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Abstract
We present an integration of Large Language Models (LLMs) with streamlining techniques to find
well-balanced Latin rectangles. Our approach combines LLM-generated streamlining constraints
that effectively partition the search space, directing constraint solvers toward structured subspaces
containing high-quality solutions. Our methodology extends LLM-generated streamliners, as Voboril
et al. (2024) introduced for decision problems, to the optimization context through techniques that
incrementally refine the objective function value.

We propose two complementary strategies to orchestrate sets of streamliners: an incremental
mechanism that utilizes improving solutions to initialize subsequent search processes, and an
evolutionary framework that maintains and refines effective streamliner populations. Our experiments
demonstrate that our approach successfully reduces established minimum imbalance values for
partially spatially balanced Latin rectangles across multiple problem dimensions. The results
validate the efficacy of combining LLMs with constraint programming methodologies for tackling
problems characterized by complex global constraints.
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1 Introduction

Latin rectangles are combinatorial structures consisting of k rows and n columns filled with
n symbols, where each symbol appears exactly once in each row and column. When these
structures are balanced – meaning the distance between any pair of symbols over all rows
is minimized – they become particularly valuable for experimental design, especially in
agricultural field trials. Spatially balanced Latin rectangles (BLRs) help minimize bias due to
spatial correlation in experimental plots, leading to more accurate statistical analyzes and
reliable results across fields such as agriculture, drug testing, and psychology [2, 17, 6, 16].

Finding optimally balanced Latin rectangles presents a significant computational challenge.
The imbalance of a Latin rectangle is measured as the sum of absolute differences between
actual and ideal distances between all pairs of symbols. For many combinations of number of
rows and columns, determining whether a given imbalance value is optimal remains an open
question. Previous work by Díaz et al. [2] established upper bounds for BLRs of various
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sizes, with provably optimal solutions known only for specific dimensions. Despite advances
using constraint programming, mixed integer programming, and local search methods, the
computational complexity has limited progress beyond rectangles of moderate size [9, 10].

The technique of streamlining – adding constraints that focus the search on promising
regions of the solution space – was initially introduced by Gomes and Sellmann [3] for related
combinatorial design problems, including spatially balanced Latin squares. Streamlining
constraints partition the search space, guiding the solver toward structured subspaces likely
to contain high-quality solutions. While effective, the manual design of streamliners requires
domain expertise and experimentation [7].

In this paper, we push the boundaries of balanced Latin rectangles by combining es-
tablished streamlining techniques with the novel approach of generating streamliners using
Large Language Models (LLMs). We build upon the recent work by Voboril et al. [18], who
introduced StreamLLM, a method for using LLMs for generating streamliners for decision
problems, and adapt this approach to optimization problems. Our method improves most of
the best-known bounds for BLRs in the range of k ∈ [3, 12] and n ∈ [9, 13], demonstrating
the effectiveness of this hybrid approach.

Our contribution is twofold. First, we extend StreamLLM to address optimization
problems instead of decision problems, introducing techniques to guide the search toward
solutions with better objective values. Second, we present two complementary strategies
for orchestrating the generation of a set of streamliners that together help to obtain Latin
rectangles with lower imbalance than any known before of the same dimension.

The first strategy is the incremental warmstart approach that uses improved solutions as
starting points for subsequent searches. The second strategy is an evolutionary approach that
maintains a population of effective streamliners, combining them to generate increasingly
powerful constraints.

Our experimental results show that our method outperforms previous approaches, im-
proving upper bounds on imbalance for 32 out of 44 instances. Table 1 summarizes our
results compared to previously known bounds, highlighting the cases where we establish new
record values. Our implementation draws on five different LLM models and employs various
prompting strategies to generate diverse and effective streamliners, enabling a thorough
exploration of the solution space.

Table 1 Final results. The gray cells are already proven optimal and hence excluded from our
experiments. The purple cells are where our approach finds a BLR with strictly better imbalance.
Of the remaining white cells, the cells with bold text are where our approach matches the previously
known imbalance bound.

n\k 2 3 4 5 6 7 8 9 10 11 12
8 40.0 36.0 32.0 30.0 24.0 28.0 0.0
9 65.3 56.0 56.0 52.6 48.0 51.3 53.3 0.0

10 92.0 80.0 78.6 66.6 70.0 72.0 82.6 70.0 40.0
11 124.0 114.0 112.0 116.0 108.0 118.0 114.0 120.0 110.0 0.0
12 168.0 154.0 154.6 145.3 120.0 164.0 148.0 154.0 174.6 147.3 0.0
13 218.6 198.0 211.3 210.6 204.0 203.3 220.6 214.0 240.6 224.0 274.0
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2 Preliminaries

2.1 Balanced Latin Rectangles
In this section, we define the general notation and background related to balanced Latin
rectangles. A Latin rectangle is an k × n grid where k ≤ n and each cell contains a symbol
from 1 to n, such that no symbol appears more than once within a row or within a column.
Latin squares (or Magic squares) are Latin rectangles where n = k. Latin squares are widely
known and have been studied for centuries.

