007. doi:10.1613/jair.2169.

5 Christian Bessiére and Jean-Charles Régin. MAC and combined heuristics: Two reasons
to forsake FC (and CBJ?) on hard problems. In Principles and Practice of Constraint
Programming — CP96, pages 61-75, Berlin, Heidelberg, 1996. Springer Berlin Heidelberg.
doi:10.1007/3-540-61551-2_66.

6 Frédéric Boussemart, Fred Hemery, Christophe Lecoutre, and Lakhdar Sais. Boosting sys-
tematic search by weighting constraints. In Proceedings of the 16th European Conference on
Artificial Intelligence, ECAT’04, pages 146-150, NLD, 2004. IOS Press.

7 Peter Brucker, Johann Hurink, Bernd Jurisch, and Birgit Wéstmann. A Branch & Bound
Algorithm for the Open-shop Problem. Discrete Applied Mathematics, 76(1):43-59, 1997.
Second International Colloquium on Graphs and Optimization. doi:10.1016/S0166-218X(96)
00116-3.

8 Anthony Caumond, Philippe Lacomme, and Nikolay Tchernev. A memetic algorithm for
the job-shop with time-lags. Computers & Operations Research, 35(7):2331-2356, July 2008.
doi:10.1016/j.cor.2006.11.007.

9 Peter C. Cheeseman, Bob Kanefsky, and William M. Taylor. Where the Really Hard Problems
Are. In Proceedings of the 12th International Joint Conference on Artificial Intelligence.
Sydney, Australia, August 24-30, 1991, pages 331-340. Morgan Kaufmann, 1991. URL:
http://ijcai.org/Proceedings/91-1/Papers/052.pdf.

http://www.jstor.org/stable/2632051
http://www.jstor.org/stable/2632051
https://doi.org/10.1287/ijoc.3.2.149
https://arxiv.org/abs/1806.01261
https://doi.org/10.1613/jair.2169
https://doi.org/10.1007/3-540-61551-2_66
https://doi.org/10.1016/S0166-218X(96)00116-3
https://doi.org/10.1016/S0166-218X(96)00116-3
https://doi.org/10.1016/j.cor.2006.11.007
http://ijcai.org/Proceedings/91-1/Papers/052.pdf

T. Luchterhand, E. Hebrard, and S. Thiébaux

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

Geoffrey Chu, Peter J. Stuckey, Andreas Schutt, Thorsten Ehlers, Graeme Gange, and Kathryn
Francis. Chuffed, a lazy clause generation solver. https://github.com/chuffed/chuffed,
2018.

Rina Dechter, Itay Meiri, and Judea Pearl. Temporal Constraint Networks. Artificial
Intelligence, 49(1-3):61-95, 1991. doi:10.1016/0004-3702(91)90006-6.

Augustin Delecluse and Pierre Schaus. Black-Box Value Heuristics for Solving Optimization
Problems with Constraint Programming. In 30th International Conference on Principles
and Practice of Constraint Programming (CP 2024), volume 307 of Leibniz International
Proceedings in Informatics (LIPIcs), pages 36:1-36:12, Dagstuhl, Germany, 2024. Schloss
Dagstuhl — Leibniz-Zentrum fiir Informatik. doi:10.4230/LIPIcs.CP.2024.36.
Jean-Guillaume Fages and Charles Prud’Homme. Making the First Solution Good! In
2017 IEEE 29th International Conference on Tools with Artificial Intelligence (ICTAI), pages
1073-1077, 2017. doi:10.1109/ICTAI.2017.00164.

H. Fisher and G.L. Thompson. Probabilistic Learning Combinations of Local Job-Shop
Scheduling Rules. In Industrial Scheduling, pages 225-251. Prentice-Hall, Englewood Cliffs,
1963.

