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Abstract
In industrial settings, cutting predefined pieces from one or multiple sheets of material is a common
optimization challenge. This problem can be formulated as a variant of the 2D bin packing problem,
where the edges of the pieces define the cut lines. This paper presents a constraint programming
model developed in collaboration with an industrial partner in construction to minimize scrap waste
generated when cutting insulation pieces. The model introduces an objective function designed to
maximize the reusability of leftover material. To fully leverage the model’s efficiency, an initial
process transforms irregular insulation pieces into rectangles using one of four processing methods. A
comparative analysis is conducted to evaluate the impact of these methods, as well as to benchmark
the model’s results against the partner’s manual approach.
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1 Introduction

Efficient material utilization is a critical concern in modern manufacturing. Minimizing
waste directly translates into environmental benefits and helps industries reduce costs. In the
construction industry, cutting insulation pieces from material sheets presents a complex but
common challenge. At its core, this problem can be seen as a variant of the two-dimensional
bin packing problem, in which the goal is to pack irregular shapes onto sheets while minimizing
the unused area in said sheets. Unlike classical packing problems where no cutting is done,
the unused area here results in waste. Thus, the insulation nesting task further demands
that scraps not only be minimized but also have a shape that favors reusability for cutting
future pieces. For example, a single rectangular scrap is preferable to many long and thin
pieces, even if their combined area is the same.

In practice, insulation pieces are not always rectangles. Instead, they are often made up
of multiple different shapes predefined in a way that fits the factory that produces them.
Moreover, the pieces can be rotated or flipped to fit better on the sheet, which increases
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the combinatorial complexity of the problem. This increased complexity, coupled with the
heterogeneous nature of the available sheets (new sheets and recycled scraps), makes the
already NP-Hard 2D bin packing problem [14, 15] even more complex and requires the use
of sophisticated heuristics and exact methods.

This work presents two novel constraint models that integrate one distinct objective, each.
First, the total area of the sheets that are used to nest the pieces is minimized. This reduces
the number of sheets used and prioritizes the use of scraps over new sheets. Second, using
the sheets found using the first model, the placement of all pieces is optimized to enhance the
reusability of any resultant scrap. To manage the inherent computational difficulty, irregular
insulation pieces are transformed into rectangles by a preprocessing phase that occurs before
the optimization phase. The preprocessing uses one of the four new algorithms that we
introduce. These methods aim to reduce the search space of the optimization process, thus
improving computational efficiency.

The proposed approach is compared with the manual strategies traditionally used by our
collaborating industrial partner. The analysis highlights improvements in material utilization
and scrap reusability, which offer a significant step toward automated and sustainable
production practices that can be applied to many industries.

2 Preliminary concepts

2.1 Cutting and Packing Problems

Cutting and packing problems [6] are part of a category of problems that have been studied
well before computers. The simplicity of these problems, paired with the fact that they arise
naturally in a lot of domains, makes them good candidates for research in optimization.
Since Gilmore and Gomory [16] laid the foundation of modern computational approaches
to the cutting stock problem, the field grew much, and many subproblems were officially
classified. Wäscher et al. [27] proposed the (currently) most popular of these classifications,
splitting cutting and packing problems into two distinct categories. The first category,
output maximization, considers problems in which items have to be packed in a single
container of fixed size, maximizing the number of items packed (or their value). The second,
input minimization, considers problems where all pieces must be packed in one or many
containers, minimizing the number of containers used. This category contains problems such
as the open dimension problem (ODP), also known as the strip packing problem (SPP) [18].
Schutt et al. proposed a great example of the use of the SPP for industrial purposes in [24].
The SPP considers a single container of infinite length, which differentiates it from the
cutting stock problem (CSP) [8, 17] and the bin packing problem (BPP) [1, 3, 9, 18, 22].
These two problems consider the use of one or many containers of fixed sizes. Although
both subproblems manage the use of homogeneous and heterogeneous containers, their main
difference comes from the items to pack. Where the CSP uses predefined cutting patterns
to determine how to cut the different pieces, the BPP uses no pattern and instead works
with highly heterogeneous items as input. Our problem is a specific implementation of the
BPP for which we present a model that acts on a problem that is not well documented in
the literature: maximizing the potential reusability of scraps. While minimizing scraps is
common, maximizing their reusability is not and justifies the implementation of a new model.
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2.2 Constraint Programming

Constraint programming (CP) is a programming paradigm specialized in solving satisfaction
and optimization problems, such as those presented in Section 2.1 and in [25]. These problems
are defined as mathematical models, where the decision variables are linked together with
constraints that restrict the possible assignments to the solution space. Many predefined
constraints already exist in popular solvers, often under different names. This disparity
(and the fact that solvers are often implemented in different programming languages) led, in
2007, to the creation of MiniZinc [21], which is a CP modeling language that can seamlessly
translate the defined problem to work with multiple solvers, such as Chuffed [10] and CP-
SAT [23]. The presented MiniZinc models incorporate two important constraints: DiffN
and Cumulative.

The DiffN constraint [4, 26] considers a set of two-dimensional rectangles and constrains
their relative placements so that they do not overlap. The constraint is formally expressed
as: DiffN([X1, . . . , Xn], [Y1, . . . , Yn], [width1, . . . , widthn], [height1, . . . , heightn]), where Xi

and Yi represent the positions of the rectangles and heighti and widthi their dimensions.
This constraint is especially useful for cutting and packing problems.

