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—— Abstract

We investigate the 3-decomposition conjecture, which states that every connected cubic graph can be

decomposed into a spanning tree, a collection of cycles, and a matching. Using a SAT-based approach
enhanced with specialized propagators, we verify the conjecture for all relevant graphs up to 28
vertices. Our method extends the Satisfiability Modulo Symmetries (SMS) framework with specialized
propagators that exploit theoretical properties of minimal counterexamples (counterexamples with
the minimal number of vertices), enabling efficient pruning. We demonstrate that graphs containing
certain substructures cannot be minimal counterexamples to the conjecture, allowing us to exclude
these patterns during the search dynamically. Our experimental results quantify the impact of
different propagator configurations and forbidden subgraph constraints on solving efficiency, showing
significant performance improvements when leveraging these techniques. The approach scales
effectively to graphs of 28 vertices. Our work illustrates how combining SAT solving with specialized
constraint propagation techniques can successfully address challenging combinatorial problems in
contemporary graph theory.
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1 Introduction

Over the last few years, computational methods have played an important role in mathematical
discovery. On the one hand, machine-learning guided heuristic search has successfully
established new results on the existence of certain combinatorial objects [22, 23]. On the
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Figure 1 Examples of 3-decompositions of cubic graphs of order 4, 6, 8, 10, and 12. Cubic graphs

only have an even number of vertices since the number of edges in a cubic graph with n vertices is
3n/2. Note that it is possible to have an empty matching, as is shown in the first two examples.
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other hand, for non-existence or optimality results (like what is the smallest object with
a certain property), where the search space must be explored rigorously, constraint-based
methods have been successful [5, 7, 8, 14, 17, 25].

In this paper, we tackle the 3-Decomposition Conjecture (3DC) with constraint-based
methods. The conjecture, formulated by Hoffmann-Ostenhof [6] in 2009, is an open problem
in discrete mathematics that attracted a lot of research interest [9]. The conjecture states that
every connected cubic graph (each vertex has exactly three neighbors) can be partitioned into
three edge-disjoint subgraphs: a spanning tree, a collection of cycles, and a matching. Figure 1
shows several small cubic graphs with the 3-decomposition indicated by colors: green edges
represent the spanning tree, red edges the cycles, and blue edges the matching. The conjecture
has been verified for connected cubic graphs that are planar, Hamiltonian, traceable, claw-free,
or 4-chordal, and for connected cubic graphs of treewidth < 3 [4, 15, 2, 19, 1]. However,
these results on special cases only cover a small fraction of all connected cubic graphs for
which, despite considerable efforts, the conjecture remains open.

Our main results are as follows.

(1) We verify the 3DC for all connected cubic graphs up to 28 vertices with constraint-based
methods.

(2) We systematically compute a list of graphs with up to 18 vertices such that a minimal
counterexample to the 3DC cannot contain any graph from the list as a subgraph.

(3) We make an experimental study on how much the use of the graphs from (2) speeds up
the search for a 3DC counterexample.

Result (1) is a significant improvement over the known bound of 20 which was established
by listing all connected cubic graphs up to n = 20 vertices, modulo isomorphism, and checking
for each of them whether it has a 3-decomposition [4]. There are f(20) = 510.489 such
graphs [11]; hence, this generate-and-test approach is feasible. However, for larger n, this
becomes quickly infeasible as we have f(22) > 7.3 x 10%, f(24) > 1.1 x 108, f(26) > 2.0 x 107,
and f(28) > 4.0 x 10'°. Our approach circumvents this obstacle by integrating search and
test with a combination of SAT encodings with specialized propagators.

Result (2) yields a complete list of all reducible templates, a specific type of subcubic
graphs, up to index 6 and order 18, from which we deduce the list of subgraphs that a
minimal counterexample to the 3DC cannot contain. Some reducible templates have already
been identified by Bachtler et al. [4], but our search yields new instances. Observe that
Result (2) has a direct effect on Result (1): if we know the forbidden subgraphs, then we
can use them to prune the search tree for a 3DC counterexample and thus make the search
for (1) more efficient. While Result (1) confirms the conjecture for a finite number of graphs
(modulo isomorphism), Result (2) applies to minimal counterexamples of any size, i.e., to an
infinite number of graphs (modulo isomorphism), hence can be considered stronger from a
mathematical point of view.

Excluding subgraphs during the search requires repeated subgraph testing, known to be
NP-complete. We efficiently accomplish this by tightly integrating the Glasgow Subgraph
Solver [21] into our method. However, as these tests are frequent, they become computation-
ally costly. Hence, we face a tradeoff: when is the subgraph testing too costly to outweigh
the speedup achieved by search space pruning? Result (3) gives a systematic insight into
this question. We provide rigorous experimental data that allows us to pinpoint a good
balance between the two conflicting factors. Our analysis shows that incorporating forbidden
subgraph constraints derived from smaller cases can drastically reduce search times for larger
cases. We report on the specific performance improvements for graphs of various sizes.
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Our work illustrates how SAT and CP techniques can be combined to tackle challenging
combinatorial problems. Our dynamic forbidden subgraph approach naturally extends to
many graph conjecture verification tasks where “minimality” can be meaningfully defined.
Rather than pre-computing constraints, our method discovers forbidden patterns during the
search process itself, creating increasingly powerful pruning rules as exploration progresses.
This approach is directly applicable to coloring problems, extremal graph theory conjectures,
and Ramsey-type problems, where minimal counterexamples must satisfy specific structural
properties. The key insight is that local patterns discovered in one search branch can
inform constraints for the entire remaining search space. This “learn-as-you-go” paradigm is
particularly valuable for problems where theoretical analysis alone cannot easily identify all
forbidden patterns, potentially transforming how we approach computational verification
across combinatorial mathematics.