Daniel Frost and Rina Dechter. Look-Ahead Value Ordering for Constraint Satisfaction
Problems. In Proceedings of the Fourteenth International Joint Conference on Artificial
Intelligence, IJCAI 95, Montréal Québec, Canada, August 20-25 1995, 2 Volumes, pages 572—
578. Morgan Kaufmann, 1995. URL: http://ijcai.org/Proceedings/95-1/Papers/075.pdf.
Maxime Gasse, Didier Chételat, Nicola Ferroni, Laurent Charlin, and Andrea Lodi. Exact
Combinatorial Optimization with Graph Convolutional Neural Networks. In Advances in Neural
Information Processing Systems 32: Annual Conference on Neural Information Processing
Systems, pages 15554-15566, 2019. URL: https://proceedings.neurips.cc/paper/2019/
hash/d14c2267d848abeb81fd590f371d39bd-Abstract.html.

Pieter Andreas Geelen. Dual viewpoint heuristics for binary constraint satisfaction problems.
In Proceedings of the 10th European Conference on Artificial Intelligence, ECAI '92, pages
31-35, USA, 1992. John Wiley & Sons, Inc.

Matthew L. Ginsberg, Michael Frank, Michael P. Halpin, and Mark C. Torrance. Search
Lessons Learned from Crossword Puzzles. In Proceedings of the 8th National Conference on
Artificial Intelligence. Boston, Massachusetts, USA, July 29 — August 3, 1990, 2 Volumes,
pages 210-215. AAAI Press / The MIT Press, 1990. URL: http://www.aaai.org/Library/
AAAT/1990/2aai90-032.php.

Carla P. Gomes, Bart Selman, and Henry Kautz. Boosting combinatorial search through
randomization. In Proceedings of the 15th National/Tenth Conference on Artificial Intelli-
gence/Innovative Applications of Artificial Intelligence, AAAI *98/IAAI "98, pages 431-437,
USA, 1998. American Association for Artificial Intelligence. URL: http://www.aaai.org/
Library/AAAI/1998/aaai98-061.php.

Christelle Guéret and Christian Prins. A new lower bound for the open-shop problem. Annals
of Operations Research, 92:165-183, 1999. doi:10.1023/A\%3A1018930613891.

Joey Hwang and David G. Mitchell. 2-Way vs. d-Way Branching for CSP. In Principles
and Practice of Constraint Programming — CP 2005, pages 343—-357, Berlin, Heidelberg, 2005.
Springer Berlin Heidelberg. doi:10.1007/11564751_27.

Elias B. Khalil, Pierre Le Bodic, Le Song, George L. Nemhauser, and Bistra Dilkina. Learning
to Branch in Mixed Integer Programming. In Proceedings of the 30th AAAI Conference on
Artificial Intelligence, pages 724-731. AAAI Press, 2016. doi:10.1609/AAAI.V30I1.10080.
Rainer Kolisch and Arno Sprecher. PSPLIB — A project scheduling problem library. European
Journal of Operational Research, 96(1):205-216, January 1997. doi:10.1016/s0377-2217(96)
00170-1.

Vitaly Kurin, Saad Godil, Shimon Whiteson, and Bryan Catanzaro. Can Q-Learning with
Graph Networks Learn a Generalizable Branching Heuristic for a SAT Solver? In Ad-
vances in Neural Information Processing Systems 33: Annual Conference on Neural Informa-
tion Processing Systems, 2020. URL: https://proceedings.neurips.cc/paper/2020/hash/
6d70cb65d15211726dcce4c0e971e21c-Abstract.html.

27:17

CP 2025

https://github.com/chuffed/chuffed
https://doi.org/10.1016/0004-3702(91)90006-6
https://doi.org/10.4230/LIPIcs.CP.2024.36
https://doi.org/10.1109/ICTAI.2017.00164
http://ijcai.org/Proceedings/95-1/Papers/075.pdf
https://proceedings.neurips.cc/paper/2019/hash/d14c2267d848abeb81fd590f371d39bd-Abstract.html
https://proceedings.neurips.cc/paper/2019/hash/d14c2267d848abeb81fd590f371d39bd-Abstract.html
http://www.aaai.org/Library/AAAI/1990/aaai90-032.php
http://www.aaai.org/Library/AAAI/1990/aaai90-032.php
http://www.aaai.org/Library/AAAI/1998/aaai98-061.php
http://www.aaai.org/Library/AAAI/1998/aaai98-061.php
https://doi.org/10.1023/A%3A1018930613891
https://doi.org/10.1007/11564751_27
https://doi.org/10.1609/AAAI.V30I1.10080
https://doi.org/10.1016/s0377-2217(96)00170-1
https://doi.org/10.1016/s0377-2217(96)00170-1
https://proceedings.neurips.cc/paper/2020/hash/6d70cb65d15211726dcce4c0e971e21c-Abstract.html
https://proceedings.neurips.cc/paper/2020/hash/6d70cb65d15211726dcce4c0e971e21c-Abstract.html

