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—— Abstract

Composite structures are composed of plies (layers) of carbon fibers. For each ply, one must decide
its orientation from the set of possible angles: -45°, 0°, 45°, and 90°. The stack of plies must follow
strict constraints on the chosen orientations to achieve mechanical properties of the composite,
such as sufficient buckling load. The design problem becomes more complex when determining the
stack of plies for a complete surface material, that does not require the same number of plies in
every region of the surface. Not only must the orientations be selected in each region, but it is also
necessary to decide which plies are discontinued between adjacent regions. Thanks to its declarative
nature, Constraint Programming (CP) offers an elegant modeling of the constraints, making it easy
for designers to activate or deactivate them as needed. We propose a CP model, implemented in
MiniZinc. The performance of this model on synthetic yet realistic instances when solved by different
exact solvers, including Mixed Integer Programming (MIP) solvers, demonstrates the superiority of
CP over MIP on our MiniZinc model, and over a commercial solution implemented by an industrial
partner. It opens up the adoption of CP as an efficient building block of Computer-Aided Design
tools for composite structures. By making the model and instances publicly available, we also hope
to facilitate the inclusion of this problem in CP solver competitions and stimulate further research
in this area.
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1 Introduction

Composite structures are widely used in the industry to design components such as aeronaut-
ical or automotive pieces, due to their high strength-to-weight ratio. A composite structure is
typically subdivided into several panels, and each panel is made up of multiple thin layers, or
plies, arranged in a specific stacking sequence. The fibers in each ply are commonly oriented
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at one of four discrete angles in {0°,+45°,90°}. An example of a composite structure is a
plane wing, as shown in Figure 1, where we can see the stacking sequence of a panel on the
right. Due to manufacturing limitations, as well as to ensure consistent load transfer and
meet required stiffness and strength, design constraints restrict how a ply may be oriented,
depending on its neighbors and on adjacent panels.

Layer 2
Layer 3 AN AN
Layer 4
ﬁyer 5

er 6
Layer 7 /, /
Layer 8

- Sequence 1 Sequence 2 Sequence 3 Sequence 4
8 Layers 6 Layers 4 Layers 2 Layers

o
o
o
&
o
&
o

Figure 1 Example of the use of composite structures, here with a plane wing.

As can be seen in a review on the optimization of composite structures [15], this type of
problem has so far been mainly addressed using genetic algorithms. A notable exception is
the exact algorithm proposed in [21], implemented in the commercial tool of our industrial
partner, and which we compare with. Our contributions are as follows:

1. The introduction of a pure declarative constraint programming model that can be used
to generate a consistent composite structure.
2. An empirical validation of the model through Minizinc, improving the generation of

admissible sequences proposed in [21].

The paper is organized as follows. Section 2 first presents the problem definition for
deriving stacking sequences of a composite structure. A Constraint Programming (CP) model
is introduced in Section 3. Section 4 is dedicated to the related work and mostly explains the
main ideas of the exact custom algorithm of [21]. The CP model, implemented in MiniZinc,
is experimentally validated in Section 5 and compared with the approach of [21]. Finally,
Section 6 concludes and highlights possible future research directions.

2 Design Constraints for Composite Structures

The problem is to decide the orientation for each ply in each stacking sequence while satisfying
rules specific to each stacking sequence and connecting those rules between adjacent sequences.
A first set of rules are the structural ones for each individual stacking sequence S;.

= D1: The number of plies for each orientation is imposed and denoted by n; **, n?, n#® n.

K3
We also define n; as the sum of these: n; = n; *® 4 n? + n® 4 n.
= D2: The angle difference between two consecutive plies cannot be equal to 90°. This
means that a -45° ply cannot be followed by a 45° ply, a 0° ply cannot be followed by a
90° ply and the inverse of those two cases is also prohibited.
= D3: A succession of four or more plies having the same angle is disallowed.
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D4: The sequence must be symmetric vertically (e.g. (0°,45°,45°,0°),...). However, some
exceptions are accepted at the center of the sequence in addition to symmetrical patterns,
namely (—45°45°), (—45°,0°,45°), (—45°,90° 45°) and their inverses.

D5: The top and bottom plies are only allowed to take values in {—45°,45°}.

A second set of constraints consists of the blending rules, which restrict how neighboring
stacking sequences relate to each other. For every pair of neighboring stacking sequences
S;, 55, an implicit directed edge points from the sequence with the larger number of plies
toward the one with fewer plies (n; > n;). We call ¢ a parent of j. A directed graph represents
the neighboring relationships. This graph must be acyclic for the structure to be feasible.
This set of edges is denoted E.

