Transformer-Based Feature Learning for Algorithm
Selection in Combinatorial Optimisation

Alessio Pellegrino =
Department of Mathematics and Computer Science, University of Southern Denmark, Denmark

Ozgiir Akgiin @&

School of Computer Science, University of St Andrews, Scotland
Nguyen Dang 24

School of Computer Science, University of St Andrews, Scotland
Zeynep Kiziltan 24

Dept. of Computer Science and Engineering, University of Bologna, Italy

Ian Miguel 24
School of Computer Science, University of St Andrews, Scotland

—— Abstract
Given a combinatorial optimisation problem, there are typically multiple ways of modelling it for
presentation to an automated solver. Choosing the right combination of model and target solver can
have a significant impact on the effectiveness of the solving process. The best combination of model
and solver can also be instance-dependent: there may not exist a single combination that works best
for all instances of the same problem. We consider the task of building machine learning models to
automatically select the best combination for a problem instance. Critical to the learning process
is to define instance features, which serve as input to the selection model. Our contribution is the
automatic learning of instance features directly from the high-level representation of a problem
instance using a transformer encoder. We evaluate the performance of our approach using the
ESSENCE modelling language via a case study of three problem classes.

2012 ACM Subject Classification Computing methodologies — Artificial intelligence

Keywords and phrases Constraint modelling, algorithm selection, feature extraction, machine
learning, transformer architecture

Digital Object Identifier 10.4230/LIPIcs.CP.2025.31

Supplementary Material
Software (Source Code): https://github.com/SeppiaBrilla/EFE_project [45]
archived at swh:1:dir:0d5708bbc3b0395ddcd80b52bbb6ed8dabtfe252

Funding This work was supported by the European Union’s Justice programme, under GA No
101087342, POLINE (Principles Of Law In National and European VAT), by a scholarship from the
Department of Computer Science and Engineering of the University of Bologna, and by UK EPSRC
grant EP/V027182/1.

1 Introduction

It has long been observed that no single algorithm performs best on all combinatorial
optimisation problems, or even on all instances of one problem [48, 34, 31]. This observation
gave rise to automated Algorithm Selection (AS), where the aim is to automatically select
the best algorithm(s) from a portfolio of algorithms with complementary strengths to solve a
given problem instance. AS has been successful in a variety of domains, including Boolean
Satisfiability (SAT) [60], Constraint Programming (CP) [44, 18, 5, 6], AI planning [58], and
general combinatorial optimisation [35].
© Alessio Pellegrino, Ozgiir Akgiin, Nguyen Dang, Zeynep Kiziltan, and Ian Miguel;

37 licensed under Creative Commons License CC-BY 4.0
31st International Conference on Principles and Practice of Constraint Programming (CP 2025).
Editor: Maria Garcia de la Banda; Article No. 31; pp. 31:1-31:22

\\v Leibniz International Proceedings in Informatics
LIPICS Schloss Dagstuhl — Leibniz-Zentrum fiir Informatik, Dagstuhl Publishing, Germany


mailto:alpel25@student.sdu.dk
https://orcid.org/0009-0005-3173-2532
mailto:ozgur.akgun@st-andrews.ac.uk
https://www.st-andrews.ac.uk/computer-science/people/oa86/
https://orcid.org/0000-0001-9519-938X
mailto:nttd@st-andrews.ac.uk
https://www.st-andrews.ac.uk/computer-science/people/nttd/
https://orcid.org/0000-0002-2693-6953
mailto:zeynep.kiziltan@unibo.it
https://www.unibo.it/sitoweb/zeynep.kiziltan/en
https://orcid.org/0000-0003-0412-4396
mailto:ijm@st-andrews.ac.uk
https://www.st-andrews.ac.uk/computer-science/people/ijm/
https://orcid.org/0000-0002-6930-2686
https://doi.org/10.4230/LIPIcs.CP.2025.31
https://github.com/SeppiaBrilla/EFE_project
https://archive.softwareheritage.org/swh:1:dir:0d5708bbc3b0395ddcd80b52bbb6ed8da6ffe252;origin=https://github.com/SeppiaBrilla/EFE_project;visit=swh:1:snp:d6c381103db3c1b63eb2574073e4466639a93ef3;anchor=swh:1:rev:5124050c380534eb9c0dcb49763e034a844aef1b
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics
https://www.dagstuhl.de

31:2

Automated Features for Algorithm Selection

An algorithm can be seen as an automated solver (or a parameter configuration of a solver).
However, the concept of an algorithm can be extended to include the model (i.e. description)
of the problem presented to the solver. There are typically many possible models of a problem,
and so high-level constraint modelling languages such as MINIZINC [41] and ESSENCE [23]
have been proposed that support the specification of models without commitment to low-
level modelling details. Accompanying these languages, modelling toolchains support the
automated translation of a higher level representation of a problem to the low-level input
supported by automated solvers in different paradigms, such as SAT and CP. These include
MINIZING [41], CONJURE [2], and SAVILE Row [42]. The translation process involves several
modelling choices, the combination of which has a significant impact on the performance of
the target solver [2].

Adapting AS techniques for the extended context of combining modelling and solving
choices is a challenge. AS often relies on training Machine Learning (ML) models to predict
the best algorithm(s) for a problem instance based on its features. A good set of input
features is critical: they must be informative relative to both the problem instance and the
performance landscape of the combination of modelling and solver choices on that instance.
One well-known instance feature collection for constraint models is FZN2FEAT [4], a set of 95
features that can be extracted from a representation of a constraint model written in the
FlatZinc modelling language [41]. However, FlatZinc models are low-level representations
relative to MINIZINC or ESSENCE models, obtained after modelling choices have been made.
Hence, the features extracted are tied to a particular low-level model.

Instead of translating a problem instance into a low-level representation (i.e. FlatZinc)
before extracting (FZN2FEAT) instance features, herein we propose to use a transformer
encoder [59] to automatically learn features directly from the high-level representation of
the instance. Our approach offers three advantages over the FZN2FEAT method. First,
in contrast to the hand-crafted FZN2FEAT features, our approach learns instance features
automatically from the textual description of a problem instance. Second, FZN2FEAT relies
on a low-level problem representation in FlatZinc, while our approach works directly on a
high-level representation, which can offer more information for the task of choosing the best
combination of model and solver. Third, as shown empirically, the proposed features, once
learned, are computationally cheaper to extract. We demonstrate our approach using the
ESSENCE constraint modelling pipeline via three case studies that present disparate modelling
and solving challenges: Car Sequencing [24], Covering Array [30] and Social Golfers [54].

In the rest of the paper, after giving the background and discussing the related work
in Sections 2 and 3, we introduce in Section 4 our methodology and in Section 5 our case
studies. Then, we present in Section 6 the experimental evaluation the methodology and
finally conclude in Section 7.

2 Background

2.1 High-level constraint modelling

MINIZINC [41] and ESSENCE [23] are examples of domain-specific modelling languages.
ESSENCE supports higher-level concepts in abstract domains, such as functions, relations and
sets, and nesting of these (e.g. set of functions). This enables concise problem specification
without committing to low-level modelling details. Since abstract domains are not directly
represented in typical solvers, they must be refined into commonly supported concrete
domains, such as integers, Booleans and collections of these into arrays or sets.



A. Pellegrino, O. Akgiin, N. Dang, Z. Kiziltan, and I. Miguel

CONJURE 2] refines ESSENCE into ESSENCE PRIME, a lower level solver-independent
constraint modelling language [42] similar to MINIZINC. It is able to produce a portfolio of
models from a single ESSENCE specification, predominantly by exploring alternative refinement
pathways for decision variables with abstract domains. This creates a complex algorithm
selection landscape: selecting representations for decision variables with abstract domains
is akin to viewpoint selection and it is known to significantly affect solution performance,
depending on the problem instances being solved [51]. In Section 5, we present the high-level
representations of the three case study problems in ESSENCE and describe the alternative
ESSENCE PRIME models generated by CONJURE.

2.2 Transformer architecture

Neural Networks (NNs) are a powerful ML paradigm, able to learn complex patterns from
large datasets without user-defined features [20, 36]. NNs have been successful in a wide
range of tasks, including text classification [59]. NNs have multiple layers, each processing the
input obtained from the output of the previous layer. The first layer accepts the raw input,
and the last produces the final output. Layers are typically followed by activation functions,
which introduce non-linearity to facilitate learning [26]. The final activation function projects

the output of the last layer onto the desired range (e.g. probabilities for classification models).

The most fundamental layer type is the linear layer of n neurons, each computing an affine
transformation of the input from the previous layer to produce an output. The n output
features form an n-dimensional vector [26].

A specific combination of layers defines its architecture. Over the years, many successful
architectures have been presented, each with specific advantages and disadvantages. One of
the most famous architectures is the transformer [59], which is specifically designed to address
sequential data such as text, more efficiently than traditional recurrent models. The key
innovation of the transformer is its attention mechanism, which allows the model to capture
relationships between all elements in a sequence simultaneously, rather than processing them
sequentially. By considering each input element in the context of all others, rather than
in isolation, Transformers have achieved state-of-the-art performance in numerous tasks,
including text classification [20, 33].

3 Related Work

ML-based techniques for algorithm selection have been proven effective in many problem
domains [60, 58, 38, 34, 31]. The selection of the best algorithm(s) is via the characteristics
of the given instance, represented as a feature vector. The goal is to construct predictive
machine learning models that maps these instance features to the best algorithm(s), thereby
optimising a predefined performance metric (e.g. runtime or solution quality). There is
often an additional cost associated with feature extraction, which is taken into account when
measuring the performance of an AS approach.

