
Breaking Symmetries with Involutions
Michael Codish #

Department of Computer Science, Ben-Gurion University of the Negev, Beer-Sheva, Israel

Mikoláš Janota #

CIIRC, Czech Technical University in Prague, Czech Republic

Abstract
Symmetry breaking for graphs and other combinatorial objects is notoriously hard. On the one hand,
complete symmetry breaks are exponential in size. On the other hand, current, state-of-the-art,
partial symmetry breaks are often considered too weak to be of practical use. Recently, the concept
of graph patterns has been introduced and provides a concise representation for (large) sets of
non-canonical graphs, i.e. graphs that are not lex-leaders and can be excluded from search. In
particular, four (specific) graph patterns apply to identify about 3/4 of the set of all non-canonical
graphs. Taking this approach further, we discover that graph patterns that derive from permutations
that are involutions play an important role in the construction of symmetry breaks for graphs.
We take advantage of this to guide the construction of partial and complete symmetry-breaking
constraints based on graph patterns. The resulting constraints are small in size and strong in the
number of symmetries they break.

2012 ACM Subject Classification Computing methodologies; Theory of computation → Constraint
and logic programming

Keywords and phrases graph symmetry, patterns, permutation, Ramsey graphs, greedy, CEGAR

Digital Object Identifier 10.4230/LIPIcs.CP.2025.8

Funding The results were supported by the Ministry of Education, Youth and Sports within the
dedicated program ERC CZ under the project POSTMAN no. LL1902 and co-funded by the
European Union under the project ROBOPROX (reg. no. CZ.02.01.01/00/22_008/0004590).

Acknowledgements The authors would like to thank the anonymous reviewers for their valuable
comments and constructive feedback, which helped improve the quality and clarity of this paper.
This work began at the Dagstuhl-Seminar 23261 SAT Encodings and Beyond.

1 Introduction

Graph search problems are about finding simple graphs with desired structural properties.
Such problems arise in many real-world applications and are fundamental in graph theory.
Solving graph search problems is typically hard due to the enormous search space and the
large number of symmetries in graph representation: Any graph obtained by permuting
the vertices of a solution (or a non-solution) is also a solution (or a non-solution), and is
considered isomorphic, or “symmetric”. The set of all such isomorphic graphs forms an
isomorphism class. To optimize search, we aim to restrict it to focus on one “canonical”
graph from each isomorphism class.

One common approach to eliminate symmetries is to add symmetry breaking constraints
that are satisfied by at least one member of each isomorphism class [9, 24, 26]. A symmetry-
breaking constraint is called complete if it is satisfied by exactly one member of each
isomorphism class and partial otherwise. In many cases, symmetry-breaking constraints,
complete or partial, are expressed in terms of “lex-constraints”. Each lex-constraint corres-
ponds to one symmetry, σ, which is a permutation on vertices, and restricts the search space
to consider assignments that are lexicographically smaller than their permuted form obtained

© Michael Codish and Mikoláš Janota;
licensed under Creative Commons License CC-BY 4.0

31st International Conference on Principles and Practice of Constraint Programming (CP 2025).
Editor: Maria Garcia de la Banda; Article No. 8; pp. 8:1–8:17

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:mcodish@bgu.ac.il
https://orcid.org/0000-0003-0394-5854
mailto:mikolas.janota@gmail.com
https://orcid.org/0000-0003-3487-784X
https://doi.org/10.4230/LIPIcs.CP.2025.8
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics
https://www.dagstuhl.de

8:2 Breaking Symmetries with Involutions

according to σ. If one considers the set of lex-constraints corresponding to all n-factorial
permutations, then the corresponding symmetry break is complete but too large to be of
practical use.

Itzhakov and Codish [14] observe that a complete symmetry break can be defined in terms
of a number of lex-constraints which is considerably smaller than n-factorial. They succeed
in computing complete symmetry-breaking constraints of practical size for graphs with 10
or less vertices. Dančo et al. obtain similar results in the context of finite models [10]. But
this approach does not scale. Itzhakov et al. [4] introduce the notion of “lex-implications”,
which are a refinement of lex-constraints. In the case of graphs, they compute complete
symmetry breaks which are much smaller in size. But still, this approach does not scale
beyond graphs with 11 vertices. It is known that breaking symmetry by adding constraints
to eliminate symmetric solutions is intractable in general [1, 9]. So, we do not expect to
find a complete symmetry break of polynomial size that identifies canonical graphs that are
lex-leaders. Hence, the interest in partial symmetry breaks.

Codish et al. [7] introduce a partial symmetry break, which is equivalent to considering the
quadratic number of permutations that swap a pair of vertices (transpositions). Rintanen et
al. [23] enhance this approach for directed graphs. This approach is widely applied and turns
out to work well in practice, despite eliminating only a small portion of the symmetries.
However, when dealing with hard instances of graph search problems, this constraint does
not suffice. Over the past decade, there has been little progress in the research of partial
symmetry-breaking constraints for graph search problems. Some attempts are made in [15]
and in [5]. However, there are no references in the literature to the applications that make
use of the symmetry breaks defined in these papers.

In a recent paper, Codish and Janota [6] introduce a set-covering perspective on symmetry
breaking. A permutation “covers” a graph if its application on the graph yields a smaller
graph with respect to a given (lexicographic) order. A complete symmetry break is then a set
of permutations that covers all non-canonical graphs. In that paper, the authors introduce
the notion of a “pattern” which provides a concise representation for the set of graphs covered
by a permutation.

In this paper, we pick up on the notion of “patterns” which we call here “graph patterns”
and show how they can be used to provide complete and also partial symmetry breaks which
improve on the current state-of-the-art. Motivated by the set-covering perspective presented
in [6], we implement a greedy algorithm to cover the set of all non-canonical graphs using
graph patterns. Although this approach does not scale, it provides a test bed to study
the structure of the graph patterns selected in the greedy approach. We observe that the
first four graph patterns selected in the greedy approach already cover 3/4 of the set of all
graphs (and slightly more of the set of all non-canonical graphs). Our study also reveals the
importance of a specific type of permutation when breaking symmetries on graphs. This
is the class of permutations that are equal to their inverse, also called involutions. This
class includes the classes of transpositions (which swap a pair of indices) and of consecutive
transpositions (which swap a pair of consecutive vertices) that are at the basis of the partial
symmetry breaks introduced in [8, 7].

We implement an algorithm that guides the search for a complete symmetry break based
on the structure of graph patterns. Along the way, we obtain a chain of partial symmetry
breaks of increasing precision. We present experimental results to evaluate these symmetry
breaks. These results show that in the setting of a counterexample-guided abstraction-based
(CEGAR) addition of symmetry breaks, focusing on “involutions first” reduces the number
of iterations of the CEGAR-loop. Broadly speaking, this shows that it is beneficial to look
for symmetry-breaking constraints systematically, rather than arbitrarily.

