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—— Abstract

This paper introduces a novel constraint learning mechanism for Constraint Programming (CP)
solvers that integrates cutting planes reasoning into the conflict analysis procedure. Drawing
inspiration from Lazy Clause Generation (LCG), our approach, named Lazy Linear Generation
(LLG), can generate linear integer inequalities to prune the search space, rather than propositional
clauses as in LCG. This combines the strengths of constraint programming (strong propagation
through global constraints) with cutting-planes reasoning. We present linear constraint explanations
for various arithmetic constraints and the element constraint. An experimental evaluation shows
that the improved generality of linear constraints has a practical impact on a CP solver by reducing
the number of encountered conflicts in 45% of our benchmark instances. Our analysis and prototype
implementation show promising results and are an important step towards a new paradigm to make
constraint programming solvers more effective.
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1 Introduction

Constraint Programming [39] (CP) is an important paradigm for solving combinatorial
optimization problems. It has applications in many domains, including resource allocation [41,
37, scheduling [32, 1], and verification [31, 3]. CP solvers use backtracking search algorithms
to find solutions to models. Key to a good backtracking search algorithm is the ability to
identify areas of the search space that do not contain solutions. Modern CP solvers use a
combination of two types of reasoning to achieve this. The first is propagation, which is the
process of identifying values that, based on the constraints in the problem, can never be
part of a solution. The second is conflict analysis, which adds new constraints to the solver
during the search process, which enables more propagation to occur.

Deriving new constraints is well-known to be beneficial to backtracking search al-
gorithms [9]. Much work has been done to implement constraint learning effectively in CP
solvers [20, 29, 38, 21, 24, 40]. Of the approaches, Lazy Clause Generation (LCG) [29, 38], is
the most wide-spread, implemented by solvers such as OR-Tools [30] and Chuffed [8]. For
many problems, constraint learning is crucial [38, 35] to the performance of a solver, as the
learned constraints prune large parts of the search space.
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All these solvers have in common that they reason over clausal constraints. However, other
types of constraints can also be learned by CP solvers [40]. For paradigms other than CP,
work has also been done exploring the learning of pseudo-Boolean (PB) constraints [12, 17]
and integer linear constraints [27, 19, 2]. These systems have the potential of learning stronger
constraints than clauses, although in practice more scientific and engineering efforts are
needed to make these approaches as mature as the more studied clause-learning algorithms.

An example of conflict analysis on integer linear constraints can be found in the Integer
Linear Programming (ILP) solver IntSat [27], which serves as a starting point of our approach.
It stands out from other ILP solvers because it does not reason using the LP relaxation of the
problem. Instead, it uses cutting planes reasoning and a generalized CDCL [22] algorithm,
which combines integer linear constraints to derive new (implied) integer linear constraints.
The method is promising, as it is already competitive with other state-of-the-art ILP solvers
such as Gurobi [16]. One major difference between IntSat’s conflict analysis procedure and a
clausal conflict analysis procedure, is that in the former the analysis can fail to derive a new
constraint that compactly describes the current conflict. Yet, the empirical evaluation shows
that IntSat is effective despite this fact.

The effectiveness of cutting planes reasoning inspired our work with the question “How
can CP solvers incorporate cutting planes reasoning?”. As IntSat is heavily inspired by
CDCL, this indicates that cutting planes reasoning could be incorporated in constraint
programming similar to how LCG includes propositional CDCL. The major difference would
be how high-level constraint inference is explained to the learning procedure, as the clausal
explanation by LCG solvers are not applicable. We further observe that it may not be
possible to generate a linear constraint as a reason for propagation without introducing new
variables. This is in contrast to clausal explanations, where creating additional variables is
supported but not required.

A CP solver that would come close to this idea is HaifaCSP [40], as it can do cutting
planes reasoning to derive linear inequalities. However, it cannot explain propagations by
arbitrary constraints as linear inequalities. As a result, as soon as a linear inequality interacts
with another arbitrary constraint, the solver resorts to clausal learning. As we show in our
experiments, the more clauses are present in the solver, the higher the chance that conflict
analysis cannot derive a new linear inequality. To maximize the impact of the more general
learning, we want the learning procedure to deal with linear inequalities as much as possible.

We present lazy linear constraint generation (LLG), an approach to use cutting planes
reasoning within constraint programming. Our approach explains propagations with linear
constraints, allowing propagations by arbitrary propagators to be used in the cutting planes
conflict analysis procedure. To this end, we modify the conflict analysis procedure from
the IntSat solver. We devise explanations for the integer multiplication, absolute value,
truncating division, maximum, linear not equals, and element propagators. Our IntSat-based
conflict analysis procedure combines the explanations to learn new linear constraints.

To determine whether the theoretical benefits of learning linear constraints have an
impact in practice, we ran an empirical evaluation over 952 MiniZinc instances. In 443 of
those, the solver terminates and learns at least one linear constraint. Among those instances,
the conflict count is reduced, sometimes significantly. However, there are also many instances
where the conflict analysis fails for the same reason as the IntSat conflict analysis fails. When
we do learn a linear constraint, we show that it is generally more impactful than the clause
that would be learned in that same situation. Additionally, we show that the CP propagators
can be more effective with LLG than encoding the problem to linear constraints and solving
with IntSat. Lastly, we show that resorting to clausal learning when no linear constraint
can be learned remains essential, as omitting this step increases the number of conflicts
significantly.
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The rest of this paper is organized as follows: We start out with some background in
Section 2, followed by a discussion of the related work in Section 3. Then, we will describe
our contributions in Section 4. After that, we present our empirical evaluation in Section 5.
Finally, we give our conclusions and outline ideas for future work in Section 6.