Díaz et al. [2] introduced the notion of balance in Latin rectangles, minimizing which helps
preclude spatial-correlation artifacts and ensures statistical fairness while devising experiments.
A spatially balanced Latin rectangle (or simply balanced Latin rectangle) is a Latin rectangle
where the total distance between any pair of symbols is the same. Formally, disti(r, s) denotes
the distance between symbols r and s in the ith row. Note that 0 < disti(r, s) < n. The
distance between two symbols is defined as dist(r, s) =

∑
1≤i≤k disti(r, s). A Latin rectangle

is balanced iff dist(r, s) is the same for every pair 1 ≤ r, s ≤ n. Letting Zn,k be k(n + 1)/3, it
is easy to see that in a balanced Latin rectangle, dist(r, s) = Zn,k for every pair.

However, balanced Latin rectangles only exist when n = k and n ̸≡ 1 (mod 3) [2], which
rules out several combinations of n and k. Consequently, Díaz et al. [2] defined the imbalance
of a Latin rectangle as a measure of how far it is from being balanced. The imbalance
between a pair of symbols r, s is defined as I(r, s) = |dist(r, s) − Zn,k| and the imbalance
of a Latin rectangle L is defined as I(L) =

∑
1≤r<s≤n I(r, s). In the BLR problem, we are

given two integers k ≤ n, and the goal is to find a k × n Latin rectangle L such that I(L) is
minimized. Note that Zn,k is always a rational number of the form p/3 and if either k or
n + 1 are divisible by 3, then Zn,k is an integer. The same holds for I(L); hence, we always
denote the imbalance values as x.0, x.3 or x.6, respectively, to represent x, x + 1

3 or x + 2
3

where x ∈ Z.

1 2 3 4
2 4 1 3
3 1 4 2

Figure 1 Example of a 3 × 4 optimally balanced Latin rectangle L with imbalance 4. For the
pair (2, 3), the distance dist(2, 3) is the sum of distances over each row, i.e., 1 + 3 + 3 = 7, and the
imbalance I(2, 3) = |dist(2, 3) − k(n + 1)/3| = 2. By the same method, I(1, 3) = I(2, 4) = 1 and
I(1, 2) = I(1, 4) = I(2, 4) = 0. Finally, the imbalance of the Latin rectangle I(L) is the sum of all the
pair-wise imbalances, which is 4.

2.2 LLM-generated Streamliners
Streamlining constraints or streamliners are constraints added to a constraint programming
model in order to speed up the solving process by pruning the search space and guiding the
solver towards more promising subspaces of the solution space. Streamliners have provided
significant speedups across numerous problem domains [1, 2, 3, 4, 5, 7, 8, 11, 14].

By definition, they are not required to be sound, i.e., they need not preserve the set of
feasible solutions and are allowed to remove some or even all of the solutions. Streamliners
are a generalization of the following well-known constraints:

implied or redundant constraints which do not alter the solution space,

CP 2025
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symmetry-breaking constraints which eliminate all but one solution from symmetric
equivalence classes
dominance-breaking constraints which eliminate potentially suboptimal solutions such
that at least one of the optimal solution remains.

In our work, we use the term “streamliner” in a broader sense to refer to any constraint that
can speed up the solving of a constraint programming model. Consequently, the streamliners
that we present include but are not limited to the three types listed above.

Formerly, streamliners were generated manually for each problem which was labor-intensive
and hard to scale, which motivated research into automating streamliner generation [12, 13,
15, 20]. Typically, these methods involved crafting combinations of atomic constraints which
restrict the variable domains and testing them on a large pool of benchmark instances. This
process was extremely resource-intensive, taking several days to come up with promising
streamliners for a given problem.

Looking for a more scalable and efficient way to come up with high-quality streamliners,
we turn our attention to Large Language Models or LLMs. LLMs are transformer architectures
with billions of parameters that have been trained on large datasets and can produce human-
like text and code. In recent times, LLMs have seen significant growth in innovation and use.
This widespread use is a testament to the versatility and broad applicability of LLMs, such
as, chatbots, translators, and coding assistants. Recent advancements have endowed LLMs
with the power of reasoning and problem-solving which further enables them to manipulate
mathematical expressions and assist in devising proofs. However, LLMs are not infallible
and can produce incorrect yet believable output. As a result, independent verification is
crucial to harness the power of LLMs.

