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Abstract
Every year, a large number of matches must be scheduled for professional and amateur sports
teams. Several constraints have to be considered, including the overall capacity of venues and
interdependencies between teams of the same club. As interdependent teams of a club play in
different leagues, finding an optimal solution is very challenging for practitioners. While the problem
of respecting capacity restrictions is well-addressed in prior work, interdependencies between teams
are widely neglected, despite being a problem of major importance in practice. This paper enhances
the formal definition of the multi-league-sports scheduling problem to take team interdependencies
into account. We create an optimization problem to be solved by means of integer linear programming,
and prove the corresponding decision problem to be N P-complete by a polynomial reduction from
3-SAT. An implementation which was used to schedule German table tennis leagues of a certain
district demonstrates the practical applicability of the approach.

2012 ACM Subject Classification Theory of computation → Constraint and logic programming;
Mathematics of computing → Combinatorial optimization

Keywords and phrases sports scheduling, linear optimization, constraint programming

Digital Object Identifier 10.4230/LIPIcs.CP.2025.37

Supplementary Material
Software (source code): https://github.com/NilsWeidmann/KeyGenerator [35]

archived at swh:1:dir:c668e66011bff623318334bb60799385ccb4357e
Dataset: https://github.com/NilsWeidmann/Multi-League-Sports-Scheduling [36]

archived at swh:1:dir:6b32a179b07ef602689a3c799174f938fe11b379

1 Introduction and Motivation

In several disciplines, sports teams play each other twice a season – once at home and once
away – which is called a double round robin tournament (DRR). Usually, schedules for DRRs
are created prior to the season, and define in which rounds (i.e., in which weeks) teams play
each other. To assure fairness among teams, these schedules should be compact, such that
teams play each week [4]. According to their skill, age and gender, teams are grouped into
different leagues. Especially in amateur and youth sports, teams of a league are further
subdivided into divisions according to regional aspects [28,33].

Scheduling such divisions gets complicated when additional constraints have to be respec-
ted. When two teams share a venue, e.g., their home matches cannot take place in the same
week. Prominent examples include AC and Inter Milan (football), New York Giants and Jets
(American football) and Los Angeles Lakers and Sparks (basketball).

While creating schedules for a few professional leagues might be already challenging [1,12],
the problem gets more severe when scheduling hundreds of amateur divisions, where it is
common practice that multiple teams of the same club share a common infrastructure that
underlies capacity constraints. This scenario is denoted as the multi-league sports scheduling
problem (MLSSP) in the following. As the number of matches which can be hosted by a club
at the same time is limited, and teams that share a venue usually play in different divisions,
these divisions cannot be scheduled independently.

© Nils Weidmann;
licensed under Creative Commons License CC-BY 4.0

31st International Conference on Principles and Practice of Constraint Programming (CP 2025).
Editor: Maria Garcia de la Banda; Article No. 37; pp. 37:1–37:19

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:nils.weidmann@wttv.de
https://orcid.org/0009-0005-4234-9731
https://doi.org/10.4230/LIPIcs.CP.2025.37
https://github.com/NilsWeidmann/KeyGenerator
https://archive.softwareheritage.org/swh:1:dir:c668e66011bff623318334bb60799385ccb4357e;origin=https://github.com/NilsWeidmann/KeyGenerator;visit=swh:1:snp:c7464e11492624207d8e95f468aac2c17aa1ffb9;anchor=swh:1:rev:4646bf293aa0bc83eb553a24d15bdabf21c56b0f
https://github.com/NilsWeidmann/Multi-League-Sports-Scheduling
https://archive.softwareheritage.org/swh:1:dir:6b32a179b07ef602689a3c799174f938fe11b379;origin=https://github.com/NilsWeidmann/Multi-League-Sports-Scheduling;visit=swh:1:snp:da53be03eb016770914b05eb8acd111a6d213c58;anchor=swh:1:rev:35148d3196f0e363e7edd46cae502c65eee7a74c
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics
https://www.dagstuhl.de


37:2 Multi-League Sports Scheduling with Team Interdependencies

Apart from overall capacity constraints, there are also other interdependencies between
teams of a club that ensure that they play at home in complementary weeks, or in the
same weeks on different days, to ensure that players can attend matches of both teams [30].
Furthermore, schedule creation is usually a distributed task: Schedulers are responsible for
all divisions of a specific region allotted to them [7], which makes it necessary to respect
scheduling decisions that were made on super-ordinate (e.g., national) level.

1.1 Related Work

Davari et al. propose an algorithm that minimizes the number of capacity violations of
a schedule, which does not respect team interdependencies, though [7]. For the special
case of all teams of a club playing at home in the same weeks without allowing capacity
constraint violations, they prove this version of the problem to be N P-complete via a
polynomial reduction from vertex coloring. Li et al. extend this work by a computational
study [22], a construction and improvement heuristic that minimizes constraint violations, and
a multi-objective approach minimizing both traveling distances and constraint violations [23].

Other approaches rather aim at creating an optimal schedule for just a few divisions.
Schönberger solves the scheduling problem on the level of single matches by means of
mixed-integer programming (MIP), focusing on the optimization of player substitution
opportunities [30, 31]. A computational study shows that solving the MIP involves large
efforts even for small instances. Creating optimal schedules for single (professional) leagues
is a well-addressed topic in prior work [2,9, 11,19,24,34]. Further research concentrates on
scheduling sports competitions based on other objectives, such as balancing and minimizing
breaks [3,8,13,14,18,25,26], traveling distances [10,15,16,29], required venues [32], scheduling
matches in specific rounds [5], or introducing additional matches [6, 20].

To the best of our knowledge, none of the existing approaches aims at scheduling
a large number of interdependent divisions, respecting both capacity constraints, team
interdependencies and constraints from super-ordinate schedules.

1.2 Contribution and Paper Organization

In this paper, we address the identified research gap by extending the definition of the
MLSSP to take team interdependency constraints (which also have implications on the venue
utilization) and constraints from super-ordinate schedules into account. The optimization
goal is to minimize the overall number of deviations in actual and required schedules, whereby
those are guaranteed to be at least similar for all teams. Thereby, the problem definition
comes closer to the requirements of sports scheduling in practice. We prove the extended
MLSSP to be N P-complete by a polynomial reduction from 3-SAT, and underpin the
practical applicability of our approach by scheduling German table tennis leagues of a certain
district. Further experiments on generated data demonstrates the scalability of our approach.