Many ML-based AS tools have been proposed for combinatorial optimisation problems.

SATZilla [43, 60, 61] is a state-of-the-art SAT solving system that combines existing SAT
solvers in a portfolio and applies AS on top of the constructed portfolio. In addition to
adopting various ML techniques (i.e., empirical hardness models for predicting algorithm
performance [43, 60], and cost-sensitive pairwise classification approaches for predicting the
better algorithms in an algorithm pair [61]), a key success of SATZilla is the development of
a comprehensive set of features to characterise SAT instances. SATZilla’s instance features
were expertly designed to capture the characteristics of SAT instances, which help ML models

31:3

CP 2025



31:4

Automated Features for Algorithm Selection

to effectively predict SAT solver performance. In fact, in a recent study, a revisited and
enhanced version of this SAT feature set has been shown to provide significant improvement
to SATZilla’s performance [50], indicating the importance of instance features in AS systems
in SAT contexts.

Similarly, in CP contexts, several AS-based solving approaches have been proposed.
CPHydra [12] and SUNNY [5, 6, 39] focus on computing an instance-specific schedule of
solvers via k-nearest neighbours algorithms. CPHydra uses a small set of 36 features developed
by the authors of the work, while SUNNY makes uses of fzn2feat [4], a comprehensive set of
features specially designed for characterising constraint problems in FLATZINC representations.
Recently, highly effective SAT encoding selection approaches for Pseudo-Boolean and linear
integer constraints have been developed via a combination of various ML-based AS methods
and well-designed instance features [55, 56, 57].

These works highlight the critical role of high-quality instance features in AS approaches.
However, designing such features is a challenging task and requires extensive knowledge
of the corresponding domains. In response to this challenge, automated feature learning
approaches have started to emerge. Recurrent NNs were adopted to learn features directly
from the input sequence of item sizes in online bin packing problems, which were then used
for selecting among different bin-packing heuristics [3]. In the Travelling Salesman Problem
(TSP) domain, a transformer-based architecture was developed to learn instance features
directly from the raw TSP instance input [49]. The transformer has also been adopted
in a black-box optimisation domain for selecting the best solving algorithm [13]. In this
case, the input is the trajectory of the optimisation function. Unlike all the previous work
cited, our approach learns features directly from the textual description of any combinatorial
optimisation problem instance.

4 Methodology

We assume that we are a given (i) a textual description of a combinatorial optimisation
problem instance written in a high-level modelling language (such as ESSENCE) and (ii) a
portfolio of algorithms to solve the instance, each a combination of a lower-level model (such
as an ESSENCE PRIME model) and a solver. Our AS task is to predict with ML the best
algorithm for a given instance from this portfolio, defined here as that which solves the given
instance in the shortest runtime.

Integrating ML in AS requires: (i) extracting a set of features that accurately characterise
the instance, and (ii) using these features to predict the best algorithm in the portfolio
for the instance. In this section, we describe our methodology to these two requirements.
Our approach is agnostic regarding satisfaction versus optimisation — it just requires that
algorithm performance can be measured as a numerical value.

4.1 Transformer-based Neural Network for Feature Learning

We propose to employ an NN that encapsulates a transformer encoder [20] to deal with
textual input. This approach has many advantages. First, an NN model can automatically
generate the necessary features starting from the raw input. This eliminates the need for
handcrafting an effective feature set. Second, transformer encoders such as BERT have been
proven to be effective in capturing semantic meaning of textual data, [20], eliminating the
need to run a solver to extract the necessary features. For example, since all parameter names
are identical across problem instances, we expect the learnt features to capture differences in
parameter values. Intuitively, the parameter values of an instance are likely to be correlated



A. Pellegrino, O. Akgiin, N. Dang, Z. Kiziltan, and I. Miguel

\\

B-NN model p(algorithm, is the best)

Instance Raw output ‘ -~ i
> > Igorithi the best)
description Core ‘ p(algorithm,js the best)

Y

Tanh Core output
Tanh output

NN Features

C-NN model p(algorithm. is competitive)
'”Sté”?e Core Raw output= ‘ | p(algorithm, is competitive)
description ‘

O (2

y

Y

Tanh Core output

Tanh output
QNN Features
Core Feature Elaborator
L] Post |
Transformer ||| Feature - | | Output | |Raw output
Encoder f—| Layer Feature (— — Layer o
| Layer [| 1

Tanh output

Figure 1 The NN models for feature learning.

with its characteristics, such as problem size, which, in turn, are likely to influence the
performance of an algorithm. In principle, our approach could work with any textual input
(such as natural language). The advantage of starting from a formal representation (such as
ESSENCE) is that it is more structured and precise, while natural language tends to contain
ambiguity.

We build two NN models, called B-NN and C-NN and depicted in Figure 1, both of which
receive as input the raw text of the instance in tokenized form (where each input word and
symbol are transformed into a number).

B-NN Model. This model learns the best algorithm for a given instance. Learning is

modelled as a multi-class classification task where the assigned class is the best algorithm.

The final activation function is SoftMax, which generates a probability distribution over all
the algorithms in the portfolio, where a higher probability indicates a higher likelihood to be
the best. SoftMax activation is well suited to associating the highest probability to one best
algorithm.

C-NN Model. Learning one best algorithm is restrictive when multiple algorithms perform
similarly well. The C-NN model thus learns the competitiveness of the algorithms in the
portfolio. We consider an algorithm competitive if it solves an instance in under ten seconds
or less than double the time taken by the best algorithm for that instance. Hence, multiple
algorithms may be deemed competitive. We propose to model learning as a multi-label
classification task where each algorithm is associated with a competitiveness fraction. The
final activation function is Sigmoid, which yields a probability per algorithm, and is well
suited to our purpose: there could be multiple equally competitive algorithms and the
competitiveness probability of one algorithm is uncorrelated with that of the others. We
refrain from using SoftMax activation with the top k competitive algorithms, as the number

31:5

CP 2025



31:6

Automated Features for Algorithm Selection

of competitive algorithms is not fixed. Imposing a fixed value of k£ may constrain the model
when the actual number of competitive algorithms exceeds k, and may lead to incorrect
representations when it is fewer than k.

The two models share the same architecture, differing in their final activation function.
The probability values in their output will be part of the extracted features for AS (as
described in Section 4.2). The common part of the models (referred to as core) is composed
of three components: (i) Transformer Encoder, (ii) Feature Elaborator, and (iii) Output
Layer. Increasing the depth of the network by incorporating multiple layers with different
objectives enhances the learning process [53].

Transformer Encoder. Transformer Encoder transforms input instance text into a feature
vector describing its semantic meaning without any pre-processing. The encoder is based
on the BERT-base-uncased [20] architecture and shares hyper-parameters with the original
except an increased input size (2048 tokens instead of 512) to support large textual input.
Our choice of architecture is motivated by several factors. First, it has been successfully
applied to classification tasks [46], making it a strong candidate for our purposes. Second,
since we do not employ a pre-trained model, BERT shares the same architecture as RoBERTa
[40]. Third, although architectures such as Longformer [9] offer a larger context window
and more parameters, they are also more computationally expensive, and our preliminary
experiments did not demonstrate any clear advantage.

Feature Elaborator. Feature Elaborator passes the feature vector from the Transformer
Encoder through two layers and the corresponding activation functions to project the features
into the desired dimension. The Feature Layer is a linear layer that condenses the feature
vector, mitigating the risk of dimensionality issues in subsequent non-neural ML applications
(curse of dimensionality) [17]. Tanh activation replicates the last activation function of the
BERT Transformer Encoder on the reduced feature vector. Its output will be part of the
extracted features for AS (as described in Section 4.2). Post-Feature Layer is a linear layer
that up-projects the feature vector, allowing the model to further elaborate the features
avoiding underfitting [47]. Relu activation introduces non-linearity on the up-projected vector
to facilitate learning.

Output Layer. Output Layer operates on the features to predict a floating point score per
algorithm in the portfolio (referred to as Raw output). The final activation functions of
B-NN and C-NN transform raw output into probabilities to better interpret it.

4.2 Algorithm Selection Using the Learnt Features

To address the second requirement of our ML-based AS we propose two approaches: integ-
rating feature learning and AS within a single NN model (referred to as fully neural), or
exploiting an external ML-based AS algorithm using the extracted features (referred to as
hybrid). While the first approach seems natural and more straightforward, the latter allows
exploiting state-of-the-art AS tools and experimenting with alternative AS strategies.
Once the NN models are trained, we can use B-NN as a fully neural approach to predict
the best algorithm by using the probability values in the output as features and picking
the algorithm associated with the highest probability. For the hybrid approach, we extract
features from each NN model by combining the probability values in the output with the
output of Tanh in a single feature vector. We have observed in a preliminary study that the
models trained using only the Tanh output misclassified some instances with a prediction



A. Pellegrino, O. Akgiin, N. Dang, Z. Kiziltan, and I. Miguel

that was not deemed as competitive by the NN. We thus combined it with the probability
output to limit this type of error. The combined feature vector integrates the encoder-derived
semantic representation with informative prediction, as we will show in Section 6.5. We refer
to such combined feature vectors as b-NN and ¢-NN features (Fig. 1).