27:18

Value Selection Heuristics for Scheduling Problems

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

S. Lawrence. An Ezperimental Investigation of Heuristic Scheduling Techniques (Supplement).
PhD thesis, Carnegie-Mellon University, 1984.

Arnaud Letort, Nicolas Beldiceanu, and Mats Carlsson. A Scalable Sweep Algorithm for
the cumulative Constraint. In Principles and Practice of Constraint Programming — 18th
International Conference, CP 2012, Québec City, QC, Canada, October 8-12, 2012. Proceedings,
volume 7514 of Lecture Notes in Computer Science, pages 439-454. Springer, 2012. doi:
10.1007/978-3-642-33558-7_33.

Jia Hui Liang, Vijay Ganesh, Pascal Poupart, and Krzysztof Czarnecki. Learning Rate
Based Branching Heuristic for SAT Solvers. In Theory and Applications of Satisfiability
Testing — SAT 2016, pages 123-140, Cham, 2016. Springer International Publishing. doi:
10.1007/978-3-319-40970-2_9.

J.P. Marques Silva and K.A. Sakallah. GRASP-A new search algorithm for satisfiability.
In Proceedings of International Conference on Computer Aided Design, ICCAD-96, pages
220-227. IEEE Comput. Soc. Press, 1996. doi:10.1109/iccad.1996.569607.

L. Michel, P. Schaus, and P. Van Hentenryck. Minicp: a lightweight solver for constraint
programming. Mathematical Programming Computation, 13(1):133-184, 2021. doi:10.1007/
512532-020-00190-7.

Laurent Michel and Pascal Van Hentenryck. Activity-Based Search for Black-Box Constraint
Programming Solvers. In Integration of AI and OR Techniques in Contraint Programming
for Combinatorial Optimzation Problems, pages 228243, Berlin, Heidelberg, 2012. Springer
Berlin Heidelberg. doi:10.1007/978-3-642-29828-8_15.

Matthew W. Moskewicz, Conor F. Madigan, Ying Zhao, Lintao Zhang, and Sharad Malik.
Chaff: engineering an efficient sat solver. In Proceedings of the 38th Annual Design Automation
Conference, DAC ’01, pages 530-535, New York, NY, USA, 2001. Association for Computing
Machinery. doi:10.1145/378239.379017.

Laurent Perron and Frédéric Didier. CP-SAT. URL: https://developers.google.com/
optimization/cp/cp_solver/.

Charles Prud’homme and Jean-Guillaume Fages. Choco-solver: A java library for constraint
programming. Journal of Open Source Software, 7(78):4708, 2022. doi:10.21105/joss.04708.

Philippe Refalo. Impact-Based Search Strategies for Constraint Programming, pages 557-571.
Springer Berlin Heidelberg, 2004. doi:10.1007/978-3-540-30201-8_41.

Barbara M. Smith and Stuart A. Grant. Sparse constraint graphs and exceptionally hard
problems. In Proceedings of the 14th International Joint Conference on Artificial Intelligence
— Volume 1, IJCAT’95, pages 646651, San Francisco, CA, USA, 1995. Morgan Kaufmann
Publishers Inc.

Barbara M. Smith and Stuart A. Grant. Where the Exceptionally Hard Problems Are.
Technical report, University of Leeds, 1995.

Robert H. Storer, S. David Wu, and Renzo Vaccari. New Search Spaces for Sequencing
Problems with Application to Job Shop Scheduling. Management Science, 38(10):1495-1509,
1992. URL: http://wuw. jstor.org/stable/2632676.

