Core-Guided Linear Programming-Based Maximum
Satisfiability

George Katsirelos &
Université Paris-Saclay, AgroParisTech, INRAE, UMR MIA Paris-Saclay, 91120, Palaiseau, France

—— Abstract
The core-guided algorithm OLL is the basis of some of the most successful algorithms for MaxSAT
in recent evaluations. It works by iteratively finding cores of the formula and transforming it so
that it exhibits a higher lower bound. It has recently been shown to implicitly discover cores of
the original formula, as well as a compact representation of its reasoning within a linear program.
In this paper, we use and extend these results to design a practical MaxSAT solver. We show an
explicit linear program which matches and usually exceeds the bound computed by OLL. We show
that OLL can be restated as an algorithm that explicitly computes a feasible dual solution of this
linear program. This restated algorithm naturally works with an arbitrary dual solution. It can
in fact be used to improve any LP representation of the MaxSAT instance. This presents a large
increase of the potential design space for such algorithms. We describe some potential improvements
from this insight and show that an implementation outperforms the state of the art algorithms on
the set of instances from the latest MaxSAT evaluation.

2012 ACM Subject Classification Theory of computation — Discrete optimization; Mathematics
of computing — Combinatorial optimization; Theory of computation — Logic; Mathematics of
computing — Solvers

Keywords and phrases maximum satisfiability, core-guided solvers, linear programming
Digital Object Identifier 10.4230/LIPIcs.SAT.2025.17

Supplementary Material Software (Source Code): https://github.com/gkatsi/OLLLP
archived at swh:1:dir:85dd891d9£d590dabd0fb6c2900c1877e0b17b81

Funding Part of this work was funded by the AI Interdisciplinary Institute ANITI. ANITT is
funded by the French “Investing for the Future — PIA3” program under the Grant agreement
n°ANR-23-IACL-0002.

1 Introduction

MaxSAT is the optimization variant of the Boolean propositional satisfiability problem. The
performance of MaxSAT solvers has increased significantly in the last few years, as evidenced
by the results of recent MaxSAT evaluations. There exist two main classes of algorithms:
implicit hitting set (IHS) solvers [9, 11, 10, 4, 5] and core-guided solvers [14, 3, 21, 20, 19, 15].
However, despite the improvement in performance over the last few years, there are few new
algorithms. The main core-guided algorithm, OLL [1, 19], was introduced more than 10
years ago.

In this paper, we do not quite propose a completely different algorithm. We propose a
new algorithm, OL3P, which is quite similar to OLL. However, it uses a linear program
as its main reasoning engine for bounds. The flexibility of the linear program allows us to
ignore the subtleties of figuring out a correct reformulation and rely on an LP solver to do it.
This means that the OL3P algorithm can accommodate constraints coming from different
contexts, which opens up possibilities for further algorithmic development. Specifically, our
contributions are:

We show an LP that can capture the lower bound computed by OLL. More formally, it

admits a dual solution which gives the same lower bound. While the existence of this

was known [17], we give here an explicit and compact LP.

© George Katsirelos;
37 licensed under Creative Commons License CC-BY 4.0

28th International Conference on Theory and Applications of Satisfiability Testing (SAT 2025).
Editors: Jeremias Berg and Jakob Nordstréom; Article No. 17; pp. 17:1-17:17

\\v Leibniz International Proceedings in Informatics
LIPICS Schloss Dagstuhl — Leibniz-Zentrum fiir Informatik, Dagstuhl Publishing, Germany

mailto:gkatsi@gmail.com
https://orcid.org/0000-0002-3727-6698
https://doi.org/10.4230/LIPIcs.SAT.2025.17
https://github.com/gkatsi/OLLLP
https://archive.softwareheritage.org/swh:1:dir:85dd891d9fd590dabd0fb6c2900c1877e0b17b81;origin=https://github.com/gkatsi/OLLLP;visit=swh:1:snp:5f7c9bea2c1a7f6396b1adc3b3c66328ff573131;anchor=swh:1:rev:a0596c5f513bef2a3f041de993b98267c5e16459
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics
https://www.dagstuhl.de

17:2

Core-Guided Linear Programming-Based Maximum Satisfiability

We discuss the necessary condition for using an LP to compute bounds in this algorithmic
framework, namely that the LP is in augmented form.

We discuss the subtleties and surprises of using LP reduced costs to reformulate MaxSAT
instances.

We show how to integrate a new source of constraints, by seeding the LP with clauses
from the original formula.

We integrate all these into a solver that clearly outperforms the previous state of the art
of core-guided MaxSAT solving,.