In this work, we extend the StreamLLM approach developed by Voboril et al. [18]. In
contrast to their work, we target optimization problems instead of decision problems, and we
use more sophisticated procedures to traverse the space of solutions using the objective values
as guidance. Please refer to Listing 1 for the MiniZinc model of the BLR problem that we use
to test the performance of the different approaches and also provide to the LLM as context
for generating streamlining constraints. Note that in the MiniZinc model: pos[row,symbol]
denotes the position of a symbol in a row, rect[row,col] denotes the symbol at a specific cell
of the Latin rectangle, dist[r,s] denotes dist(r, s), and imbalances[r,s] denotes I(r, s).

3 Our Approach

3.1 Framework
We introduce a novel approach to improve the performance of optimization problems in
constraint programming. Our approach is based on the automatic generation of streamliners
by using LLMs. We use BLR as the target problem to test and demonstrate the performance
of our approach. Our completely autonomous procedure prompts the LLM to suggest
streamlining constraints for the supplied (unstreamlined) MiniZinc model of the BLR problem.
The generated streamliners are tested on the input instance for a short time to evaluate their
performance relatively quickly.

In each iteration, one of several LLMs and one of three possible prompts is randomly
chosen. This capitalizes on the strengths of different LLMs and different prompts. The
first prompt prompt_basic (shown in Figure 2) asks the LLM to analyze the MiniZinc code
and generate five new, creative, and syntactically correct streamliners. The formulation
of the prompt is very similar to the prompt used by Voboril et al. [18]. The second
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Listing 1 MiniZinc Model.
include " alldifferent .mzn";

% Input
int: k;
int: n;

% Alternate representation
array [1..k, 1..n] of var 1..n: pos;
constraint forall (row in 1..k) (

alldifferent ([ pos[row , symbol ] | symbol in 1..n])
);
constraint forall ( symbol in 1..n) (

alldifferent ([ pos[row , symbol ] | row in 1..k])
);

% Solution representation for convenience
array [1..k, 1..n] of var 1..n: rect;
constraint forall (row in 1..k, col in 1..n, symbol in 1..n) (

pos[row , symbol ] = col <-> rect[row , col] = symbol
);

% Imbalance calculation
array [1..n, 1..n] of var 0..k*(n -1): dist;
array [1..n, 1..n] of var 0.. max(k*(n+1)-3, 2*k*(n -2)): imbalances ;
constraint forall (r in 1..n, s in 1..n) (

if r < s then
dist[r, s] = sum(row in 1..k) (abs(pos[row , r]-pos[row , s]))

else
dist[r, s] = 0

endif
);
constraint forall (r in 1..n, s in 1..n) (

if r < s then
imbalances [r, s] = abs (3* dist[r, s]-k*(n+1))

else
imbalances [r, s] = 0

endif
);

% Objective function
solve minimize sum(r in 1..n, s in 1..n where r < s) (

imbalances [r, s]
);

CP 2025
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Objective: Analyze the given MiniZinc code and suggest five additional constraints to
enhance the problem-solving process. These constraints can include streamlining,
implied, symmetry-breaking, or dominance-breaking constraints.

Steps:
1. Analyze Content: Read the provided MiniZinc code. Understand the problem

being addressed, including its variables, constraints, and optimization goals.
2. Generate additional Constraints: Based on your analysis, create five unique

constraints. These should offer targeted modifications or restrictions designed to
reduce the search space effectively.

3. Always return your constraints as a JSON object, adhering to the structure:
{“streamliner_1”: “constraint <MiniZinc constraint>”, . . . , “streamliner_5”: “con-
straint <MiniZinc constraint>”}.
Your final output should exclusively be the JSON object containing the five
constraints.

Compliance Rules:
1. Code Quality: All MiniZinc code provided for the constraints must be syntactically

correct and functional. For some functions, you may need to include an additional
library.

2. Creativity: You’re encouraged to be innovative in proposing constraints, keeping
in mind their purpose: to narrow down the search space efficiently without
oversimplifying the problem.

Figure 2 prompt_basic.

prompt prompt_combinations asks for five combinations of streamliners (each consisting
of multiple constraints) instead of five individual streamliners. The third prompt prompt_
description is an extension of the first prompt with a detailed description of the BLR
problem. In the following sections, we present two different approaches to use the produced
streamliners. In both approaches, syntactically incorrect streamliners are simply discarded.
All hyperparameter values used in these approaches were fixed on the basis of some preliminary
experiments.

3.2 Incremental Warmstart Approach

Our incremental warmstart approach utilizes the warmstart annotation in MiniZinc. Warm-
starting is a feature of certain solvers for optimization problems, where we can seed the
solver’s search with an initial feasible solution. This can be useful to guide the solver to find
better solutions quicker. In the context of the BLR problem, we warmstart the solver with
the best solution obtained so far.