The remainder of this paper is organized as follows: An overview of the problem domain
and the proposed solution approach is provided in Sect. 2. The MLSSP is formally defined
in Sect. 3, before an integer linear program (ILP) is constructed based on this definition in
Sect. 4. The decision problem corresponding to MLSSP is proven to be N P-complete in
Sect. 5, and a practical implementation is sketched in Sect. 6. We apply our implementation
to a real-world case study and evaluate its runtime performance in Sect. 7, before Sect. 8
summarizes the main results and sketches promising directions for future research.
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2 Background and Solution Approach

Every year, schedules for thousands of (amateur) sports leagues have to be created, whereby
matches between two teams take place at either of the teams’ venues. Typically, teams
of the same club share a common infrastructure (venues, material, etc.). The number
of simultaneous matches is thus restricted by the availability of the shared infrastructure.
Oftentimes, teams playing home on different days must be considered separately (e.g.,
those playing home on Saturdays and Sundays), turning capacity constraints into team
interdependencies.

It is desirable to find a schedule that respects those dependency constraints to the largest
possible extent. To simplify the scheduling process, matches are not scheduled individually,
but on the basis of grids that define the order of matches throughout the season. Matches
are expressed in terms of key pairs, whereby the keys serve as placeholders for the teams of
a division. A concrete example illustrating the basic terminology is presented in Sect. 3.1.

The use of uniform grids for each division makes it possible to express dependency
constraints involving teams playing in different divisions, as well as synchronizing schedules
for leagues of different levels (e.g., national, federal state and regional level). For instance,
assigning the same key to teams in different divisions ensures that they play home in parallel,
whereas other key combinations guarantee that two teams play home in opposite weeks.

The overall process is depicted in Fig. 1 in form of a unified modeling language (UML)
activity diagram, and comprises the following four steps:

1 Before the schedule creation process starts, teams of a league must be grouped into
divisions. Club administrators define interdependencies between teams of their clubs
based on the availability of venues and/or tactical reasons via an internet portal. Regular
match days and starting times for home matches are also defined in this step, which will
come into play in step 4 when generating the match schedules.

2 A scheduler assigns keys to teams in a way that dependency constraints are respected
to the largest possible extent. Note that keys for clubs of which at least one team plays on
a super-ordinate level are provided as additional input for the key determination process,
causing a loop in the data flow.

3 Conflict situations cannot be avoided completely in practice, as teams of neighboring
clubs play against each other in multiple divisions. Thus, the scheduler resolves conflicts
by assigning different, but similar keys to some teams, balancing interests among clubs.

4 Finally, the scheduler enters the generated keys into the internet portal, such that
match schedules can be generated based on predefined uniform grids and the regular
match days and starting times as defined in step 1 .

Step 2 , i.e., the determination of keys for schedule creation, is a hard task to solve:
The keys to be assigned to teams of the same club must be aligned, while those teams
are spread over multiple divisions, and each key can only be assigned once per division.
In practice, due to the lack of proper conceptual and technical solutions, this process is
done manually. Schedulers try to overcome the inherent complexity by applying a divide-
and-conquer approach, leading to low-quality solutions [22]. This is problematic for several
reasons: First, schedulers put large efforts in finding a barely acceptable solution, whereby
efforts increase disproportionately with the number of divisions to schedule [17]. Second,
clubs thereupon have to eliminate the effects of bad schedules, e.g., by postponing matches
or renting further venues, resulting in additional efforts on their side.

CP 2025
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Figure 1 Process of match scheduling in double-round-robin tournaments

To overcome these hurdles, we propose to formalize the task of sports schedule creation
as a combinatorial optimization problem. Instead of manually determining suitable keys, the
scheduler transfers the dependency constraints of all clubs allotted to their region to a key
generator. This software tool shall pursue the optimization goal of minimizing the number
of conflict situations, i.e., situations in which the key assigned to a team differs from the
required key. The advantage of modeling the problem at hand in terms of combinatorial
optimization is that established SAT or ILP solvers can be integrated into the key generator,
promising high performance and reliability. The final decision of how to resolve conflicts
should be left to the scheduler, though, to balance the interests of the involved stakeholders.
As a result, high-quality schedules can be created with substantially reduced efforts for both
schedulers and club administrators.

3 Problem Definition

This section introduces the general setting and terminology formally, before team interde-
pendencies are specified. Finally, scheduling constraints for interdependent divisions are
defined, resulting in a linear optimization problem.

3.1 General Setting and Terminology
The basic concepts of the problem definition comprise clubs, teams, and divisions. Each
team belongs to exactly one club and one division.

▶ Definition 1 (Club, Team, Division). Let C be a set of clubs and D be a set of divisions.
Let TC , C ∈ C denote the set of teams of each club, and let TD, D ∈ D denote the set of
teams of each division. Let T =

⋃
C∈C

TC =
⋃

D∈D
TD denote the set of all teams. Let c : T → C,

d : T → D be functions that map teams to their respective club and division.

An example instance with 18 teams allocated to three divisions is shown in Tab. 1
(ignoring the columns “Key” and “WS” for the moment). Each team is represented by the
name of its club, while most clubs have teams in multiple divisions. It is also possible that
multiple teams of a club play in one division, such as two teams of “Austin” in Men’s division.

DRRs comprise multiple rounds, which are usually scheduled in consecutive weeks. To
create schedules, grids are used that determine which matches are scheduled in which week.
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Table 1 Example: Three divisions to be scheduled

Women’s division Men’s division Youth division
Key Team WS Key Team WS Key Team WS

1 Austin W̌1 4 Austin Ŵ1 1 Austin W̌1
2 Berkeley W̌2 2 Berkeley W̌2 3 Chicago Ŵ1
6 Chicago W̌1 1 Detroit W0 2 Detroit Ŵ1
5 Detroit W̌1 6 Green Bay Ŵ2 5 El Paso W̌1
4 El Paso W̌2 5 Houston W0 6 Green Bay Ŵ2
3 Fort Worth W0 3 Austin II Ŵ1 4 Houston W0

▶ Definition 2 (Grid). Let G be a set of grids, with |G| ∈ {2n : n ∈ N} being the size of a
grid G ∈ G. Let g : D → G be a function that maps divisions to their grids. It holds that
∀ D ∈ D (|TD| ≤ |g(D)|), i.e., the number of teams in a division must be less or equal to the
grid size of the division.

An example grid for a division of up to six teams is depicted in Tab. 2. It can be read as
follows: 1 - 6 in the first row of week W1 means that team 1 plays team 6 at home. The
matches in W6 - W10 correspond to those in W1 - W5, swapping the home and away teams.