M. Codish and M. Janota 8:3

The rest of the paper is structured as follows. Section 2 provides definitions and notations
that are used throughout. A series of examples are provided to demonstrate the concepts
upon which we build. Section 3 builds on the set-covering approach to symmetry breaking
and presents a greedy approach to cover all of the non-canonical graphs with graph patterns.
While this approach does not scale, it provides a test bed with which to study the structure
of the (“best”) graph patterns selected. Section 4 applies the lessons learned from the greedy
approach to guide a CEGAR-based algorithm to collect specific types of graph patterns that
derive from various types of involutions. Section 5 describes a series of experiments in which
we provide complete and partial symmetry breaks to a specific graph search problem and
evaluate their performance. Finally, Section 6 concludes and presents future work.

2 Preliminaries and Notation

Representing Graphs. Throughout this paper, we consider simple graphs, i.e. undirected
graphs with no self-loops. The adjacency matrix of a graph G is an n× n Boolean matrix.
The element at row i and column j is true if and only if (i, j) is an edge. The list of edges of
a graph G is denoted edges(G). It consists of the

(
n
2
)

elements obtained as the concatenation
of the columns of the upper triangle of G (or any other predetermined order). In abuse of
notation, we let G denote a graph in any of its representations. An unknown graph of order-n
is represented as an n× n adjacency matrix of Boolean variables which is symmetric and has
the values false (denoted by 0) on the diagonal, or as the corresponding list of edges.

Ordering Graphs. Let G1, G2 be known or unknown graphs with n vertices. Then, G1 ≤ G2
if and only if edges(G1) ≤lex edges(G2) where ≤lex denotes the standard lexicographic
ordering. When G1 and G2 are unknown graphs, then the lexicographic ordering, G1 ≤ G2,
can be viewed as specifying a lexicographic order constraint over the variables in G1 and G2.
For Boolean strings ā = ⟨a1, . . . , am⟩ and b̄ = ⟨b1, . . . , bm⟩ and 1 ≤ i ≤ m, we denote

ā <i
lex b̄⇔

{
(a1 = b1), . . . , (ai−1 = bi−1), (ai = 0), (bi = 1)

}
(1)

We denote G1 <
i G2 if edges(G1) <i

lex edges(G2).

Permutations. The group of permutations on {1 . . . n} is denoted Sn. We represent a
permutation π ∈ Sn as a sequence of length n where the ith element indicates the value of
π(i). For example: the permutation [2, 3, 1] ∈ S3 maps as follows:

{
1 7→ 2, 2 7→ 3, 3 7→ 1

}
.

We will refer to the following types of permutations:

Transpositions. A transposition is a permutation that swaps two elements and leaves all
other in place. For example, [4, 2, 3, 1] is the transposition that swaps elements 1 and
4. A transposition that swaps a pair of consecutive elements, is called a consecutive
transposition. For example, [1, 3, 2, 4] is a consecutive transposition.

Involutions. An involution is a permutation π such that π ◦ π is the identity. Involutions are
permutations that swap any set of pairs of disjoint elements. For example, [4, 3, 2, 1] is
the involution which swaps the pairs

{
1, 4

}
and

{
2, 3

}
. Transpositions are a special

case of involutions. A consecutive involution is an involution that swaps any number of
consecutive pairs. For example [2, 1, 4, 3] is a consecutive involution. We say that an
involution is intersecting if it swaps (among others) the pairs

{
i, j

}
and

{
k, l

}
with

i < j and k < l such that the intervals [i, j] and [k, l] are intersecting. If an involution is
not intersecting, then we say that it is disjoint. For example, [3, 4, 1, 2] (in cyclic notation

CP 2025

8:4 Breaking Symmetries with Involutions

(1 3)(2 4)) is a disjoint involution because the intervals [1, 3] and [2, 4] are intersecting.
The number of involutions is given as the sequence A000085 of the Online Encyclopedia
of Integer Sequences. Note that an involution is always a composition of finitely many
disjoint transpositions.

Permutations act on graphs and on unknown graphs in the natural way. For a graph and
also for an unknown graph G, viewing G as an adjacency matrix, given a permutation
π ∈ Sn, then π(G) is the adjacency matrix obtained by mapping each element at position
(i, j) to position (π(i), π(j)) (for 1 ≤ i, j ≤ n). The composition of permutations is defined
in the natural way. Two graphs G,H are isomorphic if there exists a permutation π ∈ Sn

such that G = π(H). Note that applying an involution to the vertices of a graph (directed
or undirected) induces an involution on its edges because (π ◦ π(i), π ◦ π(j)) = (i, j) for
any involution π.

Symmetry Breaks. A symmetry break for graph search problems is a predicate, ψ(G), on a
graph G, which is satisfied by at least one graph in each isomorphism class of graphs. If ψ is
satisfied by exactly one graph in each isomorphism class, then we say that ψ is a complete
symmetry break. Otherwise, it is partial.

Heule [13] defines the notion of redundancy ratio, which we denote ρ(ψ), to measure the
precision of ψ. This is the ratio between the number of graphs that satisfy ψ(G) and the
number of isomorphism classes. One can view ρ(ψ) as the average number of graphs per
isomorphism class that are not eliminated by ψ.

In our setting, the canonical graphs, are the minimal (lexleader) graphs of the isomorphism
classes of graphs. The following example is adapted from [6] and demonstrates some of the
concepts introduced so far. Notice that, in this paper, edge variables are ordered by columns.

▶ Example 1. The following depicts an unknown, order-4, graph G, its permutation π(G),
for π = [1, 2, 4, 3], and their representations as lists of edges. The lex-constraint G ≤ π(G)
can be simplified as described by Frisch et al. [11] to: ⟨x2, x3⟩ ≤lex ⟨x4, x5⟩.

G =

 0 x1 x2 x4

x1 0 x3 x5

x2 x3 0 x6

x4 x5 x6 0

 π(G) =

 0 x1 x4 x2

x1 0 x5 x3

x4 x5 0 x6

x2 x3 x6 0

 edges(G) = ⟨x1, x2, x3, x4, x5, x6⟩
edges(π(G)) = ⟨x1, x4, x5, x2, x3, x6⟩

There are 64 graphs of order 4. Eleven of these are canonical and the other 53 are
non-canonical. The canonical graphs, represented as lists of edges, are detailed below.

[0,0,0,0,0,0] [0,0,0,0,0,1] [0,0,0,0,1,1] [0,0,0,1,1,1] [0,0,1,0,1,1] [0,0,1,1,0,0]
[0,0,1,1,0,1] [0,0,1,1,1,1] [0,1,1,1,1,0] [0,1,1,1,1,1] [1,1,1,1,1,1]

Graph Patterns. A graph pattern is a partially instantiated graph G (some elements are
variables) such that all instances of G are non-canonical. We typically represent a graph
pattern G using the list notation edges(G).

▶ Example 2. The following six graph patterns describe all of the 53 non-canonical graphs
of order 4.

