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Abstract
Crime prevention in urban environments demands both accurate crime forecasting and the efficient
deployment of limited law enforcement resources. In this paper, we present an integrated framework
that combines a machine learning module (i.e. PredRNN++ [27]) for spatiotemporal crime prediction
with a constraint programming module for patrol route optimization. Our approach operates
within the ICON loop framework [1], facilitating iterative refinement of predictions and immediate
adaptation of patrol strategies. We validate our method using the City of Chicago Crime Dataset.
Experimental results show that routes informed by crime predictions significantly outperform
strategies relying solely on historical patterns or operational constraints. These findings illustrate
how coupling predictive analytics with constraint programming can substantially enhance resource
allocation and overall crime deterrence.
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1 Introduction

Crime prevention is a key concern in urban management because it directly affects public
safety and quality of life. One of the main challenges for law enforcement agencies is deciding
how to use their limited resources most effectively. Over the years, researchers have shown
that accurate crime prediction models can help police forces act proactively. By anticipating
when and where crimes are likely to occur, patrol units can be deployed more efficiently,
enhancing their overall impact [25].

Detecting areas with high crime activity, known as crime “hotspots,” has been a major
focus of criminological studies. Early work, such as the concept of “prospective hot-spotting”
by Bowers et al. [3], demonstrated that concentrating on locations with recent crime surges
can guide future crime prevention. Subsequent research has used more advanced approaches,
like kernel density estimation (KDE) [14, 11] and spatiotemporal modeling [5], to identify
evolving crime hotspots.

In parallel, artificial intelligence and machine learning methods have improved both the
accuracy and depth of crime prediction. Deep learning architectures, such as convolutional
neural networks (CNNs) and long short-term memory (LSTM) networks, are now frequently
used to forecast spatiotemporal crime patterns [21, 12, 10, 18]. Meanwhile, multi-density
clustering methods [4] are also integrated for improved forecasting.
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29:2 A Constraint Based Approach to Predictive Policing

Other researchers combine decomposition methods and network-based approaches to
address short-term crime fluctuations. For example, Zhu et al. [30] propose a hierarchical
crime prediction framework that merges a modified gated Graph Convolutional Network
with Variational Mode Decomposition, modeling frequency-specific temporal dependencies.

Beyond these frameworks, some studies integrate environmental features and demand-
based predictions. Lin et al. [19] develop a deep neural network that fuses criminal envi-
ronmental data with spatiotemporal crime features for grid-based forecasting, while Ke et
al. [15] introduce an end-to-end CNN model that predicts on-demand ride services, offering
potential insights for crime-related event prediction.

Once crime-prone areas have been identified, another crucial task is to optimize how
patrols are assigned so that resources are used effectively. Various mathematical models, such
as integer and mixed-integer programming [7, 17, 23], schedule patrol units with minimal cost
and travel time. In addition, metaheuristics (e.g., genetic algorithms, ant colony optimization)
are also used to design efficient routes [6, 16, 20], helping agencies balance coverage in high-risk
areas with practical constraints [26, 8].

Despite these advances, there remains a notable gap between crime forecasting and patrol
optimization. Most predictive models generate heatmaps or highlight hotspots but do not
integrate these insights into fully actionable patrol schedules. Conversely, patrol-optimization
frameworks often rely on static or simplistic crime data, overlooking the nuanced forecasts
produced by modern machine learning.

In this paper, we bridge this gap by presenting a framework that combines machine
learning and constraint programming using the Inductive Constraint Programming Loop
(ICON loop) [1]. Specifically, we develop a crime prediction model based on PredRNN++ [27],
capturing spatiotemporal crime patterns and updating dynamically as new data arrive.
We then embed this forecasting module within a constraint programming framework that
optimizes patrol routes based on projected crime risks and operational constraints, ensuring
available resources are allocated with maximum effectiveness.

By adopting the ICON loop paradigm, our approach establishes a continuous feedback
loop: crime forecasts inform patrol planning, and the impact of patrols feed back into
subsequent predictive refinements. This synergy between advanced crime forecasting and
combinatorial route optimization enables more adaptive and impactful patrol strategies than
previous methods, which have largely tackled these challenges in isolation.

The remainder of this paper is organized as follows. Section 2 provides a recap of the ICON
loop. Section 3 describes the crime data processing pipeline. Section 4 details our predictive
modeling approach. Section 5 presents the constraint programming module and patrol route
optimization. Section 6 reports the experimental setup and results, and Section 7 concludes.