Table 2 Grid for divisions of a DRR with six teams

W1 W2 W3 W4 W5 W6 W7 W8 W9 W10
1 - 6 6 - 4 2 - 6 6 - 5 3 - 6 6 - 1 4 - 6 6 - 2 5 - 6 6 - 3
2 - 5 5 - 3 3 - 1 1 - 4 4 - 2 5 - 2 3 - 5 1 - 3 4 - 1 2 - 4
3 - 4 1 - 2 4 - 5 2 - 3 5 - 1 4 - 3 2 - 1 5 - 4 3 - 2 1 - 5

The numbers in a grid serve as placeholders for the teams of a division. In the following,
these numbers are denoted as keys (an example allocation of teams to keys can be found in
the respective columns of Tab. 1):

▶ Definition 3 (Key). Let KG = {1, . . . , |G|} be a set of keys for a grid G ∈ G.

3.2 Team Interdependencies
To ensure that venues can be shared between two teams, it is important that they do not
play at home in the same week. Grids have opposite pairs of keys, e.g., 1/4, 2/5 and 3/6
in the example of Tab. 2. By choosing the keys for interdependent teams accordingly, it can
be assured that at most one team plays at home each week.

▶ Definition 4 (Opposite Keys). Let oG : KG → KG, G ∈ G be a total function that maps
keys of a grid G to their opposite. It holds:

∀ G ∈ G, ∀ K ∈ KG (oG(oG(K)) = K) (1)

Using such standardized grids, team interdependencies can be defined across multiple
divisions. For grids of different sizes (which are necessary for divisions with different numbers
of teams), there must be a notion of which keys correspond to each other, i.e., for which keys
home games are scheduled in the same weeks. Keys fulfilling this property are denoted as
parallel keys:

CP 2025
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▶ Definition 5 (Parallel Keys). Let PG1,G2 ⊆ KG1 × KG2 , G1, G2 ∈ G define a relation for
parallel keys and (potentially) different grids. It holds:

∀ G ∈ G, ∀ K ∈ KG, ((K, K) ∈ PG,G)
∀ G1, G2 ∈ G, ∀ K1 ∈ KG1 , ∀ K2 ∈ KG2 ((K1, K2) ∈ PG1,G2 =⇒ (K2, K1) ∈ PG2,G1) (2)

In contrast to professional leagues, in which matches are often shown in the media, the
order of matches or the allocation of matches to certain weeks is not that critical for amateur
leagues. It is far more important for clubs to define which teams should have their matches
at home in opposite weeks (such that they can share one venue) or in parallel weeks (such
that players can attend matches of two teams, given they do not take place on the same day).

In order to express this requirement, week schemes are used: Teams of a club that
follow the same week scheme play at home in the same weeks, whereas teams that follow an
opposite week scheme play at home in opposite weeks. There is also a distinguished week
scheme W0 to express that there are no dependencies to other teams. This can happen if a
club has only one team, or the capacity of its venue(s) is sufficient to host matches of all
teams at the same time (without this being an explicit requirement for the club).

▶ Definition 6 (Week Scheme). Let Ŵ =
n⋃

i=1
{Ŵi}, and W̌ =

n⋃
i=1

{W̌i}, n ∈ N be two

sets of week schemes. Ŵi ∈ Ŵ and W̌i ∈ W̌, 1 ≤ i ≤ n are denoted as pairs of opposite
week schemes. Let W = Ŵ ∪ W̌ ∪ {W0}, with W0 being a distinguished week scheme. Let
w : T → W be a function that maps teams to week schemes. Let TCW

, C ∈ C, W ∈ W be the
set of teams of a club C that follow the week scheme W . It holds that

∀ C ∈ C(
⋃

W ∈W
TCW

= TC) (3)

The “WS” column of Tab. 1 provides examples for week schemes. The women’s and
youth teams of Detroit follow opposite week schemes W̌1 and Ŵ1, whereas the week scheme
W0 for the men’s team indicates that there are no interdependencies to other teams. The
women’s and men’s teams of El Paso follow independent week schemes W̌2 and W̌1, meaning
that there are no interdependencies to each other, but potentially to other teams of the club.

Apparently, each key can only be assigned once per division (the constraint will be
specified formally in Def. 12). Without weakening the requirement for opposite and parallel
keys, instances of realistic size are barely feasible. A simple example can be found in the
men’s division of Table 1: Austin and Austin II follow the same week scheme Ŵ1, which
means that they should be assigned the same key, which would directly lead to an infeasible
system (which was already pointed out by Davari et al. in prior work [7]).

To overcome this non-exceptional problem, similar keys are defined for grids, meaning
that only a few deviations from the intended sequence of home and away matches occur. In
Tab. 2, one can observe that the keys 1 and 6 only differ in two weeks (W1 and W6), just as
the keys 3 and 4. Therefore, keys 1/6 and 3/4, respectively, can be considered as similar
keys that can be assigned in case the required key is not available.

▶ Definition 7 (Similar Keys). Let SG ⊆ KG
2, G ∈ G define a relation for similar keys of a

grid G. It holds that

∀ G ∈ G, ∀ K ∈ KG (K, K) ∈ SG

∀ G ∈ G, ∀ K1, K2 ∈ KG ((K1, K2) ∈ SG =⇒ (K2, K1) ∈ SG) (4)
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3.3 Key Assignment
In this subsection, we elaborate on the assignment of keys to clubs (one key per week scheme),
and based on that, the assignment of keys to teams. Before keys can be assigned to week
schemes of clubs, it must be clear to which grid the keys refer. Regarding teams, the grid is
predefined by the divisions the teams play in, whereas such an automatism does not exist for
clubs. Therefore, a reference grid is defined for each pair of opposite week schemes.

▶ Definition 8 (Reference Grid). Let r : Ŵ ∪ W̌ → G be a function that assigns a reference
grid to each pair of opposite week schemes. It holds that

r(Ŵi) = r(W̌i), i ∈ {1 . . . n}, n ∈ N (5)

Based on the reference grid, keys can be assigned to week schemes of clubs according
to Def. 9. Note that opposite keys must be assigned for opposite week schemes, which is
formalized in Eq. 6.

