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Abstract
Dependency Quantified Boolean Formulas (DQBF) extend Quantified Boolean Formulas by allowing
each existential variable to depend on an explicitly specified subset of the universal variables. The
satisfiability problem for DQBF is NEXP-complete in general, with only a few tractable fragments
known to date. We investigate the complexity of DQBF with k existential variables (k-DQBF) under
structural restrictions on the matrix – specifically, when it is in Conjunctive Normal Form (CNF) or
Disjunctive Normal Form (DNF) – as well as under constraints on the dependency sets. For DNF
matrices, we obtain a clear classification: 2-DQBF is PSPACE-complete, while 3-DQBF is NEXP-
hard, even with disjoint dependencies. For CNF matrices, the picture is more nuanced: we show
that the complexity of k-DQBF ranges from NL-complete for 2-DQBF with disjoint dependencies to
NEXP-complete for 6-DQBF with arbitrary dependencies.
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1 Introduction

Propositional satisfiability (SAT) solving has made significant progress over the past 30
years [4, 10]. Thanks to clever algorithms and highly optimised solvers, SAT has become a
powerful tool for solving hard combinatorial problems in many areas, including verification,
planning, and artificial intelligence [5]. Modern solvers can handle very large formulas
efficiently, making SAT a practical choice in many settings.

However, for problems beyond NP, such as variants of reactive synthesis, direct encodings
in propositional logic often grow exponentially with the input and quickly become too large to
fit in memory. This has led to growing interest in more expressive logics, such as Quantified
Boolean Formulas (QBF) and Dependency Quantified Boolean Formulas (DQBF) [17]. DQBF
extends QBF by allowing explicit control over the dependency sets: each existential variable
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10:2 Fine-Grained Complexity Analysis of Dependency Quantified Boolean Formulas

can be assigned its own set of universal variables it depends on. A model of a DQBF assigns
to each existential variable a Skolem function that maps assignments of its dependency set to
truth values. From a game-theoretic point of view, a DQBF model is a collection of sets of local
strategies – one set for each existential variable – that may observe only part of the universal
assignment. This makes DQBF more succinct than QBF and particularly well-suited for
applications such as synthesis and verification, where components often make decisions based
on partial information. Unfortunately, this added expressiveness comes at a cost: DQBF
satisfiability is NEXP-complete, and only a few tractable fragments are known [7, 8, 6, 18, 15].
One notable tractable case involves CNF matrices with dependency sets that are either
pairwise disjoint or identical; such formulas can be rewritten into satisfiability-equivalent
Σ3-QBFs [18].

Building on these ideas, we apply similar restrictions on the dependency sets to refine a
recent classification of the complexity of DQBF with k existential variables (k-DQBF) [14].
For DNF matrices, this restriction has no effect, since the proofs in [14] for the PSPACE-
hardness of 2-DQBF and NEXP-hardness of 3-DQBF can be carried over to formulas with
pairwise disjoint dependency sets.

For CNF matrices, the situation is more subtle. For k ⩾ 3 and even non-constant k with
disjoint dependencies, we extend the strategy of [18] to split clauses containing variables with
incomparable dependency sets, but instead of reducing it to a QBF, we directly construct
an NP algorithm to establish the NP membership. This technique can be extended to the
case where any two dependency sets are either disjoint or comparable, and the size blow-up
remains polynomial for constant k. The resulting DQBF only has existential variables with
empty dependency sets, and its satisfiability can be checked in NP.

When arbitrary dependencies are allowed in CNF matrices, we prove that 3-DQBF is
ΠP

2 -hard. Further, a variant of Tseitin transformation lets us convert a k-DQBF with an
arbitrary matrix into a (k + 3)-DQBF with CNF matrix, yielding PSPACE-hardness of
5-DQBF and NEXP-hardness of 6-DQBF with CNF matrices.

As for the satisfiability problem of 2-DQBF, [13] shows that it reduces to detecting
contradicting cycles in a succinctly represented implication graph, making it PSPACE-
complete. For CNF matrices and disjoint dependencies, we show that the fully expanded
graph has a simple structure, allowing satisfiability tests in NL. Consequently, the satisfiability
of 2-DQBF with CNF matrices and unrestricted dependencies is in coNP – one can guess an
assignment to the shared universal variables and solve the resulting instance with disjoint
dependencies in NL. We also prove the NL- and coNP-hardness of the two problems via a
reduction from 2-SAT and 3-DNF tautology, respectively.

Our results, summarised in Table 1, help map out the complexity of natural fragments of
DQBF and show how both the formula structure and dependency restrictions play a key role
in determining tractability.

2 Preliminaries

In this section, we define the notation used throughout this paper and recall the necessary
technical background. All logarithms have base 2. For a positive integer m, [m] denotes the
set of integers {1, . . . ,m}.

Boolean values True and False are denoted by ⊤ and ⊥, respectively. Boolean connect-
ives ∧, ∨, ¬, →, ↔, and ⊕ are interpreted as usual. A literal ℓ is a Boolean variable v or its
negation ¬v. We write var(v) = var(¬v) = v for the variable of a literal and sgn(v) = ⊤ and
sgn(¬v) = ⊥ to denote its sign. We also write v ⊕ ⊥ and v ⊕ ⊤ to denote the literals v and
¬v, respectively.



C. Cheng, L.-H. Fung, J.-H.-R. Jiang, F. Slivovsky, and T. Tan 10:3

Table 1 Summary of the complexity results.

k k-DQBFd
cnf k-DQBFde

cnf
k-DQBFdec

cnf ,
k-DQBFds

cnf
k-DQBFcnf k-DQBFd

dnf

1 – – – L
(Theorem 19)

coNP-c
(Theorem 4)

2 NL-c
(Theorem 8)

NL-c
(Corollary 17)

NL-c
(Corollary 17)

coNP-c
(Theorem 20)

PSPACE-c
(Theorem 4)

3, 4

NP-c
(Theorem 14)

NP-c
(Corollary 17)

NP-c
(Corollary 17)

ΠP
2 -h

(Theorem 21)

NEXP-c
(Theorem 4)

5 PSPACE-h
(Theorem 23)

6+ NEXP-c
(Theorem 23)Non-const. ΣP

3 -c [18] NEXP-c [18]

Note: “-c” denotes “-complete”, “-h” denotes “-hard”, and “non-const.” denotes “non-constant.”

A clause is a disjunction of literals, and a cube is a conjunction of literals. A Boolean
formula φ is in conjunctive normal form (CNF) if it is a conjunction of clauses and in
disjunctive normal form (DNF) if it is a disjunction of cubes. We view a clause or a cube as
a set of literals and a formula in CNF (respectively, DNF) as a set of clauses (respectively,
cubes) whenever appropriate. We sometimes write a clause in the form of Q → C, where Q
is a cube and C is a clause, and similarly a DNF formula in the form of φ → ψ, where φ is
in CNF and ψ is in DNF.

We say that two sets of clauses A and B are variable-disjoint if for any clause C1 ∈ A

and C2 ∈ B, C1 and C2 do not share a common variable. For variable-disjoint sets A and B,
we write A×B to denote the set of clauses {(C1 ∨C2) |C1 ∈ A,C2 ∈ B}. We generalise this
notion to A1 ×A2 × · · · ×An for pairwise variable-disjoint sets A1, . . . , An.

We write v̄ = (v1, . . . , vn) to denote a vector of n Boolean variables with |v̄| := n denoting
its length.1 An assignment on v̄ is a function from v̄ to {⊤,⊥}. We often identify an
assignment on v̄ with a vector ā = (a1, . . . , an) ∈ {⊤,⊥}n, denoted āv̄, which maps each vi

to ai. When v̄ ⊆ ū, we write āū(v̄) to denote the vector of Boolean values (āū(v))v∈v̄. When
v̄ is clear from the context, we will simply write ā instead of āv̄.

