Solving the Agile Earth Observation Satellite
Scheduling Problem with CP and Local Search

Valentin Antuori &
LAAS — CNRS, Toulouse, France

Damien T. Wojtowicz &
LAAS — CNRS, Toulouse, France

Emmanuel Hebrard &
LAAS — CNRS, Toulouse, France

—— Abstract

The increasing hunger for remote sensing data fuels a boom in satellite imagery, leading to larger
agile Earth observation satellite (AEOS) constellations. Therefore, instances of the AEOS scheduling
problem (AEOSSP) has become harder to solve. As most existing approaches to solve AEOSSP are
designed for a single spacecraft or smaller constellations in mind, they are not tailored to the need
of our industrial partner that is about to launch a constellation of 20 AEOSs. Hence, we designed a
local search solver able to schedule observations and downloads at such a scale. It relies on solving a
series of sub-problems as travelling salesman problem with time windows (TSPTW), first greedily,
then using a CP-SAT exact solver in order to find a solution when the greedy insertion fails. Lastly,
it schedules downloads and enforces memory constraints with greedy algorithms. Experiments were
carried out on instances from the literature as well as generated instances from a simulator we
designed. Our experiments show that using CP to solve the sub-problem significantly improve the
solutions, and overall our method is slightly better than state-of-the-art approaches.

2012 ACM Subject Classification Computing methodologies — Planning and scheduling; Applied
computing — Operations research

Keywords and phrases Local Search, Greedy Algorithms, Aerospace Applications
Digital Object Identifier 10.4230/LIPIcs.CP.2025.3

Supplementary Material Dataset: https://github.com/ssquilla/Earth_Observing_Satellites_
benchmarks [35]; archived at swh:1:dir:c1c87cf9c3a3e7ffe616bdffdc9c52afIe30cb35

Funding France Relance grant (project JAPETUS)

1 Introduction

Fueled by an increasingly easier access to space, technological advances, and an ever-growing
hunger for up-to-date information, satellite imagery is booming. Since the introduction of
the Pléiades project [13], satellite surveillance has typically been carried out using agile
Earth observation satellites (AEOS), because of their ability to observe an area within a
large horizon thanks to their yawing, pitching and rolling capabilities (see Fig. 1). Those
satellites are typically deployed within constellations of a few spacecrafts. Current existing
projects, such as JAPETUS, lead by our industrial partner Prométhée’, aim at launching
constellations of several dozen satellites.

As a consequence of the growing size of instances and constellations, the already NP-hard
AEOS Scheduling Problem (AEOSSP) becomes even harder to solve in practice. This is a
major problem for AEOS constellation operators, as low-quality observation plans would

! See https://promethee.earth/.

© Valentin Antuori, Damien T. Wojtowicz, and Emmanuel Hebrard;
37 licensed under Creative Commons License CC-BY 4.0

31st International Conference on Principles and Practice of Constraint Programming (CP 2025).

Editor: Maria Garcia de la Banda; Article No. 3; pp. 3:1-3:22

\\v Leibniz International Proceedings in Informatics
LIPICS Schloss Dagstuhl — Leibniz-Zentrum fiir Informatik, Dagstuhl Publishing, Germany

mailto:vantuori@laas.fr
mailto:dwojtowicz@laas.fr
mailto:hebrard@laas.fr
https://orcid.org/0000-0003-3131-0709
https://doi.org/10.4230/LIPIcs.CP.2025.3
https://github.com/ssquilla/Earth_Observing_Satellites_benchmarks
https://github.com/ssquilla/Earth_Observing_Satellites_benchmarks
https://archive.softwareheritage.org/swh:1:dir:c1c87cf9c3a3e7ffe616bdffdc9c52af9e30cb35;origin=https://github.com/ssquilla/Earth_Observing_Satellites_benchmarks;visit=swh:1:snp:e7dc9ee8505e55152ae4e3c4c9c6fd4aba9ee3f5;anchor=swh:1:rev:9a5f281b628ee1d68c12e5116e30ad422c2fa145
https://promethee.earth/
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics
https://www.dagstuhl.de

3:2

Solving AEOSSP with CP and Local Search

Pitch

O

| Yaw Roll

Figure 1 Schematic view of an agile satellite’s observation capabilities.

compromise their profitability. Moreover, their business model is increasingly based on
reactivity, allowing their customers to request images and have them delivered within a
few hours. AEOSSP must then be solved as fast as possible, since it is part of broader
processes that are all subject to tightening deadlines. As a side effect, image download
planning has to be efficient in order to minimize the overall processing time of a request. In
the past two decades, extensive work has been carried out on solving several versions of the
AEOSSP [34]. Many methods have been proposed so far, including exact methods, heuristics
and metaheuristics. However, most of these proposals are designed with a single spacecraft
or smaller constellations in mind, and without considering download planning or a reactive
business model.

In this paper, we introduce the industrial application of an acquisition planning method
using several techniques from CP, that can deal with large scale instances including complex
requests while performing download planning. Our method can quickly find good solutions
for a constellation of twenty AEOSs on instances reaching up to a thousand complex requests
over a planning horizon of six hours. Our approach is similar to the algorithm designed
by Squillaci, Pralet and Roussel [25] in that it relies on a local search approach hybridized
with an external solver. However, our method not only uses a SAT-based CP solver to solve
sub-problems rather than solely relying on greedy algorithms, but also considers satellite
memory constraints and takes download decisions instead of pre-assigning time intervals
dedicated to downloads.

It solves the AEOSSP by decomposing it into an acquisition planning problem and a
download planning problem. The first one is solved via local search whose moves aims at
building a sequence of acquisitions for a single satellite over a given time period consisting of
several overlapping acquisition opportunities, which often correspond to a daylight portion
of the satellite’s orbit over land. Those moves are performed using calls to a CP solver and
greedy algorithms. The download planning problem takes an acquisition plan as input and is
solved using a greedy algorithm.

Experiments were carried out over a set of instances from the literature as well as instances
generated using a simulator we designed. Results shows that our solver is comparatively
faster and finds better solutions than both the state-of-the-art aforementioned LNS method
tailored for AEOSSP and a baseline model implemented with IBM’s CP Optimizer.

This paper is organized as follows. AEOSSP is defined in Sect. 2. Then, a brief overview
of related work is provided in Sect. 3. Our approach is explained in Sect. 4, then evaluated
and compared with the literature in Sect. 5. Finally, this paper is concluded in Sect. 6.

V. Antuori, D. T. Wojtowicz, and E. Hebrard

2 Problem Statement

The AEOSSP problem aims at scheduling observations and data transfers in order to
maximize the profit of the constellation’s operator. Together with our industrial partner, we
adopted an integrated planning definition, i.e. including constraints on AEOSs’ memory and
computing not only an observation planning but also a download planning. In this respect, it
is similar to that adopted in some of the latest research [11, 10]. Since our partner emphasizes
reactivity, AEOSSP is periodically solved over a few-hour rolling planning horizon. Hereafter,
we describe the elements of the problem before formalizing it.

2.1 Input Data

Let R be a set of customer requests. A request r involves observing an area split into a set
M., of meshes. Requests can be repeated, hence we define the set P, of those repetitions. For
instance, there can be a request to observe the area around Glasgow, which is decomposed
into a grid of meshes covering the city, with a two-hour period during the CP 2025 conference.

The constellation we consider has a set S of satellites, that can be used to observe a mesh
for a given period. Such an action is called an acquisition opportunity, although we shall use
rt.m as the
set of possible acquisitions of the request r for the period ¢ and the mesh m, and A® as the

acquisition for short. Let A be the set of acquisitions. We define the subset A

subset of acquisitions which can be made by satellite s. Each acquisition a has a duration p,
to make that observation, which must occur during a time window [rq, d,]. It is associated to
a profit v,, and it consumes a quantity of memory ~,. Satellites may have some acquisitions
in memory at the beginning of the planning period. For each satellite s, ¢ is the set of such
acquisitions, and we note F = UgesF?°. There can be many alternative acquisitions for the
same observation task (i.e. a mesh for a given period), since the same image can be shot by
different satellites or the same satellite on different orbits. Therefore, the goal is to select
acquisitions among the many alternatives, so that as many requests as possible are fulfilled.

Then, the acquisitions must be scheduled. As satellites need to maneuver in order to
aim at their targets (i.e. to observe a mesh), there are transition times between successive
acquisitions performed by the same satellite. In agreement with our industrial partner and
in line with other works in the literature [3], we assume that transition times are time-
independent. Thus, T'(a1,as) is the transition time between two acquisitions {aj,as} C A®
on a satellite s.

Finally, a network of ground stations (GS) are used to download the observations. For
each acquisition a, there is a set W, of possible download windows. A download time window
w is a time window [r,,d,] during which acquisitions can be downloaded. It has a total
capacity 7y, which is the product of its bandwidth by its duration. Each satellite s has a
memory capacity Cs.

Memory management is the second part of the problem. It consists of assigning each
selected acquisition in the plan to a download time windows, while ensuring that onboard
memory and download capacity constraints are respected.

2.2 Decision Variables and Constraints

The following model formally describes the problem. For each acquisition i € A, we have a
boolean selection variable z, € {0,1} and a start time variable s, € {rq,d, — p,}. Moreover,
for each acquisition a € A U F and for each of its download options w € W, there is a
boolean selection variable y, ., € {0, 1}.

