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Abstract
We present an industrial case on workforce allocation and scheduling in the aircraft manufacturing
industry, where available teams need to be assigned to logistical operations. This application
presents several challenges such as the scale of the problem, the need for fair workload distribution,
and the need for methods for mitigating unforeseen disruptions due to technical malfunctions or
incompatible weather conditions. We compare different Constraint Programming (CP) models
for the allocation and scheduling problems, with extra focus on modeling the workload balancing
component. Additionally, we investigate different techniques for explaining infeasibility of a disrupted
schedule, such as conflict computation using Minimal Unsatisfiable Subsets (MUSes) and feasibility
restoration using Minimal Correction Subsets (MCSes) or constraint relaxations. Our experimental
results show that by using appropriate modeling techniques, the problem can be solved in reasonable
time, thereby producing fair schedules. Additionally, we show how invalidated schedules can be
explained and restored efficiently to help human operators in solving disruptions to the schedule.
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1 Introduction

The assignment of workers to different tasks is a recurring challenge in many industries.
Effective allocation of workers directly impacts key business metrics such as productivity,
cost management, and overall organizational performance. Solving an industrial workforce
allocation problem requires considering several factors such as such as employee availability,
required qualifications of workers for a task, regulatory requirements, and task priorities.
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In this paper, we focus on a workforce-allocation problem in the aircraft manufacturing
industry, solving instances involving hundreds of tasks on a daily basis. Each of these tasks
consists of a logistical operation such as transporting parts from one place to another or
loading and unloading cargo. Transportation tasks are executed using trucks, trailers, or
specialized transportation platforms, which require trained workers. Timely execution of
these tasks is critical for the production and assembly of aircraft. Currently, given an order
book of tasks to be executed by a given deadline, a team of operational planners manually
schedules and allocates the tasks to available workers. To alleviate some of the workload of
this planning task, we investigate (partially) automating the planning and allocation of tasks
by formulating the allocation and scheduling problem as a CP model.

Furthermore, we aim to offer decision support in case of disrupted schedules due to
unforeseen circumstances. Examples of such disruptions can be the delay of a part delivery,
human or logistical resource disruptions, adversarial weather conditions, etc. We investigate
several methods for detecting and explaining the infeasibility of schedules, as well as methods
for automatically resolving disruptions using techniques from feasibility restoration [30]. This
allows the planners to 1) understand the implications of the disruption on the given schedule
and 2) review alternatives provided by an automated system to restore the schedule to a
feasible state while accounting for the disruption(s).

1.1 Use case description
We address the problem of workforce allocation for logistical tasks among worker teams at an
aircraft manufacturing site. These logistical tasks are interleaved with production activities
on assembly lines [4], and need to be aligned with timings of higher-level logistics involving
deliveries of raw materials or components provided by external parties via trucks, ships, or
cargo aircraft. These components then have to be transported to internal hangars at the
right time, where they will be assembled with other aircraft parts. We incorporate these
operational requirements into the allocation and scheduling problem as part of the input data.
More specifically, each task has a predefined release time, duration, and deadline, and certain
tasks follow precedence constraints, such as when two parts must be delivered in sequence
before assembly. Apart from explicit precedence constraints, there are no requirements on
the task ordering, as the duration of any task includes returning to the home base of the
manufacturing plant. As a result, transition time between the end location of one task, and
the starting location of the next is included in the duration of each task. This differs from the
traditional definition of a workforce-scheduling and routing problem (WSRP) [5] and allows
to formulate the problem as a pure scheduling problem instead. In our setting, the goal is to
find an allocation of tasks to working teams, such that the total number of required teams is
minimized. Additionally, the workload should be balanced fairly among the teams [12]. That
is, the allocation of tasks should be done such that all teams have a similar amount of work.

Currently, transportation tasks are manually allocated and scheduled upfront by a team
of planners. These planners also coordinate the fine-grained synchronization among teams,
to ensure the precedences of tasks are satisfied. During the working day, they continuously
monitor real-time updates and adjust schedules as needed to handle unforeseen events or
disruptions. These disruptions can arise for multiple reasons, including:

Weather-related disruptions: Extreme wind or rain prevents the use of some hangars.
External logistics disruptions: Delays or cancellations from third-party suppliers
impact the arrival time of essential parts.
Human resource disruptions: Unexpected worker absences, team meetings or fire-drills
in a hangar temporarily reduces workforce availability.
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Material availability disruptions: Vehicles like trucks or trailers may become tempor-
arily unavailable due to technical breakdowns, accidents or maintenance operations.

Large disruptions can impact the predefined plan in such a way that the set of disrupted
tasks cannot be reallocated to other teams. This requires the planners to revise the plan,
which may involve multiple re-allocation and/or re-scheduling operations. When disruption
occurs, given than individual activity execution times range from 15 to 60 minutes, planners
have a limited window to adjust schedules. As this is tedious and time-consuming to do by
hand, planners often drop disrupted tasks from the current planning horizon and move it
to a next one. In order to help the planners revise the allocation in a more efficient way,
we propose to automatically repair disrupted schedules and show several alternatives to the
planners. This allows them to further adapt or merge proposed alternatives based on their
experience or other tacit knowledge.

2 Background

A Constraint Satisfaction Problem (CSP) is defined as triple CSP(X , D, C)[27]. Here, X is
set of discrete variables with each an associated set of values (i.e., a domain) in D. The
domain of variable x is written as D[x]. A variable can be finite-domain integer (D[x] ⊂ Z)
or Boolean (D[x] = {True, False}). An assignment α maps each variable x to a value in its
domain D[x]. C is a set of constraints, where each constraint maps an assignment α to True
or False. An assignment that is mapped to True by all constraints in the CSP is called a
solution. We write α(x) for the value of the variable x in solution α. A CSP where no α

satisfies all constraints is unsatisfiable or UNSAT for short.
A Constraint Optimization Problem (COP) extends the definition of a CSP with an

objective function f that maps solutions to a numerical value. A solution α is an optimal
solution if no other solution α′ has a better objective value than α.

