BFS-Based Canonical Codes for Generating Graphs
with Constraint Programming

Xiao Peng

LAAS-CNRS, Université de Toulouse, Toulouse, France

Christine Solnon &

Univ Lyon, INSA Lyon, Inria, CITI, EA3720, 69621 Villeurbanne, France

—— Abstract

We consider the problem of generating all graphs that satisfy some given additional constraints
(on vertex degrees, or cycle lengths, for example). Most previous works have proposed to generate
canonical codes associated with adjacency matrices. In this paper, we consider canonical codes based
on Breadth First Search (BFS), and we show how to generate them with Constraint Programming
(CP): we introduce a set of basic constraints that must be satisfied by all canonical codes, thus
breaking many symmetries, and we introduce a global constraint to break other symmetries. We
illustrate the interest of our approach on connected claw-free cubic graphs, and show that it
outperforms state-of-the-art CP and SAT Modulo Theory (SMT) approaches.

2012 ACM Subject Classification Mathematics of computing — Graph enumeration; Computing
methodologies — Artificial intelligence

Keywords and phrases Graph Generation, Automorphisms, Symmetry Breaking

Digital Object Identifier 10.4230/LIPIcs.CP.2025.32

1 Introduction

In combinatorics and graph theory, graph enumeration involves systematically searching
for all graphs that satisfy some given properties (such as a specific number of edges, vertex
degree constraints, or structural features like girth). This has numerous applications in
fields like chemical informatics and drug discovery, where molecules are modeled as graphs
[5, 19]. To prevent us from generating isomorphic graphs, 7.e., graphs that are equivalent
up to a renaming of their vertices, we may use canonical codes, i.e., words associated with
graphs such that two graphs are isomorphic if and only if they have the same canonical
code: instead of enumerating graphs, we enumerate canonical codes, thus ensuring that all
generated graphs are non-isomorphic.

Canonical codes may be based on adjacency matrices, i.e., 2-dimensional arrays M such
that M;; = 1 if (4,7) is an edge, and 0 otherwise. A code may be obtained from M by
concatenating its rows (or columns), thus obtaining a binary word. Since different vertex
permutations may produce different adjacency matrices and, therefore, different codes, the
lexicographically smallest one is selected as the canonical code, thus uniquely identifying
the graph. To avoid exhaustively considering all vertex permutations, symmetry-breaking
constraints may be used. In [4], Codish et al. introduce symmetry-breaking constraints that
enforce a non-descending row order in the adjacency matrix and ensure minimality under
vertex permutations within specific partitioned sets.

The Nauty algorithm [13] generates a canonical labeling through an iterative partition
refinement process, where vertices are colored based on their connectivity. Once a discrete
partition is reached, it serves as the canonical label. Although there is no direct work that
enumerates all canonical codes using Nauty’s labeling as constraints, as far as we know, the
concept of symmetry breaking via structural graph information has been applied by Codish et
al. [3]. They encode partition refinement into constraints, and introduce additional constraints
? Xiao Peng and Ch?istine Solnon; .

37 icensed under Creative Commons License CC-BY 4.0
31st International Conference on Principles and Practice of Constraint Programming (CP 2025).
Editor: Maria Garcia de la Banda; Article No. 32; pp. 32:1-32:16

\\v Leibniz International Proceedings in Informatics
LIPICS Schloss Dagstuhl — Leibniz-Zentrum fiir Informatik, Dagstuhl Publishing, Germany

https://orcid.org/0009-0004-9285-3859
mailto:christine.solnon@insa-lyon.fr
https://orcid.org/0000-0002-0919-496X
https://doi.org/10.4230/LIPIcs.CP.2025.32
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics
https://www.dagstuhl.de

32:2

BFS-Based Canonical Codes for Generating Graphs with CP

to maintain minimality in the adjacency matrix while preserving partition structure. This
approach provides insights into constructing compact and complete symmetry-breaking
constraints, effectively reducing the need to evaluate all vertex permutations. Further studies
on complete symmetry breaking are explored in [8, 9].

In addition to the adjacency matrix, Codish et al. demonstrate in [10] how various
higher-dimensional graph invariants, such as vertex degrees and the cardinality of common
neighbors, can be leveraged to define symmetry-breaking constraints. They compare different
combinations of these invariants to evaluate their effectiveness in reducing the search space.

Beyond static symmetry breaking, which relies on a predefined set of permutations,
Kirchweger and Szeider introduce in [11] a novel SMT-based approach for graph generation
using dynamic symmetry breaking. The idea is to detect symmetries in the partially generated
graph to enforce adjacency matrix minimality during the solving process, thus significantly
improving efficiency compared to static symmetry-breaking methods.

Another class of canonical codes relies on graph traversals, where codes are sequences
of traversed edges. Graph mining algorithms, such as Gaston [15] and gSpan [20], are
usually based on Depth-First-Search (DFS). In [18] and [16], canonical codes based on
Breadth-First-Search (BFS) are used for particular classes of graphs (Deterministic Finite
Automata in [18] and hexagonal graphs in [16]) for which graph isomorphism may be solved
in polynomial-time. In [14], some BFS-based symmetry-breaking predicates are introduced
for generating connected graphs.

In this paper, we extend the work of [14] and introduce new symmetry breaking constraints
for BFS-based canonical codes. Indeed, BFSs naturally construct spanning trees, and the
orbits formed by the vertices within a spanning tree can be exploited to derive compact
symmetry breaking constraints, that are efficiently handled by CP solvers. Also, every
prefix of our canonical code is a canonical code, thus enabling the construction of dynamic
symmetry-breaking constraints, similar to the approach in [11].

The paper is organized as follows. In Section 2, we introduce notations. In Section 3, we
introduce BFS-based codes, and define a canonical BFS-based code as the smallest possible
code. In Section 4, we describe a CP model for generating BFS-based codes. In Sections 5
and 6, we study properties of canonical codes. In Section 7, we introduce a global constraint
that exploits these properties to ensure canonicity. In Section 8, we evaluate our method
for generating connected claw-free cubic graphs, and compare it with the approach of [10],
which relies on an adjacency matrix representation, as well as with the SMT-based approach
of [11] and with Nauty [13]. We also introduce a more compact graph representation for this
benchmark, thus enabling us to solve larger instances.

2 Notations and definitions

We note [i, j] the set of all integers ranging from i to j, #S the cardinality of a set .S, and
=ez the lexicographic order for comparing sequences of integer values.

Two graphs G; = (V1, E1) and G2 = (Va, E») are isomorphic if there exists a bijection
f : Vi — V; that preserves edges, i.e., Vu,v € Vi, (u,v) € E1 < (f(u), f(v)) € Ey. This
problem belongs to A'P, but it is not known to be in P nor to be N'P-complete, and it is
conjectured to be A'P-intermediate.

Throughout this paper, we consider a connected graph G = (V, E) such that #V =n+1

and #F =n +m, so that 0 <m < % We note d; the degree of a vertex i € V.

X. Peng and C. Solnon

Algorithm 1 BFSg.