3:3

CP 2025

3:4

Solving AEOSSP with CP and Local Search

The problem is to compute a mission, i.e. select and schedule the acquisitions and down-
loads for each satellite in order to maximize the profit, satisfying the following constraints:
Acquisitions time windows: Selected acquisitions must occur wholly within their time win-

dows.
Ty = 14 <8, <dy—p, VaeA (1)
Acquisitions no-overlap: On a satellite s € S, the selected acquisitions must not overlap in
time.

Ta ATy = Sq+pa+T(a,b) <spVsp+pp+T(ha) <s, V{a,b} CA° (2)
Acquisitions alternatives: No more than one acquisition among alternatives for each obser-
vation target shall be done.
ZaeAmeagl Vr € R,Vt € P.,VYm € M, (3)
Acquisitions download: Selected acquisitions cannot be downloaded more than once, they
must be finished before being downloaded?.
ZweWa Yaw < Ta Yae A (4)
Yo = Sa T Do <Tw VYa€ANYweW, (5)
Satellite memory: At any given time ¢, the quantity of data stored on a satellite s € S
(equal to the total acquired before ¢ minus the total download before t) must not exceed
its capacity?.
ZaeAS\maAsaa Ya — EaeAS,weWa\ya,w/\dwq Yo < Cs Vi (6)
Downloads capacity: The total quantity of data downloaded during a time window must
not exceed its capacity.

ZaEA Ya,wVa < Y Yw e W (7)
The objective is then simply to maximize the total profit:
ZaEA ZLaVa (8)

This objective function might seem overly simple. However, from the point of view of
the operators, this is relatively easy way to steer the plan toward their true objectives. In
particular, some efforts have been put into complex requests with non-additive rewards [25].
For instance, imagine that you want a complete map of Scotland. It requires to perform a
large set of acquisitions, hence having only a subset of the observations may be worthless, or
at least the profit should not be linear with the ratio of the observations that were made.
However, such complex requests are likely to span over several planning horizons. Therefore,
modeling a complex cost system might be detrimental if the whole request can never fit within
one planning horizon. On the other hand, with a simple additive objective, the operators
may for instance start with attaching low profits to each observation of a complex request,
and then increase the weight associated to missing observations on subsequent planning
sequences, depending on how close to completion they are.

3 Related Work

Initial work on AEOSSP was carried out as part of the development of the Pléiades constel-
lation [13]. Since then, there have been numerous articles on this topic [34, 24], considering
several variations of the problem, and exploring a wide array of methods that are generally
in line with related aerospace problems [36]. In this section, we provide a brief overview of
the state of the art on AEOSSP.

2 We make the conservative assumption that an acquisition can be downloaded only if the acquisition is
finished at the start of the download time window.
3 We make the conservative assumption that memory is released at the end of the download time windows.

V. Antuori, D. T. Wojtowicz, and E. Hebrard

3.1 AEQOSSP variations

Substantial differences exist in the scope of the AEOSSP used throughout the literature,
mainly on extensions to the core observation scheduling problem [13]. This core is NP-
hard [13]. Moreover, exhaustively taking into account all possible extensions of the AEOSSP
can make it too complex, therefore intractable for existing methods. As a consequence, all the
publications that we are aware of about AEOSSP consider only a subset of the constraints
with more or less radical simplifications. We also defined with our industrial partner a
somewhat simplified version of AEOSSP in this paper, as previously discussed in Sect. 2.

Some models [28, 6, 14] consider the breakdown into meshes and strips (i.e. long polygons
imaged while the satellite is moving) of the requests’ areas of interest as decision. As in
most of the literature, we assume that this step is part of some preprocessing and therefore
outside of the scope of our work.

Depending on the AEOSs’ capabilities, the nature of the requests themselves can vary.
Indeed, they can be simple, one-shot images of a given area, strips covering long areas [1],
repetitive, stereoscopic [20], video requests [5], or even be instrument-specific when several
sensors are on the spacecrafts [18, 17, 37]. Our solver is agnostic to the nature of the
acquisitions; expressing punctual and stereoscopic requests can be done at preprocessing
time using repetitions.

The quality of the images is time-dependent [21, 16, 29, 33, 22] and multifaceted (shooting
angle, luminosity, cloud cover, customer preferences, etc.), leading some authors to consider
AEOSSP as a multi-objective problem [16, 15]. Hence, in addition to profit, those works seek
to maximize image quality or use of the satellites. Profit itself can be time-dependent [28]
since it is quality-dependent. It can also be affected by urgency and priority policies among
requests [29, 27], and even be sequence-dependent in the case of repetitive or stereoscopic
requests [4, 12, 14, 20]. In our work, we have a black-box approach to profit as it is determined
for each acquisition by our partner: quality and urgency are therefore sidelined as they are
embedded within the profit, hence removing its time-dependence.

There are also operational constraints. Firstly, transition times, which is the time the
satellite needs to maneuver towards its target. They are by nature dependent on the time
and sequence of acquisitions made by AEOS [3, 22, 2]. They are either modeled as such, or
approximated by piecewise linear functions or constants, or simply ignored. Our approach
also approximates transition time using a transition time matrix between categories of
attitude adopted by the AEOSs when performing the acquisitions. Hence, it allows to take
into account time and sequence dependencies at a granularity defined at preprocessing time
while formally removing time-dependence from our model.

Then there can be constraints about onboard energy management. The energy comes
from solar panels, and the rate at which batteries are refilled therefore depends on both
the time (the exposition to the sun depends on the orbit of the satellites) and the tasks
performed by the satellite since it constrains the orientation of the solar panels [32, 33].
However, on-board energy management is rarely a bottleneck, and hence it is usually not
taken into account when planning the observations. In accordance with the needs expressed
by our industrial partner, this aspect is not covered in our work.

Finally, there is the management of onboard memory and its corollary: the management
of downloads [21, 10, 11, 19]. Scheduling both acquisitions and downloads is often referred to
integrated scheduling in the literature [34]. Memory can be looked at in two ways. By ignoring
the files, it becomes a reservoir that is filled and emptied according to linear functions. If
the files are taken into account, then it is a set of blocks that must be distributed between
the download windows according to their capacity. We take the second approach, as it best
fits our partner’s processes.

3:5

CP 2025

3:6

Solving AEOSSP with CP and Local Search

3.2 Resolution methods

The wide range of variations in AEOSSP has resulted in the study of numerous resolution
methods.

Exact methods have been extensively used to solve the AEOSSP. For instance, a branch-
and-bound algorithm taking into account time-dependent constraints was proposed and
shown to be effective on small instances [3]. Several MILP formulations have also been
proposed [29, 12], including in the context of integrated scheduling [10, 11]. Some work only
focus on data download [19] and are more in line with broader work on the Antenna-Satellite
scheduling problem. Although MILP was successfully used to perform integrated scheduling
with a commercial solver for Planet Lab’s constellation of over a hundred spacecrafts [23],
they are not agile satellites and hence the scheduling problem is a lot easier than the AEOSSP.
Moreover, while projects with a problem statement roughly similar to ours [11] does use
MILP, their instances are way smaller (4 satellites, up to 3 ground stations and 200 requests),
do not take into account transition times, and have a time limit orders of magnitude too
high (approx. 3 h) to be used in our industrial partner’s processes. For all these reasons, we
have not retained the possibility of using CP to solve the problem as a whole, but rather to
solve sub-problems as a local search move.

Much of the work on AEOSSP has chosen to abandon optimality guarantees and propose
methods based on heuristics and metaheuristics. Several methods solely based on heuristics
have been proposed to solve AEOSSP. The scheduler of the COSMO-SkyMed constellation,
comprising four spacecrafts, simply selects as much acquisitions as it can by descending order
of priority [1]. Heuristics can also be used to compute the acquisitions given areas of interest
in the context of an online scheduler [14]. A method using deep reinforcement learning and
heuristic algorithm has also recently been proposed to solve AEOSSP for a single satellite [2].
Although those heuristics-based methods are easy to implement and yield good results for a
single satellite or smaller constellation, they are not expected to be as good when applied
to a whole constellation because of the larger number of alternative acquisitions. Methods
using machine learning are also of great interest to solve AEOSSP, as satellite operators
accumulate many instances over time, but the size of the instances and the lack of real-world
data from our industrial partner led us away from learned heuristics.

Many metaheuristics-based methods has also been proposed since the first studies on
AEOSSP, such as taboo search [4]. Genetic algorithms have been widely used to tackle multi-
objective versions of the AEOSSP, for instance when considering operator’s preferences [16],
load balancing [7], or solution stability in an online setting [15] in addition to profit. They
were also applied to decompose sub-problems. In a first example, it is used for single-satellite
scheduling within a broader game theory framework where satellites are players [20]. In
a second example, it is used to choose between overlapping acquisitions within multi-level
clusters computing using priority metrics [8]. Agent-based methods are also interesting to
solve small-scale instances of AEOSSP [5].