2 Background

2.1 Constraint Satisfaction Problem

A constraint satisfaction problem (CSP) is a triple (X, D, C), where:

x € X is a decision variable,

D(x) € D with z € X is the domain of x, i.e. the set of values x can be assigned to,

and C € C is a constraint: a predicate over the variables that is either satisfied or violated.
We use range notation when the domain is a uninterrupted sequence of integers: [l,u] =
{ill <i<u}.

An assignment is a total function 6 that maps every variable x € X to a set V C D(x). If
|6(z;)| > 1, i.e. there is more than one possible value for x;, then the assignment is referred
to as a partial assignment. Otherwise, the assignment is called total. In this paper, unless
we explicitly use the term “partial assignment”, we refer to a total assignment. We abuse
notation to say that 6(x) = v with v € Z to mean that §(z) = {z}. If the assignment 6
satisfies all the constraints in C, then 0 is called a solution. In this paper, we restrict ourselves
to integer decision variables, i.e. Vo € X : D(x) C Z, and we assume the domains are finite.

2.2 Constraint Programming

Constraint Programming (CP) is a paradigm for solving CSPs. CP solvers combine inference
and search to find solutions to a CSP. The inference prunes the domain based on the
constraints in the problem, and once no more inference can be done, the search splits the
problem into subproblems to be solved independently. A conflict happens when there exists
a variable z € X such that D(z) = 0.

In a CP solver, constraints are enforced by propagators. A propagator is a function
p: D +— D that takes the domain and removes values that do not exist in a solution. This
means that p(D) C D, where Dy C Ds denotes that D is stronger than Do, i.e. for every
x € X it is the case that Dy (z) C Da(z). We highlight two types of constraints and their
propagators.

A clause, which is a disjunction of Boolean variables. It has the form Iy V - -V [,,, where

every l; has a Boolean domain D(l;) = {0,1}. This constraint requires at least one I; to

be 1. The propagator for a clause waits until n — 1 variables are fixed to 0, and then sets

the final variable to 1.

A linear inequality (also referred to as linear constraint in this paper) has the form

Zwixi < ¢, where w; € Z and ¢ € Z are constants, and z; € X are decision variables.

The propagator for this constraint performs bound propagation [5], as shown in Example 1.

» Example 1. Let x,y be integer decision variables with domains D(x) = [1,5] and
D(y) = [0,2]. The propagator for the constraint « + 2y > 7 can remove the values 1 and
2 from D(x) and the value 0 from D(y), because there are no solutions where z = 2 or
y=0.

4:3
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2.3 Integer Linear Programs

An Integer Linear Program (ILP) is a CSP in which all constraints are linear inequalities.
Given two linear constraints A : a1x1 + --- 4+ apr, < ag and B : byxy + - + bpx, < b,
their linear combination results in a new linear constraint C' : ciz1 + ...cpx, < cg with
¢; = aa; + [Bb; that is implied by A A B. In the case where ¢; = 0, we say that x; has been
eliminated. Note that we can always pick an o and 8 such that ¢; = 0 when a;b; < 0, i.e.,
when the coefficients of the variable to be eliminated x; have opposite signs in A and B.

The combination rule can be used by solvers like IntSat [27], which are inspired by
Conflict-Driven Clause Learning (CDCL) [22]. IntSat keeps a trail of bounds in the form
(x o v), with o € {<, >}, that iteratively tighten the domain of the variables.

Algorithm 1 presents the pseudo-code for the conflict analysis procedure. Just like
propositional CDCL, the trail gets traversed backwards. For every entry, it is checked
whether reason constraint RC can be combined with the conflicting constraint CC' to
eliminate propagated variable V' (lines 5 and 6). This elimination is feasible only if V € CC
and the signs of the coefficients of V' in CC and RC are opposite. If these conditions are
met, the reason constraint RC' is combined with the conflicting constraint CC' (line 7). This
process is repeated until the resulting constraint CC' can propagate at an earlier decision
level (asserting), or the previous decision is reached.

A notable difference with propositional CDCL, is that Algorithm 1 may fail to derive a
linear constraint that is asserting at a prior decision level. In such cases, the solver resorts to
performing resolution on bounds as a fallback strategy, similar to LCG conflict analysis (see
next section), which is the clausal counterpart of linear combinations.

Algorithm 1 IntSat conflict analysis as described in [27].

Input: a set of linear constraints C and a trail 7' containing tuples (V, RC) representing a
propagation of variable V' by linear constraint RC'

Output: a learned linear constraint or learned clause and corresponding backtrack level

: CC < currently conflicting constraint in C

> Invariant: CC is conflicting with the current assignment

while top of trail is not a decision do
(V,RC) <~ POPTRAIL() > Remove the last trail entry
if V ¢ CC then continue end if > Variable not relevant
if CC[V]- RC[V] > 0 then continue end if > Signs equal, bound not relevant
CC <+ combination of CC and RC eliminating V
for backtrack level € 0..current decision level — 1 do

if CC propagates a new bound at backtrack level then

10: return CC, backtrack level > Early Backjump

11: end if

12: end for

13: end while

14: return RESOLUTION-FALLBACK(C,T)

The reason for the inability to construct an asserting linear constraint is the rounding
problem, which is illustrated by Example 2 (adapted from [27, Example 3.1]). As a con-
sequence, linear conflict analysis can generate implied constraints that are not conflicting
under the current partial assignment, even though the constraint that identified the conflict
initially was conflicting with this assignment.
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» Example 2. Consider constraints ¢; : 42y < 2 and ¢z : £ —2y < 0, with D(z) = [1, 3] and
D(y) = [-5,5]. 2’s lower bound causes ¢; to propagate 2y < 1, which after rounding becomes
y < 0. This leads to a conflict with co. Combining co and ¢;, eliminating y, produces 2z < 2,
or < 1. This new constraint is not conflicting with the current assignment, as 1 € D(z).