The Cumulative constraint [2, 26] is used in scheduling problems to limit the number of
tasks that can be executed simultaneously, but it can also be used efficiently in cutting and
packing problems. Since it encodes the placement of tasks on a timeline, it can also encode the
position of pieces over one dimension. Formally, it is expressed as: Cumulative([s1, . . . , sn],
[d1, . . . , dn], [r1, . . . , rn], B) , where si represents the position of a piece, di its length, and ri

its height. B represents the maximum height allowed. It ensures that at any position along
the dimension, the total height of the overlapping pieces does not exceed B.

Adding the Cumulative to the DiffN is considered redundant. In our case, this
redundancy improves the solver convergence speed by pruning invalid placements early and
more efficiently than by using only DiffN [20].

3 Case study

SOKÏO is a wood manufacturer that is developing a highly customizable construction system.
Its products are buildings whose components, such as walls, roofs, and floors, are made from
cross-laminated timber (CLT) and are assembled directly in the factory in a fully automated
way. For example, walls are made from layering the main CLT panel, insulation, doors,
windows, and cladding. After being layered, all panels are brought to the site to be assembled,
making it possible for the installation to be completed in one or two days at most.

Built with automation in mind, the different systems fueling the factory’s production are
seamlessly linked together and can communicate in a digital twin (DT) [12] developed in the
Unity® game engine. Clients and architects eager to design their own dream building can
freely do so in the DT, while the back-end of the app built using constraint programming
ensures that the building fully respects all the different constraints of the factory.

The system in question in this paper concerns the nesting of insulation pieces. The shapes
and dimensions of these pieces are calculated in real time during the product configuration
process [28], and sent to the nesting module. As explained in the next section, this system
computes an optimal way to cut the different input pieces into predefined sheets while
optimizing key metrics, such as scrap reusability. This process saves a lot of time for SOKÏO,
which used to do it by hand. It also saves critical quantities of insulation material by
facilitating its reusability and reduces operations and labor costs.

CP 2025
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(a) Specifications. (b) Examples.

Figure 1 Insulation pieces.

4 Problem presentation

To provide context for the proposed algorithms, it is important to understand the basic 2D
bin packing problem [18, 22]. This problem involves two components: i) a set of rectangular
items, and ii) a set of rectangular bins in which we need to fit all the items. The bins
typically have the same predefined dimensions. The items also have their dimensions set in
advance, with the added assumption that they can fit in the bins. These items can rotate 0°
(without rotation) or 90°. Using these definitions, the goal is to find the smallest number of
bins in which it is possible to fit all the items.

4.1 Insulation nesting

When applying these concepts to the insulation nesting problem, the bins are represented
by insulation sheets, and the precomputed insulation pieces are the items. All insulation
sheets come in a standard size of 8 feet by 4 feet, and the precision of the tools used to cut
by SOKÏO is 1

16 of an inch. All pieces are cut individually from the sheets, without common
or guillotine cuts constraints [22]. We now add to the complexity of this problem by refining
it with these new modifications/additions:
1. The shape of the precomputed pieces is now defined by the following constraints, repres-

ented in Figure 1: i) The piece must have a rectangular component of width w > 0 and
height hr ≥ 0. ii) It must have a right triangle component, whose width is equal to w

and height ht ≥ 0. iii) The sum of heights hr and ht is strictly greater than 0. These
shape definitions allow for rectangular, triangular, and trapezoidal insulation pieces.

2. We use two rotational values (0° and 90°) when working with rectangular elements. These
rotations offer the possibility for the sides of the items to align in an orthogonal way to
the edges of the bins. Although this is not enough to obtain optimality in all cases [7],
this is a great compromise between simplicity and results that are more than sufficient
for our particular domain. For non-rectangular elements defined by the shape presented
in point 1, we are required to use more than two rotations. Since at most one side of
the trapezoidal shape has two right angles, two possible rotational values (180° and 270°)
are added to ensure that it can correctly align to the bin. Additionally, to account for
the possible placements of the right triangle in the sheet, it is possible to flip the piece
over. Thus, we go from two possible rotations to eight (four rotations if not flipped, four
if flipped) when working with a shape that has a triangle height ht > 0.
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3. Sheets are not all the same size. For SOKÏO and many other companies, the ability to
reuse scraps and smaller sheets has great potential value. As a result, they need to be able
to specify sheets that have dimensions smaller than the ones predefined for new sheets.
These smaller sheets represent scraps that have been acquired by cutting insulation sheets
in the past. The model has to be able to take these scraps into account so that they can
be reused in the future. Following the above nomenclature, these different-sized bins are
referred to as being strongly heterogeneous [27].

4. Although the main objective remains similar, we now aim to minimize the total area
of the sheets in which the pieces are nested, rather than only their number. A second
objective is also introduced. This is justified by the fact that the “creation” of scraps of
sizes large enough to be reused later for nesting insulation pieces is critical, as implied
by point 3. This second objective aims to position the insulation pieces in the sheet
in a way that maximizes the reusability of its wasted area. This goal is complex to
describe as a quantifiable metric due to its subjective nature, and this is part of the
reason why the literature on this exact subject is rare, especially when working with
constraint programming.

4.2 Instance specification
A formal specification of an instance of the described problem is defined as follows: We are
given two sets: i) Let P be the set of indices of the insulation pieces. For each p ∈ P, the
piece p is defined by its width wp , its rectangular height hrp and its triangular height htp .
ii) The set R contains the indices of rectangular sheets, which have predefined widths and
heights (swr and shr ∀ r ∈ R). These are ordered by non-decreasing area swr · shr, and
represent old heterogeneous insulation scraps that can be reused as bins. Using these sets,
we define S, which contains all the scrap sheets in R plus |P| new sheets that are added
in sufficient quantities to make the instance feasible. The new sheets all have the same
dimensions. Each sheet s ∈ S is defined with their width sws and height shs.