A Multi-Objective Constraint Optimization Problem further extents the definition of
a COP by allowing multiple objective functions to be optimized simultaneously [28, 7, 8].
In case there is a strict priority on the objectives, we refer to it as a Lexicographic Multi-
objective Constraint Optimization Problem (LMOCOP). Such problems can be solved by
decomposing the LMOCOP into individual COPs and solving these in sequence, and where
the objective value of previous COPs is fixed. Example 1 illustrates this process, which can
be implemented efficiently with incremental (CP-)solvers.

▶ Example 1 (Solving a LMOCOP). Suppose we have a lexicographic optimization problem
with objectives f1 ≺ f2 ≺ . . . ≺ fn. We can find an optimal solution by first optimizing
COP(X , D, C, f1) to find solution αf1 . Then, we add constraint f(X ) ≤ f(αf1) and re-solve
the problem with objective function f2 to find αf2 . This process is repeated until we find
αfn

where each objective fi is optimal, given a value for objective fi−1.

2.1 Scheduling-problems in CP
We consider problems involving scheduling and allocating sets of tasks. The CP-community
has developed several global constraints for such problems, and in this paper we use the
NoOverlap (also called Disjunctive) and Cumulative global constraints. These global
constrains reason over uninterruptible tasks, which are represented as intervals using an
Interval(s, d) variable with start s and duration d. The NoOverlap(I) constraint en-
sures intervals I are scheduled such that they do not overlap. Cumulative(I, D, c) is a
generalization of this constraint where a set of intervals with a corresponding set of resource
requirements D are scheduled in such as manner that the total capacity c of the resource is
never exceeded [29, 32, 33].

CP 2025
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An extension to interval variables was introduced by Laborie et al. [21], namely optional
intervals. Such an interval is declared as OptInterval(s, d, p) where the Boolean variable p

controls whether the interval (that is the task it represents) is present in the solution.

2.2 Explainable Constraint Solving
For explaining and resolving infeasible schedules due to disruptions, we will rely on techniques
from explainable constraint solving. In particular, we compute Minimal Unsatisfiable Subsets
(MUS) [23] to explain the user why the allocation problem is unsatisfiable after disruptions,
and compute Minimal Correction Subsets (MCS) [24] to pinpoint the user to a set of
constraints that should be relaxed or removed in order to resolve the conflicts in the problem.

▶ Definition 2 (Minimal Unsatisfiable Subset [18]). A Minimal Unsatisfiable Subset (MUS) is
an unsatisfiable subset U ⊆ C for which it holds that each strict subset U ′ ⊊ U is satisfiable.

Note that several MUSes may exist, and one may have a preference on which conflict to
compute [20]. E.g., it is common to compute a smallest MUS [19], or optimal MUS [15].

▶ Definition 3 (Minimal Correction Subset [24]). A Minimal Correction Subset (MCS) is a
subset M ⊆ C for which C \ M is satisfiable, and for any M ′ ⊊ M , C \ M ′ is unsatisfiable.

Similar to MUSes, a problem may contain multiple MCSes. To find an optimal MCS, we
can reify each constraint and minimize the number of falsified indicator variables.

3 Formal specification of the constraint models

We now introduce the mathematical formulation of the workforce-allocation COP. Section 3.1
focuses on the pure-allocation setting where each task has a fixed start-and end-time. In
Section 3.2, we investigate how this formulation can be adapted to a scheduling-and-allocation
formulation where each of the tasks can be shifted within a given time-window.

3.1 Allocation
This problem consists of assigning each task to a compatible team. Teams can be
(in)compatible with a task due to their working hours, or due to specific technical quali-
fications required to execute the task. No team can execute two tasks at once, and hence
overlapping tasks should be assigned to different teams. Finally, some tasks are required to
be assigned to the same team, e.g., when two tasks involve transporting the same part from
one place to another.

Input data

T : a set of n tasks to assign to teams.
W: a set of m worker-teams to assign tasks to.
Comp ∈ Bn×m where Compt,w indicates team w and task t are compatible.
S: the fixed start times of each task, with si ∈ S the start time of task i.
D: the fixed durations of each task, with di ∈ D the duration of task i.
G: set of task groups where tasks in group g ⊆ T should be executed by the same team.

Decision variables and constraints

The variables in this model consist of a n × m Boolean matrix where each variable xt,w

indicates whether team w is assigned to task t.
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Each task is allocated to a team:∑
w∈W

xt,w = 1 ∀t ∈ T (1)

Tasks are only assigned to compatible teams:

¬Compt,w ⇒ ¬xt,w ∀t ∈ T , ∀w ∈ W (2)

A given group of tasks g should be assigned to the same team:

AllEqual({xt,w | t ∈ g}) ∀g ∈ G, ∀w ∈ W (3)

A team cannot be allocated to overlapping tasks:
n∑

t′∈T
xw,t′ · (st ≤ st′ ∧ st + dt > st′) ≤ 1 ∀t ∈ T , ∀w ∈ W (4)

Auxiliary variables and objectives

We introduce auxiliary variables usedw ∈ Bm that indicate whether team w is used, and
integer variables timew ∈ Nm that indicate the time worked by each team. These auxiliary
variables relate to the decision variables x according to the following constraints:

A team is used if a task is allocated to it:∨
t∈T

xt,w ⇒ usedw ∀w ∈ W (5)

Definition of the time worked by a team, only enforced if the team is used:

usedw ⇒
∑
t∈T

xt,w · dt = timew ∀w ∈ W (6)

The objectives of the problem are to minimize the number of teams used:
∑

w∈W usedw

and to minimize the time-dispersion as described next.