Florent Teichteil-Kénigsbuch, Guillaume Povéda, Guillermo Gonzalez de Garibay Barba, Tim
Luchterhand, and Sylvie Thiébaux. Fast and Robust Resource-Constrained Scheduling with
Graph Neural Networks. In Proc. 33rd International Conference on Automated Planning and
Scheduling, pages 623-633. AAAI Press, 2023. doi:10.1609/ICAPS.V33I1.27244.

Hélene Verhaeghe, Quentin Cappart, Gilles Pesant, and Claude-Guy Quimper. Learning
Precedences for Scheduling Problems with Graph Neural Networks. In 30th International
Conference on Principles and Practice of Constraint Programming (CP 2024), volume 307
of Leibniz International Proceedings in Informatics (LIPIcs), pages 30:1-30:18, Dagstuhl,
Germany, 2024. Schloss Dagstuhl — Leibniz-Zentrum fiir Informatik. doi:10.4230/LIPIcs.CP.
2024.30.

https://doi.org/10.1007/978-3-642-33558-7_33
https://doi.org/10.1007/978-3-642-33558-7_33
https://doi.org/10.1007/978-3-319-40970-2_9
https://doi.org/10.1007/978-3-319-40970-2_9
https://doi.org/10.1109/iccad.1996.569607
https://doi.org/10.1007/s12532-020-00190-7
https://doi.org/10.1007/s12532-020-00190-7
https://doi.org/10.1007/978-3-642-29828-8_15
https://doi.org/10.1145/378239.379017
https://developers.google.com/optimization/cp/cp_solver/
https://developers.google.com/optimization/cp/cp_solver/
https://doi.org/10.21105/joss.04708
https://doi.org/10.1007/978-3-540-30201-8_41
http://www.jstor.org/stable/2632676
https://doi.org/10.1609/ICAPS.V33I1.27244
https://doi.org/10.4230/LIPIcs.CP.2024.30
https://doi.org/10.4230/LIPIcs.CP.2024.30

T. Luchterhand, E. Hebrard, and S. Thiébaux

40 Petr Vilim, Roman Barték, and Ondrej Cepek. Extension of O(n log n) Filtering Algorithms for
the Unary Resource Constraint to Optional Activities. Constraints An Int. J., 10(4):403—-425,
2005. doi:10.1007/510601-005-2814-0.

41 Takeshi Yamada and Ryohei Nakano. A Genetic Algorithm Applicable to Large-Scale

Job-Shop Problems. In Parallel Problem Solving from Nature, 1992. URL: https://api.

semanticscholar.org/CorpusID:37171770.

42 Zhijun Zhang and Susan L. Epstein. Learned value-ordering heuristics for constraint
satisfaction. In Proceedings of STAIR-08 Workshop at AAAI-2008, 2008. URL: https:
//api.semanticscholar.org/CorpusID: 16569060.

43 Eric Taillard. Benchmarks for basic scheduling problems. Furopean Journal of Opera-
tional Research, 64(2):278-285, 1993. Project Management and Scheduling. doi:10.1016/
0377-2217(93)90182-M.

A Appendix
A.1 Additional Figures

irrelevant choices (JSP) irrelevant choices (OSP)
100 100
J’m’\
80 \ 80
S X 6oL
= 60 = 60 GNN
g g
= L T el S MSSG
% 40 % 40 - — tightest
max-slack random | random g
20 - impact ,’/’ 20 — impact -7,
77 —— e
4 ———— _
€220 | fmmemmmmm s s T e~
e Tet R TN, o SIS
0 b====v== o= TN i] 0 T \ !
0.8 0.6 0.4 0.2 0 0.2 0.15 0.1 5.10"2 0
optimality gap optimality gap
irrelevant choices (JSTL) irrelevant choices (RCPSP)
100
—— GNN MSSG max-slack EE_‘:E;;;‘—-_’_ ="
| random impact 80 = é\\\ R ke
80 |- LN 4
. N o"
N
X 60~ s -
- MSSG NS e
9 R A T
S max-slack Y
5 40
5 random
impact
20
0= | | |
1 0.8 0.6 0.4 0.2 0 0.4 0.3 0.2 0.1 0
optimality gap optimality gap

Figure 7 Mean percentage of irrelevant choices distinguished by category with no-good-learning.