The goal is to assign each piece p ∈ P a sheet s ∈ S, a position in the sheet (considering
that the piece’s origin is located at its bottom left corner), and a rotation such that none of
the pieces overlap, while minimizing the total area of the used sheets. After finding optimality
for the area of the sheets that are used, we also want to optimize the scrap reusability, further
refining the solution of the problem. All this being said, we can consider the typology brought
up by Wäscher et al. [27] to classify the problem as a variant of the residual bin packing
problem (RBPP), where the dimensions of the residual pieces are considered an objective
during the optimization process. Of course, a quantifiable metric is needed to optimize this
value, which will be introduced in Section 5.3.2. Figure 2 shows two possible placements of
the same pieces in a sheet. The example in Figure 2a is objectively worse than the one in
Figure 2b when comparing the reusability of the scraps.

5 Methodology

5.1 Preprocessing – converting pieces to rectangles
The NP-Hardness of the problem makes it difficult for large instances to be computed to
optimality in a reasonable time. First, having to deal with shapes that contain angles
non-divisible by 90° adds an incredible layer of complexity, as computing the collisions
between the shapes now relies on using trigonometric functions rather than simple edge
placement comparisons. The eight possible rotations also make the solver’s search tree

CP 2025
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(a) Scraps with non-optimal reusability. (b) Scraps with optimal reusability.

Figure 2 Packing examples: Pieces (white rectangles) are packed within the hatched sheet.
Visible hatched areas are the resulting scraps.

Figure 3 Instance being passed to the different preprocessing algorithms.

exponentially larger than if only two were used. That being said, four different polynomial-
time preprocessing algorithms will be introduced and compared. Figure 3 shows an example
of a set of pieces, which is sent to the different preprocessing methods to be analyzed in
Figure 4. The goal of these algorithms is to reduce the search space by transforming the
pieces into rectangles before sending them to the solver. Each preprocessing method receives
the same input (assuming that it is working with the same instance), this being the set
of pieces P and their dimensions. They all also return an output of the same form: First,
each preprocessing returns two arrays of the same length that contain the dimensions of
the newly created rectangular shapes, W and H. Second, they also return an array named
SUB, which will be explained in more detail in Section 5.1.2. Note that the preprocessing
presented in Section 5.1.4 introduces a way to further decompose predefined insulation pieces,
which has significant implications for the definition of the problem in itself. We allow the
Slope mapping + preprocessing to decompose the non-rectangular pieces in such a way that
they can be represented as a rectangle, reducing the losses induced from the piece’s slope to
zero. These pieces are subdivided into exactly three new smaller pieces. Subdividing further
could allow for slightly better packing, but is not allowed since the factory wants to limit the
necessary cutting to a minimum.

5.1.1 Bounding box

The Bounding box preprocessing is depicted in Figure 4a. Each piece p ∈ P is transformed
into the smallest rectangle that can fully contain it. The width of the new rectangle is
equal to wp , while its height is set to hrp + htp . Of course, while being fast and easy to
comprehend, this preprocessing generates a substantial amount of scraps when working with
trapezoid pieces, since treating them as their bounding rectangles takes up more space than
they really occupy. Pieces with a triangular height htp of 0 do not create additional losses.
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(a) Bounding box. (b) Staircase.

(c) Slope mapping. (d) Slope mapping +.

Figure 4 Preprocessing algorithms examples.

5.1.2 Staircase

The Staircase preprocessing goes one step further in the same direction as Bounding box did
and creates multiple bounding boxes for each piece that has a triangular height component
htp > 0, reducing the amount of wasted space. Figure 4b shows this reduction by highlighting
the way it forces the model to consider pieces. Each of these pieces have their width wp
divided into sub subdivisions of equal width

⌊ wp
sub
⌋
, with any remainder wp mod sub added

to the last segment. The algorithm calculates the bounding box for each subdivision using
the original dimensions of the shape. For each subdivision, the starting and ending points
relative to the original width of the shape are known. It is possible to use the heights of the
piece hrp and htp together with this information to calculate their respective heights. This
calculation is shown in the following:

Suppose that the triangular height htp of a piece is always pointing upward and that its
bottom left corner is at the origin (0, 0). The piece is also flipped so that its upper corners
are at coordinates (0, hrp) and (wp , hrp + htp). Each subdivision has the x position of their
right boundary referred to as rb, which always has a value between 0 and wp (included). The
following expression is then used to calculate the height of each subdivision:

⌈
hrp + rb

wp
· htp

⌉
.

The bounding boxes are always high enough to contain their entire subdivision, as the value of
rb is always greater than the value of the x position of the left boundary for each subdivision.

Rectangular pieces that have a triangular height htp of 0 are treated differently. These
pieces are not subdivided, so their bounding box is the same as the piece itself. The SUB
array encodes the subdivision information for the model. In short, SUB is an array of length
|P|, where SUBp represents the number of subdivisions in which the piece p has been split,
∀p ∈ P. Since the pieces are always divided into the same number of subdivisions, the only
two possible values in SUB are sub, if the piece is a triangle or a trapezoid, or 1 if the piece
is a rectangle. Also note that an important constraint is added to the model when working
with subdivisions. Since the shape is not split into smaller parts but is only represented as
a combination of bounding boxes, it is important that these boxes remain connected when
being translated or rotated. These connections between the different subdivisions make it so
that the piece can be rotated in the eight possible rotations mentioned in Section 4 (each
individual subdivision only truly rotates 0 or 90 degrees as they are rectangular, but the
connection constraints model the eight feasible rotations).

