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—— Abstract

Quantum circuit synthesis is the task of decomposing a given quantum operator into a sequence

of elementary quantum gates. Since the finite target gate set cannot exactly implement any
given operator, approximation is often necessary. Model counting, or #SAT, has recently been
demonstrated as a promising new approach for tackling core problems in quantum circuit analysis.
In this work, we show for the first time that the universal quantum circuit synthesis problem can be
reduced to maximum model counting. We formulate a #SAT encoding for exact and approximate
depth-optimal quantum circuit synthesis into the Clifford+T gate set. We evaluate our method
with an open-source implementation that uses the maximum model counter d4Max as a backend.
For this purpose, we extended d4Max with support for complex and negative weights to represent
amplitudes. Experimental results show that existing classical tools have potential for the quantum
circuit synthesis problem.
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1 Introduction

Quantum algorithms are typically specified using higher-level constructs such as (classical)
procedures and quantum Fourier transform (QFT) [30]. For their efficient implementation
on physical devices, which typically operate with a finite gate set, they need to be broken
down into a quantum circuit, a sequence of quantum gates. FError-corrected hardware
implementations, which realize the ideal quantum computational model formalized in a
quantum Turing machine [8], often use the universal Clifford+T set {S, H,CX, T} [20, 2, 42].
Moreover, better optimal synthesis solutions can have significant implications for quantum
complexity theory, such as reducing the stabilizer rank of magic gadgets [31], and relating
classical and quantum resources [11, 12]. However, exact synthesis is not always feasible
due to the discrete nature of this gate set, often necessitating approximation techniques
to balance precision and circuit depth [30]. The computational complexity of synthesis
is formidable, with classical approaches exhibiting doubly exponential time in the worst
case [33], underscoring the need for scalable and efficient methods.
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Reducing Quantum Circuit Synthesis to #SAT

Classical methods, like decision diagram [53, 13, 50], tree-automata [16], and SAT [48]
have proven to be highly effective in analyzing quantum circuits. Recent advances have
highlighted weighted model counting, or #SAT, as a powerful tool for addressing hard
problems in quantum circuit analysis, including simulation [38] and equivalence checking [39].
These methods leverage off-the-shelf solvers to tackle the exact versions of these problems,
known as #P-complete [18]. Building on this promise, we explore whether #SAT can be
harnessed for the universal quantum circuit synthesis problem — a challenge that also requires
approximation since discrete universal gate sets cannot exactly implement arbitrary quantum
operators. The relevant complexity class here is QMA, as approximate circuit equivalence
checking is complete for it [26]. Moreover, the Solovay-Kitaev theorem [17] guarantees that
any unitary can be e-approximated with a polylog(%)—depth circuit.

This work presents a novel reduction of quantum circuit synthesis to maximum model
counting, focusing on depth-optimal and approximate synthesis into the Clifford+T gate
set. To achieve this, we overcome two obstacles. First, to enable reduction to the maximum
weighted model counting, we show how equivalence checking can be performed with a single
model counting call, contrasting previous approaches [39] which required linearly many calls.
In the process, we provide two new ways of encoding equivalence checking. Second, we show
how the fidelity (a measure of circuit similarity) between two circuits can be computed by
weighted model counting, generalizing our exact equivalence checking methods to support
approximate equivalence checking. Our approach then encodes the synthesis task as a
weighted conjunctive normal form (CNF) formula, where satisfying assignments correspond
to valid gate sequences and weights reflect approximation fidelity. We demonstrate that
this reduction enables both exact and approximate synthesis, with applications to circuit
optimization. We provide an open-source implementation, called Quokka#-syn, to validate
our method.

The scalability of quantum circuit synthesis remains a critical bottleneck, with existing
methods struggling to handle large qubit counts or gate depths without resorting to corner-
case omissions [37, 44]. We experimentally evaluate our method to compare the different
encodings and test its scalability. In addition, we compare it against a state-of-the-art tool
focusing on depth-optimal approximate and exact synthesis. While the comparison has
limitations, it shows that our #SAT-based approach has merit and can offer improvement
over existing methods. However, it falls short of fully resolving the synthesis problem’s
inherent complexity. We identify multiple avenues for improvement, such as enhancing
maximum model counters with support for incremental solving. By laying this groundwork,
we pave the way for integrating advanced classical solvers into the quantum computing
toolkit, advancing the practical realization of quantum algorithms.

2 Preliminaries

2.1 Quantum Computing

In this section, we give the necessary notions and notations on quantum computing. For an
entailed explanation, for example on tensor product (®), see [42].

Quantum states. Let H®" be the 2"-dimensional Hilbert space. An n-qubit quantum state,
denoted as |¢) using Dirac notation, is a column vector [0400___00, ey 0411...11]T in H®", where
lap|? € [0, 1] are amplitudes, satisfying: |coo...00]% + .. + |a11...11|> = 1. Tts complex adjoint
(| is a row vector with conjugated entries: (p| = |¢)! =[ag0...00- 1,11, therefore
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(ple) = 1. A quantum state vector can be decomposed in the computational basis, written
as [p) = D peqo,13n Qb |b), where |b) is a computational basis state defined as a vector with all
entries setting to 0 except at index b setting to 1.

Another way to represent a state |¢) is as a density matriz p = |p)Xp|. The trace of a
density matrix is 1, denoted as tr(p) = 1, where trace is defined as the sum of the diagonal

elements of a matrix. A density matrix can be decomposed in the Pauli basis as in Equation 1.

To understand Pauli basis decomposition, we introduce Pauli matrices and Pauli strings. The
Pauli matrices are I = [§ 9], X = [93],Y = [97'],Z = [§ °]. An n-qubit Pauli string
P is a parallel composition of n Pauli gates, such that P € {I, XY, Z}®". For instance,
X ® Z® 1 is a three-qubit Pauli string. It is worth noting that while a density matrix p may

contain complex numbers, the basis coefficients 8; in Equation 1 are all real numbers [39].

Throughout this paper, we denote [n] = {0,...,n — 1}.

pP= Z Bj - P; for the Pauli strings P; € {I, XY, Z}®” (1)
JEM]

Quantum gates. An n-qubit quantum gate G can be expressed by a 2™ x 2™ unitary matrix
U,ie,Ul-U=U -U"=TI%". A single qubit quantum gate U operating on qubit j € [n] can
be represented as U; = [®7 ® U ® [®"~7~1. Updating a quantum state in vector form |¢) is
done by matrix-vector multiplication, i.e. |)) = U |p). Applying a unitary U to a density
matrix p = |p)¢| should be done through conjugation, i.e.: UpUT = U |p)Xep|UT = || for
|)) = U |p). We consider the well-known universal gate set Clifford {S, H, CX} + T and the
gates Toffoli and C'H, which are defined as follows:

H=1vz[{ 4], S=[59], CX=[4%], T=[3?], Toffoli = [§ 3], CH=[§ 7]

where I}, is a k-dimensional identity matrix and O is the all zero matrix. We ignore the
index when the dimension is 2, i.e. I = I, = [}9]. We denote a gate set as G. For an
n-qubit circuit, let G(k) C G be a subset of gates applied to k € [n] qubits, such that G(1)
is the set of single-qubit gates, G(2) is the set of two-qubit gates and so on. For example,
ifG={H,T,CX, Toffoli}, G(1) = {H, T}, G(2) = {CX} and G(3) = {Toffoli}. We always

assume I € G, also if not explicitly stated.