Input: A graph G = (V, E)
Output: A code associated with a BFS traversal of G

1 for each vertex v € V do initialise numlv] to -1;

2 choose a first vertex vy € V, set numuvg] to 0 and add vy to an empty FIFO queue g;
3 initialize ¢ to 0, and ¢y and ¢, to empty sequences;

4 while g is not empty do

5 pop u from g;

6 for each verter v adjacent to u do

7 if numv] <0 then // Forward edge

8 ‘ add numu] at the end of ¢y, push v in ¢, set num[v] to 4, and increment 4
9 else if num[u] < num[v] then // Backward edge

10 ‘ add num[u] and num|v] at the end of c;

11 end
12 end
13 end

14 return the concatenation of c¢ and ¢,

3 Canonical BFS-based code

A code is a sequence of n + 2m integer values, generated through a BFS of G as described in
Algorithm 1. We use a FIFO queue ¢ to store the vertices that have been discovered but not

yet treated, and we build two sequences c¢ and ¢, of n and 2m integer values, respectively.

When a vertex v is pushed in ¢, we store in num|v] its g-number, which ranges from 0 for the
first pushed vertex to n for the last pushed one. At each iteration of the while loop (Lines
4-13), a vertex wu is popped from ¢, and we consider each vertex v adjacent to u.

If v is reached for the first time (Lines 7-8), (num[u], num[v]) is said to be a forward

edge. numlu] is the parent of num[v], and it is added at the end of c;. At the end of

Algorithm 1, there are n forward edges which form a spanning tree of G.

If v has already been reached (Lines 9-10), (numlu], num[v]) is said to be a Backward

edge, and num[u] and num|v] are added at the end of ¢,. To avoid treating twice a same

edge, we add the condition that num[u] must be smaller than num]v].
The final code is obtained by concatenating ¢y and ¢, (Line 14). Hence, a code is a sequence
of n + 2m integer values p1,p2, ..., Pn, 1, Y1, 22, Y2, - - - Tm, Ym such that for each i € [1,n],
(pi, i) is a forward edge and for each i € [1,m], (z;, ;) is a backward edge. The first part of
a code, from py to p, is called forward code, whereas the second part of the code, from z; to
Ym is called backward code. When there is no ambiguity, commas between vertices in codes
may be removed.

Different codes may be built for a same graph, depending on (i) which vertex is chosen
first (Line 2) and (ii) the order considered to visit successors of v (Line 6). In order to make
the algorithm deterministic, we add a parameter 7 which is a permutation of V" used to break
ties: Line 2, the chosen vertex vg is the first vertex of m; Line 6, successors of u are visited in
the order defined by m. The code obtained when using 7 to break ties is denoted BFS¢q (7).

» Example 1. Let us consider the graph G displayed in Fig. 1 when the permutation 7 is

eabed, as displayed in Fig. 1(i). The first vertex pushed in ¢ is e, and we have num[e] = 0.

When e is popped from ¢, we iterate on its adjacent vertices in the order defined by 7:
when v = a, we set numla] to 1 and add numle] = 0 to ¢y, i.e., (0,1) is a forward edge;
when v = b, we set num/[b] to 2 and add numle] = 0 to ¢y, i.e., (0,2) is a forward edge;

32:3

CP 2025

32:4

BFS-Based Canonical Codes for Generating Graphs with CP

G (i) m = eabed (ii) m = aebdc (iii) 7 = decba
¢y = 0001 ¢y = 0000 ¢y = 0001
ey =12,13,24,34 ¢, =12,13,24,34 ¢, = 13,23,24,34

Figure 1 A graph G (on the left), and three BFS-based codes corresponding to three different
permutations . Vertices of the three graphs on the right are labeled with their g-numbers; forward-
edges are displayed in solid lines; backward-edges are displayed in dotted lines.

when v = d, we set num/d] to 3 and add numle] = 0 to ¢y, i.e., (0,3) is a forward edge.
When a is popped from g, we iterate on its adjacent vertices in the order defined by 7:
when v = e, we do nothing because edge (e, a) has already been treated;
when v = b, we add num[a] = 1 and num[b] = 2 in ¢, i.e., (1,2) is a backward edge;
when v = ¢, we set num/c] to 4 and add num[a] =1 to ¢y, i.e., (1,4) is a forward edge;
when v = d, we add numla] = 1 and num[d] = 3 in ¢, i.e., (1,3) is a backward edge.
When b is popped from ¢, we iterate on its adjacent vertices in the order defined by m:
when v = e or a, we do nothing because edges (e,b) and (a,b) have already been treated;
when v = ¢, we add num/[b] = 2 and num|c] =4 in ¢, i.e., (2,4) is a backward edge.
When d is popped from ¢, we iterate on its adjacent vertices in the order defined by :
when v = e or a, we do nothing because edges (e, d) and (a,d) have already been treated;
when v = ¢, we add numld] = 3 and num|c] =4 in ¢, i.e., (3,4) is a backward edge.
When c¢ is popped from ¢, we iterate on its adjacent vertices in the order defined by 7, i.e.,
a, b, and d, but we do nothing as edges (a,c), (b,c), and (d,c) have already been treated.
Hence BFS¢(eabed) = 0001,12, 13,24, 34.

Given a code, we can build the corresponding graph as the code allows us to reconstitute
all its edges. For example, given BFSg(eabed) = 0001, 12,13, 24, 34, we reconstitute the set
of edges {(0,1), (0,2),(0,3),(1,4),(1,2),(1,3),(2,4),(3,4)}.

As shown in Example 1, there exist different possible codes for G, depending on the
considered permutation . We define a total order on the set of all possible codes that may
be associated with G' by considering a lexicographic order. Among all the possible codes for
G, the smallest one according to this order is called the canonical code of G and it is unique.

» Definition 2 (Canonical code cc(G)). The canonical code of a graph G = (V, E) is defined
as cc(G) = min{BF Sg(7) : m is a permutation of V} when considering the lexicographic
order <jee to compare codes.

In the example of Figure 1, the canonical code is 0000, 12, 13,24, 34.

An important property to allow an efficient enumeration of canonical codes is that any
prefix of a canonical code is a canonical code: this property allows us to stop completing a
code whenever its prefix is not canonical.

» Theorem 3. Let ¢ = pips ... Pn, T1Y1,s - - - TYm be a canonical code.
For each k € [1,n], the prefiz ¢ = py...py is a canonical code.
For each k € [1,m], the prefic ¢ =p1...pn, T1Y1,- -, TEYk 1S a canonical code.

X. Peng and C. Solnon

Proof. Let G’ be the subgraph of G that contains all edges defined by ¢’. Assume, for
contradiction, that ¢’ is not canonical, i.e., there exists another lexicographically smaller
code ¢’ that represents the same graph G’. We consider two cases.