2 Preliminaries

For positive integers k < ¢, we write [k] = {1,2,...,k}, and [k, (] = {k,...,(}.

CNF formulas. A literal is a (propositional) variable z or a negated variable T. A clause
is a disjunction of a finite set of literals. A formula in conjunctive normal form (CNF) or
clausal normal form is a conjunction of a finite set of clauses.

Simple graphs. A simple graph is a graph without parallel edges or self-loops. In this
paper, the term graphs refers to simple graphs unless otherwise specified. A simple graph
G consists of a set V(G) of vertices and a set E(G) of edges; we denote the edge between
vertices u,v € V(G) by uv or, equivalently, vu. We thus write (V, E) to denote a graph,
where V is the vertex set and E the edge set. Two vertices u,v € V(G) are adjacent if
wv € E(G). The degree of a vertex v € V(G), denoted as degv, is the number of vertices
in G that it is adjacent to. For k > 0, a k-regular graph is a graph where each vertex
has exactly degree k. A 3-regular graph is also called a cubic graph. A graph where each
vertex has at most 3 neighbors is a subcubic graph. A graph is connected if there is a path
between any distinct pair of vertices. A cycle is a connected 2-regular graph. A matching is
a graph where no two edges share a common vertex. A graph is a tree if there is a unique
path between any pair of distinct vertices. A graph T is a spanning tree of a graph G
if T is a tree, V(T) = V(G), and E(T) C E(G). A graph H is a subgraph of G if there
is an injective mapping ¢ : V(H) — V(G) such that for any w,v € V(H), if uv € E(H)
then p(u)p(v) € E(G). H is an induced subgraph of G if the mapping above additionally
satisfies that for any u,v € V(H), wv € E(H) if p(u)p(v) € E(G). If two graphs are
induced subgraphs of each other, then we say the two graphs are isomorphic, and we call the
witnessing mappings isomorphisms. Given E C E(G), the subgraph of G induced by E is
the graph H, where V(H) := J,,cpiu, v} and E(H) := E. The adjacency matriz A of a
graph G with |V(G)| = n is the n x n {0, 1}-matrix where the element at row v and column
u, denoted by A(v,u), is 1 if and only if vu € E(G). Let e(i,j) denote the propositional edge
variable for the possible edge between vertices i and j. If (7, 7) = 1, then the possible edge
is present; otherwise, the possible edge is absent.

SAT modulo symmetries (SMS). SMS [18] is a framework that augments a CDCL (conflict-
driven clause learning) SAT solver [10, 20]. The framework is specifically designed for
enumerating graphs that satisfy given properties expressed in the form of a formula in
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propositional logic. Usually, properties of graphs that we take into consideration are invariant
under isomorphisms, and SMS benefits from only considering one adjacency matrix out of the
numerous different adjacency matrices that represent the same graph (modulo isomorphism).
SMS implements this idea by connecting a CDCL SAT solver to an external propagator,
which checks from time to time whether the current assignment can be extended to a
lexicographically minimal (canonical) matrix (more precisely, only those copies are kept that
are when considering the rows of the adjacency matrix concatenated into a single vector),
and gives feedback to the CDCL solver in the form of symmetry breaking clauses accordingly.
This synergy between the CDCL solver and the external propagator is not restricted to
generating canonical matrices. In fact, customized external propagators can be added to
learn clauses and trim the search tree to suit the specific task at hand. As of today, SMS
has incorporated many commonly sought-after functionalities, such as generating graphs of
certain connectivity, graphs without certain subgraphs, and so on. It is possible to specify a
partition of the vertex set and restrict the symmetry breaking to those permutations that
preserve the partition. For a full description of SMS, we refer to the original work where the
framework was introduced [18].

Partially defined graphs. The notion of partially defined graphs was introduced in the
context of SMS [17] to capture the combinatorial object represented by a partial truth
assignment over the edge variables of a graph. A partially defined graph is a graph where
some edges are undefined in the sense that their presence in the graph is open. Formally, a
partially defined graph G is a graph whose edge set E(G) is split into disjoint sets Eq(G)
and E,(G), the sets of defined edges and defined non-edges, respectively. G is fully defined
if uv € Eq(G) U E,(G) for any u,v € V(G) such that u # v.

Partially defined subgraphs occur naturally in the process of SAT solving, and many
graph properties can already be shown when we only know for sure some edges exist (or do
not exist) in a given graph, e.g., the existence of certain (induced) subgraphs. Thus, the
benefits of considering partially defined graphs during SAT-based graph enumeration are at
least twofold. First, if we can falsify the desired property in a partially defined graph, then
we can block the corresponding branch of the search tree early on and speed up the search.
Second, properties that are not in the class NP are usually hard to express concisely in CNF,
and therefore can introduce enormous time overhead for the solver due to the large size of
the formula. An external propagator, therefore, serves as a way to circumvent the clumsy
encoding because it only gives the clauses for the desired properties to the solver when these
clauses become useful in blocking the search path.

3  Verifying the conjecture up to n = 28
Let’s first give a formal statement of the conjecture.

» Conjecture 1 (3-Decomposition Conjecture, 3DC). Every connected cubic graph can be
decomposed into a spanning tree T, a collection of cycles C, and a (possibly empty) match-
ing M.

We verify the conjecture for all connected cubic graphs with n vertices up to n = 28.
We achieve this by performing an exhaustive search for counterexamples to the conjecture
through all cubic graphs with n vertices, starting with n = 4 and increasing by 2 each time
since all cubic graphs have an even number of vertices, until we reach n = 28. Thus, we can
safely assume that if a counterexample is found, it is a minimal counterexample. Given a
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Figure 2 A roadmap of the process for verifying the 3-decomposition conjecture up to n = 28.

fixed n, we give the following CNF formula to SMS, augmented with specialized propagators.