A CDCL-inspired ILP solver has to deal with the situation from Example 2 in some way. In
Section 3 we highlight different approaches taken by various solvers.

2.4 Lazy Clause Generation

Lazy Clause Generation [28, 38] (LCG) is an approach to solving CSPs within the CP
paradigm. It combines the domain propagation capabilities of CP solvers with the clause
learning capabilities of SAT solvers.

There are two main parts to the integration. The first is the representation of the decision
variables in a propositional formula. This is done by creating Boolean variables that map to
unary constraints of the following form: (x ¢ v), where z € X, ¢ € {<,>,#,=}, and v € Z.
Such a unary constraint is called an atomic constraint. Every domain reduction in an LCG
solver can be expressed by setting one or more atomic constraints to true.

The second part of the integration allows propagations done by propagators to be used
during conflict analysis. Every propagation is explained by an implication /\li = p,
where [; and p are atomic constraints.

» Example 3. The explanations for the propagations in Example 1 are (z < 5) = (y > 1)
and (y <2) = (x> 3).

These explanations can be treated as clauses to integrate into the CDCL procedure, allowing
the solver to learn clauses based on propagations done by propagators.

3 Related Work

It has long been established that learning can be beneficial to backtracking search al-
gorithms [9]. The inclusion into CP solvers became popular when g-nogoods were intro-
duced [20], which are a conjunction or disjunction of (x # v) constraints. LCG [29, 38|
improves the conciseness of the explanations by introducing (z < v), (x > v), and (z = v)
constraints, although the expressiveness of the two approaches is the same. G-nogoods are
further generalized to c-nogoods [21, Chapter 5], implemented by Moore [24, Chapter 5]. A
c-nogood can combine arbitrary constraints, not just atomic constraints. Finally, Veksler
and Strichman [40] introduced the HaifaCSP solver, which is capable of learning constraints
that are not clauses or conjunctions.

Of the CP learning approaches, LCG is the most widespread. Since its introduction,
much work has been done to increase the impact that the constraint learning has on the
search. The learned constraints can be minimized taking into account the semantics of atomic
constraint [14], additional Boolean variables can be introduced [7], and explanations can be
fine-tuned to improve the quality of learned constraints [33, 13].

Solvers that are specialized in specific constraint types can also deal with different forms
of conflict analysis. Pseudo-Boolean solvers, which solve ILPs where all variables are Boolean,
use conflict analysis [12, 17] to great effect. In this special case of ILPs, the rounding problem
as described in Subsection 2.3 can be handled systematically. CutSat [18] and CutSat++ [6],
which are CDCL-inspired solvers for general ILPs, restrict the search to side-step the rounding
problem by only assigning variables to their lower- or upper-bound. Last, the IntSat [26, 27]
solver accepts that conflict analysis can fail and does not always learn a new constraint.

4:5
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There is an interesting comparison between IntSat and HaifaCSP. In HaifaCSP, constraints
are combined to derive new constraints according to pre-specified rules. The rule for combining
two linear constraints is identical to how IntSat operates. This means that, given a problem
with only linear constraints, HaifaCSP is essentially an extension of IntSat. It is an extension,
because, unlike IntSat, HaifaCSP will fall back to learning a clause if the derived linear
constraint is not propagating.

To make effective use of specialized ILP solvers, much work focuses on translating arbitrary
constraints into linear inequalities. The MiniZinc [25] toolchain can convert CP models to
efficiently solvable ILPs [4]. These translations form a basis of the explanations we introduce
in this paper. Much work has also been done to explain propagations in pseudo-Boolean
equations [23], although the aim there is correctness in a proof, rather than propagation
impact during search.

4  Our Contribution: Lazy Linear Generation (LLG)

We propose the Lazy Linear Generation (LLG) algorithm, an extension of LCG that learns
asserting linear inequalities alongside clauses. A learned clause captures a propositional rela-
tionship between atomic constraints. LLG enhances clausal conflict analysis by incorporating
cutting-planes analysis, allowing learned constraints to capture linear relationships between
variables — something that cannot be expressed compactly using clauses.

Extending LCG to perform conflict analysis using linear inequalities aligns closely with
the challenges addressed by IntSat [27] and HaifaCSP [40]. Similar to IntSat, LLG adapts the
CDCL resolution algorithm to iteratively apply linear combinations to the explanations for
conflicts or propagations, deriving asserting linear constraints that are added to the model.
Additionally, LLG also employs resolution — specifically LCG — when the derived conflicting
constraint does not conflict with the current assignment any longer.

The key distinction between our LLG approach and previous works lies in LLG’s ability
to linearly explain propagations and conflicts originating from arbitrary propagators, rather
than being restricted solely to linear propagators. Our method leverages the advantages of
both CP and a linear formulation of the problem, combining the propagation strength of
CP propagators with more powerful linear conflict analysis. An example of a stronger CP
propagator compared to its linear decomposition is shown in Example 4.