Two assignments āū and b̄v̄ are consistent, denoted by āū ≃ b̄v̄, if āū(v) = b̄v̄(v) for every
v ∈ ū∩ v̄. When āū and b̄v̄ are consistent, we write (āū, b̄v̄) to denote the union āū ∪ b̄v̄. Given
a Boolean formula ϕ over the variables ū, v̄ and an assignment āv̄, we denote by ϕ[āv̄] the
induced formula over the variables ū obtained by assigning the variables in v̄ with Boolean
values according to the assignment āv̄.

For a positive integer m and a vector of variables ū of length n > logm, by abuse of
notation, we write ū = m to denote the cube

∧
i∈[n] ui ↔ ai, where (a1, . . . , an) is the n-bit

binary representation of m.

1 To avoid clutter, we always assume a vector of variables v̄ = (v1, . . . , vn) do not contain duplicate entries,
which can be viewed as a set {v1, . . . , vn}. We will thus use set-theoretic operations on such vectors as
on sets.

SAT 2025
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2.1 DQBF and Its Subclasses
We consider Dependency Quantified Boolean Formulas (DQBF) of the form

Φ = ∀x̄, ∃y1(D1), . . . , yk(Dk). φ , (1)

where x̄ = (x1, . . . , xn), Di ⊆ x̄ is the dependency set of the existential variable yi for every
i ∈ [k], and φ is a quantifier-free Boolean formula over the variables x̄∪ ȳ called the matrix of
Φ. We write dep(v) := Di if v = yi and dep(v) := {xi} if v = xi. We extend this notation to
literals and clauses by letting dep(ℓ) := dep(var(ℓ)) for a literal ℓ and dep(C) :=

⋃
ℓ∈C dep(ℓ)

for a clause C.
We say that Φ is satisfiable if for every i ∈ [k] there is a Boolean formula fi using only

variables in Di such that by replacing each yi with fi, the formula φ becomes a tautology.
In this case, we call the sequence f1, . . . , fk a model of Φ and refer to each individual fi as a
Skolem function for yi.

We define the subclasses k-DQBFα
β of DQBF, where k ⩾ 1 indicates the number of

existential variables, α ∈ {d, de, dec, ds} indicates the condition on the dependency sets, and
β ∈ {cnf, dnf} indicates the form of the matrix.

For the dependency set annotation α, we define:
DQBFd For every i ̸= j, Di ∩Dj = ∅,
DQBFde For every i ̸= j, Di ∩Dj = ∅ or Di = Dj ,
DQBFdec For every i ̸= j with |Di| ⩽ |Dj |, Di ∩Dj = ∅, Di = Dj , or Dj = x̄, and
DQBFds For every i ̸= j with |Di| ⩽ |Dj |, Di ∩Dj = ∅ or Di ⊆ Dj .
The letters d, e, c, and s denote disjoint, equal, complete, and subset, respectively. Note
that the dependency sets of a DQBFds formula form a laminar set family. The classification
of different dependency structures is inspired by [18], but we specify the condition that
the formula is in CNF explicitly in our notation. That is, DQBFde and DQBFdec in [18]
correspond to DQBFde

cnf and DQBFdec
cnf in our notation, respectively.

Note that DQBFd ⊆ DQBFde ⊆ DQBFdec ⊆ DQBFds. The first two inclusions are trivial,
and the last one comes from the observation that both Di = Dj and Dj = x̄ are special cases
of Di ⊆ Dj .

When k, α, or β is missing, it means that the corresponding restriction is dropped.
For instance, 3-DQBFdnf denotes the class of DQBF with 3 existential variables, arbitrary
dependency structure, and matrix in DNF, while DQBFd denotes the class of DQBF with
the dependency structure specified by d and an arbitrary Boolean formula as the matrix.
We denote by sat(k-DQBFα

β) the satisfiability problem for the class k-DQBFα
β .

▶ Remark 1. For every α ∈ {d, de, dec, ds} and β ∈ {cnf, dnf}, checking whether a DQBF
formula Φ is in the class DQBFα

β can be done deterministically in space logarithmic in the
length of Φ. To do so, we iterate through all the variables to check whether it satisfies the
conditions set by α. In each iteration, it suffices to store O(1) number of indices of the
variables, which requires only logarithmic space.

2.2 Manipulation of DQBFcnf

We recall two operations for manipulating DQBFcnf formulas, namely universal reduction [3,
12] and resolution-based variable elimination [20].

▶ Lemma 2 (Universal reduction [3, 12]). Let Φ = ∀x̄,∃y1(D1), . . . ,∃yk(Dk). φ be a DQBFcnf
formula, C ∈ φ be a clause, ℓ ∈ C be a universal literal, and let C ′ := C \ {ℓ}. If ℓ /∈ dep(C ′),
then Φ is equisatisfiable to

Φ′ := ∀x̄, ∃y1(D1), . . . ,∃yk(Dk). φ ∪ {C ′} \ {C} .



C. Cheng, L.-H. Fung, J.-H.-R. Jiang, F. Slivovsky, and T. Tan 10:5

Using universal reduction, we assume that
⋃

i∈[k] Di = x̄ for every DQBFcnf formula,
since any universal variable not in

⋃
i∈[k] Di can be universally-reduced from every clause.

For variable elimination by resolution, we only need a weaker version, which is sufficient
for our purpose.

▶ Lemma 3 (Variable elimination by resolution [20]). Let Φ = ∀x̄, ∃y1(D1), . . . ,∃yk(Dk). φ be
a DQBFcnf formula. We partition φ into three sets:

φy1 := {C ∈ φ | y1 ∈ C},
φ¬y1 := {C ∈ φ | ¬y1 ∈ C}, and
φ∅ := φ \ (φy1 ∪ φ¬y1).

If for every C ∈ φy1 we have dep(C) ⊆ dep(y1), or for every C ∈ φ¬y1 we have dep(C) ⊆
dep(y1), then Φ is equisatisfiable to

∀x̄, ∃y2(D2), . . . ,∃yk(Dk). φ∅ ∪ {C ⊗y1 C
′ |C ∈ φy1 , C ′ ∈ φ¬y1} ,

where C ⊗v C
′ denotes the resolution of C and C ′ w.r.t. the pivot v, i.e., C ⊗v C

′ =
(C \ {v}) ∪ (C ′ \ {¬v}).

The intuition is that y1 can “see” every assignment that may force it to be assigned to ⊤
(respectively, ⊥), and thus if all resolvents are satisfied, then there must be a Skolem function
for y1 that satisfies the clauses in φy1 ∪φ¬y1 . Note that the number of clauses after removing
y1 is at most |φ|2.

2.3 Universal Expansion of k-DQBF
Consider a k-DQBF formula Φ := ∀x̄, ∃y1(D1), . . . ,∃yk(Dk). φ. Let ȳ = (y1, . . . , yk). Given
an assignment ā on x̄ and b̄ on ȳ, for every i ∈ [k], let āi be the restriction of ā to Di and
bi be the restriction of b̄ to yi. We can expand Φ into an equisatisfiable k-CNF formula
exp(Φ) by instantiating each yi into exponentially many instantiated variables of the form
Yi,āi

[2, 6, 12]. Formally,

exp(Φ) :=
∧

(ā,b̄):φ[ā,b̄]=⊥

Cā,b̄ ,

where Cā,b̄ :=
∨

i∈[k] Yi,āi
⊕ bi. Intuitively, in the expansion exp(Φ), the Boolean variable Yi,āi

represents the value of a candidate Skolem function fi(āi) for yi. The universal expansion
shows that the satisfiability of Φ can be reduced to a Boolean satisfiability problem (with
exponential blow-up). Moreover, if the assignment (ā, b̄) falsifies the matrix φ, then a
satisfying assignment of exp(Φ) must assign Yi,āi to ¬bi for some i ∈ [k].

3 Complexity of sat(k-DQBFd
dnf)

Having defined the various subclasses of DQBF, we can refine previous results by stating
them more precisely. In this section, we consider the case where the matrix is in DNF.