Modeling improvement: different formulations for time-dispersion

Tasks should be distributed fairly among the working teams. That is, we aim to minimize
the dispersion of the workload which we define as: maxw∈W(timew) − minw∈W(timew) and
corresponds to a spread-based fairness measure from the literature [6, 12]. However, we noticed
that combinatorial solvers are often stuck on proving optimality when using this objective.
Therefore, in Sec. 5.1, we compare the following formulations of the time-dispersion:

max_minus_min: exact formulation: maxw∈W(timew) − minw∈W(timew)
max_diff: exact formulation, with pairwise differences maxw,w′∈W(timew − timew′)
proxy_max_min: maximize the minimum time worked: − minw∈W(timew)
proxy_min_max: minimize the maximum time worked: maxw∈W(timew)
proxy_sum: minimize the sum of absolute differences

∑
w∈W,w′∈W(|timew − timew′ |)

CP 2025
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Modeling improvement: symmetry breaking over equivalent teams

Although each team has a specific set of qualifications that result in (in)compatibility with
certain tasks, some teams are still equivalent for the given time-horizon of the schedule.
Therefore, we can detect and break symmetries between teams. We do this by detecting sets
of teams that can be assigned to the exact same set of tasks in the input data. For every
consisting set of equivalent teams {t1, t2, . . . , tp}, we add the following constraint:

usedt1 ≤ usedt2 ≤ usedt3 ≤ · · · ≤ usedtp

Comparison to literature

The allocation problem described in this paper is related to the “list coloring” problem, a
variant of the well-known graph-coloring problem where each node can only be assigned a
subset of colors. However, in addition to minimizing the number of teams (colors) used,
we also aim to minimize the time dispersion. This is specific to our use case and, to the
best of our knowledge, it is not considered in the literature of similar list-coloring problems.
Constraint (4) would implement a “clique” constraint on a list coloring problem. In our case,
these cliques can easily be detected due to the structure of the problem.

3.2 Scheduling
In the second variant of the problem, the tasks are not yet fixed in time and should be
scheduled in a predefined time-window. That is, each task has a earliest time it can be
started (the release time), and a deadline by which it should be completed. Moreover, some
tasks depend on one another and therefore share a precedence constraint. Also, each of the
worker teams has fixed working-hours and hence, any task assigned to a given team, must
start and finish within the working hours of that team.

Additional data

R: the release time of each task, with rt ∈ R the release time of task t.
E : the deadline of each task, with et ∈ E the deadline of task t.
Prec: a set of tuples (t, t′) where task t should finish before the start of t′.
Calw: a set of tuples (cs, cd) that represent intervals during which team w is off-duty.

Additional variables and constraints

Our CP-model for this problem is inspired by flexible-jobshop problems [1, 9], and the main
idea of this model is to duplicate each task for each team using an optional interval variable.
Each interval is defined using a new variable st ∈ N for representing the start time of each
task, and we use the Boolean matrix x to control which intervals are indeed present in the
schedule, i.e., which intervals (tasks) are allocated to what team.

The constraint model builds further on the “pure allocation” formulation above. That is,
we re-use constraints (1), (2) and (3), but replace constraint (4) with constraint (7), which
ensures that no tasks assigned to the same team overlap. Additionally, constraint (7) ensures
no tasks are assigned during the “off-hours” of a team as defined by their calendar. Finally,
we add constraints (8) and (9) to enforce a legal schedule of the tasks.
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Teams cannot perform overlapping tasks and can only work when available.

NoOverlap({OptInterval(st, dt, xt,w) | t ∈ T }∪
{Interval(cs, cd) | (cs, cd) ∈ Calw}) ∀w ∈ W (7)

Tasks are scheduled within their allowed time time-frame:

st ≥ rt ∧ st + dt ≤ et ∀t ∈ T (8)

Enforce precedences between tasks:

st + dt ≤ st′ ∀(t, t′) ∈ Prec (9)

Typically, the objective in flexible job-shop scheduling is to minimize the makespan of
the schedule. However, in this problem, we re-use the objectives from Section 3.1 and aim to
minimize the number of teams used and to minimize the dispersion.

Modeling improvement: computing a lower-bound on the number of required teams

The constraint model above can be solved for large instances by state-of-the art constraint
solvers. However, we noticed that when minimizing the number of required teams, the solver
is often stuck on proving optimality of the solution. We want to help the solver by enforcing
a reasonable lower-bound on the number of teams. To compute this lower-bound, we propose
the following relaxation of the problem, where the pool of working teams is modeled as a
cumulative resource:

Cumulative({Interval(st, dt) | t ∈ T }, c)

In this relaxation, each team is treated as equivalent, and hence the relaxation does not
consider task-compatibility requirements, nor the availabilities of each team. As we will
see in Section 5.2, computing a solution that minimizes the capacity c, is often much faster
than solving the full problem. We add the lower-bound on c found by the solver to the
full-problem as a constraint, which can help the solver prove optimality faster.

Comparison to literature

The scheduling problem considered in this paper is most closely related to the Flexible-
Jobshop scheduling problem (FJSP), where a set of tasks is to be scheduled and assigned
to a set of resources (e.g., machines). However, compared to the flexible-jobshop problem,
we also consider the constraint where some tasks have to be assigned to the same team
(resource in FJSP). Moreover, in jobshop-scheduling, it is usually the goal to minimize the
makespan; this is not the case for our use case. We consider as primary objective to minimize
the number of resources (teams) required to complete the schedule. Additionally, we ensure
a fair distribution using the time-dispersion objective. While load balancing is considered in
FJSP literature, it is more common to minimize the maximum workload of a machine given
the time-horizon as not to wear out any machines more than others. This is different from
our objective and corresponds to the proxy_min_max formulation from Section 3.1.