As an external ML-based AS algorithm, we consider both the state-of-the-art Autofolio
[38] and a simpler alternative. Autofolio can perform both classification and regression
and can be tuned via SMAC [37]. The tuning process can choose between random forest
for classification, random forest for regression, and XGboost [14], as well as refine the
sets of hyper-parameters via Bayesian optimisation. Each configuration is evaluated using
10-cross-fold evaluation.

A simpler alternative is clustering, motivated by its success in AS [8] and the spatial
characteristics of transformer encoder embeddings [27]: semantically similar instances are
represented by similar vectors. We cluster the instances using K-means [1] based on their
similarities and assign to each cluster the algorithm with the lowest total runtime on the
cluster instances. For optimisation, we pre-define a set of hyper-parameter configurations,
each evaluated by fitting a model on the training data and scoring its performance on the
evaluation data. The score is calculated by assigning validation instances to their respective
clusters and evaluating them with the corresponding algorithm. The configuration with the
lowest total score is selected as the optimal. At test time, an unseen instance is assigned to a
cluster based on the best-fit configuration and the cluster’s algorithm is applied as the best
algorithm.

In summary, we have five ML-based AS approaches: fully neural B-NN and four hybrids
(b-NN,A), (b-NN,K), (c-NN,A), (c-NN,K), where A, and K denote Autofolio and K-means.

5 Case Studies

We evaluate our methodology using the ESSENCE constraint modelling pipeline via three
well-known, challenging problems: Car Sequencing, Covering Array and Social Golfers. In
the following sections, we first present an ESSENCE model for each problem, followed by a
description of its algorithm portfolio, which consists of various combinations of an ESSENCE
PRIME model (obtained from CONJURE) and a solver. To establish suitability for AS, we then
show for each problem that the algorithms in the portfolio have complementary performance
on the chosen instance set, i.e. there is no dominating algorithm.

We use instances from [52], generated using the AutolG framework [19], which system-
atically varies problem parameters to produce diverse and challenging instance set. Our
selection of instances varies in domain size and number of variables, covering a wide range of
problem sizes (small, medium, and large) and levels of difficulty. All models and instance sets
are publicly available in the ESSENCE Catalogue [16] and in the supplementary repository. !

5.1 Problem Description in ESSENCE and Instance Set

Car Sequencing. Car Sequencing [22] involves scheduling the production of a set of cars,
each potentially requiring different optional features. The production line is divided into
stations, each responsible for installing a particular option (e.g., air conditioning, sunroofs).
Figure 2a shows the parameter and decision variable declarations in an ESSENCE model. It

! https://github.com/SeppiaBrilla/EFE_project/

31:7

CP 2025


https://github.com/SeppiaBrilla/EFE_project/

31:8 Automated Features for Algorithm Selection

1 given n_cars, n_classes, n_options : int(1..)
2
3 letting
4 Slots be domain int(1..n_cars),
5 Class be domain int(1l..n_classes),
6 Option be domain int(1..n_options)
7
8 given
9 quantity : function (total) Class --> int(1..),
10 maxcars : function (total) Option --> int(1..),
11 blksize : function (total) Option --> int(1..),
12 usage : relation of ( Class * Option )
13
14 find car : function (total) Slots --> Class
15
16 such that
17 forAll ¢ : Class . |preImage(car,c)| = quantity(c),
18 forAll opt : Option .
19 forAll s : int(1l..n_cars+1-(maxcars(opt)+blksize_delta(opt)))
20 (sum i : int(s..s+(maxcars(opt)+blksize_delta(opt))-1)
21 toInt (usage(car(i),opt))) <= maxcars(opt)

(a) Car Sequencing, CSPLib #1. Uses a single function variable and a prelmage operator on the function

variable.

1 given t : int(1..) $ strength (size of subset of rows)

2 given k : int(1..) $ rows

3 given g : int(2..) $ number of values

4 given b : int(1..) $ columns

5

6 where k>=t, b>=gkxt

7

8 find CA: matrix indexed by [int(1..k), int(1..b)] of int(1..g)
9
10 such that
11 forAll rows : sequence (size t) of int(1..k)
12 (forAll i : int(2..t) . rows(i-1) < rows(i)) ->
13 forAll values : sequence (size t) of int(1..g)
14 exists column : int(1..b)
15 forAll i : int(1l..t)
16 CA[rows(i), column] = values(i)
17

18 $ symmetry breaking
19 such that forAll i : int(2..k) . CA[i-1,..] <=lex CA[i,..]
20 such that forAll i : int(2..b) . CA[..,i-1] <=lex CA[..,il

(b) Covering Array, CSPLib #45. Uses a single matrix variable and quantified expressions over sequence
domains to state the problem constraint concisely.

1 given w, g, s : int(1..)

2

3 letting Golfers be new type of size g * s

4

5 find sched :

[} set (size w) of

7 partition (regular, numParts g, partSize s)
8 from Golfers

9
10 such that
11 forAll gil, g2 : Golfers, gl != g2 .
12 (sum week in sched . toInt(together({gl, g2}, week))) <= 1

(c) Social Golfers, CSPLib #10. Uses a single decision variable whose domain is a set of partitions. The
problem constraint is concisely stated using a quantified expression over the set variable and the together
operator that works on partitions.

Figure 2 ESSENCE models for the three problem classes. Each model contains a single decision
variable with an abstract domain and a single top-level problem constraint. The Covering Array
problem also has explicit symmetry-breaking constraints.



A. Pellegrino, O. Akgiin, N. Dang, Z. Kiziltan, and I. Miguel

defines three integer parameters: n_ cars, n_ classes, and n__options, from which domains
Slots, Class, and Option are derived. Further parameters refine the problem: quantity,
mapping each class to the number of cars required; mazcars, mapping each option to the
maximum number of cars allowed in any consecutive block; blksize, a function mapping
each option to the size of each consecutive block; and usage, a relation indicating which
classes require which options. A decision variable with an abstract domain, car, maps from
production slots to classes.

The problem contains a single top level constraint. This constraint uses a sliding-window
mechanism to control the distribution of options along the car sequence. For each option, it
defines a window of consecutive car slots whose length is the sum of the maximum allowed
cars with that option and an additional block size delta. Within every such window, the total
number of cars requiring the option must not exceed the allowed maximum. This ensures
that the usage of each option is evenly distributed, preventing any clustering that could
overload production capabilities.

We use 10,214 car sequencing instances.

Covering Array. Covering Array [30] originates from hardware design. A covering array
CA(t,k,g) of size b is a k x b array over {0,...,g — 1} in which every t-way combination
of row indices and values appears in at least one column. The smallest such b is called the
covering array number, CAN(t, k, g). We use the decision version of the problem (Figure 2b).
The input parameters of the model are: ¢, the strength, k, the rows, g the array’s values
domain, b the number of columns of the covering array. The decision variable is CA: an
integer-indexed matrix of integer values in the range 1 to g.

The first constraint in this model requires that for every strictly increasing sequence of ¢
rows, every possible combination of ¢ values (from the g available) is represented in at least
one column of the matrix CA. This guarantees that the matrix forms a covering array of
strength ¢. The remaining two constraints are for symmetry breaking.

We use 2,236 instances for this problem.

Social Golfers. Social Golfers [54] involves scheduling golfers in g groups of size s for w
weeks, such that no pair of golfers meets more than once. Figure 2c shows the parameter
and decision variable in an ESSENCE model of the problem. An unnamed type, Golfers,
represents all the golfers in the schedule, with size g x s. The decision variable, sched, is a
set of partitions, each corresponding to a week’s grouping of golfers.

The only constraint in this model is that of socialisation: it ensures that any two distinct
golfers are paired together in the same group in at most one week. For every pair, it sums a
Boolean indicator (converted to an integer) across all weeks, with each indicator signalling
whether the pair played together in that week. The total for each pair is constrained to be
no more than one, ensuring that no pair of golfers is scheduled to play together more than
once over the course of the w weeks.

We use 1,039 instances for this problem.

5.2 Combinations of ESSENCE PRIME Models and Solvers

We use CONJURE in portfolio mode to generate up to four ESSENCE PRIME models from a
single ESSENCE specification, exploring different ways to represent variables and constraints.
Key model variations for each problem are summarised below. We then combine the various
EsSENCE PRIME models with four solvers to create a diverse set of algorithms that may
perform well on different subsets of instances.

31:9

CP 2025



31:10

Automated Features for Algorithm Selection

Car Sequencing. Car Sequencing has three models based on two representations for the
car decision variable and the usage parameter. The car variable can be represented as either
a one-dimensional array of integers or a two-dimensional Boolean array, while the usage
parameter can be either a Boolean array or a set of tuples. Model M; uses a one-dimensional
array for car and a set of tuples with a table constraint for usage. Model M, uses a
one-dimensional array for car with a Boolean array for usage and the element constraint.
Model M3 uses a two-dimensional Boolean array for car and a set of tuples with a table
constraint for usage.

Covering Array. Covering Array has one model M; because the problem is expressed with
a single matrix decision variable, and matrix variables map directly to ESSENCE PRIME. The
constraints likewise do not permit additional variations.

Social Golfers. Social Golfers has four models offering different matrix-based encodings of
the weekly partitions. Model M; uses a single 3D matrix indexed by weeks X groups x slots,
where each entry is an integer indicating which golfer is in a particular part of the partition
for a particular group and week. M, uses a 3D Boolean matrix, indexed by weeks, groups, and
golfers, to indicate whether a given golfer is in a specific part of the partition. Mjs splits the
partitioning into multiple matrices, capturing information such as the number of parts, which
golfer goes into each position, and how many slots are used in each group. By breaking down
the partition into several matrices, this approach can exploit different constraint formulations
within the same overall representation. M, combines two matrix encodings: one stores
explicit integer assignments for each slot and another tracks membership via Booleans.