Quantum circuits. The evolution of a quantum system is modeled by a quantum circuit,
a sequence of quantum gate layers, or layers in short, applied to all qubits at each time

step. A layer D is a set of gates such that each qubit has at most one gate applied to it.

Thus, it contains only mutually parallel gates. For example, a layer D = {G; | i € [n]}
applies a single-qubit local gate G on each qubit i. For any layer D, we will denote its
unitary matrix with Up. Let D,, be the set of all possible layers for n qubits. For a circuit
C=(D°,.., D% 1), with D' € D,,, we thus have its unitary Uec = Upa-1 - --Upo. We define
a circuit’s depth as the minimal number of layers (with parallel gates) that it contains.

Jamiotkowski fidelity The fidelity between two quantum states |¢) and |¢) is defined as
Fid(|¢), |[¥) £ tr(|o)e| - [oXel) = | (¥]) |2. The fidelity between states can be extended to
measure the distance between unitary operators with the help of Jamiolkowski isomorphism
that maps unitary U on H®" to a state |py) = (U ® I)|¥,) on H®?" where |¥,,) =
\/%Zie{o,l}n |i4) and |i4) is short for |i) ® |¢). Thus, Jamiolkowski fidelity [45] between
unitary operators can be formally defined as:

Fid, (U, V) =Fid(l¢ev) . |lev)) = | {(pulev) . (2)

38:3
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In the particular case where Fid;(U,V) = | (¢pv|ev) |? = 1, it follows that U = AV with
IA]> = 1. This result arises because | (pr|pv) |* = 1 implies |pr) = A |oy), and from the
definitions of |py) and |pv ), we conclude U = AV.

2.2 Maximum Weighted Model Counting

Let A be a set of Boolean variables {a1,...,a;, }. A literal £ is a variable or its negation, e.g., a
or —a (written as @). A clause is a disjunction of literals £; V...V £,,. A propositional formula
F in Conjunctive Normal Form (CNF) is a conjunction of clauses. We write F'(A) to indicate
that F is defined on the set of variables A. Let B be {0,1} and R be the set of real numbers.
An assignment T maps variables A to B, where 0, 1 represents False and True respectively.
The satisfiability problem is determining whether an assignment 7 to A exists, for which
a propositional formula F(A) is true. We denote SAT(F(A)) £ {r | 7 satisfies F(A)} as
the set of all satisfying assignments for F'. The model counting problem is to compute the
number of satisfying assignments, denoted as #SAT(F) £ |SAT(F)|.

A weight function W : A x B — R maps a variable with its true or false assignment,
or, viewed alternatively, a literal, to a weight. Given an assignment 7, the weight of this
assignment, written W (), is the product of the weight of each variable with its assignment
W(r) = [l4ca W(a,7(a)). For notational convenience, we write the weights of literals, such
that for a variable a € A, we denote W(a) = W(a, 1) and W(a) = W(a,0). If unspecified,
the weight of a variable a € A is assumed to be W(a) = W(a) = 1. We call such variables
unbiased. The weighted model counting (WMC) problem asks for the sum of the weights of
the satisfying assignments, i.c., #SATw (F) = >_ cgar(r(ay) W (7).

The maximum weighted model counting problem (MWMC) extends WMC by finding
an assignment to a subset of variables that maximizes the weight of the WMC problem
(Definition 1). In Section 4, we show that quantum circuit synthesis can be reduced to it.

» Definition 1 (MWMC [5]). Given a propositional formula F(A, B) over disjoint sets of
variables A and B, and a weight function W over (AU B) x B, the MWMC problem is to
determine an assignment T to A that mazimizes #SATw (F (A, B)).

For notation, we define an oracle function Maz#S AT, which takes the quantified Boolean
formula F'(A, B) with its weight function W and returns an assignment 7 to A that maximizes
the weighted model count of the formula F' and its maximal weight w,,qq:

Maz#SATw (F(A, B)) = (1(A), Wmaz)-

2.3 Reducing Quantum Computing to Model Counting

We present two encodings: a computational basis encoding, referred to as CB, where the
computational basis decomposition of the state vector is encoded directly, and a Pauli basis
encoding, referred to as PB, where the basis states are the Pauli strings and we encode
the density matrix decomposition (see Equation 1). A quantum state is encoded as a set of
satisfying assignments where each satisfying assignment with its weight represents a basis
state with its amplitude (in CB) or coefficient (in PB). Here, we briefly introduce both. For
details, we refer to [38, 39, 40].

For an n-qubit quantum state |¢), we denote its WMC encoding with Fj,y. Note that in
the PB basis, quantum states are represented using density matrices, so the corresponding
o|- However, we abuse the notation and write F|,, in both
bases for simplicity. We reserve propositional variables ¢ = (qo,..., ¢n—1) in the CB, and

encoding is technically Fj,y

G=(q0s- s qn—1) = (T0, 20,y Tn—1, 2n—1) in the PB. (Here, welet Tz =1, 22 =X, 22 =Y
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and Tz = Z, and T2k A N\igpop\ (1) Tizi = Zk, etc, as in [1].) The variables in ¢ remain

unbiased. In addition, when needed we introduce auxiliary variables to represent weights.

Since the assignment to these auxiliary variables is always determined by the assignment to
g, we often omit these variables, writing F|.(¢) instead of F|,y(q, u). Table 1 gives encoding
examples.

Applying a quantum gate maps a quantum state to another. The encoding of a quantum
gate G is given by a Boolean function written as F(q, '), where ¢ is the input state and

q' is output state after applying G, such that Fj;(q") = Fly (@) A Fa(q,q') for [¢p) = G'|p).

As with state encodings, we introduce auxiliary variables when needed to represent weights
introduced by the gates, and often omit these variables from the function signature. We give
an example of how to encode the gates H, T, and C'X in Table 2. A layer D is encoded by
conjoining the encodings of local gates, each applied to the variables of the relevant qubits. For
example, a two-qubit layer D = {Hy,T1} is encoded by Fp(q,7) = Fu(qo,q) AN Fr(q1, ¢)-

A quantum circuit C = (D°,..., D971) is encoded by reserving variables ¢°,...,q" for
representing the initial, intermediate, and final states, and conjoining all the encoding of
layers over these variables, i.e., F¢(¢°,...,q%) = Njea Fpi(@,3@*!). When we don’t need

to name the intermediate states ¢*,..., ¢!, we will omit them, writing F¢(q, ') = Fe(q°

@' =)
Lemma 2 shows that both WMC encodings allow for the strong simulation of any quantum
circuit according to the usual definition of computing output amplitudes or coefficients [28].