Bold lines represent the percentage of ICS’s, dashed lines represent the percentage of ICUs. These
results need to be interpreted with care since the procedure detailed in Section 2.2 is not exact in
this case.

27:19

CP 2025

https://doi.org/10.1007/S10601-005-2814-0
https://api.semanticscholar.org/CorpusID:37171770
https://api.semanticscholar.org/CorpusID:37171770
https://api.semanticscholar.org/CorpusID:16569060
https://api.semanticscholar.org/CorpusID:16569060
https://doi.org/10.1016/0377-2217(93)90182-M
https://doi.org/10.1016/0377-2217(93)90182-M

27:20

relevant choices (JSP)

optimality gap

Value Selection Heuristics for Scheduling Problems

relevant choices (OSP)

20 20
—— GNN —— MSSG max-slack —— GNN
- random impact — —— MSSG
<o o
s B 151 nax-slack
8 8 ——— random
o o
° IS —— impact
< < 10
- -
o o
) 3
3 3
[[
E E
1 0.8 0.6 0.4 0.2 0
optimality gap optimality gap
relevant choices (JSTL) relevant choices (RCPSP)
40
—— GNN —— MSSG —— MSSG max-slack
—~ 20 - max-slack random —_ random impact
X impact X
w0 w0
o Q
g g
))
= =
B B
- -
g g
2 2
))
E E
0 | | |
0.4 0.3 0.2 0.1 0

optimality gap

Figure 8 Percentage of relevant choices with no-good-learning. Bold lines represent mean values,
dashed lines median values. These results need to be interpreted with care since the procedure
detailed in Section 2.2 is not exact in this case.

T. Luchterhand, E. Hebrard, and S. Thiébaux

heuristic accuracy (JSP)

N 0.8

o

@

-

g

S 06l GNN
max-slack
impact

0.4

NRY
|

Y

—— MSSG
random

0.6 0.4

0.2

optimality gap

heuristic accuracy (JSTL)

>
Q
s
5 —GNN —— MSSG ‘vov
) max-slack random ' \‘«/‘\,\
impact
0.4 — A
~ v
=
| | | |
1 0.8 0.6 0.4 0.2

optimality gap

Figure 9 Online accuracy results with no-good-learning. These results need to be interpreted

accuracy

accuracy

heuristic accuracy (OSP)

1.2 —

—— GNN —— MSSG max-slack

random

impact

0.8 0.6 0.4 0.2 0

optimality gap

heuristic accuracy (RCPSP)

0.6 -

i t
) y‘.

——— MSSG

max-slack

random

0.2

0.3 0.2 0.1 0

optimality gap

with care since the procedure detailed in Section 2.2 is not exact in this case.

27:21

CP 2025

27:22 Value Selection Heuristics for Scheduling Problems

10t error penalty (JSP) 10t error penalty (OSP)
1.5
15— GNN —— MSSG —— GNN —— MSSG \
: max-slack random max-slack random ,’
impact | impact |
> >
= =
: :
5} 5§ 1
o Q
- £
o o
3 3 y
3 3 \“'VA’ VAo
B A A A Y2 (‘/«)
) So _,\/,__:\'/\\ «;\\7‘;"‘3/‘\),.:2"/» \J”_'\';-\ 1/
i Loy 0.5 - o SRR
| | | | | | | |
1 0.8 0.6 0.4 0.2 0 1 0.8 0.6 0.4 0.2 0
optimality gap optimality gap
10~ error penalty (JSTL) 10! error penalty (RCPSP)
1.4 - —— GNN —— MSSG max-slack 5
random impact / ””””””””””” -
. 1.2 n >
£ £
g g L (e ——
a1 2
— —
£ £ MSSG -slack
508 E o1 — max-slac
random impact
o6 | |E=============—===== 7
| | | | 0.5 | | | |
1 0.8 0.6 0.4 0.2 0 1 0.8 0.6 0.4 0.2 0
optimality gap optimality gap

Figure 10 Error penalty results with no-good-learning. Bold lines represent mean values, dashed
lines median values. These results need to be interpreted with care since the procedure detailed in
Section 2.2 is not exact in this case.