[1,0,A,B,C,D] [A,1,0,B,C,D] [A,1,B,0,C,D]
[A,B,1,B,0,C] [A,A,B,C,1,0] [A,B,B,1,0,C]

So, an order 4 graph is canonical if and only if it is not an instance of any of these six
graph patterns. One can check that this is the case for the 11 canonical graphs detailed in
Example 1.

M. Codish and M. Janota 8:5

For demonstration, it is easy to see why the first graph pattern of Example 2 is a valid
pattern. If the vector representation of the graph G starts with 1,0, which correspond to
the edges {1, 2}, {1, 3}, these can be swapped by the transposition [1, 3, 2, 4] (swap vertices 2
and 3) resulting in a smaller graph (this will possibly affect other edges, but these are no
longer important for the lexicographic comparison). So, G is not canonical.

Formally, graph patterns derive from permutations as stated in the following definition
which is adapted from [6] where edge variables are ordered by rows (in this paper we order
the edges by columns).

▶ Definition 3 ([6]). Let π be a permutation, G be an unknown graph of order-n with
edges(G) = ⟨x1, . . . , xm⟩, edges(π(G)) = ⟨y1, . . . , ym⟩, and let 1 ≤ i ≤ m. The graph
pattern, pati(π), is the result of applying the most general unifier to the equations from
the right side in Equation (1) for the case of edges(π(G)) <i

lex edges(G) (i.e., the most
general substitution that makes both sides of the equations identical). If the equations have no
solution, then we denote patsi(π) = ⊥. The set of all graph patterns of order n is denoted:
AllPats(n) =

{
pati(π) ̸= ⊥

∣∣ π ∈ Sn, 1 ≤ i ≤
(

n
2
) }

.

The graph pattern pati(π) represents the set of graphs that get smaller at position i with
π. If π is a particular type of permutation, e.g., a transposition, then we say that pati(π) is
a pattern of that type. Note that pati(π) is a legal graph pattern because graphs that get
smaller under some permutation are trivially non-canonical. Observe that pat3([1, 3, 2, 4]) = ⊥,
as in this case edges(G) = [x1, x2, x3, x4, x5, x6], edges(π(G)) = [x2, x1, x3, x4, x6, x5] and
edges(π(G)) <3

lex edges(G) has no solution (because x3 ̸< x3). Observe also, that in some
cases, different permutations lead to identical patterns. For example, pat3([2, 5, 1, 3, 4]) =
pat3([2, 5, 1, 4, 3]) = [x1, x1, 1, x2, x3, x4, 0, x1, x5, x6].

▶ Example 4. The following details how the graph patterns from Example 2 are derived
from permutations.

pat1([1, 3, 2, 4]) = [1, 0, A,B,C,D] pat2([2, 1, 3, 4]) = [A, 1, 0, B, C,D]
pat2([1, 2, 4, 3]) = [A, 1, B, 0, C,D] pat3([1, 2, 4, 3]) = [A,B, 1, B, 0, C]
pat4([2, 1, 3, 4]) = [A,B,B, 1, 0, C] pat5([1, 3, 2, 4]) = [A,A,B,C, 1, 0]

▶ Definition 5 (cover). Let π ∈ Sn, 1 ≤ i ≤
(

n
2
)
, and let pati(π) ̸= ⊥. Then, pati(π) covers

a graph G if G is an instance of pati(π). Equivalently, pati(π) covers G if π(G) <i G. We
denote the set cover(pati(π)) =

{
G

∣∣ π(G) <i G
}

. Sometimes we write also cover(π, i). If
pati(π) = ⊥ then it has no instances and so in this case, we define cover(pati(π)) = ∅. The
number of graphs covered by a graph pattern p is 2k where k is the number of variables in p.

Some graph patterns “dominate” others.

▶ Definition 6 (dominate). We say that graph pattern p1 dominates graph pattern p2 if
cover(p2) ⊆ cover(p1). Given a set S of graph patterns, dominators(S) denotes the set of
dominating atoms in S. We denote DomPats(n) = dominators(AllPats(n)).

Viewing graph patterns as first-order logic terms, p1 dominates p2 if p1 is more general
than p2. In Prolog, one can implement a test for “p1 dominates p2” using the built-in operator
subsumes_term(p1, p2).

▶ Example 7. There are 59 elements in AllPats(4) (after removing redundancies). The set
DomPats(4) contains only 18 elements. For instance,

pat3([1, 2, 4, 3]) = [A, B, 1, B, 0, C] dominates pat3([1, 4, 2, 3]) = [A, A, 1, A, 0, B], and
pat2([2, 1, 4, 3]) = [A, 1, B, C, 0, D] dominates pat3([3, 4, 2, 1]) = [A, 1, 1, B, 0, A].

CP 2025

8:6 Breaking Symmetries with Involutions

Table 1 Numbers of graph patterns (and dominating graph patterns) for various types of
permutations: consecutive transpositions (ct), transpositions (t), consecutive involutions with
transpositions (ci+t), disjoint involutions (di), involutions (i), and all permutations (all).

order ct t ci+t di i all
4 6 (6) 12 (12) 14 (14) 14 (14) 17 (16) 59 (18)
5 12 (12) 30 (30) 40 (39) 47 (46) 80 (75) 550 (163)
6 20 (20) 60 (60) 92 (88) 136 (130) 348 (327) 4610 (1648)
7 30 (30) 105 (105) 187 (176) 361 (339) 1451 (1369) 43065 (17945)
8 42 (42) 168 (168) 354 (329) 906 (842) 6055 (5762) 421435 (199509)

Table 1 details the total number of graph patterns and the number of dominating graph
patterns (in parentheses) for various types of permutations with small values of n. For
consecutive transpositions, and for transpositions, all of the patterns are dominating. For
other types of involutions, a large majority of the patterns are dominating.

Some graph patterns are orthogonal to others.

▶ Definition 8 (orthogonal). Let p1 and p2 be (non-⊥) graphs patterns. We say that p1 is
orthogonal to p2 if cover(p1) ∩ cover(p2) = ∅.

In Prolog, one can implement a test for “p1 is orthogonal to p2” using the built-in operator
for “not unifiable”.

CEGAR. In [14] and in [4] the authors compute complete symmetry breaks for graphs
based respectively on permutations and on a refinement of permutations which they term
“implications”. A similar approach is applied in [10] to break the symmetries for finite models.
Common to all of these works is an algorithm based on counter-example guided abstraction
refinement (CEGAR) [3].

In a nutshell, and in its simplest form, the CEGAR-based algorithm performs as follows:
Let Ψ denote a set of permutations, which is initially empty. The algorithm repeatedly seeks
a counter-example to the statement: “Ψ is a complete symmetry break”. A counter-example
takes the form: graph G and permutation π such that

π(G) < G ∧
∧

π′∈Ψ
G ≤ π′(G).

