Better Extension Variables in DQBF via
Independence

Leroy Chew 24
TU Wien, Austria

Tomas Peitl S &
TU Wien, Austria

—— Abstract

We show that extension variables in (D)QBF can be generalised by conditioning on universal

assignments. The benefit of this is that the dependency sets of such conditioned extension variables
can be made smaller to allow easier refutations. This simple modification instantly solves many
challenges in p-simulating the QBF expansion rule, which cannot be p-simulated in proof systems
that have strategy extraction [13]. Simulating expansion is even more crucial in DQBF, where
other methods are incomplete. In this paper we provide an overview of the strength of this new
independent extension rule. We find that a new version of Extended Frege called IndExtFrege + Vred
can p-simulate a multitude of difficult QBF and DQBF techniques, even techniques that are difficult
to approach with eFrege + Vred. We show five p-simulations, that IndExtFrege + Vred p-simulates
QRAT, DQBF-IR-calc, IR(D"®)-calc, Fork-Resolution and DQRAT which together underpin most
DQBF solving and preprocessing techniques. The p-simulations work despite these systems using
complicated rules and our new extension rule being relatively simple. Moreover, unlike recent
p-simulations by eFrege + Vred we can simulate the proof rules line by line, which allows us to mix
QBF rules more easily with other inference steps.

2012 ACM Subject Classification Theory of computation — Proof complexity

Keywords and phrases DQBF, QBF, Proof Systems, Dependency Schemes, RAT, Extended Frege,
Skolem functions

Digital Object Identifier 10.4230/LIPIcs.SAT.2025.11
Related Version Full Version: https://arxiv.org/abs/2505.20069 [15]

Funding Leroy Chew: Funding by FWF ESPRIT grant number ESP-197.

Acknowledgements Thanks to Marijn Heule and Mikolas Janota for their discussions on this topic.

Thanks to the anonymous reviewers for the valuable feedback.

1 Introduction

Proof systems that allow extension variables are very powerful [17]. We know that in
propositional logic, extended resolution can p-simulate a multitude of disparate techniques,
and lower bounds to extended resolution remain an open problem. This is remarkable because
resolution itself is a weak proof system with various lower bounds, but simply adding the
extension rule upgrades it to be amongst the most powerful propositional proof systems and
is equivalent to the checking format DRAT [31]. An extension rule for variable v takes the
form:

v > b(X) : b is a Boolean function, X is a set of existing variables

Quantified Boolean Formulas (QBF) also use extension variables [19] and these too can
be very powerful. QBFs list all variables in a quantifier prefix. This defines whether a
variable is existential (3) or universal (V). The order defines dependencies so variables only
depend on other variables to their left. When used in refutations, extension variables must
© Leroy Chew and Tom4&s Peitl;

37 licensed under Creative Commons License CC-BY 4.0

28th International Conference on Theory and Applications of Satisfiability Testing (SAT 2025).
Editors: Jeremias Berg and Jakob Nordstréom; Article No. 11; pp. 11:1-11:24

\\v Leibniz International Proceedings in Informatics
LIPICS Schloss Dagstuhl — Leibniz-Zentrum fiir Informatik, Dagstuhl Publishing, Germany

mailto:lchew@ac.tuwien.ac.at
https://leroychew.wordpress.com/
https://orcid.org/0000-0003-0226-2832
mailto:peitl@ac.tuwien.ac.at
https://ac.tuwien.ac.at/people/peitl
https://orcid.org/0000-0001-7799-1568
https://doi.org/10.4230/LIPIcs.SAT.2025.11
https://arxiv.org/abs/2505.20069
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics
https://www.dagstuhl.de

11:2

Better Extension Variables in DQBF via Independence

be existential, otherwise it is too easy to violate extension clauses. The dependency set of the
new variables (which is the same as the quantification order in QBF) must be careful not to
introduce falsity into the formula. In fact one of the earliest approaches was to say that every
new variable is quantified rightmost to conservatively give it the entire dependency set. The
drawback with this approach is that it limits the power of inferences from using extension
variables [8]. In the current alternative, sometimes known as “strong extension”, we place Jv
immediately after all the variables X used in b. eFrege + Vred uses this strong notion, and
it is so powerful no unconditional lower bound can be found, unless either a long standing
proof complexity or circuit complexity open problem is solved [7]. Some problems do emerge
when looking at conditional lower bounds, though. The Select family of formulas can be
shown by the QBF proof system QRAT to be equivalent to the law of non-contradiction on
QBFs, but do not have short proofs in QBF Extended Frege unless PSPACE C P/poly [13].
QRAT manages this through a combination of extension variables and an explicit rule that
calculates so-called spurious dependencies in quantified variables, when nominal dependencies
can be ignored when making inferences. Note how different this is to propositional logic, in
most cases where we would take a basic proof system and add even a complicated rule we
would still be simulated by extended resolution. Based on our observations in this paper
we find that we can do better with extension variables. Instead of extensions being pure
definitions, they are now under conditions.

a — (v b(X)) : « is a partial assignment of the universal variables

The utility of this is not immediately obvious because v is weaker than it could be, however
precisely because this is weaker now the dependency of v on the variables of « is no longer
necessary for soundness. Because we can remove arbitrary dependencies, the natural class for
this proof system is for Dependency QBF (DQBF). But we can still use this rule for QBF,
in fact it adds substantial clarity to existing QBF proof systems.

Our main contribution is that we propose a line based proof system, that each new
line addition preserves satisfiability, so when arriving at the falsum symbol 0 we know we
started with an unsatisfiable DQBF. Unlike many QBF systems we are not able to construct
countermodels from following the proof steps (unless P = PSPACE). We then show how
it can p-simulate existing QBF and DQBF proof system rules. Figures 1 and 2 shows the
known p-simulations in DQBF and QBF proof systems after considering the work in this
paper!. New results are presented in bold. The existing results are from papers that span
over decades worth of work, and transitively show our new proof system p-simulates all
systems in both figures [1, 2, 3, 4, 6, 7, 9, 10, 12, 14, 16, 15, 18, 22, 23, 24, 25, 26, 28, 30].

[IndExtFrege + VRed|

I N\
[Fork-Res|] ~ [DQRAT| [DQBF-IR-calc|

|DQBF-VExp-+Res|

Figure 1 The p-simulation structure of refutational S-form DQBF proof systems.

! The p-simulation of G was discovered afterwards and is proven in the full version of this paper [15]

L. Chew and T. Peitl

[IndExtFrege + VRed|
-

IR(D"**)-calc

QRAT
Frege+VExp

eFrege + Vred

lKuown Strategy Extraction

r ~
|Frege+Vred| [LQUT-Res||LD-Q(D")-Res|

[M-Res| [ACoFrege+Vred| [LQU-Res|| [Q(D™)-Res| |[IRM-calc|

|

|
[QU-Res] [LD-Q-Res| [Q(D"9)-Res| | [IR-calc|
J
-
|LD-Q-Res \{Vred}| [qcDCL] VExp-+Res

Figure 2 The p-simulation structure of refutational QBF proof systems.

1.1 Related Work

The original Extended Q-Resolution was defined by Jussila et al. [19] and discussed the
weak and strong extension variables. QRAT by Biere, Heule and Seidl generalises extension
variables in its clause additions. In the original paper [18] and later in Kiesl and Seidl’s
paper [22], they use similar clause additions to our independent extension definitions. Unlike
our definitions, the new variables have a larger dependency set, but get round this by
detecting spurious dependencies with an Extended Universal Reduction rule (EUR). These
QRAT extension variables can capture the annotated variables used in the QBF proof system
VExp+Res, but there has not been success making the same method work for the more
general QBF proof system IR-calc [11]. Our approach works backwards, instead of using the
presence of resolution path schemes to derive expansions, we use expansions to show the
validity of resolution path schemes.

Blinkhorn proposed a DQBF proof system based on generalising the QBF proof system
QRAT to DQBF [10]. This system too allows the addition of new variables v, but when using
the RAT addition rules to make definition clauses the RAT addition rule only allows the
variables in the dependency set of v to be used unlike in our case. Therefore we suspect their
proof system is weaker. Rabe proposed a DQBF proof system called Fork-Resolution that
has extension variables but only in the case of clause-splitting [26].

Chew and Clymo showed that QRAT’s strongest rule violated the property of strategy
extraction unless P = PSPACE [13]. Later, Chew and Heule showed that the QBF sequent
calculus G p-simulates QRAT [14]. The sequent calculus G [24] creates quantified variables of
QBF witnesses so it has a witnessing scheme that works to simulate EUR. We use the same
witnessing scheme in our work to simulate EUR with our DQBF system, hence showing
strategy extraction, even for the QBF fragment, is impossible unless P = PSPACE.

The discussion around new variables comes after Reichl and Slivovsky’s successful DQBF
solver Pedant [27] introduces the similar arbiter variables, with a few more limitations.

11:3

SAT 2025

11:4

Better Extension Variables in DQBF via Independence

1.2 Organisation

We define the necessary preliminaries of QBF and DQBF in Section 2. As an example we
include the DQBF complete refutation system DQBF-IR-calc. In Section 3 we define our
new extension rule and show its soundness, firstly we integrate it into a full proof Frege
system that we call IndExtFrege +Vred in Section 3.2, and later an equivalent resolution
system in Section 3.3. In order to show completeness we p-simulate the complete DQBF-
IR-calc proof system. Section 4 demonstrates the advantages of using IndExtFrege + Vred on
(D)QBFs, with more p-simulations. In Section 4.1 we give a definition of the clausal proof
system Fork-Resolution for DQBF and show how to p-simulate that in IndExtFrege + Vred.
In Section 4.2 we give a definition of the QBF interference based proof system QRAT and
show how IndExtFrege + Vred can p-simulate it. In Section 4.3 we do the same for the QBF
proof system IR(D")-calc which uses the reflexive resolution path dependency scheme.