2 Technical Background

The Inductive Constraint Programming Loop (ICON loop) [1] is a framework designed to
seamlessly integrate machine learning (ML) with constraint programming (CP). Its main
objective is to enable constraint models to adapt to changing environments by drawing on
observations collected from the World (W). As shown in Figure 1, the ICON loop consists of
three principal components: the CP module, the ML module, and the W module.

The high-level procedure is outlined in Algorithm 1. At the start of each cycle, new
observations are gathered from the W component and recorded in the Observations repository.
These observations are then passed in parallel to the CP and ML modules via World-to-CP
and World-to-ML (lines 7, 3). To form the learning problem L, the World-to-ML channel
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Figure 1 An overview of the inductive constraint programming loop.

(line 3) extracts features or insights directly from the world data, and the CP-to-ML channel
(line 4) can incorporate information derived from previous solutions, if available. The outputs
of these channels collectively define L, which is then processed by applyXLearn (line 6) to
generate new patterns or hypotheses.

Next, the constraint network is updated. Observations feed into the CP module via
World-to-CP (line 7), and the newly derived patterns are injected through ML-to-CP (line 8).
The constructN function (line 9) merges these two inputs to build or refine the constraint
network N . Finally, applyXSolve (line 10) generates a set of candidate solutions for the
updated constraints network.

These solutions are then applied to the world using Apply-to-World. If the solutions
turn out to be invalid or inapplicable, the loop immediately begins a new iteration to refine
the candidate solutions. If a solution is successfully applied to the world, the cycle concludes,
and new observations can be gathered in preparation for the next cycle.

Algorithm 1 ICON loop.

1 Function CYCLE(Observations, optional PreviousSolutions):
2 repeat
3 Lo ←World-to-ML(Observations);
4 Lp ← CP-to-ML(PreviousSolutions);
5 L← constructL(Lo, Lp);
6 Patterns← applyXLearn(L);
7 No ←World-to-CP(Observations);
8 Np ← ML-to-CP(Patterns);
9 N ← constructN(No, Np);

10 Solutions← applyXSolve(N);
11 until Apply-to-World(Solutions);

Not all channels in the ICON loop need to be active in every scenario [1]. In our setting,
we assume that the machine learning step relies solely on newly collected observations rather
than any previous solutions. Therefore, the CP-to-ML channel is omitted, and Lp is not
included in constructing the learning problem L. This streamlined approach simplifies the
loop without compromising its ability to adapt to new environmental data.

CP 2025



29:4 A Constraint Based Approach to Predictive Policing

Algorithm 2 World-to-ML.

1 Function World-to-ML(CrimeDataset, q, smax):
2 Initialize empty linear sequence {Qt};
3 foreach w ∈ {1, . . . , n_weeks} do
4 foreach d ∈ {1, . . . , 7} do
5 foreach s ∈ {1, . . . , smax} do
6 t← (w, d, s);
7 Crimes← CrimeDataset(t);
8 f̂t(ϕ, λ)← estimatePDF_KDE(Crimes);
9 Initialize P t ← [];

10 foreach (i, j) ∈ I × J do
11 Pi,j,t ← integrate(f̂t(ϕ, λ), i, j);
12 appendToMatrix(P t, Pi,j,t);
13 Qt ← applyQuantilesAndNormalize(P t, q);
14 Append Qt to linear sequence {Qt};

15 {S1, . . . ,Ssmax} ← TransformToSlotSequences({Qt}, smax);
16 return {S1, . . . ,Ssmax};
17 Function TransformToSlotSequences({Qt}, smax):
18 Initialize empty sequences S1, . . . ,Ssmax ;
19 foreach matrix Qt with time index t = (w, d, s) do
20 Append Qt to sequence Ss;
21 return {S1, . . . ,Ssmax};

3 World Component

In this section, we describe how the data for the World (W) component is prepared for the
machine learning (ML) module. We use the Chicago Crime Dataset from the City of Chicago
Data Portal [24] as our source of observations. From this dataset, we focus on three key
attributes essential for spatiotemporal prediction: latitude (ϕ), longitude (λ), and the time
of occurrence. To systematically handle the city’s geographic extent, we partition the study
area into an I × J grid of rectangular cells, as shown in Figure 2 2. Each cell is labeled
cij . This grid structure allows us to aggregate and analyze crimes at a manageable level of
granularity.

Generating ML-Ready Features. Algorithm 2 (World-to-ML) describes how raw crime
data is transformed into quantile-based matrices capturing the spatiotemporal distribution
of crime incidents.