CP 2025
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5.1.3 Slope mapping
The Slope mapping preprocessing acts as an extension of the simple Bounding box approach
by attempting to merge pieces that have an identical triangular height and width into one
rectangular piece. Figure 4c shows an example of two pieces that are matched together as a
singular rectangle, and the other piece, being alone, is instead considered as its bounding box.
For each piece p1 ∈ P , if htp1 ̸= 0, the algorithm searches for another piece p2 with the same
width and triangular height that has not yet been matched. If a match is found between
the pieces p1 and p2, they are stacked to create one larger rectangle, provided that their
combined height hrp1 + hrp2 + htp1 fits within the predefined dimensions of a new sheet. If
no match is found, p1 is transformed in the same way as it would have been by the Bounding
box approach. This approach has the potential to remove the wasted space from two pieces
that have the same triangular height component each time a match is found.

5.1.4 Slope mapping +
The Slope mapping + preprocessing refines the basic Slope mapping approach by further
addressing pieces that still inherently create losses when sent to the model, those being pieces
with triangular components that cannot be paired with a matching piece. Each piece p ∈ P
that matches this condition is decomposed by the algorithm into three smaller shapes. In
other words, each trapezoidal shape is converted into one rectangle, one triangle, and another
triangular or trapezoidal shape. The pieces p3.1, p3.2, and p3.3, as shown in Figure 4d, are
the result of the decomposition of piece p3 in Figure 3.

Applying the same assumptions made for the Staircase cutting phase, the piece can be
decomposed in a way that makes it reconfigurable as a rectangle, preventing any left losses.
First, two cuts are made, one at the coordinate (

⌊wp
2
⌋

, 0) going up to (
⌊wp

2
⌋

, hrp +
⌈

htp
2

⌉
),

and the other at (
⌊wp

2
⌋

, hrp +
⌈

htp
2

⌉
) going right to (wp , hrp +

⌈
htp
2

⌉
). Following these cuts,

the new pieces are considered to be two distinct rectangles. The first rectangle p3.1 has
a width of

⌈wp
2
⌉

and a height of hrp +
⌈

htp
2

⌉
. The second is made up of the pieces p3.2

and p3.3 stacked, creating a rectangle that has the same dimensions as the first. Although
it might not be ideal to cut a piece into three smaller pieces, the insulation pieces context
allows it. The Slope mapping + preprocessing is the only one among the four methods we
propose that leads to the cutting of a piece into smaller ones.

5.2 Preprocessing – Cutting margins
Before sending the data to the first optimization model, the dimensions of the sheets and
pieces are increased so that the cutting margins are taken into account. Insulation pieces
are cut using a 1

8
′′ wide water jet. This is modeled by increasing the width and height of

all (now rectangular) insulation pieces and insulation sheets by 1
8

′′. All pieces now contain
half the width of the jet ( 1

16
′′) as margins on each of their edges. Two touching pieces will

always at least be distanced by their combined margins (equal to the width of the jet), so
the water jet can directly cut between them and never impact the true sizes of the pieces.
Similarly, pieces on the edge of a sheet benefit from its increased dimensions. The placement
finished, the added dimensions of the sheet are removed, effectively removing the margins
of the pieces that were placed on its side. Figure 5 shows the effect of the added margins,
where 5a shows the addition of the margins to the pieces and sheets, 5b shows two pieces
with their margins touching and touching the edges of the resized sheet, and 5c shows the
final placement of the pieces, after the removal of the margins of the sheets.
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(a) Addition of the margins. (b) Effects of the margins. (c) Sheet margins removal.

Figure 5 Preprocessing – Adding the margins to the pieces and sheets.

5.3 Objective functions / models

The preprocessing step finished, it is possible to send the dimension values of the pieces
and sheets as well as the subdivision data to the first constraint model, thus starting the
optimization process. As mentioned earlier, two models are used sequentially. The first
minimizes the total area of the used sheets, prioritizing the use of scraps over new sheets.
The second optimizes the shape of the scraps. All preprocessing output their data in a way
that can be used by the first constraint model. This model, in turn, outputs its data in a
way that is usable by the second model.

The use of two sequential models is justified by the computation time. In essence, the
solver used by the first model computes the optimal sheets to use before sending them to the
next one. The second model then optimizes the reusability of the scraps without having to
think about reducing the total area of the used sheets again. Optimizing those two objectives
at the same time in a unique model does not work as efficiently because the solver spends a
lot of time optimizing the reusability of scraps even before the optimal sheets are found.

5.3.1 Sheets minimization model

From the selected preprocessing output, we receive the following: i) The array SUB of
length |P| indicates the number of subdivisions for a piece. For each piece p ∈ P, we
have SUBp = sub subdivisions if the piece p was subdivided by Staircase and SUBp = 1 if
not. We define the set D = {1, . . . ,

∑
p∈P SUBp} to be the indices of all subdivisions. ii)

The arrays W and H, each of length |D|, give the width and height of each subdivision.
Pieces that were not subdivided are still considered a subdivision, which means that the
dimensions of these pieces will also be present in W and H as a single subdivision. We
also have iii), the sheet widths SW and the sheet heights SH which are arrays of length
|S|. As stated earlier, the sheets in S are ordered by non-decreasing area, meaning that
∀s ∈ S where s > 1, SW s · SHs ≥ SW s−1 · SHs−1. The first model is described below and
uses the constants and variables presented in tables 1 and 2.