By combining the DNF version of Tseitin transformation [9, Proposition 1] and the results
in [14], we can show that restricting to DNF matrix and pairwise-disjoint dependency sets
does not affect the complexity of sat(k-DQBF).

▶ Theorem 4. sat(k-DQBFd
dnf) is coNP-, PSPACE-, and NEXP-complete when k = 1,

k = 2, and k ⩾ 3, respectively.

SAT 2025
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See the appendix for the detailed proof. Since k-DQBFd
dnf ⊆ k-DQBFde

dnf ⊆ k-DQBFdec
dnf ⊆

k-DQBFds
dnf ⊆ k-DQBFdnf ⊆ k-DQBF, we have the following corollary:

▶ Corollary 5. sat(k-DQBFα
dnf) and sat(k-DQBFdnf) is coNP-, PSPACE-, and NEXP-

complete when k = 1, k = 2, and k ⩾ 3, respectively, for every α ∈ {de, dec, ds}.

4 Complexity of sat(k-DQBFα
cnf)

In this section, we consider the complexity of sat(k-DQBFα
cnf) and sat(DQBFα

cnf), with a focus
on the case where α = d. We first prove an important property of the expansion of DQBFd

cnf
formulas in Section 4.1 Then, in Sections 4.2 and 4.3 we show that sat(k-DQBFd

cnf) is of
the same complexity as k-SAT for k ⩾ 2,2 and that sat(DQBFd

cnf) is of the same complexity
as SAT. This shows that, in stark contrast to the DNF case in the previous section, with
pairwise disjoint dependency sets and with CNF matrix, the exponential gap between SAT
and DQBF disappears. Finally, we discuss other dependency structures in Section 4.4.

4.1 Universal Expansion of DQBFd
cnf

In this section, we show a useful property of the expansion of DQBFd
cnf formulas. We fix a

k-DQBFd
cnf formula:

Φ = ∀x̄, ∃y1(D1), . . . ,∃yk(Dk).
∧

j∈[m]

Cj . (2)

Let ȳ = (y1, . . . , yk). Given an assignment ā on x̄ and b̄ on ȳ, for every i ∈ [k], let āi be the
restriction of ā to Di and bi be the restriction of b̄ to yi.

Recall that for a DQBF formula Φ, each instantiated clause in exp(Φ) corresponds to
a falsifying assignment of the matrix of Φ. For a formula in CNF, the set of falsifying
assignments can be represented by the union of the set of falsifying assignments of each
individual clause. This allows us to represent the instantiated clauses in exp(Φ) as the
union of polynomially many sets when Φ is a DQBFd

cnf formula. Moreover, the disjoint
dependency structure allows us to further represent each of these sets as the Cartesian
product of variable-disjoint sets of instantiated literals. To formally state the property, we
first define some notation.

For a clause Cj in Φ, we write Ci
j(Φ) to denote the subset of Cj within yi’s dependency

set, Li,j(Φ) the set of instantiated literals Yi,āi ⊕ bi where the assignment (āi, bi) falsifies Ci
j ,

and Cj(Φ) the set of instantiated clauses Cā,b̄ where (ā, b̄) falsifies ¬Cj . We now formally
define these sets.

▶ Definition 6. Let Φ be a k-DQBFd
cnf formula as in (2). For every j ∈ [m] and i ∈ [k], we

define the sets Ci
j(Φ), Li,j(Φ) and Cj(Φ):

Ci
j(Φ) := {ℓ ∈ Cj | var(ℓ) ∈ Di ∪ {yi}}.

Li,j(Φ) := {Yi,āi
⊕ bi | (āi, bi) ≃ ¬Ci

j}.
Cj(Φ) :=

{
Cā,b̄

∣∣ (ā, b̄) ≃ ¬Cj

}
.

When Φ is clear from the context, we simply write Ci
j, Li,j and Cj.

We remark that (ā, b̄) ≃ ¬Cj if and only if (ā, b̄) falsifies Cj , and similarly (āi, bi) ≃ ¬Ci
j if

and only if (āi, bi) falsifies Ci
j . Note also that exp(Φ) =

∧
j∈[m]

∧
C∈Cj

C and that the sets
L1,j , . . . ,Lk,j are pairwise variable-disjoint.

2 There is no dependency structure for k = 1.
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We now state the property formally.

▶ Lemma 7. Let Φ be as in Equation (2). For every j ∈ [m], Cj = L1,j × · · · × Lk,j.

Proof. We fix an arbitrary j ∈ [m]. We first prove the “⊆” direction. Let Cā,b̄ be a clause in
Cj . That is, (ā, b̄) is an assignment that falsifies Cj . Let āi be the restriction of ā on Di and
bi be the restriction of b̄ on yi, for every i ∈ [k]. By definition, Cā,b̄ =

∨
i∈[k] Yi,āi ⊕ bi. Since

(ā, b̄) falsifies Cj , it is consistent with the cube ¬Cj . Hence, for every i ∈ [k], each āi, bi is
consistent with the cube ¬Ci

j . By definition, the literal Yi,āi
⊕ bi belongs to Li,j , for every

i ∈ [k].
Next, we prove the “⊇” direction. Let C := (L1 ∨ · · · ∨ Lk) ∈ L1,j × · · · × Lk,j . By

definition, for every i ∈ [k], there is assignment (āi, bi) such that Li is the literal Yi,āi ⊕bi and
(āi, bi) is consistent with the cube ¬Ci

j . Due to the disjointness of the dependency sets, all the
assignments (āi, bi)’s are pairwise consistent. Let (ā, b̄) be their union

⋃
i∈[k](āi, bi).3 Since

each (āi, bi) is consistent with ¬Ci
j , (ā, b̄) is consistent with all of ¬C1

j , . . . ,¬Ck
j . Therefore,

(ā, b̄) is a falsifying assignment of Cj . By definition, the clause Cā,b̄ =
∨

i∈[k] Yi,āi
⊕ bi is

in Cj . ◀

4.2 2-DQBFd
cnf

In this section we will show that sat(2-DQBFd
cnf) is NL-complete, as stated formally in The-

orem 8.

▶ Theorem 8. sat(2-DQBFd
cnf) is NL-complete.

Before we proceed to the formal proof, we first review some notation and terminology.
Recall that the expansion of a 2-DQBF formula (even when the matrix is in an arbitrary
form) is a 2-CNF formula, which can be viewed as a directed graph, called the implication
graph (of the 2-CNF formula) [1]. The vertices in the implication graph are the literals, and
for every clause (ℓ ∨ ℓ′) in the formula, there are two edges, (¬ℓ → ℓ′) and (¬ℓ′ → ℓ).

The following notion of a disimplex will be useful.

▶ Definition 9 (Disimplex [11]). Given two sets of vertices A,B, the disimplex from A to B
is the directed graph K(A,B) := (A ∪ B,A × B).

In other words, a disimplex K(A,B) is a complete directed bipartite graph where all the
edges are oriented from A to B.

The rest of this subsection is devoted to the proof of Theorem 8. For the rest of
this subsection, we fix a 2-DQBFd

cnf formula Φ = ∀z̄1, z̄2,∃y1(z̄1),∃y2(z̄2).
∧

j∈[m] Cj . We
will simply write Ci

j , Li,j and Cj to denote the sets Ci
j(Φ), Li,j(Φ) and Cj(Φ) defined

in Definition 6. For a set L of literals, we denote by L̂ the set of negated literals in L, i.e.,
L̂ := {¬L |L ∈ L}.

We first show that the implication graph of exp(Φ) is a finite union of disimplices, and
that the length of any shortest path between two vertices is bounded above by 2m.

▶ Lemma 10. Let G = (V, E) be the implication graph of exp(Φ). The set of edges E can be
represented as

E =
⋃

j∈[m]

(L̂1,j × L2,j) ∪ (L̂2,j × L1,j) ,

3 Note that, as stated in Section 2.2, we assume that
⋃

i∈[k] Di = x̄.