Finally, local search and large neighborhood search (LNS) methods have also been
extensively studied, including in the context of multi-objective optimization [28, 37] and
online solvers [27]. Moves proposed in the literature rely on a wide array of algorithms. On
the more complex side, there is a move based on computing maximum independent sets
within acquisitions interval graphs using an evolutionary algorithm [6]. Unsupervised learning
has also been used as a preprocessing tool for destructive LNS moves [21]. However, most
of the constructive LNS moves are simpler, as they widely rely on random choices [9] and
greedy algorithms [9, 22, 25]. It should be noted that these local search and LNS methods
are similar to what can be found in the team orienteering problem [30], since it shares many
characteristics of the acquisition selection sub-problem of AEOSSP.

V. Antuori, D. T. Wojtowicz, and E. Hebrard

Acquisitions’ intervals, a; € A

~~~~~~~ ® 1 & -
4”"”7@]""7”> +"7".””7»

Dependence graph

Component 1 Component 2 Component 3

A

Sat. 1

Possible sequences: §; = [ag — as], g2 = 0, g3 = [ag — a7 — as]

Figure 2 Example of sequences defined from the dependence graph built from a set of acquisistions.
Acquisitions with the same colour are alternatives to cover the same mesh for the same task of the
same request. The interval graph contains three connected components.

The solver we present in this article is also in this line of work, as local search methods are
particularly effective for solving complex instances in satellite constellations, while making it
easier to break down the problem into acquisition planning and download management.

4 A Local Search Approach

In order to solve our version of AEOSSP, we leverage the structure of the problem to
decompose it into two parts. Firstly, the selection and allocation of the acquisitions —
the master problem — is solved using a local search method that computes sequences of
acquisitions for each satellite. Secondly, one planning of file downloads — the sub-problem —
is solved using a greedy algorithm. Those two parts are repeated until a time limit.

4.1 Acquisition Planning

The acquisition planning phase aims at building a sequence of acquisitions for each satellite
maximizing the profit under the aforementioned constraints 1, 2 and 3.

Our method uses the fact that there exists subsets of acquisitions of a given satellite that
are temporally independent of each other [6, 26]. This can happen when the satellite flies
over a large area with little interest (e.g. an ocean, cloudy areas, etc.), or simply because of
the satellite’s orbital nighttime. Formally, for each satellite s € S we can define a dependence
graph whose nodes are the acquisitions a € A°. There is an edge between two acquisitions
{a,b} C A® if d, + T(a,b) > Vdy + T(b,a) > 14, i.e., when their time windows overlap
while taking into account transition time. As a consequence, each connected component of
these graphs are temporally independent of each other (see example in Fig. 2). Hence, local
optimization may be performed over each connected component in order to build the plan in
the form of sequences of acquisitions.

Our algorithm for acquisition planning has two phases. Firstly, it builds a solution from
scratch with a greedy algorithm. Secondly, a local search phase aims at improving the
solution until a local minimum is reached.

3:7

CP 2025



3:8

Solving AEOSSP with CP and Local Search

4.1.1 Greedy Initial Solution Construction

The greedy algorithm iteratively tries to insert an acquisition. It uses a utility criterion
U(a) = va/pa defined as the ratio of an acquisition a’s profit over its duration to select the
next acquisition to insert. The algorithm iterates over the acquisitions whose associated
mesh and task are not currently covered by descending order of their utility, by trying to
insert them in their satellite’s plan to minimize the increment of transition times.

The time complexity to find the best valid position is linear in the length of the current
sequence and to insert the acquisition is linear in the size of the sequence under construction.
Therefore, the algorithm runs in O(].4|?) time overall for a sequence of acquisition A.

Let A = ag,a1,...,ar,ax+1 be a feasible sequence of acquisitions with ag and ax4+1
dummy acquisitions of null duration, null transition time with all other acquisitions and
such that rq, = 0 and dg,,,
i € [0, k] such that inserting a between acquisitions a; and a;y; yields a feasible sequence
and T'(a;,a) + T(a,a;+1) is minimum.

The following quantities can be accessed in constant time:

= o0o. The greedy insertion algorithm returns the position

Sa; = max(ra,, Sa;_y + Pa;_y + T(a;—1,a;)) V1<i<k (9)
slack(a;) = da; — Sa; — Da; Vi<i<k (10)
9ap(a;) = Sa; — Sa;_; + Pa;_, + T(ai—1,a;) V1<i<k (11)

Then, we store the values of the cumulative gap up until acquisition a; in linear space:
i—1

cgapla;) =Y gap(a;) Vi<i<k (12)
j=0

Therefore, we can access in constant time F'(a;, a;) the time length available between
tasks a; and a; (with j > 4) in the sequence:

F(a;,a;j) = cgapla;] — cgapla;] + slack(a;) Vi<i<k (13)

Finally, we store the time length available for a task insertion immediately after task a;
using linear space:

I[al] = miniqng(ai, aj) Vl S 7 S k‘ (14)

When trying to insert acquisition a, the algorithm makes a linear search over the sequence
ag,ai,...,a; to find the position ¢ € [0,k] that minimizes T'(a;,a) + T(a,a;+1), whilst
ensuring that the insertion is feasible using the value of I[a;]. Then, after the actual insertion,
the values of s, cgap and I are updated in linear time by once again traversing the acquisition
in the sequence. An insertion therefore requires two linear-time traversals of the sequence.

Finally, we introduce randomization. Indeed, instead of taking the next acquisition in
utility order, there is a small probability to take a random one instead. Once this algorithm
has produced an initial solution, the local search starts.

4.1.2 Local Search

Our method locally optimizes the plan by iteratively recomputing sub-sequences. A move for
our local search consists in solving a kind of orienteering problem over the complete graph
formed by the acquisitions of a given connected component. In this graph, each node is an
acquisition with the same time window, and is associated to a profit, which we will describe



V. Antuori, D. T. Wojtowicz, and E. Hebrard

below. The transition time between two acquisitions is the length of the path between the
two associated nodes. The goal is to find a path in this graph that maximizes the sum of the
profit of the visited nodes, while respecting time windows (i.e. finding a maximum-profit
sequence of acquisitions).

The profit of selecting an acquisition a is defined as follows. It uses the marginal profit
‘P that is the profit increment that would occur if an acquisition was inserted in the plan
instead of another alternative acquisition (i.e., the cost of swapping acquisition a for an
alternative acquisition b if it was in the current plan, that is, if 2, = 1).

P(a):va—ZbGA.t \a TbUb rGR,tGPT,mGMT\QEAM,m (15)

Should the move find a solution with a higher overall profit than the current plan, the
new sequence that was built for the considered connected component substitutes the one
in the plan. The latter is updated as a whole, by deselecting already selected alternative
acquisitions from the new sequence.

To solve this sub-problem, we use the same procedure as for the initialization: for each
acquisition in decreasing order of marginal profit, it tries to insert acquisitions within the
sequence. This procedure stops when the first acquisition with a non positive marginal profit
is reached. Two insertion techniques are used. The first tries to insert the acquisition in the
sequence so that transition times are minimized, just as in the initial solution construction.
The second technique is used when the first fails: an external solver is called to perform the
insertion of the new acquisition by rescheduling the whole connected component.

We use Tempo*, a CP-SAT solver that we are developing as part of a distinct project.
It is asked to solve a traveling salesman problem with time windows (TSPTW), where the
goal is to find a valid tour in the graph formed by the acquisitions already in the sequence
extended with the acquisition we are trying to insert. The time window of a node is the time
window of the acquisition, and the transition time between two nodes is the transition time
between the two associated acquisitions. We model this problem with one interval variable