Solvers. We use Kissat [10], a SAT solver; Chuffed [15], a CP solver with lazy clause
generation; CPLEX [29], a commercial MIP solver; and OR-Tools CP-SAT [21], a hybrid
solver combining clause learning, CP-style propagation, and MIP-based methods. We
interface to these solvers via SAVILE Row [42].

5.3 Algorithm Complementarity

We analyse the portfolio of algorithms employed for each problem and assess the potential
benefits of applying AS. In Section 4, we defined the best algorithm in terms of shortest
runtime. In practice, we often impose a cut-off time on every algorithm. When an algorithm
fails to solve an instance within the cut-off, we penalise the run using the PAR10 (Penalised
Average Runtime) metric [38], where the runtime of a failed run is recorded as 10 times the
cut-off time.

All experiments were conducted on a computational setup equipped with an AMD EPYC
7763 CPU. Each algorithm was allocated a single CPU core with a one-hour cut-off per
instance. As baseline, we will use the Single Best Solver (SBS) algorithm, defined as the
algorithm with the lowest PAR10 score in the whole instance set, and the Virtual Best
Solver (VBS), a theoretical construct representing the optimal algorithm selector that always
identifies the best algorithm for each instance.

Car Sequencing. Car Sequencing uses a portfolio of 12 algorithms derived from the combin-
ation of three ESSENCE PRIME models and four constraint solvers. Figure 3a (top) shows the
PARI0 scores for these algorithms, evaluated across the entire instance set. A key observation
from Figure 3a (top) is the lack of a dominant model or solver: there is no algorithm with



A. Pellegrino, O.

VBS » VBS ° VBS =
M1-CPLEX . M1-CPLEX e
M1-Chuffed M1-Chuffed e
) - M1-Kissat °
M1-Kissat e M1-CPLEX o | MLORTools e
M1-ORTools ¢ M2-CPLEX .
M2-CPLEX Py M2-Chuffed ®
N M2-Kissat e

M2-Chuffed e ~ M2-ORTo0lS
M2-Kissat ° M1-Chuffed e M3-CPLEX °
M2-OR-Tools ° M3-Chuffed b

- M3-Kissat A
M3-CPLEX “ M3-OR-Tools s
M3-Chuffed & | MiKissat ° M4-CPLEX e
M3-Kissat . M4-Chuffed e

M4-Kissat <
M3-OR-Tools L4 M4-OR-Tools e
M1-ORTools e

107
PAR10

10° 108

Competitiveness per algorithm

M1-CPLEX
M1-Chuffed
M1-Kissat
M1-OR-Tools
M2-CPLEX
M2-Chuffed
M2-Kissat
M2-OR-Tools
M3-CPLEX
M3-Chuffed
M3-Kissat
M3-OR-Tools

10°
PAR10

10° 107

Competitiveness per algorithm

M1-CPLEX

M1-Chuffed

M1-Kissat

M1-OR-Tools

0.0 072 04

Percentage

0.6 0.8

(a) Car Sequencing.

0.0 0.2 0.4 0.6

Percentage

0.8

(b) Covering Array.

1.0

. Kiziltan, and I. Miguel

M1-CPLEX
M1-Chuffed
M1-Kissat
M1-OR-Tools
M2-CPLEX
M2-Chuffed
M2-Kissat
M2-OR-Tools
M3-CPLEX
M3-Chuffed
M3-Kissat
M3-OR-Tools
M4-CPLEX
M4-Chuffed
M4-Kissat
M4-OR-Tools

0.0

10° 107

PAR10
Competitiveness per algorithm

0.2 0.4 0.6

Percentage

0.8

(c) Social Golfers.

Figure 3 PAR10 value of each algorithm and the VBS in log scale (top) and algorithm competit-
iveness in percentage (bottom).

the same behaviour as VBS, meaning that no algorithm is the “best” on each instance.
The algorithms, excluding those involving M3, which always underperform independently of
the solver, exhibit diverse performance characteristics. Notably, the gap between the VBS
and the SBS algorithm (Ms-Chuffed) is significant, with the SBS achieving only 0.01% of
the VBS’s performance. This underscores the potential for AS to leverage complementary
strengths among algorithms. Figure 3a (bottom) shows the average competitiveness (as
the percentage of the instances where the algorithm is competitive). All algorithms are
competitive on some instances, except My-CPLEX, which was the worst overall algorithm.
It is typically very difficult for an AS method to always select the best algorithm for a given
instance. At the same time, this may not always be necessary, as competitive algorithms
could also do well on the instance.

We can see that even though Mj,-Chuffed appears to be the best overall algorithm in

Figure 3a, it is the winner on a fairly small number of instances according to plot of Figure 4a.

Instead, M;-CPLEX, M;-Chuffed and M;-OR-Tools have significantly higher numbers of
instances where they win. These three algorithms, which are also the top three competetive
algorithms according to Figure 3a (bottom), cover a significant part of the instance space.

Covering Array. Covering Array has one ESSENCE PRIME model, hence four different
algorithms combining the model with the four solvers. Figure 3b (top) shows PARI10 scores
of each algorithm in the full instance set. Contrary to Car Sequencing, for this problem
class the gap between SBS and VBS is much smaller. With M;-Kissat being the SBS, VBS
as a fraction of SBS is 0.72. In terms of competitiveness (bottom figure), we can see that
M;-Chuffed and M;-Kissat are almost always competitive, M;-CPLEX is competitive around
60% of the time and M;-OR-Tools roughly 50% of the time. This second view shows a
different story from the top figure where M;-Kissat seems to be the clear winner. This
suggests a much more complex instance set where AS could take advantage of the different
algorithms.

31:11

CP 2025



31:12

Automated Features for Algorithm Selection

Participation to VBS per algorithm Participation to VBS per algorithm

Participation to VBS per algorithm

M1-CPLEX
M1-Chuffed
M1-Kissat
M1-OR-Tools
M2-CPLEX
M2-Chuffed —
M2-Kissat

M2-OR-Tools
M3-CPLEX
M3-Chuffed
M3-Kissat
M3-OR-Tools
M4-CPLEX
M4-Chuffed
M4-Kissat
M4-OR-Tools

M1-CPLEX
M1-Chuffed M1-CPLEX
M1-Kissat
M1-OR-Tools
M2-CPLEX M1-Chuffed
M2-Chuffed
M2-Kissat
M2-OR-Tools M1-Kissat
M3-CPLEX
M3-Chuffed
M3-Kissat

M3-OR-Tools

M1-OR-Tools

0.0 011 02 03 04 0.0 01 072 03 014 0’5 0.0 072 014 0’6 08
Percentage Percentage Percentage

(a) Car Sequencing. (b) Covering Array. (c) Social Golfers.

Figure 4 Participation as a percentage to VBS.

Even though the gap between SB and VBS is much smaller compared with the Car
Sequencing case, Figure 4b shows that each algorithm contributes to VBS, even M;-CPLEX
which has the worst PAR10 score. M;-OR-Tools is the least contributing algorithm while M-
Chuffed and M;-Kissat, the main competitive algorithms according to Figure 3b (bottom),
both contribute similarly to VBS, with M;-Kissat contributing slightly more than 50% of
the time and M;-Chuffed roughly 45% of the time.

Social Golfers. Social Golfers has four ESSENCE PRIME models, resulting in sixteen different
algorithms in conjunction with the four solvers. The PAR10 scores of Social Golfers (Figure 3c,
top) differ from those of the previous problems: 6 algorithms dominate all the others with
similarly bad results. The algorithms including the models M; and Ms have the best
performance when coupled with Chuffed, Kissat and OR-Tools. The same cannot be said
for CPLEX because it performs similarly to the other algorithms. The gap between SBS
and VBS is in the middle between Car Sequencing and Covering Array since VBS as a
fraction of SBS is 0.65. M;-Chuffed, M;-Kissat, M;-OR-Tools, Ms-Chuffed, M>-Kissat and
M>5-OR-Tools are the only competitive algorithms more than 10% of the time (Figure 3c,
bottom). This may seem less than ideal. However, the gap between SBS and VBS shows
that whenever M,-Kissat is not the best algorithm it is worse by a considerable margin,
motivating AS.

The participation to VBS, in Figure 4c, shows that, although M>-Kissat is the SBS,
M>-Chuffed is the algorithm that contributes by far the most to VBS while M,-Kissat wins
only in a handful of instances. This is a clear indication of the potential of AS for this
problem class.

We conclude that each problem in our case study, along with its set of instances and
algorithm portfolio, serves as a suitable candidate for evaluating our methodology.

6 Experimental Results

We experimentally evaluate the effectiveness of our five ML-based AS approaches proposed
in Section 4: the fully neural B-NN and the four hybrid approaches (b-NN,A), (b-NN,K),
(c-NN,A) and (c-NN,K). All source code and data are available in the supplementary
repository. ! The following questions guide the evaluation: (Q1) Is the fully neural approach
effective for AS, or is it necessary to split the learning process into two phases (like the
hybrids)? (Q2) How do the learnt features compare to the existing FZN2FEAT features in
solving the AS task? (Q3) What is the computational cost of the feature extraction process
and its impact on the AS performance? (Q4) Is it beneficial to combine the propabability
values in the output of an NN model with the output of Tanh for feature learning?