T. Luchterhand, E. Hebrard, and S. Thiébaux

Table 1 Instances used in all experiments.

instance type

size (# tasks)

instance names

JSP

50-500

abzb.txt, abz6.txt, abz8.txt, ft20.txt, 1la03.tx
la04.txt, 1la05.txt, la06.txt, lall.txt, lal6.tx
lal18.txt, lal9.txt, la23.txt, la2b.txt, orb03.t
orb04.txt, orb05.txt, orb06.txt, orb07.txt,

swvl9.txt, swv20.txt, ta02.txt, ta05.txt, ynOl.

t’
ts
xt,

txt

OSP

9-225

GP03-01.txt, GP03-02.txt, GP04-04.txt, GP04-08.
GP05-04.txt, GP05-10.txt, GP06-02.txt, GP06-10.
GPO7-02.txt, GPO7-03.txt, GP08-02.txt, GP08-06.
GP09-03.txt, GP09-04.txt, GP10-08.txt, GP10-09.
j3-perO-2.txt, j3-per10-1.txt, j3-per20-0.txt,
j4-perO-1.txt, j4-per20-0.txt, j4-per20-2.txt,
j5-perO-1.txt, j5-per20-0.txt, jb5-per20-1.txt,
j6-per0-0.txt, j6-perl0-1.txt, j6-per20-0.txt,
j6-per20-1.txt, j7-per0-0.txt, j7-perO-1.txt,
j7-per20-0.txt, j8-perO-1.txt, j8-per20-1.txt,
j8-per20-2.txt, tai04_04_02.txt, tai04_04_04.tx
tai04_04_06.txt, tai05_05_04.txt, tai05_05_07.t
tai05_05_08.txt, tai07_07_03.txt, tai07_07_05.t
tai07_07_06.txt, tail0_10_02.txt, tail0_10_06.t
tail0_10_07.txt, tailb_15_01.txt

txt,
txt,
txt,
txt,

t,

xt,
xt,
xt,

JSTL

36-150

car5_0_0, car5_0_2, car6_0_0,5, car6_0_10,

car7_0_10, car7_0_5, car8_0_10, car8_0_inf, £t06_0_1,

££06_0_inf, £t10_0_0, 1a01_0_0, 1a01_0_5, 1a02_
1a02_0_3, 1a03_0_1, 1a03_0_3, 1a04_0_0,5, 1a04_
1a05_0_0, 25, 1a05_0_3, 1a07_0_0,5, 1a07_0_10,

1a08_0_0,5, 1a08_0_2, 1a09_0_1, 1a09_0_10, 1al0_0_1,
lal11_0_10, lall_O_inf, 1al12_0_0, lal2_0_1, 1al3_0_0,

1la13_0_10, 1al14_0_0,5, lal4_0_1, 1al15_0_0,5,
lal5_0_inf, 1lal6_0_0,5, lal6_0_inf, 1al17_0_10,

la17_0_3, 1a18_0_10, 1a18_0_3, 1al9_0_1, 1lal9_O_inf,

1a20_0_1, 1a20_0_inf, 1la21_0_0,5, la21_0_10,

1a22_0_1, 1a22_0_10, 1a23_0_0, 1a23_0_10, la24_0_0,5,

la24_0_10, 1a25_0_0, 1a25_0_10

0_0,
0_1,

RCPSP

30

j309_1.sm, j309_2.sm, j309_3.sm, j309_4.sm,
j309_5.sm, j309_6.sm, j309_7.sm, j309_8.sm,
j309_9.sm, j309_10.sm, j3013_1.sm, j3013_2.sm,
j3013_3.sm, j3013_4.sm, j3013_5.sm, j3013_6.sm,
j3013_7.sm, j3013_8.sm, j3013_9.sm, j3013_10.sm

27:23

CP 2025

	1 Introduction
	2 Analyzing the Behavior of Value Selection Heuristics
	2.1 Relevant and Irrelevant Heuristic Choices
	2.2 Value Selection Heuristic Accuracy

	3 Experiments
	3.1 Setup
	3.2 Progression of Irrelevant Choices
	3.3 Progression of Relevant Choices
	3.4 Online Accuracy and Error Penalty
	3.5 Discussion

	4 Conclusion and Future Work
	A Appendix
	A.1 Additional Figures