Table 1 Names, values and descriptions of model constants.

Name Value Description
SAs SW s · SHs, ∀s ∈ S Area of the sheet s (already ordered by non-

decreasing area)
SLs

∑s−1
i=1 SW i, ∀s ∈ S X position of the left edge of sheet s

Ip 1 +
∑p−1

i=1 SUBi, ∀p ∈ P Index of the first subdivision of the piece p
R |{s ∈ S | SAs < max(SA)}| The number of sheets that are scraps

CP 2025
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Table 2 Names, domains and descriptions of model variables.

Name Domain Description
sheetd S, ∀d ∈ D The sheet in which the d subdivision is nested
ld {0, . . . ,

∑
s∈S SW s}, ∀d ∈ D X position of the left edge of subdivision d

rd {0, . . . ,
∑

s∈S SW s}, ∀d ∈ D X position of the right edge of subdivision d
bd {0, . . . , max(SH)}, ∀d ∈ D Y position of the bottom edge of subdivision d
td {0, . . . , max(SH)}, ∀d ∈ D Y position of the top edge of subdivision d
rwd {0, . . . , max(SW )}, ∀d ∈ D Width of subdivision d after rotation
rhd {0, . . . , max(SH)}, ∀d ∈ D Height of subdivision d after rotation
rotd {1, . . . , 8}, ∀d ∈ D Rotation of subdivision d
ta {0, . . . ,

∑
s∈S SAs} Total area of the used sheets.

5.3.1.1 Constants

We position the sheets on the Cartesian plane, side by side from left to right, in non-decreasing
order of area (in the order in which they are in S). For each sheet s ∈ S, SAs denotes the
area of s, and SLs holds the x position of its left edge. For each piece p ∈ P , Ip is the index
of the first subdivision belonging to p. The constant R contains the number of sheets that
are scraps, i.e. sheets whose area is smaller than the area of the largest sheet. The constants
and their values are summarized in Table 1.

5.3.1.2 Variables

For each subdivision d ∈ D, we have the decision variables ld and bd that are the coordinates
of the lower left corner of the subdivision and the variable rotd that encodes one of the eight
possible rotations (four if d is flipped, four if not). In addition to the decision variables,
there are functional variables. The values of these variables can be fully determined once the
values of the decision variables are known. These variables are, for each subdivision d ∈ D,
the coordinates (rd, td) of the upper-right corner of the subdivision, the sheet number sheetd
on which lies the subdivision, the width rwd and height rhd of the subdivision after being
rotated. Furthermore, the variable ta is used to represent the total area of the used sheets in
the solution. The variables and their domains are summarized in Table 2.

5.3.1.3 Constraints

The following constraints ensure that subdivisions are fully nested inside a single sheet and
that subdivisions do not overlap each other.

Constraints (1) to (3) apply to each piece p ∈ P and its subdivisions d. Constraint (1)
applies to pieces that have a single subdivision and, therefore, are rectangular. It ensures
that the rotation is either 0° or 90°. Constraints (2) and (3) consider the current rotation of
subdivision d and fix the width and height of the subdivision.

SUBp = 1 =⇒ rotd ≤ 2 ∀p ∈ P, d ∈ {Ip, . . . , Ip + SUBp − 1} (1)

rotd mod 2 = 0 =⇒

{
rwd = Hd

rhd = W d
∀d ∈ D (2)

rotd mod 2 ̸= 0 =⇒

{
rwd = W d

rhd = Hd
∀d ∈ D (3)



M. Chastenay, X. Zwingmann, C.-G. Quimper, and J. Gaudreault 7:11

Constraint (4) links the left-side coordinate, the right-side coordinate and the width of a
subdivision together. The same is true for the top and bottom coordinates and the height of
the subdivision. This constraint takes into account the rotation of the piece.

rd = ld + rwd ∧ td = bd + rhd ∀d ∈ D (4)

Constraints (5) to (7) have two purposes: 1) to force each subdivision d ∈ D to be fully
contained in one sheet and 2) to assign the sheet in S on which subdivision d lies to the
variable sheetd.

ld ≥ SLsheetd ∀d ∈ D (5)
rd ≤ SLsheetd + SW sheetd ∀d ∈ D (6)
td ≤ SHsheetd ∀d ∈ D (7)

Constraint (8) links the subdivisions of a piece p ∈ P . It ensures that the subdivisions are
assigned to the same sheet and the same rotation. Finally, it ensures that the subdivisions
are positioned side by side. The right edge of one subdivision coincides with the left edge of
the other subdivision, or the top edge of one subdivision coincides with the bottom edge of
the other subdivision. The constraint takes into account the eight combinations of rotations
and flips.

∀p ∈ P, d ∈ {Ip, . . . , Ip + SUBp − 2} :
sheetd = sheetd+1 ∧ rotd = rotd+1∧

rotd mod 4 = 1 → rd = ld+1
rotd mod 4 = 2 → td = bd+1
rotd mod 4 = 3 → ld = rd+1
rotd mod 4 = 0 → bd = td+1

 ∧


rotd ∈ {1, 7} → bd = bd+1
rotd ∈ {2, 8} → rd = rd+1
rotd ∈ {3, 5} → td = td+1
rotd ∈ {4, 6} → ld = ld+1

 (8)

The constraint DiffN ensures that the subdivisions do not overlap on each other. This
constraint has in its scope the positions of the subdivisions and their dimensions. We also
use the Cumulative constraint. It is redundant but comes with more filtering algorithms
that improve the performance of the model. The Cumulative constraint only considers the
positions of the subdivisions on the x-axis, as the range defined by the y-axis is not large
enough for its filtering algorithms to offer any improvements.

