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Abstract
We present a sublinear time algorithm that gives random local access to the uniform distribution
over satisfying assignments to an arbitrary k-SAT formula Φ, at exponential clause density. Our
algorithm provides memory-less query access to variable assignments, such that the output variable
assignments consistently emulate a single global satisfying assignment whose law is close to the
uniform distribution over satisfying assignments to Φ. Random local access and related models have
been studied for a wide variety of natural Gibbs distributions and random graphical processes. Here,
we establish feasibility of random local access models for one of the most canonical such sample
spaces, the set of satisfying assignments to a k-SAT formula.

Our algorithm proceeds by leveraging the local uniformity of the uniform distribution over
satisfying assignments to Φ. We randomly partition the variables into two subsets, so that each
clause has sufficiently many variables from each set to preserve local uniformity. We then sample some
variables by simulating a systematic scan Glauber dynamics backward in time, greedily constructing
the necessary intermediate steps. We sample the other variables by first conducting a search for a
polylogarithmic-sized local component, which we iteratively grow to identify a small subformula
from which we can efficiently sample using the appropriate marginal distribution. This two-pronged
approach enables us to sample individual variable assignments without constructing a full solution.
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1 Introduction

Efficiently sampling from an exponentially sized solution space is a fundamental problem in
computation. The quintessential such problem is sampling a uniformly random satisfying
assignment to a given k-SAT formula, the setting of this work. Throughout, we let Φ denote
an n-variable (k, d)-formula, which is a k-SAT formula in conjunctive normal form (which
we also call a k-CNF) such that each variable appears in at most d clauses. We let Ω = ΩΦ
denote the set of satisfying assignments to Φ, and let µ = µΦ denote the uniform distribution
over Ω. We consider the regime where k is a (large) constant and take n→∞.

© Dingding Dong and Nitya Mani;
licensed under Creative Commons License CC-BY 4.0

28th International Conference on Theory and Applications of Satisfiability Testing (SAT 2025).
Editors: Jeremias Berg and Jakob Nordström; Article No. 13; pp. 13:1–13:24

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:ddong@math.harvard.edu
https://orcid.org/0000-0001-8500-2897
mailto:nmani@mit.edu
https://orcid.org/0000-0003-0348-5886
https://doi.org/10.4230/LIPIcs.SAT.2025.13
https://arxiv.org/abs/2409.03951
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics
https://www.dagstuhl.de


13:2 Random Local Access for Sampling k-SAT Solutions

For d ≤ (2ek)−12k, it has long been known (e.g., by the Lovász local lemma introduced
in [8]) that any such k-SAT formula Φ has at least one satisfying assignment. Moreover,
seminal work of Moser and Tardos [27] gave a simple algorithm that computes such a
satisfying assignment in expected linear time. However, a similarly basic question in the
sampling regime is far more poorly understood: when is it possible to efficiently sample an
(approximately uniformly) random satisfying assignment to Φ?

The first breakthrough in this direction came from Moitra [25] who gave a deterministic,
fixed-parameter tractable algorithm for approximately sampling from µ provided that d ≲ 2ck

for c ≈ 1/60. This was followed up by work of Feng, Guo, Yin and Zhang [10], who used a
Markov chain approach to give a polynomial time algorithm for sampling from µ provided
that d ≲ 2k/20. Recent works [18, 31] have given state of the art results for sampling from
k-CNFs, when d ⪅ 2k/4.82 (in fact for large domain sizes, [31] gives essentially tight bounds
on sampling from atomic constraint satisfaction problems). There has also been a tremendous
amount of work sampling from random k-CNFs, recently essentially resolved by work of [6],
building on previous progress of [13, 7, 12, 19].

A natural question about such algorithms to sample from k-CNFs is whether one can
adapt them to more efficiently answer local questions about a random satisfying assignment
in sublinear time. For variable v, let µv denote the marginal distribution on v induced by µ.
When n is large, one might wish to sample a small handful of variables S from their marginal
distributions µS in o(n) time, without computing an entire Ω(n)-sized satisfying assignment
σ ∼ µ. Further, many traditional algorithms for counting the number of satisfying assignments
to a given k-SAT formula proceed by computing marginal probabilities of variable assignments,
a task that can be completed given local access to a random assignment. Therefore, sublinear
time algorithms for answering local questions can also yield speedups in more general counting
algorithms.

Ideally, a random local access model should provide query access to variable assignments
such that the output enjoys the following properties:
(a) the model is consistent: queries for different variable assignments consistently emulate

those of a single random satisfying assignment σ ∼ µ;
(b) the model is sublinear : sampling variable assignments takes o(n) time in expectation;
(c) the model is memory-less: given the same initialization of randomness, answers to

multiple, possibly independent queries for variable assignments are consistent with each
other.

We give a more precise definition of random local access models in Section 2. Random local
access models were formally introduced in work of Biswas, Rubinfeld, and Yodpinyanee [5],
motivated by a long line of work over the past decades studying sublinear time algorithms
for problems in theoretical computer science. The authors of [5] studied a different natural
Gibbs distribution, the uniform distribution over proper q-colorings of a given n-vertex graph
with maximum degree ∆. By adapting previously studied classical and parallel sampling
algorithms for q-colorings, they were able to construct a local access algorithm to a random
proper q-coloring when q ≥ 9∆. The related problem of sampling partial information about
huge random objects was pioneered much earlier in [15, 16]; further work in [28] considers
the implementation of different random graph models. Random local access and related
(e.g., parallel computation) models have also been recently studied for several other random
graphical processes and Gibbs distributions (cf. [5, 4, 26, 23]).

The above model for local access to random samples extends a rich line of work studying
local computation algorithms (LCAs), originally introduced in works of Rubinfield, Tamir,
Vardi, and Xie [29] and Alon, Rubinfield, Vardi, and Xie [2]. Local computation algorithms
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are widely used in parallel and distributed computing, with notable practical success in
areas such as graph sparsification [1], load balancing [24], and sublinear-time coloring [2]. A
primary initial application of LCAs in [29] was locally constructing a satisfying assignment
to a given (k, d)-formula Φ when d ≲ 2k/10. Similar to the desired properties of random local
access, LCA implements query access to a large solution space in sublinear time using local
probes. However, rather than sampling from a given distribution, LCA only provides local
access to some consistent valid solution in the desired solution space that may otherwise be
completely arbitrary in nature.

In this work, we present a polylogarithmic time algorithm that gives random local access
to the uniform distribution over satisfying assignments of an arbitrary k-SAT formula Φ at
exponential clause density (i.e., the number of occurrences of each variable is bounded by an
exponential function of k). The following is an informal version of our main result; a more
formal version can be found at Theorem 24.

▶ Theorem 1 (Main theorem: informal). There exists a random local access algorithm A
that satisfies the following conditions. For any (k, d)-formula Φ = (V, C) with maximum
degree d ≲ 2k/400 and any variable v ∈ V , we can use A to sample a single assignment for v,
A(v) ∈ {0, 1} in expected polylogarithmic time (in |V |), such that the distribution of A(v)
is the same as the marginal distribution of σ(v), where σ is a uniformly random satisfying
assignment to Φ.

Similar to [5], the proof of Theorem 1 adapts some of the algorithmic tools used to study
parallel and distributed sampling. The proof also builds upon the work of Moitra [25] and
Feng–Guo–Yin–Zhang [10] on sampling from bounded degree k-CNFs in polynomial time.
The authors of [25, 10] both critically took advantage of a global variable marking (see
Definition 10) to better condition the marginal distributions of variables. Such an approach
allows for a subset of the variable assignments to be sampled with ease; the resulting shattering
of the solution space conditioned on such a partial assignment then allows one to efficiently
complete the random satisfying assignment. These initial approaches have been extended
and strengthened to nearly linear time algorithms that succeed for larger maximum variable
degree in a flurry of recent work (c.f. [25, 10, 20, 17, 13, 7, 12, 31, 6]).

Recently, Feng, Guo, Wang, Wang, and Yin [9] used a recursive sampling scheme to
simulate the systematic scan projected Glauber dynamics via a strategy termed coupling
towards the past, which they used to derandomise several Markov chain Monte Carlo (MCMC)
algorithms for sampling from CSPs. Additionally, recent work of He, Wang and Yin [18]
used a recursive sampling scheme to sample k-SAT solutions. Their work immediately gives
a sublinear (in fact, expected constant time) algorithm for sampling the assignment of a
single variable one time; however, this work does not immediately extend out of the box to a
random local access model that enjoys the desired consistency and memory-less properties if
multiple variables are sampled. Recursive sampling schemes have also been recently used to
make progress on analyzing and designing fast sampling algorithms for a variety of Gibbs
distributions (cf. [18, 7, 3]). As noted earlier, such schemes have been particularly useful for
derandomising and constructing parallel and distributed versions of many popular MCMC
algorithms for sampling solutions to CSPs [9, 11, 17, 18].