The algorithm begins by segmenting crime data into discrete intervals indexed by t =
(w, d, s), where w is the week number, d is the day of the week, and s is the time slot within
the day (ranging from 1 to smax). For each interval t, we select the corresponding subset
of crime events (Figure 3.A) and estimate a continuous spatial probability density function
f̂t(ϕ, λ) through KDE (Figure 3.B).

2 In our experiments, we set I = 100 and J = 100.
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From this estimated density, we compute a probability matrix P t by integrating f̂t(ϕ, λ)
over each grid cell cij :

Pi,j,t =
∫ ϕi

ϕi−1

∫ λj

λj−1

f̂t(ϕ, λ) dλ dϕ.

Algorithm 3 applyXLearn.

1 Function PrepareTrainingData({S1, . . . ,Ssmax}, linput):
2 X ← [];
3 Y ← [];
4 foreach Ss in {S1, . . . ,Ssmax} do
5 for i = 0 to |Ss| − linput − 1 do
6 Xi ← Ss

[
i : i + linput

)
;

7 Yi ← Ss

[
i + linput

]
;

8 append(X, Xi);
9 append(Y, Yi);

10 return (X, Y );
11 Function TrainModel(X, Y ):
12 XLearn← PredRNN++ ();
13 train(XLearn, X, Y );
14 return XLearn;
15 Function Inference(XLearn, Ss, linput):
16 Xrecent ← Ss

[
|Ss| − linput : |Ss|

)
;

17 Q̂s ← predict(XLearn, Xrecent);
18 return Q̂s;
19 Function applyXLearn ({S1, . . . ,Ssmax}, linput, trainFlag):
20 if trainFlag = true then
21 X, Y ← PrepareTrainingData({S1, . . . ,Ssmax}, linput);
22 XLearn← TrainModel(X, Y );
23 else
24 XLearn← retrieveExistingModel();
25 foreach Ss in {S1, . . . ,Ssmax} do
26 Q̂s ← Inference(XLearn,Ss, linput);
27 Store Q̂s in Patterns;

The resulting probability matrix P t encodes the likelihood of crime occurrences in each
grid cell cij at time interval t. To enhance the robustness of the predictions, we apply a
q-quantile transformation to each matrix P t, discretizing the computed probabilities into q

quantile-based classes ranging from 0 to q− 1, and normalizing them into the interval [0, 1).3
This quantile-based normalization aims to facilitate the learning process of the forecasting
model by reducing the influence of outliers and ensuring a more balanced representation of
crime levels across the spatial grid. We denote the resulting quantile-transformed matrix
as Qt.

3 In our experiments, we use q = 20.

CP 2025
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Algorithm 4 ML-to-CP: Converting Predicted Heatmaps into Deployment Locations.

1 Function ML-to-CP (cityGrid, densityThreshold p, circleRadius r, timeSlots S):
// We assume that for each s ∈ S, we have a predicted matrix Q̂s

that provides risk values per cell, i.e., risks(c) ≡ Q̂s(c).
2 allPolygons← ∅;
3 foreach s ∈ S do
4 hotspotss ← { c ∈ cityGrid | risks(c) ≥ percentiles(cityGrid, p)};
5 polygonss ← ClusterCells(hotspotss);
6 allPolygons← allPolygons ∪ polygonss;
7 allCircles← GenerateCircleGrid(cityGrid, r);
8 validCircles← [];
9 foreach circle ∈ allCircles do

10 foreach polygon ∈ allPolygons do
11 if IntersectsOrInside(circle, polygon) then
12 append(validCircles, circle);
13 break;

14 locations← [];
15 foreach circle ∈ validCircles do
16 tsRisk ← [];
17 foreach s ∈ S do
18 circleRisks ←

∑
{ risks(c) | c ∈

cityGrid, CellCompletelyInside(c, circle)};
19 append(tsRisk, circleRisks);
20 append(locations, (CircleCenter(circle), tsRisk));
21 return locations;

Each Qt is appended to a linear sequence {Qt}. Subsequently, to align the data format ex-
plicitly with the forecasting model’s requirements, we use the function
TransformToSlotSequences (described within Algorithm 2) to reorganize this linear se-
quence into separate slot-specific sequences. Each resulting sequence Ss contains matrices
from the same daily slot s, arranged chronologically by days.

The final output is a set of slot-specific sequences {S1, . . . ,Ssmax}, which serves as input
for the machine learning forecasting component.