» Example 4. Consider the multiplication a - b = ¢ constraint, with initial domains a €
{2,3},b € {1,4},c € {2,7}. A possible linear decomposition introduces auxiliary binary
variables pa2, Pes and represents the constraint using the following constraints (normally
expressed linearly using the big-M formulation):

Pa2+Paz3=1 A a=2-p2+3-pa3 AN pa2—2b=c A pus3—+3b=c

Under the current partial assignment, a CP propagator can infer, based on the upper
bounds of a and ¢, that b < 3. However, since the auxiliary variables p,2 and p,3 remain
unfixed, no further propagation can be achieved using the linear decomposition. The CP
propagation can be explained using the expression (a > 2) A (¢ > 0) — 2b < ¢, which can be
transformed into a linear inequality by introducing auxiliary variables for the conditions and
employing the big-M formulation.

This new analysis, however, introduces additional challenges. First, it requires defining
explanations for every propagation and conflict. Second, these explanations may require
the dynamic introduction of auxiliary variables to accurately capture certain propagations
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or conflicts. Finally, the learning procedure may generate new constraints that are not
conflicting with the current assignment. This issue, which was previously caused only by
rounding problems, can now also arise in cases where propagations or conflicts cannot be
directly expressed as linear inequalities or when weak explanations are encountered.

The remainder of this section will outline LLG in more detail. Section 4.1 provides
a concise overview of the algorithm, while Section 4.2 discusses methods for constructing
explanations. Implementation details of the auxiliary variables are presented in Section 4.3,
and Section 4.4 describes examples of linear explanations.

4.1 Conflict Analysis algorithm

The conflict analysis algorithm employed by LLG closely resembles the one presented in
Algorithm 1, with several key modifications introduced in this section. The most notable
distinction is that constraints are no longer exclusively linear. While the conflicting constraint
CC and the reason constraint RC were previously guaranteed to be linear, conflicts and

propagations must now be explained linearly for them to participate in conflict analysis.

Unlike IntSat, there is no guarantee that C'C or RC can actually be explained linearly, as
certain linear explanations for propagations and conflicts may either be impractical or too
expensive to create.

For example, we consciously do not convert clauses to linear inequalities, even though
that is possible. Any clause l; V --- V [, with [; being atomic constraints can be turned
into the linear inequality I; + - - - + [, > 1. However, contrary to many other LCG solvers,
our implementation does not create 0-1 variables for atomic constraints in clauses. lLe., a
clause is a set of atomic constraints rather than a set of Boolean variables. This means that
converting the clause to a linear constraint would require creating auxiliary variables for all
atomic constraints [;. As will become clearer in Subsection 4.3, creating auxiliary variables
is not cheap, and we would need a lot of them. Future work can explore an implementation
where this is feasible.

Subsection 4.4 presents a few linear explanations, and Appendix A gives the complete
list of constraints and explanations we implemented. Given that, our conflict analysis differs
from IntSat (as displayed in Algorithm 1) in the following areas:

1. First, rather than directly retrieving the currently conflicting constraint from C (line 1),
we attempt to derive a linear explanation for the conflict. Either the conflict is explicitly
identified by a propagator and described as a linear inequality, in which case C'C is set to
that linear inequality. Alternatively, the domain of a variable x became empty. In that
case, the linear inequality Az < b explaining the last propagation on x is conflicting, so
it is used as the conflicting constraint.

If we cannot express the conflict with a linear constraint, then we proceed to the resolution

fallback (line 14). A common example when this happens is when the conflicting constraint

is a clause.

2. Similarly, instead of getting RC' directly from the trail (line 4), RC' becomes the linear
explanation of the propagation. We also introduce an additional check: the combination
step cannot proceed if we cannot create a linear explanation to assign to RC'.

3. Finally, if we fail to learn an asserting linear constraint, we fall back to resolution just
as IntSat does (line 14). The difference here is that IntSat does not remember clauses
because it does not have a clausal propagator, so it just propagates the learned clause once
and forgets about it. In our CP solver, we have a clausal propagator, so we remember the
clause. Effectively, if we cannot learn an asserting linear inequality, the conflict analysis
operates as a standard LCG conflict analysis does.

4:7
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4.2 Linear explanations

A fundamental aspect of LLG is constructing linear inequality explanations for propagations.
This section elaborates on several key aspects of constructing these explanations.

Inferred constraints. Firstly, it is important to highlight that the asserting inequality
derived during conflict analysis is added to the model as a constraint. Consequently, all
linear explanations that lead to the construction of this inequality must also be inequalities
inferred from the model. This is the same requirement for a clausal explanation.

Explanation signs. Additionally, it is noteworthy that for a linear inequality to be an
explanation, it must constrain the propagated variable in the same direction as the propagation
being explained. The direction in which a linear constraint constrains a variable is determined
by the sign of this variable in the inequality. More specifically, a linear constraint 5a — 4y < 0
constrains the upper bound of a, and the lower bound of y. Example 5 provides an intuitive
justification for this condition. From a technical perspective, this requirement arises directly
from the properties of linear constraint elimination: to eliminate a variable by combining two
inequalities, the variable must appear with opposite signs in both. If the propagated variable
in the explanation has the same sign as in the conflicting constraint, it did not contribute to
the conflict and is therefore not taken into account.