Our approach, as shown in Figure 3, starts with an initial training time t = 1 minute,
running the original encoding for that time and storing the solution s. Then, one of the
LLMs is randomly chosen and asked to produce five new streamliners for the given problem.
These streamliners are evaluated in parallel for t minutes. For the evaluation, the currently
best solution s is used as warmstart. If a new solution s′ is better than s, it replaces s as the
current best solution. If there is no new improved solution after 5 iterations, the training
time t is increased by 2 minutes. With a longer training time, there is a higher potential for



F. Voboril, V. Peruvemba Ramaswamy, and S. Szeider 36:7

s := solution found by running
original encoding for t minutes

Ask LLM for 5 new
streamliners

Evaluate new
streamliners for t

minutes warmstarting
with s

Output best solution
found so far

NoYes

New solution
better than s

No

No

Yes

4 hours elapsed?

Initialize t := 1 minute

s := new solution

Update t := t+ 2

Yes

Improved
within last 5
iterations?

Figure 3 Diagram visualizing the incremental warmstart approach.

future streamliners to find better solutions. The process ends after a total of 4 hours have
passed. At the end of the process, we can directly read off the final solution s. One variation
of our incremental warmstart approach is to give it an already known solution (potentially
from literature) right at the start. This makes the solving process even more efficient and
enhances the chances to improve upon previously known bounds.

3.3 Evolutionary Approach

Evolutionary algorithms are optimization techniques inspired by the biological process of
evolution. A set of possible solutions is stored as a population. In every generation, good
solutions are selected, combined, and mutated to create potentially better solutions to add
to the population.

Our evolutionary approach is shown in Figure 4. At the beginning, we run the original,
unstreamlined encoding for three minutes to figure out its performance. Further, we create
the set S for potential streamliners. At the beginning, S is empty. So we ask the randomly
picked LLM to produce five new streamliners for the given problem. They are evaluated in
parallel for 3 minutes. All streamliners that perform better than the original model after
three minutes are added to the population, along with their corresponding imbalance values I.
This phase is called exploration. The first 20 streamliners added to the population are called
the original population. Then, the evolutionary phase starts. In every iteration step, we
sample 10 streamliners from our population according to probabilities proportional to I−4,
favoring those with lower imbalance values. Then, these 10 streamliners are given to the LLM
as reference to derive five new streamliners. This would be the combination and mutation
part in terms of evolution. Again, all streamliners that produce better results than the
original model are added to the population. We run this process for 5 hours. At the end of
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Get result from original encoding
after running for 3 minutes

From S, sample 10
good streamliners S′

Ask LLM for 5 new
streamliners inspired
by streamliners in S′

Ask LLM for 5 new
streamliners

Evaluate new
streamliners by

running for 3 minutes

Add streamliners to S

Output best
streamliners from S

|S| ≥ 20?

Solution
better than
original?

NoYes

Yes

No

Yes

No

5 hours elapsed?

Initialize population S := ∅

Figure 4 Diagram visualizing the evolutionary approach.

the process, we read off the three best-performing streamliners from the final population.
These streamliners can potentially also be used for other instances of the same problem.
Finally, we run these three streamliners in parallel for a further 4 hours and then report the
best result. In our experiments, we also run a variant of this process called exploration-only,
where we omit the evolutionary phase and only run the exploration phase for 5 hours. This
is again followed by running the three best streamliners in parallel for a further 4 hours. The
goal of the exploration-only variant is to assess whether the evolution indeed works well or
whether the improvements are only due to the relatively long running time.

4 Experiments

The MiniZinc model, the Python implementation of the incremental warmstart and evolu-
tionary approaches, and the minimum-imbalance Latin rectangle for each instance found by
our approaches are available on Zenodo [19].

4.1 Setup and Hardware
We run all our experiments on compute nodes with 2.40GHz, 10-core 2×Intel Xeon E5-2640 v4
processors. We use MiniZinc version 2.9.2 for the incremental warmstart approach1 and
MiniZinc version 2.8.3 for the other experiments. We use Gurobi version 11.0.2 as the backend
solver for MiniZinc, since previous work mainly used Gurobi and our preliminary experiments

1 MiniZinc version 2.9.2 offers more robust support for the warmstart feature
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showed it to outperform Chuffed. We use five LLMs, namely GPT-4o (openai/gpt-4o-2024-
11-20), GPT-o3 (openai/o3-mini-high), Claude 3.7 Sonnet (anthropic/claude-3.7-sonnet),
Deepseek R1 (deepseek/deepseek-r1), and Gemini 2.0 Flash (google/gemini-2.0-flash-001).
We access all these LLMs via the unified OpenRouter API in Python 3.11.5.