Recall that our canonical code, derived from a BFS traversal, first lists the forward edges
followed by the backward edges. In the first case, ¢’ consists only of forward edges, implying
that G’ forms a tree. Since ¢’ is a valid traversal of G’, it can be extended into a full
traversal of G by discovering the remaining vertices, and results in a code smaller than c,
which violates the canonicity of ¢. In the second case, ¢’ includes backward edges. If the
forward edge code pips...p, is already canonical, then the backward edges must follow a
unique order, as dictated by lines 6-12 of Algorithm 1. A smaller ¢’ would be extended to a
full code smaller than ¢ by enumerating the remaining backward edges.

Thus, in both cases, we reach a contradiction, proving that every prefix of a canonical
code is also canonical. <

4 Basic CP model

We propose to generate codes with CP, thus allowing one to easily add other application-
dependent constraints. Our CP model has the following integer variables:
for each i € [1,n], p; corresponds to the parent of vertex ¢ in the spanning tree (in other
words, (p;,1) is a forward edge), and its domain is [0,7 — 1] because the parent of ¢ must
have been discovered before i;
for each j € [1,m], z; and y; correspond to the two endpoints of the jth backward edge
and their domain is [1,n] because an edge incident to 0 cannot be backward;
for each i € [0,n], d; corresponds to the degree of vertex 4, and its domain is [1,n — 1].
The constraints are listed in Fig. 2. Constraints C1 to C7 are satisfied by any BFS-based
code, even if it is not canonical:
C1 is a consequence of the fact that the vertex whose g-number is 1 has been pushed in ¢
just after 0 and, therefore, its parent can only be 0.
C2 and C4 are consequences of the fact that, at each iteration of the while loop (Lines
4-13), the vertex u popped from ¢ has a g-number increased by one (as vertices are pushed
in ¢ by increasing g-number).
C3 is a consequence of the condition Line 9.
C5 expresses the fact that, for each backward edge (x;,y;), the parent of y; has been
discovered before z;. Indeed, let us suppose that this is not the case, i.e., py, > x;. In
this case, the parent of y; would necessarily be x; because y; would not yet have been
discovered when exploring the vertices adjacent to x; (Lines 7-8).
C6 and CT7 relate degrees with edge variables.

Cl: p; =0

C2: Vi€ [2,n],pi—1 < p;

C3: Vie[l,m],z; <y

Ca: Vie[l,m—1],z; <z

C5: Vie [1,m],py, <z;

C6: dy = #{Z S [l,n] ‘pi = 0}

C7: Vie[l,n],di=1+4#{j € [Ln]'pj =i} +#{j € [Ln]"rj =i} +#{j € [Ln]'yj =i}
C8: Vi e [1,n],d0 > d;

C9: Vi e [1,m — 1],3’51‘ < Tit1 V (.Z‘z =Tt Ny < yi+1)

C10: Vi€ [1,n—1],pi = pir1 = #{j € [Lin]lp; = i} 2 #{j € [L,n]lp; =i+ 1}

Figure 2 Basic CP model for generating BFS-based codes.

32:5

CP 2025

32:6

BFS-Based Canonical Codes for Generating Graphs with CP

Constraints C8 to C10 prevent us from generating some non-canonical codes, i.e., codes
that are not the smallest possible ones:

C8 comes from the fact that ¢ starts with dy occurrences of 0: if there exists a vertex ¢

such that d; > dy, then a smaller code is obtained by starting BFS from the vertex.

If C9 is not satisfied, then a smaller code is obtained by exchanging z;y; and x;41Yy;+1-

if C10 is not satisfied, then a smaller code is obtained by visiting ¢ + 1 before i.

We have experimentally compared this first CP model with the model introduced in [14]
on a toy problem that aims at enumerating all graphs with &k vertices and 2k — 2 edges. Both
models have been implemented in Choco, and compute the same sets of solutions. However,
our model is more efficient: when k =5 (resp. 6, 7, and 8), it needs 0.02 (resp. 0.1, 0.4, and
4.3) seconds whereas the model of [14] needs 0.04 (resp. 0.2, 1.4, and 28.4) seconds. This
comes from the fact that (i) we order sibling vertices with respect to the number of children
(thanks to constraint C10) instead of sub-tree weights, and (ii) we explicitly model backward
edges with z; and y; variables instead of using an adjacency boolean matrix.

Constraints C1 to C10 allow us to enumerate all canonical BFS-based codes, but some
non-canonical codes may also be enumerated. Hence, in the next two sections we introduce
two additional properties that must be satisfied by canonical codes, and that are used to
propagate a global constraint that ensures the canonicity of BFS-based codes, as described
in Section 7.

5 Breaking Symmetries of Forward Codes with Vertex Labels

In this section, we introduce a property which is used in Section 7 to ensure the canonicity of
prefixes of forward codes. Forward code prefixes correspond to trees, and the tree isomorphism
problem may be solved in polynomial time by computing vertex labels [1]. We exploit similar
labels but, unlike the original algorithm of [1], we do not rename labels with integer values
at each level of the tree, but define the label of a vertex i as a sequence that contains an
integer value for each vertex in the subtree rooted in i. This allows us to compute labels in a
more incremental way during the search.

» Definition 4 (Vertex label). Let ¢y = pips...pr with k < n be the prefix of a forward code.
Let T be the tree associated with this prefix. For every vertex i € [0, k], let T; be the subtree
of T rooted at i, and T'; be the sequence of all vertices in T; ordered by increasing value. The
label of i, denoted l;, is the sequence obtained by replacing every vertex j in I'; by # Che,(j)
where $ Che,(j) is the number of children of j in the tree defined by the forward code cy.

For example, let us consider the tree T displayed on the left of Fig. 3. The forward
code associated with this tree is ¢; = 000113. When ¢ = 1, we have I'y = 145 and
Iy = 200 because #Ch., (1) = 2 and #Che,(4) = #Ch(5) = 0. When i = 0, we have
I'o = 0123456 and lp = 3201000 because # Che, (0) = 8, #Ch, (1) = 2, #Ch,(8) = 1, and
#Cth(2> = #Chc]r(4> = #Cth(5) = #Cth(6) =0.

Given the label [y of the root of a tree, we can reconstitute this tree as each value at
position 7 in Iy gives the number of children of vertex i. Hence, there is a bijection between
each forward code and the label of the root of its associated tree. For example, we display in
Fig. 3 two isomorphic trees T and T’. T corresponds to the forward code 000113 and the
label of its root is 3201000, whereas T" corresponds to the forward code 000112 and the label
of its root is 3210000.

An interesting property of vertex labels is that the children of a vertex in the tree
associated with a canonical forward code prefix have non-decreasing labels, as stated below.

X. Peng and C. Solnon

lp = 3201000 ly = 3210000

Figure 3 Vertex labels of two isomorphic trees T and T".