» Example 5. Consider a conflict analysis with current conflicting constraint CC' : —6x+3y <
10. We aim to derive a C'C' that is asserting earlier in the search. This requires maximizing
its left-hand side — achievable by minimizing z or maximizing y. Now, given the trail entry
(V,RC) = (x,—3z — 6y < 10), we aim to eliminate x. However, since x has a negative
coefficient in RC, it constrains x’s lower bound, not contributing to the goal of minimizing x.

Conditional explanations. An explanation may incorporate a conditional component to
specify the conditions under which the explanation holds. Such conditional statements can be
represented using Boolean auxiliary variables, which are binary variables indicating the truth
value of a condition. For example, consider the conditional explanation (a <2) — (b > 3).
We can encode the condition by introducing a Boolean auxiliary variable p;, defined as:

1 ifa<2 "
Pr=30 ifa>2

By ensuring consistent propagation of p; (discussed further in Section 4.3), the conditional
explanation can be reformulated into a linear inequality: b > 3 — M (1 —p;). This formulation
uses the “Big M” transformation to model the cases of ¢ < 2 and a > 2 within a single
explanation. Similar linearization techniques are described in more detail by [4].

4.3 Implementing auxiliary variables

The auxiliary variables associated with conditional explanations cannot be constructed
before starting the search procedure, as it is unknown which auxiliary variables will be
necessary. Thus, they must be introduced and propagated during the search. A key challenge
is maintaining a consistent solver state at decision levels where these variables did not exist
yet.
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Adding auxiliary variables. When a new auxiliary variable is introduced, it often could
have propagated at an earlier decision level, had it existed earlier. While we can propagate
the auxiliary variable immediately upon its creation, this propagation is discarded upon
backtracking. Ideally, we would retroactively introduce auxiliary variables at the start of the
search, allowing them to propagate at the correct decision level. However, we argue that this
retroactive introduction is unnecessary, as solver correctness does not require propagation at
the earliest possible decision level.

Instead, we ensure that auxiliary variables are propagated as soon as possible. Upon
backtracking, propagation normally starts by propagating the newly learned constraint, which
may then trigger other propagators. LLG, however, prioritizes auxiliary variable propagation
at this stage. This approach seeks to update the auxiliary variables — and, by extension, the
variables that depend on them — so that they are identical to the state that would have been
achieved had the auxiliary variables been present from the beginning of the search. If the
solver backtracks further and discards this propagation, the auxiliary variable can again be
re-propagated at the earlier level, ensuring correctness without complex trail manipulations.
Example 6 illustrates this principle.

» Example 6. At decision level 10, an explanation introduces an auxiliary variable p, defined
as p <= 6a+ 7b > 3. We can immediately propagate (p > 1). Had p existed earlier, this
propagation would have already occurred at level 3. If the solver now backtracks to decision
level 5, the propagation (p > 1) is discarded. We immediately re-propagate (p > 1) at level 5
and subsequently reach the same state as if p had been propagated at decision level 3.

Evaluating auxiliary variables during conflict analysis. A critical aspect of LLG’s conflict
analysis algorithm is verifying whether a newly learned constraint is asserting at any earlier
decision level. The learned constraint may, however, contain auxiliary variables that did not
yet exist at a previous decision level. Even though these auxiliary variables are properly
propagated once a backtrack is executed, they might not be propagated on the trail when
conflict analysis considers them. This can result in incorrectly classifying the learned
constraint as non-asserting.

To resolve this, the truth-value of an auxiliary variable at a particular decision level is
always computed based on its definition, rather than looked up as for other variables. This
allows us to infer the truth value of the auxiliary variable, regardless of whether it has been
propagated.

4.4 Examples of explanations

We have formulated linear explanations for several arithmetic constraints and the element
global constraint. This section provides a detailed exposition of some of these explanations.
A comprehensive overview of all explanations is presented in Appendix A. These explanations
can closely resemble a lazy decomposition, where linear inequalities are added to the model
lazily. However, when we refer to inequalities as explanations, we explicitly mean that we do
not add the inequalities to the model.

» Example 7 (Explanation of x; # val for Ax # b). The propagation of x; # val implies
that either (z; < wal) or (x; > val) must hold. This can be captured by introducing an
auxiliary variable p defined by p <= Az < b, leading to two possible explanations: (1)
Az <b+ M1 -p), (2) Az >b— Mp.

Which explanation is chosen depends on whether the propagation of x; # val decreases the
upper bound of z; (explanation 1), increases its lower bound (explanation 2), or introduces a
hole in its domain (either explanation is valid, in our implementation we pick explanation 1).

4:9
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» Example 8 (Explanation of (b > 1) A{c > 0) — a < |ub(c)/lb(b)] for a x b = ¢). To express
this propagation linearly, we fix b to its current lower bound. Assuming a lower bound
of byin = 5, the explanation is given by b > 5 A ¢ > 0 — 5a < ¢. We introduce auxiliary
variables (1) p1 <= b>5and (2) po <= ¢ > 0 to represent the conditions. This leads to
the linear explanation:

Sa <c+ M(1—p1)+M(1—po). (2)

» Example 9 (Explanation of =¢ — r < 0 for  — ¢). A noteworthy constraint is the
half-reified constraint [15], which defines the implication r — ¢ for Boolean variable r and an
arbitrary CP constraint ¢. This constraint ensures that ¢ must hold whenever r = 1. If ¢
is conflicting under the current assignment, we can propagate (r < 0). Let Az < b be the
explanation from c for the conflict. Consequently, we incorporate r into the explanation to
capture the relationship between r and the conflict:

Az <b+M(1—r). (3)

5 Experiments

We implemented our LLG approach in Pumpkin [11]. The initial version of Pumpkin serves
as the baseline LCG solver. In the experiments we use the number of conflicts as the main
metric to allow us to draw conclusions that are independent of the runtime and the efficiency
of the implementation. We believe this fairly shows the potential of our LLG approach. To
further ensure that the results are due to the differences in the conflict analysis procedure,
and not other factors, we only consider instances for which the branching strategies of LLG
and LCG are fixed according to the provided strategy in the instances. We summarize the
results:

1. Subsection 5.2: In 25% of the instances where at least one linear constraint is learned the
number of conflicts is reduced by at least 60%. The median reduction is around 10%,
and in the worst 25% of instances there is a slight increase in the number of conflicts.