If such a counter-example is found then Ψ = Ψ ∪ {π}. If no such counter-example is found,
then Ψ is a complete symmetry break. The search for a counter-example is implemented
using a SAT encoding and incremental SAT solving.1

An important detail is that Ψ may contain redundant elements. For example, if a
permutation added at some point becomes redundant in view of permutations added later. A
second phase of the algorithm iterates on the elements of Ψ to remove redundant permutations
(similar to the iterative algorithm for a minimally unsatisfiable set or monotone predicates in
general [21, 20]). It is important to note that the time to perform the second phase is costly.
For example, in [14], the authors report that the time to compute the complete symmetry
break Ψ for order 10 graphs is close to 10 hours and the time to reduce it is 84 hours.

In this paper, we focus on symmetry breaks defined in terms of graph patterns. We seek
a set of graph patterns that covers all of the non-canonical graphs. The set AllPats(n) of all
graph patterns clearly covers all non-canonical graphs and hence it is a complete symmetry

1 The SAT solver cadical-2.1.0 [2] was used in all our experiments.

M. Codish and M. Janota 8:7

break. But this set is too large to be of practical use. We adapt the CEGAR approach
to graph patterns. In this setting, Ψ is a set of graph patterns, and we repeatedly seek a
counter-example: a graph G and a graph pattern pati(π) such that G is covered by pati(π)
but is not covered by any of the graph patterns in Ψ. If such a counter-example is found then
Ψ = Ψ ∪ {pati(π)}. If no such counter-example is found, then Ψ is a complete symmetry
break.

Let p = [p1, . . . , pm] be a graph pattern and let G = [x1, . . . , xm] denote an unknown
graph. Let I1 denote the set of induces in p which contain a zero, I2 denote the set of indices
in p which contain a one, and I3 denote the set of pairs of indices that contain equal variables.
The single clause:

c = (
∨

i∈I1

xi) ∨ (
∨

i∈I2

¬xi) ∨ (
∨

(i,j)∈I3

xi ⊕ xj)

encodes that G is not covered by p. Strictly speaking, c is not a clause due to the xor
operations. It is straightforward to replace xi ⊕ xj by a fresh variable xij and to add clauses
for xij ↔ xi ⊕ xj (note that these fresh variables are reused across the encoding of different
graph patterns).

▶ Example 9. let p = [A,B, 1, B, 0, C]. The clause (x5 ∨ ¬x3 ∨ x2 ⊕ x4) encodes that
G = [x1, x2, x3, x4, x5, x6] is not covered by p.

In [4], the authors present a CEGAR based approach to derive complete symmetry breaks
based on “lex-implications”. Essentially, lex-implications are constraints of the form detailed
in Equation (1). Similar to graph patterns, lex-implications can be represented as pairs
of the form (π, i). The novelty in the presentation in this paper stems from the graph
pattern perspective where it is natural to talk about concepts such as cover, dominance and
orthogonality. In the graph pattern perspective, any set S of graph patterns is a symmetry
break in the sense that a graph G is canonical, only if it is not an instance of an element
in S. Moreover, S is a complete symmetry break if also the inverse (if) statement holds.

3 Breaking Symmetries with Graph Patterns: A Greedy Approach

The CEGAR approach outlined above breaks symmetries as they are suggested by the SAT
solver as counter-examples. This might lead to unnecessarily large sets of graph patterns as
the SAT solver makes arbitrary choices relatively to the ultimate objective. In this section,
we apply a greedy approach to derive symmetry breaks consisting of graph patterns. At the
core of the approach is the notion of ranking a graph pattern in view of the set Ψ of graph
patterns selected so far.

▶ Definition 10. Let Ψ be a set of graph patterns (a symmetry break) and let p be a graph
pattern. We define rankingΨ(p) to be the number of graphs covered by p but not covered by
any of the elements of Ψ

The basic idea is presented as Algorithm 1. At Line 2, The set S of candidate graph
patterns is initialized to the set of dominating graph patterns. The symmetry break Ψ is
initialized to the empty set. At each step of the algorithm, a graph pattern p with maximal
ranking is selected and the sets S and Ψ are updated.

In the implementation, ranking the current set S of candidate graph patterns (Line 5
in Algorithm 1) is a bottleneck. Each graph pattern is ranked using a sat encoding with a
model counter. As an optimization, in the loop at Lines 4–6, we remove from S all graph

CP 2025

8:8 Breaking Symmetries with Involutions

Algorithm 1 Greedily compute symmetry break for order n graphs.
1: procedure symbreak(n)
2: S ← DomPats(n); Ψ← ∅;
3: repeat
4: select p ∈ S such that
5: r = maxp′∈S rankingΨ(p′);
6: rankingΨ(p) = r;
7: if r>0 then
8: S ← S \ {p}; Ψ← Ψ ∪ {p};
9: until r = 0;

10: return Ψ; ▷ Ψ is a complete symmetry break

patterns p such that rankingΨ(p) = 0. Moreover, whenever we select a pattern p ∈ S at
Line 4, we also select a set S′ ⊆ S (as large as possible) so that {p} ∪ S′ are mutually
orthogonal (as prescribed by Definition 8). The selection of S′ is greedy: When selecting
p ∈ S at Line 4, initialize S′ = {p} and iterate over the patterns from S, adding a pattern to
S′ if it is orthogonal to those already in S′.

▶ Example 11. The following details the run of Algorithm 1 for n = 4. The algorithm selects
6 graph patterns in 3 rounds. The column labeled ∆ indicates the number of graphs covered
by this graph pattern and not covered by those above. In this example, the second graph
pattern added in each round is orthogonal to that from the first added in the round. The
selected graph patterns are the same as those detailed in Example 2. Note that the sum of
the numbers in the ∆ column is 53, corresponding to the number of non-canonical graphs of
order 4.

round pattern ∆
1 [1,0,A,B,C,D] 16
1 [A,1,0,B,C,D] 16
2 [A,1,B,0,C,D] 8
2 [A,B,1,B,0,C] 6
3 [A,A,B,C,1,0] 5
3 [A,B,B,1,0,C] 2

The following proposition identifies four specific graph patterns that cover 3/4 of the total
number of graphs. Observe that the permutations detailed in the proposition are consecutive
transpositions.

▶ Proposition 12. For n ≥ 5, the four top ranking graph patterns always take the following
particular form where m =

(
n
2
)
− 2. Below, we adopt the cycle notation for permutations.

The permutation (j, k) is the permutation which swaps elements j and k and leaves all other
elements fixed.
1. pat1((2, 3)) = [1, 0, x1, x2, x3, x4, x5, x6, . . . , xm]
2. pat2((1, 2)) = [x1, 1, 0, x2, x3, x4, x5, x6, . . . , xm]
3. pat2((3, 4)) = [x1, 1, x2, 0, x3, x4, x5, x6, . . . , xm]
4. pat4((4, 5)) = [x1, x2, x3, 1, x4, x5, 0, x6, . . . , xm]

The first two graph patterns are orthogonal and each covers 2m−2 graphs. The second two
are also orthogonal and each covers 2m−3 graphs from those not covered by the first two.
Together they cover 3/4 of the total number of graphs.