An immediate roadblock to adapting such global or parallel sampling strategies to
random local access to k-SAT solutions is that the vast majority of the aforementioned
existing algorithms critically either use some global information – like a variable marking,
particular ordering of variables, or other global state compression – as an input to make
algorithmic decisions or postpone sampling of certain problematic variable assignments until
a linear number of other choices are made. Both these issues necessitate a substantive
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13:4 Random Local Access for Sampling k-SAT Solutions

departure from these approaches for any hope of local access adaptation. In this work, we
overcome these obstacles by adapting the coupling towards the past strategy used in [9] to
derandomise MCMC in conjunction with a local implementation of the variable marking
strategy introduced in [25].

We use these algorithms to carefully select and sample a small number of auxiliary
variable assignments on an as-needed basis, showing that bad cases can be reduced to small
calculations after a sublinear number of steps. Our proof of Theorem 1 requires a novel
adaptation of sampling techniques to avoid requiring global information or complete passes
of the variable set; we show that we can perform analogous operations locally or leverage
local uniformity properties to circumvent them altogether in the course of locally sampling
a variable assignment. Importantly, we demonstrate how to execute local sampling in an
oblivious, consistent fashion, so that the algorithm need not retain any memory and that
variables need not be sampled in any particular order.

2 Preliminaries

Notation
Throughout, let Φ = (V, C) be a k-CNF on variable set V = {v1, . . . , vn} with associated
collection of clauses C. In this work we do not let the same variable appear multiple times
in any clause of Φ, although our algorithm could be adapted to the more general scenario.
We further assume that Φ is a (k, d)-formula; that is, each variable vi appears in at most d

clauses. For every clause C ∈ C, let vbl(C) denote the collection of variables in the clause C.
We further define ∆ := maxC∈C |{C ′ ∈ C : vbl(C) ∩ vbl(C ′) ̸= ∅}|, so in particular ∆ ≤ kd.

In the regime we work in, we assume k is a large fixed constant and view n→∞. We use
f ≲ g to denote that there is some constant C (not depending on k) such that f ≤ Cg. We
also use the standard asymptotic notation (O, o, Ω, ω, Θ), where when not specified, we
assume these are in the n→∞ limit. We use Law(X) to denote the underlying distribution
of a random variable X.

We let Ω = ΩΦ ⊆ {0, 1}n denote the set of satisfying assignments to Φ and let µ = µΦ
denote the uniform distribution over Ω. We suppress the Φ subscripts when the formula is
clear from context. We introduce a few more concepts associated to a k-SAT instance that
will be used later.

▶ Definition 2. Given probability distributions ν1, ν2 over Ω, the total variation distance is

dTV(ν1, ν2) := 1
2

∑
ω∈Ω
|ν1(ω)− ν2(ω)|.

If we have a random variable X with Law(X) = ν, we may write dTV(µ, X) instead of
dTV(µ, ν) in a slight abuse of notation.

▶ Definition 3 (Dependency hypergraph). Given a (k, d)-formula Φ, let HΦ = (V, E) be the
dependency hypergraph (with multiple edges allowed), where V is the set of variables and
E = {vbl(C) : C ∈ C} is the collection of variable sets of clauses of Φ.

▶ Definition 4 (Partial assignment). Given (k, d)-formula Φ = (V, C), let

Q∗ :=
⋃

Λ⊆V

{0, 1,⊥}Λ

denote the space of partial assignments with the following symbology. Given a partial
assignment σ ∈ {0, 1,⊥}Λ on some Λ ⊆ V , each variable v ∈ Λ is classified as follows:
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σ(v) ∈ {0, 1} means that v is accessed by the algorithm and assigned with σ(v) ∈ {0, 1};
σ(v) =⊥ means that v is accessed by the algorithm but unassigned yet with any value.

We sometimes use ∅ to denote the empty assignment (i.e., Λ is the empty set). We say that
σ is feasible if it can be extended to a satisfying assignment to Φ.

▶ Definition 5 (Reduced formula on partial assignment). Let Φ be a (k, d)-formula. Given a
partial assignment σ on Λ ⊆ V , let Φσ be the result of simplifying Φ under σ. That is, define
Φσ := (V σ, Cσ) where

V σ = V \ {v ∈ Λ : σ(v) ∈ {0, 1}},
Cσ is obtained from C by removing all clauses that have been satisfied under σ, and
removing any appearance of variables that are assigned 0 or 1 by σ.

Let Hσ
Φ be the associated (not necessarily k-uniform) hypergraph to Φσ. For variable v ∈ V \Λ,

let Φσ
v denote the maximal connected component of Φσ to which v belongs.

▶ Definition 6 (Marginal distribution). For an arbitrary set of variables S ⊆ V , let µS be the
marginal distribution on S induced by µ, so that

µS(τ) =
∑

τ ′∈{0,1}n:τ ′|S=τ

µ(τ ′) ∀τ ∈ {0, 1}S .

When S = {v} is a single vertex, we let µv = µ{v}. Furthermore, given some partial
assignment σ ∈ {0, 1,⊥}Λ for Λ ⊆ V , if S ∩ Λ = ∅, we let µσ

S(·) := µS(· | σ) be the marginal
distribution on S conditioned on the partial assignment σ. When S = V \ Λ, we simply use
µσ to denote µσ

V \Λ.

2.1 The random local access model and local computation algorithms
One of the most widely studied models of local computation are local computation algorithms
(LCAs) introduced in [2, 29]. Given a computation problem F , an LCA (in an online
fashion) provides the i-th bit to some consistent solution F in sublinear time. As originally
defined, local computation algorithms need not be query-oblivious; in other words, the output
solution can depend on the order of queried bits. However, several follow-up works have
given query-oblivious analogues of LCAs for a variety of natural problems. Such models are
the non-random-sampling version of the random local access models we study here.

In this work, we construct a query-oblivious LCA for an intermediate step in our con-
struction of the random local access model (described in more detail in Section 2.2). We
thus precisely define both LCAs and random local access models below.

▶ Definition 7 (Local computation algorithm). Given an object family (Π, Ω) with input Π
and sample space Ω ⊆ Σn (for some alphabet Σ), a (t(n), δ(n))-local computation algorithm
(LCA) provides an oracle A that implements query access to some arbitrary σ ∈ Ω that
satisfies the following conditions:
A has query access to the input description Π and to a tape of public random bits R.
A gets a sequence of queries i1, . . . , iq for any q > 0, and after each query ij, it produces
an output σij such that the outputs σi1 , . . . , σiq are consistent with some σ ∈ Ω.
The probability of success over all q queries is at least 1− δ(n) (where δ(n) < 1/3).
The expected running time of A on any query is at most t(n), which is sublinear in n.

We further say that A is query-oblivious if the outputs of A do not depend on the order of
the queries but depend only on Π and R.

Motivated by the above, we give a formal definition of the random local access model
introduced in [5].

SAT 2025



13:6 Random Local Access for Sampling k-SAT Solutions

▶ Definition 8 (Random local access). Given a random object family (Π, Ω, µ) with input Π,
sample space Ω ⊆ Σn (with alphabet Σ) and distribution µ supported on Ω, a (t(n), δ(n))-
random local access implementation of a family of query functions {F1, F2, . . .} provides an
oracle A with the following properties:
A has query access to the input description Π and to a tape of public random bits R.

For a given input Π, upon being queried with Fi, the oracle with probability 1− o(1) uses
at most t(n) resources (where t(n) is sublinear in n) to return the value A(Π, R, Fi(Y ))
for some specific Y ∈ Ω.
The choice of Y ∈ Ω only depends on Π and R.
The distribution of Y over the randomness R satisfies

dTV(Y, µ) = 1
2

∑
ω∈Ω
|P(Y = ω)− µ(ω)| < δ(n),

where δ(n) ≲ 1
nc for constant c > 1.

In other words, if A is a random local access oracle for a set of queries, then when provided
the same input Π and the same random bits R, it must provide outputs that are consistent
with a single choice of Y regardless of the order and content of these queries.

▶ Remark 9. In this work, we do not study or seek to optimize the memory usage of our
algorithms. However, there is also a rich literature studying space-efficient and parallelizable
local models (e.g., [2, 14, 21]).

2.2 Marking and a query-oblivious LCA
As noted in the introduction, the Lovász local lemma [30] guarantees the existence of a
satisfying assignment to any (k, d)-formula Φ if d ≤ (2ek)−12k. Furthermore, the Moser-
Tardos algorithm [27] gives a simple linear-time algorithm to construct such a satisfying
assignment in the above (k, d)-regime:

Sample v1, . . . , vn
R← {0, 1} uniformly at random;

While there exists a clause C ∈ C that is violated by the current assignment, resample
variables in C uniformly at random.