2 Background

A propositional formula F' in conjunctive normal form (CNF) is a conjunction of clauses,
where each clause c is a disjunction of literals. A literal is either a propositional variable
or its negation. We write vars(c) for the set of variables whose literals appear in a clause ¢
and vars(F') for the union of vars(c) over all the clauses of F. Given an assignment A of
variables to true or false, a clause c is satisfied by an assignment if it maps at least one of its
literals to true, which we write A = c¢. Otherwise it is falsified. The CNFSAT (or simply
SAT) problem asks to determine whether there exists an assignment such that all clauses are
satisfied.

The Weighted Partial MaxSAT (WPMS) problem is an extension of SAT to optimization.
A WPMS instance is a tuple (H, S, w) where H is a set of hard clauses, S is a set of soft
clauses and w : S — R3¢ is a weight function mapping soft clauses to non-negative weights.
The cost of an assignment A, written w(A) is infinite if it falsifies any of the hard clauses,
otherwise it is the sum of the weights of the soft clauses it falsifies: ZCQS’A%Cw(C). The
objective of WPMS is to find an assignment whose cost is finite and minimum among all
assignments.

Equivalently, we can define WPMS as a pair (H,w), where H is a set of hard clauses
and w is a function w : vars(H) — Rx>¢. Alternatively, we can write w as an n-dimensional
vector, where n is the number of variables, so that we can write the WPMS problem as

minwTz

s.t.
xEH

This restatement of WPMS is consistent with recent work [17, 16]. Moreover, it is
equivalent to the formulation with soft clauses. To convert from soft clauses to this formulation,
we can reify each soft clause using so-called blocking variables, i.e., introduce a fresh variable
b <= c for each soft clause c € S and set the cost of b to be the weight of c¢. This is what
most WPMS solvers do anyway in order to use assumption-based SAT solvers.

A core C of a WPMS is a subset of its soft clauses such that the CNF formula C'U H is
unsatisfiable. In terms of WPMS solving, this means that at least one of the soft clauses in
C must be satisfied. In our preferred formulation of WPMS, where an instance is (H,w), a
core is a set of literals such that at least one of these literals must be true in any feasible
solution, i.e., any solution that satisfies H. In other words, a core is a positive clause over
blocking variables.

As we shall see later, it is useful to ignore the correspondence between literals of blocking
variables and soft clauses. Indeed, the “cores” extracted by OL3P need not contain exclusively
positive literals of blocking variables. In fact, both of these conditions are violated: the
clauses extracted by OL3P may contain literals of any sign; moreover, those may be literals

G. Katsirelos

of blocking variables, of sum variables !, and even of variables of the original formula that
are not blocking variables. Despite the difference with standard terminology, we use the
term core throughout, as it is the main piece of information given by the SAT solver to the
MaxSAT algorithm. We emphasize however, that in our setting a core is simply a clause or,
equivalently, a linear inequality.

2.1 OLL

OLL is an algorithm for solving MaxSAT that belongs to a class of iterative SAT-based
algorithms known as core-guided. It was introduced by Andres et al. [1] in the context of ASP
and adapted to MaxSAT by Morgado et al. [19]. Its pseudocode is shown in Algorithm 1.

OLL optimistically tries to find a solution with 0 cost at each iteration, by asking a
SAT solver to solve the CNF instance that results from setting all literals in the objective
function to false (line 5). If that succeeds, this is optimal and it returns in line 7. If it fails, it
extracts a core from that formula and uses it to increase the lower bound by ¢?, the minimum
cost of any variable in the core (line 8). It then reformulates the instance in line 9 so that
each feasible assignment of F has its cost reduced by exactly ¢! in F*t!. The reformulation
involves introducing new variables in the objective function, modifying the costs of existing
variables, as well as building a subformula f¢; ; which logically defines the new variables. As
long as the reformulation step is correct, OLL increases the lower bound at each iteration,
hence it is guaranteed to eventually reach the true optimum and terminate.

In order to avoid confusion between cores of the original formula and cores of the
reformulated formulas - which can be different - we follow [22] and refer to cores of HU f&; ;
as metas.

Algorithm 1 Core-guided MaxSAT.
1 Procedure Core-Guided(F = (H,w))

2 b=0

3 forL ="

4 for iteration i =1,... do

5 (a,m*) = solve((H U f&11) lw=0)

6 if a # () then

7 L return a

8 Ib + Ib+ min{w'=1(j) | z; € m'}

9 (forL,w') = Reformulate(f5, ,w' =, m?)