M. Codish and M. Janota 8:9

Table 2 Profiling partial and complete symmetry breaks obtained from greedy algorithm.

n symmetry break total ct t ci+t di i ρ % ncc

7

greedy complete 116 28 30 59 60 80 1.00 100.00
greedy partial 58 28 28 48 49 51 1.27 99.99
greedy ct partial 13 13 0 0 0 0 24.38 98.78
cegar complete 136 15 16 44 48 62 1.00 100.00
cegar partial 68 15 16 25 27 30 1035.25 51.56
involutions partial 113 28 30 60 70 113 1.01 99.99

8

greedy complete 439 40 46 120 124 235 1.00 100.00
greedy partial 219 40 44 115 116 153 1.07 99.99
greedy ct partial 18 18 0 0 0 0 52.63 99.76
cegar complete 492 19 24 104 114 194 1.00 100.00
cegar partial 246 19 24 63 71 95 9710.21 44.66
involutions partial 396 40 47 127 158 396 1.02 99.99

Proof (sketch). The proof follows from a theorem presented in [18], which states that if G
is an order n lex-leader canonical graph where the order of edges is column-wise, then so
is the subgraph G(k) on the first k vertices for 1 ≤ k < n. It follows that for any position
i <

(
n
2
)
, the graph pattern pati((j, k)) on order-n graphs is also a graph pattern for order-n+1

graphs. ◀

Table 2 compares 6 symmetry breaks and profiles them with respect to 5 types of
permutations. The first three symmetry breaks are obtained using Algorithm 1: greedy
complete is the complete symmetry break, greedy partial is the partial symmetry break
consisting of the first (highest ranking) 50% of the patterns obtained from Algorithm 1,
and greedy ct partial is the partial symmetry break consisting of the (longest) prefix of
patterns obtained which are all consecutive transpositions. The next two symmetry breaks
are obtained using the CEGAR algorithm described in [4]: cegar complete is the complete
symmetry break obtained, and cegar partial is the partial symmetry break consisting of
the first 50% of the patterns obtained from the CEGAR algorithm. We will come back to
the fifth symmetry break, involutions partial later.

The column labeled total details the total number of patterns in the symmetry break.
The next 5 columns detail the number of patterns in the symmetry break derived from a
permutation of a given type: (ct) consecutive transpositions, (t) all transpositions, (ci+t)
consecutive involutions and transpositions, (di) disjoint involutions, and (i) all involutions.
All of these types of permutations are specific forms of involutions. The first two: (ct) and
(t) are those widely applied in the symmetry breaks defined in [8, 7].

The penultimate column, labeled ρ, shows the redundancy ratio. This is the ratio between
the number of graphs that are not covered by the selected patterns (symmetries not broken)
and the number of isomorphism classes (all symmetries broken). If the set of patterns is a
complete symmetry break, then ρ = 1. The smaller this number is, the better the symmetry
break. The last column, labeled % ncc, details the percentage of non-canonical graphs covered
by the symmetry break. If the set of patterns is a complete symmetry break, then this
number is 100.

What we learn from Table 2:

The first 4−10% of the patterns selected are all derived from consecutive transpositions.
These patterns alone already cover > 98% of the non-canonical graphs. Moreover,

CP 2025

8:10 Breaking Symmetries with Involutions

as stated in Proposition 12, the first four patterns always cover a total of 3/4 of the
total number of graphs which is also about 75% of the total number of non-canonical
graphs.

About half of the patterns selected in greedy complete are involutions; These are
highly ranked. More than 60% are in the top half (by ranking) of the patterns. In
contrast, for n = 7 less than 5% of all (n-factorial) permutations are involutions, and
for n = 8 less than 2%. The number of involutions is given as sequence A000085 of
the Online Encyclopedia of Integer Sequences.

Greedy selection pays off. Comparing the redundancy ratios for cegar partial and
for greedy partial shows this. Basically, the CEGAR-based algorithm selects an
arbitrary pattern which covers some graph that is not yet covered. In contrast to the
greedy algorithm where the best such pattern is chosen.

There are a small number of graph patterns that cover a large portion of the search
space. All of these patterns derive from consecutive transpositions. This is apparent
from the last column in the table and the rows corresponding to greedy ct partial:
for n=7, 13 graph patterns cover > 98% of the non-canonical graphs, and for n = 8, 18
graph patterns cover > 99%. We propose to consider three numbers when evaluating
the quality of a symmetry break: (1) the redundancy ratio, (2) the percentage of
non-canonical graphs covered, and (3) the size of the symmetry break. It is easy to
obtain perfect values for the first two numbers when the third is large.

Given the apparent importance of various types of involutions, we consider a fifth
symmetry break in Table 2: involutions partial. Here, we take the set of all dominating
patterns derived from involutions. These are reduced to remove redundant patterns (a
pattern in a set is redundant if all of the graphs that it covers are covered by other patterns
in the set). For example, when n = 7, there are 1369 dominating patterns for permutations
which are involutions (see Table 1) and these can be reduced to 113 patterns after removing
redundancies. As indicated in Table 2, adopting involutions gives a close-to-perfect symmetry
break for small values of n.

The greedy approach does not scale. Algorithm 1 relies on the expensive application of
a model counter to rank the candidate patterns. Also, the computation of all dominating
patterns is too time-consuming. This motivates the approach taken in the next section.

4 Tweaking CEGAR for Better Partial and Complete Symmetry Breaks

In this section we take the lessons learned from Table 2 and apply them to guide a CEGAR-
based algorithm to make better selections. We layer the selection of counter-examples with
layers corresponding to the five types of patterns considered in the profiling of Table 2. This
means that in each layer, each iteration of the CEGAR loop searches for a graph G and
a permutation π s.t. π(G) < G and π is the permutation used in that layer. This yields a
graph pattern generated from π and covering graph G.2

In the first layer (ct), we seek counter-examples that are consecutive transpositions. When
no further counter-examples of this type remain, we proceed to layer (t) to collect counter-
examples which are transpositions, and so on for the layers (ci+t) introducing consecutive

2 Graph patterns generated by a single permutation are disjoint, hence only one can cover the graph G.

M. Codish and M. Janota 8:11

Table 3 Comparing partial symmetry breaks obtained by layered CEGAR.

ord ct t ci+t di i compl
size ratio size ratio size ratio size ratio size ratio size

4 6 1.00 6 1.00 6 1.00 6 1.00 6 1.00 6
5 12 1.35 13 1.26 13 1.06 13 1.06 14 1.00 14
6 20 2.08 24 1.77 29 1.16 30 1.12 36 1.00 36
7 30 3.87 40 3.02 64 1.46 70 1.31 111 1.01 115
8 42 7.27 62 5.39 137 1.95 167 1.53 397 1.02 444
9 56 13.05 91 9.42 269 2.76 401 1.83 2,024 1.03 2,760
10 72 21.53 128 15.34 526 3.97 1,001 2.20 12,644 1.04 24,993
11 90 33.23 174 23.52 1,008 5.71 2,523 2.65 81,522 ≈1.14 289,863
12 110 48.97 230 34.53 1,896 ≈7.39 6,275 ≈3.12 n/a n/a n/a

involutions, (di) for disjoint involutions, and (i) for all other involutions. In a final, sixth
layer, we seek arbitrary counter-examples. To ensure that counter-examples are found of
the required type, we encode in the SAT solver an additional condition in a straightforward
fashion. For example, involutions are encoded as the implications π(i) = j ⇒ π(j) = i, for
i ̸= j.