2 Preliminaries

We assume a countably infinite set V of propositional variables is given. A literal is either
a variable x € V or its negation (—z), also written as z, whereby & = x. A (propositional)
formula is defined recursively: (1) literals are formulas; and (2) if ¢ and ¢ are formulas,
then ¢ A1, ¢V b, ¢ — 1, ¢ <+ 1p and ¢ are also formulas. A circuit is like a formula, but
its recursive structure is a DAG (directed acyclic graph) instead of a tree: subformulas can
be reused. Every formula is a circuit, but transforming a circuit into a formula involves
potentially exponential duplication of nodes. The set of variables of a circuit or formula is
defined recursively as var(¢ o v) = var(¢) U var(zp) for any operator o, var(¢) = var(¢), and
var(xz) = x if x is a variable. We use U to denote the disjoint union, i.e. the union of two
sets that are known to be disjoint. A clause is a finite set of literals, semantically interpreted
as their disjunction (equivalently, a formula consisting only of literals and “or” connectives).
A clause C is tautological, if {z,z} € C for some variable x. A clause is unit if only contains
a single literal, a clause is the empty clause if it contains no literals. The negation C of a
clause C' can be viewed as a conjunction of unit clauses A, ec{l_}.

A (partial) assignment to a circuit ¢ is a mapping « : V C var(¢) — {0,1}. A
partial assignment « is complete if it assigns every variable, i.e. V = var(¢). We can
write an assignment « as a function, a conjunction of literals or sequence of literals i.e.
zyz. As a function an assignment is extended to circuits by a(¢p A Y) = a(d) - a(v),
a(p V1Y) = max(a(¢),a(y)) and a(¢) = 1 — a(p). a satisfies (is a model of) a circuit ¢ if
a(¢) = 1. A circuit is satisfiable if it has a model, and unsatisfiable otherwise. Circuit ¢ is a
tautology if ¢ is unsatisfiable. Circuit ¢ entails a circuit 1, written ¢ E v, if every complete
assignment « : var(¢) — {0,1} that satisfies ¢ also satisfies 1. Two circuits ¢ and 1) are
(logically) equivalent, written ¢ = 1, if var(¢) = var(¢), and ¢ = ¢ and ¢ = ¢. Two circuits
¢ and v are equisatisfiable, written ¢ = 1), if they are both satisfiable or both unsatisfiable.

A formula is in conjunctive normal form (CNF) if it is a (finite) conjunction of clauses.
Any circuit ¢ can be transformed into a logically equivalent CNF using distributivity and De
Morgan’s rules, but the resulting size may be exponential. Allowing extension variables, i.e.
variables that do not occur in ¢, it is possible to transform any circuit ¢ into CNF(¢), an
equisatisfiable CNF in linear time [29]. This translation has the additional property that if
a is a model of CNF(¢), then alyar(g) is a model of ¢ and vice versa, if « is a model of ¢,
then there exists a model 8 of CNF(¢) such that 5(z) = a(z) for all = € var(¢).

L. Chew and T. Peitl

2.1 Proof systems

A proof system as defined by Cook and Reckhow [17] for some non-empty language L is a
polynomial-time computable function on strings whose range is exactly £. Intuitively f maps

proofs to valid theorems, non-proofs can be mapped to some arbitrary known element in L.

Soundness comes from well-definition, and completeness is from surjectivity. Many proof
systems are line-based where a finite set of rules govern the derivation of valid inferences in
the language until a conclusive line is derived.

Proof complexity measures the sizes of proofs, i.e. number of characters in the proof
string. In a line based proof system, where we can distinguish individual lines we can measure
the proof length- the number of lines. Where lines are clauses, the clause width is the number
of literals in the clause. Given a proof system g for language £ we say that proof system f
p-simulates g if there is a polynomial time procedure p that maps g proofs to f proofs such
that f(p(w)) = g(m) for all g-proofs. We do not require f to necessarily be a proof system for
L, but a proof system for £ D L. In this paper we do this when we p-simulate QBF proof
systems with DQBF proof systems.

Frege systems are “text-book” style line-based proof systems for propositional logic. They
consist of a finite, sound and complete set of axioms and rules where any variable can be
substituted with any formula. Fig. 3 gives an example of a Frege system.

1 x1 = (x93 = 21) ((xr1 —0) = 0) = x4
x1 T1 — To
(1 = (2 = x3)) = ((z1 = x2) = (21 = x3)) T2
(r1 — 0) = -2y -1 — (1 — 0) (1 Va3) = (22 V1)
1 — (1 V x2) (1 Vx2) = (mx1 — x2)
(1 = x2) = (mx1 V 22) (1 A x2) = 24
(1 A x2) = T2 x1 = (T2 = 21 A 22)

Figure 3 A Frege system for connectives 0,1,—, — V, A .

The rules will depend on the connectives included, but Cook and Reckhow [17] showed
all Frege systems are p-equivalent. For example a Frege system that uses V, =, A can adopt
the following laws without changing the proof complexity:

CVp CVyqg
CV(pAq)

C
CVp

CVp CV-p
C

(Weak) (Distr)

(Res)

2.2 (Dependency) Quantified Boolean Formulas

A quantified Boolean formula (QBF) is a propositional formula equipped with Boolean
quantifiers: ¥V and 3. Vzé(x) = ¢(0) A ¢(1) and Jzd(x) = ¢(0) V¢(1). A QBF in prenex form
II¢ contains a propositional matriz ¢ which is quantifier-free and a prefiz Il = Q11 ... Qi

11:5

SAT 2025

11:6

Better Extension Variables in DQBF via Independence

where Q; € {V,3} for 1 < i < k. A closed QBF requires every variable to be bound to
some quantifier in the prefix. We will mainly work with closed prenex QBFs in this paper.
For variable = we use z € 3 to denote that z is existentially quantified somewhere in the
prefix, or z € V to denote that = is universally quantified in the prefix. The quantifier order
matters, we say that existential variable x depends on w if v in quantified left on = in the
prefix. In this way we can build a dependency set D, of each existentially quantified variable
x containing exactly the universal variables that are left of x.

A Skolem function for existential variable x is a Boolean function f, : D, — {0,1}. This
allows us to use alternative semantics to define the truth of a QBF: that a closed prefix QBF
is true if and only if there is a set of Skolem functions, one for each existential variable x, such
that for every complete assignment to all the universal variables the universal assignment
completed with the values of the Skolem functions under that assignment, form a satisfying
assignment to the propositional matrix. We call such a set of Skolem functions winning.
Dually, a closed QBF is false if and only if there is a set of Herbrand functions, one for each
universal variable y, such that for every complete assignment to all the existential variables
the Herbrand functions falsify the propositional matrix.

A Dependency Quantified Boolean Formula (QBF) can be defined and an S-form DQBF
uses this notion of Skolem functions as its main semantics. An S-form DQBF Il¢ has a
prefix IT = Vuy ... up321(Dy,) . .. 4(Dy,), here the quantifier order does not matter as the
dependency sets are explicitly given. Each D, can be any arbitrary subset of {u...up}.
A DQBEF is true if and only if there is a set of Skolem functions, one for each existential
variable x, such that for every complete assignment to all the universal variables the universal
assignment completed with the values of the Skolem functions under that assignment, form a
satisfying assignment to the proposition matrix. We sometimes write VU3FE¢ for an arbitrary
S-form DQBF, where U is the set of universal variables, F the set of existential variables
each with their own unspecified dependency set and ¢ a propositional matrix containing
no quantifiers. We define D,, for a universal variable to be {u}. We can also define the
dependency set of a clause C' as (Uyay(y)ec Dy) including universal literals.

QBF is a PSPACE-complete language and DQBF is NEXPTIME-complete. We can
demonstrate a DQBF is true by exhibiting its Skolem functions as circuits and showing the
matrix with the Skolem functions substituted in is a propositional tautology. To show a
DQBF is false we can use a DQBF proof system such as DQBF-IR-calc [3] given in Figure 4.
We will define a new refutational proof system for DQBF in the next section.

3 IndExtFrege + Vred, an S-form DQBF proof system

3.1 Independent Extension

Consider the refutational proof system Frege + Vred in QBF [7], composed of Frege rules and
a Vred rule. Frege rules allow for propositional line based inference and the reduction rule
allows a universal variable u to be replaced by a constant 0 or 1, given below:

¢ A L(u) II¢p A L(u)
IT¢ A L(u) A L(0) ITp A L(u) A L(1)

No variable can appear to the right of u in L. A sound DQBF version exists.

» Lemma 1 (Vred soundness). Suppose IIp A L(u) is a true S-form DQBF, and L contains
no existential variables x such that u is in the dependency set of x. Then the S-form DQBF
I A L(u) A L(0) is true and the S-form DQBF ¢ A L(u) A L(1) is also true.

L. Chew and T. Peitl

Proof. An S-form DQBF is true if and only if it has a set of satisfying Skolem functions,
a function o, for each of its existential variables z. Suppose II¢ A L(u) is satisfied by the

set {o, | * € 3}. We will show that II¢) A L(u) A L(0) is satisfied by the same functions.

Consider an arbitrary universal assignment «, ¢ is satisfied by assumption and so is L(u). If
a(u) is 0 then L(u) = L(0) is satisfied. Otherwise consider § which is identical to « except
on u. a(u) =1 and S(u) = 0, but the outputs of Skolem functions of the existential variables
in L remain unaffected by changing between o and /3, only the variable u is affected and so
L(0) is satisfied. Therefore II¢p A L(u) A L(0) is satisfied by the same set of Skolem functions
as Il A L(u). The case with L(1) is symmetrical. <

Universal reduction in L(u) is blocked when there are existential variables in L that
depend on u. Extension variables are also existential and can end up blocking reduction
through excessive dependency. We define extension variables that conditionally represent
Boolean circuits, for smaller dependency sets. We give two versions, one for conjunction
and one for disjunction. We could instead use a single rule based on a functionally complete
connective such as NAND (which we do in Section 3.3), but our definitions fit more nicely
into the proofs of this paper. Let o be a conjunction of universal literals, and Y is a set of
literals, both existential and universal.

Iy Lo
530(Dy)p A (a = (v Ayey ¥) M30(Dy)p A (a = (v Vyey v)
The extension variable v is a new variable not appearing in II, nor in ¢. D, is calculated

as the union over all Dy, (y) for y € Y and we then subtract the domain of a. This means
v is independent of every variable in o and even if some variable x in Y does depend on

some variable u, that dependence will be removed if u € a. In the earlier extension rule
[19, 7], the variables that extension variable was defined on coincided with its dependency

set. In our new rule v can be defined on variables and not receive its full dependency set.