SAT 2025
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which is the union of the edge sets of m pairs of disimplices. Moreover, for every two vertices
L,L′ ∈ V, if L′ is reachable from L, then there exists a path from L to L′ of length at
most 2m.

Proof. By definition,

E =
{

(¬Y1,z̄1 ⊕ b1, Y2,z̄2 ⊕ b2), (¬Y2,z̄2 ⊕ b2, Y1,z̄1 ⊕ b1)
∣∣φ[āz̄1

1 , ā
z̄2
2 , b

y1
1 , b

y2
2 ] = ⊥

}
.

Since any assignment that falsifies φ must falsify some clause Cj in φ, we have

E =
⋃

j∈[m]

⋃
Cā,b̄∈Cj

{(¬Y1,z̄1 ⊕ b1, Y2,z̄2 ⊕ b2), (¬Y2,z̄2 ⊕ b2, Y1,z̄1 ⊕ b1)} .

By Lemma 7, we have Cj = {(L1 ∨ L2) |L1 ∈ L1,j , L2 ∈ L2,j} for every j ∈ [m]. Therefore,

E =
⋃

j∈[m]

(
L̂1,j × L2,j

)
∪

(
L̂2,j × L1,j

)
.

For the second part of the proof, assume, for the sake of contradiction, that P =
(L0, . . . , Ln) is a shortest path from L to L′ with n > 2m. Then, by the pigeonhole principle,
there must be some 0 ⩽ i1 < i2 < n such that (Li1 , Li1+1) and (Li2 , Li2+1) belongs to the
same disimplex K ⊆ E , and thus (Li1 , Li2+1) ∈ K ⊆ E . We can then construct a shorter
path P ′ = (L0, . . . , Li1 , Li2+1, . . . , Ln) from L to L′, which contradicts with the assumption
that P is a shortest path. ◀

Proof of Theorem 8. For the NL membership, we devise an algorithm by checking the
unsatisfiability of exp(Φ) directly on these disimplices. We present an NL algorithm that
checks the unsatisfiability of exp(Φ) by looking for cycles containing both an instantiated
literal and its negation in the implication graph G = (V, E) of exp(Φ).4

A naïve idea is to first non-deterministically guess a literal L and the paths P from
L to ¬L and P ′ from ¬L to L. However, since |V| is exponential in |x̄|, representing a
literal L ∈ V takes linear space. We instead make use of Lemma 10 and guess the disimplex
each edge of P, P ′ belongs in, denoted by the sequences (K(A1,B1), . . . ,K(An,Bn)) and
(K(A′

1,B′
1), . . . ,K(A′

n′ ,B′
n′)) with n, n′ ∈ [2m], where each A,B is of the form Li,j or L̂i,j .

We then check if
for every step j ∈ [n− 1], whether there exists some Lj ∈ Bj ∩ Aj+1,
for every step j′ ∈ [n′ − 1], whether there exists some L′

j′ ∈ B′
j′ ∩ A′

j′+1, and
whether there exists some L0 ∈ A1 ∩ B̂n ∩ Â′

1 ∩ B′
n′ .

We reject if one of the checks fails, and accept if all checks succeed. In the latter case, there
are paths P = (L0, L1, . . . , Ln−1,¬L0) and P ′ = (¬L0, L

′
1, L

′
2, . . . , L

′
n′−1, L0).

In particular, Li,j ∩ Li′,j′ is non-empty if and only if i = i′ and Ci
j and Ci′

j′ are consistent.
The consistency check can be done by keeping two pointers to the position in the clause
using log(|x̄| + 2) bits per pointer. This can easily be generalised to check the intersection of
any constant number of Li,j ’s. For L̂i,j , simply replace Ci

j with the clause Ĉi
j with the sign

of yi flipped if a literal of yi is present, i.e.,

Ĉi
j :=

(
Ci

j \ {yi,¬yi}
)

∪
(
¬Ci

j ∩ {yi,¬yi}
)
.

4 Recall that a 2-SAT formula φ is unsatisfiable if and only if there is a cycle containing both a literal
and its negation in the implication graph of φ.
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For the hardness proof, we provide a reduction from 2-SAT to 2-DQBFd
cnf . Let φ =∧

j∈[m](ℓj,1 ∨ ℓj,2) be a 2-CNF formula over the variables x̄ = (x1, . . . , xn). The idea is to
encode the assignment of x̄ with a function f : [n] → {⊥,⊤} where f(i) represents the
assignment of xi.

In the following, for a literal ℓ, let ind(ℓ) denote the index i where xi = var(ℓ). We
construct the 2-DQBFd

cnf formula

Ψ := ∀ū1,∀ū2,∃y1(ū1),∃y2(ū2). ψ ,

where ū1 and ū2 have length O(logn) for representing the variables in x̄ and ψ is a CNF
formula that states the following.

((ū1 = i) ∧ (ū2 = i)) → (y1 ↔ y2) for every i ∈ [n].
((ū1 = ind(ℓj,1)) ∧ (ū2 = ind(ℓj,2))) → ((y1 ↔ sgn(ℓj,1)) ∨ (y2 ↔ sgn(ℓj,2))) for every
j ∈ [m].

The first item states that the Skolem functions for y1 and y2 must be the same. The second
item implies that āx̄ is a satisfying assignment of φ if and only if the function fā is a
Skolem function for Ψ by encoding the assignment āx̄ as a function fā : [n] → {⊤,⊥}, where
fā(i) = āx̄(xi). ◀

4.3 k-DQBFd
cnf: k ⩾ 3 and Non-Constant k

For k ⩾ 3 and even arbitrary DQBFd
cnf , we show that it is NP-complete. Let Φ be as in

Equation (2). To show the NP membership, we first show that for every j ∈ [m], some yi is
responsible for satisfying all the clauses in Cj .

▶ Lemma 11. Let Φ be as in Equation (2) and let Ȳ be the vector of variables in exp(Φ).
For every j ∈ [m] and every assignment ā on Ȳ , ā satisfies the CNF formula

∧
C∈Cj

C if and
only if ā satisfies the cube

∧
L∈Li,j

L for some i ∈ [k].

Proof. We first prove the “if” direction. Let ā be an assignment on Ȳ . If ā satisfies the cube∧
L∈Li,j

L, then, for every clause C ∈ Cj, by Lemma 7, there exists some L ∈ Li,j ∩ C that is
satisfied by ā. Thus, C is satisfied by L.

For the “only if” direction, assume that ā does not satisfy the cube
∧

L∈Li,j
L for every

i ∈ [k]. That is, for every i ∈ [k], there exists some Li ∈ Li,j such that ā(var(Li)) ̸= sgn(Li).
It follows that the clause

(∨
i∈[k] Li

)
∈ Cj is falsified by ā, and thus ā does not satisfy∧

C∈Cj
C. ◀

▶ Remark 12. Recall that exp(Φ) =
∧

j∈[m]
∧

C∈Cj
C. Thus, Lemma 11 can be reformulated

as follows. For every assignment āȲ , āȲ satisfies exp(Φ) if and only if there is a function
ξ : [m] → [k] such that for every j ∈ [m], āȲ satisfies the cube

∧
L∈Lξ(j),j

L. Intuitively, the
function ξ is the mapping that maps index j to index i in the statement in Lemma 11. This
formulation will be useful later on.

The next lemma shows the NP membership of sat(DQBFd
cnf).

▶ Lemma 13. sat(DQBFd
cnf) is in NP.

Proof. Consider a DQBFd
cnf formula:

Φ = ∀z̄1, . . . ,∀z̄k,∃y1(z̄1), . . . ,∃yk(z̄k).
∧

j∈[m]

Cj

with k existential variables and m clauses.