> Lemma 2 ([40]). Given an input state [p) = D yciqq1yn aw |b), such that [p)p| =
Zje[w] BiPj, an n-qubit circuit C, a computational basis state |b) (b € {0,1}") and a

Table 1 State encoding in both bases: The auxiliary variables, marked in gray, depend fully on
the unbiased variables ¢ (in CB) and Z, Z (in PB) representing basis states.

Comp. Basis (CB) Pauli Basis (PB) Auxiliary weights
Variables q=(qo,--sqn—1) G = (0,20, Tr—1,2Zn—1) h,7, g, w
|0) = Floy(9) =1 Foy(@,2,9) = Frez =g Wi(g) = (1/2)
S = | Ao@h)=htreq Foezo=Fos =3 | Wh) = (/8 W) = ()

(
[25}: |A> = F|A>(q‘ h, 11') = h( W(u)) = w where w = \/7? = %
00) = Flooy(q0,q1) =@ Flooy (w0, z0, 21, 21) = ToT1 none

|++) = Flin(go,q1.9) =9  Flyqy(wo,20,71,21) = Z021 W(g) = (1/2)

weq) Flay(z,z9.h) =

+
~

Table 2 Gate encoding in both bases using the same weights as in Table 1.

Comp. Basis (CB) Pauli Basis (PB)
1-qubit unitary (U1) Fy1(q,d) where = (qo) Fy1(q, @) where ¢ = (z, 2)
n-qubit unitary (Un) | Fuy.(q,q) where ¢ = (qo,---, qn) Fun(q,q) where ¢ = (20,20, Tn—1, Zn—1)
H:l/\/i[{fl] Fu(q,¢,7,h)=hA(reqd) Fule,d.r)=Fez)AE e2)A@E & 2)
T=[§2] Fr(q,d w)= (g ¢)A(weq) given in [38]
1000
X = [8 00 (1):| (46 © q0) A (a1 & (01 © qo)) given in [38]
0010

38:5
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Pauli string P; € {1, X,Y, Z}®", the following equations hold:

#SATw (Floy(q) N Fe(q,7') A Fiyy(q')) = in CB,
#SATw (Flpy(q) N Fe(q,q) A Fp, (7)) = B; in PB.

We emphasize that strong simulation is canonical for quantum complexity classes [52], and
therefore generalizes naturally to computing any measurement outcome probability [38] and
determining circuit equivalence [39].

3 Problem Statement

The quantum circuit synthesis problem seeks to construct a circuit that implements a given
specification, which is provided as either a circuit or a unitary operator. A key component
is to determine if a guessed candidate circuit is equivalent to the desired specification by
checking unitary equivalence, as formalized in Definition 3.

» Definition 3 (Unitary equivalence). Let U, V be two n-qubit unitaries, Then U and V are
e-equivalent, written as U ~. V', if and only if the Jamiolkowski fidelity between U and V is
not smaller than 1 — ¢, i.e. Fid;(U,V) > 1 — ¢, where € € [0,1].

In the above definition, we use the Jamiotkowski fidelity defined in Equation 2 to measure
the distance between two unitaries. In particular, if and only if Fid;(U,V) =1 (e = 0), we
have exact equivalence, denoted as U = V. In this case, U and V are equivalent up to a
global phase \ satisfying |A|?> = 1, i.e. U = AV. Building on equivalence checking, Problem 4
gives the formal definition of (exact and approximate) quantum circuit synthesis.

» Problem 4 (Quantum circuit synthesis). Given a specification represented by a circuit
C1 in a gate set Gy or unitary Ue, and an accuracy parameter € € (0, 1], the approzimate
synthesis problem asks for a depth-optimal quantum circuit Cy in a target gate set G, such
that Ue, ~¢ Uc,. For e =0, this is the exact synthesis problem.

We consider Clifford+T as the elementary target gate set for synthesis because of its
universality and importance in error-corrected quantum computing [20, 2]. While unitaries
can be synthesized in Clifford+T (with additional ancillas) exactly if and only if their matrix
entries belong to Z[%,i] [22], all unitaries can be synthesized approximately up to an
arbitrarily small e [17].

In this work, we consider both exact and approximate synthesis and, for the first time,
show that both problems can be reduced to MWMC.

4 Exact Quantum Circuit Synthesis

This section presents our reduction from the exact quantum circuit synthesis problem to the
MWMC problem. We first provide an overview of the chosen approach. Recalling Problem 4,
the exact synthesis problem has the following components:
Input: A quantum circuit C; in gate set Gi, or a unitary U = Ug,, and a finite target
gate set Go.
Output: A depth-optimal quantum circuit Cy in gate set Ga, such that Ug, = Ug,, if
possible.
The problem can be expressed as exhaustively searching over all possible layers D,, for each
layer in Co. To achieve depth-optimality, we increment the depth d until the following holds:

3p°,...D* ' €D, : Ue, = Ue, where C; = (D°,..., D4™1). (3)
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In the remainder of this section, we first give the encoding of the input specification. Then
we present different encodings for checking the exact equivalence between the input and
output. Next, we encode a generic gate layer D,, and extend the encoding progressively to
construct candidate circuits Cs of increasing depth, as specified in Equation 3. We conclude
by showing how MWMC can find a depth-optimal output circuit Cy using the encoding for
generic layers and equivalence checking.

Encoding input specifications. Due to the reversibility of quantum circuits, verifying the
equivalence of circuits C; and Cs is reducible to checking if the circuit Cs - CI is equivalent to
the identity. Therefore, we encode the input circuit C; as its inverse CI, denoted as FC{ (q,q),
as explained in Section 2.1. If the input is an n-qubit unitary operator U, we can encode
directly it as Fy+(q, ¢') using weighted auxiliary variables to represent the unique components
of the unitary, in the same way we encode individual gates [40].

Verifying exact equivalence. The exact equivalence checking problem is efficiently tackled
with WMC in [39], using a so-called linear encoding, which requires 2n separate WMC calls.
In Theorem 5, we extend this encoding to cyclic encoding and linear-cyclic encoding. These
two new encodings solve the problem with a single call to the weighted model counter, as we
require in the proposed synthesis approach.

» Theorem 5. Let C be an n-qubit circuit, which is encoded by F¢ with the corresponding
weight function W. Then, the following four statements are equivalent to each other:

C = 1I%" (C is equivalent to the identity circuit I®™ = Iyn ).