CP 2025
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4 Interactive and explainable allocation

In this section, we outline our efforts to develop an explainable decision-making tool for
allocation of tasks to teams, with the potential for generalization to similar use cases. Our
primary application of explanation techniques will be to handle disruption scenarios, which
invalidate the precomputed schedule and require the planner to re-allocate and/or re-schedule
the set of tasks. Section 4.1 outlines several types of disruptions and Section 4.2 investigates
what types of explanation techniques can be useful for the planners.

4.1 Disruption scenarios
From the planner’s perspective, the scenario is as follows: an initial schedule and allocation
is established for upcoming shifts, with an estimate of available teams. This schedule can be
computed using the CP-models from the previous section or manually constructed by the
planners. As discussed in Section 1.1, various disruptions can affect the plan and possibly
make the foreseen allocation infeasible. In response, the planner must first understand the
implications of the disruption, and then adapt and reallocate the available resources such
that as many tasks as possible can still be allocated, without wasting resources.

To evaluate our explanation methods in a broad range of disruption scenarios, we use a
generator with adjustable parameters for simulating disruptions. These generator parameters
are designed in coordination with the real planners, to cover a range of realistic and complex
scenarios that arise in their daily practice. Table 1 details the parameters used for generating
resource disruption scenarios based on three key factors: the number of disruptions, the
number of affected teams, and the duration of the disruptions. As an illustration, the all
teams affected scenario corresponds to a situation where all working teams are unavailable
for a given amount of time, which can occur during extreme weather conditions. In less
extreme cases, such as the few disruptions scenario, some teams are unavailable for a
period of time caused by team meetings, transport accidents, or unexpected worker absences.
A single disruption can affect multiple teams when they need to share a certain resource in
the manufacturing site, e.g., when a hangar has to be evacuated due to a fire-drill. Figure 1
visualizes two instances of disruptions.

Table 1 Parameters for generating disruptions of each scenario type.

Scenario description No. of disruptions No. of teams affected Duration (Minutes)

few disruptions {1 . . . 3} {1 . . . |W|
2 } {15, 30, 60, 120}

long disruptions {1 . . . 3} 1 {120, 240, 360}
many disruptions {5 . . . 10} {1 . . . |W|} {15, 30, 60, 120}
many teams affected 1 { |W|

2 . . . |W|} {15, 30, 60, 120}
all teams affected 1 |W| {15, 30, 60, 120}
one team dropped 1 1 Horizon
two teams dropped 1 2 Horizon
delay - - Poisson(λ = 5)

After a disruption in the schedule has occurred, the planners will try to reallocate tasks
to other, free teams. However, in practice, this is often not possible as task-compatible teams
are usually already occupied with other tasks. In the next two sections, we explore how to
assist the planner in resolving these disruptions.
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▶ Example 4 (Example disruptions to a schedule). Figure 1 illustrates two classes of disruption
scenarios. Disruptions are shown as striped boxes, and the affected tasks are colored black.
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All teams disrupted

Figure 1 Examples of different disruption scenarios on the same base instance of 1 working shift.

4.2 Conflict detection: explaining why the allocation is unsatisfiable
In this first setting, we aim to explain to the planner why it was not possible to reallocate
all the tasks affected by the disruption. That is, we compute a minimal conflict in the
constraints by using a Minimal Unsatisfiable Subset (MUS)-extraction algorithm. As is
typical in MUS-extraction, we split the problem constraints into a set of foreground and
background constraints [18]. Foreground constraints are those that are explicitly presented
as part of the conflict while background constraints are assumed to always hold. In our
setting, we treat constraints that require tasks to be allocated (1), constraints that require
tasks to be allocated to the same team (3) and no-overlap constraints (4) as foreground
constraints. The remaining constraints are background, in combination with an encoding
of the disruptions. As a result, a MUS corresponds to a minimal set of overlapping tasks
that cannot be executed given the available teams. Section 6.1 experimentally compares
the Shrink and SMUS algorithms for computing MUSes for this setting. SMUS computes
the smallest MUS in terms of the number of constraints [19], while Shrink computes an
arbitrary MUS.

Figure 2a visualizes a set of task is allocated (3) constraints that together form a MUS.
Indeed, this irreducible set of tasks cannot be allocated given available teams and disruptions.

4.3 Feasibility restoration: explaining how to revise the model
After understanding the conflict in the allocation problem, the next step is to revise the
model such that a new schedule can be computed. Model diagnosis [26] can be used to
iteratively resolve all conflicts in the problem by sequentially resolving each individual MUS.
Indeed, a conflict represented by a MUS is resolved after the removal of one of its constraints.
However, by solving each conflict locally, in the end, more constraints may be removed
from the problem than strictly necessary. Therefore, we investigate two types of feasibility
restoration methods that can globally resolve all conflicts in the model.

4.3.1 Removing constraints with Minimal Correction Subsets
In this first approach to resolving disruptions, we compute a Minimal Correction Subset
(MCS). Such a correction subset presents the planner with a minimal set of constraints that
should be removed, so that the resulting model will admit a solution. Similar to computing

CP 2025
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(a) Visualization of a MUS. (b) Visualization of a MCS.