Fcubic(n) = /\ Z €(i,j) =3.

i€[n] je€[nl,j#i

Feubic(n) describes the constraints for a graph with n vertices to be cubic. The summation
sign here represents a cardinality constraint, which specifies how many variables in a given set
are set to true. We express cardinality constraints using cardinality networks [3]. The CNF
formula and the propagators together ensure that SMS outputs all and only counterexamples,
i.e., cubic graphs with n vertices that are without a 3-decomposition. This way, if SMS
outputs no graphs, then we know that the conjecture holds for all graphs with n vertices.
For larger cases, a timeout of one day is set. When this timeout is reached, the solving
stops and various cubes, which are sets of literals that represent subproblems split from the
original problem [13], are generated. We then restart the solver with each cube as a set
of assumptions. We do this iteratively until all cubes are solved before the timeout. This
process is visualized in Figure 2.

3.1 Propagators

As is shown in Figure 2, we use in total four external propagators in combination with
the CDCL SAT solver. The propagator that checks whether the current graph has a 3-
decomposition is only activated for checking fully defined graphs, and is enclosed in dashed
lines in the figure. The other three propagators are activated for checking partially defined
graphs, to which fully defined graphs also belong, and are enclosed in solid lines. The
minimality check, shown in blue, is the default propagator in SMS and is responsible for
filtering out non-canonical adjacency matrices as early as possible in the process of generation.
The other three propagators are either modified or newly added to SMS, and we will now
explain them in detail.

Forbidden (partial) subgraphs check. The forbidden (partial) subgraph check, shown in
green in Figure 2, uses the Glasgow Subgraph Solver (GSS) to forbid the generation of
graphs containing certain subgraphs. This functionality has already been realized in previous
iterations of SMS [16]. We modified it to allow partially-defined graphs to be forbidden
as subgraphs. Recall that a graph H is a subgraph of G if there is an injective mapping
¢ : V(H) — V(G) such that for any u,v € V(H), if uv € E(H) then ¢(u)p(v) € E(G). If
H is a subgraph to be forbidden, then when the forbidden subgraphs check detects such a
mapping ¢, it sends the clause { ¢(u)p(v) : uv € E(V) } to the SAT solver.

39:5
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For our purposes, we define a relation similar to the subgraph relation for partially defined
graphs. Given two partially defined graphs G and H, we say that G is a partial subgraph
of H if there is a mapping ¢ : V(G) — V(H) such that for any u,v € V(G) we have that
e(u)p(v) € E4(H) if wv € E¢(G) and o(u)p(v) € E,(H) if uv € E,(G). Note that a fully
defined graph G can also be seen as a simple graph with E(G) = E4(G). Given two fully
defined graphs G and H, the subgraph relations differ when they are seen as simple graphs
and when they are seen as partially defined graphs. In fact, G is a partial subgraph of H if
and only if G is an induced subgraph of H. The reason for this definition is that we want
it to be the case that G is a partial subgraph of H witnessed by ¢ if and only if given any
way to assign the undefined edges in H to derive H’, there is a way to assign the undefined
edges in G to derive G’, such that G’ is an induced subgraph of H’ witnessed by . If H is
a partial subgraph to be forbidden, then when the forbidden partial subgraphs check detects
such a mapping ¢, it sends the clause { p(u)p(v) : uv € Eq(V) }U{o(u)p(v) : uwv € E,(V) }
to the SAT solver.

In practice, the set of forbidden (partial) subgraphs we use are transformed from results
by Bachtler et al. [4]. The details of the transformation are explained in Section 4.3.

Spanning tree check and 3-decomposability check. The two red propagators in Figure 2
are new additions to SMS, and both are specifically designed to filter out graphs that have a
3-decomposition. Both propagators are based on the following Theorem 2.

» Theorem 2. Let G be a counterexample to the 3-decomposition conjecture, and T be a
spanning tree of it. Then there is an edge in E(G) \ E(T) that connects a vertex of degree 1
and another of degree 2 in T. In other words,

B(T) :={uv:u,veV(T),uv & E(T), degp(u) = 1, degp(v) =2} # 0.

Proof. Assume the contrary. Let H be a simple graph such that V(H) := {v €
V(G) : degp(v) < 3} and E(H) := E(G)/E(T). By definition, for all v € V(H),
we have degy(v) = 3 — degp(v). Since we assume that for all wv € E(H), either
degp(u) = degp(v) = 1 or degy(u) = degp(v) = 2, it follows that degy (u) = degy(v) =1 or
degy (u) = degy (v) = 2. This means that H is a union of a 2-regular graph and a 1-regular
graph, and therefore, we have a 3-decomposition. This contradicts our assumption. Therefore,

B(T) # 0. <

Given a spanning tree T, define the formula

OneTwo(T) := /\ e(u,v) | — \/ e(u,v)

wv€E(T) wv€B(T)

OneTwo(T) states that if all edges of the spanning tree T are present in the graph, then at
least one edge that connects a vertex of the tree of degree one and another of degree two
must also be present in the graph. The spanning tree check works with partially defined
graphs. Given a partially defined graph G, it searches for a spanning tree T consisting
of defined edges. If it finds one, and B(T) N E(G) = 0, it sends the solver the formula
OneTwo(T); otherwise, it does nothing. The 3-decomposition check works only with fully
defined graphs, and searches for a 3-decomposition for a fully defined graph exhaustively. If
it finds a decomposition (T, C, M) (note that it is necessary that B(T) N E(G) = 0 due to
Theorem 2), then it sends to the solver OneTwo(T'); otherwise, it does nothing.
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Figure 3 Time spent in solving the case of n € {16, 18,20, 22} with the frequency of minimality
check f € {30,50, 100,200, 500, 1000, 2000, 5000, 10000}.