The layered CEGAR-based algorithm can be applied in two different capacities: First, to
provide partial symmetry breaks as obtained at the end of each layer of the run. Second, to
guide the search for a complete symmetry break. Experimentation indicates that making
a better selection of counter-examples early on reduces the number of iterations applied in
the course of the algorithm and reduces the number of redundant patterns that need to be
removed in the second phase of the algorithm.

Table 3 addresses the first capacity. Each pair of columns details the partial symmetry
break obtained after the corresponding layer in the revised CEGAR algorithm. For each layer,
we present the size (number of patterns) of the corresponding partial symmetry break and
the corresponding redundancy ratio. For the last layer (in the last column), the symmetry
break is complete and the redundancy ratio is always 1.00. The first two pairs of columns
ct and t correspond to the symmetry breaks described in [8]. To compute the redundancy
ratios, the knowledge-compilation-based tool d4 [19] was applied for model counting.3 In
cases where the model counter was not able to compute the number of graphs we applied
the approximate model counter approx [25]. These cases are marked by the symbol ≈.

Now we look at the effect of layering when CEGAR is used to calculate a complete
symmetry break. Figure 1 summarizes the comparison of the layered approach to CEGAR
and the standard one. Figure 1 (on the left), details numbers of iterations (and patterns).
The two upper curves detail the number of iterations required to calculate a complete cover
of all graphs of order n ∈ {8..11}. Each iteration of the CEGAR loop adds one pattern to
the cover. However, some patterns might become redundant due to the addition of a stronger
pattern later on. The lower two curves detail the number of patterns in the irredundant cover
obtained by reducing the output of the CEGAR algorithm (irredundant cover is calculated
by standard means [20]). Note that the size of the irredundant cover must always be smaller
or equal to the number of iterations of the CEGAR iterations.

3 Other model counters were considered but d4 gave better performance.

CP 2025

8:12 Breaking Symmetries with Involutions

8 9 10 11

103

104

105

106

order

ite
ra

tio
ns

/p
at

te
rn

s
CEGAR number of iterations

layered

not layered

#pats after red. - layered

#pats after red. - not layered

8 9 10 11

101

103

105

order

se
co

nd
s

CEGAR time comparison

layered

not layered

Figure 1 Comparison of CEGAR and Layered CEGAR (log scale).

The number of iterations is always lower for the layered approach than for the standard
one. This typically also reduces the overall time. For n = 11, CEGAR needed 400,016
iterations in the layered approach, contrasting with 557,279 iterations in the non-layered
(standard) approach. Interestingly, both were reduced to covers of similar sizes, 289,863 in
the layered approach and 291,888 in the non-layered one. This indicates that the layered
approach guides CEGAR more precisely.

Figure 1 (on the right) complements this information with the total CPU time needed
to calculate the cover, and it can be observed that lowering the iterations of the loop also
reduces the total time.

ct t ci+t di i all
10−2

101

104

phase

se
co

nd
s

layered CEGAR time comparison

n=8

n=9

n=10

n=11

Figure 2 Computation time for partial symmetry breaks with layered CEGAR (log scale).

Figure 2 details the computation times for partial symmetry breaks obtained in the
different phases of the layered CEGAR algorithm. For n = 11, computing the partial
symmetry breaks defined in terms of disjoint involutions and in terms of all involutions is
respectively 3 and 1 orders of magnitude faster than computing the complete symmetry break.
Given the fact that these symmetry breaks are relatively small and have good redundancy
ratios indicates that they provide a good choice when balancing time (to compute them) and
size with precision.

M. Codish and M. Janota 8:13

10 15

102

103

104

105

order

ite
ra

tio
ns

/p
at

te
rn

s
CEGAR number of iterations, Ramsey 4 4

layered

not layered

#pats after red. - layered

#pats after red. - not layered

10 15
100

102

order

se
co

nd
s

CEGAR time comparison

layered

not layered

10 15

103

104

105

order

ite
ra

tio
ns

/p
at

te
rn

s

CEGAR number of iterations, Ramsey 3 6

layered

not layered

#pats after red. - layered

#pats after red. - not layered

10 15

100

102

104

order

se
co

nd
s

CEGAR time comparison

layered

not layered

Figure 3 Comparison of CEGAR’s Performance on Ramsey graphs (log scale).

5 Symmetry Breaks for a Specific Graph Search Problem

In this section, we describe the computation of partial and complete symmetry breaks tailored
for a specific graph search problem. In this context, when seeking a counter-example in the
CEGAR loop, we restrict the search to graphs that satisfy the constraints of the given search
problem. We apply this approach for the layered approach to CEGAR and the standard one.

We consider a classic example: the search for Ramsey graphs [22]. The graph R(s, t;n) is
a simple graph with n vertices that contains no clique of size s, and no independent set of
size t. The Ramsey number R(s, t) is the smallest number n for which there is no R(s, t;n)
graph. We also describe the impact of using these symmetry breaks.

Figure 3 summarizes the comparison of the computation of symmetry breaks in this
context. We focus on symmetry breaks for R(4, 4;n) (two upper plots) and R(3, 6;n) (two
lower plots).4 We study only the values of n until the respective Ramsey numbers, which are
both 18. The number of Ramsey graphs peaks at some point, at which it is also difficult
to calculate the cover. The two plots on the left detail the numbers of iterations in the
layered/non-layered approaches as well as the numbers of patterns removed after the CEGAR
loops (upper for Ramsey(4, 4;n) and lower for Ramsey(3, 6;n)). The two plots on the right
detail total CPU times (upper for Ramsey(4, 4;n) and lower for Ramsey(3, 6;n)).

4 These enable us to perform a precise analysis, however, unsatisfiability alone for larger Ramsey numbers
is famously difficult [12].

CP 2025

8:14 Breaking Symmetries with Involutions

5 10 15
100

104

108

order

#
m

od
els

models comparison

consecutive transpositions

transpositions

consecutive involutions

disjoint involutions

involutions

all

5 10 15
101

105

109

order

#
m

od
els

models comparison

consecutive transpositions

transpositions

consecutive involutions

disjoint involutions

involutions

all

Figure 4 The impact of various partial symmetry breaks on Ramsey graphs (log scale).

The number of iterations is always lower for the layered approach than for the standard
one. Also, the number of patterns removed in the reduce phase is lower. This typically
reduces the overall time. This is, however, not always the case as individual SAT calls are
more expensive.