2. Subsection 5.3: Learned inequalities indeed provide stronger reasoning than clauses.

3. Subsection 5.4: The success rate of LLG analysis is relatively low and decreases with
time.

4. Subsection 5.5: Decomposing to linear constraints, to suit the cutting-planes reasoning
as much as possible, encounters more conflicts than LLG when aggregated over the entire
benchmark set.

5. Subsection 5.6: The presence of clausal propagation reduces the number of encountered
conflicts for LLG, indicating it is useful to remember clauses when linear analysis fails.

5.1 Experimental setup

The instances we used to evaluate our LLG implementation are drawn from the MiniZinc
Challenges 2008-2024 [36, 34] and the MiniZinc Benchmarks'. Models with unbounded or
floating-point domains were excluded, as well as models without a specified search heuristic.
Instances from the MiniZinc challenge which are not solved by at least one finite-domain
solver are also excluded. For every model with more than 10 instances, we sampled 10
instances randomly.

! https://github.com/MiniZinc/minizinc-benchmarks
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Each instance is decomposed into the following constraints: multiplication (a x b = ¢),
truncating division (a/b = ¢), absolute value (a = |b|), maximum (maxz(A) = b), not equals
(Azx # 1), linear less-than-or-equal-to (Az < b), reified (p — constraint), element (Alidz] = b)
and clauses. The explanations for these constraints are given in Appendix A.

This results in a dataset of 952 instances based on 223 unique models. These instances
result in roughly 50.5M linear inequalities, 18.4M reified constraints, 3.7M not-equals
constraints, 1.3M multiplication constraints, 654k element constraints, 417k maximum
constraints, only 4.5k absolute and only 1.4k division constraints.

All experiments were conducted on the DelftBlue [10] compute cluster. Each run used
a single thread of an Intel Xeon E5-6248R 24C 3.0GHz and had access to 8GB of memory.
The time limit was set to 1 hour per instance.

5.2 Reduction of conflicts

The first experiment shows how LLG impacts the number of conflicts encountered compared

to the LCG baseline. We can break down the instances into three categories:

1. There are 328 instances that timed out or ran out of memory for LLG. This is compared
to 289 in the LCG solver. That is an increase, however, the instances for which this
happens are different between the two solvers. lLe., the LLG solver times out or errors on
different instances than the LCG solver. In many of these instances, the LLG solver does
learn linear constraints, but their impact is not big enough to prevent a time-out.

2. Then, there are 181 instances that are solved by the LLG solver, but not a single linear
inequality was learned. In these instances, even though LLG has the overhead of cutting-
planes reasoning, that overhead did not prevent the solver from terminating within the
time-out.

3. The final 443 instances are solved within the time limit, and at least one linear inequality
is learned. Figure 1 aggregates the ratio of the number of conflicts for LLG relative to
LCG. The lower half of the distribution exhibits significant reductions, with a decrease
in conflicts of up to 60% for a quarter of the instances, even increasing to over 90%
when looking at the top 10% of instances. Then, the Q2 to Q3 quartile indicates that
in roughly a quarter of the completed instances, the number of conflicts is reduced only
slightly. For these instances, LLG learns very few linear constraints, or learns linear
constraints that propagate similar bounds as learned clauses. Lastly, the upper 75% to
90% percentile range highlights cases where the number of conflicts increases marginally.
This is due to some learned constraints being weaker compared to the clauses that would
have been learned by the LCG solver.

These numbers show that, with the current state of LLG, not all instances benefit from
its linear conflict analysis. However, when a linear inequality is derived, it has the potential
to massively reduce the number of conflicts. We initially assumed that the top-performing
instances would be derived from a limited subset of models that fit LLG especially well.
However, upon examining the instances exhibiting at least a 50% reduction in conflicts, we
identify 117 instances originating from 52 models (117/52 ~ 2.3 instances per model). In
comparison, a total of 574 instances from 171 models successfully complete for both LCG
and LLG (547/165 ~ 3.3 instances per model): the top-performing instances are even more
varied than the full dataset. Consequently, our assumption was wrong; particular models are
not more suitable for LLG than others.

The distribution of constraints across these instances also seems highly variable. The
successful instances exhibit a slightly higher percentage of linear inequality constraints,
though the difference is within only a few percent.
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Figure 1 Boxplot showing the ratio of conflicts in LLG over LCG (lower = better). The boxplot
displays the Q1, Q2 and Q3 quartiles, with whiskers extending to the 10% and 90% percentiles.
A logarithmic scale is used for equal spacing of ratios. Only instances where both LCG and LLG
successfully completed, and at least one linear constraint was learned, are considered.