Figure 2 Visualization of two explanation methods for the same working shift and disruption.

a MUS, the model is split into foreground and background constraints. Here, the foreground
constraints are those that can be removed, while the background constraints are always
enforced. In this setting, we only allow to remove tasks from the schedule (1) or remove
same-allocation constraints (3). All other constraints are considered background. Figure 2b
visualizes an MCS and the resulting solution where two tasks (in blue) can be dropped from
the schedule in order to resolve the disruption. Section 6.1 experimentally investigates two
types of MCS-computation algorithms: we explore a greedy Grow-based algorithm to find
an arbitrary MCS, and a reified Max-CSP formulation for finding an optimal MCS.

4.3.2 Rescheduling using multi-objective feasibility restoration
Using MCS-based feasibility restoration can cause drastic changes to the model [3]. Indeed,
as constraints (or tasks) are removed from the model in order to restore feasibility, the
resulting solution may drastically change compared to the initial assignment. Moreover, a
disruption may only overlap with a task for a short period of time and, instead of removing
the task, it could be slightly shifted to a later time. In this section, we investigate such
fine-grained alterations to the schedule, which are not possible by computing MCSes on
the infeasible allocation model. That is, we convert the original allocation problem to
a allocation-and scheduling-formulation as outlined in Section 3.2. Then, based on the
original assignment α, which is now infeasible, we define several similarity objectives. These
objectives serve to ensure the newly computed solution is as close as possible to the original
assignment [10, 14, 30]. We define 5 such similarity objectives:

Maximize the amount of tasks that are still allocated to a team (#done):

maximize (
∑
t∈T

(
∑

w∈W
xt,w)) = (

∑
w∈W

α(xt,w)) (10)

Minimize the tasks that are re-allocated to a different team (#realloc):

minimize
∑

w∈W

∑
t∈T

(α(xt,w) ̸= xt,w) (11)

Minimize the number of shifted tasks (#shift).

minimize
∑
t∈T

(α(st) ̸= st) (12)
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Minimize the total shift in time of the tasks (sum-shift)

minimize
∑
t∈T

|α(st) − st| (13)

Minimize the maximum shift in time of the tasks (max-shift)

minimize max
t∈T

|α(st) − st| (14)

Instead of optimizing only one of these similarity objectives, we propose to combine these
into a LMOCOP. This allows us to adjust the ordering of objectives, which, after solving
with techniques similar to Example 1, produce differently repaired schedules after disruptions.
In Table 2, we propose several orderings of the similarity objectives that can be used as
sub-objectives to the LMOCOP.

Table 2 Optimization orders used for feasibility restoration with rescheduling.

Optimization order Lexicographic ordering

Reallocation first (A) #done ≺ #realloc ≺ #shift ≺ sum-shift ≺ max-shift
Shift first (B) #done ≺ #shift ≺ sum-shift ≺ max-shift ≺ #realloc
Sum of shifts first (C) #done ≺ sum-shift ≺ max-shift ≺ #shift ≺ #realloc
Max-shift first (D) #done ≺ max-shift ≺ sum-shift ≺ #shift ≺ #realloc

Figure 3 shows two repaired schedules for different orders of the sub-objectives on the
same instance as Figure 2. Depending on the ordering of the similarity objectives, a different
trade-off between re-allocating and re-scheduling tasks is found by the solver.

By optimizing the LMOCOP for each lexicographic ordering, we can present the decision
maker with multiple alternatives on how to resolve the disruption; as can be seen, many
of these resolutions go further than shifting or re-allocating single tasks, and repairing the
allocation can involve a chain of moves in order to ensure all tasks can be allocated to a
non-disrupted team; which is tedious and time-consuming for planners to do by hand.

(a) Using order A: #realloc = 3, #shift = 12. (b) Using order B:: #realloc = 14, #shift = 4.

Figure 3 Repaired schedule after disruptions using different optimization orders.
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5 Computational results on solving the allocation/scheduling problem

In this section, we investigate the efficiency of the different modeling approaches for solving
the allocation/scheduling problem and Section 6 investigates the efficiency of the explanation
techniques. More concretely, this section aims to answer the following questions:
EQ1. How do Constraint Programming (CP), Integer Linear Programming (ILP) and Pseudo-

Boolean (PB) solvers compare for solving the allocation problem?
EQ2. Which objective function yields the best fairness in terms of time-dispersion?
EQ3. What is the effect of adding a lower-bound from the problem relaxation in the scheduling

problem?

We implement the models of Section 3.1 and 3.2 in the CPMpy [17] library version
0.9.23 and use as underlying solvers OR-Tools CP-SAT v.9.11; the ILP-solver Gurobi
v12.0.0 and the Pseudo-Boolean solver Exact v2.1.0 [11, 13]. The experiments in this
section were ran on a single thread of a Intel(R) Xeon(R) Silver 4514Y and 256GB of
RAM. For the allocation problem, we set OR-Tools to not use any sub-solvers to evaluate
a pure CP-approach of solving the problem and for the scheduling problem, we allow
it to use 8 threads. We consider instances of 8h horizons over a period of 3 months.
This corresponds to one shift of the worker-teams and an average number of 67.6 tasks
to be scheduled and allocated. All instances and models are made publicly available on
https://www.github.com/ML-KULeuven/Explainable-Workforce-Scheduling.

5.1 Solving the allocation problem
We first compare different solvers and models for allocating tasks with fixed start-times.