» Property 1. Let ¢y = pips...px with k < n be the prefix of a canonical forward code. We
have: ¥i € [1,k —1],p; = pit+1 = li Ziex lit1-

Proof. Let T; and T;;1 be the subtrees rooted at ¢ and i 4 1, respectively. The level of a
vertex in T; (resp. Tj4+1) is its distance to the root ¢ (resp. ¢ +1). Let I'; = q1¢2 . . . gur, be
the ordered sequence of vertices in T;, and T'; 11 = ¢{¢5 . .. q;#TiH be the ordered sequence of
vertices in T;41. Since p; = p;4+1, ¢ and i + 1 are sibling. Therefore, vertices at level k in T;
are discovered earlier than those at level k£ in T;41. Suppose l; <je. l;41 by contradiction,
i.e., #Che(q1) ... #Che,(qu1,) <iew #Che,(d)) ... #Chcf(q%&THl). This can occur either
when (i) /; is a prefix of [; 41 or (ii) it exists ¢ € [1, #7T;] such that Vj € [1,c— 1], #Ch,(q;) =
#Che, (qj) N #Che,(qc) < #Che,(ge). In both cases, if we swap the order of i and i + 1, then
all vertices in I';1 will be explored before those in I'; at the same level, resulting in a larger
label ly, which contradicts the canonicity of cy. |

6 Breaking Symmetries of Backward Edges

Given a forward code prefix, we propose to exploit automorphisms in the tree associated
with this prefix in order to break symmetries on backward edges. An automorphism of a
tree T = (Vr, Er) is a permutation o of Vr which is an isomorphism from 7" to T. Given a
forward code prefix cf, we only consider automorphisms that are still automorphisms on all
possible extensions of cf to full canonical forward codes, as defined below.

» Definition 5 (Aut(cy)). Let ¢y = p1...pr with k < n be a prefiz of a canonical forward
code. Aut(cy) is the set of all automorphisms o : [1,k] — [1,k] that are still valid on all
canonical extensions of cy, i.e., for any sequence Pi41 - ..Pn such that p1...p, s canonical,
the automorphism o’ such that Vi € [1,k],0'(i) = o(i) and Vi € [k + 1,n],0'(i) =i is an
automorphism of the tree associated with py ...pn, i.e., o' € Aut(py...pn).

For example, let us consider the tree T” displayed in Fig. 3. The canonical code of T" is

000112. Let us assume that n =9, i.e., we still have to add three forward edges to the tree.

Let 045 be the automorphism that only exchanges vertices 4 and 5 and leaves unchanged all
other vertices, i.e., 045(4) = 5,045(5) = 4, and Vi & {4,5}, 045(i) = i. 045 does not belong to

Aut(000112). Indeed, there exist extensions of 000112 for which 045 is not an automorphism.

For example, if we add the forward edges (3,7) and (4, 8) to 7", leading to the forward code
00011234, then 045 is no longer an automorphism because the subtree rooted in 4 is no longer
isomorphic to the subtree rooted in 5.

Now, let us consider the tree obtained from 7" by adding the forward edge (6,7). The
associated forward code is 0001126. In this case, o45 belongs to Aut(0001126) because it is
still an automorphism on all canonical extensions of 0001126. Indeed, 4 and 5 cannot be
parent (because 6, which is at the same level as 4 and 5 but with a larger g-number, already
has a child).

32:7

CP 2025

32:8

BFS-Based Canonical Codes for Generating Graphs with CP

Figure 4 Example of two isomorphic graphs (backward edges are displayed with dotted lines).
The code of the left-hand graph is 00001122, 37,45, 46 and it is not canonical because we obtain a
smaller code (7.e., 00001122, 35,36,47) when exchanging 3 with 4, as displayed on the right.

The following property allows us to exploit automorphisms to break symmetries on
backward edges.

» Property 2. Let c = p1...pn, T1Y1,-- -, TmYm be a canonical code of G. The following
property holds for any k € [1,n] and any | € [1,m] such that Vi € [1,1], z;,y; € [1,K]:

Vo € Aut(pr...pr), T1y1 .. Ty Stez 0(T1Y1 - - - T1Y1)

where o(x1y1 ... x1y;) is obtained from x1yy ... x1y; in two steps: (i) we compute the set of
edges S = {(min{o(x;),0(y;)}, maz{o(x;),o(y:)})|i € [1,1]}, and (ii) we sort the set S of
edges in lexicographically ascending order and concatenate them into a sequence of 2l values.

Proof. By definition, when applying o to the tree T" associated with p; ... p,, we obtain a tree
which is isomorphic to T" and, therefore, has the same canonical code as T'. For contradiction,
let us assume that there exists [€ [1,m] such that z1y; ... 2y =iex 0(T191 - .. 21y;). In this
case, the code obtained from ¢ by replacing x1y; . ..x;y with o(z1y1 ... xy) is lexicograph-
ically smaller than ¢, which is in contradiction with the fact that ¢ is canonical. |

For example, let us consider the graph G displayed in the left of Fig. 4. The permutation
034 that exchanges 4 with 3 and leaves unchanged all other vertices belongs to Aut(00001122).
The code of G is 00001122,37,45,46. In Step 1, we compute the set S of edges obtained
when applying the permutation o34 to {(3,7),(4,5),(4,6)}, i.e., S = {(4,7),(3,5),(3,6)}.
Then, we sort edges of S in lexicographic order to obtain the sequence 35, 36,47 which is
lexicographically smaller than 37,45,46. Hence, 00001122, 37,45, 46 is not canonical.

7 Global CanonicalCode Constraint

Properties 1 and 2 are used to propagate the global constraint defined below.

» Definition 6. Let n > 1 and m > 0 be integer values, and Vi € [1,n],Vj € [1,m],p;, x;,
and y; be integer variables. The global constraint cc(p1,...,Pn, 1, Y1, -, Tm,Ym) I8 satisfied
W p1...PrT1Y1 - .. TmYm S a BES-based canonical code.

Propagation of Property 1

We exploit Property 1 to ensure that the forward code is canonical: When the domain of
a variable p, with k < n is reduced to a singleton, if the domain of p; is also reduced to
a singleton for each j € [1,k — 1], and if there exists ¢ € [1,k — 1] such that p; = p;41 and
li <iex li+1, then a failure is raised. Note that this ensures that the forward code is the
smallest possible one when starting the search from vertex 0. However, if there exists a
vertex ¢ € [1,k] such that 1+ #Ch,, (1) = #Chy, . (0), then it may be possible that a

X. Peng and C. Solnon

smaller forward code exists. Hence, to fully ensure that p; ... pg is canonical, we must build
every tree starting from a vertex i € [1, k] such that 1+ #Chy, .. (1) = #Chy, . p,(0), build
the associated smallest forward code, and check that it is not smaller than p; ... pg.

For an efficient propagation of Property 1, we maintain a 2 dimensional array t such that,
Vi, j € [1,k], t[i][j] € {—1,0,1} depending on whether l; <jez I;, l; = 1;, or l; >jes 1.