The Lovász local lemma can be made quantitative, showing that not only is there some
satisfying assignment to Φ if d ≤ (2ek)−12k, but both that there are exponentially many such
satisfying assignments and that the marginal distributions µv are approximately uniform
with µv(1) ≤ 1

2 exp(1/k) (see [25, 10]). Such local uniformity is critical to the success of
algorithms that approximately sample from µ. In his breakthrough work, Moitra [25] noted
that this local uniformity continues to hold for conditional distributions µσ provided that
each clause has a sufficiently large number of free variables under partial assignment σ. This
motivates the idea of a marking, as introduced in [25], which is a careful selection (via the
Lovász local lemma) of a linear sized subset of variables M ⊆ V that has the following
properties:

For every clause C, | vbl(C)∩M| ≳ k. Having a large number of marked variables in each
clause would hopefully result in a desired shattering condition; namely, we can sample a
partial assignment σ ∈ {0, 1}M on this marking that partitions the original formula into
sufficiently small connected components.
For every clause C, | vbl(C)\M| ≳ k. This large non-intersection preserves the local
uniformity of the marginal distributions of the as yet-unsampled variables in M.
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The general strategy of arguments following the marking approach is to show that it is
“easy” to sample a partial assignment σ ∈ {0, 1}M, and moreover, conditioned on any such
assignment, the reduced formula Φσ is very likely to shatter into sufficiently small connected
components such that the remaining variable assignments can be efficiently sampled from
the conditional distribution by solving a smaller instance of the original problem. We now
make this notion precise.

▶ Definition 10 (α-marking). Given (k, d)-formula Φ and constant α ∈ (0, 1/2), we say that
M⊆ V is an α-marking if for every C ∈ C, | vbl(C) ∩M| ≥ αk and | vbl(C)\M| ≥ αk.

In this work, we locally, greedily construct an α-markingM using a local implementation
of Moser-Tardos. We will further argue that because of the shattering property, we can
locally compute the connected component of Φσ

v for some σ ∼ µM and a given vertex v,
without having to actually assign linearly many vertices.

Precisely, we construct a query-oblivious LCA, IsMarked(·), where for a (k, d)-formula Φ
and a given range of α ∈ (0, 1), IsMarked(·) can take in any variable v ∈ V and output either
0 or 1 indicating whether v is in some α-marking of V . Moreover, IsMarked(·) takes sublinear
time and when queried on all of V , gives a consistent α-marking of V .

▶ Theorem 11. Let Φ = (V, C) be a (k, d)-formula. Suppose there exist constants 1/2 <

β1 < β2 < 1− α that satisfy the following conditions:

4α < 2(1− β2) < 1− β1,

16k4d5 ≤ 2(β1−h(1−β1))k,

16k4d5 ≤ 2(β2−β1)k−h
(

β2−β1
1−β1

)
(1−β1)k

, (1)

δ 7→ (β2 − δ)− h

(
β2 − δ

1− δ

)
(1− δ) is decreasing on 0 ≤ δ ≤ β1,

2e(kd + 1) < 2
(

1−h
(

α
1−β2

))
(1−β2)k

.

(Here h(x) := −x log2(x)− (1− x) log2(1− x) is the binary entropy.)
Fix constant c > 0. Then there exists a polylog(n) time local computation algorithm

IsMarked(·) which, given any variable v ∈ V , returns an assignment sv ∈ {0, 1} denoting
whether v is contained in an α-marking of Φ. Moreover, with probability at least 1− n−c,
the responses for all v ∈ V yield a consistent α-marking of Φ.

The construction of IsMarked(·) and the verification that it is a query-oblivious LCA
draws inspiration from the approach in [2] to obtain an oblivious LCA for hypergraph
2-coloring. From a high level, IsMarked(·) determines sv by randomly and greedily including
variables in the marking and subsequently determining those that must/must not be in the
marking, and finally (if needed) performing a rejection sampling on a smaller connected
component that contains v. The formulae in Equation (1) are some technical conditions that
guarantee this process to go through. We refer the readers to Appendix E of the full version
(arxiv:2409.03951) for a proof of Theorem 11.

3 A random local access algorithm for k-SAT solutions

In this section, we introduce the main algorithm (Algorithm 1) that locally accesses the
assignment of a variable v ∈ V in a uniformly random satisfying assignment σ to Φ.

SAT 2025
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13:8 Random Local Access for Sampling k-SAT Solutions

Recall from Theorem 1 that given a (k, d)-formula Φ = (V, C), variable v ∈ V , and any
constant c > 0, we wish to come up with a random local access algorithm A such that
(1) the expected running time of A is poly log(n), and (2) the output µ̂v of A for every
v ∈ V satisfies dTV(Law(µ̂v), µv) ≤ 1

nc . As a high level description, given the above inputs,
Algorithm 1 performs the following:
1. Locally decides whether v lies in an α-marking of Φ using IsMarked(v) (Theorem 11),

such that the responses for all v ∈ V yield a consistent α-marking M⊆ V .
2. Suppose σ ∼ µ is a uniformly random satisfying assignment to Φ. If v is marked, then

we sample σ(v) by computing MarginSample(v) (adapted from [9, Algorithm 8]), which
may make further recursive calls to sample other marked variables.

3. If v is not marked, then we perform a depth-first search starting from v to compute σ

restricted to M. We start from σ = ∅; for every w ∈ M we encounter that we have
not yet sampled, we compute MarginSample(w) and update σ(w), to eventually obtain a
(w.h.p. polylogarithmic in size) connected component Φv := Φσ

v that contains v. This
part is carried out by the algorithm Conn(v).
After obtaining the connected component Φσ

v , we call UniformSample (Theorem 13) to
sample a uniformly random satisfying assignment to Φσ

v and extend σ. We then output
σ(v).

Algorithm 1 The sampling algorithm.
Input: k-CNF formula Φ = (V, C) and variable v ∈ V

Output: random assignment σ(v) ∈ {0, 1}
1: if IsMarked(v) then
2: return MarginSample(v)
3: else
4: Φv ← Conn(v)
5: σ ← UniformSample(Φv)
6: return σ(v)

To illustrate the workflow of Algorithm 1, we present a toy example on a small k-CNF
formula, omitting some subroutine details for brevity.

▶ Example 12. Suppose k = 3, d = 2 and α = 1/3. Consider the following (k, d)-formula
Φ = (V, C) with variables V = {x1, x2, x3, x4, x5} and clauses C = {C1, C2, C3}, where

C1 = (x1 ∨ x2 ∨ ¬x3), C2 = (¬x2 ∨ x3 ∨ x4), C3 = (¬x4 ∨ x5 ∨ ¬x1).

Suppose we wish to approximately sample σ(x1) using the local access algorithm A. We run
IsMarked on each variable; suppose the resulting marking is M = {x2, x5}, so that x1 is not
marked.

Since x1 /∈M, we call Conn(x1) to explore the connected component of ΦM containing
x1. We initialize S := {C1, C3} and partial assignment σ = ∅.

Process clause C1. Since x2 ∈M, we call MarginSample(x2), which returns (say) σ(x2) =
0. The clause becomes (x1 ∨ 0 ∨ ¬x3) = (x1 ∨ ¬x3), which is unsatisfied with the current
σ. We add adjacent clause C2 (via x2 and x3) to S.
Process clause C3. Since x5 ∈M, we call MarginSample(x5), which returns (say) σ(x5) =
1. The clause becomes (¬x4 ∨ 1 ∨ ¬x1), which is satisfied.
Process clause C2. We already have σ(x2) = 0, so ¬x2 = 1, and the clause is satisfied.
Remove C2 from S.
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Now the discovered component Φσ
x1

includes (1) clauses C1, (2) marked variable assign-
ments σ(x2) = 0, σ(x5) = 1, (3) free variables: x1, x3, x4. We now run UniformSample
on the reduced subformula C ′

1 = (x1 ∨ ¬x3). The satisfying assignments (x1, x3) are
{(1, 0), (1, 1), (0, 0)}. We pick one uniformly at random, say (x1, x3) = (1, 0). Then we return
µ̂x1 = 1.

Algorithm 1 is our main routine; it has several subroutines IsMarked, MarginSample,
Conn, and UniformSample that we now describe. Recall that IsMarked has been discussed
in Theorem 11. We now introduce the algorithm UniformSample given by the work of
He–Wang–Yin [18].

▶ Theorem 13 ([18, Theorems 5.1 and 6.1]). Suppose Φ is a (k, d)-CNF formula on n vari-
ables with k · 2−k · (dk)5 · 4 ≤ 1

150e3 . Then there exists an algorithm UniformSample that
terminates in O(k3(dk)9n) time in expectation, and outputs a uniformly random satisfying
assignment to Φ.

As seen in Theorem 13, for an n-variable (k, d)-CNF formula, the algorithm has running
time O(n). However, as we will only apply UniformSample to connected components of
size poly log(n) (that are shattered by the partial assignment on the marked variables), the
execution of UniformSample in Line 6 of Algorithm 1 will only take polylogarithmic time.

We will define subroutines MarginSample and Conn below and show that they satisfy the
desired correctness and efficiency properties, beginning by verifying MarginSample has the
desired properties in Section 4.

▶ Theorem 14. Let Φ = (V, C) be a (k, d)-formula, α > 0, and M ⊆ V be an α-marking
as in Definition 10. Fix positive constant c > 0. Suppose θ := 1 − 1

2 exp
( 2edk

2αk

)
≥ 0.4,

36ed3k4 · 0.6αk ≤ 1/2, and 2− 1
48dk4 · e

2d2/α

2αk ≤ 0.9. Then there exists a random local access
algorithm MarginSample(·) such that for every u ∈ M, MarginSample(u) returns a random
value in {0, 1} that satisfies the following:
1. Let ν := µM and ν̂ be the joint distribution of the outputs (MarginSample(u))u∈M. Then

we have dTV(ν̂, ν) < n−c.
2. For every u ∈M, the expected cost of MarginSample(u) is poly log(n).