Lastly, although the implementation of the LLG solver can be improved on many fronts,
we observe that for the top 25% of instances — each achieving at least a 60% reduction in
conflicts — runtime performance already surpasses our baseline LCG, owing to the significant
decrease in conflicts of LLG. Specifically, for this subset of instances (excluding those with
execution times below 5 seconds), the median runtime improvement is 75%.

5.3 Strength of learned inequalities

The motivation for LLG is based on the proposition that linear constraints may provide
stronger reasoning than clauses. With this experiment, we show that the theoretical benefit
translates to practice. For the 443 completed instances with at least one learned inequality,
we examine whether the learned inequality indeed propagates more often than the clause
that would have been learned in its place.

The results indicate that when a linear constraint is learned, it replicates over 91% of
the propagations that the fallback clause would have produced. In contrast, only 37% of
the propagations triggered by learned linear constraints would have been replicated by the
clause. This confirms that, in nearly all cases, the linear constraint is at least as strong
as the fallback clause. This further suggests that neither conflict analysis method strictly
dominates the other, yet learned linear constraints tend to be more general in practice.

We also observe that in a normal LLG execution, the majority of learned clauses do not
propagate more than once. In contrast, the median number of propagations per learned
learned inequality is 90. This demonstrates that when an inequality can be learned, it
generally has a much greater impact on the search compared to a learned clause.

5.4 Analysis success rate

This experiment aims to illustrate the success rate of LLG analyses as the search progresses,
and to identify reasons for failed analyses. Recall that a successful LLG analysis results in
learning a linear constraint, whereas a failed analysis reverts to LCG for reasons such as a
violated conflicting invariant. Here, it is relevant to compare successful instances with less
successful instances. We divide the 624 instances that the LLG solver could finish into three
subsets: all instances (Figure 2a), those with at least a 50% reduction in conflicts (Figure
2b), and those with at least a 75% reduction in conflicts (Figure 2c).

Firstly, Figure 2a demonstrates a declining trend in successful analyses over time, accom-
panied by an increase in conflicts and explanations that cannot be expressed linearly. This
trend persists when results are categorized by the number of conflicts (comparing small and
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large instances) and by problem type (satisfaction versus optimization). The only correlation
we can observe is the one between a decreasing LLG success rate and an increase in failed
LLG analyses attributed to encountered clauses. Approximately 38% of LLG failures can be
attributed to these factors. The remaining 62% consist of failures that occur at a relatively
constant rate throughout the search, including invariant violations (= 50%), combinations
that fully cancel out (=~ 6%), overflows (=~ 3%), and cases where a decision is reached before
identifying an asserting constraint (=~ 3%).

In contrast, Figures 2b and 2c exhibit some differences compared to the full dataset.
Initially, conflict analysis is highly successful — significantly more so than for the full dataset.
However, as the search progresses, analysis performance declines sharply. For these instances,
we can see that the number of analysis failures due to invariant violations increases substan-
tially throughout the search. Figures 2a through 2c all illustrate that LLG conflict analysis
succeeds in only a relatively small fraction of instances. This experiment demonstrates that
even a relatively small number of learned linear constraints can significantly decrease the
number of conflicts encountered.

Given the decreasing frequency of conflict analyses leading to newly learned linear
constraints, it is worth exploring whether a similar pattern is observed in the propagation of
learned constraints. Figure 2d plots the density function (area under the curve equals 1) of
all propagations triggered by learned constraints, presented for the same three subsets of
instances. The results indicate that, despite the decline in newly learned linear constraints,
propagations of learned constraints increase over time. This indicates that, as the search
progresses, previously learned linear constraints continue to propagate consistently.

Explanation slacks. Finally, we examined the slack of explanations that resulted in a
learned inequality compared to those that did not. In the context of LLG, slack is defined
as SLACK(Az < b) = b — LB(Axz), where LB computes the current lower bound. Notably, a
negative slack indicates a conflict.

First, we found no clear correlation between the slack of a conflict explanation and the
proportion of these explanations that eventually led to a learned constraint, contrary to
our expectation that large negative slacks are more likely to succeed. The only necessary
condition for a conflict explanation is that is has negative slack. Second, we observed a strong
correlation between the slack of a propagation explanation and its likelihood of resulting
in a learned constraint: explanations with lower slack demonstrate a higher probability of
leading to a learned constraint. This result is sensible, as lower slack values indicate that the
explanation is closer to being either asserting or conflicting. In contrast, explanations with
high slack may be overly general or involve large big-M coeflicients. These results suggest
the possibility of selecting certain explanations based on their slack, prioritizing those that
are more likely to contribute to the derivation of a learned constraint.

5.5 LLG compared to linear decomposition

In addition to comparing LLG with LCG, it is also valuable to evaluate Pumpkin’s decompos-
ition as described in Section 5.1 against a decomposition consisting only of linear inequalities.
This evaluation shows that using CP propagators — even though not all its linear explanations
are equally successful — is still beneficial over a fully linear model. For this experiment, all
instances from the test set were reformulated into a fully linear model using the MiniZinc
Linear Library [4]. Among the 952 instances in the test set, 938 could be transformed into
a linear model within a 300-second timeout. The 14 instances that could not be converted
likely experienced excessive model growth when represented fully linearly.
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over LCG. tribution of propagations of learned inequalities
(y-axis) as a function of search progress, measured
by the percentage of total conflicts (x-axis).