for each acquisition i. The release and due dates of the interval variable of an acquisition ¢
are r, and d, respectively, and its duration is p,. Then the only constraint of the model is a
NOOVERLAP on all the acquisitions, taking into account the transition times. There is no
objective function as we just seek a valid sequence of acquisitions. Tempo’s search is limited
by a fail limit. The main benefit of this approach is that it allows to reorder the sequence
when a solution is found, possibly leaving space for further acquisition insertions.

Finally, the neighborhood of a given plan is defined by the number of connected compon-
ents. Indeed, we have one possible move per connected component, that eventually leads to
an improving neighbor. Therefore we choose to perform a simple descent, choosing at each
iteration the first improving neighbor among all randomly ordered neighbors, until a local
minimum is reached, i.e. none of move can improve the current plan.

4.2 Download Planning

The download planning phase takes place when a local minimum is found. Its aim is twofold.
It first computes a download plan by affecting download windows to the planned acquisitions
and the initial memory elements aboard the satellite. Then, it fixes potential remaining
memory overloads on the satellites by progressively deselecting acquisitions.

4 See https://gitlab.laas.fr/roc/emmanuel-hebrard/tempo.

3:9

CP 2025


https://gitlab.laas.fr/roc/emmanuel-hebrard/tempo

3:10

Solving AEOSSP with CP and Local Search

For each satellite, the algorithm iterates over the download windows by increasing order
of their starting time, in order to greedily affect acquisitions until the download window’s
capacity is reached or there is no remaining acquisition to download. This greedy algorithm
starts by collecting the acquisitions that are still on board at the starting time of the
download time window, and sort them by decreasing order of their memory consumption.
Then acquisitions are assigned in this order to the window if they fit.

Despite download decisions being taken, memory constraints may still be violated as the
algorithm is blind to memory overloads. Hence, a memory overload repairing procedure is
applied to satellites with overloads. Since we assume that the memory is freed at the end
of the download window, overloads are checked at these time points. When one is found,
a knapsack problem is solved over the onboard acquisitions. The knapsack capacity is the
memory capacity of the satellite, the weights are the memory consumption of the acquisitions,
and the values are the profits of the acquisitions. We use a simple greedy algorithm with a
profit over size ratio utility to solve the knapsack problem.

It should be noted that while both procedures are using greedy algorithms, it is not an
issue as download planning is often an easy task and memory is rarely a bottleneck. Finally,
it should be noted that since our overall method is solved on a rolling horizon, some images
may not be downloaded during the current planning horizon. They will be the content of
the set F of the next planning horizon.

5 Experiments and Results

We evaluated our approach against a state-of-the-art commercial solver and recent proposals
from the literature, over instances from the literature as well as generated by a simulator of
our own design.

5.1 Experimental setting

Experiments were run on a cluster of computers with 2,1 GHz Intel CPUs and 256 GB
RAM. Results are the aggregation of 5 runs with different seeds and a 10 min timeout. We
implemented our solver with C++ 20.

5.1.1 Instances

We used two instance sets to evaluate our work.

The first instance set, hereafter referred to as “Squillaci et al.”, comes from recent
work® [25]. It contains 32 instances containing up to 1140 requests. Details of the instances
are provided in Table 7 (Appendix. A). They are regional instances focusing on Europe, half
of them are generated using a uniform target distribution and the other half focus on fifty
large European airports, containing one-shot, video, stereoscopic and periodic requests. It
should be noted that video requests are like one-shot requests but longer and more profitable.
Moreover, a stereoscopic request implies observing the same area twice with the same satellite
with two different angles. Therefore, we slightly adapted our method in order to support
stereoscopic requests, by trying to insert the second acquisition right after the first one
has been inserted into its satellite’s sequence. If the second insertion fails, then the first
acquisition’s selection is canceled. The marginal profit of an acquisition from a stereoscopic

® Instances retrieved from https://github.com/ssquilla/Earth_Observing_Satellites_benchmarks.


https://github.com/ssquilla/Earth_Observing_Satellites_benchmarks

V. Antuori, D. T. Wojtowicz, and E. Hebrard

Table 1 Satellites orbital parameters for the simulation, including plane inclination 4 (deg),
altitude a (km), longitude of ascending node Q) (deg), mean anomaly M and period P (min).

(a) Inclined plane orbits. (b) Heliosynchronous orbits.

7 a Q M P ) a Q M P
90 500 -180 {-—180,-90,0,90} 90 98 550 -144 -180 90
90 500 -90 {-180,-90,0,90} 90 98 550 -60  -90 90
90 500 0 {-180,-90,0,90} 90 98 550 60 O 90
90 500 90 {-180,-90,0,90} 90 98 550 144 90 90

request is the sum of both’s marginal profits. We did not use the profit function proposed in
[25] for periodic requests since we have an all-or-nothing approach for the requests. Finally,
as the instance files did not provide transition times, we followed the method of Squillaci et
al. to compute it as a function of the euclidean distance between the targets.

The second instance set we used was produced by an instance generator we designed®.

The latter’s input is a set of coordinates corresponding to points of interest (POIs) distributed
over the Earth, then calculates meshes covering them using a greedy algorithm. It then
simulates satellite orbits to determine the visibility time windows for each mesh and ground
station over a given planning horizon. Requests are then generated by randomly selecting a
subset of the meshes, with a probability of also selecting their neighbors in order to simulate
requests over large geographical areas. The number of periods depends on the view accesses

associated with the selected meshes, and is also randomly selected.

We produced a set of 20 instances’

of 6 h, assuming a constellation of twenty satellites evenly spaced on four parallel inclined
orbits and an heliosynchronous orbit (see orbital parameters in Table 1). We assumed
a network of 6 ground stations with characteristics similar to KSATlite®. As in many
other work, we used non-uniform POI distribution at regional scale [1, 9, 25] — hereafter
referred to as “Antilles”, “Sahara” and “Fountains” — and worldwide scale — “Military” and
“World Heritage” — that we extracted from OpenStreetMap. For each POI set, we generated
4 instances from 50 to 500 requests. Further details about the instances are in Table 6
(Appendix. A).

In order to make a comparison, we use the same hypothesis to compute transition time
as in Squillaci et al. instances. For a given target, we choose a base profit and a decreasing
slope randomly, each acquisition has then a profit that depends on its start date, the later it
is, the lower will be the profit. In addition to that, each acquisition has a chance to have a
large penalty in order to simulate bad weather.

, containing up to 500 requests over a planning horizon

5.2 Comparison points

We compared our algorithm with the results of the aforementioned LNS method from the
literature, as well as a baseline model with IBM’s CP Optimizer (CPO).

5 See source code at https://gitlab.laas.fr/roc/damien-wojtowicz/acossp_instance_generator.
7 Instances available at https://gitlab.laas.fr/roc/damien-wojtowicz/acossp_instances.
8 See https://www.ksat.no/ground-network-services/ksatlite/.

3:11

CP 2025


https://gitlab.laas.fr/roc/damien-wojtowicz/aeossp_instance_generator
https://gitlab.laas.fr/roc/damien-wojtowicz/aeossp_instances
https://www.ksat.no/ground-network-services/ksatlite/

3:12

Solving AEOSSP with CP and Local Search

5.2.1 LNS Method

We choose Squillaci, Roussel and Pralet’s [25] LNS method because, to our knowledge, it is
the most similar to ours in the literature. It uses dedicated moves to relax sets of requests
before reinserting the requests in the plan.

Its destructive phases use the same concept of connected components within an acquisi-
tions’ time windows graph as our method, as well as other work in the literature [6]. Those