We also require Conn to be correct and have low expected cost.

▶ Theorem 15. Let Φ = (V, C) be a (k, d)-formula, α > 0, and M ⊆ V be an α-marking
as in Definition 10. Suppose θ := 1− 1

2 exp
( 2edk

2αk

)
≥ 0.4 and d ≤ 2αk/4. Then there exists

a random local access algorithm Conn(·) such that for every v ∈ V \M, Conn(v) returns
the connected component in Φσ that contains v, where σ is the partial assignment given by
(MarginSample(u))u∈M. Moreover, for every v ∈ V \ M, the expected cost of Conn(v) is
poly log(n).

From a high level, the algorithm Conn(v) explores the clauses and marked variables in
the CNF formula that are reachable from v, greedily sampling the marked variables and
expanding through unsatisfied clauses. It iteratively builds a partial assignment σ that
“shatters” the formula into disconnected components, isolating the one containing v. We will
verify Theorem 15 in Appendix D of the full version (arxiv:2409.03951).

4 Proof of Theorem 14

In this section we show Theorem 14. Throughout, let Φ = (V, C) be a (k, d)-formula,
α > 0, and M ⊆ V be an α-marking with |M| = m. We introduce a local access al-
gorithm MarginSample that satisfies the key property that the joint distribution of outputs
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(MarginSample(u))u∈M consistently follows the marginal distribution µM. In particular,
(MarginSample(u))u∈M will simulate the output of a systematic scan Glauber dynamics on
the marked variables.

▶ Definition 16. Let M = {u1, . . . , um} denote the marked variables (so |M| = m).
For every time t ∈ Z, define i(t) := (t mod m) + 1.
For every time t ∈ Z and ui ∈M, define predui

(t) := max{s ≤ t : i(s) = i}.

In the systematic scan Glauber dynamics, we always resample vertex ui(t) at time t (as
opposed to randomly choosing a variable to resample at each step). For every u ∈M and
time t, predu(t) denotes the most recent time up to time t at which u got resampled. Observe
that for all t ∈ Z and u ∈M, we have t−m < predu(t) ≤ t. Moreover, for all w ̸= ui(t), we
have predw(t) < t.

Algorithm 2 Systematic scan projected Glauber dynamics.
Input: a k-CNF formula Φ = (V, C), a set of marked variables M⊆ V , time T , and an

ordering M = {u1, . . . , um}
Output: a random assignment X∗ ∈ {0, 1}M

1: Sample X0(u) R← {0, 1} uniformly and independently for each u ∈M
2: for t = 1, . . . , T do
3: Let u := ui(t)
4: For all u′ ∈M \ {u}, Xt(u′)← Xt−1(u′)
5: Sample Xt(u) R← µu(· | Xt−1(M\{u})
6: Return X∗ = XT

We refer the readers to Appendix A of the full version (arxiv:2409.03951) for more
introduction on the systematic scan Glauber dynamics and its comparison with the (original)
projected Glauber dynamics Markov chain for sampling k-SAT solutions.

We have the following non-quantitative convergence for systematic scan Glauber dynamics.

▶ Theorem 17 ([22]). Let (Xt)∞
t=0 denote the Glauber dynamics or the systematic scan

Glauber dynamics with stationary distribution π. If (Xt)∞
t=0 is irreducible over Ω ⊆ {0, 1}M,

then for every X0 ∈ Ω, we have limt→∞ dTV(Xt, π) = 0.

Let M ⊆ V be a fixed set of marked variables for a given k-CNF Φ. Let ν := µM be
the marginal distribution of µ on M. We will crucially use the following local uniformity
of Algorithm 2 (the proof in the systematic scan setting follows essentially identically to [10,
Lemma 5.3]):

▶ Lemma 18. Suppose Φ is a k-CNF with 1 < s ≤ 2αk

2edk . Let X ⊆ {0, 1}Λ be either X0 or
Xt(M\{ui(t)}) for some t > 0 (so correspondingly, Λ is either M or M\{ui(t)} for some
t > 0). Then for any S ⊆ Λ and σ : S → {0, 1}, we have

P(X(S) = σ) ≤
(

1
2

)|S|

exp
(
|S|
s

)
.

Specifically, for any v ∈M and c ∈ {0, 1}, we have P(X(v) = c) ≥ 1− 1
2 exp( 1

s ) ≥ 1
2 −

1
s .

▶ Definition 19. Let π be a distribution on {0, 1}M. We say that π is b-marginally lower
bounded if for all v ∈M, Λ ⊆M\ {v} and feasible partial assignment σΛ ∈ {0, 1,⊥}Λ, we
have

πσΛ
v (0), πσΛ

v (1) ≥ b.
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Let π be a b-marginally lower bounded distribution over {0, 1}M. For every v ∈M, we
define the following distributions:
1. Lower bound distribution πLB

v over {0, 1,⊥}: we define πLB
v := πLB, with

πLB(0) = πLB(1) = b, πLB(⊥) = 1− 2b.

2. Padding distribution πpad,σΛ
v over {0, 1}: for Λ ⊆M\{v} and feasible partial assignment

σΛ ∈ {0, 1,⊥}Λ, we define

πpad,σΛ
v (·) := πσΛ

v (·)− b

1− 2b
.

Per Lemma 18, we have that ν = µM is θ-lower bounded for

θ := 1− 1
2 exp

(
2edk

2αk

)
≥ 1

2 −
1

2(α−2 log2 d)k
. (2)

4.1 Systematic scan Glauber dynamics on marked variables
We adapt the approach of [9] to a local sampling algorithm by simulating the systematic scan
projected Glauber dynamics on M from time −T to 0, which is an aperiodic and irreducible
Markov chain by results in [10, 9].

Let (Xt)−T ≤t≤0 be the output of Algorithm 2, where we relabel X0, . . . , XT by
X−T , . . . , X0. We know from Theorem 17 that, as T →∞, we have dTV((X0(v))v∈M, ν)→ 0
where ν = µM is the marginal distribution of µ on the marked variables. In particular, for
every fixed n and γ > 0, there exists Tγ ∈ N such that for all T > Tγ , the Markov chain
(Xt)−T ≤t≤0 satisfies dTV((X0(v))v∈M, ν) < γ.

We know from Lemma 18 that ν is θ-lower bounded, with the lower bound distribution
νLB defined by νLB(0) = νLB(1) = θ and νLB(⊥) = 1− 2θ. Thus, for every −T < t ≤ 0 and
u = ui(t), sampling Xt(u) ∼ ν

Xt−1(M\{u})
u can be decomposed into the following process:

1. With probability 2θ, set Xt(u) to 0 or 1 uniformly at random;
2. With probability 1− 2θ, sample Xt(u) from the padding distribution ν

pad,Xt−1(M\{u})
u .

Our goal is to obtain X0(u) for u ∈ M, which by Theorem 17 will closely follow the
marginal distribution νu for T sufficiently large. It suffices to simulate the last update for u.
The key observation here is that updates of Glauber dynamics may depend only on a very
small amount of extra information. When θ is close to 1/2, it is reasonably likely that we can
determine X0(u) = Xpredu(0)(u) without any other information. Thus, we can deduce X0(u)
by recursively revealing only the necessary randomness backwards in time. This method was
termed coupling towards the past and studied for a variety of constraint satisfaction problems
in [9].

We now give a general algorithm GlauberT,Y (t, M, R) in Algorithm 5, whose output
simulates the effects of Algorithm 2 at any particular time t, by looking backwards in
time at what happened over the course of running (Xt)−T ≤t≤0. The eventual algorithm
MarginSample(u) we give in Theorem 14 will retrieve the most recent update of each variable
u, i.e., retrieve the coordinate X0(u).

The algorithm GlauberT,Y (t, M, R) contains another subroutine LB-SampleT,Y (t, R) that
is defined in Algorithm 4. For every time t, the output of LB-SampleT,Y (t, R) follows the
distribution νLB (see Definition 19). In other words, LB-SampleT,Y (t, R) preliminarily decides
which of the above two regimes we fell into while resampling Xui(t) at time t.

Throughout Algorithm 5, we maintain two global data structures.
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Algorithm 3 MarginSample(u).
Input: a k-CNF formula Φ = (V, C), a set of marked variables M = {u1, . . . , um} ⊆ V ,

and a marked variable u ∈M
Output: a random value in {0, 1}

1: T ← Tn−(2+c)

2: Y
R← {0, 1}M

3: return GlauberT,Y (predu(0), M =⊥Z, R = ∅)

We let M : Z→ {0, 1,⊥} record the previously revealed outcomes of Algorithm 5. That
is, for every t′ ≤ 0 such that GlauberT,Y (t′, M, R) has already been executed, we set M(t′)
to be the outcome of GlauberT,Y (t′, M, R).
We let R = {(s, rs)} ⊆ Z×{0, 1,⊥} record the previously revealed outcomes of Algorithm 4.
That is, for every t′ ≤ 0 such that LB-SampleT,Y (t′, M, R) has already been executed and
returned rt′ ∈ {0, 1,⊥}, we add {(t′, rt′)} to R.