Having a smaller dependency set means that v prevents fewer reduction steps. For why this
is permissible, we can think of the equational part of the definition only applying once « is
already set, therefore there is no scenario of the o variables where v is required to consider a

different input value for these variables, other than in the situation where it must consider a.

The downside of this definition is that substituting a Boolean function b for its extension
variable v adds condition «. But because we subtract the domain of «, v no longer blocks
the reduction of variables from « so in many cases we can reduce these variables.

» Lemma 2. Suppose I1¢ is a true S-form DQBF, and II3v(D,)o A (o — (v <> b(Y))) s
constructed according to the Independent Extension rule, where b is a Boolean function. Then
M3v(D,)p A (e — (v + b(Y))) is a true S-form DQBF.

Proof. Il¢ is a true S-form DQBF, therefore it has Skolem functions o, for each existential
variable x. This set of Skolem functions satisfies all lines in ¢, but & — (v <> b(Y")) may or
may not be satisfied. To make sure it is satisfied we use a Skolem function o, for v. We
apply substitution of a to Y to get a(Y") which assigns some variables to constants. Notice

those variables in the domain of v are now constant and no longer in the domain of «(Y).

The free variables of a(Y") are those in Y but not . We define o,(D,) = b(a(Y")), which
works because b(«(Y))’s dependency set is (|J
¢, so ¢ remains satisfied.

If « is not satisfied then o — (v <> b(Y)) is automatically satisfied. If « is satisfied then
Y = a(Y). If b(Y) is true then b(a(Y)) is true and so o, is true which makes v true, so
v < b(Y) is satisfied. Likewise if b(Y) is false, then b(a(Y)) is false so o, and thus v are
false, therefore v <> b(Y") is satisfied. <

vey D)\ D,. Note that v does not appear in

11:7

SAT 2025

11:8

Better Extension Variables in DQBF via Independence

Axiom rule: axiom(¢)

C is a clause in the matrix ¢.
{a7IPe | a € C,var(a) € 3} TIp, :={~l |1l € Cyvar(l) € ¥,var(l) € D,}.

Instantiation rule: inst(C, 3)
[is a partial assignment to universal vari-
C ables. B
{al@P)lpa | g> € O} aofis{l|(lea)V(eBAl¢a)}
(o B)|p, ={l€aop|var(l) € D,}.

Resolution rule: res(Cy,Cs,z7)

Ch Cs

T ey and —27 € Cs.
GO\ (o~ x 1 and —z 2

Figure 4 Proof rules of DQBF-IR-calc [3] .

3.2 A Sound and Complete Proof System

We define our new proof system IndExtFrege + Vred in Figure 5. The proof system works
as a refutational proof typically does, starting with a DQBF YUJE¢. ¢ is a propositional
formula. For QBFs, IndExtFrege + Vred automatically generalises eFrege + Vred, but since
we also desire DQBF completeness only p-simulation of a complete DQBF proof system
suffices, here we choose DQBF-IR-calc given in Figure 4. DQBF-IR-calc works by removing all
universal literals from the formula and replacing each existential literal with an annotated
literal, the annotations are partial universal assignments. The idea is that you can remove
universal quantifiers by expansion, but you create multiple copies of the inner existential
variables, so the annotations track which expansions have led to this literal. A p-simulation
works because these annotated variables can be defined by independent extension, where
they drop the dependence on universal variables that have been expanded on.

» Theorem 3. There is an O(w?l) IndExtFrege + Vred p-simulation of DQBF-IR-calc. Where
I is the number of lines in w, w is the size of the largest clause w = maxcer (Y jace 1+ |af)
(m being the DQBF-IR-calc proof).

Proof. DQBF-IR-calc uses existential annotated variables. For each annotated variable x¢
appearing in the DQBF-IR-calc proof we introduce definition clauses @V x®Vx and aVz* Ve
based on o — (2 <>). We therefore add O(wl) many clauses each of width O(w).
Axiom: in DQBF-IR-calc an axiom involves some instantiation of a clause C. 7 is the partial
assignment that contradicts the universal literals in C'. We replace each existential literal [
with 172 where 7|p, restricts 7’s domain to variables in Dyar(1y- We obtain this by resolving
with 7|p, V17121 v I. We accumulate universal literals from 7 in our axiom, but these can be
reduced now there are no existential literals that block these literals.

Res: The resolution step is easy to p-simulate as Frege p-simulates resolution.

Inst: The final rule allows us to instantiate to increase the universal annotation uniformly
everywhere in a clause. One inst(C, 3) of size O(w) can be simulated by lines that total
size O(w?). Instantiation may replace literal z® with 298" for some B C 3. We already
have definitions & V Z* V z, @V 8V 2%V z. Resolving over z gets us a VvV 3V z*28 v z°.
Neither 2% nor z°“#" have o’s variables in its dependency set, so we can now reduce the
literals of & to get B/ V z*8" v z°.

L. Chew and T. Peitl

All rules and axioms, for any Frege system of choice.

T (AXlOm)

L is a conjunct in the propositional matrix ¢.

(IndExt-A) (IndExt-V)

(@ = (v Ayeyv) (@ = (v Vyey v))

v is a fresh 3 variable, « is a conjunction of V literals. Dy, = (U,cy Dy) \ Da-

L(w)
L(1)

(0-red)

(1-red)

u is a V variable. There is no 3 variable z in var(L) such that u € D,.
As an additional rule, the prefix IT may be weakened to IT' to add a new variable that
does not appear in the matrix.

Figure 5 Proof rules of IndExtFrege + Vred.

We use these clauses to instantiate via resolving O(w) many times. 5’ is necessarily a sub
assignment of 3, but we may accumulate any of the literals of 3 in our clause. Instantiation
means that there will be no existential variable remaining that will depend on the variables
of f. And so all universal literals that accumulate can be reduced. The lines are of O(w)
size and we involve O(w) many of them to simulate this line. <

» Example 4. Let our DQBF prefix be Vuvw3a(u, v)b(w). Suppose we have the instantiation
step inst(a™ V b,vw). In a p-simulated DQBF-IR-calc proof we already have some clauses that
define annotated variables a*, a“?, b*. We can resolve (a V a* V a) and (aV oV a“’ V a) to
get (wVoVa*Vva"’), now we reduce u =1 to get (vVa*Va"’). Using (vV a* Vv a"’) and
a“ Vb we get 0V a'’ Vb, we resolve again with (w V b® V b) to get oV w V a™’ V b®. We
then reduce with v = 1,w = 0 to get a“? vV b¥ which is exactly what inst(a“ V b, vw) becomes
under our prefix.

Notice that unlike previous simulations of IR-calc such as the simulation of IR-calc by
eFrege + Vred [16], we are not formalising the strategy, but going line-by-line and replicating
each line and its original semantic meaning. In QBF IR-calc relies on the base propositional
inference rule being as weak as resolution for strategy extraction to be possible, but here we
can use stronger forms of inference on instantiated clauses.

» Corollary 5. IndExtFrege + Vred is refutationally complete for S-form DQBFs.

Proof. Technically, simulating DQBF-IR-calc only shows this for DQBF with CNF matrices.

Any propositional formula can be transformed into a logically equivalent CNF through
enumerating all falsifying assignments to ¢. This can be done with Frege rules and the
refutation can then proceed by simulating DQBF-IR-calc. <

» Theorem 6. IndExtFrege +Vred is a sound refutational proof system.

Proof. We claim that if DQBF YU3JFE¢ is true and a number of lines L; ... L,, are derived by
IndExtFrege + Vred from VUIE¢ , then VU'IE'¢ ALy A -+ A Ly, is also a true DQBF, where
E’" and U’ extend the prefix only to include the new variables added by prefix weakening or

11:9

SAT 2025

11:10

Better Extension Variables in DQBF via Independence

the Independent Extension rules from L1 ... L,. We can prove that if VU'IE'¢ ANLi A+ AL,
has a set of Skolem functions that satisfies all conjuncts then VU"3AE"¢ ALy A -+ A Lpiq
has a set of Skolem functions that satisfies all conjuncts (where E” and U” extend E’ and
U’, respectively to include the new variables of L, 11). Axiom and Frege rules and reduction
rules preserve winning Skolem functions. For Axiom and Frege this is easy to see. Since
these rules preserve models in propositional logic they preserve whether a Skolem function
satisfies all lines. For reduction, if every line is satisfied by the Skolem functions, this includes
L(u), and this does not change under both values of u and factoring in these values does not
necessitate updating any of the Skolem functions of the variables of L because they do not
depend on u (Lemma 1). The IndExt axioms preserve DQBF truth by Lemma 2. <

In the following example, we demonstrate that IndExtFrege + Vred is conditionally strictly
stronger than eFrege + Vred.

» Example 7. Let X be the set of variables {z1,...,22,} and ¢(X) a CNF in the variables
of X. Then II¢(X) with prefix II = Va1 3zoVas . .. Jxa, is a closed PCNF. We also define a
second set of mirrored variables X’ = {z/,...,z5,}. We can define two false QBF families:

Duality(Ilgp) = x| Va1 IwaValh . .. Jah, | Vaon—1322,V2h,d(X) A —¢(X'),

Select(Ilp) = VuIa| Ve IxoVah . .. Fxa, Vb, (H(X) V u) A (—o(X') V —u).

Due to the prefix ordering, Duality has an easy strategy for each variable, but Select
has a PSPACE-hard strategy for its first variable u. It was shown [13] that using the easy
strategy Duality always has a short proof in eFrege + Vred. Because of strategy extraction,
Select cannot have short proofs in eFrege + Vred unless PSPACE C P/poly, but they have
short proofs in IndExtFrege + Vred.

For each variable x; we create new variable y;, if z; is existential in II then we use definition
—u — (y; ¢ x;) if x; is universal then we use definition v — (y; <> z}). These variables
have a dependency subset of x; and z}, respectively. Importantly, they are independent
of u, much like in the Duality formula where there is no u variable. Now we replace all
existential variables x; and a} in (¢(X) V u) A (-é(X') V —u) with y; variables. This gives us
two conjuncts (¢(Y) Vu) and (—¢(Y’) V —u) where Y = {y; | 3z; € T} U {x; | Vz; € II} and
Y ={y, | Jx, e M} U {z | Vi € TI'}. The conditional part of the definition is absorbed by
the Vu and V—u part, respectively. In each conjunct, u can be reduced due to independence
from all the existential variables. Therefore we have ¢(Y) A =¢(Y”), and structurally we
have the Duality(Il¢) formula, so we simply proceed with the short eFrege + Vred proof to
get a short proof. Because these proofs are short and uniform, IndExtFrege + Vred cannot
have polynomial time strategy extraction unless P = PSPACE and so eFrege + Vred cannot
p-simulate IndExtFrege + Vred unless P = PSPACE.