▶ Definition 9 (Key Assignment for Clubs). Let aW : C → Kr(W ), W ∈ Ŵ ∪ W̌ be a total
function that maps clubs to keys for a week scheme W . It holds that

∀ C ∈ C (aŴi
(C) = or(Ŵi)(aW̌i

(C))), Ŵi ∈ Ŵi, W̌i ∈ W̌i, 1 ≤ i ≤ n, n ∈ N (6)

As mentioned in Sect. 1.1 and 1.2, the scheduling task is usually distributed between
multiple schedulers for different levels (e.g., national, federal state and regional level). Despite
having a potentially negative impact on the solution quality, this approach is indispensable
to cope with the number of divisions that have to be scheduled, especially when schedules
are created mostly manually. Usually, schedules for super-ordinate leagues are created first,
and impose constraints for scheduling sub-ordinate leagues. In particular, key assignments
for clubs that have teams in super-ordinate leagues are fixed in advance:

▶ Definition 10 (Fixed Key Assignments for Clubs). Let C̄ ⊆ C be a set of clubs, for which
there exists a fixed key assignment. Let fW : C̄ → Kr(W ), W ∈ Ŵ ∪ W̌ be a total function
that maps these clubs to keys for a week scheme W . It holds that

∀ C ∈ C̄, ∀ W ∈ Ŵ ∪ W̌ (aW (C) = fW (C)) (7)

The assignment of keys to teams is specified in Def. 11.

▶ Definition 11 (Key Assignment for Teams). Let k : T → Kg(d(T )) be a total function that
maps teams to keys.

In the remainder of this section, a connection will be established between the key
assignments of clubs and their respective teams. As mentioned beforehand, we must also
ensure that each key is unique within a division, i.e., is assigned to at most one team per
division, which is specified in Def. 12.

▶ Definition 12 (Key Uniqueness).

∀ D ∈ D, ∀ T1, T2 ∈ TD (k(T1) = k(T2) =⇒ T1 = T2) (8)

A central requirement for clubs is that – while minor deviations are allowed – teams that
follow the same week scheme are assigned keys in a way that they play at home in the same
weeks. Therefore, the keys of clubs and their teams must be aligned with respect to the
different week schemes. In particular, each team’s key must be similar to its club’s key of
the respective week scheme, which is specified in Def. 13.

CP 2025
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▶ Definition 13 (Key Similarity).

∀ C ∈ C, ∀ W ∈ Ŵ ∪ W̌, ∀ T ∈ TCW
, ∃ K ∈ Kg(d(T ))

((k(T ), K) ∈ Sg(d(T )) ∧ (aW (C), K) ∈ Pr(W ),g(d(T )))
(9)

Using the previous sets of constraints, we define satisfiability for problem instances of
MLSSP in Def. 14.

▶ Definition 14 (Satisfiability). An instance m of MLSSP is satisfiable, if:

∀ C ∈ C, ∀ W ∈ Ŵ ∪ W̌, ∀ T ∈ T , ∃ aW , ∃ k ((6) ∧ (7) ∧ (8) ∧ (9)) (10)

While it is necessary in practice to assign similar keys in case the required key is
unavailable, this should be avoided whenever possible, as it can, e.g., reduce the number of
capacity violations. Thus, the optimization goal is to minimize the number of teams that
receive a key that is not parallel to the key which is assigned to their club for the week
scheme the team follows. The resulting optimization problem is specified in Def. 15.

▶ Definition 15 (MLSSP as an Optimization Problem).

min. |{T ∈ T | w(T ) ̸= W0 ∧ (aw(T )(c(T )), k(T )) /∈ Pr(W ),g(d(T ))}|
s.t. (10) (11)

4 Construction of the Integer Linear Program

In this section, the optimization problem defined in Sect. 3 is converted into a (binary) ILP
that can be solved to optimality with a wide range of well-established solvers.

First, binary variables are associated with teams, representing the information whether a
specific key is assigned to the team.

▶ Definition 16 (Binary Variables for Teams). Let τT,K ∈ {0, 1}, T ∈ T , K ∈ Kg(d(T )) be
binary variables. Let

τT,K =
{

1 if k(T ) = K

0 otherwise

}
Likewise, binary variables are associated with clubs, adding the week scheme as a further

dimension.

▶ Definition 17 (Binary Variables for Clubs). Let γC,W,K ∈ {0, 1}, C ∈ C, W ∈ Ŵ ∪ W̌, K ∈
Kr(W ) be binary variables. Let

γC,W,K =
{

1 if aW (C) = K

0 otherwise

}
Up to here, the information whether a team received the required or a similar key was

expressed implicitly. As we want to minimize the number of teams for which this is the case,
further binary variables are introduced that represent this conflict situation. They operate
as auxiliary variables and will be essential for specifying the objective function.

▶ Definition 18 (Binary Variables for Conflicts). Let ξT ∈ {0, 1}, T ∈ T be binary variables.

In the remainder of this section, the necessary constraints for a feasible solution are set
up, before the objective function completes the optimization problem. We start with a set of
simple but indispensable constraints that ensure that every club is assigned exactly one key
per week scheme (resembling the property of a total function in Def. 9).
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∀ C ∈ C, ∀ W ∈ Ŵ ∪ W̌ (
∑

K∈Kr(W )

γC,W,K = 1) (12)

Likewise, the same must hold for each team, as k is a total function according to Def. 11.

∀ T ∈ T (
∑

K∈Kg(d(T ))

τT,K = 1) (13)

Additionally, it must be ensured that each key is assigned at most once per division (cf.
Def. 12 for the key uniqueness requirement).

∀ D ∈ D, ∀ K ∈ Kg(D) (
∑

T ∈TD

τT,K ≤ 1) (14)

Another set of constraints (15) ensures that opposite keys (cf. Def. 4) are assigned to
opposite week schemes (cf. Def. 6).

∀ C ∈ C, ∀ K ∈ Kr(Ŵi) (γC,Ŵi,K ≤ γC,W̌i,or(Ŵi)(K)), 1 ≤ i ≤ n

∀ C ∈ C, ∀ K ∈ Kr(W̌i) (γC,W̌i,K ≤ γC,Ŵi,or(W̌i)(K)), 1 ≤ i ≤ n
(15)

For a subset of clubs, the key assignments are already fixed by external factors (cf.
Def. 10), which is expressed by the following set of constraints:

∀ C ∈ C̄, ∀ W ∈ Ŵ ∪ W̌ (1 ≤ γC,W,fW (C)) (16)

It remains to encode the key similarity requirement (Def. 13) into linear constraints. Two
aspects have to be taken into consideration: First, the keys for teams depend on the grid
used in the respective divisions, whereas the clubs’ keys are determined by the reference grids
per week scheme. Therefore, parallel keys have to be determined, as the grids in use are
different in general. Second, the keys assigned to each of the teams must be similar (which
includes equal) to one of the parallel keys determined in the previous step. As one valid
key is sufficient for both steps and the previous constraints ensure that at most one key is
assigned to each team and club/week scheme, all candidates in S and P , respectively, can be
added up in (17).