SAT 2025
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By the reformulation of Lemma 11 in Remark 12, an assignment ā on Ȳ satisfies exp(Φ)
if and only if there exists a mapping ξ : [m] → [k] such that āȲ satisfies

∧
j∈[m]

∧
L∈Lξ(j),j

L,
or equivalently, if there exists a partition {Si}i∈[k] of [m] such that for each i ∈ [k], the
following QBF Φi is satisfiable:

Φi = ∀z̄i,∃yi.
∧

j∈Si

Ci
j .

Note that since Φi contains only one existential variable and it depends on all universal
variables, checking the satisfiability of Φi is in P using Lemma 3.5 An NP algorithm guesses
the partition {Si}i∈[k] and verifies that Φi is satisfiable for every i ∈ [k]. ◀

▶ Theorem 14. sat(k-DQBFd
cnf) for every k ⩾ 3 and sat(DQBFd

cnf) are NP-complete.

Proof. By Lemma 13, sat(DQBFd
cnf) is in NP. Since k-DQBFd

cnf ⊆ DQBFd
cnf , sat(k-DQBFd

cnf)
is also in NP for every constant k.

For the NP-hardness, a reduction from 3-SAT to 3-DQBFd
cnf can be done analogous to

that of Theorem 8. A complete proof can be found in Section B.2. Since adding more
existential variables only increases the complexity, sat(k-DQBFd

cnf) for every k ⩾ 3 and
sat(DQBFd

cnf) are also NP-hard. ◀

4.4 k-DQBFα
cnf: Different Dependency Structure

It has been shown in [18] that sat(DQBFde
cnf) is ΣP

3 -complete and sat(DQBFdec
cnf ) is NEXP-

complete. Since DQBFdec
cnf ⊆ DQBFds

cnf ⊆ DQBF and sat(DQBF) is also NEXP-complete, we
know sat(DQBFds

cnf) is NEXP-complete. In this section, we show a surprising result that,
when k is a constant, sat(k-DQBFα

cnf) has the same complexity as k-SAT and sat(k-DQBFd
cnf)

for every α ∈ {de, dec, ds}. Since k-DQBFd
cnf ⊆ k-DQBFde

cnf ⊆ k-DQBFdec
cnf ⊆ k-DQBFds

cnf , it
suffices to show the results for sat(k-DQBFds

cnf).
We start with sat(2-DQBFds

cnf).

▶ Theorem 15. sat(2-DQBFds
cnf) is NL-complete.

Proof. Since 2-DQBFds
cnf ⊇ 2-DQBFd

cnf , the hardness follows from Theorem 8. For NL
membership, consider a 2-DQBFds

cnf formula Φ := ∀x̄,∃y1(D1),∃y2(D2). φ. First, we check
whether D1 and D2 are disjoint using only logarithmic space. (See Remark 1.) If D1 and D2
are disjoint, we use the algorithm from Theorem 8 to determine its satisfiability. Otherwise,
without loss of generality, we may assume that D1 ⊆ D2. We will show that this case can be
decided in deterministic logarithmic space. Indeed, in this case Φ is a standard QBF and
we can perform a level-ordered Q-resolution proof [16]. Since there are only two existential
variables, any proof uses at most four clauses, and we can simply iterate through all 4-tuples
of clause indices and check whether Q-resolution can be performed.

In the following, we give an alternative proof that works directly on the semantics of
QBF. To ease notation, we write z̄1 := D1, z̄2 := D2 \D1, and z̄3 := x̄ \D2. Note that Φ is
equivalent to a QBF

Ψ = ∀z̄1,∃y1,∀z̄2,∃y2,∀z̄3. φ

= ∀z̄1,∃y1,∀z̄2. (∀z̄3. φ[⊥y2 ]) ∨ (∀z̄3. φ[⊤y2 ])
= ∀z̄1. (∀z̄2. (∀z̄3. φ[(⊥y1 ,⊥y2)]) ∨ (∀z̄3. φ[(⊥y1 ,⊤y2)]))

∨ (∀z̄2. (∀z̄3. φ[(⊤y1 ,⊥y2)]) ∨ (∀z̄3. φ[(⊤y1 ,⊤y2)])) ,

5 In fact, it is in L, as shown later in Theorem 19.
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which is false if and only if there are assignments āz̄1 , b̄z̄2 , and c̄z̄2 such that

∀z̄3. φ[(⊥y1 ,⊥y2 , āz̄1 , b̄z̄2)] ∨ ∀z̄3. φ[(⊥y1 ,⊤y2 , āz̄1 , b̄z̄2)] ∨ ∀z̄3. φ[(⊤y1 ,⊥y2 , āz̄1 , c̄z̄2)]
∨ ∀z̄3. φ[(⊤y1 ,⊤y2 , āz̄1 , c̄z̄2)]

is false. Since each of the four disjuncts is still in CNF, the formula is false if and only if each
disjunct has a falsified clause. This is equivalent to finding four clauses C1, C2, C3, C4 ∈ φ

such that
the clauses C1, C2, C3, C4 are consistent on the variables in z̄1,
the clauses C1, C2 are consistent on the variables in z̄2,
the clauses C3, C4 are consistent on the variables in z̄2, and
¬C1, ¬C2, ¬C3, and ¬C4 are consistent with ¬y1 ∧ ¬y2, ¬y1 ∧ y2, y1 ∧ ¬y2, and y1 ∧ y2,
respectively.

To find such clauses, we can iterate through all 4-tuples of clause indices and check whether
the properties hold. ◀

Next, we show that for every k ⩾ 3, sat(k-DQBFds
cnf) is NP-complete, just like k-SAT.

▶ Theorem 16. For every constant k ⩾ 3, sat(k-DQBFds
cnf) is NP-complete.

Before we present the proof of Theorem 16, we note that since k-DQBFde
cnf ⊆ k-DQBFdec

cnf ⊆
k-DQBFds

cnf , we obtain the following results as a corollary of Theorems 8 and 14–16.

▶ Corollary 17. sat(k-DQBFde
cnf) and sat(k-DQBFdec

cnf ) are NL-complete when k = 2 and
NP-complete when k ⩾ 3.

The rest of this section is devoted to the proof of Theorem 16.

Proof of Theorem 16. We will consider the membership proof. The hardness follows
from Theorem 14. We fix a k-DQBFds

cnf formula:

Φ := ∀x̄, ∃y1(D1), . . . ,∃yk(Dk).
∧

j∈[m]

Cj . (3)

Without loss of generality, we may assume that no existential variable has an empty depend-
ency set, since our NP algorithm can guess an assignment to such variables at the outset. By
Lemma 2, we may also assume that every universal variable appears in some dependency set.
We say that a dependency set Di is maximal if there is no j where Di ⊊ Dj . An existential
variable yi is maximal if its dependency set is maximal.

To decide the satisfiability of Φ, our algorithm works by recursion on the number of
existential variables. The base case is when there is only one existential variable. This
case can be decided in polynomial time and, in fact, in deterministic logspace. See, e.g.,
Theorem 19.

For the induction step, we pick a maximal variable yt. There are two cases.
Case 1: Dt = x̄. We apply Lemma 3 and eliminate yt, resulting in a formula with one less
existential variable and O(m2) clauses. We then proceed recursively.
Case 2: Dt ̸= x̄. We deal with this case by generalising the technique in Lemma 13.

Let {i1, . . . , ip} = {i |Di ⊆ Dt} and {i′1, . . . , i′q} = {i′ |Di′ ∩Dt = ∅}. For each j ∈ [m],
we partition Cj into two clauses:

C+t
j :={ℓ | dep(ℓ) ⊆ Dt}

C−t
j :=Cj \ C+t

j

SAT 2025
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Intuitively, C+t
j is the subclause of Cj that includes all the literals with dependency sets

inside Dt. On the other hand, C−t
j is the subclause that contains the rest of the literals. Due

to the laminar structure of the dependency sets and that yt is a maximal variable, C−t
j = {ℓ |

dep(ℓ) ∩Dt = ∅}.
For a function ξ : [m] → {+t,−t}, we define two formulas:

Φ+t,ξ :=∀x̄,∃yi1(Di1), . . . ,∃yip(Dip).
∧

j:ξ(j)=+t

C+t
j

Φ−t,ξ :=∀x̄,∃yi′
1
(Di′

1
), . . . ,∃yi′

q
(Di′

q
).