4 Machine Learning Component

The machine learning component estimates future crime risk using spatiotemporal data
provided by the W component, specifically the slot-specific sequences {S1, . . . ,Ssmax} of
quantile-based matrices generated by Algorithm 2 (Section 3). Our goal is to predict how
crime patterns in each time slot will evolve (one step ahead) based on historical observations
of that same slot from previous days.

To achieve this, we employ a PredRNN++ architecture [27]. PredRNN++ is a recurrent
neural network specifically designed to predict future video frames based on a sequence of
past frames. It processes each input frame through multiple recurrent layers, each composed
of a specialized convolutional unit known as a Causal LSTM. Every Causal LSTM cell
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Figure 2 Partitioning the city area into an I × J grid of rectangular cells.

maintains two distinct memory states: a short-term spatial memory that captures local visual
patterns (e.g., textures and shapes), and a long-term temporal memory that tracks motion
dynamics across frames. These two memories are updated sequentially, with information
flowing in a strictly causal direction ensuring that predictions adhere to the chronological
structure of video sequences. To address the vanishing gradient problem, where learning
signals degrade across long temporal horizons, PredRNN++ introduces a Gradient Highway
Unit (GHU). This unit provides a shortcut path for gradients to propagate more directly
across time, substantially improving training efficiency on long sequences.

Crime patterns typically exhibit strong daily cycles (e.g., distinct day vs. night patterns).
This is why, rather than combining all frames into one continuous sequence, we maintain
separate, dedicated sequences for each distinct time slot. Specifically, each sequence Ss

comprises chronologically ordered quantile-transformed matrices {Qd
s}, where d indexes

consecutive days for the given time slot s. Although these slot-specific sequences are
maintained separately, the PredRNN++ model is trained jointly on data from all slots, allowing
the model to learn both within-slot and across-slot temporal patterns.

Algorithm 3 presents the complete applyXLearn pipeline for this multi-slot forecasting
task, where we predict a single future frame for each slot. This pipeline can operate in
two modes, controlled by a boolean parameter trainFlag. If trainFlag is set to true, the
algorithm prepares a new training dataset from the sequences and trains (or retrains) the
model before performing inference. Otherwise, if trainFlag is set to false, it skips these
steps, relying on a pre-trained model for direct inference.

When training is enabled, the function PrepareTrainingData (Algorithm 3, lines 1–9)
iterates over each slot-specific sequence Ss, generating input–output pairs using a sliding-
window approach. For each index i, we create a training example:

Xi = Ss

[
i : i + linput

)
, Yi = Ss

[
i + linput

]
.

Here, Xi contains linput frames, and Yi is simply the next frame in the sequence. These
generated input–output pairs from all slots are merged into a global training set (X, Y ).

Next, TrainModel (Algorithm 3, lines 11–13) fits the PredRNN++ model to this dataset.
After training (or if a pre-trained model is used when trainFlag is false), the Inference
function (Algorithm 3, lines 15–17) employs the most recent linput frames from each slot’s
sequence to forecast the next frame. Each slot’s prediction Q̂s encodes the anticipated spatial
crime-risk distribution in that slot for the next day.

CP 2025
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Figure 3 Data segmentation and probability density estimation.

Finally, the main applyXLearn pipeline (Algorithm 3, lines 19–27) orchestrates these
steps depending on whether training is requested (trainFlag = true) or not.

The slot-specific predictions {Q̂s} are stored in the Patterns repository. Typically, the
resulting predictions highlight extensive continuous regions of elevated crime risk that are
impractical for direct patrol assignment (Figure 4.A). Therefore, before transferring these
predicted heatmaps to the constraint programming (CP) module, we apply the ML-to-CP
procedure (Algorithm 4) to convert these broad, forecasted hotspots into precise, actionable
deployment locations suitable for operational patrol planning.

Figure 4 Hotspots identification in contiguous time slots.

In practice, patrol operations typically focus on a contiguous subset of time slots within
a specific day, denoted S (for example, a work shift). That is, algorithm 4 converts predicted
heatmaps into deployment locations by detecting high-risk cells within each time slot s ∈ S