3.2 Results

We implemented the approach with the four propagators as mentioned above and verified
the conjecture for every even 4 < n < 28. The time spent in each n is shown in Table 11.
The frequency for the minimality check for all cases in the table is the default value of 30. In
Table 2, we provide statistics of the propagators for the bigger cases. In figure 3, we compare
the time spent in solving the middle cases with the minimality check invoked with different
frequencies. As we can see, in general, the time first decreases and then increases as we
invoke the minimality check more seldom, but the difference is not significant.

Table 1 Time spent verifying that all connected cubic graphs with n vertices have a 3-
decomposition.

n 4 6 8 10 12 14 16 18 20 22 24 26 28
time < Ilms 2.6ms 6.1lms 45ms 0.23s 0.92s 3.1s 32s 4.9m 1.2h 20h 26d 4.0y

» Theorem 3. The 3DC holds for all connected cubic graphs up to 28 vertices.

4  Search for forbidden (partial) subgraphs

In this section, we search for patterns that cannot appear in a minimal counterexample
to the conjecture. This is useful because if we know certain patterns cannot appear in a
counterexample, we can close off the search branch once we detect the subgraph in the
partially defined graphs and thereby shorten the search time. We search for particular pairs

! The computational tasks throughout the paper were carried out on a Sun Grid Engine (SGE) cluster
consisting of heterogeneous machines running Ubuntu 18.04.6 LTS. The cluster contains nodes with the
following architectures: 2x Intel Xeon E5540 with 2.53 GHz Quad Core, 2x Intel Xeon E5649 with 2.53
GHz 6-core, 2x Intel Xeon E5-2630 v2 with 2.60GHz 6-core, 2x Intel Xeon E5-2640 v4 with 2.40GHz
10-core and 2x AMD EPYC 7402 with 2.80GHz 24-core. All relevant scripts and code can be found at
https://doi.org/10.5281/zenodo.156623903.
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Table 2 Statistics of the propagators for the cases n € {18, 20, 22, 24, 26, 28} of Table 1. min. is
short for minimality check, forb. is short for forbidden subgraph check, span. is short for spanning
tree check, and 3-dec. is short for 3-decomposition check. For each n, three columns of data are given.
The first column shows the time each propagator uses. The second column shows the percentage that
time takes up in the total solving time. The third column shows the percentage of the propagator
calls that yield learned clauses.

n 18 20 22

min. 11s 35% 67% 1.5m 29% 52% 15m  21% 35%

forb. 10s 32% 29%  2.0m 41% 15%  28m  40%  5.0%
span.  93ms  2.9%0 1.9% 1.7s 5.6%0 <1%0 34s 8.0%0 < 1%o
3-dec. 0.28s 8.7%0 100% 7.9s 2.7% 100% 4.2m 6.1% 100%

n 24 26 28

min. 2.4h  12% 21% 3.0d 11% 11% 98d 6.8% 9.9%
forb. 4.7h  23% 1.2% 2.1d 7.8% 1.2% 80d  5.5%  9.9%0
span. 10m  85%0 < 1% 2.5h 3.8%0 < 1% 3.8d 2.6%0 < 1%o
3-dec. 2.4h  12% 100%  85d  32%  100% 29y 73%  100%

of patterns called reducible extensions, which are pairs of subcubic graphs X and Y with
[V(X)| < |V(Y)], such that if we have a counterexample containing Y, then we can always
obtain a smaller counterexample by replacing Y with X. This way, Y cannot appear as a
subgraph in a minimal counterexample to the 3-decomposition conjecture.

We start with reviewing some existing concepts and definitions that we built our concepts
on. In particular, we introduce the concept of templates, reducible extensions, and reducible
templates, and a sufficient condition for automatically testing whether a pair of subcubic
graphs belongs to the latter. Then, we show that the said condition can be relaxed. Finally,
we implement a search procedure using both the relaxed condition and SMS and obtain all
reducible templates up to a certain size measure.

4.1 Templates, replacement, coloring, and possible behaviors

In this section, we review some useful definitions and theorems from Bachtler et al. [4]. Some
of the definitions have been slightly modified to better formulate the concepts we work with.

Templates. A template is a graph X whose vertex set is partitioned into a set of inner
vertices I1(X) and a set of outer vertices O(X), such that all inner vertices have 3 neighbors
and all outer vertices have 1 neighbor. For any « € O(X), we write ax(z) to denote the
unique vertex in I(X) that « is adjacent to. The order of a template is defined as its number
of vertices, and the index of a template is its number of outer vertices. Let X and Y be
two templates with O(X) = O(Y). Let G be a cubic graph. We say template X is in G
or G contains X as a template if there exists a mapping ¢ : V(X) — V(G) such that for
any z,y € V(X), we have if € I(X), then ¢(z) # ¢(y) and zy € E(X) if and only if
o(x)e(y) € E(G). We call such a mapping a witness.

Intuitively, a template is intended as a representation of “a piece of” a cubic graph where
the inner vertices together with the edges among them form an induced subgraph of the
entire graph, and the outer vertices correspond to all the other vertices that the vertices in
this induced subgraph are adjacent to. We have defined what it means to be “a piece of” a
cubic graph, and now we define what it means to replace one piece of a cubic graph with
another.
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Figure 4 Examples of templates and replacement. On the left are two templates with the same
set of outer vertices. The outer vertices are in black and the inner vertices gray. On the right, we

show the result of replacing the first template with the second in a cubic graph of original size 6.

The vertices that are not part of the templates are shown as gray squares.

Replacement. Suppose G contains X as a template. Then we can replace X in G with Y and
get G,[X — Y] where V(G,[X = Y]) := (V(G)/e(I(X)))UI(Y) and E(G,[X = Y]) :=
{uwv:u,v € V(G)/p(I(X)),uv € BE(G) }U{ay:z,y € I(Y),zy € E(Y)}U{p(x)y: x €
OY),y € I(Y),zy € E(Y)}. When it is not necessary to spell out the mapping ¢, we also
write G[X — Y] for G,[X — Y]. A pair (X,Y) of templates with O(X) = O(Y) is called
an (X, Y)-transformation. Transformations are called extensions if |V(X)| < |[V(Y)|. The
order and indez of an extension (X,Y") is defined as the order and index of Y.