∧
j:ξ(j)=−t

C−t
j

We have the following lemma.

▶ Lemma 18. Φ is satisfiable if and only if there is a function ξ : [m] → {+t,−t} such that
Φ+t,ξ and Φ−t,ξ are both satisfiable.

Note that guessing ξ requires m bits. The algorithm guesses the function ξ and verifies
recursively that both Φ+t,ξ and Φ−t,ξ are satisfiable. Since the algorithm terminates after k
steps, and k is a constant, and the number of clauses constructed in each recursive step is at
most quadratically many, each step can be done in polynomial time. ◀

The proof of Lemma 18 is a generalisation of Lemma 11. Let Ȳ be the vector of variables
in the expansion exp(Φ). We can show that an assignment ā on Ȳ satisfies exp(Φ) if and
only if it satisfies exp(Φ+t,ξ) and exp(Φ−t,ξ) for some function ξ. A detailed proof can be
found in the appendix.

5 Complexity of sat(k-DQBFcnf)

In this section, we remove the constraint on the dependency structure and consider k-DQBFcnf .
The case k = 1 can be solved very efficiently.

▶ Theorem 19. sat(1-DQBFcnf) is in L.

Proof. Let Φ = ∀z̄1, z̄2,∃y(z̄1).
∧

j∈[m] Cj . Similar to the proof of Theorem 15, to show
unsatisfiability, it suffices to find C1, C2 ∈ φ such that

C1, C2 are consistent on the variables in z̄1, and
¬C1 and ¬C2 are consistent with ¬y and y, respectively.

The correctness follows from the same reasoning. ◀

Next, we consider the case where k = 2.

▶ Theorem 20. sat(2-DQBFcnf) is coNP-complete.

Proof. For membership, we give an NP algorithm for checking unsatisfiability. Let Φ :=
∀x̄, ∃y1(D1),∃y2(D2). φ be be a 2-DQBFcnf formula. Let z̄ = D1 ∩D2. Note that for every
assignment ā on z̄, the induced formula Φ[ā] is a 2-DQBFd

cnf formula, the satisfiability of
which can be decided in polynomial time by Theorem 8. Therefore, to decide whether Φ
is unsatisfiable, we can guess an assignment ā on z̄ and accept if and only if Φ[ā] is not
satisfiable.

For hardness, we provide a reduction from the 3-DNF tautology problem to
sat(2-DQBFcnf). Let φ =

∨
j∈[m] Qj be a 3-DNF formula over the variables x̄ = (x1, . . . , xn),

where each Qj = (ℓj,1 ∧ ℓj,2 ∧ ℓj,3) is a 3-literal cube. We construct the following 2-DQBFcnf
formula:

Ψ = ∀x̄, ∀ū1,∀ū2,∃y1(x̄, ū1),∃y2(x̄, ū2). ψ1 ∧ ψ2 ∧ ψ3 ∧ ψ4 ,
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Y1,1 Y2,1

Y1,2 Y2,2

Y1,3 Y2,3

...
...

Y1,m Y2,m

¬Y1,1 ¬Y2,1

¬Y1,2 ¬Y2,2

¬Y1,3 ¬Y2,3

...
...

¬Y1,m ¬Y2,m

¬Q1

¬Q2

¬Q3

¬Qm

¬Q1

¬Q2

¬Q3

¬Qm

Figure 1 The implication graph Gā. Each dashed edge
¬Qi
99K is present if and only if āx̄ falsifies Qi.

where ū1, ū2 have length O(logm) for representing the numbers in [m] and ψ1, . . . , ψ4 are as
follows.

ψ1 :=(ū1 = 1) → y1

ψ2 :=
∧

j∈[m−1]

((
(ū1 = j + 1) ∧ (ū2 = j)

)
→ (y2 → y1)

)
ψ3 :=

(
(ū1 = 1) ∧ (ū2 = m)

)
→ (y2 → ¬y1)

ψ4 :=
∧

j∈[m]

∧
i∈[3]

((
(ū1 = j) ∧ (ū2 = j) ∧ ¬ℓj,i

)
→ (y1 → y2)

)
We claim that φ is a tautology if and only if Ψ is satisfiable. To see this, we fix an

arbitrary assignment ā on x̄ and consider the induced formula Ψ[ā]. Note that Ψ[ā] is a
2-DQBFd

cnf formula with universal variables ū1, ū2. Since |ū1| = |ū2| = logm, the expansion
exp(Ψ[ā]) is a 2-CNF formula with 2m variables Y1,1, . . . , Y1,m, Y2,1, . . . , Y2,m. Here we abuse
the notation and write Yi,j instead of Yi,ā where ā is the binary representation of j.

It can be easily verified that the implication graph Gā of the expansion exp(Ψ[ā]) is as
shown in Figure 1, where a dashed edge

¬Qj

99K is present if and only if ā falsifies the cube Qj .
Indeed, ψ1 states that the edge ¬Y1,1 → Y1,1 is present. ψ2 states that the edges Y2,i → Y1,i+1
and ¬Y1,i+1 → ¬Y2,i are present for every i ∈ [m− 1]. ψ3 states that the edges Y2,m → ¬Y1,1

and Y1,1 → ¬Y2,m are present. Finally, ψ4 states that the dashed edges Y1,j

¬Qj

99K Y2,j and

Y1,j

¬Qj

99K Y2,j are present if āx̄ falsifies Qj , for every j ∈ [m]. This implies that āx̄ falsifies all
cubes in φ if and only if there exists a cycle in Gā. Since a cycle in Gā (if exists) contains
contradicting literals, āx̄ falsifies all cubes in φ if and only if Ψ[ā] is not satisfiable. Since the
assignment ā is arbitrary, φ is a tautology if and only if Ψ is satisfiable. ◀

Next, we consider k-DQBFcnf . Note that 3-DQBFcnf subsumes both 3-DQBFd
cnf and

2-DQBFcnf . Thus, sat(3-DQBFcnf) is is both NP-hard and coNP-hard. We improve these
results by showing that it is ΠP

2 -hard.

▶ Theorem 21. sat(3-DQBFcnf) is ΠP
2 -hard.

SAT 2025
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Proof. We show this by reduction from Π2-QBF in 3-CNF. The reduction is similar to the
one in Theorem 14, except that the existential variables are allowed to depend on common
variables, thereby enabling the encoding of a two-level QBF.

Let φ = ∀z̄,∃x̄.
∧

j∈[m](ℓj,1 ∨ ℓj,2 ∨ ℓj,3) be a Π2-QBF in 3-CNF. Let x̄ = (x1, . . . , xn)
and for a literal ℓ, let ind(ℓ) denote the index i where xi = var(ℓ).

We construct the following 3-DQBFcnf formula:

Ψ := ∀z̄,∀ū1,∀ū2,∀ū3,∃y1(z̄, ū1),∃y2(z̄, ū2),∃y3(z̄, ū3). ψ1 ∧ ψ2 ∧ ψ3 ,

where ū1, ū2, ū3 have length logn for representing the variables in x̄ and each ψ1, ψ2, ψ3 is
the following CNF formula:

ψ1 :=
∧

i∈[n]

((
(ū1 = i) ∧ (ū2 = i)

)
→ (y1 ↔ y2)

)
ψ2 :=

∧
i∈[n]

((
(ū1 = i) ∧ (ū3 = i)

)
→ (y1 ↔ y3)

)
ψ3 :=

∧
j∈[m]

(
(σj,1 ∧ σj,2 ∧ σj,3) → (τj,1 ∨ τj,2 ∨ τj,3)

)
,

where for every i ∈ [3], σj,i and τj,i are defined as

(σj,i, τj,i) =
{

(ūi = ind(ℓj,i), yi ↔ sgn(ℓj,i)) if var(ℓj,i) is existential in φ

(⊤, ℓj,i) otherwise.