Y. Mechqrane and I. Elabbassi 29:9

using a p-th percentile threshold. Following [3], we set p to the 85%-percentile so that only
the top 15% of predicted intensities are considered hotspots, thereby reducing the impact of
outliers. In Step 1 of the algorithm (lines 1–6), each time slot s ∈ S (line 3) is processed by
first identifying high-risk cells (line 4), then clustering these cells into contiguous polygons
using standard 4-connectivity where neighboring high-risk cells are merged into connected
components (line 5) (Figures 4.B, 5.A), and finally merging the resulting polygons into the
set allPolygons (line 6). Next, in Step 2 (line 7), a uniform grid of circles is generated over
the city grid to form allCircles (Figure 5.B). In Step 3 (lines 8–13), every circle in allCircles
(line 9) is examined against each polygon in allPolygons (line 10), and if the circle satisfies
the IntersectsOrInside condition (line 11), it is appended to the list validCircles (line 12)
and the inner loop is exited (line 13) (Figure 5.C). Finally, in Step 4, for each valid circle
(line 15) the algorithm computes the time-slot-specific risk by summing the risk values of
all cells completely inside the circle for each slot s ∈ S (line 18). The circle’s center, paired
with its list of per-slot risks, is then added to locations (line 20), producing as output a set
of pairs

(
CircleCenter, tsRisk

)
, where tsRisk contains a risk value for every time slot in S.

Figure 5 Potential deployment locations identification.

5 Constraint Programming Formulation

Building on the refined set of high-risk deployment locations identified via the ML-to-CP step,
we formulate a vehicle routing problem (VRP) to optimize patrol unit deployment. The
problem is defined on a directed graph G = (L,A), where L = {0, 1, . . . , nloc} represents
locations (with location 0 denoting the depot) and A ⊆ L× L defines admissible travel arcs.
The subset C = L \ {0} corresponds to the deployment locations selected by ML-to-CP. The
planning horizon is discretized into ns slots, S = {1, . . . , ns}, each of duration slot_length.
Patrol routes must be completed within a maximum allowable time maxT.

We consider a set of patrol units (vehicles), V = {1, . . . , nv}. Each location i ∈ L has
a service time service_t[i] ∈ N. Each deployment location i ∈ C has a time-varying risk
value risk[i, s] ∈ R+ for each slot s ∈ S. Travel times between locations i and j are given
by travel_t[i, j] ∈ N.

For each vehicle v, we introduce a variable route_length[v] indicating how many locations
that vehicle visits (including its first position). We also allow each patrol to start at any
location at time 0.

CP 2025
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The decision variables can be summarized as follows:
routev,k ∈ L: the k-th location visited by vehicle v.
arrive_tv,k, depart_tv,k, wait_tv,k ∈ N: arrival, departure, and waiting times at the
k-th location of vehicle v.
slotv,k ∈ {0} ∪ S: time slot during which vehicle v services its k-th location (0 indicates
either the depot or an unused slot).
route_length[v] ∈ {1, . . . , nloc}: total number of visited locations by vehicle v.

The key constraints are as follows:

Vehicles may begin at any location at time 0:

arrive_tv,1 = 0, routev,1 ∈ L,∀v ∈ V.

Beyond the route length of a vehicle v (i.e. route_length[v]), we force the following
decision variables to be 0:

routev,k = 0, slotv,k = 0, wait_tv,k = 0,∀v ∈ V, ∀k > route_length[v].

No vehicle returns to the depot prematurely:

routev,k ̸= 0,∀v ∈ V, ∀k ≤ route_length[v].

A vehicle must complete its service time and any waiting time before departing:

depart_tv,k = arrive_tv,k + service_t[routev,k] + wait_tv,k,∀v ∈ V, ∀k.

The arrival time at the next location depends on the departure time from the current
one plus travel time:

arrive_tv,k+1 = depart_tv,k + travel_t
(
routev,k, routev,k+1

)
,

∀v ∈ V, ∀k < route_length[v].

If the location is a deployment location, determine the slot by (Mapping Arrival Times
to Slots):

slotv,k =

1 +
⌊

arrive_tv,k

slot_length

⌋
, if routev,k ∈ C,

0, otherwise.

∀v ∈ V, ∀k.

Prevent two vehicles from serving the same deployment location simultaneously:(
routev1,i = routev2,j ∈ C

)
=⇒(

depart_tv1,i ≤ arrive_tv2,j ∨ depart_tv2,j ≤ arrive_tv1,i

)
,∀v1 < v2, ∀i, j.

Objective Function. The goal is to maximize the overall “risk coverage” achieved by assign-
ing patrol vehicles to specific high-risk locations at times when risks are high. Specifically,
each visit to a deployment location i in time slot s contributes risk[i, s] to the objective.
Because vehicles follow routes and visit multiple locations sequentially, the objective function

max
∑
v∈V

route_length[v]∑
k=1

risk[routev,k, slotv,k]
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sums the risk values for every (routev,k, slotv,k) pair across all vehicles v and all visited
points k. In other words, whenever vehicle v visits location routev,k during slot slotv,k, that
location’s time-dependent risk risk[routev,k, slotv,k] is accrued toward the total. Hence,
the model is driven to schedule patrol units so that the highest-risk locations are visited at
the most impactful time slots, thereby maximizing the sum of all risk covered during the
planning horizon.