Minimizing the number of teams

In Figure 4, left side, we plot the number of instances solved to optimality by each solver,
with and without symmetry breaking as described in Section 3.1. We notice that both CP
and PB-solving can benefit greatly from breaking symmetries in the model. Indeed, both
OR-Tools and Exact can solve ±125 instances when symmetry breaking is disabled. However,
by imposing an order on the equivalent teams for the given time horizon, OR-Tools solves
±200 instances, and Exact solves all instances in our dataset. Interestingly, we notice that
Gurobi does not benefit from breaking the symmetries in the model, and the performance
slightly degrades instead. Still, in both settings, Gurobi is solves all instances in <1 seconds.
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Figure 4 Computational results on the allocation use-case (time-horizon of 8h).

https://www.github.com/ML-KULeuven/Explainable-Workforce-Scheduling


I. Bleukx, R. Boumazouza, T. Guns, N. Laage, and G. Poveda 6:13

Minimizing time-dispersion

We found that computing optimal solutions for the time-dispersion using the straightforward
formulation maxw∈W(timew) − minw∈W(timew) is a challenging problem, and solvers are
often stuck proving optimality. Indeed, as shown in Section A, no solver was able to prove
optimality for more than 30% of the instances. In Figure 4, right side, we plot the true
dispersion during optimization for each of the dispersion-formulations outlined in Section 3.1
for Gurobi with results for other solvers in Section A. Interestingly, while Gurobi does not
prove the optimality of the solution, the time-dispersion drops to ±15min on average within
10s of solve-time. Furthermore, although more instances using the proxy-metrics are solved
to optimality, this does not actually contribute to a better overall time-dispersion. From this
experiment, we can conclude that although optimality is not proven for most instances, exact
formulations of the time-dispersion work well for allocating the tasks fairly among the teams.

5.2 Solving the scheduling problem
We now turn to the much more computationally intensive case of scheduling, where tasks are
not yet fixed in time. We only use OR-Tools CP-SAT as it is the only solver we tested with
support for the appropriate global constraints. Figure 5, left side, shows the runtime for
optimizing the number of teams in the scheduling problem. While OR-Tools is able to solve
only ±100 instances to optimality in the bare-bones model, adding the lower-bound of the
relaxed problem greatly improves the performance of the solver and ±100 extra instances are
solved. The right-side of Figure 5 reveals that the lower-bound found by the solver is close
to or equal to the true optimal number of teams required to allocate all tasks and hence, by
adding the lower-bound to the model, we alleviate a lot of the work in proving optimality. In
83% of instances, the computed lower-bound is a proven optimal for the relaxed problem.

6 Computational results on explanation-generation

In this section, we investigate how effective the explanation methods of Section 4 are for
explaining and correcting infeasible schedules due to disruptions. More precisely, we first
investigate the computation time and size of MUSes and MCSes and subsequently, we
investigate how infeasible schedules can be repaired using feasibility restoration methods.
We use the generator from Section 4.1 to generate 4663 instances, summarized in Section B.
All experiments were ran on a 2.8GHz AMD CPU with 16 cores and 64GB of RAM.
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6.1 Computation of MUS and MCS explanations
The results presented in this section were obtained by running default implementations of
MUS and MCS-algorithms as implemented in CPMpy v0.9.23, on the unsatisfiable scenarios
listed in Table 7. In particular, we use Shrink [23] for computing any MUS, SMUS [19] for
computing a smallest MUS, Grow [24, 25] for finding any MCS and finally we use a reified
Max-CSP formulation for finding an optimal MCS. In all MUS and MCS-experiments we
use Exact [11] as solver, as it supports incremental and assumption-based solving [34].

Runtime of explanation-computation

In our tool, we want to be able to quickly compute explanations when disruptions occur,
such that the planners can interact with these explanations. For computing MUSes, there is
a clear runtime-difference between a smallest MUS, and computing a MUS using Shrink as
the runtime is doubled on average. Moreover, computing optimal MUSes times-out in 5.81%
of the instances and yields significantly higher runtime for some disruption types such as the
two teams dropped scenario, shown in Figure 3, left side. This is likely due to the inner
workings of the SMUS algorithm which iteratively computes MCSes. In this scenario, many
tasks can be re-allocated and hence, many MCSes may be enumerated.

Computing an MCS using Grow and optimal MCSes using Max-CSP shows less
difference in runtime, and both methods compute MCSes in under 1 second on average.

So, while computing MUSes and MCSes can be done quickly for this application, the
potential time-out for SMUS does not outweigh the slight decrease in explanation size
compared to computing MUSes using the simpler Shrink algorithm.

Explanation size

From an application perspective, it is preferable to show small explanations are they are
typically easier and quicker to understand by the planner. Figure 6b shows the size of MUSes
and MCSes found by various methods for all disruption scenarios. Here, we clearly see a large

(a) Runtime of computing MUSes and MCSes. (b) Size of explanation.

Figure 6 Comparison of runtime and explanation quality for different scenarios.

Table 3 Summary of averaged performance metrics for XAI methods on the allocation use-case.
The number of constraints requiring a task to be allocated in explanations is shown in brackets.

Method Time(s) MUS size %Timeout Method Time(s) MCS size %Timeout

SMUS 2.06 4.42 (3.72) 5.81 Max-CSP 0.82 6.67 (6.29) 0.00
Shrink 1.13 4.55 (3.99) 0.04 Grow 0.88 7.99 (7.31) 0.00
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difference in the size of MUSes depending on the scenarios. For example, when all teams
are disrupted, a MUS consists of just a single task that is allocated within that disruption
period. Conversely, when one or two teams are dropped from the available set of teams, a
MUS contains a set of tasks that fully saturates the original set of available teams, and one
of these tasks was allocated to a now dropped team. Additionally, we can observe that in all
scenarios, the size of an optimal MUS is close to the size of an arbitrary MUS computed by
Shrink. This suggests that all found MUSes have more or less the same size for our setting,
given a disruption scenario.