phases randomly select a subset of connected components, then relax a subset of acquisitions
within, so as to have more choice to reinsert a request after relaxation.

Repair phases use CPO to solve an orienteering problem over the subset of the selected
connected components. Although this algorithm can run in a multi-core parallel mode, we
run the experiments with a single core in order to do a fair comparison with our algorithm.

5.2.2 CP Model with CPO

Finally, we implemented a baseline CP model with CPO version 20.1.0 using its C++ API,
solved with a single thread and running on the same machines as our solver. Under the
default parameter setting, CPO runs LNS until a local optimum is detected and then switches
to complete search, namely, Failure Directed Search [31]. We defined three sets of interval
variables to model this problem. First, there is an optional interval X, := (sq,€,) for each
acquisition a € A, with s, > 74, e < d, and e, — sS4 = p,. Then, there is an interval
Y = (Sw,€w) for each download window w € W with s,, > r, and e, < d,. Lastly,
there is an optional interval Z, ,, := (Sq,w, €a,w) for each download window w € W, for each
acquisition a € A with s4.45 > Sw A Saw = €q, €aw < €y and €q 1y — Sq,uw = Mq /by
The objective function is stated as follow:

max Z PRESENCEOF(X,) X g (16)
acA

We defined the following constraints. Constraint 17 ensures that acquisitions do not
overlap in the plan for each satellite, taking into account a transition matrix 7. Constraint 18
ensures uniqueness of observations. Constraint 19 defines a profile of memory usage, and
Constraint 20 sets a limit on this profile. It should be noted that this is the typical way to
model a reservoir using CPO, which we chose over a cumulative global constraint in order to
avoid adding a task that starts with the acquisitions and ends at the download. Constraints 21
and 22 enforce consistency between acquisitions and downloads: only acquisitions in the
plan can be downloaded and only one download can be done for each acquisition. Finally,
Constraint 23 ensures that the capacity of each download window is not exceeded.

NOOVERLAP({X, | S, = s},T) VseS  (17)
ALTERNATIVE({X, | Ra =" ATy =t AMy,=m}) VreR,Vte P, ,VYmeM, (18)
Dy 1= Z step(Xq, mg) — Z step(Zaw, Ma) VseS  (19)
acA, wEWs
ArLwaysIN(ps, 0, Cs) VseS  (20)
PRESENCEOF(Z,,,) => PRESENCEOF(X,) Vae A,VweW, (21)
ALTERNATIVE({Z, , | w € W,}) Vae A (22)
NOOVERLAP({Z, . | Va € A, }) YweWw  (23)

It should be noted that, for Squillaci et al. instances, this model has to be adapted by
removing all constraints and variables dealing with the memory and the downloads, treating
all the downloads as acquisitions except that their intervals are not optional, and by adding
an equality constraint between the presence variable of stereoscopic pairs of acquisitions.



V. Antuori, D. T. Wojtowicz, and E. Hebrard

5.3 Results and Discussion

We now present and discuss the experimental results, by first comparing our method with
the aforementioned comparison approaches. Then, we assess the impact of our use of the
CP-SAT solver Tempo within the local search move, as well as the consequences of how our
method manages satellite’s memory.

5.3.1 Comparison with LNS and CPO

We compared our method (noted as LS-tempo, with a fail limit of 50 when using the solver)
against the LNS from the literature (LNS) and the CPO model (CP0O) over Squillaci et al’s
instances (see Table 2) and over our set of instances in (see Table 3).

The baseline CPO model is the most competitive for the smaller instances in every instance
set. However, it does not scale up to large instances as well as the two other methods. On
Squillaci et al’s instances, it has good results up to 500 requests, is the best on 4 instances
and can also prove optimality on 4 instances. On our instances, it is the best up to 100
requests and proves optimality on 3 instances. Auxiliary experiments on Squillaci’s instances
showed that CPO performs better with a 1 hour time budget (up to 27 % increase in profit),
but still stays behind other methods (with 10 minutes budgets), especially on large instances
(for example the 0-1000-0-0 instances: 22 % and 17 % behind our method). Nevertheless,
our industrial context does not allow such a time budget as the resolution is part of a larger
process.

Secondly, LS-tempo shows good performances and has often the best solutions on both
instance sets (21 times the best solution, compared to 16 for CP0 and 7 for LNS). On Squillaci
et al. instances, while our solver is the worst over instances with periodic requests only, it
is especially good for the 1000 video requests instance of concentrated target (16 % gap
versus 21 % for LNS). LNS has the most balanced performances, is particularly good for the
periodic-only instances, and has the best gap in average. Over our instances, LS-tempo is
the best solver in average (0.5 % gap better). Therefore, the overall performance difference
between LNS and LS-tempo is not clear since LNS seems to be good in average, but LS-tempo
finds the best solution more often.

It should be noted that the low efficiency of LS-tempo on periodic-only instances is the
consequence of a comparatively smaller number of successful acquisition insertion using the
CP-SAT solver. Even when allowing our method to run for up to an hour and with a larger
fail limit for the solver, results on the large periodic-only instances solely improved the gap
by at most 1 %.

5.3.2 Impact of the CP-SAT Solver

We assessed the advantages of using Tempo inside our approach. Hereafter, LS-tempo refers
to our method when it includes calls to Tempo and Greedy is our method without calls to
Tempo.

Over Squillaci et al. instances, LS-tempo, the impact is significant. We observes a 0.9 %

gap improvement in average, with LS-tempo giving better results on all but two instances.

Averaging the gap makes the differences between the two solvers smaller, as 15 instances
over the 32 are solved optimally with the base solver (see Table 4 for data on a subset of
instances).

Over our set of instances, however, the advantage of using Tempo is not as clear. We
observe no difference in the average gap of LS-tempo and Greedy. Indeed, the method makes
a very high number of calls to Tempo with a very low success rate. In other words, the

3:13

CP 2025



3:14 Solving AEOSSP with CP and Local Search

Table 2 Profit and gap of the solutions found by CPO, LNS and LS-tempo over Squillaci et al’s
instances. Optimal profit is noted with a star (*). For the sake of clarity, only instances where at
least one solver has not found the optimal solution are shown.

| CPO LNS LS-tempo

|R| 0S Vv S P
| profit gap profit gap profit gap

500 500 0 0 0 5070%* 0.00 5069 <0.01 5070* 0.00
1000 1000 0 0 0 10165 0.13 11382 0.03 11536 0.01
500 0 500 0 0 21176 0.01 20988 0.02 21200 0.01
1000 0 1000 0 0 40280 0.39 52024 0.21 55367 0.16
250 0 0 0 250 4100 0.03 4018 0.05 3946 0.07
500 0 0 0 500 10856 0.12 11072 0.10 10512 0.15
1000 0 0 0 1000 14643 0.33 15415 0.29 13953 0.36
570 120 150 270 30 22379 0.02 22409 0.02 22585 0.01
1140 240 300 540 60 13075 0.19 16223 <0.01 16220 <0.01
500 500 0 0 0 9270* 0.00 9263 <0.01 9267 <0.01
1000 1000 0 0 0 13409 0.26 17920 0.02 18055 0.01
250 0 250 0 0 18500%* 0.00 18456 <0.01 18500%* 0.00
500 0 500 0 0 36592 0.01 36304 0.02 36420 0.02
1000 0 1000 0 0 51732 0.29 67868 0.07 68564 0.06
250 0 0 0 250 6445* 0.00 6442 <0.01 6388 0.01
500 0 0 0 500 12024 0.10 12307 0.08 11662 0.13
1000 0 0 0 1000 17410 0.35 19385 0.27 18055 0.32
570 120 150 270 30 22132 <0.01 22152 <0.01 22187 <0.01
1140 240 300 540 60 31666 0.29 43828 0.02 43899 0.02

Average | 0.134 0.064 0.070

Table 3 Profit and gap of the solutions found by CPO, LNS and LS-tempo over our instances.
Optimal profit is noted with a star (*).

CPO LNS LS-tempo

Set Rl |
| profit gap profit gap profit gap

50 20104 <0,01 20050,6 0,01 20090 <0,01

100 36480 0,02 36192,6 0,03 36328 0,02

antilles 250 | 71324 030 730338 0,28 74035 0,27
500 81745 0,60 89858,4 0,56 88222 0,57

50 | 17751 0,01 17725 0,01 17743 0,01

N 100 | 38702 0,03 383936 004 38570 0,03
sanara 250 73972 0,32  75885,2 0,30 76020 0,30

500 76581 0,61 87462,4 0,56 85559 0,57

50 20304 0,01 20265,4 0,01 20287 0,01

fountains 100 37048 0,02 36897,8 0,02 37014 0,02
250 90934 0,15 95060,6 0,11 97721 0,08

500 106102 0,52 141014,6 0,37 141331 0,37

50 | 22467*  0.00 224422 <001 22467*  0.00

. 100 | 38489*  0.00 38447 <0,01 38489*  0.00
military 250 | 102849 <0,01 1019456 0,01 102868 <0,01
500 | 206813 0,03 207729,2 0,03 211080 0,01

50 | 18222%* 0.00 18213,8 <0,01 18222* 0.00

world heritage 100 36699 <0,01 36655,4 <0,01 36691  <0,01