A. Pellegrino, O. Akgiin, N. Dang, Z. Kiziltan, and I. Miguel

Car Sequencing Covering Arra Social Golfers

B-NN B-NN B-NN

(b-NN, K) H - -

(c-NN, K)

(b-NN, K) (b-NN, K)

(b-NN, A) (b-NN, A) . I . (b-NN, A)

2 EIEEIES 2 o2
& 2, e = o >, % 3 9,985
N % 5 o s s Toeds 3 55

Figure 5 Normalised PAR10 scores of B-NN and the four hybrid approaches on the test set across
10 folds. Red line is SBS.

6.1 Experimental Design

Algorithm Selection Setup. Each AS approach is evaluated using PAR10 across 10-fold
cross validation. In each fold, 10% of the training data serves as a validation set to support
neural network training and hyper-parameter optimisation. We use the same computer
configuration as in Section 5.3 for the CPU-based experiments, while GPU is used for neural
network training and inference, as detailed below. In the hybrid approaches, we make use of
K-means and AutoFolio for the AS task. We tested the number of clusters in K-means in the
range [2,21] and chose that which resulted in the lowest validation PAR10 score. AutoFolio
is an AS framework that offers a tuning mode with its own hyper-parameter configuration
space. The tuning is done using the hyper-parameter optimisation tool SMAC [28], which
we employ with a single CPU core and a tuning budget of 5 hours.

Neural Network Training. All NN models are implemented using PyTorch [7] and trained
from scratch on a GPU equipped with an NVIDIA A5000 accelerator. The Adam optim-
iser [32] is employed for all training processes. Model hyper-parameters, including the
learning rate, (mini-)batch size, and number of epochs, are selected based on a combination of
computational resource constraints and manual experimentation. The final hyper-parameter
values are detailed in Section A. Cross Entropy is applied in the B-NN models, while Binary
Cross Entropy is used in the C-NN models. In addition to the fold mechanism used as a
precaution against overfitting, we monitor the validation loss during training and retain the
model with the lowest validation loss to further reduce the risk of overfitting.

Normalised PAR10 Score. Due to the different scales of PAR10 across folds, following the
existing AS literature [38], we define the normalised score as (p(AS) — p(VBS))/(p(SBS) —
p(V BS)), where p(AS), p(VBS) and p(SBS) are the PAR10 scores of an AS approach, the
VBS, and the SBS on the same fold, respectively. VBS has a score of 0 while SBS has a
score of 1. We want to minimise the normalised score. Feature extraction time is included
in all PAR10 calculations unless its exclusion is mentioned explicitly. An AS approach is
considered effective if its normalised score is less than 1, i.e., it performs better than SBS —
the AS approach without any learning required.

6.2 Fully Neural vs Hybrid Approaches

In this section we address Q1 and compare the fully neural B-NN with its hybrid counter-
parts (b-NN,*) and (c-NN,*). Fig. 5 presents the normalised PAR10 scores of the five
approaches across 10 folds. Overall, B-NN is generally less competitive than the hybrids.
Among the hybrids, (c-NN, K) consistently obtains the best overall performance across the

31:13

CP 2025



31:14 Automated Features for Algorithm Selection

Car Sequencing Covering Arra Social Golfers
(NN 1) — - ennof - Hp- enn. o) ——JH
weol (F2F. k) HhH o R HIE -
e —— - Ll L
3 5

%
2] ) 2) 2] e ©o, 0%, 0 Yo T

Figure 6 Normalised PAR10 scores of (c-NN,K) and the two F2F-based AS approaches on the
test set across 10 folds. Red line is SBS.

three problems. It is the only one that consistently achieves better performance than SBS. A
likely explanation for the underperformance of B-NN is the inherent imbalance of the training
data in our multi-class classification setting. Algorithms that excel on only a small subset of
instances are under-represented, making them harder to be detected despite their significant
impact on the overall PAR10 score. This is confirmed by [11], which demonstrated that
treating this task as a pure multi-class classification is generally the least effective approach,
since classification accuracy does not account for the actual runtime of each predicted
algorithm and thus is not aligned with the final performance metric. The hybrid approaches
mitigate this limitation by separating feature learning and AS, and the ML models used in the
AS part do take into account performance difference between algorithms, allowing training to
be tailored towards the true performance metric PAR10. Finally, (c-NN,K) performs much
better than (c-NN,A), despite K-means’ simplicity w.r.t. Autofolio. Our finding illustrates
that simpler ML-based AS approaches can be quite effective for certain AS tasks compared
with the more sophisticated ones commonly used in the AS literature.

6.3 Comparison with FZN2FEAT Features

Having established that (c-NN,K) is the best approach for automatically learning instance
features, we consider Q2 by comparing our learnt features with FZN2FEAT (F2F) [4], which
were expertly-designed for representing constraint models. Since F2F only works in the low-
level constraint representation in FlatZinc, we first need to translate each problem instance
into the FlatZinc format [41]. This translation involves choosing a specific combination
of an ESSENCE PRIME model and a solver. We use CONJURE’s default model M7 and the
Chuffed solver. For each instance, the F2F features are extracted using 2 CPU cores and
8GB RAM, and c-NN feature extraction uses the same GPU-enabled computer as in the
training process. The use of different machines is motivated by the slower CPU on the
GPU-enabled machine and the observation that fzn2feat runs faster on a CPU-only machine.
This setup leverages the hardware characteristics best suited for each computation. While
we expect weaker performance on CPU-only systems, emerging consumer hardware with
unified memory architectures is likely to narrow this gap. We observe that the memory usage
of the c-NN feature extraction process remains under a few GBs; however, in some runs,
F2F extraction crashes due to memory limits. In such cases, we revert to SBS as the best
algorithm for the corresponding problem instance.

F2F features combined with K-means and Autofolio result in two new AS approaches
(F2F,K) and (F2F,A). Fig. 6 shows their normalised PAR10 scores and (c-NN,X)’s on the
test set across 10 folds. On Car Sequencing, (c-NN,K) outperforms (F2F,K) on seven out of
ten folds. Compared with (F2F,A), (c-NN,K) obtains the best overall median score. The
strength of (c-NN,K) is even clearer on the remaining two problems, where it performs



A. Pellegrino, O. Akgiin, N. Dang, Z. Kiziltan, and I. Miguel

Table 1 Average PAR10 scores (in seconds) of c-NN-based and F2F-based approaches with (+ E)
and without feature extraction cost on the test set across 10 folds. The AS model is K-means.

fold Car Sequencing Covering Array Social Golfers
F2F + E c-NN + E F2F c-NN F2F + E c-NN + E F2F c-NN F2F + E c-NN + E F2F c-NN

1 132.51 300.57 127.17  300.52 23.23 14.85 19.23 14.85 1,547.11 209.45 1,224.51 209.44
2 301.97 156.22 296.69 156.17 28.60 20.99 25.00 20.99 1,163.31 268.35 848.11 268.35
3 273.85 212.42 268.54  212.37 26.48 15.95 22.65 15.95 518.72 234.85 199.68  234.85
4 229.78 179.38 224.35 179.33 25.37 18.60 21.80 18.60 1,175.69 253.20 857.06 253.20
5 348.88 441.89 343.56  441.83 20.79 14.78 17.27 14.78 528.35 275.22 216.90 275.22
6 246.55 177.89 241.23 177.84 27.93 18.21 24.43 18.21 481.67 181.12 176.76 181.11
7 283.33 359.54 277.90  359.49 20.56 14.40 17.04 14.40 841.24 221.02 535.98 221.02
8 352.25 183.32 346.96 183.27 15.95 10.82 12.44 10.82 849.04 268.51 548.80 268.51
9 284.51 203.13 278.98  203.07 16.89 11.72 13.37 11.72 911.93 280.15 594.83 280.15
10 179.17 151.15 173.60 151.10 504.62 21.22 501.03 21.22 1,228.29 168.23 916.30 168.23

Table 2 Maximum, minimum, mean and median feature extraction cost (in seconds) for F2F and
c-NN features across 10 folds.

Car Sequencing || Covering Array Social Golfers

F2F c-NN F2F c-NN F2F c-NN

max 33.68 0.33 8.96 0.26 1304.95 0.25
min 0.80 0.01 3.33 0.01 0.52 0.01
mean 5.38 0.05 3.61 0.01 312.23 0.01
median | 6.71 0.06 3.595 0.01 271.02 0.01

significantly better than the F2F-based AS approaches across all folds. In fact, (c-NN,K)
is the only one that surpasses SBS. These results further confirm the effectiveness of our
proposed learning approach in capturing the semantic properties of high-level constraint
instances when compared to the existing low-level F2F features, where essential information
about the high-level structure of the problem instance can be lost during translation.

6.4 Feature Extraction Cost

We address Q3 by analysing the computational cost associated with the feature extraction
process and its influence on the final AS performance. Table 1 presents average PAR10
scores on the test set of (c-NN,K) and (F2F,K) with (+E) and without feature extraction
cost across 10 folds. While the extraction cost of c-NN features is marginal, it is generally
higher for F2F, resulting in worse PAR10 scores. On Car Sequencing, feature extraction
cost does not affect the ranking between the two approaches: (c-NN,K) performs better
than (F2F,K) on a majority of folds (7/10) no matter whether feature extraction cost is
included. On Covering Array, the F2F feature extraction cost is smaller in scale and does not
impact the relative ranking in AS performance between (c-NN,K) and (F2F,K), as the former
is consistently better across all folds. Additionally, even when feature extraction cost is
excluded, (F2F,K)’s performance is still worse than SBS across all folds, suggesting that those
features are insufficient to capture the semantic properties of this problem. Finally, on Social
Golfers, feature extraction cost of F2F significantly negatively impacts the corresponding
AS’s overall performance and alter the ranking on 3 folds, while (c-NN,K) achieves better
score on the remaining 7 folds no matter what.