Comparing the size of MCSes, there is overall a larger difference between the optimal
MCS found by Max-CSP and one found by Grow. For example, in the delay scenario, the
Max-CSP approach on average finds a set of 6 constraints to drop, compared to 10 in the
grow-based approach. Interestingly, the scenarios where one full team is dropped from the set
of available teams do not necessarily correspond to larger MCSes, as only a few tasks need
to be dropped from the allocation. This suggests that the full set of teams is only required
at a few points in the working-shift, and most tasks can be allocated to different teams by
(potentially many) re-allocations, instead of being dropped. Conversely, when many teams
are affected by the same disruption, most tasks that overlap with this disruption have to be
dropped from the planning horizon.

6.2 Multi-objective feasibility restoration
We now investigate the effectiveness of restoring feasibility by computing fine-grained altera-
tions to the schedule as described in Section 4.3.2. We use OR-Tools CP-SAT with 10 search
workers to solve the lexicographic optimization models as introduced in Section 4.3.1, using
the sequential solving approach outlined in Section 2. For each of the 5 objectives, we set
a time-limit of 5 seconds, such that the total time for feasibility restoration is limited to
25s. Table 4 summarizes the final objective value for each similarity objective for each of the
optimization orders and across all scenario types. The number of not-done tasks (#not-done)
is derived from the #done similarity objective.

Table 4 Averaged objective value for feasibility restoration, grouped per lexicographic ordering.

Optimization order #not-done #realloc #shift sum-shift max-shift

Reallocation first (A) 1.00 8.37 23.21 289.21 24.04
Shift first (B) 0.96 22.60 17.59 244.75 21.40
Sum Shift first (C) 0.98 22.48 16.66 198.93 16.15
Max Shift first (D) 0.98 22.95 17.54 199.71 14.91

Comparing the number of dropped tasks in the above table to the MCS-results in Table 3,
we can clearly see that more-fine grained feasibility restoration leads to less tasks dropped.
Indeed, repaired schedules using the optimal MCS drops on average 6.29 tasks, whereas
allowing for re-scheduling of tasks only drops a single task on average.

As expected, there is a clear trade-off between shifting tasks and re-allocating tasks after
a disruption. In “Reallocation first (A)”, which prioritizes minimization of re-allocated tasks,
8.37 tasks are re-allocated on average, while for the other orders between 22 and 23 tasks
are re-allocated. Conversely, prioritizing minimization of shift-related metrics amounts to a
lower number of shifted tasks (16-17) at the cost of more re-allocations.

Table 4 shows that by altering the order of the objectives, the resulting repaired schedule
can be influenced significantly, and hence, we can use these orderings to propose several
alternatives to the planners.
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Table 5 Fraction of instances solved to optimality for each sub-objective.

Optimization order #not-done #realloc #shift sum-shift max-shift

Reallocation first (A) 0.97 0.96 0.84 0.90 0.89
Shift first (B) 0.98 0.63 0.60 0.68 0.66
Sum shift first (C) 0.97 0.64 0.43 0.80 0.67
Max shift first (D) 0.97 0.65 0.59 0.88 0.68

Interestingly, optimizing the total magnitude of shifted tasks, results in less tasks that
are shifted on average, compared to minimizing #shift directly. Table 5 reveals that this is
due to #shift being a more difficult objective to optimize compared to sum-shift, thereby
often reaching the time-limit of 5s. Indeed, in only 60% of the instances, OR-Tools was able
to provide an optimal solution when optimizing this continuity objective first. In “Sum Shift
First (C)”, the sum-shift continuity objective was proven optimal in 80% of the instances
and, by minimizing this simpler objective first, the resulting repaired schedule contains less
shifted tasks overall.

7 Conclusions and future work

We have presented an industrial setting of a workforce-allocation and scheduling problem.
We have showed that, using modeling techniques such as symmetry breaking, both PB and
ILP-solvers can solve the allocation problem efficiently, and produce fair solutions regarding
time-dispersion. For the scheduling variant, additional techniques such as adding the lower-
bound of a relaxed problem are required in order to find optimal schedules. In future work,
we plan to explore allowing for direct transfers from one location to another, which requires
extending our formulation to a full allocation-and-routing problem [5].

Additionally, we have identified several disruption scenarios and investigated how to
support a decision maker using explainable constraint solving techniques; we have experi-
mentally shown that explanations such as MUSes and feasibility restoration can be computed
efficiently. Hence, we deem it feasible to deploy such an interactive system as a decision
support system for the planners. We are currently setting up a user-study to evaluate how
effective the different generated explanations are in practice. Such user-study will enable to
further tune the type of explanations generated by the system and going further, could allow
us to learn preferences of the planners in repairing the schedule [16, 2, 31].

A future, alternative setting for dealing with possible disruptions in the schedule, is to
ensure the original solution is robust [22]. A robust solution remains feasible, or even optimal
when the parameters of the constraint model change. A robust schedule can for example
introduce larger breaks in between tasks to account for possible delays. That robustness of a
solution typically comes at the cost of higher computation times, and the need for specialized
solving algorithms, which makes integration with production systems nontrivial.

Finally, we want to explore how we can assist planners by generating explanations for the
full scheduling variant as well, similar to the explanations we developed for the allocation
problem in this paper. This raises new challenges such as how to efficiently use global
constraints in MUS and MCS-computation algorithms.
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A Detailed results on optimizing dispersion

Below, we show the detailed objective incumbent for each of the solver/model configurations.
Note that we show the true dispersion value according to the exact formulation.
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(a) With symmetry breaking.
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Figure 7 Dispersion objective incumbent for OR-Tools CP-SAT.
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Table 6 Percentage of instances solved to optimality.