250 103648 0,02 103253,8 0,02 103860 0,01

500 185196 0,09 192808,4 0,06 197782 0,03

Average | 0.136 0.120 0.115

TSPTW sub-problems are either easily solved by the greedy insertion, or are very hard to
solve, and hence using a complete solver is not worth the effort. Full details on those results
are given in appendix B.



V. Antuori, D. T. Wojtowicz, and E. Hebrard

Table 4 Average gap, average number of restart (r), average number of calls to Tempo (t), average
success rate when calling Tempo (s), time spent in the solver (Ts) and time ratio spent in modelling
the sub-problem with the solver (Tm) for various fail limits. For Squillaci et al. instances, we only
used the instances where at least one of the solvers did not find the optimal solution

Fail limit | Squillaci et al. instances Our instances
| Gap r t S Ts Tm  Gap r t S Ts Tm
0 0.089 2507 - - - - 0.115 45772 - - - -
50 0.070 337 153300 47.6% 32% 15% 0.115 5302 1341790 7.68% 21% 54%

100 0.071 264 104603 48.0% 36% 13% 0.115 3047 851625 7.81% 26% 48%
500 0.071 251 122940 50.1% 51% 8% 0.115 5418 1046200 8.10% 41% 40%
1000 0.074 233 114420 50.6% 56% 7% 0.115 4649 946012 8.15% 48% 34%
10000 0.083 208 123406 50,9% 65% 5% 0.116 3665 525106 8.20% 66% 19%
100000 0.089 188 113339 51,5% 69% 5% 0.118 3364 414748 8.26% 3% 14%

Table 4 shows the impact of the fail limit given to Tempo. We can see this parameter is
not sensitive, since as a fail limit of 50 and 1000 yields roughly the same results. Beyond
this value, the gap increases as well as the time spent calling the solver. More importantly,
we note that the simple fact of using Tempo with a small fail limit dramatically improves
the gap. It means that solutions to the TSPTW sub-problem solutions can be easily solved
with a small tree search in about half the cases. Therefore, there is no use in increasing the
fail limit too much, indicating that heuristics designed to solve TSPTW could yield even
better performances than using a complete CP-SAT solver.

5.3.3 Memory Management Impact

Finally, Table 5 shows the comparison between the profit and the gap yielded by CPO,
LS-tempo and Greedy when taking into account the memory constraints and computing a
download plan. We can see that CPO loses 3.5 % on the average gap when adding these
constraints, while our solver performance does not change. It means that memory constraints
are not tight, and that the 6 ground stations are sufficient for the parameters we used
for our instance generator. Those results are consistent with other work in the literature,
which explains why memory management is often overlooked or simplified when dealing with
AEOSSP [34].

6 Conclusion

In this paper, we presented a solver for the AEOSSP that is designed for our industrial partner
Prométhée’s the upcoming constellation of 20 AEOSs. This solver is able to tackle two
sub-problems of AEOSSP, namely acquisition selection and download planning. Acquisition
selection is solved by a local search procedure, which is based on greedily solving a sequence of
TSPTW, with occasional help from a CP solver in order to get a maximal-profit sequence of
acquisitions for each satellite. Download planning is seen as a sequence of knapsack problems,
that are solved greedily. When we include the download planning, experiments showed that
our solver find better solution than IBM CPO on average, especially on larger instances.
Overall, with and without the download planning, IBM CPO unsurprisingly does not scale
very much. We show that including calls to a CP-SAT solver inside our solver lead to an
improvement on average, but these improvements depend on the type of instances. Also,
the type of instances is important to choose which solver to use. Especially we show that
while our solver is not good on period requests only, it exhibits state-of-the-art capabilities
on other types of instances.

3:15

CP 2025



3:16

Solving AEOSSP with CP and Local Search

Table 5 Result on our set of instance with memory management

| CPO Greedy LS-tempo

Set IR|
| profit gap  profit gap profit gap

50 20102 <0.01 20089 <0.01 20087 0.01

antilles 100 36323 0.02 36308 0.02 36326 0.02
250 69674 0.31 74115 0.27 73929 0.27

500 67979 0.67 89069 0.56 88329 0.57

50 17748 0.01 17736 0.01 17744 0.01

cahara 100 38517 0.03 38568 0.03 38564 0.03
250 73805 0.32 76101 0.30 76036 0.30

500 68814 0.65 86572 0.56 85834 0.57

50 20301 0.01 20282 0.01 20289 0.01

fountains 100 36939 0.02 36991 0.02 37012 0.02
250 84771 0.21 97456 0.09 97703 0.09

500 93629 0.58 142525 0.36 141493 0.36

50 | 22467*  0.00 22467*  0.00 22467*  0.00

. 100 | 38489*  0.00 38488 <0.01 38489*  0.00
military 250 | 100592 0.03 102838 <0.01 102865 <0.01
500 | 165914  0.23 211001  0.02 211088  0.01

50 | 18222*  0.00 18217 <0.01 18222*  0.00

. 100 | 36692 <0.01 36686 <0.01 36691 <0.01

world heritage o955 | 99776  0.06 103766  0.01 103856  0.01
500 | 152770 0.25 197722 0.03 197794  0.03

Average | 0.170 0.115 0.116

Finally, further work could focus on adding different moves and variations to our solver.

We did experiment the resolution of the orienteering problem with our CP solver, but it does
not scale for this problem today. We also would like to use it for the insertion of several
acquisitions, in order to make its use more efficient by decreasing the number of calls.

—— References

1

Nicola Bianchessi and Giovanni Righini. Planning and Scheduling Algorithms for the COSMO-
SkyMed Constellation. Aerospace Science and Technology, 12(7):535-544, 2008. doi:10.1016/
j.ast.2008.01.001.

Jiawei Chen, Ming Chen, Jun Wen, Lei He, and Xiaolu Liu. A Heuristic Construction
Neural Network Method for the Time-Dependent Agile Earth Observation Satellite Scheduling
Problem. Mathematics, 10(19):3498, 2022. doi:10.3390/math10193498.

Xiaogeng Chu, Yuning Chen, and Lining Xing. A Branch and Bound Algorithm for Agile
Earth Observation Satellite Scheduling. Discrete Dynamics in Nature and Society, 2017, 2017.
doi:10.1155/2017/7345941.

J. F. Cordeau and G. Laporte. Maximizing the Value of an Earth Observation Satellite Orbit.
The Journal of the Operational Research Society, 56(8):962-968, 2005. doi:10.1057/PALGRAVE.
JORS.2601926.

Kaikai Cui, Junhua Xiang, and Yulin Zhang. Mission Planning Optimization of Video Satellite
for Ground Multi-Object Staring Imaging. Advances in Space Research, 61(6):1476-1489, 2018.
doi:10.1016/j.asr.2017.10.056.

Duncan Eddy and Mykel J. Kochenderfer. A Maximum Independent Set Method for Scheduling
Earth-Observing Satellite Constellations. Journal of Spacecraft and Rockets, 58(5):1416-1429,
2021. doi:10.2514/1.A34931.


https://doi.org/10.1016/j.ast.2008.01.001
https://doi.org/10.1016/j.ast.2008.01.001
https://doi.org/10.3390/math10193498
https://doi.org/10.1155/2017/7345941
https://doi.org/10.1057/PALGRAVE.JORS.2601926
https://doi.org/10.1057/PALGRAVE.JORS.2601926
https://doi.org/10.1016/j.asr.2017.10.056
https://doi.org/10.2514/1.A34931

V. Antuori, D. T. Wojtowicz, and E. Hebrard

10

11

12

13

14

15

16

17

18

19

20

21

22

Yanxiang Feng, Ruipeng Zhang, Sida Ren, Shuailin Zhu, and Yikang Yang. A Distributed
Approach for Time-Dependent Observation Scheduling Problem in the Agile Earth Observation
Satellite Constellation. Remote Sensing, 15(7):1761, 2023. doi:10.3390/rs15071761.
Mohamed Elamine Galloua, Shuai Li, and Jiahao Cui. Earth Observation Satellite Imaging Task
Scheduling with Metaheuristics: Multi-Level Clustering and Priority-Driven Pre-Scheduling.
Advances in Space Research, 2024. doi:10.1016/j.asr.2024.11.023.

Lei He, Xiaolu Liu, Gilbert Laporte, Yingwu Chen, and Yingguo Chen. An Improved Adaptive
Large Neighborhood Search Algorithm for Multiple Agile Satellites Scheduling. Computers €
Operations Research, 100:12-25, 2018. doi:10.1016/j.cor.2018.06.020.

Lijun He, Ben Liang, Jiandong Li, and Min Sheng. Joint Observation and Transmission
Scheduling in Agile Satellite Networks. IEEE Transactions on Mobile Computing, 21(12):4381—
4396, 2022. doi:10.1109/TMC.2021.3076088.

Chae-Hyeon Kim, Sung Jun Kim, and Han-Lim Choi. Optimal Integrated Scheduling of
Observation and Download Tasks for Multiple Satellites with Memory Constraints. In 2024
IEEE 20th International Conference on Automation Science and Engineering (CASE), pages
2287-2294, 2024. doi:10.1109/CASE59546.2024.10711478.

Junhong Kim, Doo-Hyun Cho, Jaemyung Ahn, and Han-Lim Choi. Task Scheduling of
Multiple Agile Satellites with Transition Time and Stereo Imaging Constraints, 2019. doi:
10.48550/arXiv.1912.00374.

Michel Lemaitre, Gérard Verfaillie, Frank Jouhaud, Jean-Michel Lachiver, and Nicolas Bataille.
Selecting and Scheduling Observations of Agile Satellites. Aerospace Science and Technology,