4.2 Baseline
As a baseline for our experiments, we use the currently best-known results for BLRs from
literature [2, 9, 10]. Since several best-known results were computed more than a decade
ago, we augment the baseline with results obtained by running Gurobi for 4 hours. We run
Gurobi on two variants of the model, one with the symmetry-breaking constraints used by
Díaz et al. [2] and one without. These symmetry-breaking constraints enforce: pos(s, 1) = s

for 1 ≤ s ≤ n and rect(i, 1) < rect(i + 1, 1) for 1 ≤ i < k. Listing 2 shows the MiniZinc code
for these constraints. We use the results from Gurobi for instances where it can improve
the previous best result or where no results are found in the literature (this includes most
of the instances with n = 13). The baseline imbalance values are shown in Table 2. In
our experiments, we only consider the instances that are yet to be solved optimally, which
includes most with k > 2 and n > 7.

Listing 2 Known Symmetry-Breaking Constraints.
constraint forall (col in 1..n) ( invrect [1, col ]= col );
constraint forall (row in 1..k where row > 1) (

rectangle [row -1,1]< rectangle [row ,1]
);

Table 2 Baseline results for our experiments. The gray cells are already known to be optimal. The
blue cells indicate instances for which either Gurobi outperforms the known results from literature or
no previous results exist. The light blue cells indicate instances where the improvement came from
Gurobi without symmetry-breaking, while dark blue cells indicate instances where the improvement
comes from Gurobi with symmetry-breaking.

n\k 2 3 4 5 6 7 8 9 10 11 12
8 40.0 36.0 32.0 30.0 24.0 28.0 0.0
9 65.3 56.0 56.0 54.0 48.0 64.6 58.6 0.0

10 92.0 82.0 90.6 66.6 82.0 76.0 95.3 80.0 40.0
11 124.0 118.0 118.0 118.0 124.0 120.0 128.0 128.0 110.0 0.0
12 168.0 158.0 162.6 170.6 120.0 165.3 184.6 178.0 174.6 147.3 0.0
13 218.6 210.0 228.6 224.0 234.0 222.6 273.3 248.0 288.6 278.6 352.0

4.3 Incremental Warmstart Approach
We run the incremental warmstart approach described in Section 3.2 twice to see how much
the randomness of LLMs influences the experiment’s outcome. Overall, the results are fairly
similar between the two runs. For about three-quarters of the instances, the results differ by
less than 10%. Three outliers differ by more than 20%, with the highest difference being 34%.
Of all the LLM responses, around 14% had syntax errors in the produced json or minizinc
code and were simply discarded. For each instance, the result of the better run is shown in
Table 3. Overall, 24 out of 44 instances show an improvement compared to the baseline.

CP 2025
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Table 3 Results of the incremental warmstart approach. The top entry within each cell shows
the baseline result (from Table 2), while the bottom entry shows the result from the incremental
warmstart approach for each instance. The highlighted cells indicate that the incremental warmstart
approach outperforms the baseline.

n\k 3 4 5 6 7 8 9 10 11 12

8 30.0 24.0 28.0
32.0 24.0 34.0

9 56.0 56.0 54.0 48.0 64.6 58.6
56.0 56.0 52.6 52.0 57.3 60.0

10 82.0 90.6 66.6 82.0 76.0 95.3 80.0 40.0
82.0 84.0 82.6 80.0 82.0 88.0 70.0 76.0

11 118.0 118.0 118.0 124.0 120.0 128.0 128.0 110.0
114.0 120.0 116.0 116.0 122.0 118.0 124.0 118.0

12 158.0 162.6 170.6 120.0 165.3 184.6 178.0 174.6 147.3
158.0 165.3 168.6 152.0 164.0 148.0 170.0 174.6 220.6

13 210.0 228.6 224.0 234.0 222.6 273.3 248.0 288.6 278.6 352.0
198.0 214.0 210.6 214.0 212.0 220.6 252.0 242.0 252.0 294.0

Analyzing the different prompts shows that prompt_basic, prompt_description, and
prompt_combinations are respectively responsible for generating 37.8%, 36.9%, and 25.3%
of all streamliners that lead to an improvement. This shows that providing a detailed problem
description does not influence the outcome of the LLM a lot. Further, it shows that asking
for combinations of streamliners also does not lead to significantly better results. This
might be because there is a higher likelihood that streamliners hinder each other instead of
combining their strengths, and the LLM is not fully capable of finding the mutually compatible
combinations. When comparing the five different LLMs, the fraction of improvements they
contribute are as follows: GPT-o3: 22.6%, GPT-4o: 22.3%, Gemini: 20.7%, Claude: 20.2%,
Deepseek R1: 14.2%.