6 Results

In this section, we present and discuss the training of our XLearn model and the subsequent
results obtained from both validation and testing. We further demonstrate the effectiveness
of the proposed strategy through ICON loop simulations.

6.1 Training XLearn

The core of our ML component is the XLearn model, which builds on the PredRNN++ architec-
ture [27]. We use the publicly available PredRNN++ implementation provided in the OpenSTL
repository4. Our experiments adopt the default architecture and training configuration,
except for the number of recurrent layers, which we increase from four to six by adjusting the
hidden layer structure. All other hyperparameters – including convolutional filter size, patch
size, learning rate, batch size, and the scheduled sampling schedule – remain unchanged. The
model is trained with cell-wise Mean-Squared Error.

Data Preparation and Setup

As mentioned earlier, we evaluated XLearn on the City of Chicago Crime Dataset [24],
focusing on reported incidents from 2023. After cleaning, the processed data amounted
to 261 798 records, from which we retained only latitude, longitude, and time as relevant
features. Following Section 3, World-to-ML transformed these raw crime observations into a
sequence of quantile-based matrices, {Qt}. With one year split into 52 weeks, 7 days per
week, and 48 time slots of half an hour per day, we obtained 17 472 matrices, each encoding
the spatial distribution of crime risk at a specific slot.

Model Training

We implemented applyXLearn (Algorithm 3) to form training pairs (Xi, Yi). Afterwards, an
80%–15%–5% split was applied for training, validation, and testing, respectively. Various
input-sequence lengths were tested, and a good configuration was found at linput = 10. The
output-sequence length loutput = 1 corresponds to a single prediction step (i.e., forecasting
the upcoming time slot of the next day).

We trained for 300 epochs on an HPC equipped with an NVIDIA A100-GPU, running
CUDA 12.2. The GPU had a maximum memory capacity of 81 920 MiB. Figure 7A plots
the training and validation loss curves over 300 epochs. Both curves show steady progress
and minimal overfitting.

We assessed model accuracy and fidelity using four widely adopted metrics:
Mean Squared Error (MSE) measures the average squared differences between predictions
and ground-truth data;

4 https://github.com/chengtan9907/OpenSTL

CP 2025
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Peak Signal-to-Noise Ratio (PSNR) [13], expressed in decibels (dB), quantifies reconstruc-
tion fidelity (higher values, typically 30–50 dB, denote better quality);
Structural Similarity Index (SSIM) [28], which evaluates structural alignment between
images on a scale of 0 to 1.0 (1.0 corresponds to perfect match);
Learned Perceptual Image Patch Similarity (LPIPS) [29], a deep-learning metric scored
between 0 and 1, where lower values indicate greater perceptual resemblance in feature
space (0 for identical images).

Figures 7B–7D depict the PSNR, SSIM, and LPIPS metrics over training epochs. Our best
validation metrics reached:

PSNR ≈ 31.47, indicating a high-fidelity reconstruction,
SSIM ≈ 0.96, reflecting strong structural alignment with the ground truth,
LPIPS ≈ 0.02, suggesting high perceptual similarity.

On the held-out test set, the model consistently achieved: SSIM = 0.82, PSNR =
27.11, LPIPS = 0.04, indicating that XLearn generalizes well: it preserves essential structure
(SSIM), yields visually coherent predictions (PSNR), and remains perceptually faithful (LPIPS)
(Figure 6).

Figure 6 Examples of predicted heatmaps.

Overall, these results confirm that the PredRNN++ XLearn effectively captures spatial-
temporal crime patterns, producing robust and high-quality forecasts that are well-suited for
guiding subsequent patrol route optimization.

6.2 Simulating the ICON loop

We conducted our simulations on a computer equipped with a 12th Gen Intel® CoreTM

i7-12700H processor (2.30 GHz), 32 GB RAM, and a 64-bit Windows operating system. We
set a fixed service time of 20 minutes per location. Travel distances were computed using the
OSMnx Python library [2], assuming a constant travel speed of 60 km/h.
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(A) Training vs. validation loss. (B) PSNR metric.

(C) SSIM metric. (D) LPIPS metric.

Figure 7 Key performance metrics.