Solver Break symmetries? Dispersion variant %solved to optimality

OR-Tools CP-SAT

No

MAX_DIFF 7.41
MAX_MINUS_MIN 8.52
PROXY_MAX_MIN 5.93
PROXY_MIN_MAX 8.52
PROXY_SUM 7.04

Yes

MAX_DIFF 9.63
MAX_MINUS_MIN 9.63
PROXY_MAX_MIN 5.93
PROXY_MIN_MAX 8.89
PROXY_SUM 7.41

Gurobi

No

MAX_DIFF 17.41
MAX_MINUS_MIN 18.89
PROXY_MAX_MIN 78.15
PROXY_MIN_MAX 78.15
PROXY_SUM 13.33

Yes

MAX_DIFF 30.37
MAX_MINUS_MIN 33.33
PROXY_MAX_MIN 78.52
PROXY_MIN_MAX 78.52
PROXY_SUM 15.56

Exact

No

MAX_DIFF 7.41
MAX_MINUS_MIN 8.89
PROXY_MAX_MIN 5.19
PROXY_MIN_MAX 5.56
PROXY_SUM 4.81

Yes

MAX_DIFF 10.00
MAX_MINUS_MIN 14.44
PROXY_MAX_MIN 5.93
PROXY_MIN_MAX 11.85
PROXY_SUM 22.22
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Figure 8 Dispersion objective incumbent for Gurobi.
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Figure 9 Dispersion objective incumbent for Exact.
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Figure 10 shows the number of instances and solve-time for finding a lower-bound of the
scheduling problem by solving the relaxed problem from Section 3.2.

0 25 50 75 100 125 150 175 200
Number of instances solved

10 2

10 1

100

101
Ru

nt
im

e 
in

 se
co

nd
s

Runtime of lower-bound computation

Figure 10 Runtime for solving the relaxed problem to optimality.

B Detailed results on explanation-generation

Table 7 summarizes the instances used for all explanation-generation methods for each
scenario.

Table 7 Overview of generated scenarios, relative value to total number of tasks in parenthesis.

Scenario description #Instances #Disr. #Teams(%)
∑

duration #Tasks Disr(%)
count mean mean mean mean

few disruptions 1167 2.71 5.66 (0.6) 411.56 11.23 (0.11)
long disruptions 411 2.45 2.27 (0.26) 582.19 6.48 (0.06)
many disruptions 128 6.16 8.72 (1) 1355.74 17.88 (0.13)
many teams affected 1049 1 7.83 (0.83) 361.74 9.11 (0.08)
all teams affected 974 1 9.46 (1) 383.59 10.58 (0.09)
one team dropped 334 1 1 (0.11) 744.43 13.27 (0.11)
two teams dropped 306 1 2 (0.21) 1480.78 26.48 (0.21)
delay 294 – – – –

Table 8 provides a summary of the number of instances, average runtime, and average
explanation size, categorized by scenario type and XAI method. The explanation size
corresponds to the number of constraints involved in the generated explanations.
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Table 8 Total number of instances, average runtime, and average explanation size, number of
timeout, broken down by scenario type and XAI method (MCS vs. MUS).

Scenario description Explanation type No. Of instances Runtime (s) ↓ Size XAI ↓ Timeout

few disruptions MCS 2334 0.80 4.75 0
MUS 2186 1.95 6.23 148

many disruptions MCS 256 0.86 13.18 0
MUS 254 1.24 2.16 2

many teams affected MCS 2098 0.80 8.55 0
MUS 2072 1.50 2.89 26

all teams affected MCS 1948 0.84 12.31 0
MUS 1948 1.03 1.00 0

long disruptions MCS 822 0.79 1.87 0
MUS 821 1.48 9.12 1

one team dropped MCS 668 0.82 2.63 0
MUS 666 1.63 9.49 2

two teams dropped MCS 612 0.92 6.90 0
MUS 518 2.86 8.05 94

delay MCS 588 1.35 7.67 0
MUS 588 1.87 3.05 0

Figure 11 Correlation between problem size, runtime, and explanation size.

CP 2025
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C Detailed results on rescheduling per scenario type

Table 9 display the detailed results for each scenario type, using the objective order A. We
see that the scenario type with the most task that are dropped is the all teams affected.
On other continuity objectives, the two teams dropped implies more shifts.

Table 9 Rescheduling results per scenario type (only with optimisation order A).

Scenario description #not-done #realloc #shift sum-shift max-shift

few disruptions 0.21 8.19 26.36 347.48 26.43
many disruptions 1.80 8.81 29.08 392.32 25.85
many teams affected 0.94 5.55 22.83 302.94 25.85
all teams affected 2.87 5.15 24.21 305.54 24.85
long disruptions 0.19 8.23 11.62 140.29 21.94
one team dropped 0.42 14.47 13.47 156.26 22.69
two teams dropped 0.67 28.07 36.95 507.95 26.09
delay 0.01 2.00 20.51 57.04 6.97

Table 10 details the optimality proof per scenario type, highlighting notably that the
scenario two teams dropped is the most difficult.

Table 10 Fraction of optimality proof for each lexico-phase, for each scenario type.

#not-done #realloc #shift sum-shift max-shift
Scenario description mean mean mean mean mean

few disruptions 0.98 0.54 0.41 0.69 0.53
many disruptions 0.92 0.66 0.58 0.87 0.72
many teams affected 0.95 0.83 0.73 0.93 0.87
all teams affected 0.97 0.86 0.79 0.98 0.89
long disruptions 0.98 0.75 0.58 0.73 0.71
one team dropped 0.99 0.71 0.58 0.77 0.73
two teams dropped 0.96 0.34 0.12 0.44 0.24
delay 0.99 0.99 0.99 0.96 0.99
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