Table 2 shows the maximum, minimum, mean, and median extraction cost (in seconds)
of the F2F and c-NN features. We observe a better consistency in the values of the c-NN
features, which are marginally affected by the instance text size and always negligible. In
contrast, the values of the F2F features vary significantly across the three problems, and they
are not negligible, especially in the case of Social Golfers.

31:15

CP 2025



31:16

Automated Features for Algorithm Selection

Car Sequencing Covering Array Social Golfers

o of — - e+ Hp- N JE—

(p. K) }—“—{ (p. K) }—I E . ®. K . M

(c-NN, K) }—-1 o (c-NN, K)y = }‘m (c-NN, K) }—“

o CINEESY
Q a, @ "2 "2, Y25 Q Q Qs <
¢ R % 3 % %

Figure 7 Comparison of the normalised PAR10 scores of K-means paired with c-NN, the
probabilities-only features (p) and Tanh-only features (t) for the three problem classes.

6.5 Ablation Study

To address Q4, we show in Figure 7 the benefits of combining the NN output probabilities
and the Tanh output for feature learning by focusing on the (c-NN,K) approach. Using only
the output probabilities (p,K) significantly hinders the learning process and leads to poorer
performance compared with using the combined features in (c-NN,K). In contrast, when
only the Tanh features are used (t,K), the performance is more comparable with (c-NN,K).
Interestingly, for the Covering Array problem, both approaches achieve identical results.
However, in the case of Car Sequencing and Social Golfers, both the average and median
performance metrics indicate worse outcomes with (t,K) compared to (c-NN,K).

7 Conclusions

We have explored automatic feature learning for algorithm selection on three problems. Our
approach employs a transformer encoder to learn instance features directly from a high-level
problem description, which are used to predict the best algorithm for solving an instance.
Our experiments demonstrate that the learnt features can be effectively used in a diverse set
of AS algorithms. In particular, a K-means-based approach performed competitively on all
problem classes beating existing state-of-the-art features previously used for AS.

Our results indicate that neural-based feature extraction offers a viable and efficient
alternative to traditional methods, with significantly lower computational costs for feature
extraction. Furthermore, our results show the importance of extracting features from an
high-level instance, especially when the AS task involves selecting the best constraint model
as well as a solver.

Our study highlights the potential of ML and automatic feature learning in enhancing
algorithm selection for combinatorial problems, paving the way for more adaptive and efficient
solving techniques in various application domains.

In future work, we will conduct a more systematic hyper-parameter optimisation of the
whole pipeline and explore other types of learning techniques, for instance by representing
the problem instances in the form of a graph and using GNNs for feature extraction. We also
plan to instantiate our approach on other high-level modelling languages like MiniZinc [41]
and CPMpy [25], and adapt it to receive natural language in the input, with the use of LLMs.
While challenging due to the the black-box nature of neural network-based approaches, an
interesting direction is to analyse the learnt features and be able to explain their semantic
meaning.



A. Pellegrino, O. Akgiin, N. Dang, Z. Kiziltan, and I. Miguel

—— References

1

10

11

12

13

14

15

16

17

18

M. Ahmed, R. Seraj, and S. M. S. Islam. The k-means algorithm: A comprehensive survey
and performance evaluation. Electronics, 9(8):1295, 2020.

O. Akgiin, A. M Frisch, I. P Gent, C. Jefferson, I. Miguel, and P. Nightingale. Conjure:
Automatic generation of constraint models from problem specifications. Artificial Intelligence,
310:103751, 2022. doi:10.1016/J.ARTINT.2022.103751.

M. Alissa, K. Sim, and E. Hart. Automated algorithm selection: from feature-based to feature-
free approaches. Journal of Heuristics, 29(1):1-38, 2023. doi:10.1007/S10732-022-09505-4.
R. Amadini, M. Gabbrielli, and J. Mauro. An enhanced features extractor for a portfolio of
constraint solvers. In Proceedings of the 29th annual ACM symposium on applied computing,
pages 1357-1359, 2014.

R. Amadini, M. Gabbrielli, and J. Mauro. SUNNY: a lazy portfolio approach for constraint
solving. Theory and Practice of Logic Programming, 14(4-5):509-524, 2014. doi:10.1017/
S1471068414000179.

R. Amadini, M. Gabbrielli, and J. Mauro. SUNNY-CP: a sequential CP portfolio solver. In
Proceedings of the 30th Annual ACM Symposium on Applied Computing, pages 1861-1867,
2015.

J. Ansel, E. Yang, H. He, N. Gimelshein, A. Jain, M. Voznesensky, B. Bao, P. Bell, D. Berard,
E. Burovski, et al. Pytorch 2: Faster machine learning through dynamic python bytecode
transformation and graph compilation. In Proceedings of the 29th ACM International Confer-
ence on Architectural Support for Programming Languages and Operating Systems, Volume 2,
pages 929-947, 2024.

C. Ansétegui, M. Sellmann, and K. Tierney. Self-configuring cost-sensitive hierarchical
clustering with recourse. In Proceedings of the 24th International Conference on Principles
and Practice of Constraint Programming, pages 524-534. Springer, 2018.

I. Beltagy, M. E P.s, and A. Cohan. Longformer: The long-document transformer. arXiv
preprint arXiv:2004.05150, 2020.

A. Biere and M. Fleury. Gimsatul, IsaSAT and Kissat entering the SAT Competition 2022.
In Tomas Balyo, Marijn Heule, Markus Iser, Matti Jarvisalo, and Martin Suda, editors,
Proceedings of SAT Competition 2022 — Solver and Benchmark Descriptions, volume B-2022-1
of Department of Computer Science Series of Publications B, pages 10—-11. University of
Helsinki, 2022.

B. Bischl, P. Kerschke, L. Kotthoff, M. Lindauer, Y. Malitsky, A. Fréchette, H. Hoos, F. Hutter,
K. Leyton-Brown, K. Tierney, and J. Vanschoren. ASlib: A benchmark library for algorithm
selection. Artifictal Intelligence, 237:41-58, 2016. doi:10.1016/j.artint.2016.04.003.

D. Bridge, E. O’Mahony, and B. O’Sullivan. Case-based reasoning for autonomous con-
straint solving. In Autonomous search, pages 73-95. Springer, 2012. doi:10.1007/
978-3-642-21434-9_4.

G. Cenikj, G. Petelin, and T. Eftimov. Transoptas: Transformer-based algorithm selection for
single-objective optimization. In Proceedings of the Genetic and Evolutionary Computation
Conference Companion, pages 403—406, 2024.

T. Chen and C. Guestrin. XGBoost: A scalable tree boosting system. In Proceedings of the
22nd acm sigkdd international conference on knowledge discovery and data mining, pages
785-794, 2016.

Chuffed Developers. Chuffed, a lazy clause generation solver. https://github.com/chuffed/
chuffed. Accessed: 2024-07-05.

Conjure developers. Essence catalog: A collection of problem specifications in essence.
https://github.com/conjure-cp/EssenceCatalog, 2024.

A. Crespo Marquez. The curse of dimensionality. In Digital Maintenance Management:
Guiding Digital Transformation in Maintenance, pages 67—86. Springer, 2022.

N. Dang. A portfolio-based analysis method for competition results. arXiv preprint
arXiw:2205.15414, 2022.

31:17

CP 2025


https://doi.org/10.1016/J.ARTINT.2022.103751
https://doi.org/10.1007/S10732-022-09505-4
https://doi.org/10.1017/S1471068414000179
https://doi.org/10.1017/S1471068414000179
https://doi.org/10.1016/j.artint.2016.04.003
https://doi.org/10.1007/978-3-642-21434-9_4
https://doi.org/10.1007/978-3-642-21434-9_4
https://github.com/chuffed/chuffed
https://github.com/chuffed/chuffed
https://github.com/conjure-cp/EssenceCatalog

31:18

Automated Features for Algorithm Selection

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

N. Dang, Ozgiir Akgiin, J. Espasa, I. Miguel, and P. Nightingale. A Framework for Generating
Informative Benchmark Instances. In Christine Solnon, editor, Proceedings of the 28th
International Conference on Principles and Practice of Constraint Programming, volume 235
of Leibniz International Proceedings in Informatics (LIPIcs), pages 18:1-18:18, Dagstuhl,
Germany, 2022. Schloss Dagstuhl — Leibniz-Zentrum fiir Informatik. doi:10.4230/LIPIcs.CP.
2022.18.

J. Devlin, M. Chang, K. Lee, and K. Toutanova. BERT: Pre-training of deep bidirectional
transformers for language understanding. arXiv preprint arXiv:1810.04805, 2018.

F. Didier, L. Perron, S. Mohajeri, S. A. Gay, T. Cuvelier, and V. Furnon. OR-Tools’ vehicle
routing solver: a generic constraint-programming solver with heuristic search for routing
problems, 2023.

M. Dincbas, H. Simonis, and P. Van Hentenryck. Solving the car-sequencing problem in
constraint logic programming. In Proceedings of the European Conference on Artificial
Intelligence, pages 290—-295, 1988.

A. M. Frisch, W. Harvey, C. Jefferson, B. Martinez-Hernandez, and I. Miguel. Essence: A
constraint language for specifying combinatorial problems. Constraints, 13(3):268-306, 2008.
doi:10.1007/s10601-008-9047-y.