Here, in comparison to Figure 1, the number of patterns removed after the CEGAR loop
is much smaller. Interestingly, in the case of R(3, 6;n), not only that the number of iterations
is significantly smaller in the layered approach, but it also remains so after reduction. This
suggests that the two runs of CEGAR+reduction reach completely different local optima.

Figure 4 depicts the number of Ramsey graphs found when applying the various proposed
symmetry breaks: Ramsey(4, 4;n) on the left and Ramsey(3, 6;n) on the right. The curves
in both plots from highest to lowest, correspond precisely and in order to the 6 layers: (ct),
(t), (ci+t), (di), (i), and (all) (the complete symmetry break). The two upper curves
describe the application of the widely applied partial symmetry breaks defined in [8]. The
lowest curve describes the application of a complete symmetry break. General transpositions
(t) do not give much advantage over just consecutive transpositions (ct). However, both
are by orders of magnitude worse than the other classes of permutations. Note the proximity
of the curve for all involutions (i) to the lowest curve (the complete symmetry break). This
suggests that focusing only on involutions gives a symmetry break very close to the complete
break.

6 Conclusions and Future Work

The objective of this paper is to approach the search for graph symmetry breaks in a
systematic way. We study the structure of graph patterns that are selected in a greedy
algorithm to break all symmetries for graphs of small orders. We learn that graph patterns
that derive from a specific class of permutations, called involutions, play an important role.
Involutions generalize the class of transpositions, which play an important role in breaking
symmetries for graphs. We then refine a CEGAR-based approach to compute symmetry
breaks introducing a layered approach. In this way, we can guide the CEGAR-based search
for a complete symmetry break and also provide a series of partial symmetry breaks of
increasing precision.

It is important to reflect on why we construct partial symmetry breaks in a CEGAR-
based algorithm, in contrast to simply collecting all permutations of the restricted types.
For patterns based on transpositions, the straightforward construction is doable. However,

M. Codish and M. Janota 8:15

for patterns based on the other types of involutions, there are too many of them and the
CEGAR-based approach enables us to select those that contribute to the corresponding
symmetry breaks.

We do not expect to find a complete symmetry break of polynomial size that identifies
canonical graphs that are lex-leaders, cf. [16]. However, we still aim to find small, perhaps
even polynomial in size, partial symmetry breaks that break a majority of the symmetries on
graphs. Coming back to the greedy algorithm presented in Section 3, for n = 8, 439 graph
patterns are found to cover all of the 268,423,110 non-canonical graphs of order 8. The last
163 graph patterns selected in the greedy algorithm, cover a negligible total of 382 of these
268,423,110 graphs. In much the same way that Proposition 12 points to four specific graph
patterns that cover 75% of the non-canonical graphs, the holy grail for symmetry breaking
for graphs is to specify a small symmetry break that breaks a significant portion of the
symmetries.

This paper opens a number of avenues for future work. Since focusing on specific
permutation types positively impacts CEGAR, we plan to also apply the lessons learned
in this paper in the context of a dynamic symmetry breaking for graph generation. In this
approach, for example as performed in [17], symmetries are detected and broken during the
generation (and enumeration) of the solutions of a given graph search problem. Another
direction of research is to identify further sub-classes of permutations by either refining the
framework proposed here or looking for completely different classes. Such division could also
be problem-specific. A more theoretical direction of research is to find a justification for why
involutions lead to better symmetry breaks.

References
1 László Babai and Eugene M. Luks. Canonical labeling of graphs. In Proceedings of the

fifteenth annual ACM symposium on Theory of computing, pages 171–183. ACM, 1983. doi:
10.1145/800061.808746.

2 Armin Biere, Tobias Faller, Katalin Fazekas, Mathias Fleury, Nils Froleyks, and Florian Pollitt.
CaDiCaL 2.0. In Arie Gurfinkel and Vijay Ganesh, editors, Computer Aided Verification - 36th
International Conference, CAV 2024, Montreal, QC, Canada, July 24-27, 2024, Proceedings,
Part I, volume 14681 of Lecture Notes in Computer Science, pages 133–152. Springer, 2024.
doi:10.1007/978-3-031-65627-9_7.

3 Edmund Clarke, Orna Grumberg, Somesh Jha, Yuan Lu, and Helmut Veith. Counterexample-
guided abstraction refinement. In E. Allen Emerson and Aravinda Prasad Sistla, editors,
Computer Aided Verification, pages 154–169, Berlin, Heidelberg, 2000. Springer Berlin Heidel-
berg. doi:10.1007/10722167_15.

4 Michael Codish, Thorsten Ehlers, Graeme Gange, Avraham Itzhakov, and Peter J. Stuckey.
Breaking symmetries with lex implications. In John P. Gallagher and Martin Sulzmann,
editors, Functional and Logic Programming - 14th International Symposium, FLOPS 2018,
Nagoya, Japan, May 9-11, 2018, Proceedings, volume 10818 of Lecture Notes in Computer
Science, pages 182–197. Springer, 2018. doi:10.1007/978-3-319-90686-7_12.

5 Michael Codish, Graeme Gange, Avraham Itzhakov, and Peter J. Stuckey. Breaking symmetries
in graphs: The nauty way. In Michel Rueher, editor, Principles and Practice of Constraint
Programming - 22nd International Conference, CP 2016, Toulouse, France, September 5-9,
2016, Proceedings, volume 9892 of Lecture Notes in Computer Science, pages 157–172. Springer,
2016. doi:10.1007/978-3-319-44953-1_11.

6 Michael Codish and Mikoláš Janota. Breaking symmetries from a set-covering perspective. In
Integration of Constraint Programming, Artificial Intelligence, and Operations Research - 22nd
International Conference, CPAIOR, Melbourne, Australia November 10-13, 2025 Proceedings,
Lecture Notes in Computer Science. Springer, 2025.

CP 2025

https://doi.org/10.1145/800061.808746
https://doi.org/10.1145/800061.808746
https://doi.org/10.1007/978-3-031-65627-9_7
https://doi.org/10.1007/10722167_15
https://doi.org/10.1007/978-3-319-90686-7_12
https://doi.org/10.1007/978-3-319-44953-1_11

8:16 Breaking Symmetries with Involutions

7 Michael Codish, Alice Miller, Patrick Prosser, and Peter J. Stuckey. Constraints for sym-
metry breaking in graph representation. Constraints, 24(1):1–24, 2019. doi:10.1007/
s10601-018-9294-5.

8 Michael Codish, Alice Miller, Patrick Prosser, and Peter James Stuckey. Breaking symmetries in
graph representation. In IJCAI 2013, Proceedings of the 23rd International Joint Conference
on Artificial Intelligence, Beijing, China, August 3-9, 2013, pages 510–516, 2013. URL:
http://www.aaai.org/ocs/index.php/IJCAI/IJCAI13/paper/view/6480.

9 James M. Crawford, Matthew L. Ginsberg, Eugene M. Luks, and Amitabha Roy. Symmetry-
breaking predicates for search problems. In Luigia Carlucci Aiello, Jon Doyle, and Stuart C.
Shapiro, editors, Proceedings of the Fifth International Conference on Principles of Knowledge
Representation and Reasoning (KR’96), pages 148–159. Morgan Kaufmann, 1996.