Propagation of Property 2

We exploit Property 2 to detect some cases where the backward code is not canonical: When
the domain of a variable y; is reduced to a singleton, if the domains of z; and y; are also
reduced to singletons for each j € [1,1], a failure is raised if there exists o € Aut(p; ... pk)
such that x1y1 ... 21y >1ex o(x1y1 - .. 21y;) where k € [1,n] is the largest value such that the
domain of p; is reduced to a singleton for each i € [1,k]. We use vertex labels to compute a
partition of the vertices in orbits (vertices ¢ and j are in a same orbit if p; = p; and I; = I;),
and we use this partition to compute automorphisms. However, to compute Aut(p; ... px)
when k < n, we need to discard automorphisms that may not be valid after the addition of
n — k new forward edges (as stated in Def. 5). More precisely, if two vertices u and v belong
to a same orbit in pips ... pk, and the largest vertex in their respective subtrees T;, and T,
is smaller than pg11, then this orbit is considered to compute Aut(p; ...px) because it is
preserved in p; ...p,, as T, and T, cannot be further extended with forward edges.

Canonicity Check

Properties 1 and 2 are necessary conditions for canonicity, but they are not sufficient. For
example, let us consider the tree T displayed in Fig. 3, and let us assume we have added
edges (2,4),(3,5), and (4,5) to T”. In this case, the code 000112, 24, 35,45 is not canonical,
though its forward code is canonical and it satisfies Properties 1 and 2. Indeed, the canonical
code is 000112,23,34,46, and it is obtained by starting the BFS from vertex 4 of T".

Hence, we need to check if there exists another BF'S that leads to a smaller code (in which
case we raise a failure). More precisely, let k € [1,n] be the largest value such that the domain
of p; is reduced to a singleton for each ¢ € [1, k], let [€ [1,m] be the largest value such that
the domains of both z; and y; are reduced to singletons for each i € [1,1], and let G = (V, E)

be the corresponding graph, i.e., V = [0,k] and E = {(p;,i)]i € [1,k]} U {(z;,:)|i € [1,1]}.

If there exists a permutation 7 of [0, k] such that BFSg(7) < p1...pex1y1 ... 21y;, then
we raise a failure. We exploit Constraint C8 to limit the set of permutations 7= to those
that start with a vertex that has the same degree as 0 in G. We also exploit Constraints
C9 and C10 as well as Properties 1 and 2 to break ties when choosing the next vertex v
to visit (Line 6 of Algo 1). Finally, we exploit the property LexBFS introduced in [6] to
avoid some BFSs (that cannot lead to canonical codes) by breaking ties when choosing
the next neighbor v of u to visit (Line 6). More precisely, for each neighbor v of w, let
N, = {num[w]|(v,w) € E A num[w] < num|u]} be the set of g-numbers of neighbors of v
that have already been numbered, and let S, be the sequence obtained by sorting elements
of N, by increasing value. At each iteration of the loop Lines 6-11, we choose the vertex v
which has the smallest sequence S,,, where a sequence S, is smaller than another sequence
Sy if Sy is a prefix of S, or if Sy <jer Sy (see [6] for more details).

32:9

CP 2025

32:10

BFS-Based Canonical Codes for Generating Graphs with CP

Table 1 Results for Problems P; to Ps, when considering only Constraints C'1 to C'10, or when
combining Constraints C'1 to C'10 with the global constraint cc. k is the number of vertices, nb is
the number of solutions, and ¢ is the CPU time (in seconds) to enumerate these solutions. When
time exceeds 200s, t =" —’, and nb gives the number of codes enumerated in 200s.

P, P, P;
k C1-C10 C1-C10+ cc C1-C10 |C1-C10 + cc C1-C10 C1-C10 + cc
nb t nb t nb tinb t nb t nb t
5 15 0.02 2 0.01 30.00] 1 0.00 0 0.00 0 0.00
7 8,959 0.29 126 0.23 70 0.00| 2 0.00 0 0.01 0 0.01
91 9,736,406 177.2 26,631 9.77|| 3,507 0.11] 3 0.01 756,497 20.83 5,804 1.88
11{>9,740,145 -1 >318,456 -11286,884 9.17| 5 0.07/>8,593,667 -1>835,095 -

First Experiments on Toy Problems

We have implemented our global constraint and our CP model in Choco [17] in a straightfor-
ward way'!, using a global count constraint to implement Constraints C6, C7, and C10.

To evaluate the interest of our global constraint, we consider three toy problems, denoted
P, P, and P5. P; aims at enumerating all graphs with k£ vertices and 2k — 2 edges. We
denote G(k, 2k —2) this set of graphs. P aims at enumerating all graphs of G(k, 2k —2) which
have one vertex of degree k — 1 and k — 1 vertices of degree three. P3; aims at enumerating
all graphs of G(k,2k — 2) which have exactly two vertices of degree [k/2] while all other
vertices have degrees strictly lower than [k/2]. Constraints on vertex degrees are defined in
a very straightforward way as our CP model already has variables associated with degrees.

In Table 1, we give experimental results obtained on an Intel Xeon E5-2623v3 of 3.0GHz
with 32GB of RAM. For the three problems, the number of solutions when considering only
Constraints C1 to C10 is much larger than the actual number of different graphs (given by
column nb of C'1-C'10+cc). For example, when k = 5, G(k, 2k — 2) only contains 2 different
graphs but we generate 15 different codes. The addition of the global constraint cc allows us
to compute only canonical codes, and this strongly reduces both the number of generated
solutions and the CPU time. When adding constraints on vertex degrees, the number of
canonical codes and, therefore, the CPU time are strongly decreased, especially for Ps.

8 Application to the Generation of Connected Claw-Free Cubic Graphs

Cubic graphs are graphs in which each vertex has degree 3. A cubic graph is claw-free if it
does not contain K 3 as an induced subgraph. This is equivalent to requiring that every
vertex must participate in at least one triangle.

To enumerate all claw-free cubic graphs, we define a CP model composed of Constraint
C1 to C10 combined with our global cc constraint. To enforce the cubic degree condition, we
set the domain of each degree variable d; to {3}, for each i € [0,n].

To ensure claw-freeness, we introduce a global constraint that ensures that each vertex is
involved in at least one triangle. The propagator of this constraint maintains two sets of
edges as proposed in [2]: mandatory edges, which must be in the solution, and possible edges,
which may be included. We use sparse sets to efficiently maintain these sets [12].

L Our code is available at https://github.com/godotshaw/bfscanonicalcode.git

https://github.com/godotshaw/bfscanonicalcode.git

X. Peng and C. Solnon

A dynamic variable selection strategy is employed to ensure that dep, — dep, > 1 is
maintained throughout the search, where dep, and dep, are the depth levels of the last
instantiated forward and backward edge variables, respectively. By prioritizing the instanti-
ation of p-variables while interleaving backward edge variables, we avoid the enumeration of
useless spanning trees. Additionally, for every i € [1,m], y; is instantiated just after z;.

As the procedure for checking the canonicity is rather expensive, we introduce a parameter
f which allows us to control the frequency of canonicity checking: When f = 1, canonicity
is checked after each edge assignment; when f > 1, it is checked every f edge assignment.
Of course, when all variables are assigned, the canonicity check is performed, whatever the
value of f is, in order to ensure that the global constraint is satisfied. A similar parameter is
used in the SMT-based approach of [11].

Table 2 shows the results for n € [20,44] by steps of 2, when our parameter f belongs
to {1,10,20,30}. When f = 1, run times are very often longer than when f > 10. A good
tradeoff is reached when f € {10,20}.