I. P Gent. Two results on car-sequencing problems. Report University of Strathclyde, APES-
02-98, 7, 1998.

Tias Guns. Increasing modeling language convenience with a universal n-dimensional array,
cppy as python-embedded example. In Proceedings of the 18th workshop on Constraint
Modelling and Reformulation at CP (Modref 2019), volume 19, 2019.

K. Gurney. An introduction to neural networks. CRC press, 2018.

A. Handler. An empirical study of semantic similarity in wordnet and word2vec, 2014.

F. Hutter, Holger H Hoos, and K. Leyton-Brown. Sequential model-based optimization for
general algorithm configuration. In Proceedings of the 5th International Conference on Learning
and Intelligent Optimization (LION), pages 507—-523. Springer, 2011.

IBM. Tlog cplex optimization studio: Cplex optimizer. https://www.ibm.com/products/
ilog-cplex-optimization-studio/cplex-optimizer, 2022.

L. Kampel and D. E Simos. A survey on the state of the art of complexity problems for covering
arrays. Theoretical Computer Science, 800:107-124, 2019. doi:10.1016/J.TCS.2019.10.019.
P. Kerschke, H. H Hoos, F. Neumann, and H. Trautmann. Automated algorithm selection:
Survey and perspectives. Evolutionary computation, 27(1):3-45, 2019. doi:10.1162/EVCO_A_
00242.

Diederik P Kingma. Adam: A method for stochastic optimization. arXiv preprint
arXiv:1412.6980, 2014.

R. Kora and A. Mohammed. A comprehensive review on transformers models for text
classification. In 2028 International Mobile, Intelligent, and Ubiquitous Computing Conference
(MIUCC), pages 1-7, 2023. doi:10.1109/MIUCC58832.2023.10278387.

L. Kotthoff. Algorithm selection for combinatorial search problems: A survey. In Data mining
and constraint programming: Foundations of a cross-disciplinary approach, pages 149—-190.
Springer, 2016. doi:10.1007/978-3-319-50137-6_7.

L. Kotthoff, P. Kerschke, H. Hoos, and H. Trautmann. Improving the state of the art in inexact
TSP solving using per-instance algorithm selection. In LION 9, pages 202-217. Springer, 2015.
A. Krizhevsky, I. Sutskever, and G. E Hinton. Imagenet classification with deep convolutional
neural networks. Advances in Neural Information Processing Systems, 25, 2012.

M. Lindauer, K. Eggensperger, M. Feurer, A. Biedenkapp, D. Deng, C. B., T. Ruhkopf,
R. Sass, and F. Hutter. SMAC3: A versatile bayesian optimization package for hyperparameter
optimization. Journal of Machine Learning Research, 23(54):1-9, 2022. URL: http://jmlr.
org/papers/v23/21-0888.html.


https://doi.org/10.4230/LIPIcs.CP.2022.18
https://doi.org/10.4230/LIPIcs.CP.2022.18
https://doi.org/10.1007/s10601-008-9047-y
https://www.ibm.com/products/ilog-cplex-optimization-studio/cplex-optimizer
https://www.ibm.com/products/ilog-cplex-optimization-studio/cplex-optimizer
https://doi.org/10.1016/J.TCS.2019.10.019
https://doi.org/10.1162/EVCO_A_00242
https://doi.org/10.1162/EVCO_A_00242
https://doi.org/10.1109/MIUCC58832.2023.10278387
https://doi.org/10.1007/978-3-319-50137-6_7
http://jmlr.org/papers/v23/21-0888.html
http://jmlr.org/papers/v23/21-0888.html

A. Pellegrino, O. Akgiin, N. Dang, Z. Kiziltan, and I. Miguel

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

M. Lindauer, H. H Hoos, F. H., and T. Schaub. Autofolio: An automatically configured
algorithm selector. Journal of Artificial Intelligence Research, 53:745-778, 2015. doi:10.1613/
JAIR.4726.

T. Liu, R. Amadini, M. Gabbrielli, and J. Mauro. sunny-as2: Enhancing SUNNY for
algorithm selection. Journal of Artificial Intelligence Research, 72:329-376, 2021. doi:
10.1613/JAIR.1.13116.

Yinhan Liu, Myle Ott, Naman Goyal, Jingfei Du, Mandar Joshi, Danqi Chen, Omer Levy,
Mike Lewis, Luke Zettlemoyer, and Veselin Stoyanov. Roberta: A robustly optimized bert
pretraining approach. arXiv preprint arXiw:1907.11692, 2019. arXiv:1907.11692.

N. Nethercote, P. J Stuckey, R. Becket, S. Brand, G. J Duck, and G. Tack. MiniZinc: Towards
a standard CP modelling language. In Proceedings of the 13th International Conference on
Principles and Practice of Constraint Programming, pages 529-543. Springer, 2007.

P. Nightingale, O. Akgiin, I. P Gent, C. Jefferson, I. Miguel, and Patrick Spracklen. Auto-
matically improving constraint models in Savile Row. Artificial Intelligence, 251:35-61, 2017.
d0i:10.1016/J.ARTINT.2017.07.001.

E. Nudelman, K. Leyton-Brown, A. Devkar, Y. Shoham, and H. Hoos. SATzilla: An algorithm
portfolio for SAT. Solver description, SAT competition, 2004, 2004.

E. O’'Mahony, E. Hebrard, A. Holland, C. Nugent, and B. O’Sullivan. Using case-based
reasoning in an algorithm portfolio for constraint solving. In Irish conference on artificial
intelligence and cognitive science, pages 210-216, 2008.

Alessio Pellegrino, Ozgiir Akgiin, Nguyen Dang, Zeynep Kiziltan, and Ian Miguel. EFE reposit-
ory. Software, version 1.0., swhld: swh:1:dir:0d45708bbc3b0395ddcd80b52bbb6ed8dabffe252

(visited on 2025-07-22). URL: https://github.com/SeppiaBrilla/EFE_project, doi:10.

4230/artifacts.24086.

R. Qasim, W. H. Bangyal, M. A Algarni, and A. Ali Almazroi. A fine-tuned bert-based transfer
learning approach for text classification. Journal of healthcare engineering, 2022(1):3498123,
2022.

A. Rangamani, M. Lindegaard, T. GA.ti, and T. A Poggio. Feature learning in deep classifiers
through intermediate neural collapse. In International Conference on Machine Learning, pages
28729-28745. PMLR, 2023.

J. R Rice. The algorithm selection problem. In Advances in computers, volume 15, pages
65—118. Elsevier, 1976. doi:10.1016/30065-2458(08)60520-3.

M. V. Seiler, J. Rook, J. Heins, O. L. Preuf}; J. Bossek, and H. Trautmann. Using reinforcement
learning for per-instance algorithm configuration on the TSP. In IEEE Symposium Series on
Computational Intelligence, pages 361-368. IEEE, 2023.

H. Shavit and H. H Hoos. Revisiting SATZilla features in 2024. In 27th International
Conference on Theory and Applications of Satisfiability Testing (SAT 2024), pages 27—1.
Schloss Dagstuhl — Leibniz-Zentrum fiir Informatik, 2024.

B. M Smith. Modelling. In Foundations of Artificial Intelligence, volume 2, pages 377-406.
Elsevier, 2006. doi:10.1016/S1574-6526(06)80015-5.

P. Spracklen, N. Dang, O. Akgiin, and I. Miguel. Automated streamliner portfolios for

constraint satisfaction problems. Artificial Intelligence, 319:103915, 2023. doi:10.1016/J.

ARTINT.2023.103915.

S. Sun, W. Chen, L. Wang, X. Liu, and T. Liu. On the depth of deep neural networks: A
theoretical view. In Proceedings of the AAAI Conference on Artificial Intelligence, volume
30(1), March 2016. doi:10.1609/aaai.v30i1.10243.

M. Triska and N. Musliu. An effective greedy heuristic for the social golfer problem. Annals
of Operations Research, 194(1):413-425, 2012. doi:10.1007/S10479-011-0866-7.

F. Ulrich-Oltean, P. Nightingale, and J. A. Walker. Selecting SAT encodings for pseudo-
boolean and linear integer constraints. In Proceedings of the 28th International Conference on
Principles and Practice of Constraint Programming. LIPICS, 2022.

31:19

CP 2025


https://doi.org/10.1613/JAIR.4726
https://doi.org/10.1613/JAIR.4726
https://doi.org/10.1613/JAIR.1.13116
https://doi.org/10.1613/JAIR.1.13116
https://arxiv.org/abs/1907.11692
https://doi.org/10.1016/J.ARTINT.2017.07.001
https://archive.softwareheritage.org/swh:1:dir:0d5708bbc3b0395ddcd80b52bbb6ed8da6ffe252;origin=https://github.com/SeppiaBrilla/EFE_project;visit=swh:1:snp:d6c381103db3c1b63eb2574073e4466639a93ef3;anchor=swh:1:rev:5124050c380534eb9c0dcb49763e034a844aef1b
https://github.com/SeppiaBrilla/EFE_project
https://doi.org/10.4230/artifacts.24086
https://doi.org/10.4230/artifacts.24086
https://doi.org/10.1016/S0065-2458(08)60520-3
https://doi.org/10.1016/S1574-6526(06)80015-5
https://doi.org/10.1016/J.ARTINT.2023.103915
https://doi.org/10.1016/J.ARTINT.2023.103915
https://doi.org/10.1609/aaai.v30i1.10243
https://doi.org/10.1007/S10479-011-0866-7

31:20

Automated Features for Algorithm Selection

56 F. Ulrich-Oltean, P. Nightingale, and J. A. Walker. Learning to select SAT encodings
for pseudo-boolean and linear integer constraints. Constraints, 28(3):397-426, 2023. doi:
10.1007/S10601-023-09364-1.