∀ C ∈ C, ∀ W ∈ Ŵ ∪ W̌, ∀ T ∈ TCW
, ∀ K ∈ Kr(W )

(γC,W,K ≤
∑

(K,K′)∈Pr(W ),g(d(T ))
(
∑

K′′∈Sg(d(T ))(K′) τT,K′′)) (17)

While the previous set of constraints (17) guarantees that the keys assigned to teams
are similar to the keys assigned to their clubs, we need to express that it is indeed more
desirable to assign parallel keys (i.e., equal keys in case of equal grids) than only similar keys.
Assigning a similar (but not parallel) key can be considered as the resolution of a conflict
situation, as the key is required by another team of the same division as well. Therefore,
the (auxiliary) binary variables for conflicts (Def. 18) can be used to “count” the number of
teams to which a similar (but not parallel) key is assigned.

∀ C ∈ C, ∀ W ∈ Ŵ ∪ W̌, ∀ T ∈ TCW
, ∀ K ∈ Kg(d(T ))

(τT,K ≤ ξT +
∑

(K,K′)∈Pg(d(T )),r(W )
γC,W,K′) (18)

In accordance with Def. 15, the optimization goal can be formulated in terms of the
sum of the binary variables for conflicts, which should be minimized. Adding all sets of
constraints, the linear program for the MLSSP can be specified as shown in (19).

min.
∑
T ∈T

ξT s.t. (12) ∧ (13) ∧ (14) ∧ (15) ∧ (16) ∧ (17) ∧ (18) (19)

CP 2025
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5 MLSSP is N P-complete

The MLSSP is defined as an optimization problem in this paper, whereas the complexity
class N P is only defined for decision problems. The proof for N P-completeness will therefore
refer to the decision problem, i.e., whether an instance of the MLSSP is satisfiable according
to Def. 14.

▶ Lemma 19. MLSSP ∈ N P.

Proof. To prove that MLSSP ∈ N P holds, we must show that a witness for MLSSP can be
verified within polynomial runtime. As a verifier, the constraint sets defined in Eq. (12) -
(18) can be used. As many constraints involve a summation or iteration over a set of keys,
which depends on the size |G| of the respective grid, the maximum size of any grid in use is
denoted as |Gmax| in the following. The runtime complexity of checking an inequality is O(1),
we further assume that the same holds for applying the functions o (Def. 4) and f (Def. 10),
and evaluating the relations P (Def. 5) and S (Def. 7) using suitable hash functions.

Table 3 provides an overview of the runtime complexity of verifying constraints of Eq. (12)
- (18). Note that the number of similar and parallel keys is bounded by |Gmax| for constraints
(17) and (18).

Table 3 Runtime complexity to verify constraint satisfaction

Constraint Runtime Complexity
(12) O(|C| · |W| · |Gmax|)
(13) O(|T | · |Gmax|)
(14) O(|T | · |Gmax|)
(15) O(|C| · |W| · |Gmax|)
(16) O(|C| · |W|)
(17) O(|T | · |Gmax| · (|SGmax | + |PGmax,Gmax |)) = O(|T | · |Gmax|2)
(18) O(|T | · |Gmax| · (|PGmax,Gmax |)) = O(|T | · |Gmax|2)

Overall O(|C| · |W| · |Gmax| + |T | · |Gmax|2)

Overall, a witness for MLSSP can be verified in polynomial time, proving Lemma 19. ◀

▶ Lemma 20. ∀L ∈ N P : L ≤p MLSSP.

Proof. We prove that MLSSP is N P-hard by a polynomial reduction from 3-SAT, i.e.,
3-SAT ≤p MLSSP. Let ϕ = (x1,1 ∨ x1,2 ∨ x1,3) ∧ · · · ∧ (xn,1 ∨ xn,2 ∨ xn,3) be a formula of
propositional logic in 3-CNF with n clauses c1, . . . cn. Without loss of generality, we assume
each clause to consist of exactly three literals (clauses with less than three literals can be
brought into this form by doubling or tripling the literals present).

A formula ϕ′ is constructed by adding a variable v – which does not occur in ϕ – to each
clause of ϕ, and add a clause (¬v), such that ϕ′ and ϕ are equisatisfiable:

ϕ′ = (x1,1 ∨ x1,2 ∨ x1,3 ∨ v) ∧ · · · ∧ (xn,1 ∨ xn,2 ∨ xn,3 ∨ v) ∧ (¬v) (20)

Based on ϕ′, an MLSSP instance m is constructed in the following way:
G = {G2, G4}, |G2| = 2, |G4| = 4
KG2 = {1, 2}, KG4 = {1, 2, 3, 4}
Ŵ = {Ŵ1}, W̌ = {W̌1}, W = {W0, Ŵ1, W̌1}, with r(Ŵ1) = r(W̌1) = G2
PG2,G2 = {(1, 1), (2, 2)}, PG2,G4 = {(1, 1), (2, 3)}, PG4,G2 = {(1, 1), (3, 2)}, PG4,G4 =
{(1, 1), (2, 2), (3, 3), (4, 4)}
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oG2(1) = 2, oG2(2) = 1, oG4(1) = 3, oG4(2) = 4, oG4(3) = 1, oG4(4) = 2
SG2 = {(1, 1), (2, 2)}, SG4 = {(1, 1), (1, 2), (1, 4), (2, 1), (2, 2), (2, 3), (3, 2), (3, 3), (3, 4),
(4, 1), (4, 3), (4, 4)}
A club Ci,j is created for each distinct xi,j ∈ ϕ′, and a club V is created for v

C̄ = {V }, fŴ1
(V ) = 2

For each clause c1, . . . cn in ϕ′ (except for the last clause (¬v)), a division Di with four
teams Ti,1, Ti,2, Ti,3 and Ti,V is created. Each team Ti,j corresponds to a literal xi,j in ϕ′,
1 ≤ j ≤ 3. Each team Ti,V corresponds to the literal v.
Teams corresponding to negative literals follow the week scheme W̌1, those corresponding
to positive literals follow week scheme Ŵ1.

▶ Proposition 21. ϕ′ ∈ 3-SAT ⇐⇒ m is satisfiable

Proof. For each club Ci,j , let (aŴ1
(Ci,j) = 1 ∧ aW̌1

(Ci,j) = 2) ⇐⇒ true is assigned to xi,j

in ϕ′, and (aŴ1
(Ci,j) = 2 ∧ aW̌1

(Ci,j) = 1) ⇐⇒ false is assigned to xi,j in ϕ′. ϕ′ ∈ 3-SAT
holds if at least one literal of each clause in ϕ′ yields true. This means that in each clause,
there must be at least one positive literal with variable assignment true or one negative
literal with variable assignment false.