Encoding the circuit C in PB, the linear encoding has weighted model count [39]:

#SATw (Fp(q) N Fe (4.4) NFp(q) =1 for all P € {X;,Z; | j € [n]}. (4)

Encoding the circuit in either CB or PB, the cyclic encoding has weighted model count
(this approach can be viewed as checking “overlap” with the identity I®"):

#SATw (Fe (§,G) N Fron(q,q')) = ¢ with |c| = 2™ for CB and ¢ = 4™ for PB. (5)
Encoding the circuit C in PB, the linear-cyclic encoding has weighted model count:

#SATw( \/ Pp(q) A Fe (§,d) A Fron(§,q)) = 2n. (6)
Pe{X;,Z;lj€n]}

where @,q are Boolean variables encoding the initial and final quantum state, respectively.
Note that Fren(,q') = Niep) (@i < @;), where ¢; < q; is shorthand for (z; < x7) A (2 < ;)
in the Pauli basis.

We give a detailed proof in Appendix A.1, and illustrate the theorem in Example 6.

» Example 6. Consider two circuits C; = (S) and C; = (T, T). To check their equivalence,
we first encode the circuits C = Cy -CI and I:

Fe(d°,¢%) = Fsi(¢°, ¢") A Pr(q',¢®) A Fr(¢®,¢*) and  Fi(q,q)=q< ¢

Then we check if C = I as follows:
Linear encoding: #SATw (Fp(q°) A Fe(¢°,¢3) A Fp(¢®)) =1 for P € {X,Z} in PB.
Cyclic encoding: #SATw (Fe(q°,¢%) A Fr(q°,¢%)) = ¢ with |¢| =2 (CB) or ¢ = 4 (PB).
Linear-cyclic encoding: #SATw ((Fx V Fz) A Fe A Fr) =2 in PB. J

38:7
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Encoding synthesis layers. Building up the output circuit is done by incrementally finding
a sequence of gate layers implementing the input specification, as specified in Equation 3.
To explore the space of possible gate layers, we encode the complete set D,, by introducing
gate-selecting variables. Once these variables are fixed, they uniquely determine a specific
gate layer within the set.

Given the target gate set G, we first consider single-qubit gates G(1) C G. For each gate
G € G(1), we define the Boolean variable p¢ ; for each qubit ¢ € [n], where pg ; is true if and
only if G; is included in the layer. Thus, we can encode the single-qubit gates of the layer as:

Foo)(@d, 7)) = N\ (o= Fala, ), (7)
i€[n] GEG(1)

where the variables ¢ and ¢' encode the states before and after the layer respectively, and
p(1) ={pa,i | G € G(1),i € [n]} are the single-qubit gate-selecting variables.

Similarly, for a two-qubit gates G(2) C G, we introduce quadratically many variables
for all combinations of the two qubits: p(2) = {pg:; | G € G(2),4,j € [n],i # j}. Then
encoding is:

Fo)(@.@.02)= N N\ wci; = Fo.,(@,7)) (®)
i,j€[n],j£i GEG(2)

Since we consider the universal gate set Clifford+T, which only includes single-qubit
gates and two-qubit gates, the set of gate-selecting variables is given by p'= p(1) Up(2) of the
synthesis layer. It is worth noting that the identity operator I is included when considering
multi-qubit circuits for completeness. For example when considering {C X, H, T}, we define
the set of single-qubit gates as G(1) = {H,T,I}.

A layer is valid only when applying exactly one gate to each qubit. For example, pg 1
and pr; should not be true simultaneously. Therefore, we define EXO(V) = \/ oy v A
/\u,vev,u 7&”(6 V@), a constraint ensuring that exactly one variable in the set V is true. Now,
for each qubit i € [n], we apply:

Fexo() = /\ EX0(7), where j; = {pg.; | G € G(1)}U{pc.ij,pc.ii | G € G(2),5 € [n]}. (9)
i€[n]

Combining the three constraints in Equation 7, Equation 8 and Equation 9 gives us the layer
encoding:

Fpg(q,q,9) = Fga)(q,q,9(1)) A Fg2)(7, 7, 9(2)) A Fexo(P) (10)

If there are gates in the target gate set G applied to more than two qubits, the encoding
is expanded accordingly.

» Example 7. The encoding of a layer in the universal gate set G = {C X, H,T'} is as follows:

Fpg(0,d.7) = N\ (i = Fulgi,q) Apri = Fr(gi,q) Apri = Fi(gi,q}))
i€[n]

NN (poxas = Foxo,(gn47). (6h4) A\ EXO(F),
i,j€ln] i i€[n]

where p'= ;¢ 0i and §; = {pri, pris prit U U e jilPoxigs pox jit-
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To encode multiple layers, we reserve state variables ¢ and gate-selecting variables p*

for the t-th layer and substitute the above formula with the variables for each time step, i.e.

Fpg(q, ", p'). Encoding d layers is given by a conjunction of the encodings:

A Foo(@. @ i) (11)
te(d]

Encoding exact synthesis. After giving the encoding of the input specification Ug,, the
encoding of exact equivalence checking, and the encoding of gate layers, we now show the
encoding of exact synthesis. The main idea is to determine a minimal sequence of gate layers
Cy = (D', ..., D?) such that U, = Ug,, which can be represented with the cyclic encoding as:

Uc, Ugl Fien
—
SynC,B,g,Cl,d(P7Q) = FUgl (Cfa ‘jo) A /\ FD,g(qtvqt+13§t) A (‘7<Z> qd)ﬂ (12)
te(d]

where C denotes the encoding is cyclic, B denotes the chosen basis (which can be either PB
or CB), P = U;cpq pt is the set of gate-selecting variables, and Q = U Usera+1] gt Uit is the
set of all state variables ¢ and auxiliary variables @. For a linear-cyclic checking (denoted by
LC)(only for PB), the encoding is done by adding constraints to the initial state variables

Synrc,pB.g.ci.d(P, Q) = \V Fp(q) A Sync,pB g,c,,a(P, Q). (13)
Pe{X;,Z;ljeln}

Proposition 8 shows how the exact synthesis problem is reduced to the MWMC problem.

It essentially reduces the problem of finding an assignment for the gate-selecting variables that

maximizes the weighted model count of the above encodings in Equation 12 and Equation 13.

The correctness of Proposition 8 follows directly from the cyclic and linear-cyclic encodings
of Theorem 5, which concludes this section.

» Proposition 8. Given a quantum circuit Cy (or its unitary Ue, ) and an integer d, there
exists a d-depth circuit Co such that Ue, = Ug, iff

Maz#SATvw (Syne.B.g.c,.a(P,Q)) = (¢, 7(P)),

where for E = LC (linear-cyclic encoding) and B = PB we have that ¢ = 2n, and for E = C
(cyclic encoding) if B = PB we have that ¢ = 4™ and if B = CB we have that |c| = 2™.
When the mazimal value is achieved, the output circuit Co can be directly determined from
the satisfying assignment 7(P).

» Example 9. Let us consider the circuit C; = (S) and the target gate set G = {CX, H,T'}.