Since T, Y remain constant throughout Algorithms 4 and 5, and all recursive calls access
and update the same M and R, we sometimes write Glauber(t) = GlauberT,Y (t, M, R) and
LB-Sample(t) = LB-SampleT,Y (t, R) for short.

At the beginning of Glauber(t), we first check a few early stopping conditions:
(Lines 1–2) If variable ui(t) remains its initial assignment Y (ui(t)) at the end of time t

(i.e., is never resampled), we terminate and return Y (ui(t)).
(Lines 3–4) If |R|, the number of stored outcomes of LB-Sample, already reaches 80dk4 log n,
we terminate and return 1.
(Lines 5–6) If previous iterations have already computed Glauber(t) and stored M(t) ∈
{0, 1}, we terminate and return M(t).

If none of the above conditions occurs, we then resample, first by applying LB-Sample(t)
(Algorithm 4) in Lines 7–8. If LB-Sample(t) ∈ {0, 1} (which occurs with probability 2θ), we
can update u = ui(t) by choosing an assignment from {0, 1} uniformly at random without
investigating the assignments of any other variables at earlier time steps (i.e., we fall into
the zone of local uniformity).

If LB-Sample(t) =⊥ (which occurs with probability 1− 2θ), then we fall into a zone of
indecision and must resample u = ui(t) from the padding distribution ν

pad,Xt−1(M\{u})
u . To

resample its spin, we slowly proceed backwards in time, lazily computing previously resampled
assignments, until we have determined enough information to compute the assignment of u at
the desired time step. Verifying accuracy is somewhat involved, given our lazy computation
strategy and partitioning of ν into a locally uniform piece and an associated padding
distribution. Thus, in Section A we show that Lines 9–19 correctly complete the desired task,
proving the following bound on dTV((MarginSample(u))u∈M, ν).

▶ Proposition 20. For any c > 0 and n sufficiently large, we have

dTV((MarginSample(u))u∈M, ν) < n−c.

We next require that Algorithm 5 has expected polylogarithmic cost. This is largely a
consequence of the local uniformity of µM and our lazy recursive computation of variable
assignments in Algorithm 5.

▶ Lemma 21. Suppose 2− 1
48dk4 ·e

2d2/α

2αk ≤ 0.9. For every t ≤ 0, the expected cost of Glauber(t)
is O(k17d10 log2 n/α).
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Algorithm 4 LB-SampleT,Y (t, R).

Input: An integer T ≥ 0 and assignment Y ∈ {0, 1}M; an integer t ≤ 0
Global variables: a set R ⊆ Z× {0, 1,⊥} and α-marking M = {u1, . . . , um}
Output: a random value in {0, 1,⊥} distributed as νLB

1: if predui(t)
(t) ≤ −T then

2: return Y (ui(t))
3: if (t, r) ∈ R then
4: return r

5: Draw x ∈ [0, 1] uniformly at random
6: if x < 2θ then
7: R← R ∪ {(t, ⌊x/θ⌋)} and return ⌊x/θ⌋
8: R← R ∪ {(t,⊥)} and return ⊥

Algorithm 5 GlauberT,Y (t, M, R).

Input: An integer T ≥ 0 and assignment Y ∈ {0, 1}M; an integer t ≤ 0
Global variables: (k, d)-CNF Φ = (V, C), α-marking M = {u1, . . . , um}, M : Z →

{0, 1,⊥}, and R ⊆ Z× {0, 1,⊥}
Output: a random value in {0, 1}

1: if predui(t)
(t) ≤ −T then

2: return Y (ui(t))
3: if |R| ≥ 80dk4 log n then
4: return 1
5: if M(t) ̸=⊥ then
6: return M(t)
7: if LB-SampleT,Y (t, R) ̸=⊥ then
8: M(t)← LB-SampleT,Y (t, R) and return M(t)
9: u← ui(t), Λ← ∅, σΛ ← ∅, V ′ ← {u}

10: while ∃C ∈ C such that vbl(C) ∩ V ′ ̸= ∅, vbl(C) ∩ (V \ V ′) ̸= ∅ and C is not satisfied
by σΛ do

11: choose C with the lowest index
12: if for all marked w ∈ vbl(C) \ {u}, LB-SampleT,Y (predw(t), R) does not satisfy C

then
13: for all marked w ∈ vbl(C) \ {u} do
14: Λ← Λ ∪ {w} and σΛ(w)← GlauberT,Y (predw(t), M, R)
15: V ′ ← V ′ ∪ vbl(C)
16: else
17: for all marked w ∈ vbl(C) \ {u} do
18: Λ← Λ ∪ {w} and σΛ(w)← LB-SampleT,Y (predw(t), R)
19: Let Ψ be the connected component in ΦσΛ with u, and sample c ∼ (νΨ)pad,σΛ

u

20: M(t)← c and return M(t)
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We prove Lemma 21 in Section B. These two results together allow us to prove Theorem 14.

Proof of Theorem 14. The theorem directly follows from combining Proposition 20
and Lemma 21. By Proposition 20, we know that the joint distribution ν̂ :=
(MarginSample(u))u∈M satisfies dTV(ν̂, ν) < n−c. By Lemma 21, we know that for every
u ∈ M, the expected cost of MarginSample(u) = GlauberT,Y (predu(0), M =⊥Z, R = ∅) is of
order poly log(n). ◀

5 Proof of the main theorem

We are finally able to state and prove the formal version of Theorem 1. Before picking the
relevant parameters, we first collect the list of conditions required to apply Theorems 13–15.

▶ Condition 22.

k · 2−αk · (dk)5 · 4 ≤ 1
150e3 ,

θ := 1− 1
2 exp

(
2edk

2αk

)
≥ 0.4, (3)

36ed3k4 · 0.6αk ≤ 1/2,

2− 1
48dk4 · e

2d2/α

2αk ≤ 0.9,

d ≤ 2αk/4.

Recall that we also need conditions Equation (1) to apply Theorem 11. One can verify
that for d ≤ 2k/400 and k sufficiently large, we can choose all the parameters appropriately
so that Equations (1) and (3) are satisfied.

▶ Lemma 23. Let

α = 1/75, β1 = 0.778, β2 = 0.96.

If k is sufficiently large, and d = d(k) ≤ 2k/400, then Conditions Equations (1) and (3) are
satisfied.

We defer the proof of Lemma 23 to Appendix F of the full version (arxiv:2409.03951). We
can now state and prove Theorem 24, the formal version of our main result.

▶ Theorem 24. Suppose Φ = (V, C) is a (k, d)-formula with d ≤ 2k/400 and k sufficiently
large. Let µ be the uniform distribution over satisfying assignments to Φ, with marginal
distributions µv for v ∈ V . Then for all c > 0, there is a (poly log(n), n−c)-random local
access algorithm A for sampling the variable assignment of v ∈ V as µ̂v, such that

dTV((µ̂v)v∈V , µ) ≤ 1
nc

.

Here we remark that c > 0 is any fixed constant, and the runtime of A depends on it. As
written, both the algorithmic runtime and correctness are random, since we give expected
running time and bounds on the marginal distribution in total variation distance. However,
our algorithm allows derandomising either correctness or running time at the expense of
worse bounds on the other.

http://arxiv.org/abs/2409.03951
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Proof. Suppose Φ = (V, C) is a (k, d)-formula with d ≤ 2k/400 and k sufficiently large, and
c > 0 is any constant. Choose parameters

α = 1/75, β1 = 0.778, β2 = 0.96.

By Lemma 23, we know that with these parameters, conditions Equations (1) and (3) are
satisfied. Thus, by Theorem 11, there exists a poly log(n) time oblivious local computation
algorithm IsMarked(·) that with probability at least 1− n−2c gives a consistent α-marking
M⊆ V .

Suppose IsMarked(·) gives a consistent α-marking M ⊆ V . By Theorem 14, we know
that there is a random local access algorithm MarginSample(·) with expected cost poly log(n)
such that the distribution of (MarginSample(u))u∈M ∼ ν̂ satisfies dTV(ν̂, µM) < n−2c.

Let τ = (MarginSample(u))u∈M. By the proof of Theorem 15, we know that for every
unmarked variable v ∈ V \M, with probability 1−n−0.1 log n, the number of clauses in Φτ

v is
at most kd log2 n. We already proved in Theorem 15 that for every v ∈ V \M, the expected
cost of Conn(v) is at most poly log(n).

Furthermore, since the reduced formula Φτ
v has at least αk variables and at most k

variables in each clause, and every variable lies in at most d clauses with d ≤ 2αk/5.4, by
Theorem 13, the expected cost of UniformSample(Φτ

v) is asymptotically at most

k3(dk9)(kd log2 n + n−0.1 log n · n) = poly log(n).

Since both Conn and UniformSample succeed with probability 1, we get that µ̂, the joint
distribution of outputs of Algorithm 1 for all v ∈ V , satisfies dTV(µ̂, µ) < n−c for all c > 0.