6(5):367-381, 2002. doi:10.1016/81270-9638(02)01173-2.

Rich Levinson, Sreeja Nag, and Vinay Ravindra. Agile Satellite Planning for Multi-Payload
Observations for Earth Science, 2021. doi:10.48550/arXiv.2111.07042.

Hai Li, Yongjun Li, Yuanhao Liu, Kai Zhang, Xin Li, Yu Li, and Shanghong Zhao. A
Multi-Objective Dynamic Mission-Scheduling Algorithm Considering Perturbations for Earth
Observation Satellites. Aerospace, 11(8):643, 2024. doi:10.3390/aerospacel1080643.
Longmei Li, Feng Yao, Ning Jing, and Michael Emmerich. Preference Incorporation to
Solve Multi-Objective Mission Planning of Agile Earth Observation Satellites. In Proceedings
of the 2017 IEEE Congress on Evolutionary Computation (CEC), pages 1366-1373, 2017.
d0i:10.1109/CEC.2017.7969463.

Wei-Chen Lin and Da-Yin Liao. A Tabu Search Algorithm for Satellite Imaging Scheduling.
In 2004 IEEE International Conference on Systems, Man and Cybernetics, volume 2, pages
1601-1606, 2004. doi:10.1109/ICSMC.2004.1399860.

Wei-Cheng Lin, Chung-Yang Liu, Da-Yin Liao, and Yung-Yao Lee. Daily Imaging Scheduling
of an Earth Observation Satellite. In Proceedings of the 2003 IEEFE International Conference
on Systems, Man and Cybernetics (SMC), volume 2, pages 1886-1891 vol.2, 2003. doi:
10.1109/ICSMC.2003.1244686.

Lorena Linares, Rafael Vazquez, Federico Perea, and Jorge Galan-Vioque. A Mixed Integer
Linear Programming Model for Resolution of the Antenna-Satellite Scheduling Problem. IEEE
Transactions on Aerospace and Electronic Systems, 60(1):463-473, 2024. doi:10.1109/TAES.
2023.3326422.

Lihao Liu, Zhenghong Dong, Haoxiang Su, and Dingzhan Yu. A Study of Distributed Earth
Observation Satellites Mission Scheduling Method Based on Game-Negotiation Mechanism.
Sensors, 21(19):6660, 2021. doi:10.3390/s21196660.

Xiaolu Liu, Gilbert Laporte, Yingwu Chen, and Renjie He. An Adaptive Large Neighborhood
Search Metaheuristic for Agile Satellite Scheduling with Time-Dependent Transition Time.
Computers & Operations Research, 86:41-53, 2017. doi:10.1016/j.cor.2017.04.006.
Guansheng Peng, Guopeng Song, Yongming He, Jing Yu, Shang Xiang, Lining Xing, and
Pieter Vansteenwegen. Solving the Agile Earth Observation Satellite Scheduling Problem With
Time-Dependent Transition Times. IEEE Transactions on Systems, Man, and Cybernetics:
Systems, 52(3):1614-1625, 2022. doi:10.1109/TSMC.2020.3031738.

3:17

CP 2025


https://doi.org/10.3390/rs15071761
https://doi.org/10.1016/j.asr.2024.11.023
https://doi.org/10.1016/j.cor.2018.06.020
https://doi.org/10.1109/TMC.2021.3076088
https://doi.org/10.1109/CASE59546.2024.10711478
https://doi.org/10.48550/arXiv.1912.00374
https://doi.org/10.48550/arXiv.1912.00374
https://doi.org/10.1016/S1270-9638(02)01173-2
https://doi.org/10.48550/arXiv.2111.07042
https://doi.org/10.3390/aerospace11080643
https://doi.org/10.1109/CEC.2017.7969463
https://doi.org/10.1109/ICSMC.2004.1399860
https://doi.org/10.1109/ICSMC.2003.1244686
https://doi.org/10.1109/ICSMC.2003.1244686
https://doi.org/10.1109/TAES.2023.3326422
https://doi.org/10.1109/TAES.2023.3326422
https://doi.org/10.3390/s21196660
https://doi.org/10.1016/j.cor.2017.04.006
https://doi.org/10.1109/TSMC.2020.3031738

3:18

Solving AEOSSP with CP and Local Search

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

Vishwa Shah, Vivek Vittaldev, Leon Stepan, and Cyrus Foster. Scheduling the World’s
Largest Earth-Observing Fleet of Medium-Resolution Imaging Satellites. In 11th International
Workshop on Planning and Scheduling for Space (IWPSS), page 6, 2019.

Samuel Squillaci. Mission plan optimization for a constellation of Earth observation satellites
(Optimisation de plans de mission pour une constellation de satellites d’observation de la
Terre). PhD thesis, Office national d’études et de recherches aérospatiales (ONERA) and
Institut supérieur de I’aéronautique et de 'espace (ISAE-SUPAERO), Toulouse, France, 2023.
Samuel Squillaci, Cédric Pralet, and Stéphanie Roussel. Scheduling Complex Observation
Requests for a Constellation of Satellites: Large Neighborhood Search Approaches. In
Proceedings of the 20th International Conference on Integration of AI and OR Techniques in
Constraint Programming (CPAIOR), 2023. doi:10.1007/978-3-031-33271-5_29.

Samuel Squillaci, Stéphanie Roussel, and Cédric Pralet. Parallel Scheduling of Complex
Requests for a Constellation of Earth Observing Satellites. In PAILS 2022, pages 100-113. IOS
Press, 2022. doi:10.3233/FAIA220068.

Haiquan Sun, Wei Xia, Zhilong Wang, and Xiaoxuan Hu. Agile Earth Observation Satellite
Scheduling Algorithm for Emergency Tasks Based on Multiple Strategies. Journal of Systems
Science and Systems Engineering, 30(5):626—646, 2021. doi:10.1007/s11518-021-5506-4.
Panwadee Tangpattanakul, Nicolas Jozefowiez, and Pierre Lopez. A Multi-Objective Local
Search Heuristic for Scheduling Earth Observations Taken by an Agile Satellite. European
Journal of Operational Research, 245(2):542-554, 2015. doi:10.1016/j.ejor.2015.03.011.
Christopher G. Valicka, Deanna Garcia, Andrea Staid, Jean-Paul Watson, Gabriel Hackebeil,
Sivakumar Rathinam, and Lewis Ntaimo. Mixed-Integer Programming Models for Optimal
Constellation Scheduling given Cloud Cover Uncertainty. Furopean Journal of Operational
Research, 275(2):431-445, 2019. doi:10.1016/j.ejor.2018.11.043.

Pieter Vansteenwegen, Wouter Souffriau, Greet Vanden Berghe, and Dirk Van Oudheusden.
Iterated Local Search for the Team Orienteering Problem with Time Windows. Computers &
Operations Research, 36(12):3281-3290, 2009. doi:10.1016/j.cor.2009.03.008.

Petr Vilim, Philippe Laborie, and Paul Shaw. Failure-Directed Search for Constraint-Based
Scheduling. In Proceedings of the 12th International Conference on Integration of Al and
OR Techniques in Constraint Programming (CPAIOR), pages 437-453, 2015. doi:10.1007/
978-3-319-18008-3_30.

Jianjiang Wang, Erik Demeulemeester, and Dishan Qiu. A Pure Proactive Scheduling Algorithm
for Multiple Earth Observation Satellites under Uncertainties of Clouds. Computers €
Operations Research, 74:1-13, 2016. doi:10.1016/j.cor.2016.04.014.

Xinwei Wang, Guopeng Song, Roel Leus, and Chao Han. Robust Earth Observation Satellite
Scheduling With Uncertainty of Cloud Coverage. IEEE Transactions on Aerospace and
Electronic Systems, 56(3):2450-2461, 2020. doi:10.1109/TAES.2019.2947978.

Xinwei Wang, Guohua Wu, Lining Xing, and Witold Pedrycz. Agile Earth Observation
Satellite Scheduling Over 20 Years: Formulations, Methods, and Future Directions. IEFE
Systems Journal, 15(3):3881-3892, 2021. doi:10.1109/JSYST.2020.2997050.

Damien Wojtowicz. AEOSSP Instance Generator. Dataset, France Relance grant (project JA-
PETUS), swhld: swh:1:dir:c1c87cf9c3a3e7ffe616bdffdc9c52af9e30cb35 (visited on 2025-
07-24). URL: https://github.com/ssquilla/Earth_Observing_Satellites_benchmarks,
doi:10.4230/artifacts.24101.

Fatos Xhafa and Andrew W.H. Ip. Optimisation Problems and Resolution Methods in
Satellite Scheduling and Space-Craft Operation: A Survey. Enterprise Information Systems,
15(8):1022—1045, 2021. doi:10.1080/17517575.2019.1593508.

Wenyuan Zhang and Gangtie Zheng. Scheduling an Agile Multipayload Earth-Observing
Satellite. Journal of Spacecraft and Rockets, 61(1):143-156, 2024. doi:10.2514/1.A35726.


https://doi.org/10.1007/978-3-031-33271-5_29
https://doi.org/10.3233/FAIA220068
https://doi.org/10.1007/s11518-021-5506-4
https://doi.org/10.1016/j.ejor.2015.03.011
https://doi.org/10.1016/j.ejor.2018.11.043
https://doi.org/10.1016/j.cor.2009.03.008
https://doi.org/10.1007/978-3-319-18008-3_30
https://doi.org/10.1007/978-3-319-18008-3_30
https://doi.org/10.1016/j.cor.2016.04.014
https://doi.org/10.1109/TAES.2019.2947978
https://doi.org/10.1109/JSYST.2020.2997050
https://archive.softwareheritage.org/swh:1:dir:c1c87cf9c3a3e7ffe616bdffdc9c52af9e30cb35;origin=https://github.com/ssquilla/Earth_Observing_Satellites_benchmarks;visit=swh:1:snp:e7dc9ee8505e55152ae4e3c4c9c6fd4aba9ee3f5;anchor=swh:1:rev:9a5f281b628ee1d68c12e5116e30ad422c2fa145
https://github.com/ssquilla/Earth_Observing_Satellites_benchmarks
https://doi.org/10.4230/artifacts.24101
https://doi.org/10.1080/17517575.2019.1593508
https://doi.org/10.2514/1.A35726

V. Antuori, D. T. Wojtowicz, and E. Hebrard

A Instances Details

Table 6 Generated instances details. It shows, for each instance, its set of POIs, the number
of requests |R|, of periodic requests P, of multi-mesh requests M, of downloads |W|, of acquisition
opportunities |A|, of acquisitions needed to satisfy all the requests s(.A), of connected components
nc, the average size of the components sc, and the average number of acquisition opportunities per