Figure 4 contains an example for the concepts of template and replacement. To reformulate
the goal mentioned at the beginning of this section, we want to find pairs of templates X and
Y such that if we have a counterexample containing Y, then we can always obtain a smaller
counterexample by replacing Y with X. Now, we rigorously define such pairs of templates in
the notion of reducible extensions.

Reducible extensions. An (X,Y)-extension is 8-compatible if for every cubic graph G with a

3-decomposition and for every extension H := G[X — Y] of G, H also has a 3-decomposition.

Given a (Y, X)-reduction, a mapping ¢ : V(Y) = V(G) is called permissible if o(x) = ¢(y)
implies ax(x) # ax(y) for all z,y € O(Y). A 3-compatible (X,Y)-extension is called a
reducible extension if, for any connected cubic graph G containing Y as a template witnessed
by a permissible mapping for (Y, X), we have that G,[Y — X] is also a connected cubic
graph. Such a template Y is called reducible. The reason why we can forbid reducible
templates in our search for counterexamples to the 3DC is formally stated in the following
Theorem 4.

» Theorem 4. Let (X,Y) be a reducible extension and G be a connected cubic graph that
contains Y witnessed by a permissible mapping for (Y, X). Then G cannot be a minimal
counterexample to the 3-decomposition conjecture.

Theorem 4 states why reducible extensions are useful, but we still lack a way to compute
them, since a template can appear in infinitely many cubic graphs and thus it is impossible
to test if two templates stand in the relation of reducible extensions by enumerating all

cubic graphs they appear in. This problem is solved in Bachtler et al. in the following way.

First, note the following proposition that allows us to filter out reducible extensions from
3-compatible extensions.

» Proposition 5. Let (X,Y) be a 3-compatible extension. If X is connected, then (X,Y) is
a reducible extension.

Now, our task is shifted to finding 3-compatible extensions. Bachtler et al. introduced a
sufficient condition for 3-compatible extension that only requires analysing the structure of
the templates themselves. The idea is that even though a template X can appear in infinitely
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Figure 5 An example of applying Theorem 8 to determine membership of 3-compatibility. We use
the same two templates as in Figure 4. We list all three possible behaviors of the smaller template
(modulo reordering of the outer vertices), and each of the corresponding possible behaviors of the
big template is given on the right.

many cubic graphs, there are only finitely many ways a template X can be decomposed
as a part of a 3-decomposition. We call these ways possible behaviors of X. So if for each
the possible behavior of X, there is a corresponding possible behavior of Y, such that
the 3-decomposition still holds after replacement, then we can safely say that (X,Y) is a
3-compatible extension. This reasoning is rigorously formulated in Proposition 6, Corollary 7,
and Theorem 8. We write RGB for the set {red, green, blue}. A 3-coloring of a graph G is a
mapping cl : E(G) — RGB. A 3-decomposition can be seen as a 3-coloring, where the green
edges represent the edges of the spanning tree, the red edges the cycles, and the blue edges
the matching. We have the following proposition.

» Proposition 6. A 3-coloring of a cubic graph is a 3-decomposition if and only if
1. The list of colors of the 3 incident edges of every vertex are either (green, green, green),
(blue, green, green), and (green, red, red), and

2. the green edges form a spanning tree over the cubic graph.

Proposition 6 gives us the following corollary.

» Corollary 7. Given a template X and a 3-coloring over E(X), the following conditions are

necessary for the coloring to be a 3-decomposition over some cubic supergraph of X, restricted

to E(X).

1. The list of colors of the 8 incident edges of every v € I(X) are either [green, green, green],
[blue, green, green] or [red, red, green], modulo reordering.

2. The green edges form a spanning forest, and each tree in the spanning forest contains at
least one vertex from O(X).

Possible behaviors. We call any 3-coloring of X that satisfies the conditions in Corollary 7
a possible behavior of X. Let X,Y be two templates with O(X) = O(Y) and | X| < |Y].
For any v € O(X) = O(Y), write c¢(v) for the color of the unique edge incident to v in the
coloring ¢. For a possible behavior ¢ of X, define a partition P, of O(X) in which two vertices
in O(X) are in the same equivalence class if they are in the same tree of the spanning forest
given c.

» Theorem 8. Let X and Y be templates with O(X) = O(Y) = O and |V(X)| < |[V(Y)|.
(X,Y) is a 8-compatible extension if for any possible behavior ¢ of X, there is a possible
behavior ¢’ of Y satisfying the following conditions.

1. For anyv € O, c'(v) = ¢(v).

2. P, =P,..

An example of applying Theorem 8 to determine membership of 3-compatibility is shown in
Figure 5
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Figure 6 An example showing how Theorem 13 can be applied to affirm a reducible extension.

All possible behaviors of the smaller template (on the left) come down to five different configurations
in terms of the set of outer vertices adjacent to a red edge (displayed in red), the partition the green
forest gives rise to over the outer vertices (displayed in green), and the set of vertices adjacent to a
blue edge (displayed in blue). The larger template (on the right) has a possible behavior for four of

the configurations with a spanning forest that gives rise to the same partition over the outer vertices.

For the last configuration, the larger template does not have this, but instead has a corresponding
possible behavior for each possibility of how the rest of the spanning tree can be.