Since it is a single-qubit circuit, the encoding of one general layer is, where for gate G we
denote F = Fa(qo,4})

Ppg(G=(20),q = (¢)).5) = (pro = Fu) A (pro = Fr) A (pro = Fr)) A /\ EX0(),
i€[n]

We synthesize the circuit by calling Max#S ATy to find an assignment for the gate-selection
variables such that the function achieves maximal value:

Maz#SATw (SynLc,p,g.ci1(P,Q)) = (0.854, 71 = {p} ¢ O,p%o —1, p}O «~0})
Maz#SATw (SynLc,p.g.c, 2(P,Q)) = (1, 2 = {plo < 0,pF 0 « L,p] o < O,
P}{,o — OaplT,o A 17]9},0 +0})

From the assignment 75, we get the synthesized circuit Co = (T, T).
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5 Approximate Quantum Circuit Synthesis

In this section, we focus on approximate synthesis as given in Problem 4. The input and
output of the problem are now as follows:

Input: A quantum circuit C; in a gate set Gy or directly the unitary Ug,, a finite target

gate set Ga, and an error bound € € (0,1].

Output: A depth-optimal quantum circuit Cs in gate set Go such that Co ~, C;.
Since synthesis relies on equivalence checking, our first aim is to lift the latter to approximate
equivalence checking. Theorem 10 shows that the cyclic encoding in both PB and CB
computes the Jamiotkowski fidelity between two circuits, thus both encodings can determine
approximate equivalence checking based on Definition 3.

» Theorem 10. Given two unitary matrices U and V on an n-qubit Hilbert space H®™, the
Jamiolkowski fidelity can be computed by

H#SATw (Furv (4,7) Nd = ') in PB
A

Fid;(U,V) = { o a2 :
- |[#SATw (Fuiy (T, 7) 7))" in CB

Proof. To compute Jamiotkowski fidelity of two given n-qubit circuits U and V on H?", one
takes the maximally entangled state |¥,,) on H?" ® H?" as input and compute the fidelity
between the output states (U @ I®™)|¥,,) and (V @ I®™)|¥,,). We first prove this in the
CB and then move to PB.

In CB, the Jamiotkowski fidelity is given by

Fid (U, V) = Fid((U @ I9") [W,), (V © I97) [,.)) = (¥, (UT & I97)(V © 127) |@,) [}

2 2
1
S UV )| = 5 Y GlUTV )
be{0,1}n b'e{0,1}n be{0,1}n
Based on Lemma 2, it holds that:
#SATw (Fury(@,0) NG 7)) = Y #SATw(Fy (@) A Fyrv(3,4) A Fipy (7))
be{0,1}m
= > UV,
be{0,1}n

giving us that Fid (U, V) = & [#SATw (Fyiv(4.7) A (T 7))? as we wanted to show.

Moving to PB, we first represent |¥,,) and the Jamiotkowski fidelity in the Pauli basis,
and then explain the encoding. The density operator of the maximally entangled state can be
decomposed in the Pauli basis as: [UNW| = 55 3=, c) e [10(7] = = 2pie(xy,znen Pi®
PI which is shown in [15]. The Jamiotkowski fidelity can also be defined in the Pauli basis
as:

Fid (U, 1) = Te(UTV @ I) [IX¥| (VIU @ I) [T)X¥))

- L > TUVPVIUP, @ P]PL) = = Y T(UTVPVIUPR) (14

J.keldr] jel4n]
Based on Proposition 1 in [39], each of the summand 2% - Tr(U*V’Pj viu ’Pj) can be computed
by the weighted model counting of Fp,(q) A Fyiv(q,q') A Fp,(q'), or equally, Fp (q) A
Fuiv(d,d) N (@< ). To compute the summation, one should go over all possible Pauli

strings, which is equal to setting the variables in ¢ to be free. Hence, the Jamiolkowski
fidelity is obtained by Fid;(U,V) = & #SATw (Fyiv (@, 7") A (° < §™)). <
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We can thus reuse the cyclic encoding from Equation 12 to encode approximate synthesis.

» Proposition 11. Given a quantum circuit C1, an integer d and an error bound € € (0,1],
there exists a d-depth circuit Co such that U, ~¢ Ue, iff Max#SATw (Sync’B_’gyc,d(P, Q)) =
(¢, 7(P)), such that 5~|c| >1—¢€ if B=CB and ;=c > 1— € if B=PB. In that case, Cs
can be determined by the satisfying assignment 7(P).

Like in exact synthesis, to get the depth-optimal e-approximate circuit, we apply the above
Proposition 11 for an increasing depth d. Example 12 demonstrates approximate synthesis.

» Example 12. Consider the circuit C; = (Rz(%)) with € = 0.05. Synthesizing one gate
layer, we get the result as

Maz#SATw (SyngpB.g.c1(PQ)) = (3.848,{pl o < 0,070 + 1,p] ¢ < 0}),

which determine the output circuit as Co = (T) and the fidelity Fid;(Ue,,Ue,) = 7 x 3.848 =

1
4
0.962 > 1 — €. Thus, the synthesis procedure stops, and the output circuit is (7).

6 Related Work

Clifford circuit synthesis. Synthesis of Clifford circuits is substantially simpler than that
of universal quantum circuits due to the ability to exploit the algebraic structure of the
symplectic group, which significantly constrains the search space. Any Clifford operation on n
qubits can be efficiently represented by a 2n x 2n symplectic matrix over Fy, rather than the
exponentially larger 2™ x 2™ unitary matrix typically required for general quantum operations
[14]. Building on this, Maslov and Roetteler [36] employ the Bruhat decomposition of the
symplectic group to generate shorter Clifford circuits. Similarly, Rengaswamy et al. [46]
develop Clifford synthesis algorithms via symplectic geometry, targeting logical-level Clifford
operations with an emphasis on practical implementations on physical qubits. While these
approaches produce efficient Clifford circuits, they do not guarantee optimality in terms of
depth or gate count. To address this limitation, Schneider et al. [48] reformulate Clifford
synthesis as a satisfiability problem. This encoding enables the use of SAT and MaxSAT
solvers [10] to identify optimal Clifford circuits for a fixed depth, offering a rigorous method
to achieve minimality.

Exact Clifford+T circuit synthesis. In error-corrected quantum computing, the relevant
universal gate is Clifford+T. There are many works considering the exact synthesis of
quantum circuits in the gate set Clifford+T[3, 37, 22, 23, 29, 43], i.e., the desired specification
is realized without any rounding errors. Approaches like [22, 43] synthesize the unitary
matrix representing the specification in a local fashion, i.e., column by column. However,
they do not give the optimal solution and leave significant room for improvement. To achieve
optimality, the meet-in-the-middle algorithm [37, 23] performs an exhaustive search over the
space of all Clifford+T circuits up to a given depth.