Figure 5 shows the change of imbalance over time for seven curated, representative
instances. The initial result that is found after 1 minute is about 25% to 60% worse than
the baseline. In the beginning, new improvements are found quite quickly; later, however,
it flattens out. After about 2 hours of incremental warmstart, many of the instances can
already outperform the baseline. Interestingly, if we ignore the previously known results for
the BLR problem and only compare against the results from the 4-hour Gurobi runs, our
incremental warmstart approach performs better on 40 of 44 instances.

4.4 Evolutionary Approach

We run the evolutionary approach and the exploration-only approach for 5 hours each. At the
end, we evaluate the three best-performing streamliners from each by running them for 4 hours
and then report the best result in Table 4. The evolutionary approach could improve 24 out
of 44 instances with respect to the baseline, while the exploration-only approach improved
21 instances. For 6 instances, the evolutionary approach failed to assemble the original
population of 20 streamliners and thus terminated before starting the evolution phase. In
those cases, the result is the same as the result for the exploration-only approach. Overall,
the evolutionary approach performs slightly better than the exploration-only approach.
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Figure 5 Change of imbalance with time for the incremental warmstart approach shown as
percentage of baseline imbalance. The dashed line at 100% denotes the baseline imbalance value,
and the dots on each line indicate when the training time is increased.

Another striking observation is that some of the streamliners found by our approach
perform so well that running the streamlined model for 3 minutes yielded better results
than running the unstreamlined model for 4 hours. Running the streamliners found in the
evolutionary process for 4 further hours improved the imbalance by 10% on average compared
to the result from initial 3-minute run.

Comparing the five different LLM models shows that GPT-o3, GPT-4o, Deepseek R1,
Claude, and Gemini respectively found 26.0%, 25.2%, 17.9%, 17.5%, and 13.4% of the three
best streamliners across all instances and variants. It is also worth noting that there are only
two streamliners that appear in the list of top three streamliners for more than two instances.
This demonstrates the great diversity of LLM-generated streamliners.

We showcase some interesting streamliners that were generated by our evolutionary
approach in Listing 3 and provide a brief explanation of each of them below:
A This streamliner is generated for the instances 8 × 10, 8 × 11, and 3 × 9. It enforces each

row to be strictly lexicographically smaller than the next row. However, since every entry
within a row must be different, this constraint amounts to enforcing lexicographically
ascending entries in the first cell of each row. Thus, the LLM rediscovered the already
known symmetry-breaking constraint from literature. Interestingly, the formulation found
by the LLM performed a bit better on the corresponding instances than the original
formulation by Díaz et al. [2].

B This symmetry-breaking constraint works similarly to the one above. It fixes the order
of the rows according to the position of the symbol 1 in each row. Instead of the values
of the variable rect, the values of the variable pos are increasing with every row. This
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Listing 3 Selected Streamliners.
A: constraint forall (r in 1..k -1) (

lex_less (
[rect[r,c] | c in 1..n],
[rect[r+1,c] | c in 1..n]

)
);

B: constraint forall (row in 1..k -1) (
pos[row ,1] <= pos[row +1 ,1]

);

C: constraint forall (row in 1..k, col in 1..(n div 2)) (
rect[row , col] + rect[row , n-col +1] = n+1

);

D: constraint forall (i in 1..n, j in 1..n where i < j) (
dist[i,j] != 0

);

E: include " global_cardinality .mzn";
array [1..n] of var 0..k: val_counts ;
constraint global_cardinality (

[pos[i,j] | i in 1..k, j in 1..n],
[j | j in 1..n],
val_counts

);
constraint forall (i in 1..n) ( val_counts [i] >= k -1);
constraint forall (i in 1..n, j in 1..n where i<j) (

imbalances [i,j] <= max(k*(n+1) -3 ,2*k*(n -2)) div 2
);
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Table 4 Results of the exploration-only and evolutionary approaches. Within each cell, the
top entry within each cell shows the baseline result, the middle entry shows the result from the
exploration-only approach, and the bottom entry shows the result from the evolutionary approach.
Green-colored cells indicate that the corresponding variant outperformed the baseline. For those
instances where the baseline could be improved upon, bold text indicates which variant performed
better

n\k 3 4 5 6 7 8 9 10 11 12

8
30.0 24.0 28.0
32.0 28.0 28.0
32.0 28.0 28.0

9
56.0 56.0 54.0 48.0 64.6 58.6
56.0 56.0 54.6 52.0 55.3 60.0
56.0 56.0 54.6 52.0 56.0 60.0

10
82.0 90.6 66.6 82.0 76.0 95.3 80.0 40.0
80.0 84.6 82.0 76.0 78.6 87.3 92.0 77.3
80.0 84.6 82.0 78.0 76.0 89.3 94.0 88.0