We complete the description of OLL with a description of the reformulation step. Let the
meta at iteration i be m’ = {«},2%,...,2},}. By the definition of F* |,,—, all literals that
appear in m’ have positive cost. We abuse notation and write w’~1(m?) = min, ¢, w*~1(z)
for the minimum cost among the literals that appear in m?. OLL increases the lower bound
by w*~'(m?') and introduces sum variables, defined as o} <= > . . >j for 2 <j <k
Finally, it reduces by w®~!(m?) the cost of all literals in m® and sets to w~1(m?) the cost of
the positive literals of all 03.. Formally,

1 Sum variables are introduced by OLL and will be explained in section 2.1

17:3

SAT 2025

17:4

Core-Guided Linear Programming-Based Maximum Satisfiability

w(z) — w1 (m?) if z €m’
w'(z) = uﬂifl(mi) if z € {0},..., 00}
w1 (x) otherwise

To see why this is a reformulation, observe that we can combine the fact that > .2 >1
with the definition of the sum variables to get

ki
Zl’ = 1+Zo§, (1)
=2

TEM?

because when d of the k' variables in m® are true, exactly the d — 1 sum variables 0}, ..., 0},
will be true, by their definition. To complete the reformulation, we multiply equation (1)
by w*~1(m?) and replace its left-hand side in w'~! by its right hand side, which gives w'.
Note that this differs from the usual proof of correctness of OLL, but is useful to better
understand the new algorithm OL>P.

2.2 Linear programming

Linear programs are problems of the form minc’z : Ax = b Az € RZ,, where z is a vector
of n real (rational) valued variables, ¢ € R, b € R™ and A € R™*". The problem can be
solved in polynomial time. We restrict our attention here to the case where x € [0, 1]™.

This form of linear programs, where all constraints are equalities, is called the augmented
form. It is possible to convert any linear program which includes inequalities by introducing
slack variables. For example the constraint a”z > b becomes [a — 1] [xs] = b, where s is a
fresh variable and is the slack variable of this constraint.

For each linear program P (called the primal), we can define a dual problem D(P), which
is maxbTy : ATy < c Ay € R™, where y is a vector of m real variables, called the dual
variables or dual multipliers. An important theorem in linear programming is strong duality:
the optima of P and D(P) are exactly the same. In fact, for every feasible solution y of
D(P), its cost is a lower bound on the optimum of P.

There exists a correspondence between variables of the primal and constraints of the
dual. Indeed, the i*" column of P contains the coefficients of the " primal variable and also
describes the i dual constraint. From each dual solution y, we can define the reduced cost
of each primal variable, rc¢¥(z). This is the slack of the corresponding dual constraint, i.e.,
¢; — ATy. The theorem of complementary slackness states that for every pair of optimal
solutions z,y, it holds x;(c; — ATy) = 0, i.e., if the reduced cost of x is non-zero, then z must
be 0 in the primal and vice versa.

Reduced costs are used typically for reduced cost fixzing when the linear program is a
relaxation of a discrete optimization problem. For a given dual solution y, ¢y + ¢; — ATy is
a lower bound on the cost of any solution that assigns z; a non-zero value. If that matches
or exceeds the cost of an incumbent solution of the discrete problem, we can fix x; to 0. By
convention, if a variable is fixed to its 1 in the primal, its reduced cost is non-positive and
ey — ¢; + ATy is a lower bound on the cost of any solution that assigns ; less than 1 2.

2 Negative reduced costs are not true reduced costs. The would imply negative slack of the corresponding
dual constraint, which means a non-feasible dual solution. Instead, they are the negated reduced cost of
a slack variable and LP solvers use this convention to avoid exposing this slack variable.

G. Katsirelos

In the case of augmented form linear programs, we can make a stronger statement on
reduced costs: for any feasible y, the function b7y + (rc¥)Tz is equal to ¢’z in every feasible
point of the primal. We can therefore reformulate P using the reduced costs. We give an
elementary proof of this fact below.

» Theorem 1. Let P be a linear program min ¢’z : Az = b. For a given dual feasible solution
y, let P’ =minbTy+ (rc¥)Tw : Az =b. Then P = P', i.e., they have identical sets of feasible
solutions and each feasible solution has the same cost in P and P’.

Proof. Since the constraints of both problems are identical, we only need to show that the
objectives are identical, subject only to Az = b.

bTy + (TCy)Tx = bTy =+ (CT — ATy)Tx = CTJ:‘ + bTy — yTA.T (2)
Finally, since Az = b, we have y" Az = 37b = bTy, so b7y + (rc")Tz = 'z, as
required. <

» Example 2. Consider the following pair of primal and dual LPs:

(Primal) (Dual)

minx; + x2 max y
s.t.