The intuition is that a vector of Skolem functions f1, . . . , fn for x̄ in φ can be encoded as a
single function g : {⊤,⊥}|z̄| × [n] → {⊤,⊥}, which then corresponds to a Skolem function
for each yi in Ψ. The formulas ψ1 and ψ2 state that for every Skolem functions (g1, g2, g3)
for Ψ, all functions g1, g2, g3 must be the same. Then, ψ3 states that the Skolem functions
f1, . . . , fn for φ (if exists) must satisfies all the clauses C1, . . . , Cm. Therefore, φ is a true
QBF if and only if Ψ is satisfiable. ◀

We next show a Tseitin-like transformation that requires only three additional existential
variables. This is in contrast with the standard Tseitin transformation that requires as many
existential variables as the length of the input formula. Our new Tseitin-like transformation
leads to new hardness results for sat(5-DQBFcnf) and sat(6-DQBFcnf).

▶ Lemma 22 (Reformulated Tseitin Transformation). Given a k-DQBF formula, we can
construct in polynomial time an equisatisfiable (k + 3)-DQBFcnf formula.

Proof. Let Φ = ∀x̄,∃y1(z̄1), . . . ,∃yk(z̄k). φ be a k-DQBF formula where φ is a circuit with
gates g1, . . . , gm. We assume, without loss of generality, that

gi =


xi for every 1 ⩽ i ⩽ n

yi−n for every n+ 1 ⩽ i ⩽ n+ k

fi(gli
, gri

) for every n+ k + 1 ⩽ i ⩽ m,

where li, ri ∈ [i− 1] are the indices of the two fan-ins of the gate gi implementing the Boolean
function fi, and that gm corresponds to the primary output of the circuit.

We construct the (k + 3)-DQBFcnf formula

Ψ := ∀x̄, ∀ū1,∀ū2,∀ū3,∃y1(z̄1), . . . ,∃yk(z̄k),∃t1(x̄, ū1),∃t2(x̄, ū2),∃t3(x̄, ū3). ψ ,

where ū1, ū2, ū3 have length logm for representing the numbers in [m] and ψ is a CNF
formula with clauses encoding
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((ū1 = i) ∧ (ū2 = i)) → (t1 ↔ t2) for every i ∈ [m],
((ū1 = i) ∧ (ū3 = i)) → (t1 ↔ t3) for every i ∈ [m],
(ū1 = i) → (t1 ↔ xi) for every i ∈ [n],
(ū1 = n+ i) → (t1 ↔ yi) for every i ∈ [k],
((ū1 = i) ∧ (ū2 = li) ∧ (ū3 = ri)) → (t1 ↔ fi(t2, t3)) for every n+ k + 1 ⩽ i ⩽ m,
(ū1 = m) → t1.

The intuitive meaning is as follows. The first two items state that the Skolem functions for
t1, t2, t3 must be the same. The next three state that the Skolem function g for t1 encodes the
values of the gates, where g(x̄, ū1) is the value of gate j when ū1 is the binary representation
of j. The last item encodes that the output of the circuit must be true. The correctness
proof is routine and hence omitted. ◀

In particular, by combining Lemma 22 with the fact that sat(2-DQBF) and sat(3-DQBF)
are PSPACE-complete and NEXP-complete [14], we establish the hardness of sat(5-DQBFcnf)
and sat(6-DQBFcnf).

▶ Theorem 23. sat(5-DQBFcnf) is PSPACE-hard and sat(6-DQBFcnf) is NEXP-complete.

6 Conclusions and Future Work

While sat(k-DQBFd
dnf) is as hard as sat(k-DQBF), we observe a range of differing complexity

results in the CNF case. For the case of sat(k-DQBFd
cnf), we show that it is in fact as

easy as k-SAT – exponentially easier than sat(k-DQBF). Generalising the results in [18],
we also show that sat(DQBFd

cnf) is NP-complete and that sat(k-DQBFα
cnf) has the same

complexity as k-SAT for α ∈ {d, de, dec, ds}. For the case of k-DQBFcnf , we show that it is
only coNP-complete when k = 2 (whereas sat(2-DQBF) is PSPACE-complete) and of the
same NEXP-complete complexity as sat(DQBF) when k ⩾ 6. These results show that, when
parametrising DQBF with the number of existential variables, it is more natural to consider
DNF as the normal form for the matrix, analogous to how CNF is considered the standard
form for SAT.

The exact complexity of sat(k-DQBFcnf) is yet to be discovered for k = 3, 4, and 5. In
particular, the best-known membership result is still that they are in NEXP. We leave this
for future work.
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A Additional Background

We provide additional background knowledge in this section.

A.1 Tseitin Transformation
Tseitin transformation is a standard technique to turn an arbitrary Boolean satisfiability
problem into an equisatisfiable one in 3-CNF form [19]. It can be directly lifted to QBF and
DQBF by allowing the Tseitin variables to depend on every universal variable.

Given a DQBF

Φ = ∀x̄, ∃y1(z̄1), . . . ,∃yk(z̄k). φ ,

where φ is a circuit with gates g1, . . . , gm, we assume, without loss of generality, that

gi =


xi for every 1 ⩽ i ⩽ n

yi−n for every n+ 1 ⩽ i ⩽ n+ k

fi(gli , gri) for every n+ k + 1 ⩽ i ⩽ m,

where li, ri ∈ [i− 1] are the indices of the two fanins of the gate gi implementing the Boolean
function fi.

The core idea of Tseitin transformation is that we can introduce a fresh variable ti for
every gate gi and encode locally the relation between the inputs and the output of the gate.
The formula ψG encoding these constraints is a CNF formula encoding

ti ↔ xi for every 1 ⩽ i ⩽ n,
ti ↔ yi−n for every n+ 1 ⩽ i ⩽ n+ k, and
ti ↔ fi(tli

, tri
) for every n+ k + 1 ⩽ i ⩽ m.

We then have Φ is equisatisfiable to

Ψ1 := ∀x̄, ∃y1(z̄1), . . . ,∃yk(z̄k),∃t̄(x̄). ψG ∧ tm .

To transform it to DNF form, as noted in [9], Φ is equisatisfiable to

Ψ2 := ∀x̄, ∀t̄,∃y1(z̄1), . . . ,∃yk(z̄k). ψG → tm .

Note that the matrix of the formula is in DNF form. In the context of QBF, it can be
thought of as applying the Tseitin transformation on ¬φ and then negating the resulting
existential formula [21]. We refer to this as the DNF version of Tseitin transformation.

B Omitted Proofs

We fill in the omitted proofs in the main text in this section.

B.1 Complexity of sat(k-DQBFd
dnf)

Proof of Theorem 4. Since we are considering subclasses of k-DQBF, it suffices to show
the hardness part.

First, observe that the DNF version of the Tseitin transformation (see Section A.1)
preserves both the number of existential variables and the dependency structure. Therefore,
we have that sat(k-DQBFα

dnf) is as hard as sat(k-DQBFα) for every combination of α and k. In
addition, observe that the formula constructed to show the PSPACE- and NEXP-hardness of
sat(2-DQBF) and sat(3-DQBF) in [14, Theorems 4 and 5] are in fact 2-DQBFd and 3-DQBFd,
respectively. Thus, we have sat(k-DQBFd

dnf) is coNP-, PSPACE-, and NEXP-complete for
k = 1, k = 2, and k ⩾ 3, respectively. ◀

SAT 2025
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B.2 Hardness of sat(3-DQBFd
cnf)

Hardness Proof of Theorem 14. Let φ =
∧

j∈[m](ℓj,1 ∨ ℓj,2 ∨ ℓj,3) be a 3-CNF formula over
the variables x̄ = (xi)i∈[n]. We again write ind(ℓ) := i if var(ℓ) = xi.