target ar.

Set R ‘ P M W A s(A) nc  sc  ar
50 | 11 2 60 1017 70 19 54 15

i1l 00| 18 4 60 1993 133 19 105 15
@ s 250 | 54 17 60 5313 370 19 280 14
500 | 8 29 60 10510 717 19 553 15

50 | 3 4 74 872 59 22 40 15

hara 100 | 18 10 74 1857 147 23 81 13
250 | 43 19 89 4455 361 23 193 13

500 | 89 39 74 9043 721 23 393 13

50 | 9 3 8 1692 67 31 55 25

fountains 100 | 14 4 8 3273 133 32 102 25
untain 250 | 51 14 82 8372 359 32 262 23
500 | 112 33 82 17037 748 32 532 23

50 | 10 6 159 1503 83 104 14 18

ic 100 | 22 2 164 2648 140 108 24 19
mititary 250 | 48 4 165 6735 347 141 48 19
500 | 97 40 163 14039 741 163 86 19

50 | 4 4 158 1720 67 119 14 26

1d herit 100 | 17 1 160 2952 130 135 22 23
WOrid ReTitage o500 | 40 20 164 8153 360 136 59 23
500 | 85 38 166 15979 717 133 120 22

3:19

CP 2025



3:20

Solving AEOSSP with CP and Local Search

Table 7 Squillaci et al. instances details. It shows, for each instance, the number of request
|R|, of one-shot requests OS, video requests V, stereoscopic requests S and periodic requests P, of
downloads |W)|, of acquisition opportunities |A|, of acquisitions needed to satisfy all the requests
s(A), of connected components nc, the average size of the components sc(when sc > 1), and of
acquisition opportunities per target ar. The first part of this table is about the concentrated instances
and the second part is about the spread instances.

|R| 0s A% S P ‘ (W] Al s(A) nc sc ar
50 50 0 0 0 123 2607 50 124 23 50
250 250 0 0 0 123 13149 250 127 112 52
500 500 0 0 0 123 25646 500 116 221 51
1000 1000 0 0 0 123 51189 1000 117 437 51
50 0 50 0 0 123 2436 50 115 21 46
250 0 250 0 0 123 12162 250 114 107 48
500 0 500 0 0 123 25554 500 118 216 51
1000 0 1000 0 0 123 49149 1000 116 424 49
50 0 0 0 50 123 576 150 26 18 3
250 0 0 0 250 123 2367 750 25 91 3
500 0 0 0 500 123 4794 1501 28 168 3
1000 0 0 0 1000 | 123 9777 3000 27 359 3
57 12 15 27 3 123 2125 90 112 19 22
285 60 75 135 1 123 10327 450 115 90 23
570 120 150 270 30 123 19203 900 117 164 21
1140 240 300 540 60 123 45985 1800 111 414 25
50 50 0 0 0 123 2438 50 115 21 46
250 250 0 0 0 123 12269 250 118 104 49
500 500 0 0 0 123 24475 500 119 206 49
1000 1000 0 0 0 123 49035 1000 121 405 50
50 0 50 0 0 123 2427 50 115 21 46
250 0 250 0 0 123 12190 250 118 103 48
500 0 500 0 0 123 24326 500 119 204 48
1000 0 1000 0 0 123 48686 1000 120 406 49
50 0 0 0 50 123 568 150 27 17 3
250 0 0 0 250 123 2348 750 27 83 3
500 0 0 0 500 123 4594 1501 28 161 3
1000 0 0 0 1000 | 123 9162 3004 28 324 3
57 12 15 27 3 123 2025 90 115 18 21
285 60 75 135 15 123 10467 451 119 88 23
570 120 150 270 30 123 20820 900 118 176 23
1140 240 300 540 60 123 41693 1800 119 350 23

B Results Tables

Table 8 shows the profit and the gap yielded by both methods on Squillaci et al. instances,
while Table 8shows it on our instances, both using a fail limit of 50 for Tempo. The gap was
computed using an upper bound calculated with the CPO model. Thanks to a naive upper
bound (sum of the profit of the best opportunities for each request), the solver can prove
optimality on trivial instances.

Over Squillaci et al. instances, LS-tempo has better results on all instances but 2, with
an improvement of 0.9 % gap in average. Averaging the gap make the differences between the
two solvers smaller, as 15 instances over the 32 are solved optimal with the base solver (see
Table 4 for data on a subset of instances). We can see the number of restart drops with the



V. Antuori, D. T. Wojtowicz, and E. Hebrard 3:21

number of requests, especially for instances with periodic requests only. The same remark
holds for the Tempo calls success rate. We note that for instance with 1000 video requests
with concentrated target, tempo has only 4 % of success, nevertheless the result of LS-tempo
is much better than Greedy.

Over our set of instances, the use advantage of using Tempo is not as clear. At first
glance, it seems that there is a difference in the results between regional and worldwide
instances. Using Tempo always seems to give the best solution, but the difference are in fact
very small and the average gap for LS-tempo and Greedy are the same. Compared to the
other instance set the number of restart and calls to Tempo is very high. On the contrary
the success rate is very low, especially on regional datasets. It seems that instance of the
sub-problem are either easily solve with the greedy insertion, or are very hard and cannot be
solved with a small fail limit.

Table 8 Profit, gap and number of restarts (r) found using LS-tempo and Greedy over our
instances. Average values over 5 runs. A star (*) means the profit is optimal, a dash (“~”) means
the instance was solved optimally during the initial descent.

IR| 08 v S p | Greedy LS-tempo
| profit gap r profit gap r t S

50 50 0 0 0 390* 0.00 - 390%* 0.00 - - -
250 250 0 0 0 1655*  0.00 - 1655* 0.00 — 12 100%
500 500 0 0 0 5070* 0.00 - 5070%* 0.00 — 26 100%
1000 1000 0 0 0 11440 0.02 601 11536 0.01 322 68427 79%
50 0 50 0 0 4060* 0.00 - 4060%* 0.00 — 1 100%
250 0 250 0 0 7440*  0.00 - 7440* 0.00 - 13 100%
500 0 500 0 0 21040 0.01 3054 21200 0.01 1841 98269 89%
1000 0 1000 0 0 51524 0.22 441 55367 0.16 76 1439698 4%
50 0 0 0 50 780%  0.00 11 780%* 0.00 - 3 100%
250 0 0 0 250 3777 0.11 9475 3946 0.07 39 37802 14%
500 0 0 0 500 10120 0.18 4997 10512 0.15 5 36189 5%
1000 0 0 0 1000 13996 0.36 1992 13953 0.36 1 34562 1%
57 12 15 27 3 2010* 0.00 - 2010%* 0.00 — 1 100%
285 60 75 135 1 6265*  0.00 3 6265* 0.00 — 21 100%
570 120 150 270 30 22092 0.03 2414 22585 0.01 524 97259 60%
1140 240 300 540 60 16126  0.01 234 16220 <0.01 17 24299 36%
50 50 0 0 0 720*%  0.00 3 720%* 0.00 - 4 100%
250 250 0 0 0 4625*  0.00 81 4625* 0.00 15 100%

9138 0.01 1952 9267 <0.01 870 64068 81%

500 500 0 0 0
1000 1000 0 0 0 17833 0.02 444 | 18055 0.0l 214 66872  69%
50 0 50 0 0 2880%  0.00 7| 2880*  0.00 - 2 100%
250 0 250 0 0 | 18500% 0.0 65 | 18500*  0.00 7 137 89%
500 0 500 0 0 35416 0.04 3103 | 36420  0.02 1443 223688  65%
1000 0 1000 0 0 66660 0.08 317 | 68564  0.06 155 436114  17%
50 0 0 0 50 | 1060* 0.00 ~| 1060*  0.00 . 4 100%
250 0 0 0 250 6139 0.05 9243 | 6388 001 8 31641 41%
500 0 0 0 500 | 11177 0.7 4397 | 11662  0.13 5 28955 7%
1000 0 0 0 1000 | 18078 0.32 1964 | 18055  0.32 1 28728 2%
57 12 15 27 3 1765%  0.00 ~| 1765*  0.00 - 1 100%
285 60 75 135 15 | 12210% 0.0 24 | 12210%  0.00 1 43 95%
570 120 150 270 30 22048 0.01 2468 | 22187 <0.01 701 110152  84%
1140 240 300 540 60 42908 0.04 480 | 43899  0.02 105 85822  62%
Average | 0.053 \ 0.042 67.6%

CP 2025



3:22 Solving AEOSSP with CP and Local Search

Table 9 Profit, gap and number of restarts (r) found using LS-tempo and Greedy over our
instances. Average values over 5 runs. A star (*) means the profit is optimal, a dash (“-”) means
the instance was solved optimally during the initial descent.

| Greedy LS-tempo

POIs |R|
| profit gap r profit gap r t S

50 20090 <0.01 167166 20090 <0.01 13186 3055040 6%
100 36307 0.02 82066 36328 0.02 2396 2296988 4%

antilles 250 | 74129 027 22835 | 74035  0.27 255 2263862 1%
500 | 88913  0.56 10785 | 88222  0.57 119 1983807 0%

50 17736 0.01 242973 | 17743  0.01 11743 1785669 13%

cahara 100 | 38575  0.03 79356 | 38570  0.03 1504 1400336 4%
250 | 75919 030 19381 | 76020  0.30 212 1898979 1%

500 | 86522  0.56 10690 | 85559  0.57 85 1532961 0%

50 20282 0.01 122542 | 20287  0.01 10309 1986404 7%

fountains 100 | 36989  0.02 39253 | 37014  0.02 1806 1824849 4%
250 | 97433 0.09 8422 | 97721 008 112 891194 2%

500 | 142314  0.36 3564 | 141331  0.37 36 1342948 0%

50 | 22467* 0.00 44987 | 22467* 0.00 30372 585242  19%
100 38488 <0.01 15250 | 38489* 0.00 9135 418030  29%

military 250 | 102838 <0.01 3742 | 102868 <0.01 391 324473  12%
500 | 211019  0.01 1116 | 211080  0.01 35 186169 6%
50 18221 <0.01 23588 | 18222*  0.00 19290 760620 24%

14 herit 100 36684 <0.01 13974 | 36691 <0.01 4706 1214798 13%
world heritage o509 | 103770  0.01 2714 | 103860  0.01 310 717050 6%
500 | 197736  0.03 1040 | 197782  0.03 39 366371 3%

Average | 0.115 | 0.115 7.7%




	1 Introduction
	2 Problem Statement
	2.1 Input Data
	2.2 Decision Variables and Constraints

	3 Related Work
	3.1 AEOSSP variations
	3.2 Resolution methods

	4 A Local Search Approach
	4.1 Acquisition Planning
	4.1.1 Greedy Initial Solution Construction
	4.1.2 Local Search

	4.2 Download Planning

	5 Experiments and Results
	5.1 Experimental setting
	5.1.1 Instances

	5.2 Comparison points
	5.2.1 LNS Method
	5.2.2 CP Model with CPO

	5.3 Results and Discussion
	5.3.1 Comparison with LNS and CPO
	5.3.2 Impact of the CP-SAT Solver
	5.3.3 Memory Management Impact


	6 Conclusion
	A Instances Details
	B Results Tables