1+ a2 >1 y=>0

1 >0

T2 >0 y<l1

The optimum of this is 1, witnessed by the primal solution z; = 1, zo = 0 and the dual
solution y = 1. The reduced cost of both z; and z2 under this dual solution is 0, since the
corresponding dual constraint for both is y < 1, which has slack 0. Suppose that we try to
use reduced costs as described in theorem 1. This gives the objective function min 1, which
is constant. This is not equal to the objective minx; + x2 at all points. For example, the
feasible primal assignment x; = x5 = 1 has cost 2 under the original objective. Therefore,
the scheme of theorem 1 is not a reformulation scheme for LPs not in augmented form.

Suppose now that we convert this LP to augmented form by adding the slack variable s
in the sole constraint:

(Primal) (Dual)

minxq + o max y
s.t.

1 +ax9—5=1

1 >0 y<1

T2 >0 y<1

s>0 -y <0

This has the same optimum, witnessed by the primal solution z1 = 1,22 = 0,s =0 and
the dual solution y = 1. The reduced costs of x1 and zo are still 0, but the reduced cost of s
is 1. Therefore the scheme of theorem 1 gives the objective min 1 4 s, which we can confirm
preserves the costs of all feasible primal assignments. Indeed, the assignment z1 = zo = 1
above corresponds to the assignment with 1 = x93 = s = 1 in the augmented LP. This
evaluates to 2 under the new objective, as it does under the original objective. J

17:5

SAT 2025

17:6

Core-Guided Linear Programming-Based Maximum Satisfiability

3 OLP

In this section, we describe OL3P. First, we note that it has been previously shown [17] that
at iteration 4 of a run of OLL, we can construct an LP from the metas m!, ..., m?, which is
logically equivalent to f&;; and whose optimum is at least the lower bound computed by
OLL. However, that LP is only given implicitly, as the local polytope of a weighted CSP with
desirable properties. Here, we give an explicit construction for such an LP. It has the same
size asymptotically - linear in the size of the meta - but it is smaller. A similar construction
has been proposed by Berg et al. in the context of proof logging for OLL [6].

A crucial requirement is for the LP to be in augmented form, i.e., with equalities only, so
that dual solutions give reformulations. Our starting point is equation (1):

ki
LPor(m?) = dx=1+> o (3)
j=2

zEM?
U 03—03»“—6;:0 Vje[2, k" —1] (4)
U 621' = 07;;61' (5)

We name y,, the dual multipliers corresponding to constraint (3) for m/.

» Theorem 3. For any evecution of OLL, at its it" iteration, there exists an LP which (a)
has size linear in f&;;, (b) is logically equivalent to f&;;, (¢) has optimum that is at least
as great as the lower bound computed by OLL, (d) admits a dual feasible solution such that
the reduced costs match the objective function computed by OLL.

Proof. The LP is given by constraints (3)—(5).

(a) is obvious, as the total number of non-zeros is 4k; — 3: each of the k; literals of m’
appears once, each of the k¥ — 1 sum variables appears twice, and each of the k? — 1 equality
variables appears once.

(b) For (3), the fact that it follows from ff,;; was explained in section 2. The constraints
(4)-(5) encode that o} > o’ ,,. The variable ¢/ is a slack variable that also encodes the fact
that > ...« = j. Indeed, if e?- =1 then o = 1 and 0§-+1 = 0, so the sum is exactly j. If

. . J
0, then oj = 0}, so the sum is either strictly less or strictly greater than j. The last

et =
ci)nstraint (5)jexists only for uniformity. The proof that these entail the SAT encoding of
the sum constraints is similar.

(c), (d). Set the dual variable y¢,,. for each iteration i to w*~!(m?) and every other
dual variable to 0. We show that this has the required properties by induction. For the
first meta, m!, w®(m?!) is at most equal to w®(z) for the original variables x € m! and they

1 Hence the dual constraint

appear only in a single new constraint, constraint (3) for m
of each variable z € m! is yl,,,, < w®(z), which is satisfied. Moreover, its reduced cost
under this dual assignment is w°(z) — w®(m;). For the sum variables the dual constraint
Ylum < wP(x) < 0, which is satisfied since w®(m;) is positive and the reduced cost is

exactly w®(m;), as required.

is —

For the inductive step, at iteration ¢ observe that the only change made to the dual
with the addition of the new constraint is that its dual variable y¢,,. is added to the dual
constraint of each x € m’. By the inductive hypothesis, these constraints have slack equal
to the cost assigned to the corresponding primal variables by OLL. Therefore, by setting
Yeum = wH(m?), we see with the same reasoning as above that all dual constraints are
satisfied and the reduced costs are set as OLL. <

G. Katsirelos

» Example 4. Suppose that OLL runs on an instance with objective function

min b5z + 4xo + 33 + 224 + x5

and that it finds the core x1 + x5 + 23 > 1 at iteration 1 and the meta 0% + a0ty >1

at iteration 2. Then the LP after iteration 1 is

s.t.