3.3 A Resolution Version

We can better demonstrate the simplicity of the new rule by defining an equivalent resolution
system that uses only four clausal rules. We give the proof system in Figure 6.

» Theorem 8. IndExtQURes and IndExtFrege + Vred are p-equivalent.

Proof. (<) We p-simulate each individual rule. (Ax) in IndExtQURes is a straightforward
applications of (Ax) in IndExtFrege + Vred. (Red) in IndExtQURes can be p-simulated using
(0 —red) or (1 — red), depending on whether the reduced literal was positive of negative,
respectively. Using Frege we can say a literal equal to 0 or =1 is equivalent to it being
removed. It is well-known that the resolution rule is p-simulated by Frege. For the (IndExt)
rule we us the (IndExt-V) rule in Figure 5 on Y = {1, y2}. Then each of the three clauses

L. Chew and T. Peitl

— (Ax) CVu_ EV -z FVvz
L C (Red) TV E (Res)

L is a clause in the propositional matrix ¢. w is a V literal. There is no 3 literal [in C
such that var(u) € Dyary, and there is no u € C.

(IndExt)

(@Vovyr),(@VuVys), (@VoViy Vi)
v is a fresh 3 variable, « is a conjunction of ¥ literals. D, = (D,, V Dy,) \ Da.

As an additional rule, the prefix II may be weakened to II' to add a new variable that
does not appear in the matrix.

Figure 6 Proof rules of IndExtQURes.

for (IndExt) in Figure 6 is a propositional implicant of the formula derived by (IndExt-V)
from Figure 5 and can be derived using a short Frege proof. Finally whenever the empty
clause L is derived in IndExtQURes, the final steps either use a resolution step or a reduction
step. In either case we can p-simulate and derive 0 instead.

(=) we interpret every line L; in IndExtFrege + Vred as an extension variable I; that is
built as the circuit for the formula in the line. All Frege rules and axioms can be p-simulated
by the well know p-simulation of Ext Frege by Ext Res. The axiom rule for IndExtFrege
+ Vred will technically have to be p-simulated by deriving a singleton clause with the variable
l representing the disjunction, but every literal = in the axiom clause will be used in a
definition clause —z V [, and so we resolve away the literals until we get singleton .

For (IndExt-A) and (IndExt-V), consider Figure 5 where we define a new variable v we
represent the /\er y and Ver y formulas from Figure 5 with an extension variable p, we
take the variables y; and y2 from Figure 6 to both be p and then we define v using (IndExt)
(using the same «). Once we define extension variable ¢ with | <» (o — (v <> w)) we can
resolve to get singleton [.

Suppose we perform a reduction from L(u) to L(0) in IndExtFrege + Vred. Let us label
L(u) as p and L(0) as q. L(u) Au — L(0) is an obvious propositional tautology and we
use the p-simulation of Ext Frege by Ext Res to derive clause p vV u V ¢, as we do not have
weakening in IndExtQURes, we may obtain a stronger clause, which is just as useful. Once
we obtain singleton p we resolve it to get ¢ V u. w is not blocked by ¢ and so we reduce
to get ¢, or even the empty clause (which saves us from all subsequent lines). This works
symmetrically for (1 — red) as it does for (0 — red)

And finally if we derive | which represents the empty clause from IndExtFrege +Vred,
we simply resolve with —l which is part of the definition of [to get the empty clause in
IndExtQUREes. |

4 P-simulations

In order to show completeness we have already shown that IndExtFrege + Vred p-simulates
DQBF-IR-calc. We can show more p-simulations that demonstrate the power of this new
extension rule, including Fork Resolution, QRAT, and D™ based systems. With these
p-simulations we show that IndExtFrege + Vred can capture the vast majority of (D)QBF
solving and preprocessing techniques.

11:11

SAT 2025

11:12

Better Extension Variables in DQBF via Independence

These p-simulations also demonstrate that IndExtFrege + Vred is powerful. A proof system
is roughly as powerful as the most expressive object it can “cut” on. Resolution cuts on
literals, Frege cuts on propositional formulas, bounded-depth Frege cuts on bounded depth
formulas and G cuts on QBFs. The extension variables in eFrege and Ext Res cut on
propositional circuits, as is the case in eFrege + Vred. IndExtFrege + Vred allows extension
variables to be more expressive and by combining them we can express PSPACE-hard objects,
and we make use of this in the p-simulations of this section.

4.1 P-Simulation of Fork Resolution

In this section we show how IndExtFrege +Vred can p-simulate another DQBF proof system
that has a different notion of extension variables.

The Fork Resolution proof system is sound and complete for DQBFs that have a CNF
matrix. Its main novelty is a Fork Extension rule [26], which is used for splitting clauses.

01U02 x\/C1 fVCQ CVu
ev G ev(s C1UCh (Res) o (Vred)
e is a new J-variable and has dependency set (Uar(y)ec, Dy) N (Uvar(y)ec, Py)- Fork
Resolution also uses a resolution rule and a reduction rule: provided « is not in C' and var(u)
is not in the dependency set of C.

Given an instance of the Fork Extension on C; U Cy, the idea is to get an extension
variable z that is equivalent to V{u € U [u € (U,ecc, Dy)su & Uyec, Dy)}C2. In other
words z is true if Cs is true under all assignments to the specific universal variables that
govern C5 but not Cf.

It should be clear why this should mean C7 U Cy — T V Cs, because x is a stronger

(F-Ext)

version of Cs. C7 U5 also implies z V C is true because if a Skolem function always satisfies
C1 U (s, then C5 must be satisfied, whenever C is falsified regardless of the values of any
remaining dependencies of Cl.

» Lemma 9. IndExtFrege + Vred can p-simulate the Fork Extension rule (F-Ext).

Proof. We order all universal variables in the marginal dependency set of Ca, {uy,...,ux} =
{ueUlue (Uyee, Dy)su ¢ (Uyee, Dy)}t- We define:

ep < CQ, Ujqp1 — (G?iJrl <~ 61'), Uiyl — (x?i“ <~ 62')7 €ir1 < (€?i+1 AN e?iJrl)
And we can use the extension clauses that give these definitions. We make the induction
hypothesis that there is a short proof of e; V Cj and of €; V Cs in IndExtFrege + Vred. Starting
from ¢ = 0 and incrementing until ¢ = k.

Base Case. We resolve off all the Cs literals in Cy V C5 to get C1 V eg. eg V Cy is part of
the definition of eg = Cs.

Inductive Step. We start with C; V e; and €; V Ca. Resolving ;41 Ve; Ve, ™ with
Uir1 Ve V é?i“ gets us e; Ve, TV é;-_““ and then with €;41 V e;"*" and €;41 V e?”l, we
get that e; V Z;4.1. We can then, with a resolution step, get ;11 V Co

In Cy V e; we replace literal e; with @;11 V e;"*'. Since @;11 is not blocked by any literal
in C1 and not blocked by e it can be reduced to derive Cy V e;"*', Cy V x;"* is derived
E?HI to get Cl V €i+1
This DAG-like process is linear in the number of induction steps, potentially multiplied

in the same way. We resolve both with e; 1 Ve, """ Vv

by the width of C7 U Cs. To finalise, we take e = ey, and necessarily it is not dependent
on variables not in the dependency set of C5 because of the initial definition of ey and any
variable not in the dependency set of C is removed by the time we get to ey. <

L. Chew and T. Peitl

» Corollary 10. IndExtFrege + Vred p-simulates Fork Resolution.

Unlike in eFrege +Vred where new variables are essentially propositional circuits, here
we show how a new variable can be efficiently constructed to resemble a QBF properly.
IndExtFrege + Vred shares the ability to cut over a QBF with G, which goes some way to
explain why IndExtFrege + Vred is so powerful.

4.2 P-simulation of QRAT

In this section with show our DQBF proof system IndExtFrege +Vred can p-simulate the
QBF proof system QRAT [18], which governs many preprocessing steps in QBF.

4.2.1 Definition of QRAT

In propositional logic, interference based proof systems modify a CNF into another equisatis-
fiable CNF without preserving models. Resolution, is not an interference based proof system
because it preserves logical equivalence. An example of an interference based proof system is
DRAT [31], where clause addition can destroy an existing model, but only when there is a
guarantee that another model exists and is preserved. QRAT has similar rules to DRAT, but
since QRAT is a QBF proof system, quantifier order must be respected. Since QRAT works
in QBF, the notion of preserving individual models, is understood as preserving Skolem
functions. QRAT does not preserve Skolem functions.

» Definition 11 ([10]). Fiz a QBF prefix II. Now consider a clause D and a literal |
(not necessarily in D) we define, Op = {k € D | lv(k) < lv(l),var(k) # var(l)}, where
lv(k) < 1v(l) indicates that k has a lower quantifier level than 1, i.e k is left of | or, because
we include equality, both are part of the same quantifier block (i.e. same dependency set).
Op is called the outer clause. For a DQBF we define the outer clause Op differently for
ezistential and universal literals 1.

When 1 is existential: Op = {x € D | £ € 3, Dyar(z) € Dyarqry, var(z) # var(l)} U {z €
D |z eV, var(z) € Dyar() }

When 1 is universal we define a set of existential variables S = {x € 3 | var(l) € D, } from
that we define a set of universal variables T = (|, g Do \ {var(l)}, and we can then define
the outer clause of D: Op :={x € D |2 € 3, Dyar(s) CT}U{x € D |z € V,var(z) € T}.

The outer clause is a concept used to evaluate whether new clauses can be added, as it is
the critical part that decides soundness. This is in the same vein as how extension clauses
rely on the outer variables of the definition.

For some rules in QRAT, they can only be applied soundly if some semantic implication is
known, but for a proof system we need to know if these implications are true in polynomial
time. To do this we use the sound but incomplete unit propagation procedure.