4.2 Relaxing the Conditions

In this section, we show that the condition in Theorem 8 can be further relaxed. The key
observation is as follows. Given templates X and Y with O(X) = O(Y) and |V (z)| < |V (Y)|
and a possible behavior ¢ of X, (X,Y) can still be a 3-compatible extension even if Y does not
have a possible behavior ¢’ such that P, = P.. In fact, Y only needs to have a corresponding
possible behavior for each of the possibilities that the rest of the spanning tree can be. We
introduce Lemmas 9 and 11 that set the foundation for Definition 12, in which we rigorously
characterize the description above. Then, we end this section with the relaxed condition and

proof of its validity. Due to space limits, the proofs for this section are shown in Appendix A.

» Lemma 9. Given two trees Ty and Ty with E(Th) N E(Ty) = 0, the combined graph
G:=(V(T) UV (Ty), E(Ty) U E(T)) is a tree if and only if |V (T1) NV (Ts)| = 1.

» Definition 10. Let § = 51,52, ..., S, be a finite collection of sets. S is mergeable if there
exists a permutation a of [n] such that for each i € [n — 1], [(Uj=; Sa(j)) N Sain)| = 1-

» Lemma 11. Let S be a set of vertices and Ty, Ts, ..., T, a set of trees such that V(T;)NS #
0 and V(T;) N V(T;) € S for distinct 1 < i,j < n. Define the combined graph G :=
(UL, V(Ty), U, E(Ty)). Then G is a tree if and only if S :={S; :==V(T;) NS :i € [n]} is
mergebale.

» Definition 12. Given a partition S of a set S, we write Comp(S) to denote the set of
partitions 8" of S such that SUS’ is mergeable.

Now we present the following Theorem 13, which relaxes Theorem 8.

» Theorem 13. Let X and Y be templates with O(X) = O(Y) = O and |V(X)| < [V(Y)].
(X,Y) is a 3-compatible extension if for any possible behavior ¢ of X and partition P €
Comp(P.), there is a possible behavior ¢’ of Y satisfying the following conditions.

1. For any v € O, ¢'(v) = green if ¢(v) = green; ¢’ (v) = red if and only if ¢(v) = red.

2. P, € Comp(P).
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Figure 7 Two examples of the set of forbidden (partial) subgraphs we obtain from reducible
extensions. Both of the reducible extensions are new discoveries, and are shown in Figure 9.

Theorem 13 and Proposition 5 give the criterion by which we search for reducible
extensions using a C++ program. The program itself and the related toolchain will be
explained in Section 4.4. An example of applying Theorem 13 to affirm a reducible extension
is shown in Figure 6.

4.3 Converting reducible extensions to forbidden (partial) subgraphs

In this section, we explain how to convert reducible extensions into forbidden subgraphs
and partial subgraphs. Recall that templates are intended as a representation of “a piece
of” a graph where the inner vertices together with the edges among them form an induced
subgraph of the entire graph, and the outer vertices correspond to all the other vertices that
the vertices in this induced subgraph are adjacent to. The restriction that each outer vertex
is adjacent to a unique inner vertex and none of the outer vertices allows us to consider
fewer cases when enumeration such “pieces of a graph”, but this also means that we need
to consider the possibility that multiple outer vertices can represent the same vertex in the
entire graph. We now describe in detail how a reducible extension is converted to a set of
forbidden subgraphs and forbidden partial subgraphs, respectively.

For any template Z, let Part(Z) be the partition of O(Z) such that two outer vertices
are in the same equivalence class if and only if the inner vertices that they are uniquely
adjacent to are the same. Define Part(Z) to be the set obtained by removing singletons from
Part(Z), and write O(X) to denote | JPart(Z). For both cases, we start with a reducible
extension (X,Y) with O(X) = O(Y). Note that if distinct u,v € O(X) are in the same
equivalence class of Part(X) and G is a graph containing Y where v and v correspond to
the same vertex in G, then G[Y — X] is not a simple graph, since it might contain parallel
edges. In other words, the existence of the (partial) subgraph obtained by mapping v and v
to the same vertex in a minimal counterexample is not ruled out by (X,Y).

To deduce the set of forbidden subgraphs from (X,Y’), we enumerate all partitions P of
O(X) such that if distinct u,v € O(X) are in the same equivalence class in Part(X), then u
and v are not in the same equivalence class of P. For each P, we construct a simple graph
Gp where V(Gp) := PUI(Y) and E(Gp) :={w :u,v € I(Y),uww e EY)}U{pv:p €
PvelIY),Juep.u e EY)}.

To deduce the set of forbidden partial subgraphs from (X,Y’), we enumerate all partitions
P of O(X) such that if distinct u,v € O(X) are in the same equivalent class in Part(X), then
w and v are not in the same equivalent class of P. For each P, we construct a partially defined
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Figure 8 The toolchain for searching for forbidden (partial) subgraphs.

N

graph Gp where V(Gp) := PUI(Y), E4(Gp) == {uwv :u,v € I(Y),uv € Y }U{pv:p €
PowelY),uepu e EY)}, and E,(Gp) :=={uwv:u,v € I(Y),uw g E(Y)}U{pv:p€
PowelY),Vuep.uv g E(Y),Vxr € O(X)/O(X).2v g E(Y) }.

We implement a toolchain for computing forbidden (partial) subgraphs and explain it in
detail in the next section. For now, we give two examples for the set of forbidden (partial)
subgraphs we obtain from newly discovered reducible extensions in Figure 7.

4.4 Computing reducible templates

In this section, we explain the toolchain we built for computing reducible extensions. The
toolchain is visualized in Figure 8. It is run iteratively, each time searching for reducible
extensions of a fixed pair of order and index. The precise sequence in which the iterations are
carried out is shown in Table 3. The reason for this sequence is to get reducible templates
with as few vertices and edges as possible. In total, three tools are used.

The first tool is SMS with the minimality check and the forbidden (partial) subgraph
check activated. We set SMS to enumerate all graphs with n vertices and give SMS the
following CNF formula.