Figure 2 Figures (a) through (c) show the success rate of conflict analyses (y-axis), plotted
against the percentage of total conflicts (x-axis). The four most significant outcomes are included.
Figure (a) demonstrates a decrease in analysis success as more clauses are encountered. Figures
(b) and (c) show a strong initial success, followed by an increase in invariant violations. Figure (d)
demonstrates that, although the number of newly learned linear constraints decreases as the search
progresses, the tail end exhibits the highest concentration of constraint propagations. This can be
explained by the cumulative effect of both newly introduced and previously learned constraints.

For the 938 successfully converted instances, Figure 3a presents the ratio of conflicts
between the linear decomposition (baseline) and LLG. The results indicate a substantial
reduction in conflicts when using LLG. Specifically, at least 25% of the instances exhibit a
conflict reduction of 50% or more. Furthermore, the first and second quartiles (Q1 to Q2)
of the boxplot show a notable decline in conflicts, ranging from 50% to 8%. The second to
third quartiles (Q2 to Q3) display a mix of reductions, from an 8% reduction to an increase
of 20%. The remaining instances exhibit a slightly larger increase in conflicts.

These increases in conflicts can be attributed to two primary factors. Firstly, the
preprocessing optimizations performed by the linear decomposition can result in the generation
of smaller linear problem instances compared to those produced by Pumpkin’s decomposition.
Secondly, some of Pumpkin’s propagators perform propagations that cannot be easily linearly
explained, such as set or alldifferent propagations, whereas the linear decomposition provides
alternative propagations that can be linearly explained more effectively. Nevertheless, LLG
continues to exhibit a significant performance advantage over the linear decomposition.
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(a) Plot showing the conflict ratio between the
linear decomposition (baseline) and Pumpkin’s de-
composition (lower = better). Pumpkin’s decom-
position encounters significantly fewer conflicts in
over 50% of the instances. In 25% of instances,
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(b) Evaluation of a variation of LLG where learned
clauses are propagated but not added to the model.
The results show a notable increase in conflicts
(note the y-axis labels), highlighting the importance
of clausal propagation for LLG.

the linear decomposition performs either slightly
worse or slightly better. In the remaining 25% of
instances, the linear decomposition performs better
than Pumpkin’s decomposition.

Figure 3 Boxplots showing the ratio of conflicts in LLG relative to a variation on LLG. The
boxplots display the Q1, Q2 and Q3 quartiles, with whiskers extending to the 10% and 90%
percentiles. A logarithmic scale is used for equal spacing of ratios. Only instances where both LCG
and the variation successfully completed are considered.

5.6 Forgetting learned clauses

Subsection 5.4 shows that as more clauses are encountered in the conflict analysis, the success-
rate of the the linear conflict analysis drops. Therefore, we investigate the consequences of
only propagating a learned clause once, without storing it in the constraint database. The
results, presented in Figure 3b, indicate that omitting clause storage leads to a significant
increase in conflicts. This observation underscores that even though encountering clauses
likely results in learning fewer linear inequalities, the effectiveness of LLG relies heavily on
the ability to store and propagate learned clauses.

We note the clear parallel between this experiment and the standard behavior of IntSat
[27]. However, two key distinctions differentiating the two approaches prevent an accurate
comparison. First, IntSat operates solely on fully linear models, which inherently provide
better linear explanations for propagations than a CP model can, increasing the success rate
of IntSat’s conflict analysis. Second, IntSat tries to transform learned clauses into linear
inequalities when at most one bound of the clause is non-binary. Within our CP problems,
such conversions are rarely feasible due to the predominant use of integer variables. This
limitation might change if the CP models were reformulated as linear programs.

6 Conclusion & Future Work

The effectiveness of constraint learning in Constraint Programming has been extensively
studied, with much of the focus on learning clauses. However, linear constraints have the
potential to provide more powerful reasoning capabilities. In response, we propose Lazy
Linear Generation (LLG), a conflict analysis algorithm that incorporates concepts from
CDCL [22], IntSat [27], HaifaCSP [40], and Lazy Clause Generation [38] to develop a novel
learning mechanism for linear constraints. LLG generates explanations for propagations
and conflicts for arbitrary CP propagators. To achieve this, the algorithm introduces new
auxiliary variables while maintaining a consistent solver state.

Our experimental analysis of LLG shows that, on the one hand, learning linear constraints

can lead to a substantial reduction in the number of conflicts over solely learning clauses.

Although the success rate of linear conflict analysis is relatively low, when a linear constraint
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is derived, the impact of that constraint on overall solver performance is significant. On the
other hand, there are many instances where LLG fails to derive any new linear constraint, as
the explanations end up being overly general. When compared to a linear decomposition
with the same conflict analysis, we observe a reduction in the number of conflicts encountered
when aggregating over all instances, suggesting that the strong CP propagation is useful and
decomposing to linear constraints is not the preferred approach. Furthermore, our experiments
highlight that clausal propagation is still important, even when using conflict analysis based
on cutting-planes. To conclude, whilst there are still improvements to be obtained, we believe
our approach shows potential to improve the constraint learning capabilities of CP solvers.

There are several promising avenues for further research of the LLG algorithm. First, it
would be interesting to consider the impact on more global constraints. Second, it should
be investigated whether we can increase the success rate of the cutting-planes conflict
analysis. Additionally, we could improve our linear explanations based on decomposition
optimisations [4]. Finally, the branching heuristic can likely utilize information from cutting-
planes conflict analysis to make the search more dynamic. We believe these research directions
offer valuable opportunities to further enhance the effectiveness and applicability of solvers.
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Table 1 Table containing all explanations used for LLG.
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