We construct the following 3-DQBFd
cnf formula

Ψ := ∀ū1,∀ū2,∀ū3,∃y1(ū1),∃y2(ū2),∃y3(ū3). ψ ,

where ū1, ū2, and ū3 are of length O(logn) for representing the variables in x̄ and ψ is a
CNF formula that states the following.

(ū1 = i) ∧ (ū2 = i) → (y1 ↔ y2) for every i ∈ [n],
(ū1 = i) ∧ (ū3 = i) → (y1 ↔ y3) for every i ∈ [n], and
(ū1 = ind(ℓj,1)) ∧ (ū2 = ind(ℓj,2)) ∧ (ū3 = ind(ℓj,3)) → (y1 ↔ sgn(ℓj,1)) ∨ (y2 ↔
sgn(ℓj,2)) ∨ (y3 ↔ sgn(ℓj,3)) for every j ∈ [m].

The first two items state that the Skolem functions for y1, y2, and y3 must be the
same. The third item implies that āx̄ is a satisfying assignment of φ if and only if the
function fā is a Skolem function for Ψ by encoding āx̄ as a function fā : [n] → {⊤,⊥}, where
fā(i) = āx̄(xi). ◀

B.3 Proof of Lemma 18
Recall that we fix a k-DQBFds

cnf formula:

Φ := ∀x̄, ∃y1(D1), . . . ,∃yk(Dk).
∧

j∈[m]

Cj . (4)

Let ȳ = (y1, . . . , yk). We recall some of the notation used in the main text.
yt is a maximal variable where Dt ̸= x̄.
{i1, . . . , ip} = {i |Di ⊆ Dt} and {i′1, . . . , i′q} = {i′ |Di′ ∩Dt = ∅}.
For each j ∈ [m]:

C+t
j :={ℓ | dep(ℓ) ⊆ Dt}

C−t
j :=Cj \ C+t

j

For a function ξ : [m] → {+t,−t}, we define two formulas:

Φ+t,ξ :=∀x̄, ∃yi1(Di1), . . . ,∃yip
(Dip

).
∧

j s.t. ξ(j)=+t

C+t
j

Φ−t,ξ :=∀x̄, ∃yi′
1
(Di′

1
), . . . ,∃yi′

q
(Di′

q
).

∧
j s.t. ξ(j)=−t

C−t
j

Finally, we recall Lemma 18.

▶ Lemma 18. Φ is satisfiable if and only if there is a function ξ : [m] → {+t,−t} such that
Φ+t,ξ and Φ−t,ξ are both satisfiable.

To prove Lemma 18, we will need additional notation and terminology. Let St := {yi |
Di ⊆ Dt}. Note that yt ∈ St. To ease notation, we write Dc

t := x̄ \ Dt and Sc
t := ȳ \ St.

That is, Dc
t is the complement of Dt w.r.t. x̄ and Sc

t is the complement of St w.r.t. ȳ. In
the following, we will drop the subscript t in Dt, St, D

c
t , S

c
t and simply write D,S,Dc, Sc.
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For an assignment (āD, b̄S), we define the clause cl(āD, b̄S):

cl(āD, b̄S) :=
∨
i∈S

Yi,āi
⊕ bi, where each āi = āD(Di) and bi = b̄S(yi).

Similarly, for an assignment (āDc

, b̄Sc), we define the clause cl(āDc

, b̄S(y)c):

cl(āDc

, b̄Sc

) :=
∨

yi∈Sc

Yi,āi
⊕ bi, where each āi = āDc

(Di) and bi = b̄Sc

(yi).

We now generalise Definition 6 to the laminar case.

▶ Definition 24. Let Φ be as in Equation (4). For every j ∈ [m], we define the sets:

L∗
+t,j(Φ) :={cl(āD, b̄S) | (āD, b̄S) ≃ ¬C+t

j }

L∗
−t,j(Φ) :={cl(āDc

, b̄Sc

) | (āDc

, b̄Sc

) ≃ ¬C−t
j }

Cj(Φ) :=
{

Cā,b̄

∣∣ (āx̄, b̄ȳ) ≃ ¬Cj

}
The following lemma is a generalisation of Lemma 7 to the laminar case.

▶ Lemma 25. Let Φ be as in Equation (4). Then, for every j ∈ [m], Cj = L∗
+t,j(Φ)×L∗

−t,j(Φ).

Proof. The proof is a straightforward generalisation of Lemma 7. For the sake of completeness,
we present it here.

We fix an arbitrary j ∈ [m]. We first prove the “⊆” direction. Let Cā,b̄ be a clause in
Cj . That is, (āx̄, b̄ȳ) is an assignment that falsifies Cj . By definition, Cā,b̄ =

∨
i∈[k] Yi,āi

⊕ bi.
Since (ā, b̄) falsifies Cj , it is consistent with the cube ¬Cj .

Let āt = āx̄(D) and b̄t = b̄ȳ(S). Let ā0 = āx̄(Dc) and b̄0 = b̄ȳ(Sc). Both are consistent
with the cubes ¬C+t

j and ¬C−t
j , respectively. By definition, the clause cl(āD

t , b̄
S
t ) is in

L∗
+t,j(Φ) and the clause cl(āDc

t , b̄Sc

t ) is in L∗
−t,j(Φ). The inclusion follows since

Cā,b̄ = cl(āD
t , b̄

S
t ) ∨ cl(āDc

t , b̄Sc

t )

Next, we prove the “⊇” direction. Let C ∈ L∗
+t,j(Φ) × L∗

−t,j(Φ). Let C := B1 ∨B2, where
B1 ∈ L∗

+t,j(Φ) and B2 ∈ L∗
−t,j(Φ). By definition,

there is assignment (āD
1 , b̄

S
1 ) such that B1 is the clause cl(āD

1 , b̄
S
1 ),

there is assignment (āDc

2 , b̄Sc

2 ) such that B2 is the clause cl(āDc

2 , b̄Sc

2 ).
Since the dependency sets of the variables in S are disjoint with the dependency sets of the
variables in Sc , the assignments (āD

1 , b̄
S
1 ) and (āDc

2 , b̄Sc

2 ) are consistent. Let (āx̄, b̄ȳ) be their
union, which is consistent with ¬C+t

j ∧ ¬C−t
j . Therefore, (āx̄, b̄ȳ) is a falsifying assignment

of Cj . By definition, the clause Cā,b̄ = B1 ∨B2 and it is in Cj . ◀

Now, Lemma 18 follows from the following lemma, which is the generalisation of Lemma 11.

▶ Lemma 26. Let Φ be as in Equation (4) and let Ȳ be the vector of variables in exp(Φ). For
every assignment āȲ , āȲ satisfies exp(Φ) if and only if it satisfies exp(Φ+t,ξ) and exp(Φ−t,ξ)
for some function ξ : [m] → {+t,−t}.

Proof. The proof is similar to Lemma 26. For completeness, we reprove it here. We observe
that:

exp(Φ) =
∧

j∈[m]

∧
C∈Cj

C

=
∧

j∈[m]

∧
(C1,C2)∈L∗

+t,j
(Φ)×L∗

−t,j
(Φ)

C1 ∨ C2

SAT 2025
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The second equality comes from Lemma 25. Thus, exp(Φ) is satisfiable iff there is a function
ξ : [m] → {+t,−t} such that ∧

j:ξ(j)=+t

∧
C1∈L∗

+t,j
(Φ)

C1

 ∧

 ∧
j:ξ(j)=−t

∧
C2∈L∗

−t,j
(Φ)

C2


is satisfiable. The first part of the conjunction is precisely exp(Φ+t,ξ) and the second part is
precisely exp(Φ−t,ξ). ◀
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