Fiemp(k,n) == N\ Y. —eii) |~ | N D elij)=1

i€[k] jE([k],j#i i€[k] j€[k+1,n]

A A > e(ij)=3

i€lk+1,n] j€[n],j#i

Here we postulate that vertices v € [k] are the k outer vertices and the rest are inner
vertices. Fiemp(k,n) states the conditions for a graph to be a template with index k and
order n.

The second tool is a reducible extensions finder, which is a separate C+-+ program that
takes in templates and finds reducible extensions according to Theorem 13. Here, smaller
templates that are connected (see Proposition 5) and that are not the bigger graph for any
reducible extensions found in previous iterations (shortened as left-overs in the figure) are
used as candidates for the smaller template, and the templates generated by SMS are used
as candidates for the bigger graph.

The last tool is a converter that converts reducible extensions found into forbidden
(partial) subgraphs, which we have explained in Section 4.3.
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le

Figure 9 Newly discovered reducible extensions up to order 12. Reducible extensions with index
< 3 are not shown, since all reducible extensions (X,Y") we found up to order 18 of index 2 have the
unique smallest template of index 2 as X, and those with index 1 have the unique smallest template
with index 1 as X.

By running this setup, we can determine all reducible templates we were looking for, and
we arrive at the following main result of this section.

» Theorem 14. The numbers of reducible templates of various indices and orders up to
index 6 and order 18 are as shown in Table 3.

Figure 9 shows the newly discovered reducible extensions up to order 12.

Table 3 The results of exhaustive search for reducible templates Y with index < 6, up to order
18. Each row represents a different value for the number of vertices of the larger graph. Each row
is divided into six groups, each group representing a different number of outer vertices. There are
three numbers in each group. The first is the number of reducible extensions Y found. The second
is the number of leftover templates. The third is the total number of templates generated by SMS.
This table also shows the order of computation: on the same row, the groups are computed from left
to right; across rows, the groups are computed from top to bottom. All graphs in the table can be
found in the supplementary material.

V)| O(Y)]

6 5 4 3 2 1
4 - . : 01 1 - -
6 - - 011 101 011 011
8 : 01 1 011 113 213 000
100 0 2 2 02 3 226 124 304 10 2
12 0 5 8 06 9 3 612 4 21 2 0 5 1 0 2
14 0 20 28 101834 9 725 4 010 1 05 0 0 3
16 3 84 108 4824 92 15 2 35 2 216 1 0 7 0 0 2
18 217138414 33 28111 12 7 53 4 021 0 0 7 0 0 4
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5 Speeding up the search with forbidden (partial) subgraphs

In this section, we test the effectiveness of forbidding (partial) subgraphs on shortening the

search time for n € {16, 18,20, 22,24}. We first gather all forbidden subgraphs (forbidden

partial subgraphs, respectively) and order them in ascending order of the number of vertices.

We then take the first 5 - x forbidden (partial) subgraphs in the ordered list for = € [0,25] and

forbid them during our search. We also set the frequency at which the forbidden (partial)

subgraphs check is called to freq € {30, 100, 200, 500, 1000, 2000, 5000, 100000}. The forbidden

(partial) subgraph check is called once per freq many edge variable decisions probabilistically.

The time spent in search in each case is shown in Figure 10. The figure tells us the following.

1. Forbidding (partial) subgraphs generally reduces the search time, with the effect stronger
as m increases.

2. The search time first decreases, then increases as the number of forbidden (partial)
subgraphs grows. For subgraphs, the optimal number to forbid is around 25, and for
partial subgraphs is 5.

3. Fixing the number of forbidden structures, the search with subgraphs forbidden is, in
general, faster than the search with partial subgraphs forbidden. This is the result of
two competing forces. On the one hand, partial subgraphs are more concise, with a
forbidden partial subgraph more likely to rule out a partial assignment than a forbidden
subgraph. On the other hand, partial subgraphs are represented as edge-labeled graphs in
the Glasgow Subgraph Solver, which might lead to longer subgraph isomorphism testing
times compared to unlabeled graphs. Apparently, the latter force overpowers the former
in practice.

4. Except for n € {16,18} with forbidden partial subgraphs, where the frequent call of the
forbidden partial subgraph propagators visibly drags down the search speed, there is
no uniform pattern between search time and the frequencies of subgraph isomorphism
testing. This might be because, while subgraph isomorphism testing is time-consuming,
frequent testing allows for earlier pruning of the search tree.

6 Conclusion and future work

In this work, we developed a SAT-based method enhanced by constraint programming
techniques to verify the 3-Decomposition Conjecture for connected cubic graphs up to 28
vertices. We combined specialized propagators with forbidden subgraph checks to effectively
prune the search space and reduce computation time. Our experiments provided clear insights
into the trade-offs between the cost of constraint propagation and the benefits of early search
pruning.

For future research, implementing a systematic and automated feature to gather and
verify proofs and certificates generated by different tools in the SMS framework would be
interesting. We explain here how it could work with respect to the tool chain presented in
this paper.

The SMS uses CaDiCaL. as the SAT solver, which is amenable to the production of
DRAT [12]. To take into account the learned clauses produced by various specialized
propagators, we can first run SMS with the propagators while collecting all learned clauses
and then run CaDiCaL a second time with proof logging, feeding it the original formula
together with all the recorded learned clauses. The DRAT proof produced this way can then
be independently checked using verified proof checkers like DRAT-trim [24].