To maintain operational feasibility, we set the radius of each deployment location circle
to 2 km. This radius ensures that traversing the circle’s perimeter (≈ 12.57 km) takes
approximately 12.6 minutes, fitting comfortably within the 20-minute service duration.
Hence, a 2 km radius allows sufficient time to patrol the perimeter fully, make strategic
movements, or handle additional points of interest within the deployment area. By contrast,
increasing the radius to 3 or 4 km would expand the perimeter to roughly 18.85 or 25.13 km,
complicating thorough coverage of the deployment area.

We performed simulations using week 49 of 2023 (unseen during training) from the
Chicago Crime Dataset [24]. Each cycle of the ICON loop spans three hours, subdivided into
six consecutive 30-minute time slots (so smax = 48 for the full day, but only 6 slots per cycle).
Thus, each day includes 8 cycles, and the full simulation week consists of 56 cycles. After
each cycle, simulation time is advanced by exactly 3 hours. The vehicle routing problem is
solved for each individual 3-hour cycle. We examined three distinct approaches for crime
deterrence:

Predicted Hotspots. This strategy combines forecasting and patrol planning in three main
steps:

1. Forecasting crime risk. Each day is divided into 48 time slots of 30 minutes. For any
3-hour deployment cycle, we focus on a window of 6 consecutive slots s1, s2, . . . , s6. For
each slot si, the World-to-ML function retrieves the historical sequence of crime-density
matrices {Qd

si
} over the previous linput = 10 days. These sequences are passed to the

applyXLearn function, which, using a pre-trained model (trainFlag = false), generates
forecasts {Q̂s1 , Q̂s2 , . . . , Q̂s6} representing predicted crime risk in each time slot.

CP 2025
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2. Identifying deployment locations. The predicted risk matrices are then processed
by the ML-to-CP module. This step transforms each heatmap into a set of actionable
patrol locations by applying a quantile-based threshold (e.g., top 15% of risk values) and
clustering nearby high-risk cells. The result is a list of circular zones likely to contain
high-risk activity, suitable for patrol deployment.

3. Optimizing patrol routes. Using operational parameters provided by World-to-CP
– such as the number of available patrol units and maximum route duration – the
applyXsolve function builds a constraint network incorporating the selected deployment
zones. The CP solver then computes patrol routes that maximize total crime risk coverage
within the cycle’s 3-hour window.

Historical Hotspots. This alternative approach replaces forecasting with a simple aggrega-
tion of past observations:

1. Averaging past crime patterns. For each of the six 30-minute slots in the 3-hour
deployment window s1, s2, . . . , s6, we collect the corresponding historical matrices {Qd

si
}

from the previous linput = 10 days. By computing the element-wise average across days,
we obtain Q̄s1 , Q̄s2 , . . . , Q̄s6 , which serve as estimated crime-risk distributions for each
slot.

2. Extracting hotspot locations. These averaged heatmaps are then passed to the
ML-to-CP module, which applies the same quantile-based thresholding and clustering
procedure as in the predicted hotspot approach. The result is a set of patrol deployment
zones derived from historical trends.

3. Route optimization. Given these deployment locations and the real-world constraints
provided by World-to-CP, the CP solver computes optimized patrol routes to maximize
the total historical risk covered during the cycle.

Constraint Satisfaction. This approach serves as a baseline that prioritizes feasibility over
risk-based optimization:

1. Random selection of locations: A set L of approximately 50 circles is selected randomly.
This quantity mirrors the scale of candidate locations derived by the other approaches.
Crucially, these circles are chosen without reference to any crime data, resulting in an
arbitrary spatial distribution.

2. No risk prioritization: Patrol routes are computed among these randomly placed circles,
adhering only to basic feasibility constraints. Consequently, this approach provides a
baseline for comparison, illustrating the effect of disregarding crime-intensity indicators
entirely.

Once patrol routes are fixed for a 3-hour cycle, the deterrence rate is determined as
follows:

For each vehicle v ∈ V, let Pv be the set of points visited during that cycle. Define the
number of deterred crimes for vehicle v, denoted nv, as

nv =
∑

p∈Pv

∣∣∣{ cr
∣∣ distance(cr, p) ≤ 2 km, arrive_t[v, p] ≤ t(cr) ≤ depart_t[v, p]

}∣∣∣,
where distance(cr, p) is the distance from crime cr to point p, and t(cr) is the time at which
crime cr occurred. Thus, for each visited point p, we count all crimes within the patrol’s
deployment circle of radius 2 km that fall between arrival and departure times.
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The overall deterrence rate for the cycle is then computed as

Hit Rate =
∑

v∈V nv

N
,

where N is the total number of crimes in the study area during the same 3-hour window.
This process is repeated for each cycle in our evaluation, and the final hit rate is the mean
across all cycles.