DiffN(l, b, rw, rh) (9)
Cumulative(l, rw, rh, max(SH)) (10)

Constraint (11) constrains ta, which is the objective variable to minimize, to be equal to
the total area of the sheets used by the solution. The constant R indicates the number of
scrap sheets that are available for use. These scrap sheets have smaller areas than the new
sheets, they are therefore labeled with indices smaller than or equal to R. The summation
in (11) adds the area of the used scrap sheets. The second term computes the area of new
sheets. Since all have the same area, we simply multiply the area of new sheets, max(SA),
by the number of new sheets used, max(sheet) − R. Using max(sheet) − R to encode the
number of used new sheets forces the solver to break symmetries by assigning pieces to
new sheets with lower indices. We found that using this formulation instead of explicitly
specifying a value precedence constraint among the new sheets offered equivalent results
while being slightly faster.

ta =
( ∑

s∈{1,...,R}
∃d∈D,sheetd=s

SAs

)
+ max(SA) · (max(sheet) − R) (11)
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Figure 6 Computing the touching perimeter metric.

Constraint (12) breaks symmetry between similar solutions where the pieces nested in a
new sheet can be swapped for the pieces nested in another new sheet. This symmetry occurs
less often with scrap sheets, as their area can differ. The constraint states that the first piece
can only be nested on the first new sheet, the second piece on the first two sheets, and so on.

sheetd ≤ p + R ∀p ∈ P, d ∈ {Ip, . . . , Ip + SUBp − 1} (12)

We implemented this model in MiniZinc using the Chuffed solver [10], which offers the
priority search [13] annotation to model the branching heuristic.

solve::priority_search(l,
[int_search([rotd, ld, bd], input_order, indomain_min) | d ∈ D ],

smallest, complete) minimize ta;
The priority search selects the subdivision that can be placed the farthest to the left on

the sheet with the smallest index. Once the subdivision is selected, it fixes its rotation and
position (in that order). The solver also uses solution-based phase saving [11] as it offers a
significant speed increase in the time needed to compute optimality.

Using a contiguous coordinate system for packing the pieces on the sheets instead of the
classic method where each sheet has its own coordinate system avoids the need for optional
variables, hence simplifying the way the problem is modeled.

5.3.2 Scrap reusability maximization model

The subsequent model uses the same base as the first model (Section 5.3.1). We only change
the objective function, some data given as input, and the branching heuristic.

We introduce the new objective function, which is inspired by the touching perimeter
heuristic introduced by Lodi et al. [19]. The intuition is to maximize the length of the
perimeter of the subdivisions that touches either the side of a sheet or the side of another
subdivision. Maximizing this value is equivalent to maximizing the density of the pieces in
the sheet. This also indirectly concentrates the waste in each sheet, increasing the size of the
scraps and their reusability. Where Lodi et al. [19] use a greedy heuristic to try to maximize
the touching perimeter, our objective maximizes it directly.

Figure 6 shows three pieces that need to be packed in the most efficient way. In the first
sheet, those pieces float in the middle without touching any edges, resulting in an objective
value of 0 and a suboptimal packing. In the second and last sheets, their placement is further
optimized, and we can clearly see parts of their perimeter that come in contact. In this
example, the last sheet shows the best way to place the three pieces, as it offers the best
scrap reusability in terms of the pieces SOKÏO often produce.
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The objective variable of the total used sheet area ta is discarded and replaced by the
touching perimeter variable tp, whose domain is {0, . . . , 2 ·

∑
d∈D(W d + Hd)} and whose

value should be maximized. Constraint (13) constrains tp to be equal to the total touching
perimeter of the subdivisions where the notation JbK returns 1 if b is true or 0 otherwise.
Specifically, the first summation computes the perimeter of the subdivisions that are in
contact with the edges of the sheet in which they are nested, while the second summation
computes the perimeter of the subdivisions that are in contact with the edges of other
subdivisions. The only pairs of subdivisions that are considered are those that are on the
same sheet. Each pair is considered at most once (d1 < d2), which means that the touching
perimeter will only be counted once, when both touching edges should be taken into account.
This explains the multiplication by two, which makes it so that the touching edges of the
subdivisions have their touching perimeter added correctly.

tp =
∑
d∈D

(
Jld = SLsheetdK · rhd + Jrd = SLsheetd + SW sheetdK · rhd+

Jbd = 0K · rwd + Jtd = SHsheetdK · rwd

)
+

2 ×
∑

d1,d2∈D
d1<d2

sheetd1 =sheetd2

(
Jrd1 = ld2 ∨ rd2 = ld1K · max(0, min(td1 , td2) − max(bd1 , bd2))+

Jtd1 = bd2 ∨ td2 = bd1K · max(0, min(rd1 , rd2) − max(ld1 , ld2))
)

(13)

The input of this model is still a list of subdivisions and sheets, but we only feed this
second model with the sheets that were assigned pieces by the first model. This reduces the
search space and ensures that the total area of the used sheets remains optimal.