In Table 2, we also display the results reported by Codish et al. in [10] (the code of this
approach is not available). This approach does not break all symmetries and, therefore, it
may compute redundant graphs that are isomorphic to previously enumerated graphs. For
example, when n = 32, there are 731 different graphs whereas the approach of [10] computes
29,069 solutions. As a consequence, this approach does not scale well and cannot be used to
solve larger instances within a reasonable amount of time. As a comparison, our method
which only computes non-isomorphic graphs achieves a speed-up of more than 60 for n > 30
(note however that the two approaches have been run on different computers).

We have adapted the SMT-based approach described in [11] to generate claw-free cubic
graphs, and we display the results obtained with this approach, on the same computer as
the one used in our experiments. To handle the claw-free constraint, we directly utilize the
solver’s built-in feature, "—forbidden-induced-subgraphs", to prohibit the predefined
induced subgraph K7 3. In [11], a parameter similar to f is used to control the frequency of
"minimality check", a non-polynomial operation that verifies whether the partially defined
graph is canonical in their approach. We report results obtained with f € {1, 10, 20,30} (the
default value for this parameter is 20). The best results of SMT are obtained when f = 10,
and our method consistently outperforms SMT across all instances.

Finally, we display results obtained with Nauty [13] (using geng -F to ensure claw-
freeness). Our approach is always more efficient than Nauty, but it needs more memory (e.g.,
444584KDb instead of 22760Kb when n = 30).

Graph contraction

To show the versatility of our approach, we show how to exploit a property introduced in [7]
to speed-up the generation of claw-free cubic graphs.

» Proposition 7 (Claim A in [7]). The vertex set V of a claw-free cubic graph G can be
uniquely partitioned into k sets Vi, ..., Vi such that Vi € [1, k], the subgraph of G induced
by V; is either a triangle, as displayed in Fig. 5(a) or a diamond as displayed in Fig. 5 (b).

Hence, a claw-free cubic graph can be contracted by replacing specific patterns with
labeled meta-vertices. Let us first define the basic contraction operation.

» Definition 8 (Contraction). Given a graph G = (V, E), a pattern graph P = (Vp, Ep), and
a set S CV such that the subgraph of G induced by S is isomorphic to P, the contraction of G
with respect to P and S is the multigraph G' = (V', E') such that the occurrence of P in G is
replaced with a single meta-verter ug, i.e., V' =V \ SU{ug} and E' = {(u,v) € E|{u,v} C
VA\SU{(us,v)|Fu € S, (u,v) € E}. The meta-vertex ug is called a P-meta-vertez.

32:11

CP 2025

32:12

BFS-Based Canonical Codes for Generating Graphs with CP

Table 2 Results for generating connected claw-free cubic graphs. Each line successively gives
the number n of vertices, the number of different graphs, the results of [10] (number of solutions
and time), and the time of our CP model and of the SMT approach of [11] (when the frequency of
canonicity checking is in {1/1,1/10,1/20,1/30}), as well as Nauty [13]. All times are in seconds and
best times are highlighted in gray. We display ’-’ when time exceeds 3600 seconds.

Approach of [10] Our CP model C1-C10+cc SMT approach of [11]

n | sraphs sols | time || /1] 1/10] 1720 [1/30 || 1/1] 1/10] 1/20 | 1/30 | AUt
20 15 132 21s || 05| 04| 05| 05| 16| 08| 15| 13 0.5
22 27 307 39s || 10| 07| 08| 09| 33| 19| 25| 35 2.3
24 54 660 | 11.0s | 12| 12| 13| 16| 94| 36| 42| 53| 105
2 o4 || 1,835 | 454s|| 22| 16| 20| 25| 199| 53| 65| 77| 486

28 181 4,372 2.57m 3.7 2.5 2.7 4.2 33.5 10.6 15.1 18.5 218.2
30 369 || 10,567 6.60m 6.4 4.9 4.3 8.0 63.2 | 20.8 | 21.5 | 29.0 || 3293.7
32 731 || 29,069 | 24.28m 11.0 8.9 7.5 14.4 || 138.4 | 33.2 | 464 | 447 -

34 1,502 - 25.0 185 | 16.0 | 209 || 3136 | 70.2 | 876 | 824 -

36 3,187 - - 59.7 | 329 | 444 | 373 5129 | 1355 | 177.7 | 190.6 -

38 6,914 - - || 144.7 | 92,8 | 128.1 | T77.6 || 935.6 | 249.6 | 328.7 | 348.9 -

40 | 15,025 - - || 421.9 | 232.2 | 295.7 | 206.8 1936 | 548.8 | 734.0 | 775.0 -

42 | 33,687 - - 1195 | 456.2 | 589.9 | 594.0 || 4872 | 1420 | 1526 | 1511 -

44 | 77,450 - - || 3094 | 1133 | 1142 | 1461 - 2979 - | 3584 -
(a) (b)

Figure 5 (a): Triangle. (b): Diamond.

E’ is a multiset (and therefore G’ is a multigraph) because there may exist a vertex v € V'\ S
such that several vertices of S are adjacent to v.

We consider a contracted graph obtained by contracting triangles and diamonds. In a
cubic graph, two diamonds cannot share a same vertex. Also, two triangles that are not
in a diamond cannot share a same vertex. To ensure a deterministic process such that the
contracted graph is unique, we contract diamonds before triangles.

» Definition 9 (Contracted graph Gu;). Given a claw-free cubic graph G, the contracted
graph G o is the graph obtained by (i) contracting every occurrence of the diamond pattern
(b) in G into a b-meta-vertex, and (ii) contracting every occurrence of the triangle pattern
(a) into an a-meta-vertex.

We display in Fig. 6 an example of contracted graph Gp.

Proposition 7 ensures us that G, only contains meta-vertices. As G is a cubic graph
and the triangle has 3 vertices of degree 2, the degree of every a-meta-vertex is 3. Similarly,
the degree of every b-meta-vertex in Gg; is 2 because the diamond has 2 vertices of degree 3.

» Proposition 10. There are exactly 3 patterns that may create multi-edges in Gqp. These
patterns, named (c), (d), and (e), are displayed in Fig. 7.

Proof. A bridge in a connected graph is an edge such that the graph without this edge is no
longer connected. There are only two possible claw-free cubic graphs that contain no bridge.
These two graphs are displayed in Fig. 8 (first two graphs on the left) and they are treated
as special cases. All other claw-free cubic graphs contain at least one bridge. Let G be one of
these graphs and G’ be the graph obtained from G by removing all bridges. G’ is composed
of k connected components such that each connected component is a claw-free graph that

X. Peng and C. Solnon

OO
5 S BIATA

(i) G

iii) G,

Figure 6 Example of graph contraction. From the claw-free cubic graph G we obtain the
multigraph G, by contracting the two diamond occurrences and then contracting the 6 triangle
occurrences. From Ggap, we obtain G¢ by contracting the occurrence of pattern (e), and the 2
occurrences of pattern (d).

does not contain bridges and that contains at least one vertex of degree 2. The multi-edges
in Ggp are also multi-edges in G’,. Each connected component of G’ is necessarily one of
the three graphs displayed in Fig. 7. |

Hence, to remove all multi-edges, we contract G, as defined below, starting with occurrences
of (e) because (c) is a subgraph of (e).