B1: The subsequence S; (the thinner one) must be a subsequence of S; (the thicker one).
In the event S; has multiple parents, its plies must be contained in all of them.

B2: A ply can either be shared between two neighboring stacking sequences or be
discontinued, but two continuous plies cannot cross each other. This can be seen as
having the same ordering for the common plies between neighboring sequences: given
a parent sequence S; = (A, B, C), a child sequence could be S; = (A, C) but cannot be
S; = (C, A) as the ordering is not preserved.

B3: The top ply of S; must be the same as the top ply of S;, and the same applies
to their bottom plies. This ensures the continuity of the top and bottom surface plies
throughout the entire structure.

B4: A maximum of three consecutive layers can be dropped at once from S; to S;.

Depending on the structure requirements in practical applications, some rules may be
ignored. The blending rules B1-B4 are always present, to ensure a global coherence between
adjacent sequences. In the same manner, the design rule D1 is always enforced to generate
sequences of required size. However, the design rules D2-D5 may be absent in some settings.
This further motivates the use of declarative paradigms such as CP to tackle this problem.

» Example 1. Given the input graph from Figure 2, a solution satisfying most of the
constraints is shown in Figure 3. In this solution, the constraints satisfied are B1, B2, B3,
B4 and D1, which are always activated as well as the optional constraints D3, D4 and D5.
There are some places where an angle difference of 90° is present, which is prohibited by
constraint D2. This is for instance the case for S1[2] = 90° and S;[3] = 0°.
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Figure 2 An example Si Sz Ss S3 Sy

of how we represent com-
posite structures for our Figure 3 An example solution of our model with a limited set of

CP model. constraints activated.
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3 CP Model

3.1 Decision Variables

The main decision variables of our problem are the orientations that each layer k£ can take in
every stacking sequence i:

Sz[k] S {Id_45, Id(), Id45, Idgo} V1 S k § n; Viel (1)

Where Id,, 0 € {0° £45°,90°} denotes the plies orientation and Z = {1...|S|} is the set of
indices for all stacking sequences S. A second set of variables Y; ;[k] € {1,...,n;},V1 <k <
n;, for all (¢, j) € E is used to ensure the continuity of layers between adjacent regions. More
precisely Y; ;[k| indicates that the ply % of the stacking sequence j is the continuation of the
ply Y; j[k] in the neighboring stacking sequence i. For example, referring to Figure 2 and 3,
Y1 .2[6] = 8 since the sixth ply from Sy is the same as the eighth ply from S;.

3.2 Constraints

To ease the constraint notations, we first define some set of indices and constants. Zeyen, =
{i € Z|n;iseven}, Zpsqa = {i € Z | n; is odd} are the sets of indices for sequences of even
and odd length, respectively. Moreover, m; := |n;/2] denotes the midpoint of a sequence
S; €5.

The structural constraints D1-D5 on each stacking sequence are expressed on S;[k]
variables while the blending constraints B1-B4 are expressed on y; ; variables. The formal
definition of the constraints is given next.

cardinality (S;, [Id—_45, Ido, Id4s, Idgo], [ni_45, nd n® nd)  Viel (2
(Silk], Silk + 1], S;[k + 2], Si[k + 3]) € allowed_ tuples Vi<k<n;—3VieZ (3
Silk] = Sifn; — k + 1] VI<k<|m/2l,VieZ (4
(Si[mi], Si[m; + 1]) € allowed__even Vi € Zeven (5
(Si[ma], Si[m; + 1], Si[m; + 2]) € allowed__odd Vi € Lodd (6
Sill] € {Id_45,Idss} Viel (7
Sifni] € {Id_ss, Idss) Viel 8
Si[k] = SiYi;[K]] V1<k<n,Vij)eE (9
Y ilk] <Y, lk+1] V1<k<n;V(i,j)eE (10
Y] =1 (i, j) € E (11
Y i[n;] = n; V(i,j) € E (12
Yi lk+1] = Vi k] < 4 V1 <k<n;, V6 j) e E (13

The design rules D1-D5 correspond to constraints (2)-(8). The D1 constraint is enforced
in (2) with a global cardinality constraint [10]. It ensures that the requested plies of every
angle, requested by the user, are present in every sequence. This constraint is applied on
every stacking sequence S; and takes three arguments:

1. The sequence of variables forming the stacking sequence.

2. The possible values, one for each angle,

3. The cardinalities, one for every possible angle.

Then, the D2 and D3 rules are implemented in (3) by a single table constraint [2, 16, 5, 11]
that covers both prohibiting 90° angles and disallowing four or more consecutive plies that
have the same angle. It does so by applying a table on every set of four consecutive plies.