» Definition 12. ¢ -1 | means we arrive at the empty clause through the following process:
For every clause in ¢ of size one (in other words a unit clause), {lI} we add l to a partial
assignment « (var(l) is assigned the polarity of literal). Now we remove literals from clauses
in ¢ whenever they conflict with «. This may produce more unit clauses, or even an empty
clause, we repeat this process until no more unit clauses are produced.

When it comes to simulate QRAT, fortunately unit propagation is something that can
be easy to p-simulate in a sequence of rules. QRAT’s first rule uses unit propagation very
directly to infer clauses propositionally, in this rule we do not have to consider quantifier
type or order.

11:13

SAT 2025

11:14

Better Extension Variables in DQBF via Independence

» Definition 13 (Asymmetric Tautology Addition (ATA)). Let ¢ be a CNF with I1 a prefiz.
Let C be a clause not in ¢. Let I be a prefiz including the variables of C' and ¢, II C II'.
Suppose ¢ A C 1 L. Then we can infer ' A C' from 1.

The next rule, QRATA deals with adding or removing a clause, but this time the Skolem
function for a particular existential literal ! changes as a result of this rule. This means
that QRATA preserves truth but does not necessarily preserve the strategies. QRATA is
a generalisation of the extension rule in eFrege + Vred, and as such we have to respect the
quantification order.

» Definition 14 (Quantified Resolution Asymmetric Tautology Addition (QRATA)). Let Il¢ be
a PCNF with closed prefiz II and CNF matrix ¢. Let C be a clause not in ¢. Let II; and Il
be disjoint prefizes and x a variable such that 11 C Iy 3211s and a literal | with var(l) = x.

The difference in prefiz is simply to allow new variables coming from C'V I. For every clause
Degwithle D if ¢ N\CANIANOpty L, then we can derive 11} 3xTlap A (C V1) from 1.

The next two rules QRATU and EUR remove a universal literal from a clause, with side
conditions which we will soon introduce.

I Vullagp A (C V1)
Hlqu2¢ NC

IL Vullog A (C V1)
HNUHQ((;S N C)

(EUR)

(QRATU)

For QRATU the condition is similar to that of QRATA but instead of adding a blocked
clause over an existential literal, it removes a blocked universal literal. EUR has a different
condition based on resolution paths.

» Definition 15 (Quantified Resolution Asymmetric Tautology Universal (QRATU)). Let
I Vullag be a PCNF with closed prefiz 111Vully and CNF matriz ¢. Let C V1 be a clause
with universal literal 1, with var(l) = u. If for every D € ¢ withl € D, ¢ N\C ANOp by L,
then we can derive II1Vullog A C' from II;Vullag A (C VD).

For EUR, we consider potential resolution steps connecting clauses to one another. Clauses
being in different connected components indicate independence from one another and we
can expand on this idea to calculate when a universal literal is locally pure and can only be
considered one polarity.

» Definition 16. Consider a CNF ¢ and subset x of clauses in ¢ and a subset S of variables.
L(¢,x,S) lists the S-literals on the resolutions paths from x and €(¢, x,S) lists the clauses
on the resolution paths from x. These are found using an iterative procedure until reaching a
fix-point.

Initialisation. We start with the clauses in x and the S literals in those clauses. £(¢, x,S) <
{l]| there is C € x s.t. 1 € C,var(l) € 8} and €(¢,x,S) < x.

Adding a clause. If there if some D € ¢ such that p € D and p € £(¢, x,S), then we can
update £(¢p, x,S) and €(¢,x,S). L(d,x,S) < L£(d,x,S)U{q € D | ¢ # p,var(q) € S} and
C(p,x,S) « €@, x,S)U{D}. We continue this until we reach fix-point, in other words for
allp € £(¢,x,S) if D € ¢ and p € D, then {q € D | q # p,var(q) € S} C £(o,x,S) and
D e &(¢,x,S). Fix-point is reached in polynomial time.

» Definition 17. Let I1;Vulla¢ be a PCNF with closed prefix I11Vully and CNF matriz ¢.
Let C V1 be a clause with universal literal I, with var(l) = u.

If the resolution path €(¢p A C,C,S) contains no clause D such that l € D, when S
is the set of existential variables right of | in the prefix (i.e. in Ils), then we can derive
I Vulla (¢ A C) from I Vullag A (C V 1).

L. Chew and T. Peitl

The refutational system QRAT includes ATA, QRATA, QRATU, EUR rules as well as
arbitrary clause deletion and that the prefix allows for new variables to be added.

4.2.2 Interference-based Reasoning via Independent Extension Variables

Our p-simulation is somewhat surprising, as QRAT includes a complicated Extended Universal
Reduction rule that performs reductions according to global resolution path connectivity
between clauses. On the surface level IndExtFrege + Vred would seem to be ill-equipped to
talk globally about a formula, as it does not have any global conditions. In fact IndExtFrege
+ Vred is monotonic in the sense that no deletion rule is necessary. The way we p-simulate
clause deletion is simply to ignore clauses that would have been in the QRAT proof. This
has a small technicality, QRAT can eliminate a variable and then introduce it again with
a different meaning, but in IndExtFrege + Vred we have to take care to create new variables
when we refresh the meanings of variables. In fact when we use an interference based rule
such as QRATA, QRATU or EUR we create a new copy of the formula.

We begin with p-simulations of DQBF generalisations of ATA and QRATA, in fact we do
not need the independence power of the new Independent Extension rule for this.

» Lemma 18 ([21]). Suppose we have a CNF ¢ and a clause C ¢ ¢. If ¢ AC by L then
there is a short resolution + weakening proof starting from ¢ to ¢ A C.

Proof. Any simplification of a clause can be derived via resolution. If we have a unit clause
x and clause C'V , then the clause C can be derived in a single step. The number of literals

removed before the empty clause is bounded above by the total number of individual literals.

Hence the short proof. <

» Lemma 19. Suppose we have a DQBF: YUIE¢. Let 1 be a literal of some existential
variable in E and C be a clause not in ¢, where C' contains literal [.

With respect to existential literal/variable I, recall the DQBF definition of an outer clause
Ok of some clause K, according to Definition 11. If for every clause D € ¢ with | € D
satisfies: @ NC ANOp Nl Fy L, then using a polynomial bounded (in the size of VUIE1)
number of rules of IndExtFrege + Vred we can extend E to AE’, which includes a new variable
I" such that Dy C Dyayqy and derive the clauses of (¢ A C) which is a copy of ¢ A C where
every | literal in S is replaced by ' and every | literal in S is replaced by l'.

Proof. The aim is to replace I with the substitution I’ =1V Al5£¢ Op and this will respect
all existing clauses and add C’. I’ has the same dependency set as [because of the care taken
when selecting literals for the outer clause. We can prove the clauses of ¢’ by cases:

1. Clauses K € ¢ that do not contain [nor [can remain unchanged in ¢’ .
2. Clauses K € ¢ that contain [but not I can be weakened to K V /\ZED Op and the

Deo

replacement of [V /\ZEEDQ5 Op with I’ gains us K’ = K\ {{} U {l'}.

3. Clauses K € ¢ that contain [but not have the property that the tautology Ok Vv Ox
implies K\{l_}\/\/lDEgp Op. Combine with a conjunction of K we get K\{Z_}\/(l_/\\/lgé)q5 Op)
and now can replace (I A \/IEED(25 Op) with I to get K' = (K \ {I}) U {l'}.

4. Clauses K € ¢ that contain both [and [then since I’ VI’ is also tautological we can
derive K’ = K\ {I,1} u{l',l'}.

We use the short proof of ¢ — C VIV /\%Ee?ﬁ Op from unit propagation to derive

C' VIV \pes Op and then replace IV Ape, Op with I/ to get €'V 1. <

11:15

SAT 2025

11:16

Better Extension Variables in DQBF via Independence

Instead of p-simulating EUR and QRATU separately, what we will show here is a
simulation of a powerful mixed reduction rule that acts like a combination of QRATU and
EUR and even works for DQBF. QRATU and EUR will both be special cases when the
prefix gives a QBF.

» Lemma 20. Suppose we have a DQBF: YUIEYW. Let u be a literal of some universal
variable in U and C'V u be a clause in ¢, i.e v = ¢ A (C'V u). Recall Definition 11 for the
definition of S Let xo = €(1,C'V u,S), the set of clauses reachable from C'V u via resolution
path in S.

If for every clause D € xo with @ € D satisfies: pACAOp 1 L, then using a polynomial
bounded (in the size of VUIEY) number of rules of IndExtFrege we can extend 3E to IE’,
which includes for every variable x in S a variable ' such that D, C D, and derive the
clauses of (¢ N C) which is a copy of ¢ A C where every x in S is replaced by x’.

As specified in the lemma the proof is done by replacing literals with different extension
variables. The origins of the replacement scheme used here trace back to the simulation of
QRAT by G [14], although this simulation here simulates a more powerful rule and works in
the DQBF setting. This is despite being seemingly handicapped by only being able to create
definitions that are existential variables, whereas G can use complicated functions to witness
universal variables. To overcome this we hide functions that previously witness universal
variables into new definitions of the existential variables that depend on them.

Proof. We start by introducing the extensions u — (2% <+ x) and u — (z“ < z) for every
x€S. Let O = \/Tf:,eg<0 Op. For each literal in L = £(3»,C' V u,S) and their complement
we now define I* = (aV O — ") A (uAO — [*). In other words, I* is [* except in the
circumstance that u is true and some outer clause is falsified, and in that case and only
that case we have [* takes the value from {*. The definition is consistent with negation (i.e.
—l* = (=1)*). The dependency set of I* is no greater than that of I.

One may notice that if there were Skolem functions that satisfied VU3E1), these Skolem
functions extended to the new *-variables would also satisfy xg, which replaces all variables
with z* in . This is because if u is false every [* plays as {* which is how [plays anyway.
If w is true and some Op for D € xp,u € D is falsified, all [* variables play consistently as
[which is consistent with [and v and thus satisfies all clauses. If u is true and every Op
for D € xo,u € D is satisfied, I* plays as [% which will still satisfy every clause in o except
these D, but each of them is already satisfied from their outer clause.

We have to actually construct x{ using rules from IndExtFrege. There are four types of
clauses K in xg. For each we have to construct K* which replaces every S-literal [with [* in
K: 1. K contains no u literal. 2. K contains a positive u literal only. 3. K that contains a
negative u literal only. 4. K contains a tautology over u.