» Definition 11 (Contracted graph G¢). Given a contracted graph Gap, the contracted graph
G¢ is obtained from Ggp by (i) contracting every occurrence of (e) into an e-meta-vertet,
then (ii) contracting every occurrence of (¢) or (d) into a c-meta-vertex or a d-meta-vertes.

We display in Fig. 6 an example of contracted graph G¢o. We can show that for any initial
claw-free cubic graph G, the contracted graph G, is either one of the 5 graphs displayed
in Fig. 8, which are treated as special cases, or it is a simple connected graph that does
not contain multi-edges and that contains 5 different kinds of meta-vertices: the degree of
meta-vertices of type a (resp. b,c,d, and e) is 3 (resp. 2, 1, 1, and 2). The meta-vertices of
G¢ define a partition of the vertices of G: each meta-vertex of type a (resp. b, ¢, d, and e)
corresponds to a set of 3 (resp. 4, 6, 7, and 9) vertices of V.

» Proposition 12. Let G and G’ be two claw-free cubic graphs, and let Go and G, be their
corresponding contracted graphs. Then Go and Gy, are isomorphic if and only if G and G’
are tsomorphic.

Proof. To prove the proposition, we establish that the contraction process from a claw-free
cubic graph G to its contracted graph G¢ is bijective. First, the contraction process following
Definition 9 and Definition 11 is deterministic. Additionally, we label each vertex in G¢
according to the subgraph pattern from which it was contracted, ensuring that G¢ retains
information about the structure of G. Therefore, the contracted graph G¢ is uniquely
determined by G. Conversely, given G¢, we can reconstruct G uniquely by replacing each
meta-vertex in G¢ with its corresponding subgraph pattern. Since each subgraph pattern is
symmetric with respect to the vertices of degree 2, there is no ambiguity in reconnecting
the subgraphs. The connections between these subgraphs follow directly from the adjacency
structure of G¢, ensuring a unique reconstruction of G.

This uniqueness in both directions (from G to G¢ and from G¢ to G) implies that G
and G¢ are isomorphically equivalent. <

The enumeration of claw-free cubic graphs can now be simplified to the enumeration of
contracted graphs G¢ (except when n € {4, 6, 8,10, 12} in which case we must add the special
cases displayed in Fig. 8). These contracted graphs have labels associated with vertices.
Hence, we introduce a new canonical code for labeled graphs.

32:13

CP 2025

32:14

BFS-Based Canonical Codes for Generating Graphs with CP

(c) (d) (e)

Figure 7 Patterns (c),(d),(e) and their corresponding contracted graph Gap.

o
Gab = G(; Gab = Gc Gah = Ga e 0

<> | <> @

Figure 8 Claw-free cubic graphs for which G¢ contains multi-edges or loops: for each graph G
on the bottom row, we display its associated contracted graphs G, and G¢ on the top row.

» Definition 13 (Canonical code for a labeled graph). Let G = (V, E) be a connected graph, L
be a finite set of labels, and | : V — L be a vertex labeling function. A code is a sequence
c-loly ... 1y, where n =#V —1, ¢ is a BFS-based code of G and Vi € [0,n],l; € L is the label
of the vertex whose g-number is i. The canonical code, denoted ccl(Q), is the lexicographically
smallest among all possible codes generated by different BF'S traversals of G.

Under this definition, the canonical code for the contracted graph in Fig. 6 is represented as
000, adde. Given a connected claw-free cubic graph G of order n, the size of the corresponding
contracted graph G, is not fixed but instead depends on the types and frequencies of patterns
present in G. Hence, we introduce a new integer variable N, for each x € {a,b, ¢, d, e} that
corresponds to the number of z-meta-vertices. We also introduce two new integer variables
ne and me that correspond to the number of variables and edges of the contracted graph
G¢. Finally, for each ¢ € [0,n¢c — 1], we introduce a variable [; which represents the label of
the ith meta-vertex of Go. The following constraints must be satisfied:

ng = Ny + Ny + Ne + Ng+ N,

me = 3 — (3N, + 5Ny + 8N, + 10Ny + 13N,)

n =3N, + 4Ny + 6N, + TNy + 9N,

Connectedness: nc < mg + 1

Occurrence of vertices with the same label:

Vk € {a,b,c,d,e}, N, =#{i|li =k, i€ [0,nc — 1]}

Degree constraints:

Vi € [0,710—1], d¢:3<:>li:a/\di:2®liE{b,c}/\dizlﬁlie{d,e}

In this model, the 5 special graphs shown in Fig 8 are not addressed. However, they are
accounted for when counting the number of solutions for n € {4,6, 8,10, 12}.

We add to these constraints the constraints C1 to C10 of Fig. 2, while replacing n and m
with nc and me. We also extend our global canonicity constraint by ensuring that the label
sequence is the smallest possible one under all possible BFS traversals.

X. Peng and C. Solnon

Table 3 presents the solving time for enumerating all contracted graphs corresponding
to all claw-free cubic graphs for n € {20,...,60} when the frequency parameter f is set to
1 (greater values for f do not improve results). Since the contracted graph is significantly
smaller than the original claw-free cubic graph, we observe a notable reduction in solving
times. For instance, when n = 36, generating 6914 solutions takes only 2.2 seconds, whereas
enumerating the primary claw-free cubic graphs requires 32.9 seconds. With this approach,
we can generate graphs up to n = 60 within 9 hours.

Table 3 Results for generating all claw-free cubic graphs when using contracted graphs.

n graphs time n graphs time n graphs time
20 15 0.1s 34 1,502 1.6s 48 418,112 131.2s
22 27 0.2s 36 3,187 2.2s 50 1,005,927 293.9s
24 54 0.3s 38 6,914 3.2s 52 2412987 756.0s
26 94 0.3s 40 15,025 5.9s 54 5,934,636 1,877.8s
28 181 0.4s 42 33,687 11.8s 56 14,823,532 4,526.9s
30 369 0.7s 44 77,450 23.6s 58 37,005,614 11,836.1s
32 731 0.8s 46 177,465 54.1s 60 94,412,125 30,948.9s

9 Conclusion

We introduce a new canonical graph encoding based on a BFS traversal, which is well-suited
for constraint-based approaches. Using this encoding, we define a CP model that enumerates
all non-isomorphic graphs satisfying specific constraints by generating their corresponding
canonical codes. The key aspect of this encoding is identifying a spanning tree that yields the
lexicographically smallest representation of the graph. We demonstrate how this encoding
enables the formulation of fundamental static symmetry-breaking constraints. Additionally,
we leverage the crucial property that every prefix of a canonical code must also be canonical,
allowing us to define a global constraint that dynamically enforces symmetry-breaking,
ensuring the canonicity of the generated codes.