M. Antoons, A. Delecluse, S. Zein, and P. Schaus

This table, represented by allowed_tuples, contains all tuples that have at least one different
ply from the three others and that does not contain a 90° gap anywhere. This constraint is
also enforced on all stacking sequences. In cases where only one constraint between D2 and
D3 is activated, the tuples are adapted.

Next is the D4 rule. The equality constraint (4) enforces every ply to be the same as
their opposite ply, resulting in the symmetry required by the D4 rule. So, for instance, the
first ply must be the same as the last, the second must be the same as the penultimate and
so on. This goes on until the middle two plies in case of an even thickness sequence, or
until the middle three plies in case of an odd thickness sequence. Indeed, this allows for the
exception to the D4 rule, allowing a dissymmetry in the middle to mitigate the problem of

odd cardinalities since the symmetry constraint only works when all cardinalities are even.

This exception is formulated in (5) in the case of an even thickness and in (6) in the case of
an odd thickness. We can see that a table constraint is applied on the middle two or three
plies of every stacking sequence. In addition to allowing for a symmetric suite of plies (in case
all cardinalities are even), it also allows for the (—45,45), (—45,0,45), (—45,90,45) suites
and their inverses. For this constraint to work properly, 90° gaps must be possible in the
middle and thus the constraint implemented in (3) is relaxed in the middle only. Moreover,
we expect CP solvers to represent constraint (4) by reusing the same variables for S;[k] and

Si[ni — k + 1] instead of using equality constraints, which reduces the number of variables!.

The last design rule, D5, is implemented by (7) and (8) by redefining the domain of the
top and bottom plies of every stacking sequence (i.e. S;[1] and S;[n;], respectively), so that
only values representing the -45° angle or the 45° angle are allowed.

The blending rules are enforced by (9)-(13), and are mandatory in every variant of the
problem. The B1 rule is implemented in (9) using element constraints [8]. It ensures that
every ply of a subsequence S; must be present in all its parents denoted by .S;. In our model,
this is enforced using an element constraint between S; and S;. This means that every ply
from a thinner sequence must come from its thicker neighbors. This constraint is applied on
every edge of the input graph.

The B2 rule is then implemented in (10). This rule prohibits plies from crossing each
other when going from one sequence to another, which is ensured by forcing each index
variable (Y; ;[k]) to be strictly lower than the next (Y; ;[k + 1]).

The B3 rule is implemented in (11) and (12) by fixing the domains of the Y; ;[1] and
Y; i[n;] to 1 and n; respectively. Fixing these values will cause the top and bottom plies of
every subsequence to be the same as their neighboring subsequences, and thus cause the top
and bottom plies to be continuous across the whole structure.

Finally, the B4 rule is implemented in (13). In order to prevent drop-offs of four or more
consecutive plies in between sequences, we can define a constraint that forces the absolute
difference of two consecutive index variables (i.e. Y; ;[k] and Y; ;[k + 1]) to be less than or
equal to four. In other words, this constraint allows a maximum of three consecutive plies to
stop at once between two sequences, satisfying the B4 rule.

4 Related Works

A first exact approach was proposed in [22]. It iteratively generates a set of admissible
structures (i.e., stacking sequences that meet all coherence constraints), performs numerical
simulations, and selects the sequence(s) yielding the highest buckling load. However, it does

1 Using the same variables for (4) instead of equality constraints is performed by MiniZinc[14], used in
our experiments
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not include the blending constraints. The approach of Zein et al. (2014) [21] solves the
same problem as ours. Despite the title, the problem is not formalized as a declarative CSP.
Instead, the authors introduce a custom depth-first search algorithm. During the search,
stacking sequences are considered one by one in decreasing order of their number of layers.
For each stacking sequence, branching decisions related to blending constraints are made
before those related to design constraints. The approach does not rely on a solver with
variables, domains, and a fixed-point computation of generic constraints. The algorithm
verifies the consistency of the current layer in the stacking sequence with respect to the prefix
of already fixed stacking sequences from previous decisions. If an infeasibility is detected for
a layer, the search backtracks. The rules are thus enforced as checkers that verify the validity
of a prefix, rather than through a filtering algorithm acting on all the variables in its scope as
in a standard CP approach. This means that in a stack S of n plies, the ply orientation S[k]
is only deemed invalid if it conflicts with plies S[1..k — 1] but no inference is made regarding
subsequent plies S[k + 1..n]. This algorithm shares similarities with Generative Constraint
Programming [17], which lazily prunes only the domain of the next variable to instantiate
taking into account the prefix of already fixed variables. Our approach, on the other hand,
relies on a pure declarative model where the search is decoupled from the model. While it is
understandable that the custom approach uses a search algorithm that makes decisions in the
order of stacking sequences to facilitate the verification of blending constraints, it is unclear
whether this is the best search strategy, given that all layers are interconnected through
blending constraints. Our approach can utilize efficient black-box searches that could detect
or learn that, for instance, branching on the thinnest stack first might be more effective.