11
118.0 118.0 118.0 124.0 120.0 128.0 128.0 110.0
116.0 112.0 118.0 118.0 122.0 124.0 136.0 138.0
116.0 112.0 116.0 112.0 130.0 126.0 132.0 144.0

12
158.0 162.6 170.6 120.0 165.3 184.6 178.0 174.6 147.3
160.0 154.6 169.3 160.0 174.0 182.0 160.0 186.0 204.0
156.0 154.6 145.3 120.0 174.0 177.3 176.0 199.3 219.3

13
210.0 228.6 224.0 234.0 222.6 273.3 248.0 288.6 278.6 352.0
204.0 220.0 219.3 204.0 218.6 227.3 270.0 252.6 283.3 332.0
204.0 213.3 216.6 220.0 227.3 227.3 228.0 252.6 224.0 314.0

constraint is generated for the instances 5 × 8, 8 × 10. Further, this constraint was also
part of a combination of constraints for three instances, namely, 5 × 11, 5 × 8, and 6 × 11.

C This streamliner is decisive to achieve the improved imbalance result for the 4×12 instance.
It enforces that for every row, cells that are horizontally mirrored about the center column,
add up to n + 1. The resulting Latin rectangle can be found in Figure 6c.

D This constraint enforces that for every pair of symbols, the distance must not be 0. Since
all elements in a row are anyway defined to be different, this is an implied constraint.
Nonetheless, it helped the solver find a 4 × 11 Latin rectangle with better imbalance.

E This combination of constraints ensures that each value i ∈ [1, n] appears at least k − 1
times in each column of pos and that each pairwise imbalance is less than or equal to half
of the maximum possible imbalance. It showcases one of the most complex combinations
of constraints we obtained from the LLMs. It is not only able to combine multiple
constraints but also add an include statement and introduce a new array of decision
variables. This code is generated for the 6 × 8 instance. It outperforms the results from
the 4-hour Gurobi runs but does not manage to beat the previously known best result.

4.5 Combinations of Approaches
Our incremental warmstart approach can not only be started from scratch but also from an
already known solution. Hence, with an aim of finding the best Latin rectangles without
concern for fair comparison, we run the incremental warmstart approach using the results
from the evolutionary approach and with some previously published results from literature.
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Table 1 summarizes the final best results we found from all approaches considered. Overall,
we can improve 32 out of 44 instances. The list below shows which improving result is found
by which approach. If two approaches arrive at the same result for a particular instance,
then it is included in both approaches.

incremental warmstart: 5 × 9, 9 × 10, 3 × 11, 5 × 11, 7 × 12, 8 × 12, 3 × 13, 5 × 13,
8 × 13
exploration-only: 3 × 10, 4 × 11, 4 × 12, 6 × 13
evolution: 3 × 10, 4 × 11, 5 × 11, 4 × 12, 5 × 12, 11 × 13
combination of approaches: 7 × 9, 8 × 9, 4 × 10, 6 × 10, 7 × 10, 8 × 10, 6 × 11, 7 × 11,
8 × 11, 9 × 11, 3 × 12, 9 × 12, 4 × 13, 7 × 13, 9 × 13, 10 × 13, 12 × 13

In Figure 6 we present some of the Latin rectangles generated by our approach which
significantly improved upon previously known results (by at least 14%) as well the 4 × 12
Latin rectangle for illustration purposes.

5 Discussion and Conclusion

In this paper, we present two strategies for using LLM-generated streamlining constraints
for the optimization problem BLR, namely the incremental warmstart approach and the
evolutionary approach. While the incremental warmstart approach uses streamliners directly
on the last-found best solution, the evolutionary approach discovers a high variety of new
promising streamliners. Both approaches show strong potential. An interesting finding is
that, when running an optimization problem, the biggest improvements are often found in
the beginning. Our approach exploits this by running many streamlined versions of the
original encoding for only a few minutes, and thus can select good streamliners quickly and
efficiently. Thereby, we successfully improve the upper bounds for many instances of the
BLR problem, outperforming state-of-the-art methods in 32 out of 44 instances. For the
other instances, it is important to consider that some of the previously known results might
already be optimal. This demonstrates the potential of using LLMs to generate structural
constraints that significantly enhance the solver performance.

It would be interesting to see whether it works just as effectively for other problems,
particularly novel problems that are unlikely to be in the training corpus of LLMs. Concerning
this, our approach has the advantage that it is very flexible. One can easily adapt it to other
optimization problems and other solvers or use different LLMs. The only limitation is that it
must be possible to find the first feasible solution rather quickly. However, it is also crucial to
note that our method cannot prove optimality. Although we may not always find the optimal
solution, our approach often finds better solutions in shorter time frames. This trade-off
between theoretical guarantees and practical performance is acceptable in many real-world
applications, particularly when improved solutions are more valuable than guarantees.