By construction, Algorithm 1 is memory-less as it samples all necessary variable assign-
ments in order to compute the assignment of a queried variable v. Furthermore, Algorithm 1
queried on different variables v ∈ V collectively returns an assignment σ ∼ µ̂ that has
dTV(µ̂, µ) < n−c. Since this holds for any c > 0 constant, we obtain the desired result. ◀

6 Concluding remarks

With more involved refinements and optimizations of the arguments in this work, the density
constraint d ≲ 2k/400 of Theorem 1 can be substantially improved (to something closer to
d ≲ 2k/50). We omit these additional calculations in favor of expositional clarity to highlight
our main result: random local access models exist for arbitrary bounded degree k-CNFs
at exponential clause density. Furthermore, these arguments can also be adapted (in a
similar fashion to [13, 19, 7]) to obtain a random local access model for random k-CNFs in a
comparable density regime.

Nonetheless, the limit of the approaches in this work would still fall well short of obtaining
random local access for, e.g., approximately d ≲ 2k/4.82, the maximum density at which we
currently know how to efficiently sample solutions to an arbitrary bounded degree k-CNF
in nearly-linear time [18, 31]. This is because of our reliance on a query-oblivious LCA to
construct a local marking and our application of weaker sampling results to a correspondingly
reduced CNF.

The approach we take in this work is only one of many possible schema to reduce from
existing classical, parallel, and/or distributed algorithms to more local algorithms. Our
approach involved using ideas and techniques from a variety of previous works (notably [25,
9, 10]), many of which were in the non-local setting, and adapting them in a novel way to
obtain a sublinear sampler. Our approach bears some resemblance to work of [5] where
authors adapted a parallel Glauber dynamics algorithm to obtain random local access to
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proper q-colorings, and to work of [3] that used a recursive strategy to give perfect sampling
algorithms from certain spin systems in amenable graphs. We expect that many other existing
algorithms (including [18, 17, 19, 31]) can be adapted with some work to give random local
access algorithms.
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A Correctness of Algorithm 5

In this section, we show Proposition 20 that with high probability, (Glauber(predu(0)))u∈M
faithfully returns the final outcome (X0(u))u∈M of the systematic scan Glauber dynamics
(Xt)−T ≤t≤0 initialized at X−T = Y . We will later use Theorem 17 to show that there-
fore, when T is set to be sufficiently large, the distribution of (MarginSample(u))u∈M =
(Glauber(predu(0)))u∈M is close to the marginal distribution ν = µM.
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▶ Proposition 25. Fix t ≤ 0 and let u = ui(t). Suppose |R| < 80dk4 log n after the execution
of Glauber(t) (i.e., Line 4 of Algorithm 5 is never triggered). Then Glauber(t) faithfully returns
Xt(u), where (Xt)−T ≤t≤0 is the systematic scan Glauber dynamics started at X−T = Y .

Proof. The statement clearly holds for t = −T and u = ui(−T ). Since predu(−T ) = −T , by
Lines 1–2 of Algorithm 5, we have Glauber(−T ) = Y (u) = X−T (u).

Inductively, for −T < t ≤ 0, assume the proposition for all −T ≤ t′ < t. Let u = ui(t).
Suppose |R| < 80dk4 log n after the execution of Glauber(t). Observe that, since predw(t) < t

for all w ̸= u, Glauber(t) only makes further calls to Glauber(t′) with t′ < t. Thus, by the
inductive hypothesis, all further calls of Glauber(t′) have correctly returned the outcomes
Xt′(ui(t′)).

We wish to show that the resampled outcome Glauber(t) follows the marginal distribution
ν

Xt−1(M\{u})
u . Per Lines 5–6, we may assume that Glauber(t) has never been called before, in

which case we directly go to Line 7 of Algorithm 5. Lines 7–8 guarantee that with probability
2θ, we assign Xt(u) to be 0 or 1 uniformly at random. It remains to show that in Lines 9–19,
we are able to resample Xt(u) from the padding distribution ν

pad,Xt−1(M\{u})
u .

To show this, we first verify that the sets Λ, V ′ and the partial assignment σΛ ∈ {0, 1,⊥}Λ

obtained in Line 19 satisfy the following four conditions:
(1) u ∈ V ′;
(2) (V ′ ∩M) ⊆ Λ ∪ {u};
(3) for all C ∈ C such that vbl(C) ∩ V ′ ̸= ∅ and vbl(C) ∩ (V \ V ′) ̸= ∅, C is satisfied by σΛ;
(4) for all marked variables w ∈ V ′\{u}, we have σΛ(w) = Xt−1(w) ∈ {0, 1}; for all variables

w ∈ Λ \ V ′, we either have σΛ(w) = Xt−1(w) ∈ {0, 1}, or have σΛ(w) =⊥.
Here, property (1) holds because u is added to V ′ in the initialization, and V ′ never removes
variables. Property (2) holds because if variables in some clause C are added to V ′ in Line
15, then all marked variables in C are added to Λ in Line 14. As the while loop terminates,
the opposite condition of Line 10 holds, which is exactly property (3).

We now show property (4). For every w ∈ V ′ \{u}, we know that w is added to V ′ in Line
15 due to some clause C; if w is marked, then by Line 14 and the inductive hypothesis, we know
that we have assigned σΛ(w)← Glauber(predw(t)) = Xt−1(w) ∈ {0, 1}. For every w ∈ Λ \V ′,
by Line 18, we have assigned σΛ(w) ← LB-Sample(predw(t)). If LB-Sample(predw(t)) ̸=⊥,
then we have LB-Sample(predw(t)) = Xpredw(t)(w) = Xt−1(w) ∈ {0, 1}.

Let Ψ denote the connected component in ΦσΛ that contains u. Let µΨ denote the
distribution of a uniformly random satisfying assignment to Ψ. By property (3), we know
that the connected component in ΦσΛ that contains u is supported on V ′. By property
(4), we know that Xt−1(M\ {u}) is an extension of σΛ, which means that the connected
component in ΦXt−1(M\{u}) that contains u is also supported on V ′. Moreover, property (4)
implies that σΛ(V ′ \{u}) = Xt−1(V ′ \{u}), which means that the two marginal distributions
(µΨ)σΛ

u and (µΨ)Xt−1(V ′\{u})
u are the same. Altogether, we get that

µσΛ
u = (µΨ)σΛ

u = (µΨ)Xt−1(M\{u})
u = µXt−1(M\{u})

u .

Recall that ν is the marginal distribution of µ onM. Let νΨ denote the marginal distribution
of µΨ on M. Since Xt−1(M\ {u}) and σΛ are both supported on subsets of M, the above
gives

νσΛ
u = (νΨ)σΛ

u = (νΨ)Xt−1(M\{u})
u = νXt−1(M\{u})

u .

Recall that we wish to sample from ν
pad,Xt−1(M\{u})
u . Observe that for any par-

tial assignment σ, νpad,σ
u is a deterministic function of νσ

u (see Definition 19). Since
ν

Xt−1(M\{u})
u = (νΨ)σΛ

u , we have ν
pad,Xt−1(M\{u})
v = (νΨ)pad,σΛ

v as well. Thus, it suffices to
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sample c ∼ (νΨ)pad,σΛ
u = ν

pad,Xt−1(M\{u})
u which was performed in Line 19. This shows that

Lines 9–19 draws Xt(u) from the padding distribution ν
pad,Xt−1(M\{u})
u , and finishes the

proof. ◀

We now show that the condition |R| < 80dk4 log n happens with high probability. To
do this, we show that in a single instance of Glauber(t), the “chain” of further recursions
Glauber(t′) is unlikely to be large. We build the following graph G to track these recursions.

▶ Definition 26. For every C ∈ C and t ≤ 0, let

ϕ(C, t) := (vbl(C), {predw(t) : w ∈ vbl(C) ∩M}),

i.e., ϕ(C, t) is the pair comprising the variables of C and the most recent times that any
marked variable in C was resampled up until time t. Consider an associated graph Gt defined
by

V (Gt) = {ϕ(C, t′) : C ∈ C, −T ≤ t′ ≤ t},

such that ϕ(C1, t1) ∼ ϕ(C2, t2) in Gt if and only if the following holds:
1. vbl(C1) ∩ vbl(C2) ̸= ∅,
2. For T := {predw(t1) : w ∈ vbl(C1) ∩M} ∪ {predw(t2) : w ∈ vbl(C2) ∩M}, we have

max T −min T < 2m (recall that m = |M|).

We also recall the notion of a 2-tree in a graph or hypergraph.

▶ Definition 27. Let G = (V (G), E(G)) be a graph or hypergraph. We say that Z ⊆ V (G)
is a 2-tree if Z satisfies the following conditions:
1. for all u, v ∈ Z, distG(u, v) ≥ 2;
2. the associated graph with vertex set Z and edge set {{u, v} ⊆ Z : distG(u, v) = 2} is

connected.

There are not many 2-trees containing a fixed vertex in a graph of bounded maximum
degree. We recall one example upper bound below that will be sufficient for our purposes.