To solve this model, we use the CP-SAT solver [23] using four threads (using six threads
did not improve performance in any way, and more than six worsened it). CP-SAT does
not offer solution-based phase saving and does not offer a priority search. Despite that, we
have found that CP-SAT is faster than Chuffed for this specific model. The second model
uses this specific search annotation that selects the variable in the l and b arrays with the
smallest value in its domain and branches on that value.

solve::int_search( l ∥ b, smallest, indomain_min) maximize tp;

6 Experimentations

6.1 Benchmarks

This section benchmarks both models presented in this paper and compares our solutions
with those of SOKÏO, for a particular instance. All experiments were run on a computer
with a 6-core Intel Core i7-10750H CPU @ 2.60 GHz and 16 GB of memory.

6.1.1 Sheets minimization model

The experiments consisted of four instances ranging from 15 to 188 pieces, which were
analyzed with each of the preprocessing methods. For the Staircase preprocessing, we
experimented with 2 and 4 as values for the number of subdivisions sub. Each of these tests
was also performed with 3 different sets of scrap sheets R. The first one contains no scrap,
so only new sheets can be used. The other ones contain 30 and 60 scraps of different sizes.

CP 2025
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Figure 7 CLT panels breakdown of instance 2.

We use three key metrics to compare the different experiments made with the first model:
1) the number of new sheets used, 2) the waste ratio, expressed as a percentage of the total
used sheets area. This is calculated using the following expression:(

1 − Total area of the pieces (before the preprocessing)
Total area of the used sheets

)
· 100%,

as well as 3) the time required to compute the solution, which is by far the most valuable
resource for SOKÏO.

Our results will be compared with those obtained by SOKÏO on instance 2, which repres-
ents the only structure currently in production. This structure is composed of prefabricated
panels, which are shown in Figure 7. SOKÏO, exactly as we now do in an automated way,
had to compute the best shapes, sizes, placements, etc. of the insulation pieces so that
they would completely cover the structure’s panels, excluding the different openings. Their
manual computation landed them with a set of pieces that were then nested in a total of 46
new sheets. Note that no scraps were used to create these pieces or kept after the cutting
process due to their suboptimal sizes. SOKÏO’s waste metric on this specific instance is
21.58%, and their manual nesting took an entire week to complete.

Table 3 shows our results for the instance 2 produced by SOKÏO, as well as for the others.
For this model, all instances were subject to a 5-minute timeout. For instance 2, we were
able to calculate a solution that is much more efficient than what SOKÏO achieved manually
on site, with an optimal solution of 39 new sheets obtained in 2.91 seconds using the Slope
mapping + preprocessing. This equates to a material waste of 6.71%. Compared to SOKÏO’s
solution of 46 new sheets and 21.58% wasted material (which took a week of planning).
Looking at these results, it is safe to say that the two objectives that were a priority for
SOKÏO, reducing the amount of time needed to obtain the solutions and improving their
quality based on the number of new sheets used, have been achieved. Figures 8 and 9 in
Appendix A show visualizations of the scrap minimization process for instance 2 using the
Bounding box and Slope mapping + preprocessings. All instances in Table 3 are feasible.

Although SOKÏO did not yet work on the other instances, we can assume that the time
needed to compute their solution, as well as the number of new sheets used, will be much
lower in the results provided by the first model than the manual results SOKÏO would have
obtained if they had done so. The models can also work with scraps. This allows SOKÏO
to recycle them, which they could not even consider before due to their small sizes in the
solution they had. Table 3 shows that while instances that contain scraps take more time
to compute to optimality, they offer even better solutions both in terms of the new sheets
used and in the amount of waste generated (which is computed on all sheets used, not only
new ones). The results also show that the Slope mapping + preprocessing is the best of the
four we presented on these metrics. This is easily explained by the fact that the subdivisions
generated by Slope mapping + do not contain any wasted area, while those generated by the
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Table 3 Model 1 – Performance Metrics Across All Instances and Preprocessing Methods.

Preprocessing |D| New Sheets
[0/30/60]

Waste (%)
[0/30/60]

Time (s)1

[0/30/60]

Instance 1 (15 Pieces)
Bounding box 15 9 / 7 / 7 20.67 /13.13/10.51 0.51 / 0.60 / 0.74
Staircase - sub = 2 21 9 / 7 / 7 20.67 /13.13/10.51 0.63 / 0.78 / 0.92
Staircase - sub = 4 33 8 / 8 / 7 10.76/10.76/10.51 0.83 / 1.27 / 1.59
Slope mapping 15 9 / 7 / 7 20.67 /13.13/10.51 0.47 / 0.60 / 0.69
Slope mapping + 21 8 / 6 / 5 10.76/7.51/5.01 0.71 / 1.01 /10.23

Instance 2 (74 Pieces)
Bounding box 74 44 / 42 / 39 17.31 /16.42/14.11 2.17 / 4.88 /64.77
Staircase - sub = 2 94 43 / 42 / 38 15.38 /15.14/13.86 6.21 / 8.68 / –
Staircase - sub = 4 134 43 / 42 / 38 15.38 /14.39/12.10 12.96/19.36/ –
Slope mapping 67 42 / 40 / 36 13.37 /11.73/ 9.29 1.90 / 3.45 /13.80
Slope mapping + 73 39 / 37 / 35 6.71 /5.34/4.30 2.91 / – / –