Approximate Clifford+T circuit synthesis. Since not all unitaries can be implemented
exactly in the Clifford+T gate set, other works have focused on synthesizing circuits under
different approximation metrics. Most of these works [30, 47, 49, 19] focus on single-qubit
operators, especially rotation gates, while [21, 44] consider multi-qubit operators.
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7 Experimental Evaluation

7.1 Implementation

To evaluate and test our proposed method, we implemented it in a tool called Quokka#-syn,
as part of the open source toolkit Quokka#*. In addition to the core method described in the
previous sections, we also implemented several optimization rules. Since no existing tool can
solve our problem, we extended the MWMC solver d4Max [5] with support for negative and
complex weights. The following paragraphs describe these two components in more detail.

Encoding optimization. While the encoding in Equation 11 allows for any circuit of depth d,
many encoded circuits are redundant as they fall in the same equivalence class. For example,
two consecutive Hadamard gates can be reduced to the identity. So if the H is applied to
the j-th qubit at depth ¢, we can safely exclude the case where another H is applied to the
same qubit at depth ¢+ 1. In the encoding, this corresponds to enforcing that if py, , is
.1 must be 0, which can be encoded as A\jc4_17 Aigpn) (P \/ﬁ’;j:il). We
apply similar reasoning to patterns like 78 = I and CX; ;CX; ; = I®?, which are never part
of an optimal circuit. Eliminating such cases does not affect optimality and helps reduce
the search space. We introduce additional encodings to prune such redundant structures, as
detailed in Appendix A.2.

set to 1, then pp,

d4Max extension. To support the encodings, we first extended d4Max to support negative
weights (for PB) and complex weights (for CB). For number representation, we use arbitrary
precision arithmetic from the GMP library, as in the original version of d4Max. Because of
the negative weights, computing an upper bound for a sub-formula becomes more complex.
In the original version of d4Max, upper bounds can be easily computed by assuming the
formula is a tautology. This allows the solver to prune branches of the search tree when it is
clear that no better value can be reached than the current best solution. As this is non-trivial
to resolve in the presence of negative weights, we turned this optimization off. Another
removed feature is the ability to compute intermediate approximations before processing
all connected components. As a result of these changes, the current version is slower at
providing intermediate solutions compared to the original version.

7.2 Performance

In this section, we explore the performance of our method as implemented in Quokka#-syn.
Our implementation synthesizes circuits with the gate set {H,CX,T,T'}. This set is also
universal since S = TT, where we replace the S gate with the 7T gate.

We demonstrate the feasibility and scalability of our method based on two classes of
benchmarks for exact synthesis: random circuits on {H,CX,T,TT} and commonly used
unitary operators such as the CH and Toffoli gates. We use randomly generated circuits as
benchmarks, as they are the standard method for evaluating performance since they represent
a hard case, which is also employed in practice to prove quantum supremacy [4].

Since our method guarantees a depth-optimal result, we compare with the state-of-the-art
method mitms [3], which targets the same task. Our experiments were run on a single-core
AMD Ryzen 9 7900X Processor and 64 GB of memory.

“https://github.com/System-Verification-Lab/Quokka-Sharp
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Table 3 Synthesis benchmarks for random circuits. CB and PB indicate cyclic encoding in each
basis; LPB uses linear-cyclic encoding in PB. Memory is reported by d4max; for short runtimes,
usage is below 2 GB and denoted by < 2. Averages include + standard deviation. - indicates all 10
samples failed; o marks untested depths due to low prior success.

#Qb Depth Rate Time (s) Memory (GB)
CB LPB PB|CB LPB PB CB LPB PB

2 1 1.0 1.0 1.0 | 0.05+0.00 0.05 £ 0.00 0.05+0.00 <2 <2 <2
2 1.0 1.0 1.0 | 0.07 £ 0.00 0.08 £0.00 0.08 +0.00 <2 <2 <2
3 1.0 1.0 1.0 [0.11£0.01 0.11£0.01 0.14 £0.02 <2 <2 <2
4 1.0 1.0 1.0 {0.29£0.09 0.22 +£0.07 0.40 £ 0.10 <2 <2 <2
5 1.0 1.0 1.0 | 2.46 £1.51 1.46 £0.72 4.53+3.16 2.13+£0.03 2.0940.00 2.1140.02
6 1.0 1.0 1.0 [21.25 £12.54 14.26 £10.33  55.69 £42.54 |2.46+£0.28 2.16£0.07 2.38 £0.27
7 09 0.9 0.3 [115.31 £64.99 97.28 +46.98 206.37 £17.36 | 3.84 £1.31 2.48+0.21 3.41 £0.54
8 0.0 0.0 o - - o - - °

3 1 1.0 1.0 1.0 | 0.05=£0.00 0.05 £ 0.00 0.05 £ 0.00 <2 <2 <2
2 1.0 1.0 1.0 | 0.08£0.01 0.10 £ 0.01 0.10 &+ 0.02 <2 <2 <2
3 1.0 1.0 1.0 | 1.43+£0.97 0.44£0.24 2.45+1.91 211+£0.02 <2 2.11+£0.01
4 1.0 1.0 1.0 [51.56 £57.11  11.26 £4.95 105.40 £64.98 | 3.15£1.25 2.15£0.04 2.87£0.67
5 0.1 0.7 0.0 |145.96 147.37+£49.30 - 5.08 320+£0.53 -
6 o 0.0 o ) - o o - o

4 1 1.0 1.0 1.0 | 0.05=£0.00 0.06 £ 0.00 0.05 £ 0.00 <2 <2 <2
2 1.0 1.0 1.0 | 0.37£0.20 0.30 £0.14 0.62 4 0.48 2.09 <2 2.09£0.01
3 1.0 1.0 0.5 |102.55+85.73 22.65+16.03 85.70 £42.76 |4.44+£2.07 2.26+0.13 2.69+0.34
4 0.0 0.2 0.0 |- 246.80 £21.38 - - 451£0.20 -

5 1 1.0 1.0 1.0 | 0.05+0.00 0.06 £0.01 0.06 + 0.00 <2 <2 <2
2 1.0 1.0 1.0 |2.93+2.17 3.01 £1.62 11.85+£11.15 |2.14+£0.04 2.114+0.02 2.18+0.10
3 0.0 0.1 0.0 |- 243.71 - - 4.67 -

6 1 1.0 1.0 1.0 | 0.05+0.00 0.12 £0.06 0.06 +0.00 <2 <2 <2
2 09 1.0 0.7 [70.49+£82.13 54.47+44.75 72.71+69.85 |3.74+2.03 2.69£0.61 2.80+0.81
3 0.0 0.0 00 |- - - - - -

Exact synthesis. In the first experiment, we compare the performances of the different
encodings to determine the best one and assess the scalability of the method, as this
determines its effectiveness in practice [3]. We test all three synthesis encodings for circuit
inputs: CB with the cyclic encoding and PB with the cyclic and linear-cyclic encodings.