Besides generating a DRAT proof for the SAT solving process, we also need to verify that
the propagators work the way intended and learn correct clauses. This is also doable given the
SMS framework. The propagators are essentially approximation algorithms for NP problems
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Figure 10 Time spent in the search for n € {16, 18,20, 22,24} forbidding different numbers of
(partial) subgraphs with the forbidden (partial) subgraph check triggered with different frequencies.
The data from forbidding subgraphs is shown on the left, and the data for forbidding partial
subgraphs is shown on the right. The horizontal axis corresponds to the number of (partial)
subgraphs forbidden, and the vertical axis corresponds to the time spent in search. Data points are
marked as ‘x’, with the darker ones corresponding to the cases where the propagator is called more
often. For each n, a red horizontal line is drawn at the height corresponding to the time spent in
search without forbidding any (partial) subgraphs.

and are reliable when the answer is “yes” — they only learn clauses under that condition.
Hence, a certificate can be generated each time a clause is learned, and these can be checked
with a separate program. Note that NP certificates are simple to verify. Specifically for
the tool chain in this paper, the minimality check can produce “nc-certificates” (see [18]);
the forbidden (partial) subgraph check can output the mapping that witnesses subgraph
isomorphism; the spanning tree check can output the spanning tree found that has B(T') = 0;
the 3-decompositon check can output 3-decompositions. In general, each propagator used in
SMS can be equipped with a certificate-generating option and an accompanying verifier for
verifying the certificates it produces.

Realizing a systematic way of verification for the SMS framework requires significant
engineering that we leave for future work.
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A  Proofs for Section 4.2

Proof of Lemma 9.

Proof. We distinguish the following three cases. Suppose |V (T1) NV (T:)| = 0. Then G is
clearly a forest consisting of two disconnected trees. Suppose |V (T1) NV (Tz)| > 1, then
there exists distinct u,v € V(T1) NV (T3). Since T; and T are trees, it follows that there
is a unique path between v and v in both 77 and T5. Given that E(T1) N E(Ty) = 0, these
two paths are distinct and therefore together form a cycle. Suppose V(T1) NV (Tz) = {s}. It
suffices to show that for any distinct u,v € V(G), there is a unique path between u and v.
Without loss of generality, assume u € V(T7). We distinguish the following two cases.

1. v ¢ V(T1). Since {s} is separating in G, any path between u and v consists of a path
between u and s in T7 and a path between v and s in T. Since both of the latter exist
and are unique, it follows that there is a unique path between v and v in G.

2. v € V(T1). Then there exists a unique path between u and v in Tj. Suppose there is
a different path between u and v in G. Then this path must contain at least one edge
from E(T3) and therefore a vertex w € V(Tz)/{s}. This means that this path consists
of a path p; between v and w and a path py between v and w. Since {s} is separating
in G, it follows that s is on both paths, and therefore s is visited twice on the path.
Contradiction. <
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Proof of Lemma 11.

Proof. We prove the statement from both directions.

1. Suppose S is mergeable and « is witnessing permutation of [n]. Then we can show by
induction on ¢ that G; := (U;:1 V(T;), U;:1 E(Tj)) is a tree. The base case where i = 1
is true by definition. The induction step is valid because of Lemma 9. This means that
in particular G = G, is a tree.

2. Suppose G is a tree. We show by induction on the size of non-empty M C [n] that if
Gr = (Uiens V(T3), Usenr E(T3)) is a tree, then Spy = {S; : i € M } is mergeable. The
base case where [M| =1 is trivially true. Define I§; := V(1) N (U;ean (2} V(T3)). For
the induction step, we first show that if G is a tree and |M| > 1, then there is z € M
such that |I§;| = 1. Since Gy is connected, it follows that |I§;| > 1 for all z € M.
Now assume the contrary, that is, |I},| > 1 for all z € M. We will see this assumption
allows us to find a cycle in Gy, which contradicts the premise that G is a tree. To
illustrate this, we build sequences by, ba, ...b,+1 € M and ¢y, ¢, ..., ¢py1 Where ¢; € Ty, for
all i € [n+ 1]. Start with any b; € M, and let ¢; € IE. Given b; and ¢;, pick b1 # b;
such that ¢; € Ty, ] and ¢;41 € Ijb\}fl \ {¢;}. According to the pigeonhole principle, there
exists z,y € [n + 1], # < y such that b, = b,. Now we can obtain a cycle in G by

concatenating the unique path from ¢, to c,41 in T the unique path from c,41 to
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Cyt2 in Ty, ..., the unique path from ¢, 5 to ¢,—1 in Ty, , and the unique path from
cy—1 to ¢, in Ty, = Ty, . So far, we have established that if G/ is a tree and |M| > 1,
then there is © € M such that |I{;| = 1. This means that Gy ;) is a tree. By the
induction hypothesis, there is a mapping a : [|M| — 1] = M \ {z} that witness the fact
that Sy (o} is mergable. Now it is easy to see that a’ : [|[M|] — M defined as a/(i) := a(i)
for all 1 < ¢ < |M| and o/(|M|) := x witnesses the fact that Sp; is mergable. Now we
have established with induction that if G = (U;cpr V(T3), Ujcpr £(T3)) is a tree, then
Sy :={S;:i € M} is mergeable. In particular, if G is a tree, then S is mergeable.

<4

Proof of Theorem 13.

Proof. Suppose X is a subgraph of a connected cubic graph G with a 3-decomposition cg.

Then ¢ := CG\E(X) is a possible behavior of X. Note that the green edges of cG|E(G/X) form
a spanning forest in G/X. Let P be the partition of O(X) that the green edges of ¢¢ in
G /X induce. Since c¢g is a 3-decomposition, it follows that P € Comp(P.). Now, suppose ¢
is a possible behavior of Y that satisfies the conditions above. It suffices to show that

d(e) ifee E(Y);

d: E(GIX —-Y]) — RGB, d:=
cg(e) otherwise.

is a 3-decomposition of G[X — Y], i.e., it satisfies the conditions in Proposition 6. The first
condition is satisfied due to Condition 1 of Corollary 7 and Condition 1 of Theorem 13. The
second condition is satisfied because P, € Comp(P). <
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