Instance 3 (106 Pieces)
Bounding box 106 65 / 63 / 60 12.26 /11.32/ 9.46 – / – / –
Staircase - sub = 2 114 65 / 62 / 60 12.26 /11.10/ 9.69 – / – / –
Staircase - sub = 4 130 65 / 62 / 59 12.26 /10.58/ 9.05 – / – / –
Slope mapping 106 65 / 63 / 57 12.26 /11.32/ 9.46 – / – / –
Slope mapping + 114 63 / 60 / 59 9.47 /7.41/7.18 – / – / –

Instance 4 (188 Pieces)
Bounding box 188 123/120/ 118 10.29 / 8.90 / 8.34 – / – / –
Staircase - sub = 2 214 122/119/ 116 9.55 / 8.71 / 8.03 – / – / –
Staircase - sub = 4 266 122/119/ 118 9.55 / 8.83 / 8.19 – / – / –
Slope mapping 188 123/119/ 117 10.29 / 8.90 / 8.34 – / – / –
Slope mapping + 214 116/115/ 112 4.87 /4.44/4.52 – / – / –

Values in columns represent results for instances where S contains [0 scraps / 30 scraps / 60 scraps].
Lowest waste percentage per scrap group within each instance highlighted in bold.

1 “–” indicates the 300-second time limit was reached.

other three preprocessings on triangular and trapezoid pieces do. As mentioned above, Slope
mapping + cuts some pieces into three smaller pieces, and the current context allows it. For a
problem where this behavior is not allowed, the Slope mapping and Staircase preprocessings
also offer great results, especially when the sheet set S contains reused scraps.

6.1.2 Scrap reusability maximization model

The benchmark for the second model consists of 12 instances obtained by testing each of the
4 base instances from model 1 with the 3 different numbers of scrap sheets, |R| ∈ {0, 30, 60}.
These new instances are based on the results provided by the best preprocessing in Table 3.
In all cases, the best preprocessing (based on the waste ratio metric) was Slope mapping +,
so all 12 runs were performed using the results of this preprocessing. Table 4 shows the
results obtained for these 12 experiments after a 30-minute timeout (which was reached in
all instances). A higher touching perimeter percentage (TPP) means a higher density of the
pieces in each sheet, which translates into better packing and more reusable scraps. A TPP
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Table 4 Model 2 – Touching Perimeter Ratio (Solutions from model 1 using Slope mapping +).

Instance Touching Perimeter (%)1

0 Scraps 30 Scraps 60 Scraps

Instance 1 (15 Pieces) 81.71 77.68 77.88
Instance 2 (74 Pieces) 78.82 77.43 77.54
Instance 3 (106 Pieces) 83.68 – –
Instance 4 (188 Pieces) 73.00 – –

1 “–” indicates no result was obtained before reaching the 30-minute time limit.

of 100% could only be obtained with a waste ratio of 0%. Bigger instances generally provide
a higher TPP, because the larger number of possible combinations yields a higher probability
that efficient packing can be achieved. Figure 10 in Appendix A shows visualizations of
the scrap reusability maximization process for instance 2, using the result from the Slope
mapping + preprocessing in Figure 9. All instances in Table 4 are feasible.

Table 4 shows that the model generates initial solutions quickly (and keeps increasing
their quality) for small instances that reuse no scraps, but takes a longer time for larger
instances that try to reuse many scraps. Of course, the objective of the second model is way
more complex than the one of the first model, and large instances suffer from that.

When time is not an issue, waiting for the solver to output solutions for the second model
is clearly beneficial. After 16 hours, the solver achieved a TPP of 88.04% on the 60-scrap
version of instance 4, which is by far the largest and most complex. Although 16 hours
may seem long, it is still a short amount of time compared to the manual results of SOKÏO.
Where SOKÏO took a week to compute their results for instance 2 and did not generate any
reusable scraps, we are able to guarantee that our solution for instance 4 (which is more than
twice the size of instance 2) obtained in 16 hours will result in scraps with great reusability.

6.2 A word on the dataset
All the different instances of the problem considered in this paper were created using the
product configurator mentioned in Section 3. This software was developed using the Unity®

game engine, and allows the user to edit the model of a structure to his/her liking before
ordering it. This offers a load of possibilities in regards to industry 4.0 parametric product
configuration, at the cost of needing to optimize each newly created building instance and
its related parts, such as insulation cutting and nesting, as discussed.

7 Conclusion

We introduced four different preprocessing methods that work with trapezoidal shapes in
the bin packing problem, using solvers that typically only work with rectangular shapes.
We compared the nesting produced by our algorithms with the one manually obtained by
SOKÏO. Each preprocessing achieved better results than those provided by SOKÏO. We
introduced a new objective function that optimizes scrap reusability. This objective refines
the results returned by the sheet minimization model and proposes new solutions that make
better use of the space given by the optimal sheets that were found, allowing SOKÏO to
create more reusable scraps. Directions for future work include the implementation of a
constraint described by Beldiceanu et al. [5] that directly supports trapezoidal shapes. We
also aim to further explore the implementation of the touching perimeter objective function
to speed up the convergence of the second model. Finally, we want to model scrap sheets of
non-rectangular shapes by fixing virtual pieces at locations where the scrap cannot be used.
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A Additional visualizations

Figure 8 Solution obtained with Bounding box preprocessing on instance 2 - 44 new sheets.
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Figure 9 Solution obtained with Slope mapping + preprocessing on instance 2 - 39 new sheets.



M. Chastenay, X. Zwingmann, C.-G. Quimper, and J. Gaudreault 7:21

Figure 10 Results from Figure 9 after being optimized with the scrap reusability maximization
model for one hour, with a final touching perimeter percent of 78.84 %.
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