10 Marek Dančo, Mikoláš Janota, Michael Codish, and João Jorge Araújo. Complete symmetry
breaking for finite models. In AAAI 2025, 2025. doi:10.48550/arXiv.2502.10155.

11 Alan M. Frisch and Warwick Harvey. Constraints for breaking all row and column symmetries
in a three-by-two matrix. In Proceedings of SymCon’03, 2003.

12 Thibault Gauthier and Chad E. Brown. A formal proof of R(4, 5)=25. In Yves Bertot, Temur
Kutsia, and Michael Norrish, editors, 15th International Conference on Interactive Theorem
Proving, ITP 2024, September 9-14, 2024, Tbilisi, Georgia, volume 309 of LIPIcs, pages
16:1–16:18. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, 2024. doi:10.4230/LIPICS.
ITP.2024.16.

13 Marijn J. H. Heule. Optimal symmetry breaking for graph problems. Mathematics in Computer
Science, 2019.

14 Avraham Itzhakov and Michael Codish. Breaking symmetries in graph search with canonizing
sets. Constraints, pages 1–18, 2016.

15 Avraham Itzhakov and Michael Codish. Breaking symmetries with high dimensional graph
invariants and their combination. In André A. Ciré, editor, Integration of Constraint Program-
ming, Artificial Intelligence, and Operations Research - 20th International Conference, CPAIOR
2023, Nice, France, May 29 - June 1, 2023, Proceedings, volume 13884 of Lecture Notes in
Computer Science, pages 133–149. Springer, 2023. doi:10.1007/978-3-031-33271-5_10.

16 George Katsirelos, Nina Narodytska, and Toby Walsh. On the complexity and completeness of
static constraints for breaking row and column symmetry. In David Cohen, editor, Principles
and Practice of Constraint Programming - CP 2010 - 16th International Conference, CP 2010,
St. Andrews, Scotland, UK, September 6-10, 2010. Proceedings, volume 6308 of Lecture Notes
in Computer Science, pages 305–320. Springer, 2010. doi:10.1007/978-3-642-15396-9_26.

17 Markus Kirchweger and Stefan Szeider. SAT modulo symmetries for graph generation and
enumeration. ACM Trans. Comput. Log., 25(3):1–30, 2024. doi:10.1145/3670405.

18 Vladmír Kvasnička and Jiří Pospíchal. Canonical indexing and constructive enumeration
of molecular graphs. J. Chem. Inf. Comput. Sci., 30(2):99–105, April 1990. doi:10.1021/
CI00066A001.

19 Jean-Marie Lagniez and Pierre Marquis. An improved decision-DNNF compiler. In Proceedings
of the Twenty-Sixth International Joint Conference on Artificial Intelligence, IJCAI-17, pages
667–673, 2017. doi:10.24963/ijcai.2017/93.

20 João Marques-Silva, Mikoláš Janota, and Anton Belov. Minimal sets over monotone predicates
in boolean formulae. In Natasha Sharygina and Helmut Veith, editors, Computer Aided
Verification - 25th International Conference, CAV, volume 8044 of Lecture Notes in Computer
Science, pages 592–607. Springer, 2013. doi:10.1007/978-3-642-39799-8_39.

21 Alexander Nöhrer, Armin Biere, and Alexander Egyed. Managing SAT inconsistencies with
HUMUS. In Ulrich W. Eisenecker, Sven Apel, and Stefania Gnesi, editors, Sixth International
Workshop on Variability Modelling of Software-Intensive Systems, Leipzig, Germany, January
25-27, 2012. Proceedings, pages 83–91. ACM, 2012. doi:10.1145/2110147.2110157.

22 Stanislaw P. Radziszowski. Small Ramsey numbers. Electronic Journal of Combinatorics,
1994. Revision #14: January, 2014. URL: http://www.combinatorics.org/.

https://doi.org/10.1007/s10601-018-9294-5
https://doi.org/10.1007/s10601-018-9294-5
http://www.aaai.org/ocs/index.php/IJCAI/IJCAI13/paper/view/6480
https://doi.org/10.48550/arXiv.2502.10155
https://doi.org/10.4230/LIPICS.ITP.2024.16
https://doi.org/10.4230/LIPICS.ITP.2024.16
https://doi.org/10.1007/978-3-031-33271-5_10
https://doi.org/10.1007/978-3-642-15396-9_26
https://doi.org/10.1145/3670405
https://doi.org/10.1021/CI00066A001
https://doi.org/10.1021/CI00066A001
https://doi.org/10.24963/ijcai.2017/93
https://doi.org/10.1007/978-3-642-39799-8_39
https://doi.org/10.1145/2110147.2110157
http://www.combinatorics.org/

M. Codish and M. Janota 8:17

23 Jussi Rintanen and Masood Feyzbakhsh Rankooh. Symmetry-breaking constraints for directed
graphs. In Ulle Endriss, Francisco S. Melo, Kerstin Bach, Alberto José Bugarín Diz, Jose Maria
Alonso-Moral, Senén Barro, and Fredrik Heintz, editors, ECAI 2024 - 27th European Conference
on Artificial Intelligence, 19-24 October 2024, Santiago de Compostela, Spain - Including
13th Conference on Prestigious Applications of Intelligent Systems (PAIS 2024), volume 392
of Frontiers in Artificial Intelligence and Applications, pages 4248–4253. IOS Press, 2024.
doi:10.3233/FAIA240998.

24 Ilya Shlyakhter. Generating effective symmetry-breaking predicates for search problems.
Discrete Applied Mathematics, 155(12):1539–1548, 2007. doi:10.1016/J.DAM.2005.10.018.

25 Mate Soos and Kuldeep S. Meel. BIRD: engineering an efficient CNF-XOR SAT solver and
its applications to approximate model counting. In The Thirty-Third AAAI Conference on
Artificial Intelligence, AAAI 2019, pages 1592–1599. AAAI Press, 2019. doi:10.1609/AAAI.
V33I01.33011592.

26 Toby Walsh. General symmetry breaking constraints. In Principles and Practice of Constraint
Programming - CP 2006, 12th International Conference, CP 2006, Nantes, France, September
25-29, 2006, Proceedings, pages 650–664, 2006. doi:10.1007/11889205_46.

CP 2025

https://doi.org/10.3233/FAIA240998
https://doi.org/10.1016/J.DAM.2005.10.018
https://doi.org/10.1609/AAAI.V33I01.33011592
https://doi.org/10.1609/AAAI.V33I01.33011592
https://doi.org/10.1007/11889205_46

	1 Introduction
	2 Preliminaries and Notation
	3 Breaking Symmetries with Graph Patterns: A Greedy Approach
	4 Tweaking CEGAR for Better Partial and Complete Symmetry Breaks
	5 Symmetry Breaks for a Specific Graph Search Problem
	6 Conclusions and Future Work