Random circuits are generated layer by layer, with each layer applying exactly one
gate per qubit. Gates are selected uniformly at random from the gate set and assigned to
unassigned qubits. Since a random circuit of depth d could be equivalent to a shallower
circuit, we retain only those circuits that cannot be synthesized with a depth less than d,
until we obtain 10 samples. Using these samples, we then evaluated all three encodings for
increasing depths, stopping when fewer than half the circuits are solved within the time
limit per instance. We set the time limit to 300 seconds to accommodate a large number of
benchmarks. Experiments were run on circuits with 2 to 6 qubits; the 1-qubit case is omitted
here as it is evaluated for approximate synthesis below.

The results are shown in Table 3. For each encoding, qubit count, and depth, we report
the success rate (the fraction of random circuit samples that can be solved within the time
limit), the average runtime of solved cases, and the average memory needed by d4Max
for the solved cases. The results highlight the significant impact of the qubit count and
depth on the runtime. For every number of qubits, there is a specific depth threshold where

problem-solving becomes challenging; before reaching this point, the success rate is perfect.

We observe that the linear encoding consistently demonstrates the best performance among
the three encoding methods.
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Table 4 Experimental results on synthesis for controlled-gates. We present the running time and
memory usage reported by d4Max, as the encoding time is less than 0.01 seconds. We report N/A
when d4Max does not give the memory usage, denoted by < 2000. Here -’ denotes timeout cases
except for the case mitms with 2-qubit and 8-depth, where the data is not given in [3].

#Qubits \Depth 1 2 3 4 5 6 7 8
Cyclic Time (s) 0.023 | 0.025 0.059 0.357 3.890 29.861 436.450
Quokka#-syn (unitary) | Mem (MB) | < 2000 | <2000 | < 2000| < 2000| 2200.990 |2767.230 | 10666.570 -
9 Linear- Time (s) 0.023 | 0.028 0.053 0.270 2.337 6.470 197.810 | 2353.696
cyclic Mem (MB) | < 2000 | <2000 | <2000| <2000| 2148.300 | 2183.760 | 4814.550 | 16091.660
mitms Time (s) 0.002 | 0.019 0.188 0.248 12.433 32.766 - -
Mem (MB) | 0.002| 0.016 0.147 1.013 6.249 84.622
Cyclic Time (s) 0.024 | 0.106 3.310| 177.220 - -
Quokka#-syn (unitary) | Mem (MB) | < 2000 | < 2000 | 2188.920 | 5398.730 -
3 Linear- | Time (s) 0.029 | 0.140 3.413 76.293 | 3.066.258
cyclic Mem (MB) | < 2000 | < 2000 | 2148.740 | 2688.360 | 18860.120
nitms Time (s) 0.027 | 1.409 53.2 | 2311,023
Mem (MB) | 5.633| 0.179 6.737| 215.970

The second experiment compares the performance of Quokka#-syn with both unitary
and circuit inputs to that of mitms, a tool that performs the same task, only with target
gate set {H,CNOT, S, ST, T, TT}. For comparison, we selected the 2-qubit C'H gate and the
3-qubit Toffoli gate. We encode the gates once as unitary matrices in CB, as described in
Section 4, and once as Clifford+T circuits, as described in [42], in PB. We choose to use
CB encoding for unitary inputs, since even for sparse unitaries, such as the Toffoli gate
and its generalizations, the encoding of the Pauli decomposition may blow up, as shown
in [39]. For the circuit encoding, we use the linear-cyclic encoding in PB, as it showed the
best performance in the previous experiment. For both encodings, the timeout is set to one
hour (including the encoding time and calling of d4Max for all depths). Since we failed
to compile mitms within our experimental setup due to its reliance on older libraries, we
instead refer to the performance data reported in [3] to provide a comparative reference. The
results are shown in Table 4. While the comparison is not entirely fair — due to differences in
platform, target gate set, and benchmark design — we observe that Quokka#-syn tends to
exhibit higher memory usage but lower runtime compared to mitms.

It is also worth noting that the performance of PB with the linear-cyclic encoding given
in Table 3 are better than Table 4 in many cases, for example, 3-qubit and 5-depth cases in
Table 3 feature 70% success rate with average runtime of 147.37 seconds, while in Table 4, it
takes 3066.26 seconds. One explanation is that, since the maximal weight is known, as shown
in Theorem 5, Quokka#-syn provides a threshold to the solver, allowing it to terminate
as soon as the optimal value is achieved. Consequently, if a circuit can be successfully
synthesized within the given depth, as with the solved cases in Table 3, the tool completes
early. In contrast, for unsuccessful cases, such as for each depth in Theorem 5, the solver
must explore the entire search space, resulting in longer run times. In addition, we observe
substantial variability in the run times, indicating that the performance is highly dependent
on the specific characteristics of each case.

Approximate synthesis. Important gates that often need to be synthesized approximately

in Clifford+T are the general rotation gates: R, Ry, R, [30]. Our method supports a general

rotation angle in circuits, i.e., the rotation angle can be any real number. The encoding

will be the same Boolean formula, but with a weight function dependent on the rotation

angle [38]. Thus, different rotation angles do not significantly affect the performance per

depth of the approximate synthesis of the rotation gate R.. Hence, to demonstrate the
e—im/16

use of approximate synthesis, we consider the quantum gate R.(g) = 0 ei,ro/w } We
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Table 5 Rz(7w/8) synthesis using CB with cyclic encoding. Statistics are shown per synthesis
layer. Memory usage under short runtimes is omitted (< 2). Only fidelity-improving iterations are
shown. At 24 layers, the program crashed due to resource limits (-).

depth 1 10 15 24
#variables 11 92| 137 218
F#clauses 37| 382 577 928
#literals 90 | 960 | 1460 2360
#Selecting variables 4 40 60 96
fidelity 0.962 | 0.975 | 0.997 -
Time (s) 0.021 | 0.092 | 2.685 | >1560.51
mem (GB) <2 <2 2.2 >33.31

choose to use the CB with the cyclic encoding as it outperforms the PB with the cyclic
encoding, according to the results in Table 3 (Recall that PB with the linear-cyclic encoding
cannot perform approzimate synthesis). We report statistics for each synthesis layer where

an improvement in the achieved fidelity is observed. The results are presented in Table 5.

The corresponding output circuits are as follows.
1 Layer: with e = 0.1, ¢’ = (T)
10 Layer: with e = 0.1, C' = (", H,T", H,T", H,T", H,T", H)
15 Layer: with ¢ = 0.01,C' = (H,T",H,T,H,T,H,T", H,T,H,T,H, T, H)

Other tools also target approximate synthesis. For example, the optimal tool mitms and
other non-optimal tools such as gridsynth[47] use operator norm as a metric, while [41] uses

the Jamiotkowski fidelity, though the implementation of the latter one is not open-source.