57 F. Ulrich-Oltean, P. Nightingale, and J. A. Walker. IndiCon: Selecting SAT encodings for
individual pseudo-boolean and linear integer constraints. In 2024 IEEE 36th International
Conference on Tools with Artificial Intelligence (ICTAI), pages 36—42. IEEE, 2024.

58 M. Vallati, L. Chrpa, and D. Kitchin. ASAP: an automatic algorithm selection approach
for planning. International Journal on Artificial Intelligence Tools, 23(06):1460032, 2014.
doi:10.1142/5021821301460032X.

59 A Vaswani. Attention is all you need. Advances in Neural Information Processing, 30, 2017.

60 L. Xu, F. Hutter, Holger H Hoos, and K. Leyton-Brown. SATzilla: portfolio-based algorithm
selection for SAT. Journal of Artificial Intelligence Research, 32:565-606, 2008. doi:10.1613/
JAIR.2490.

61 L. Xu, F. Hutter, J. Shen, H. H Hoos, and K. Leyton-Brown. SATzilla2012: improved algorithm
selection based on cost-sensitive classification models. Proceedings of SAT Challenge, pages
57-58, 2012.

A Neural Network Training

A.1 Model Hyper-parameters

For both the B-NN and the C-NN models, we need to set the sizes of the feature and
post-feature layers as they are arbitrary and their values can significantly impact both the
size of the models and their ability to learn the task effectively. After some manual tuning,
we set the size of the feature layer to 100 neurons and the size of the post-feature layer
to 200 neurons. These values are large enough to allow a lot of flexibility in the model’s
parameters while still being small enough not to cause over-parametrization problems (for
the post-feature layer) or issues with the external ASs (for the feature layer).

A.2 B-NN Feature Learning

For each test case, the model was trained using distinct hyper-parameter configurations,
including variations in learning rates, the total number of training epochs, and batch sizes.
Since we have a limited amount of training data, we observe signs of over-fitting in a number
of cases. Therefore, we monitor the validation performance throughout training and retain
the model that achieves the best loss value on the validation set.

Figure 8a illustrates the evolution of the loss values for both the training and validation
sets at the end of each epoch for the models trained on the Car Sequencing instances. The
models were trained for a total of 15 epochs using a learning rate of 7 x 10~%. Due to memory
constraints, the batch size was limited to only two elements per batch. The loss trends for
the training and validation sets are generally consistent, with both following a similar overall
trajectory. With the exception of a single case, the majority of networks exhibit diminishing
improvements after the 6! epoch. In certain instances, the loss value increases during the
final epochs, suggesting overfitting. Notably, the fifth fold displays the poorest performance,
characterised by a more unstable trend and a substantially higher final loss value.

Figure 8b depicts the loss values for the training and validation sets at the end of each
epoch for the models trained on the Covering Array instances. The models were trained for
a total of 100 epochs with a learning rate of 1 x 107° and a batch size of 32 items per batch.
Among the case studies analysed, the models trained on the Covering Array exhibited the
least favourable trend. The loss curves reveal a pronounced tendency toward overfitting,
as the loss for the training set continues to decrease while the validation loss stagnates or


https://doi.org/10.1007/S10601-023-09364-1
https://doi.org/10.1007/S10601-023-09364-1
https://doi.org/10.1142/S021821301460032X
https://doi.org/10.1613/JAIR.2490
https://doi.org/10.1613/JAIR.2490

A. Pellegrino, O. Akgiin, N. Dang, Z. Kiziltan, and I. Miguel

loss value

(a) Car Sequencing. (b) Covering Array. (c) Social Golfers.

Figure 8 Loss values for the B-NN model across all folds, shown for training (top) and validation
(bottom) sets.

increases after approximately 25 epochs. This behaviour suggests that the models struggle
to generalize effectively, indicating that either the current network architecture is suboptimal
for this task or that the nature of the instances poses intrinsic challenges for this type of
neural network model.

Figure 8c illustrates the loss values for the training and validation sets at the end of each
epoch for the models trained on the Social Golfers instances. The models for this instances
were trained for 50 epochs using a learning rate of 6 x 107® and a batch size of 32 items
per batch. Similar to the trends observed in the Car Sequencing models, the loss values
for the training and validation sets follow comparable trajectories. However, unlike the Car
Sequencing models, the loss in the Social Golfers models continues to improve, albeit at a
slower rate, after stabilization around the 20th epoch. Two folds exhibit distinct behaviours
worth highlighting: fold 9 achieves a notably lower validation loss compared with the other
folds, while fold 8 demonstrates signs of overfitting beginning around the 60th epoch, with its
validation loss subsequently increasing, ultimately leading to the worst performance among
all folds.

A.3 C-NN Feature Learning

These models share most of their characteristics with the B-NN model. However, instead
of using the Cross-Entropy loss function, the Binary Cross-Entropy (BCE) loss function
was employed due to the nature of the task, which involved multilabel classification. The
optimiser remained the Adam optimizer. Each instances was trained using a distinct set
of hyper-parameters. Furthermore, model performance was evaluated on the validation set
at the end of each epoch. To mitigate the risk of overfitting, the model with the lowest
validation loss was saved during training.

Figure 9a illustrates the evolution of the loss values for the training and validation sets
at the end of each epoch for the models trained on the Car Sequencing instances. For these
instances, the models were trained for 15 epochs with a learning rate of 7 x 107% and a
batch size of 2 items per batch, a constraint imposed by memory limitations similar to
the B-NN model. The overall loss trend remains consistent across all folds, with a similar

31:21

CP 2025



31:22

Automated Features for Algorithm Selection

0.60 — folds
fold 3
055 — fold 6
— folda
050 — fold 7
— fold2 06
045 fold 9
— fodo | 2

6 8
epoch epoch epoch

— fold 8
0.6 fold 3
— fold 6 07
— fold4
— fold 7
— fold2
fold 9 06
—— fold 0 s
fold 5
— fold 1

[ 2 4 6 8 10 12 14 0 20 40 60 80 100 0 20 40 60 80 100
epoch epoch epoch

(a) Car Sequencing. (b) Covering Array. (c) Social Golfers.

Figure 9 Loss values for the C-NN model across all folds, shown for training (top) and validation
(bottom) sets.

trajectory observed for both the training and validation sets. Unlike the B-NN model, where
the training process often stagnates or slows down after a certain number of epochs, this
model maintains a steady reduction in loss throughout all epochs. Two folds demonstrate
particularly noteworthy behaviour: fold 8 experiences a small but noticeable loss spike at the
4th epoch, while fold 6 exhibits a more significant spike at the 11th epoch. Interestingly, in
both cases, the loss subsequently returns to a downward trend, and the spikes are observed
in both the training and validation sets.

Figure 9b illustrates the loss values for the training and validation sets at the end of
each epoch for the models trained on the Covering Array instances using the C-NN model.
The models for these instances were trained for 100 epochs with a learning rate of 7 x 1076
and a batch size of 32 items per batch. The loss curves for these instances are particularly
unconventional. All folds exhibit a relatively slow start, with the loss decreasing at a
sluggish pace during the initial epochs, followed by a more rapid convergence in subsequent
epochs. This pattern is observed in both the training and validation sets, with all folds
reaching a similar loss value by the end of training. Interestingly, only the 9th fold displays
a slightly lower final validation loss than the other folds. This consistent convergence across
folds suggests that the peculiar shape of the loss curves is likely a result of the inherent
characteristics of the data: or the loss landscape, rather than fold-specific anomalies.

Figure 9c illustrates the evolution of the loss values for the training and validation sets
at the end of each epoch for the models trained on the Social Golfers instances using the
C-NN model. The models for this instances were trained for 100 epochs with a learning rate
of 9 x 1075 and a batch size of 32 items per batch. The loss values for the Social golfers
instances follow a trend similar to that observed in the B-NN models. Specifically, there is a
rapid convergence in the early epochs, after which the rate of improvement slows. Notably,
the validation loss is more stable in the C-NN model compared to its B-NN counterpart.
However, similar to the B-NN models, the C-NN model exhibits a few spikes in loss during
training. Unlike in the B-NN model, these spikes occur at approximately the same epochs
across multiple folds, suggesting that they may be due to the structure of the loss landscape
rather than the idiosyncratic behaviour of specific folds.



	1 Introduction
	2 Background
	2.1 High-level constraint modelling
	2.2 Transformer architecture

	3 Related Work
	4 Methodology
	4.1 Transformer-based Neural Network for Feature Learning
	4.2 Algorithm Selection Using the Learnt Features

	5 Case Studies
	5.1 Problem Description in Essence and Instance Set
	5.2 Combinations of Essence Prime Models and Solvers
	5.3 Algorithm Complementarity

	6 Experimental Results
	6.1 Experimental Design
	6.2 Fully Neural vs Hybrid Approaches
	6.3 Comparison with fzn2feat Features
	6.4 Feature Extraction Cost
	6.5 Ablation Study

	7 Conclusions
	A Neural Network Training
	A.1 Model Hyper-parameters
	A.2 B-NN Feature Learning
	A.3 C-NN Feature Learning