1. For each S-literal [of K we can use definition u — (1% <+ [). For K we replace each of
these literals [for [% V u via resolving with the definitions. At the end of this process we
can denote this clause as K% V u. There is no literal that blocks u from reduction here
so we can derive K“. We do this similarly with definitions u — (I <+ [) to create K.
(uAO)V K*V K" is a tautology once the definition of I* is considered which can be
proven in a linear size Frege proof. Likewise vV OV K* V K" is a tautology which can
be proven in a linear size Frege proof. And by resolving disjuncts together we are left
with K*.

L. Chew and T. Peitl

K" Vu K“Vi
K® (uANO)VK*VK® —K* gvOVK*vVK"
(uAO)V K* uvOovVK*
K*

2. For K, we replace each of these literals [for {% V u. At the end of this process we can
denote this clause as K%, we do not have to include the extra u literal as that is already
included. We do this similarly with definitions u — (I* <> [) to create K" V 4. The @
need not be reduced as it will be absorbed into the % disjunct later. (u A O) VvV K* v K%
is a tautology once the definition of [* is considered which can be proven in a linear size
Frege proof. Likewise (u Vv O)V K* Vv K% is a tautology which can be proven in a linear
size Frege proof. And by resolving disjuncts together we are left with K*.

3. We can derive (u A \/ﬁDee?(O Op) V K* simply because O V O and u V @ are tautological
clauses and that K* which replaces every S-literal [with [*, contains @ and Ok as
subclauses. The clause is derived using distributivity.

We replace each of these literals [for {* V 4. At the end of this process we can denote
this clause as K" we do not have to include the extra u literal as that is already included.

uV OV K*V K" is a tautology which can be proven in a linear size Frege proof. K* can
be derived by resolving disjuncts.

wVi K" auVvOVEK*vK®
Ok VOx uV K* aVvOVK*
OV K* OVK*

e

4. K* is a tautological clause.
We are not yet done, because we have only derived clauses for xo not the whole of ¢. To do
this we need a slightly better replacement scheme than [to [*. To start with, for S variables
x where neither x nor appear in L, we can use trivial replacement z’ = . Now consider
L= £(x,C Vu,S). For any literal [such that [,I € L then we use replacement [to I*. For
any literal [€ L such that | ¢ L, we use replacement [to I’ where I’ = * VV I. Note that I’
and [have the same dependency set.

Consider x(, and weaken every [* literal such that [€ L and ! ¢ L to I VI*. Now consider
all clauses in x1 = €(¢, ¢ \ x0,S) and for each clause weaken every [literal such that [€ L
and [¢ L to [V I*. Tt remains to replace [¢ L when [€ L. We will have to use I’ = I* Al to
match with . This can be done by distributivity in Frege, if every clause K V [we have a
copy of K’ V1 and K’V I* where K’ is a copy of K with every literal I € S replaced by I’.

This turns out to be basically the case because K can only contain literals & such that
ke Land k ¢ L. k € L because we can extend the path from C' V u to I through I. If k € L
then [would be in L as well, against our assumption. If K V1 € xo N x1 we already have
K’ Vv1* and K' V1. Tt is possible that K V[€ xo but not x; in which case we create K’V [
by weakening each S literal in K V[that is not 1.

Finally we need clause C” which is the subclause C' where every S-literal [is replaced by
I’. Note that all S-literals in C' are by definition in L, so first we can derive C* and then
weaken to get C’. To do this we need the unit propagation proofs of ¢ A C' A Op , L for
each D € xg and [€ D. We prove pAC AOp — L in O(|¢|) many Frege steps. We can then

derive C'V /\%EEZO Op from ¢ next. Now we can replace all S-literals [in C' with {* V « where

u — (I* <> 1). This gets us u V /\?)Ee?co OpVC*ieuVOVC* Wealso use 4 — (I* < 1)
and C'V u to replace every S-literal [with [* and get C** V u. The w literal can be reduced,
(since this rule generalises the original universal reduction this is crucial). (u A Q) Vv C* v C*
is a tautology once the definition of [* is considered which can be proven in a linear size
Frege proof. Likewise 4V OV C* VvV C* is a tautology which can be proven in a linear size
Frege proof. And by resolving disjuncts together we are left with C*. We can get always get
C' through weakening C*.

11:17

SAT 2025

11:18 Better Extension Variables in DQBF via Independence

Cc (wAO)VC*V CE av oV wv OV CrvCH
(unO) Vv C* uvOovCr
C*
CI

» Example 21. Consider the QBF with the prefix dzVu3y, 2z, a and the matrix

CVu Cy Cs Cs Cy Cs Cs
A~ — —7 /—’7 — /—’\7 e N ~ /—’7 —
Yv=@wmV)A@VaVyVz)A(gVzVa)A(xVa)AN(xzVyVz)AGVZ)A(ZVuVa)

We have § = {y, z,a}, xo = €(¥,CVu,S) ={CVu,Cq,...,Cs5},and L = £(¢,CVu,S) =
{y,9,2,2,a}. We are looking at outer clauses of those clauses in x(that contain @, which
is only Ci, with O¢, = {z}. Notice that there is also the clause Cg with u in it, but
Cs ¢ xo because the only possible predecessor to Cg is C3 and it cannot be both entered
and exited via its only S-literal a. We need to verify whether C; A --- A Cs AC A O¢, F1 L.
Setting C' A Og, = & A Z propagates a from C3, then § from Cs, and finally L from Cj.
The preconditions of Lemma 20 are therefore satisfied, and C can be soundly obtained by
reduction from C'V u.

Let us now perform the substitutions from the proof of Lemma 20. First, we introduce the
weD

extensions y%, y%, 2%, 2% a%, a*. Next, we define the *-variables using O = \/ Dexo Op = &
v =(ave =y)AuAz—y") Zr=(aVa = 2")A(uAT — 2"
a*=(uVve—a)AN(uAz—a")

We have four types of clauses in xo depending on which literals of v they contain. Let us
start with the clauses that do not contain any w literal, namely Cs, C3, Cy, C5. By resolution
with the extension definitions and subsequent reduction of u, we obtain

Cy=y*Vvz'va® Cy=zva" Cy=zVy*vz" Cy=y"vz"

CY¥ =y"Vvz2"Vva" C¥=zva" Ci=xVvy"vz" C¥ =y vz"

For the sake of brevity, we shall demonstrate the next step only on C3. Now 12\/(’3\/05,k vég =
wVaVa*Va* can be simplified to w V z V a* V a*, which is obviously a tautology. It can
be derived as follows: from the definition of a*, we obtain u A * — a* = a*, and thus
w AT Aa* — a*, or in other words, the clause above. Other *-replacements for the clauses
C4,Cy, Cy, Cy are performed in a similar fashion.

For the y, z the variables y*, z* are the final replacements, but for the variable a we
need to create the variable ¢’ = a* V a. We have x1 = € (¢, {Cs},S) = {C3,Cs}. We take
Ci; =z Va* and C3 =z V a and apply distributivity to obtain C% = z V (a* A a). For other
clauses that contain a positively, we simply weaken to obtain C{. Note that if C5 contained,
say a z literal, we would not be able to apply distributivity, however a literal like z would
also cause a path from C to Cg.

Finally, we need to prove C'V O = z \ z, which we get by resolving the clauses on the unit
propagation path: Cy,Cs5, and C5. This will give us x V z. By resolving with the extension
definitions for z* and z%, we obtain u V x V z% and u V x V z*. Because z* and z% do not
depend on u, we can apply universal reduction to get the clauses C* = z* and C% = 2%,
Finally, from the definition of 2* we have z% — (2* <> (uA T — 2%)), and thus 2% A 2% — 2*,
and we obtain the desired Frege proof of C* = {z*}.

L. Chew and T. Peitl

We have demonstrated ability to replace a conjunctive normal form with another and
preserve DQBF satisfiability, by replacing variables with new variables from the Independent
Extension rule. Changing the formula, but preserving satisfiability is a key part of prepro-
cessing, and this gives us a key connections to interference proof systems like DRAT, QRAT
and DQRAT, whose introduction was to certify preprocessing steps.

» Lemma 22. Both QRATU and EUR are special cases of the rule p-simulated in Lemma 20.

Proof.

QRATU. Suppose C'V u reduces to C via QRATU. We know for every clause D € ¢ with
u € D, NOp ANC 1 L. Therefore no matter how many of these D belong to xo in
Lemma 20, every one satisfies the condition.

EUR. Suppose C' V u reduces to C' via EUR. Via the side condition of EUR, x(does
not contain any clauses D € ¢ with @ € D therefore the side condition of the rule in
Lemma 20. <

With the lemmas we have shown, we now have the p-simulation of QRAT.
» Corollary 23. IndExtFrege + Vred can p-simulate QRAT for false QBFs.

Proof. When adding a clause through ATA. We simply use Lemma 18 to add the clause.
Instead of deleting a clause, we simply ignore it. IndExtFrege + Vred does not have any global
conditions for any of its rules, except that a new extension rule require a new name for the
variable, but this is immaterial to the proof complexity. For simulating QRATA, QRATU
and EUR we create a new copy of the entire formula and then forget about clauses and
variables outside of this. For QRATA we use Lemma 19 and for QRATU and EUR we use
different special cases of Lemma 20 which is allowed by Lemma 22. |

4.3 P-simulation of the D™ Rule

The EUR rule uses resolution paths to calculate when it is safe to drop a single isolated literal.
But in QBF and DQBF a more general approach can be taken, where resolution paths can
be used to calculate that the dependency between a universal literal and a potential blocking
existential literals is always spurious, in all clauses and throughout all stages of the proof.

The D' relation [28] calculates (u,z) only if there is a resolution path from u to @
through existential x. D' is a sound way of modifying a DQBF prefix. We can add this to
sound DQBF proof systems, in fact a number of QBF and DQBF proof system are already
constructed in this way.

4.3.1 Definition of IR(D"™)-calc

Q(D'™)-Res [28] is a QBF proof system using the D™ rule, we can extend this to IR(D")-
calc [3] which uses DQBF-IR-calc as its proof system after modifying the proof system via
Drs. The rules can be seen in Figure 7.