Table 1 Average Hit Rates (%) for varying patrol units.

Scenarios Predicted Hotspots Historical Hotspots Constraint Satisfaction

2 patrols 8 3 0.1

4 patrols 14 6 0.2

6 patrols 19 8 0.3

8 patrols 24 10 0.4

10 patrols 26 13 0.7

Table 1 shows the average hit rates (i.e., the fraction of crimes deterred) for each approach
when varying the number of patrol units. The Predicted Hotspots method consistently
achieves the highest hit rates, highlighting the benefits of using forecasts to guide where
patrols should be deployed. Even with only two patrols, this approach yields a deterrence rate
of about 8%, which further increases to 26% when ten patrols are used. This improvement
illustrates how forecasting-based route assignments can be scaled up to maintain significant
coverage in larger forces.

The Historical Hotspots method performs moderately well, with hit rates surpassing those
of the random baseline but trailing behind the predicted hotspot approach. As the number
of patrols increases, however, the historical method still benefits from having more units to
cover broader areas.

The Constraint Satisfaction approach serves as a baseline. Due to its purely random
location selection and route generation, the resulting hit rates are understandably quite low
(ranging from 0.1% to 0.7%), underscoring the importance of using forecasts in patrol routing.
Despite having a comparable number of potential deployment circles to the other approaches,
the absence of risk prioritization substantially diminishes this method’s effectiveness.

6.3 Discussion: Closing the ICON loop

The results confirm that forecasts generated by PredRNN++ can guide the CP-based patrol-
routing model to cover significantly more risk than baseline strategies, validating the
usefulness of the ML-to-CP channel within each ICON loop cycle. However, in the present
work, the CP-to-ML direction (Figure 1) was not exploited, meaning that the information
flow remains one-way: forecasts influence patrol plans, but the effectiveness of those plans
is not used to improve future predictions. This feedback is critical in operational settings,
as patrol deployment can displace or suppress crime and thus modify the spatio-temporal
patterns that XLearn must learn in subsequent cycles.

A promising way to activate the CP-to-ML channel is to adopt the Smart Predict then
Optimize framework with its surrogate loss SPO+ [9, 22]. The idea is to incorporate feedback
from each ICON loop cycle to fine-tune PredRNN++ based on the quality of the patrol plans
it enables – measured here by the total risk coverage defined in the objective function.

CP 2025
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The procedure may unfold as follows:
1. Observed pass. At the end of a given ICON loop cycle, the most recent crime data

is used to construct an observed space–time risk map risk. Solving the CP-based
deployment model with this map yields a reference patrol plan. The total risk covered –
computed as the sum of risk[routev,k, slotv,k] across all vehicles v and visited locations
k – is recorded.

2. Feedback. Recall that, earlier in the same cycle, a patrol plan was already computed
using the predicted map risk produced by PredRNN++. The difference in total risk
coverage between the reference plan (based on observed data) and the forecast-based plan
can be interpreted as a loss. SPO+ can then be used to convert this gap into a gradient,
which is backpropagated to fine-tune PredRNN++, encouraging it to generate forecasts
that lead to more effective patrol deployments in future cycles.

This decision-aware fine-tuning requires only one additional solve per cycle – on the
observed risk map – and can be performed offline without disrupting operations. It effectively
closes the ICON loop by turning each patrol deployment into both a consequence of current
forecasts and a source of supervision for future predictions. By doing so, the learning objective
of the ML module is aligned with the operational goal of maximizing total risk coverage
throughout the planning horizon.

7 Conclusion

This paper introduced a data-driven framework that integrates predictive modeling and
constraint-based optimization to improve the efficiency of police patrol deployments. By using
a PredRNN++ approach to generate spatiotemporal crime forecasts, our system anticipates
evolving crime risks. These forecasts are then mapped into actionable hotspots via quantile
transformations and geometric filtering, before being passed to the constraint programming
component for patrol route optimization.

Results from simulations on the Chicago Crime Dataset confirm that prediction-informed
routing policies achieve higher hit rates compared to methods relying on static historical
data or random deployments. Future work will focus on extending the model to account for
multi-criteria decision-making, incorporating additional data sources (e.g., demographic or
environmental factors), and exploring more sophisticated forecasting architectures. Overall,
our findings demonstrate the promise of tightly coupling machine learning and constraint
programming for proactive, effective crime prevention strategies.
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