▶ Observation 28 (see [10, Corollary 5.7]). Let G = (V (G), E(G)) be a graph or hypergraph
with maximum degree D. Then for every v ∈ V , the number of 2-trees Z ⊆ V (G) containing
v with |Z| = ℓ is at most (eD2)ℓ−1

2 .

The following proposition shows that the size of R is unlikely to be large when we
terminate Glauber(t) for any t ≤ 0.

▶ Proposition 29. Fix t ≤ 0. Suppose θ := 1− 1
2 exp

( 2edk
2αk

)
≥ 0.4 and 36ed3k4 · 0.6αk ≤ 1/2.

Upon the termination of Glauber(t), for every η ≥ 1, the size of R satisfies

P[|R| ≥ 24dk4(η + 1)] ≤ 2−η.

Proof. Fix t ≤ 0 and consider some instance of Glauber(t). For t1 < t0 ≤ t, we say that
Glauber(t1) is triggered by x := ϕ(C, t0) if Glauber(t1) is called in Line 14 of Glauber(t0) with
clause C. Let W = {x ∈ V (Gt) : x triggers recursive calls}. We begin by verifying a few
basic properties that R and G := Gt enjoy.

▷ Claim 30. Upon the termination of Glauber(t), we have |R| ≤ 2k2|W |+ 2k.

SAT 2025
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Proof. Observe that for every t0 ≤ t, Glauber(t0) calls LB-Sample at most k + 1 times (in
Line 7 and Line 12 of Algorithm 5) before possibly going into another subroutine Glauber(t1).
Let A denote the set of timestamps t0 such that Glauber(t0) was called at least once. Then
we have |R| ≤ (k + 1)|A|.

Observe that every Glauber(t0) with t0 < t is triggered by some x ∈ W . Moreover,
every x ∈ W triggers at most k subroutines Glauber(t0) in Line 14. Thus, we get that
|A| ≤ k|W |+ 1, which gives |R| ≤ (k + 1)|A| ≤ (k2 + k)|W |+ k + 1 ≤ 2k2|W |+ 2k. ◁

▷ Claim 31. The maximum degree of G is at most 6k2d− 1.

Proof. Fix ϕ(C1, t1) ∈W . There are at most kd clauses C2 ∈ C such that vbl(C1)∩vbl(C2) ̸=
∅. For any such C2, we count the number of possible ϕ(C2, t2) so that T = {predw(t1) : w ∈
vbl(C1) ∩M} ∪ {predw(t2) : w ∈ vbl(C2) ∩M} satisfies max T −min T < 2m.

Suppose

{predw(t1) : w ∈ vbl(C1) ∩M} = {s1, . . . , sk1} with s1 < · · · < sk1 ,

{predw(t2) : w ∈ vbl(C2) ∩M} = {s′
1, . . . , s′

k2
} with s′

1 < · · · < s′
k2

.

Observe that sk1 ≤ t1 < s1 + m and s′
k2
≤ t2 < s′

1 + m. If max T −min T < 2m, then we
have

sk1 − 2m < s′
1 < s′

k2
< s1 + 2m,

which gives t2 < s′
1 + m < s1 + 3m and t2 ≥ s′

k2
> sk1 − 2m. Thus, we have

sk1 − 2m < t2 < s1 + 3m.

Let S := {sk1 − 2m + 1, sk1 − 2m + 2, . . . , s1 + 3m − 1}. In particular, S is an interval of
size ≤ 5m given by ϕ(C1, t1).

Observe that as t2 increments from sk1 − 2m + 1 to s1 + 3m− 1, we have {predw(t2) : w ∈
vbl(C2)∩M} ̸= {predw(t2−1) : w ∈ vbl(C2)∩M} only if predw(t2) > predw(t2−1) for some
w ∈ vbl(C2) ∩M. Moreover, since | vbl(C2) ∩M| ≤ k and |S| ≤ 5m, we know that there
are at most 5k such numbers t2 in S, and these numbers have been completely determined
by vbl(C2) and S (i.e., by ϕ(C1, t1) and C2). These numbers partition S into at most 5k + 1
intervals such that {predw(t2) : w ∈ vbl(C2) ∩M} is the same for all t2 on each interval.
Thus, for every fixed ϕ(C1, t1) and C2, the set {{predw(t2) : w ∈ vbl(C2) ∩M} : t2 ∈ S} has
size at most 5k + 1.

Therefore, given any ϕ(C1, t1), we can pick a neighbor ϕ(C2, t2) ∼ ϕ(C1, t1) by first picking
C2 (which has ≤ kd choices) and then picking an element in {{predw(t2) : w ∈ vbl(C2)∩M} :
t2 ∈ S} (which has ≤ 5k + 1 choices). So the number of possible ϕ(C2, t2) ∼ ϕ(C1, t1) in G

is at most kd(5k + 1) ≤ 6k2d− 1. ◁

▷ Claim 32. Let u = ui(t) and W ′ = {ϕ(C, t) ∈W : u ∈ vbl(C)}. Then G[W ′] is a clique.

Proof. Consider any two clauses C, C ′ such that u ∈ vbl(C) ∩ vbl(C ′). Suppose
ϕ(C, t), ϕ(C ′, t) ∈ W ′. Clearly vbl(C) ∩ vbl(C ′) ̸= ∅. Moreover, since the timestamps
predw(t) over all marked variables w ∈M lie in the range {t−m + 1, . . . , t}, we get that the
maximum and minimum of {predw(t) : w ∈ vbl(C) ∩M} ∪ {predw(t) : w ∈ vbl(C ′) ∩M}
differ by at most m− 1 < 2m. Thus we have ϕ(C, t) ∼ ϕ(C ′, t) in G. ◁

▷ Claim 33. Let W ′ be as in Claim 32. For every x ∈ W , there exists a path p0 . . . pℓ in
G[W ] such that p0 ∈W ′ and pℓ = x.
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Proof. Let x = ϕ(C, t1) be any element in W . We perform a double induction, the outside
on t1 and the inside on C.

Base case: t1 = t.
Suppose first that t1 = t, so x = ϕ(C, t) for some C. Let u = ui(t). If u ∈ vbl(C), then
x ∈W ′ and we are done. Inductively, suppose Claim 33 holds for all x′ = ϕ(C ′, t) that
triggers a recursive call earlier than x in Algorithm 5. If u /∈ vbl(C), then by the while
loop condition Line 10, there must exist some x′ = ϕ(C ′, t) ∈ W such that x′ triggers
a recursive call earlier than x, and vbl(C) ∩ vbl(C ′) ̸= ∅. By the inductive hypothesis,
there exists a path p0 . . . pℓ in G[W ] such that p0 ∈W ′ and pℓ = x′. Since the maximum
and minimum of {predw(t) : w ∈ vbl(C) ∩M} ∪ {predw(t) : w ∈ vbl(C ′) ∩M} differ by
at most m− 1 < 2m, we get that x′ ∼ x in G. Therefore we can extend the path p0 . . . pℓ

with pℓ+1 = x. This finishes the inductive step.
Inductive step: t1 < t.
Now suppose x = ϕ(C, t1) with t1 < t. By the inductive hypothesis, we can assume
Claim 33 for all t0 ∈ {t1 + 1, . . . , t}. Let u1 = ui(t1).
Suppose first that u1 ∈ vbl(C). Since t1 < t, there must exist t0 ∈ {t1 + 1, . . . , t} and
C ′ ∈ C such that ϕ(C ′, t0) triggers Glauber(t1), with u1 ∈ vbl(C ′) and t1 = predu1(t0). Let
y = ϕ(C ′, t0). Clearly vbl(C)∩vbl(C ′) ̸= ∅. Since t0−m < t1 < t0, we also know that the
maximum and minimum of {predw(t1) : w ∈ vbl(C)∩M}∪{predw(t0) : w ∈ vbl(C ′)∩M}
differ by at most 2m− 1 < 2m. Thus we have x ∼ y in G. By the inductive hypothesis
for t0, there exists a path p0 . . . pℓ in G[W ] such that p0 ∈W ′ and pℓ = y. Since x ∼ y in
G, we can extend the path by pℓ+1 = x.
Inductively, suppose u1 /∈ vbl(C1), and Claim 33 holds for all t0 ∈ {t1 + 1, . . . , t} and
for all x′ = (C ′, t1) that triggers a recursive call earlier than x. Then there must exist
some x′ = ϕ(C ′, t1) ∈ W such that x′ triggers a recursive call earlier than x, and
vbl(C) ∩ vbl(C ′) ̸= ∅. By the inductive hypothesis, there exists a path p0 . . . pℓ ∈ G[W ]
such that p0 ∈ W ′ and pℓ = x′. Since the maximum and minimum of {predw(t1) : w ∈
vbl(C)∩M}∪ {predw(t1) : w ∈ vbl(C ′)∩M} differ by at most m− 1 < 2m, we get that
x′ ∼ x in G. Thus we can extend the path by pℓ+1 = x. This finishes the inductive step.

◁

▷ Claim 34. For all x = ϕ(C, t′) ∈W and w ∈ vbl(C)∩M, the function LB-Sample(predw(t′))
does not satisfy C.