4.3.2 Definition of DQRAT

Another proof system that uses D™ is DQRAT. Here the D' rule is a prefix modification
rule used in conjunction with rules similar to QRAT. The rules of DQRAT are given in full in

[10] and we provide a simplified overview here.
ATA: Add a clause C if p AC F L.

11:19

SAT 2025

11:20

Better Extension Variables in DQBF via Independence

Axiom rule: axiom(¢)

C'is a clause in the matrix ¢.
Tlprs == {1 |l € C,var(l) €V,
(var(l),var(a)) € D™},

{aT‘Dgs

a € C, var(a) € 3}

Instantiation rule: inst(C,)

[is a partial assignment
o to universal variables.
(o) | prrs a C ao,é’is {l|(l€0()\/(l€ﬂ/\l¢0{)}
a7 e e O} (aop)(a):={lcaop|
(var(l),var(a)) € D"},

Resolution rule: res(Cy,Cy,z7)

(o Cy
(01 U Cg) \ {IET, —ch}

™ € Cq and —z" € Cs.

Figure 7 Proof rules of IR(D"™)-calc [3] .

DQRATS: Add a clause C if [is an existential literal in C' and if for all D € ¢ with [€ D
that ® AC AOp 1 L. Where the outer clause Op with respect to [is the set of all universal
literals v in D, that are in Dy,,(;), the dependency set of [and all existential literals z in D,
whose dependency set is no larger than I’s, i.e. Dyar(z) C Dyar(i)-

UR: Modify a clause C'Vu to C' if u is a universal literal and not in the dependency set of C.
DQRATY: Modify a clause C' V u to C, if u is a universal literal and if for all D € ¢ with
w e D that ¢ AC A Op by L. Where the outer clause Op with respect to u is the set of all
existential literals x in D, that have variables in the set S and the set of universal literals v
in D that are in the dependency set of every variables in S with var(v) # var(u). S is given
as the set of all existential variables that depend on w.

BPM: A new variable is added to the prefix. When 3, an arbitrary dependency set is used.
DRRS: The dependency set of every existential variable can be modified to remove any
spurious dependencies calculated by the Reflexive Resolution Path dependency scheme (D).
DEL: Delete a clause.

4.3.3 P-simulations using D"

» Lemma 24. Suppose we have a DQBF YU3EY. We can calculate the relation D™ on
YUIEY between universal variables and existential variables. Suppose there is a universal
variable w and we let S define the set of these variables that depend on u, S={zx € X |u €

D,}. Using IndExtFrege + Vred we can derive the clauses of i)' that replaces each variable
x € S such that (u,x) ¢ D™ with 2’ such that Dy C Dy \ u.

Proof. We focus on the variables x € S that are declared independent to u via D™ and we
need to replace it and its negation in all clauses. If there is resolution path from u to x there
is no resolution path from w to z and if there is a resolution path from w to = there is no
resolution path from u to . We can write this formally, let x, be the subset of ¥ which
contains every clause with a wu literal and let xz be the subset of ¢ which contains every
clause with a u literal. Define L, = £(1, xu,S) and Lz = £(¢, xa,S), then for (u, z) ¢ D™,
(x¢ L,Vx ¢ Lz)N(x¢ LgVx¢L,) . This leaves the following possibilities (up to some
symmetries):

L. Chew and T. Peitl

l.x¢L,,2¢L,,z¢ Lzgand T ¢ Ly 3. 2€ Ly, ¢ Ly, x € Lyand T ¢ Ly
2. 2 €Ly, ¢ Ly,x¢ Ly and T ¢ Ly 4, 2 € Ly, T € Ly, x ¢ Ly and T ¢ Ly

We also need the symmetric cases for @ in case 3 using u — (z* >) . In cases 1, 2 and
3, we use both 4 — (2% <> x) and u — (z% +> z) to get clauses uV Z Vz® and a V T V z“.
Now resolve them to get & V 2% V z%. Replace every z literal with 2% V 2% via resolution.
We consider o’ = 2% V z*. Now consider the presence of Z in some clause D € 1. Every
other S-literal [€ D cannot have [€ L, nor [€ Ly, because it means Z € L, or Z € Ly
which cannot happen outside of case 4. We should have a copy of D where every S-literal [
is replaced by [“ V % except . We duplicate this and in one copy replace with u V Z%, the
u literal can be reduced. In the other copy replace x with u V z* and here the u literal can
be reduced. Now by taking a conjunction we effectively make the final S-literal replacement
of this clause, which is to replace z with % A Z.

In Case 4 use definition @ — (z% <>) to replace every x literal with u V 2% and every
z literal with u vV 2% We have one remaining issue. Clauses K with variables from case 4,
may have an additional universal literal. Firstly we claim that both u and w literals are
not present, this can only be introduced with another case 4 literal for v and this can only
happen if there was a path from @ to a literal k in K and a path from @ to k, but since
u V x%, there would also be a path from u to ¥ meaning k is not case 4. We also claim that
you can always remove this universal literal u with Lemma 20, specifically the DQBF version
of EUR. Suppose after the replacement there is a resolution path from K to some clause
with u in it, this u comes from either a clause originally with « in it, or a clause with a case
4 variable in it of the opposite polarity. Either way, there would be a resolution path from u
to literal = contradicting our assumptions in case 4. Therefore 2’ = x* suffices. |

» Corollary 25. IndExtFrege +Vred can p-simulate IR(D"™)-calc for false QBFs.

» Corollary 26. IndExtFrege + Vred can p-simulate DQRAT for false DQBFs.

5 Conclusion

We have introduced a powerful new proof rule that p-simulates most (D)QBF pre-processing
and solving rules. Some proof complexity questions remain, in particular whether IndExtFrege
+Vred is reciprocally p-simulated by some of these proof systems. We have not provided any
direct p-simulations that work for long-distance Q resolution and its variations in QBF proof
systems. A major obstacle is that long-distance resolution in DQBF is unsound. It will still
be possible to represent these rules with side conditions that force the prefix to be ordered
and like a QBF. Technically a p-simulation is already known because QRAT p-simulates
long-distance Q-resolution via blocked literal eliminations (using QRATU) [20]. It may be
possible that other simulations work via the methods we have used. In the full preprint of
this paper [15] we provide a proof that IndExtFrege + Vred p-simulates G.

Other techniques that may have simulations include other dependency scheme rules such
as the tautology free dependency scheme [5]. One difficulty in simulating this currently is
that not much is yet known about the Skolem transformations which have helped us find the
right definitions for replacement variables.

11:21

SAT 2025

11:22

Better Extension Variables in DQBF via Independence

—— References

1

10

11

12

13

14

Valeriy Balabanov and Jie-Hong R. Jiang. Unified QBF certification and its applications.
Formal Methods in System Design, 41(1):45-65, 2012. doi:10.1007/s10703-012-0152-6.
Valeriy Balabanov, Magdalena Widl, and Jie-Hong R. Jiang. QBF resolution systems and their
proof complexities. In Carsten Sinz and Uwe Egly, editors, SAT 2014, volume 8561 of Lecture
Notes in Computer Science, pages 154-169. Springer, 2014. doi:10.1007/978-3-319-09284-3_
12.

Olaf Beyersdorff, Joshua Blinkhorn, Leroy Chew, Renate A. Schmidt, and Martin Suda.
Reinterpreting dependency schemes: Soundness meets incompleteness in DQBF. Journal of
Automated Reasoning, 63(3):597—-623, 2019. doi:10.1007/s10817-018-9482-4.

Olaf Beyersdorff, Joshua Blinkhorn, and Meena Mahajan. Building strategies into QBF
proofs. In Rolf Niedermeier and Christophe Paul, editors, 36th International Symposium on
Theoretical Aspects of Computer Science, STACS 2019, March 13-16, 2019, Berlin, Germany,
volume 126 of LIPIcs, pages 14:1-14:18. Schloss Dagstuhl — Leibniz-Zentrum fiir Informatik,
2019. doi:10.4230/LIPIcs.STACS.2019.14.

Olaf Beyersdorff, Joshua Blinkhorn, and Tom4s Peitl. Strong (D)QBF dependency schemes
via tautology-free resolution paths. In Luca Pulina and Martina Seidl, editors, Theory
and Applications of Satisfiability Testing — SAT 2020, volume 12178 of Lecture Notes in
Computer Science, pages 394-411, Cham, 2020. Springer International Publishing. doi:
10.1007/978-3-030-51825-7_28.

Olaf Beyersdorff and Benjamin Béhm. Understanding the relative strength of QBF CDCL
solvers and QBF resolution. In James R. Lee, editor, 12th Innovations in Theoretical Computer
Science Conference, ITCS 2021, January 6-8, 2021, Virtual Conference, volume 185 of
LIPIcs, pages 12:1-12:20. Schloss Dagstuhl — Leibniz-Zentrum fiir Informatik, 2021. doi:
10.4230/LIPIcs.ITCS.2021.12.

Olaf Beyersdorff, Ilario Bonacina, Leroy Chew, and Jan Pich. Frege systems for quantified
Boolean logic. J. ACM, 67(2), April 2020. doi:10.1145/3381881.

Olaf Beyersdorff, Leroy Chew, and Mikolds Janota. Extension variables in QBF resolution.
In Adnan Darwiche, editor, Beyond NP, Papers from the 2016 AAAI Workshop, volume
WS-16-05 of AAAI Technical Report. AAAI Press, 2016. URL: http://www.aaai.org/ocs/
index.php/WS/AAAIW16/paper/view/12612.

Olaf Beyersdorff, Leroy Chew, and Mikolas Janota. New resolution-based QBF calculi and their
proof complexity. ACM Trans. Comput. Theory, 11(4):26:1-26:42, 2019. doi:10.1145/3352155.
Joshua Blinkhorn. Simulating DQBF preprocessing techniques with resolution asymmetric
tautologies. FElectron. Colloquium Comput. Complex., TR20, 2020. URL: https://eccc.
weizmann.ac.il/report/2020/112.

Sravanthi Chede and Anil Shukla. Does QRAT simulate IR-calc? QRAT simulation algorithm
for V exp+ res cannot be lifted to IR-calc. arXiv preprint arXiv:2107.04547, abs/2107.04547,
2021. doi:10.48550/arXiv.2107.04547.