Looking ahead, we see several potential avenues. One particularly promising vision is
that future constraint solvers might integrate our incremental warmstart approach with
LLM-generated streamliners in their solving procedure. Performance improvements could
be substantial. In summary, LLM-generated streamlining constraints offer a practical and
powerful way to enhance the solving performance of optimization problems. Our method not
only contributes new best results for the BLR problem, but also opens the door for more
intelligent and adaptive solving frameworks in the future.
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1 2 4 5 3 6 7 9 8 10
3 4 9 7 2 8 1 10 6 5
8 7 2 6 4 10 9 1 5 3
7 1 10 3 8 5 4 2 9 6
9 10 5 2 7 3 8 6 1 4
4 5 7 8 9 1 6 3 10 2

(a) 6 × 10 instance with imbalance 70.0.

8 9 5 4 6 1 2 3 7
7 4 2 6 9 3 5 1 8
5 2 4 1 7 8 9 6 3
3 5 8 7 4 6 1 2 9
4 1 3 2 8 9 7 5 6
1 6 7 8 5 2 3 9 4
9 7 1 5 3 4 6 8 2

(b) 7 × 9 instance with imbalance 51.3.

5 7 2 3 1 4 9 12 10 11 6 8
9 1 11 7 8 3 10 5 6 2 12 4
6 2 1 9 3 8 5 10 4 12 11 7
3 11 5 6 4 1 12 9 7 8 2 10

(c) 4 × 12 instance with imbalance 154.6.

5 11 3 6 4 1 12 9 7 10 2 8
7 3 1 8 11 4 9 2 5 12 10 6
1 4 10 5 7 2 11 6 8 3 9 12
9 10 11 1 6 8 5 7 12 2 3 4
2 1 6 3 9 5 8 4 10 7 12 11

(d) 5 × 12 instance with imbalance 145.3.

1 8 9 4 11 10 6 5 12 2 3 7
12 1 6 2 9 3 11 10 7 4 8 5
3 10 4 1 2 5 8 7 6 9 12 11
11 7 1 3 5 9 4 12 10 6 2 8
5 12 8 6 3 11 10 1 2 7 4 9
7 6 10 12 1 4 5 9 3 8 11 2
4 2 11 5 6 7 1 8 9 12 10 3
6 4 3 11 12 8 7 2 1 5 9 10

(e) 8 × 12 instance with imbalance 148.0.

1 11 4 8 2 7 12 13 5 6 10 9 3
8 2 10 11 6 13 7 3 1 9 5 12 4
10 12 13 2 1 3 9 8 6 4 11 5 7
6 1 7 10 9 4 2 5 8 12 13 3 11
9 13 8 4 11 5 10 6 12 2 3 7 1
7 8 12 5 10 9 1 11 4 3 6 13 2
2 9 3 7 4 10 11 12 13 1 8 6 5
12 6 11 9 7 2 8 1 3 5 4 10 13

(f) 8 × 13 instance with imbalance 220.6.

11 12 2 3 7 10 5 6 1 8 4 13 9
6 7 13 5 8 9 2 4 12 10 11 1 3
13 10 7 4 12 2 8 3 6 5 9 11 1
4 5 11 13 3 8 7 12 9 1 2 6 10
8 3 6 7 4 1 11 9 2 13 10 12 5
10 9 3 12 5 6 4 1 8 7 13 2 11
12 6 4 1 2 5 13 11 10 3 8 9 7
2 4 9 8 6 11 10 5 7 12 1 3 13
5 8 1 10 11 13 6 2 3 9 7 4 12
7 1 5 2 9 3 12 13 4 11 6 10 8
9 11 12 6 13 7 1 10 5 4 3 8 2

(g) 11 × 13 instance with imbalance 224.0.

1 2 11 10 12 6 5 13 9 4 3 7 8
13 11 3 6 8 5 12 9 10 2 1 4 7
9 10 4 11 3 8 13 1 12 6 7 2 5
3 6 1 12 9 10 7 4 13 8 5 11 2
11 12 8 7 1 3 10 2 5 9 13 6 4
4 8 6 2 10 13 1 5 3 7 12 9 11
6 7 5 9 11 2 8 3 4 12 10 1 13
7 13 10 8 6 9 2 11 1 5 4 3 12
10 5 7 4 13 12 11 6 2 3 9 8 1
5 9 13 1 4 11 3 8 7 10 2 12 6
8 4 12 5 2 1 9 7 6 13 11 10 3
2 3 9 13 7 4 6 12 11 1 8 5 10

(h) 12 × 13 instance with imbalance 274.0.

Figure 6 Examples of Latin rectangles generated by our approach that improve upon the previous
best imbalance values.
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