We tested our approach on connected claw-free cubic graphs, which are regular and in-
herently challenging for BFS-based methods. However, our experimental results demonstrate
that our approach outperforms existing state-of-the-art techniques based on adjacency matrix
representations. Beyond this, we explored the properties of local structures within this class
of graphs that allow us to contract graphs into more compact labeled graphs. Our BFS-based
canonical code may be easily extended to labeled graphs, and this allows us to enumerate
graphs of larger order, up to 60 vertices. As part of our future work, we aim to refine our
encoding for such labeled graphs and develop dedicated propagation strategies.

Our approach is well-suited for enumerating graphs with a limited diameter, such as
diameter-2-critical graphs and required-girth extremal graphs [11]: In these cases, the number
of canonical spanning trees remains manageable, allowing them to be precomputed and used
for static symmetry breaking. We plan to publish further results on these aspects in the near
future, as they could not be included in this work due to space limitations.

—— References

1 Alfred V Aho and John E Hopcroft. The design and analysis of computer algorithms. Pearson
Education India, 1974.

2 Nicolas Beldiceanu, Irit Katriel, and Xavier Lorca. Undirected forest constraints. In In-
ternational Conference on Integration of Artificial Intelligence (AI) and Operations Re-

32:15

CP 2025

32:16

BFS-Based Canonical Codes for Generating Graphs with CP

10

11

12

13

14

15

16

17

18

19

20

search (OR) Techniques in Constraint Programming, pages 29-43. Springer, 2006. doi:
10.1007/11757375_5.

Michael Codish, Graeme Gange, Avraham Itzhakov, and Peter J Stuckey. Breaking symmetries
in graphs: the nauty way. In Principles and Practice of Constraint Programming: 22nd
International Conference, CP 2016, Toulouse, France, September 5-9, 2016, Proceedings 22,
pages 157-172. Springer, 2016. doi:10.1007/978-3-319-44953-1_11.

Michael Codish, Alice Miller, Patrick Prosser, and A Stuckey. Breaking symmetries in graph
representation, 2013.

Laurianne David, Amol Thakkar, Rocio Mercado, and Ola Engkvist. Molecular representations
in ai-driven drug discovery: a review and practical guide. Journal of cheminformatics, 12(1):56,
2020. doi:10.1186/S13321-020-00460-5.

Michel Habib and Christophe Paul. A simple linear time algorithm for cograph recognition.
Discrete Applied Mathematics, 145(2):183-197, 2005. doi:10.1016/J.DAM.2004.01.011.
Michael A Henning and Christian Lowenstein. Locating-total domination in claw-free cubic
graphs. Discrete Mathematics, 312(21):3107-3116, 2012. doi:10.1016/J.DISC.2012.06.024.
Marijn JH Heule. Optimal symmetry breaking for graph problems. Mathematics in Computer
Science, 13:533-548, 2019. doi:10.1007/S11786-019-00397-5.

Avraham Itzhakov and Michael Codish. Breaking symmetries in graph search with canonizing
sets. Constraints, 21:357-374, 2016. doi:10.1007/310601-016-9244-Z.

Avraham Itzhakov and Michael Codish. Breaking symmetries with high dimensional graph
invariants and their combination. In International Conference on Integration of Constraint
Programming, Artificial Intelligence, and Operations Research, pages 133—-149. Springer, 2023.
doi:10.1007/978-3-031-33271-5_10.

Markus Kirchweger and Stefan Szeider. Sat modulo symmetries for graph generation and
enumeration. ACM Transactions on Computational Logic, 2024.

Vianney Le Clément de Saint-Marcq, Pierre Schaus, Christine Solnon, and Christophe Lecoutre.
Sparse-Sets for Domain Implementation. In CP workshop on Techniques foR Implementing
Constraint programming Systems (TRICS), pages 1-10, Uppsala, Sweden, September 2013.
URL: https://hal.science/hal-01339250.

Brendan D McKay and Adolfo Piperno. Practical graph isomorphism, ii. Journal of symbolic
computation, 60:94-112, 2014. doi:10.1016/J.JSC.2013.09.003.

Vyacheslav Moklev and Vladimir Ulyantsev. Bfs enumeration for breaking symmetries in
graphs, 2018. arXiv:1804.02273.

Siegfried Nijssen and Joost N Kok. The gaston tool for frequent subgraph mining. Electronic
Notes in Theoretical Computer Science, 127(1):77-87, 2005. doi:10.1016/J.ENTCS.2004.12.
039.

Xiao Peng and Christine Solnon. Using canonical codes to efficiently solve the benzenoid
generation problem with constraint programming. In 29th International Conference on
Principles and Practice of Constraint Programming (CP 2023). Schloss-Dagstuhl-Leibniz
Zentrum fir Informatik, 2023.

Charles Prud’homme and Jean-Guillaume Fages. Choco-solver: A java library for constraint
programming. Journal of Open Source Software, 7(78):4708, 2022. doi:10.21105/joss.04708.
Vladimir Ulyantsev, Ilya Zakirzyanov, and Anatoly Shalyto. Bfs-based symmetry breaking
predicates for DFA identification. In Language and Automata Theory and Applications - 9th
International Conference, LATA 2015, volume 8977 of Lecture Notes in Computer Science,
pages 611-622. Springer, 2015. doi:10.1007/978-3-319-15579-1_48.

David Weininger. Smiles, a chemical language and information system. 1. introduction to
methodology and encoding rules. Journal of chemical information and computer sciences,
28(1):31-36, 1988. doi:10.1021/CI00057A005.

Xifeng Yan and Jiawei Han. Closegraph: mining closed frequent graph patterns. In Proceedings
of the mninth ACM SIGKDD international conference on Knowledge discovery and data mining,
pages 286295, 2003. doi:10.1145/956750.956784.

https://doi.org/10.1007/11757375_5
https://doi.org/10.1007/11757375_5
https://doi.org/10.1007/978-3-319-44953-1_11
https://doi.org/10.1186/S13321-020-00460-5
https://doi.org/10.1016/J.DAM.2004.01.011
https://doi.org/10.1016/J.DISC.2012.06.024
https://doi.org/10.1007/S11786-019-00397-5
https://doi.org/10.1007/S10601-016-9244-Z
https://doi.org/10.1007/978-3-031-33271-5_10
https://hal.science/hal-01339250
https://doi.org/10.1016/J.JSC.2013.09.003
https://arxiv.org/abs/1804.02273
https://doi.org/10.1016/J.ENTCS.2004.12.039
https://doi.org/10.1016/J.ENTCS.2004.12.039
https://doi.org/10.21105/joss.04708
https://doi.org/10.1007/978-3-319-15579-1_48
https://doi.org/10.1021/CI00057A005
https://doi.org/10.1145/956750.956784

	1 Introduction
	2 Notations and definitions
	3 Canonical BFS-based code
	4 Basic CP model
	5 Breaking Symmetries of Forward Codes with Vertex Labels
	6 Breaking Symmetries of Backward Edges
	7 Global CanonicalCode Constraint
	8 Application to the Generation of Connected Claw-Free Cubic Graphs
	9 Conclusion