Equivalently, to satisfy m, there must be at least one team T of a club C following week
scheme Ŵ1 with aŴ1

(C) = 1 and aW̌1
(C) = 2, or following week scheme W̌1 with aŴ1

(C) = 2
and aW̌1

(C) = 1 in each division Di of m, resulting in at least one occurrence of aW (C) = 1.
The same must hold vice versa (at least one occurrence of aW (C) = 2) for each division of m,
which is trivially fulfilled because aŴ1

(V ) = 2 and one team Ti,V of club V following week
scheme Ŵ1 is present in each division Di.

This observation is depicted in Tab. 4, showing a case distinction for the eight possible
cases. The columns aW (Ci,j) contain the key assignments for the clubs Ci,j , while the
columns k(Ti,j) contain the sets of possible key assignments for the teams Ti,j according to
the relations PG2,G4 and SG4 . A valid key assignment for the teams Ti,j is highlighted in
bold font for the first seven cases. Only in the last case, which corresponds to all variables
of positive literals being assigned false and all variables of negative literals being assigned
true in the respective clause of ϕ′, no valid key assignment is possible for the teams of Di,
proving Proposition 21.

Table 4 Case distinction demonstrating the equivalence of clauses and divisions

aW (Ci,1) aW (Ci,2) aW (Ci,3) aW (V ) k(Ti,1) k(Ti,2) k(Ti,3) k(Ti,V ) valid
1 1 1 2 1/2/4 1/2/4 1/2/4 2/3/4 ✓

1 1 2 2 1/2/4 1/2/4 2/3/4 2/3/4 ✓

1 2 1 2 1/2/4 2/3/4 1/2/4 2/3/4 ✓

1 2 2 2 1/2/4 2/3/4 2/3/4 2/3/4 ✓

2 1 1 2 2/3/4 1/2/4 1/2/4 2/3/4 ✓

2 1 2 2 2/3/4 1/2/4 2/3/4 2/3/4 ✓

2 2 1 2 2/3/4 2/3/4 1/2/4 2/3/4 ✓

2 2 2 2 2/3/4 2/3/4 2/3/4 2/3/4 ✗

◀

Lemma 20 follows from Proposition 21, as ϕ ∈ 3-SAT ⇐⇒ ϕ′ ∈ 3-SAT. ◀
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▶ Theorem 22. MLSSP is N P-complete.

Proof. Theorem 22 follows directly from Lemma 19 and Lemma 20. ◀

There are some practical implications of the proof result, which will briefly discussed in
the following. The key learning is that for very large instances, some multilevel divide-and-
conquer approach will still be necessary to schedule leagues from national to regional level,
even with tool support. For very large problem instances (e.g., an instance involving all
football leagues of Spain), the scheduling problem gets intractable from a practical point of
view, even if all required data was accessible to a single person. Heuristic approaches might
succeed finding a sufficiently good solution, but usually need a basic feasible solution to start
with, though, which itself is challenging to determine for the MLSSP.

6 Implementation

Our approach is implemented as a C# desktop application [35]. The software architecture of
our implementation is sketched in Fig. 2 in form of a UML component diagram.

Figure 2 Component diagram for the key generator

Using the frontend & data acquisition component, the grouping of teams into divisions
and the dependency constraints provided via an internet portal can be imported into the
key generator via comma-separated values (CSV) files. Fixed assignments must be entered
manually. The data persistence layer processes data of clubs, divisions and teams, filters
out information that is irrelevant for the match scheduling task and stores the relevant
information on disk. The optimization model builder constructs an ILP based on the input
data and the information on parallel, opposite and similar keys for each grid in use (grids for
6 - 14 teams are supported). The ILP is subsequently solved to optimality by a SAT or ILP
solver. We use the CP-SAT solver [27] in our implementation. With the conflict resolution
component, the user can modify the computed solution by deciding which teams should
receive similar keys in conflict situations. This makes it possible to balance interests between
the clubs involved, while the solution quality remains unchanged. The data acquisition and
conflict resolution components form the user interface, whereas the other components are
hidden in the back end.
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7 Evaluation

In this section, the practical applicability of our approach shall be investigated. Particularly,
the following research questions will be answered in the course of this section:
Q1 Can the approach be used to determine solutions for scheduling instances of realistic

size?
Q2 Which factors influence the scalability of the approaches, i.e., which characteristics of

the input affect the runtime and solution quality of the key generation process?
Q3 How does the approach perform compared to similar existing approaches?

Outline. Q1 will be investigated by solving a real-world case study involving German table
tennis leagues (Sect. 7.1). To answer Q2, the approach is applied on generated instances
with different characteristic parameters (Sect. 7.2). Finally, we compare our approach to an
implementation by Li et al. [22] to answer Q3 (Sect. 7.3).

Experimental setup. All experiments were run on a Windows 11 notebook with a 2.0 GHz
Intel i7 processor and 32 GB main memory. The CP-SAT solver was run with 8 parallel
workers (i.e., threads) and a time-out of 300 seconds. To reduce the effect of outliers, the
experiments were run 10 times (Q1), or on 10 different instances that were generated with
the same characteristic parameters (Q2 and Q3), respectively. From these 10 test runs, the
median values of the measured runtimes and objective function values were computed.

7.1 Case Study
We applied our approach to create the schedules for a district of the West-German Table
Tennis Association (WTTV) for three seasons [36]. The characteristics of the three input
instances are summed up in Tab. 5. They differ with respect to the number of teams,
clubs, and divisions involved. It can be further observed that for the majority of teams,
dependencies were defined (i.e., week schemes other than W0 according to Def. 6 were used).
Five week schemes were available for the clubs as predefined by the WTTV. For a few clubs,
key assignments were fixed by the schedulers of super-ordinate levels according to Def. 10.

Table 5 Real-world case studies from German amateur table tennis leagues

Season # divi- # teams (with # clubs (with # week Runtime Objective
sions dependencies) fixed assignm.) schemes (in s) fun. value

2022/23 94 885 (638) 194 (18) 5 2.876 35
2023/24 49 516 (387) 107 (16) 5 2.145 16
2024/25 50 496 (392) 106 (11) 5 2.225 14

For all three instances, the application returns an optimal solution within a few seconds in
all ten test runs. It can be concluded that the implementation is suitable for solving instances
of realistic size. Limitations will be investigated in the following performance evaluation.