We do not include a performance comparison because, to the best of our knowledge, no
available tool performs optimal approximate synthesis with fidelity as a metric.

8 Conclusion

The results presented in this work demonstrate that maximum weighted model counting can
be effectively employed for both exact and approximate quantum circuit synthesis. This
approach benefits from the generality and extensibility of weighted model counting techniques
as used in circuit simulation and equivalence checking, particularly their compatibility with
diverse gate sets and representation bases. However, in its current form, the maximum
weighted model counting exhibits limited performance in this new context.

There are, nonetheless, several promising directions for further development: (1) The
current implementation builds upon a prototype version of d4Max, which lacks several
optimizations to accommodate the extension to negative and complex weights. The design of

dedicated algorithms tailored to this application remains an open avenue for future research.

(2) Our layer-by-layer synthesis approach could benefit from incremental solving, as used
in bounded model checking [9, 24]. Although incremental approaches have been studied
for sampling and weighted model counting [54, 55], their application to maximum weighted
model counting has not yet been explored. (3) Since the inception of the Model Counting

Competition,’ continuous progress has been observed in the capabilities of model counters.

By contributing our benchmarks to the community, we anticipate further methodological

Thttps://mccompetition.org/
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improvements that may enhance the reliability and performance of this approach. (4) The
particular characteristics in the encoded CNF, such as an abundance of XOR clauses [40],
are not yet exploited by the solver. This could lead to significant performance gains [32].
(5) Lastly, incorporating symmetry considerations may further improve the efficiency of
model counting, as has been demonstrated in related domains [7].

The depth-optimal synthesis presented here enables more efficient implementations of
multi-qubit gates, a critical requirement in fault-tolerant and error-corrected quantum
computing [27]. Future work will also address minimizing the T' count, which remains an
important objective in error-corrected architectures [30]. While the current study focuses on
the Clifford+T gate set, the underlying encoding is readily generalizable to other gate sets.
Moreover, extending maximum weighted model counting to the stochastic SAT setting [35, 34]
could broaden its applicability to further quantum circuit optimization problems. This line
of work may also lead to the derivation of novel lower bounds for computationally hard
problems in quantum circuit analysis, based on established results from the reasoning and
satisfiability domains [6].
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A Appendix
A.1 Proof of Theorem 5

» Theorem 5. Let C be an n-qubit circuit, which is encoded by F¢ with the corresponding
weight function W. Then, the following four statements are equivalent to each other:

C = 1I%" (C is equivalent to the identity circuit I®™ = Ian ).

Encoding the circuit C in PB, the linear encoding has weighted model count [39]:

#SATw (Fp(q) N Fe (4.4) NFp(q') =1 for all P € {X;,Z; | j € [n]}. (4)
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Encoding the circuit in either CB or PB, the cyclic encoding has weighted model count
(this approach can be viewed as checking “overlap” with the identity 1™ ):

#SATw (Fe (§,4) N Fron(q,q')) = ¢ with |c| = 2™ for CB and ¢ = 4" for PB.  (5)
Encoding the circuit C in PB, the linear-cyclic encoding has weighted model count:

#SATw(  \/  Pr@AFe(§.7) A Fren(7,q)) = 2n. (6)
Pe{X;,Z;li€lnl}

where q,q are Boolean variables encoding the initial and final quantum state, respectively.
Note that Fren(q.q') = Nic(n (¢ © 4;), where q; < g is shorthand for (z; < @) A (2; & 2])
in the Pauli basis.

Proof. First of all, from [39, Cor. 1], the circuit C is equivalent to the identity I®" if and
only if Equation 4 holds.

Next, we show that all three equations Equation 6 and Equation 5 in both bases are
equivalent.

For Equation 6, as stated in Corollary 1 and the proof of Lemma 2 in [39], we have

#SATw (Fp(q) A Fe (4.4') NFp(T)) < 1.

for all P € {X;,Z; | j € [n]}. Thus we infer that

> #SATw(Fp(Q) A Fe (§,d) A Fp({)) < 2n,
Pe{X;,Z;1j€lnl}

where the value achieves 2n if and only if each of the summands achieves 1. Therefore
Equation 6 is true if and only if Equation 4 is true, as demonstrated in [39, Prop. 1].

For Equation 5 in PB, the idea is similar. The value of the weighted model count of
Equation 5 is equivalent to

Y. #SATw(Fp(d) A Fe (3.9) A Fp(@) < 4™,
Pe{X,)Y,Z,I}®n"

which can achieve 4™ if and only if for all 4™ Pauli strings P, the weighted model counting of

P achieves 1. Since {X;,Z; | j € [n]} C{X,Y, Z, I}®", we have Equation 5 = Equation 4.

From [51], if two unitaries are equivalent over {X;, Z; | j € [n]}, they are equivalent over

{X,Y,Z,1}®". We have Equation 4= Equation 5. Therefore Equation 4< Equation 5.
For Equation 5 in CB, since

Uec =M\ Ion <:><b‘ Uc |b>:)\f0rb€{0,1}"
& D (lUely)=r-2,

be{0,1}"

o > (#84Tw (Fy (@ A Fe@d) A Fiy(@))) =A-2", (Lemma 2)
be{0,1}n

o > (#8ATw (Fy (@ A Fel@, @) A Fran (@) ) = A+2",
be{0,1}7

& #SATw (Fe(d, @) A Frpn (€.4) = A2,

where |2 = 1, we have Equation 5 < C = I®". <
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A.2 Optimization rules

To optimize the synthesis encoding, we implement additional constraints.
The first set of rules ensures that we avoid redundant combinations of gates, such as HH,

since they can be replaced with I gates:

Rule 1: No two H gates in a row on the same qubit, since HH = I:
v 5t
FRl /\ /\ pH+l1
ke[d—1] i€[n]
Rule 2: No 8 T gates in a row on the same qubit since T8 = I:
k4§
FR2 /\ /\ \/ P, z]
keld—7]1€[n] j€[8]
Rule 3: No two C'X gates in a row on the same qubits since CX; ; - CX; ; = I
FI%S(P): /\ /\ (pCij\/Tj]é‘Xlzj)
keld—1]¢,j€[n],j#1

The second set of rules aims to have a canonical representation for a given set of gates.
Our guideline is that every non-I is pushed back as far as possible. This means not allowing
any single qubit gate to follow an I gate, other than I itself. For two-qubit gates, we do not
allow following I on both qubits.

Rule 4: No single qubit gates other than I after an I gate:

k+1 k+1 k41
FR4 /\ /\ pl b pl )i v \/ pCX i, CX,j,i)))
ke[d—1] i€[n] J€[n]j#i

Rule 5: No C'X gate following I gate on both qubits:

FI%5(P) = /\ /\ (p?;(lzg (pl;z \/ﬁllq,]))
keld—1]i,j€[n],j#1
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