Leroy Chew. Proof simulation via round-based strategy extraction for QBF. In Toby
Walsh, Julie Shah, and Zico Kolter, editors, AAAI-25, Sponsored by the Association for the
Advancement of Artificial Intelligence, February 25 - March 4, 2025, Philadelphia, PA, USA,
pages 11176-11184. AAAI Press, 2025. doi:10.1609/aaai.v39i11.33215.

Leroy Chew and Judith Clymo. How QBF expansion makes strategy extraction hard. In Nicolas
Peltier and Viorica Sofronie-Stokkermans, editors, Automated Reasoning - 10th International
Joint Conference, IJCAR 2020, Paris, France, July 1-4, 2020, Proceedings, Part I, volume
12166 of Lecture Notes in Computer Science, pages 66—-82. Springer, 2020. doi:10.1007/
978-3-030-51074-9_5.

Leroy Chew and Marijn J. H. Heule. Relating existing powerful proof systems for QBF.
In Kuldeep S. Meel and Ofer Strichman, editors, 25th International Conference on Theory
and Applications of Satisfiability Testing, SAT 2022, August 2-5, 2022, Haifa, Israel, volume
236 of LIPIcs, pages 10:1-10:22. Schloss Dagstuhl — Leibniz-Zentrum fiir Informatik, 2022.
doi:10.4230/LIPIcs.SAT.2022.10.

https://doi.org/10.1007/s10703-012-0152-6
https://doi.org/10.1007/978-3-319-09284-3_12
https://doi.org/10.1007/978-3-319-09284-3_12
https://doi.org/10.1007/s10817-018-9482-4
https://doi.org/10.4230/LIPIcs.STACS.2019.14
https://doi.org/10.1007/978-3-030-51825-7_28
https://doi.org/10.1007/978-3-030-51825-7_28
https://doi.org/10.4230/LIPIcs.ITCS.2021.12
https://doi.org/10.4230/LIPIcs.ITCS.2021.12
https://doi.org/10.1145/3381881
http://www.aaai.org/ocs/index.php/WS/AAAIW16/paper/view/12612
http://www.aaai.org/ocs/index.php/WS/AAAIW16/paper/view/12612
https://doi.org/10.1145/3352155
https://eccc.weizmann.ac.il/report/2020/112
https://eccc.weizmann.ac.il/report/2020/112
https://doi.org/10.48550/arXiv.2107.04547
https://doi.org/10.1609/aaai.v39i11.33215
https://doi.org/10.1007/978-3-030-51074-9_5
https://doi.org/10.1007/978-3-030-51074-9_5
https://doi.org/10.4230/LIPIcs.SAT.2022.10

L. Chew and T. Peitl

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

Leroy Chew and Tomd&s Peitl. Better extension variables in dgbf via independence, 2025.
doi:10.48550/arXiv.2505.20069.

Leroy Chew and Friedrich Slivovsky. Towards uniform certification in QBF. Log. Methods
Comput. Sci., 20(1), 2024. doi:10.46298/1mcs-20(1:14)2024.

Stephen A. Cook and Robert A. Reckhow. The relative efficiency of propositional proof
systems. The Journal of Symbolic Logic, 44(1):36-50, 1979. doi:10.2307/2273702.

Marijn Heule, Martina Seidl, and Armin Biere. A unified proof system for QBF preprocessing.
In Stéphane Demri, Deepak Kapur, and Christoph Weidenbach, editors, 7th International
Joint Conference on Automated Reasoning (IJCAR), Lecture Notes in Computer Science,
pages 91-106, 2014. doi:10.1007/978-3-319-08587-6_7.

Toni Jussila, Armin Biere, Carsten Sinz, Daniel Kréning, and Christoph M. Wintersteiger.
A first step towards a unified proof checker for QBF. In Jodo Marques-Silva and Karem A.
Sakallah, editors, SAT 2007, volume 4501 of Lecture Notes in Computer Science, pages 201-214.
Springer, 2007. doi:10.1007/978-3-540-72788-0_21.

Benjamin Kiesl, Marijn J. H. Heule, and Martina Seidl. A little blocked literal goes a long
way. In Serge Gaspers and Toby Walsh, editors, SAT 2017, volume 10491 of Lecture Notes in
Computer Science, pages 281-297. Springer, 2017. doi:10.1007/978-3-319-66263-3_18.
Benjamin Kiesl, Adridn Rebola-Pardo, and Marijn JH Heule. Extended resolution simulates
drat. In Didier Galmiche, Stephan Schulz, and Roberto Sebastiani, editors, Automated
Reasoning: 9th International Joint Conference, IJCAR 2018, Held as Part of the Federated
Logic Conference, FloC 2018, Ozford, UK, July 14-17, 2018, Proceedings, volume 10900 of
Lecture Notes in Computer Science, pages 516-531. Springer, Springer, 2018. doi:10.1007/
978-3-319-94205-6_34.

Benjamin Kiesl and Martina Seidl. QRAT polynomially simulates VExp+Res. In Mikolas
Janota and Inés Lynce, editors, Theory and Applications of Satisfiability Testing - SAT 2019
- 22nd International Conference, SAT 2019, Lisbon, Portugal, July 9-12, 2019, Proceedings,
volume 11628 of Lecture Notes in Computer Science, pages 193—-202. Springer, 2019. doi:
10.1007/978-3-030-24258-9_13.

Hans Kleine Biining, Marek Karpinski, and Andreas Flogel. Resolution for quantified Boolean
formulas. Inf. Comput., 117(1):12-18, 1995. doi:10.1006/inco.1995.1025.

Jan Krajicek and Pavel Pudlék. Quantified propositional calculi and fragments of bounded
arithmetic. Zeitschrift fir mathematische Logik und Grundlagen der Mathematik, 36:29-46,
1990. doi:10.1002/malqg.19900360106.

Tomés Peitl, Friedrich Slivovsky, and Stefan Szeider. Long-distance Q-Resolution with depend-
ency schemes. J. Autom. Reason., 63(1):127-155, 2019. doi:10.1007/s10817-018-9467-3.
Markus N. Rabe. A resolution-style proof system for DQBF. In Serge Gaspers and Toby
Walsh, editors, Theory and Applications of Satisfiability Testing — SAT 2017, pages 314-325,
Cham, 2017. Springer International Publishing. doi:10.1007/978-3-319-66263-3_20.
Franz-Xaver Reichl and Friedrich Slivovsky. Pedant: A certifying DQBF solver. In Kuldeep S.
Meel and Ofer Strichman, editors, 25th International Conference on Theory and Applications
of Satisfiability Testing (SAT 2022), volume 236 of LIPIcs, pages 20:1-20:10. Schloss Dagstuhl
— Leibniz-Zentrum fiir Informatik, Schloss Dagstuhl — Leibniz-Zentrum fiir Informatik, 2022.
d0i:10.4230/LIPIcs.SAT.2022.20.

Friedrich Slivovsky and Stefan Szeider. Variable dependencies and Q-resolution. In Carsten
Sinz and Uwe Egly, editors, Theory and Applications of Satisfiability Testing - SAT 201/ - 17th
International Conference, Held as Part of the Vienna Summer of Logic, VSL 2014, Vienna,
Austria, July 14-17, 2014. Proceedings, volume 8561 of Lecture Notes in Computer Science,
pages 269-284. Springer, 2014. doi:10.1007/978-3-319-09284-3_21.

Grigorii Samuilovich Tseitin. On the complexity of proof in prepositional calculus. Zapiski
Nauchnykh Seminarov POMI, 8:234-259, 1968.

11:23

SAT 2025

https://doi.org/10.48550/arXiv.2505.20069
https://doi.org/10.46298/lmcs-20(1:14)2024
https://doi.org/10.2307/2273702
https://doi.org/10.1007/978-3-319-08587-6_7
https://doi.org/10.1007/978-3-540-72788-0_21
https://doi.org/10.1007/978-3-319-66263-3_18
https://doi.org/10.1007/978-3-319-94205-6_34
https://doi.org/10.1007/978-3-319-94205-6_34
https://doi.org/10.1007/978-3-030-24258-9_13
https://doi.org/10.1007/978-3-030-24258-9_13
https://doi.org/10.1006/inco.1995.1025
https://doi.org/10.1002/malq.19900360106
https://doi.org/10.1007/s10817-018-9467-3
https://doi.org/10.1007/978-3-319-66263-3_20
https://doi.org/10.4230/LIPIcs.SAT.2022.20
https://doi.org/10.1007/978-3-319-09284-3_21

11:24 Better Extension Variables in DQBF via Independence

30 Allen Van Gelder. Variable independence and resolution paths for quantified Boolean formu-
las. In Principles and Practice of Constraint Programming - CP 2011 - 17th International
Conference, CP 2011, Perugia, Italy, September 12-16, 2011. Proceedings, volume 6876, pages
789-803. Springer, 2011. doi:10.1007/978-3-642-23786-7_59.

31 Nathan Wetzler, Marijn Heule, and Warren A. Hunt Jr. DRAT-trim: Efficient checking and
trimming using expressive clausal proofs. In Carsten Sinz and Uwe Egly, editors, Theory
and Applications of Satisfiability Testing - SAT 201/ - 17th International Conference, Held
as Part of the Vienna Summer of Logic, VSL 2014, Vienna, Austria, July 14-17, 2014.
Proceedings, volume 8561 of Lecture Notes in Computer Science, pages 422-429. Springer,
2014. doi:10.1007/978-3-319-09284-3_31.

https://doi.org/10.1007/978-3-642-23786-7_59
https://doi.org/10.1007/978-3-319-09284-3_31

	1 Introduction
	1.1 Related Work
	1.2 Organisation

	2 Preliminaries
	2.1 Proof systems
	2.2 (Dependency) Quantified Boolean Formulas

	3 IndExtFrege+red, an S-form DQBF proof system
	3.1 Independent Extension
	3.2 A Sound and Complete Proof System
	3.3 A Resolution Version

	4 P-simulations
	4.1 P-Simulation of Fork Resolution
	4.2 P-simulation of QRAT
	4.2.1 Definition of QRAT
	4.2.2 Interference-based Reasoning via Independent Extension Variables

	4.3 P-simulation of the Drrs Rule
	4.3.1 Definition of IR(Drrs)-calc
	4.3.2 Definition of DQRAT
	4.3.3 P-simulations using Drrs

	5 Conclusion