7.2 Performance Evaluation
As the implementation comprises an exact approach to determine the scheduling solution,
the runtime is expected to increase exponentially for larger inputs. Other characteristic
parameters (cf. Tab. 5) may also have an impact on the runtime and solution quality.
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Base scenario construction. To investigate the approach’s scalability, we derive a base
scenario from the real-world case study of Sect. 7.1, which is subsequently varied with respect
to its characteristic parameters. The base scenario consists of 100 divisions with 10 teams
per division, which belong to 200 clubs. For 75% of the teams, dependencies are defined, and
for 10% of the clubs, key assignments are fixed prior to the optimization. The number of
week schemes is set to 5 (including W0) in the base scenario.

Instance generation. To analyze the effect of each characteristic parameter, their values are
varied separately, resulting in 30 different configurations (cf. Tab. 6). For each configuration,
10 instances were generated at random [36] and handed over to CP-SAT solver.

Table 6 Performance evaluation varying different parameters of the base scenario

Characteristic Runtime (in s) Objective function value

# Divisions 20 50 100 200 500 20 50 100 200 500
0.35 2.79 55.02 T/O T/O 1 4 10 257 1202

# Teams
per division

6 8 10 12 14 6 8 10 12 14
0.28 1.13 2.87 2.97 3.40 2 2.5 6 8 8.5

# Clubs 20 50 100 200 500 20 50 100 200 500
T/O 2.57 2.93 1.93 0.62 66.5 7 2.5 2.5 1.5

# Week
schemes

3 5 7 9 11 3 5 7 9 11
12.04 2.43 2.35 2.24 1.71 10 5 4 3 3

% Teams with
dependencies

75 80 85 90 95 75 80 85 90 95
2.73 2.55 2.60 2.88 3.74 5 4 4.5 5 7

% Clubs with
fixed assignm.

10 20 30 40 50 10 20 30 40 50
2.55 2.56 1.74 1.47 1.64 4.5 4 19 25.5 40

Results. The median values for runtime and solution quality are depicted in Tab. 6, while
the measured values for each test run are listed in Appendices A.1 and A.2. For all conducted
test runs, the CP-SAT solver returned an optimal or feasible solution, or classified the
problem as infeasible. The values measured for infeasible instances were excluded from
computing the median values.

The largest impact with respect to runtime and solution quality was observed when
varying the number of divisions. For 200 and 500 divisions, the solver reached the time-out
in all 10 runs, whereby the solution quality deteriorated substantially. This seems plausible,
as the number of divisions corresponds to the size of the constructed ILP. Considering
the number of teams per division, both runtime and solution quality deteriorate when
increasing the division size. The effects are less pronounced than the effects of increasing the
number of divisions, though, which can be explained by the increased flexibility of larger
division sizes regarding key assignment.

The measured values for both runtime and solution quality show that reducing the number
of clubs makes the problem harder. This seems valid, because an increased number of teams
per club leads to more teams of a club following the same week scheme, severely restricting
the possibilities of assigning suitable keys. Similarly, reducing the number of week schemes
apparently increases the problem complexity, as more teams follow the same week scheme.

Increasing the portion of teams with dependencies slightly increases the runtime
consumption at almost constant objective function values. The most noticeable difference
occurs when increasing the portion to 95%, presumably caused by lacking flexibility regarding
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key assignment. Interestingly, increasing the portion of clubs with fixed assignments
reduces the runtime but also the solution quality. An explanation could be that fixed
assignments reduce the search space, but also cause unavoidable conflict situations.

In theory, one would expect the same runtime measurements and objective function values
in all cells of Tab. 6 which represent the base scenario. When conducting performance tests,
we varied each characteristic parameter separately, such that the base scenario occurred
multiple times. As different instances were generated, the measurement results slightly differ.

7.3 Comparison to Similar Approaches
We compared our implementation to the approach of Li et al. [22], who determine optimal
schedules based on capacity constraints without defining interdependencies between teams.
They implemented both a heuristic and an exact approach and applied them on instances
with 3,5 and 10 divisions with different numbers of teams (cf. Tab. 7). All instances were
made publicly available [21], such that we were able to implement an adapter for their file
format and run experiments on the same input data.

Table 7 Performance comparison to exact and heuristic approaches of Li et al. [22]

Approach Runtime (in s) per instance type
3-1 3-2 5-1 5-2 10-1 10-2

Li et al. (exact) 66.33 16.55 588.10 803.71 678.28 528.63
Li et al. (heuristic) 0.02 0.11 0.79 0.01 3.97 0.93
This approach 0.16 0.29 0.05 0.06 0.09 0.10

Optimal results could be determined in all 60 test runs. The median values of the
measured runtimes for 10 instances which were constructed with equal characteristics are
shown in Tab. 7. Our implementation performs relatively well compared to the heuristic
approach and clearly outperforms the exact approach. Interestingly, our approach takes
most time for the instances with only three divisions, which can be explained by the reduced
possibilities to avoid conflict situations.

The exact approach of Li et al. and our approach share the optimization goal (minimizing
constraint violations) and the general setting (teams play DRR tournaments in several groups,
clubs’ venues have capacity constraints). The main reason for the differences in runtime
performance is that the search space constructed by Li et al. is much larger, as they use
decision variables for every single match, while our approach operates on the level of assigning
keys to teams. Li et al. can potentially further reduce the number of constraint violations
via a sophisticated allocation of bye weeks to teams, or by stretching the schedule of smaller
divisions to more weeks than necessary. However, our approach allows clubs to define that
two specific teams should play in turn or in parallel, while Li et al. solely aim at minimizing
the number of capacity constraint violations.

7.4 Summary and Threats to Validity
Revisiting our research questions, it can be stated that our approach is suitable to be applied
on real-world instances (Q1). Its scalability is mainly restricted by the number of divisions
and teams involved (Q2), but performs well in comparison to existing approaches (Q3).

The conducted experiments have a few limitations to be discussed in the following. Due
to the lack of real-world examples, all instances used in the experiments of the performance
evaluation (Sect. 7.2) were artificially generated. The time-out was set to a rather low value,
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which was indeed sufficient to identify whether modifying a characteristic parameter increases
or decreases runtime and solution quality. Using more than one solver for the experiments
and varying the characteristic parameters in combination could give more reliable insights
into performance bottlenecks.

Furthermore, the differences with respect to runtime and solution quality often varied
noticeably between test runs of the same configuration (cf. Appendices A.1 and A.2).
This implies that the grouping of teams into divisions has a major impact on the problem
complexity, which was not covered by the performance analysis. Usually, teams are not
distributed randomly over the groups, but according to regional aspects. This means that
the generated instances are probably harder to solve than practical use cases.

Finally, the presented evaluation was purely technical, whereas the validity of the applied
quality metrics should be evaluated in the course of a user study.