Proof. This directly follows from Lines 12–14 of Algorithm 5. Since ϕ(C, t′) triggers a
recursion in Line 14, by the condition in Line 12, for all marked variables w ∈ vbl(C) ∩M,
the function LB-Sample(predw(t′)) does not satisfy C. ◁

With these claims, we can now prove the proposition. Fix t ≤ 0 and η ≥ 1. Assume
|R| ≥ 24dk4(η + 1), which by Claim 30 implies that |W | ≥ 6dk2(η + 1). By Claim 33, we
know that W ∩W ′ ̸= ∅; by Claim 31, G has maximum degree ≤ 6dk2− 1. Thus, by a greedy
selection, we can find a 2-tree Z ⊆W containing some element in W ′ such that |Z| = η + 1.

Fix any 2-tree Z ⊆ V (G) such that |Z| = η+1. For every x = ϕ(C, t′) ∈ Z, if x ∈W , then
we know from Claim 34 that LB-Sample(predw(t′)) does not satisfy C for all w ∈ vbl(C)∩M.
Since the latter happens with probability at most (1− θ)αk, we have

P[x ∈W ] ≤ (1− θ)αk.

SAT 2025
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Since Z is a 2-tree, we know that for every two x = ϕ(C1, t1), y = ϕ(C2, t2) ∈ Z, we have
{predw(t1) : w ∈ vbl(C1) ∩M} ∩ {predw(t2) : w ∈ vbl(C2) ∩M} = ∅ (as otherwise C1 and
C2 would share a variable, and the union of these two sets would span an interval of size at
most 2(m− 1) + 1 = 2m− 1, meaning that x ∼ y in G, which contradicts the fact that Z is
an independent set in G). In particular, the sets

{{predw(t′) : w ∈ vbl(C) ∩M} : ϕ(C, t′) ∈ Z}

are disjoint. Thus, for every fixed 2-tree |Z| = η + 1 in V (G), we have

P[Z ⊆W ] ≤ P[x ∈W for all x ∈ Z] ≤ (1− θ)αkη.

Let T denote the set of 2-trees of V (G) of size η + 1 that intersects with W ′. Since
|W ′| ≤ d and G has maximum degree at most 6k2d− 1, by Observation 28, we have

|T | ≤ d · (e(6k2d)2)η

2 ≤ (36ed3k4)η.

Thus, we have

P[|W | ≥ 6dk2(η + 1)] ≤
∑
Z∈T

P[Z ⊆W ] ≤ (36ed3k4)η(1− θ)αkη ≤ 2−η,

where the last step used the assumption that θ ≥ 0.4 and 36ed3k4 · 0.6αk ≤ 1/2. This implies
that

P[|R| ≥ 24dk4(η + 1)] ≤ P[|W | ≥ 6dk2(η + 1)] ≤ 2−η. ◀

Setting η = (3 + c) log n, we get the following correctness statement on Algorithm 5.

▶ Corollary 35. For every t ≤ 0, we have

P[Glauber(t) ̸= Xt(u)]
25
≤ P[|R| > 80dk4 log n] ≤ P[|R| > 24dk4((3+c) log n+1)]

29
≤ n−(3+c).

In particular, for every u ∈M, we have

P[Glauber(predu(0)) ̸= X0(u)] = P[Glauber(predu(0)) ̸= Xpredu(0)(u)] ≤ n−(3+c).

Taking a union bound over all u ∈M, we get that

P[(MarginSample(u))u∈M ̸= X0] ≤ n−(2+c).

Since we have picked T in Algorithm 3 sufficiently large so that dTV(X0, ν) ≤ n−(2+c), we
get that the joint output (MarginSample(u))u∈M satisfies dTV((MarginSample(u))u∈M, ν) ≤
n−c, proving Proposition 20.

B Efficiency of Algorithm 5

We now move on to show the efficiency of Glauber(t) for all t ≤ 0. Observe that for every
r ≥ 48dk4, by Proposition 29, we have

P[|R| ≥ r] ≤ 2− r
48dk4 . (4)

Moreover, we terminate Glauber(t) once we reach |R| ≥ 80dk4 log n. We will use these
information to give an upper bound on the expected cost of Glauber(t).

We start by upper bounding the size of the final sets V ′ and Λ in Algorithm 5 in terms
of |R|.
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▶ Lemma 36. The V ′ and Λ in Line 19 of Algorithm 5 satisfy

|Λ| ≤ kd|V ′| ≤ 2kd2|R|/α.

Proof. By Line 10 of Algorithm 5, we know that for all u ∈ Λ, there exists clause C ∈ C
such that u ∈ vbl(C) and vbl(C) ∩ V ′ ̸= ∅. This shows that |Λ| ≤ kd|V ′|. Observe that
V ′ contains at least |V ′|/(∆ + 1) ≥ |V ′|/(2dk) clauses with disjoint variable sets. Since
every marked variable in the clauses added to V ′ have gone through at least one round of
LB-Sample (per Line 5 and Line 12), we get that |R| ≥ αk · |V ′|/(2dk) = α|V ′|/(2d). ◀

To upper bound the expected cost of Line 19, we further need the result of He–Wang–
Yin [18] on the existence of a “Bernoulli factory” algorithm BF(·) such that for every locally
uniform CNF and variable v, the Bernoulli factory efficiently draws a {0, 1}-random variable
according to the padding distribution of v.

▶ Proposition 37 ([18, Lemma 3.10 and Appendix A]). Let Ψ = (VΨ, CΨ) be a k-CNF, σ be a
feasible partial assignment of Ψ, and Ψσ = (V σ

Ψ , Cσ
Ψ) be the reduced CNF (see Definition 5).

Suppose we have

P[¬C | σ] ≤ ζ for every C ∈ Cσ
Ψ.

Then there exists an algorithm BF(·) such that for every v ∈ V σ,
BF(v) with probability 1 returns ξ ∼ (µΨ)pad,σ

v ;
BF(v) has expected cost O(k9d6|Cσ

Ψ|(1− eζ)−|Cσ
Ψ|).

We remark that in Algorithm 5, our partial assignment σΛ is always supported on the
marked variables. Since every clause has at least αk unmarked variables that are not assigned
by σΛ, we get that P[¬C | σΛ] ≤ 2−αk for every C. Thus when applying Proposition 37, we
will take ζ = 2−αk.

We can now give an upper bound on the expected cost of Algorithm 5, proving Lemma 21.

Proof of Lemma 21. Let A be the set of all t′ such that Glauber(t′) is executed at least once
as subroutine of Glauber(t). Since we run LB-Sample(t′) at the beginning (Line 7) of each
round Glauber(t′), we know that |A| ≤ |R|.

Observe that for every t′, if Glauber(t′) has been computed once, then we will permanently
assign M(t′) = Glauber(t′) ∈ {0, 1}, and later executions of Glauber(t′) will terminate at
Line 4. Thus, it suffices to upper bound the cost of every first execution of Glauber(t′) before
entering another Glauber(t′′). Multiplying this by |A| would give an upper bound on the cost
of Glauber(t).

Suppose we are at the first time of executing Glauber(t′) for some t′. We first estimate
the cost of the while loop in Lines 10–18, which is a constant multiple of the number of
executions of Line 14 and Line 18. Note that every time we execute Line 14 or Line 18, some
w is added to Λ due to a clause C chosen in Line 11, with w ∈ vbl(C). Moreover, each clause
C can be chosen in Line 11 at most once. Thus, the number of pairs (w, C) that correspond
to an execution of Line 14 or Line 18 is at most d|Λ|. Consequently, the cost of the while
loop in Lines 10–18 is O(d|Λ|) = O(kd3|R|/α).

We now estimate the cost of Line 19. Observe that in Line 19, we can apply the
Bernoulli factory in Proposition 37 to compute the padding distribution (νΨ)pad,σΛ

u . Since the
connected component Ψ in Line 19 has at most d|V ′| ≤ 2d2|R|/α clauses, by Proposition 37,
the expected cost of Line 19 is at most

O(k9d8|R|/α(1− e2−αk)−2d2|R|/α).
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Let Rmax = 80dk4 log n. Combining the above and applying Equation (4), we get that the
expected cost of Glauber(t) is at most

E[|A| · O(kd3|R|/α + k9d8|R|/α(1 − e2−αk)−2d2|R|/α)]

≤ E[|R| · O(kd3|R|/α + k9d8|R|/α(1 − e2−αk)−2d2|R|/α)]

≤
Rmax∑
r=0

P[|R| ≥ r] · r · O(kd3r/α + k9d8r/α(1 − e2−αk)−2d2r/α)

≤
Rmax∑
r=0

O(2− r
48dk4 · r · kd3r/α + k9d8r/α(1 − e2−αk)−2d2r/α)

≤
Rmax∑
r=0

O

(
2− r

48dk4 · r ·
(

kd3r

α
+ k9d8r

α
· e

2d2r/α

2αk

))
= O(k9d8R2

max/α) = O(k17d10 log2 n/α),

where in the last step we used the information that

2− 1
48dk4 · e

2d2/α

2(1−α)k ≤ 0.9 =⇒
Rmax∑
r=0

(
2− 1

48dk4 · e
2d2/α

2αk

)r

= O(1). ◀
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