5 Experimental results

To assess the performance of our model, we generated in agreement with our industrial
partner a set of instances representative of the ones that are generally processed by their
software. Four datasets were generated using grid sizes of 3x3, 4x4, 5x5 and 6x62, stacking
sequences, each containing 40 instances. Each node in the grid is connected to a minimum
of two and up to four of its neighbors (top, left, bottom, right) in the grid by a directed
edge, whose direction is chosen randomly. The cardinality constraints on the number of plies
per orientation in each layer were selected uniformly with up to 60 plies per stacking layer.
The retained instances are such that none is trivially detected as infeasible by the industrial
solver when adding all constraints (B1-B4, D1-D5).

The model was implemented using MiniZinc [14], allowing us to easily experiment with the
solving of our problem using different solvers. In particular, three different CP and Lazy Clause
Generation solvers are compared: Gecode [18], OR-Tools [4] and Chuffed [3]. We also tried two
Mixed Integer Linear Programming (MILP) [20] solvers using their MiniZinc backend: Gurobi
[7], HIGHS [9]. Lastly, the performance of the solution deployed by our industrial partner that
implements the approach of [21] with all constraints activated is also reported. Instances and
models are available at https://github.com/augustindelecluse/composite_structure.

Figure 4 reports the number of instances solved over time with the 3 tested models, using
a timeout of 15 minutes. Each model includes constraints B1-B4 and D1. Depending on the
application, not all optional constraints must be considered, which was also the case in [21].
The first model (top) does not include any optional constraints, the second (middle) adds
constraints D3 and D4, and the third (bottom) includes all constraints.

2 Figure 2 corresponds to a grid size of 2x2
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OR-Tools appears as the most stable solver, and consistently solves more than 80% of
the instances within 15 minutes in all datasets and all models. Additionally, its performance
does not degrade much when the size of the instances increases, which is not the case with
Gecode, Chuffed and the industrial solver. Although not visible in this aggregated plot,
Gecode is generally faster on feasible instances, while OR-Tools performs better at proving

infeasibility. MILP solvers are behind CP solvers, and Gurobi performs better than Highs.

The industrial solver achieves performance competitive with Gecode but is outperformed by
the lazy-clause generation solvers OR-Tools and Chuffed. This indicates that clause learning
significantly enhances the ability to solve this problem robustly.
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Figure 4 Solver performances with different sets of design constraints (rows). Each column
denotes a given dataset.

6 Conclusion and Future Work

We have introduced a CP model for the Composite Structure Design Problem, including the
blending constraints between neighboring stacking sequences. This model was implemented
in MiniZinc and tested with various CP-based solvers and MIP solvers. The results clearly
show that CP outperforms MIP on the MiniZinc models, with lazy clause generation solvers
enabling the solution of even more instances. This approach also outperforms a state-of-the-art
industrial solver that employs a dedicated algorithm for this problem.
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In future work, we plan to improve the filtering and search. For filtering, the standard
MiniZinc library does not include the AtMostSeqCard constraint from [19]. This constraint
limits the number of consecutive variables that can take a specific value v and restricts the
total number of variables instantiated to v. We believe that this constraint could help reduce
the solving time by acting as a redundant constraint. In addition, our goal is to experiment
with different search strategies to further accelerate the solving process. More specifically,
one could try to use custom search strategies, possibly combined with conflict-based searches
[6] and restart-based strategies with no-good learning [12]. Finally, we would like to include
some possible objective functions or hybridize the model with a finite element simulator that
would allow for a more fine-grained estimation of the mechanical properties. An interesting
approach we could try in that direction is the so-called Empirical Decision Model Learning
framework [13].
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