8 Conclusion and Future Work

This paper defines an extended version of the Multi-League Sports Scheduling Problem
(MLSSP) that takes capacity constraints, team interdependencies and constraints from super-
ordinate schedules into account. The MLSSP is specified in form of a linear optimization
problem, the corresponding decision problem is proven to be N P-complete. The approach
was applied to scheduling German table tennis leagues of a certain district, underpinning its
practical applicability. Experiments with generated instances of varying size highlight the
factors influencing the approach’s scalability.

In future research, meta-heuristics such as simulated annealing, tabu search or genetic
algorithms should be implemented to handle even larger instances. Regarding the problem
definition, the similarity requirement of assignments for clubs and teams could be replaced
by a requirement for pairwise similarity of assignments for teams of the same club, leading to
better results in practice. Further constraints, such as inter-club dependencies or requirements
for teams playing home or away in certain weeks should be easy to include. Finally, the
validity of quality measures should be assessed in an empirical evaluation with practitioners.
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A Appendix

A.1 Performance Evaluation Results - Runtime (in s)

Config. 1 2 3 4 5 6 7 8 9 10

#
D

iv
i-

si
on

s

20 0,365 0,232 0,301 0,435 0,246 0,359 0,483 0,335 0,208 0,512
50 2,084 2,793 2,735 1,803 2,814 2,385 3,206 2,784 2,786 4,817
100 51,301 54,279 58,318 112,013 302,04 302,002 55,759 50,888 44,981 49,422
200 301,603 302,127 302,082 301,738 301,888 301,895 301,719 302,308 302,037 302,175
500 302,417 302,403 302,439 301,462 302,024 301,689 302,085 302,635 301,829 302,617

#
Te

am
s

pe
r

di
vi

s. 6 0,288 0,238 0,310 0,409 0,245 0,243 0,299 0,272 0,517 0,208
8 1,422 1,136 1,120 0,325 0,306 0,300 1,846 1,684 0,805 1,754
10 2,071 2,030 1,976 2,850 2,273 3,595 2,880 3,073 5,864 3,478
12 2,525 2,528 2,332 3,060 1,503 3,002 3,045 3,320 3,451 2,936
14 2,826 2,879 3,013 3,203 3,716 3,806 3,829 3,924 3,444 3,359

#
C

lu
bs

20 301,449 302,021 302,143 301,490 301,597 301,649 301,605 302,090 301,909 302,104
50 2,344 2,134 2,166 2,905 2,410 2,735 4,210 2,388 301,990 5,037
100 2,052 3,688 2,056 2,955 3,220 2,661 2,973 2,910 5,462 2,674
200 0,439 1,794 2,855 2,629 2,060 2,629 2,474 0,524 0,509 0,529
500 0,558 0,549 0,542 1,019 1,045 0,601 0,631 0,623 0,607 1,232

#
W

ee
k

sc
he

m
es

3 301,637 12,035 0,372 2,616 2,683 17,639 302,044 302,012 2,625 2,576
5 2,431 2,004 2,240 2,405 3,739 2,772 2,279 3,636 2,489 0,140
7 3,919 1,261 2,127 3,100 0,495 4,529 3,952 0,468 0,498 2,567
9 2,148 0,425 3,332 2,326 2,944 4,396 1,265 0,616 3,435 1,901
11 1,457 1,164 1,756 2,245 2,501 1,765 0,550 1,671 0,512 1,803

%
Te

am
s

w
ith

de
p. 75 2,082 1,967 2,120 2,952 2,540 2,945 2,855 2,799 2,809 2,654

80 2,138 2,216 2,273 2,708 3,024 2,265 2,868 2,486 2,938 2,613
85 2,177 2,211 2,275 2,796 2,326 3,648 2,713 2,574 2,873 2,628
90 2,315 2,214 2,487 3,026 3,292 2,746 2,793 2,995 2,964 3,065
95 2,508 2,512 25,594 3,104 2,958 17,205 3,031 4,380 4,477 301,966

%
C

lu
bs

w
ith

f.
a. 10 2,032 2,398 3,187 2,473 2,439 2,437 2,726 2,647 2,628 2,835

20 1,911 1,935 2,700 2,419 0,432 3,669 4,231 4,172 1,538 3,031
30 2,358 1,735 0,839 2,244 0,413 0,407 0,985 2,008 1,141 3,090
40 2,483 1,471 1,873 0,976 1,465 0,366 1,356 1,042 0,417 2,341
50 0,303 0,301 0,322 1,443 1,365 0,324 2,944 0,361 1,832 0,308

• Optimal • Feasible • Infeasible

A.2 Performance Evaluation Results - Objective Function Values

Config. 1 2 3 4 5 6 7 8 9 10

#
D

iv
i-

si
on

s

20 1 1 4 1 1 1 2 1 1 1
50 4 2 6 5 3 5 3 6 4 2
100 11 3 6 12 34 46 10 7 9 10
200 262 274 212 225 246 258 275 285 256 254
500 1202 1225 1272 1248 1202 1175 1148 1166 1218 1197

#
Te

am
s

pe
r

di
vi

s. 6 1 0 2 1 4 2 2 4 1 3
8 1 3 5 0 2 0 3 3 2 4
10 6 3 12 7 8 3 6 6 6 5
12 9 7 12 3 6 5 12 12 9 2
14 3 10 11 9 3 4 11 9 8 8

#
C

lu
bs

20 68 69 62 79 68 55 60 73 65 63
50 3 9 6 8 5 12 5 8 22 5
100 2 6 4 0 3 2 2 1 5 4
200 2 4 13 3 2 4 5 0 0 1
500 0 2 1 1 4 4 3 0 1 3

#
W

ee
k

sc
he

m
es

3 7 11 0 4 10 10 15 21 10 12
5 2 5 8 6 4 5 5 5 9 0
7 4 7 4 5 3 6 2 2 3 5
9 0 1 2 3 2 6 4 3 4 3
11 2 6 3 3 7 2 4 2 2 3

%
Te

am
s

w
ith

de
p. 75 11 4 6 2 6 4 6 2 3 7

80 4 5 6 6 4 3 3 6 4 2
85 6 5 6 3 7 5 4 3 4 4
90 3 4 5 5 4 8 8 4 5 12
95 8 7 6 9 9 6 4 7 5 28

%
C

lu
bs

w
ith

f.
a. 10 2 5 2 5 5 5 4 4 6 3

20 4 7 4 3 3 5 11 11 2 3
30 9 20 23 14 7 0 16 19 21 24
40 28 38 28 20 15 0 23 20 0 31
50 0 0 0 42 47 0 32 0 38 0

• Optimal • Feasible • Infeasible

CP 2025
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