(Primal)
min 5z + 4x5 + 3x3 + 222 + x5

271—‘1-1'2—‘1-1'3—0%—0;):1
0y —o0k—ed=0

1 >0

zo >0

x3 >0

0%20

0:1),20

And after iteration 2 it will be

(Primal)
min 5z + 45 + 3x3 + 222 + x5

s.t.

:171—‘1-1‘2—‘1-.1’3—0%—0%:1
0§+12+m4—0370§:1
0y — o3 —e3 =0
03— 05 —e3=0

$1ZO

1‘220

1‘320

0%20

03 >0

2

05 >0

2>

03 >0

(Dual)

1
maxYeym

<5

1
Ysum =

Ysum < 4

<3

1
Ysum >
1
~ Ysum <0

<0

1
~ Ysum

(Dual)

1 2
MaxXYeym + Ysum

Yaum <5

<3

1
Ysum >
't + 2 <0

Ysum Ysum =

- yium <0

- ygum <0

- ygum <0

All variables in the primal are non-negative, but we only show above those that have a
corresponding dual constraint. In both cases, we have in the same line a primal constraint
and the bounds of its dual variable (unbounded here because the primal constraints are
equalities), and the bounds of primal variable with the corresponding dual constraints. We
can confirm that the dual solution y?,,, = 3,42, = 1 is feasible and the reduced costs of

the variables match what is computed by OLL.

_I

One consequence of theorem 3 and theorem 1 is that we can change the reformulation
step of OLL so that it uses an optimal dual solution to compute a reformulation, rather
than that which is statically computed. Indeed, the reformulation step can be discarded
altogether and the algorithm can use reduced costs directly.

17:7

SAT 2025

17:8

Core-Guided Linear Programming-Based Maximum Satisfiability

Algorithm 2 OL*P.

1 Procedure OL3P (F = (H,w))

2 =0

3 forL =10

4 LP° = min(w®) Tz

5 for iteration i =1,... do

6 | | (am?) = solve((H U f574) lreo)
7 if a # () then

8 L return a

9 féLL = f(i)}}L U CNF(O; ¢> Zzemi Z .7) UCNF(@; — Ezemi = -7)
10 LP? :LP171ULPOLL(TTLZ)
11 | b= opt(LP?)

We show the pseudocode for this algorithm, which we call OL3P, in Algorithm 2. This
follows the outline of OLL. It starts with lower bound zero and initializes the auxiliary
formula f3;; and corresponding LP LPY to the empty formula. Then, in each iteration of
the loop in lines 5-11, it tests satisfiability of the formula (H U f5;%) |re=o in line 6. This
formula sets to false all variables which have non-zero reduced cost. In the first iteration,
models of this formula correspond to feasible assignments of (H,w) that have cost 0 overall.
In subsequent iterations, they correspond to assignments whose cost matches the current
lower bound. If that formula is satisfiable, it reports optimality and exits in line 8. Otherwise,
the SAT solver gives a meta m’. In line 9, it adds to the subformula gfL the standard
OLL constraints which introduce variables 0? to count how many variables of m’ are true, so
that o} is true if at least j variables of m' are true. It additionally introduces the variables
required by OL3P, where e;’- is true if exactly j variables of m® are true. It also adds the
corresponding linear constraints (3)-(5) to the LP in line 10. In constrast to OLL, it does
not update the lower bound using the minimum cost of variables in m?, nor does it update
variable costs. Instead, it resolves the LP at line 11 to get an updated bound, as well as

updated reduced costs for the next iteration.
» Theorem 5. OL3P is sound and complete

Proof. For soundness, note that lower bounds are derived from the solution of an LP, which
is itself built using constraints given by a SAT solver. Hence, all lower bounds are correct.

For completeness, note that since the LP is in augmented form, reduced costs define an
equivalent objective. Hence, if the SAT solver determines that the instance (H U f&,) |re=0
is satisfiable, i.e., it is satisfiable using only literals with 0 reduced cost, the cost of that
assignment is exactly the optimum of the LP. Finally, since the lower bound increases at
each iteration and the optimum is finite, the algorithm eventually exits with an optimum
solution. <

While the transition from precomputed reformulation to one driven by LP dual solutions
is straightforward, we need to highlight some subtlety in the notation. The instance given
to the SAT solver is (H U f&;") |re=0, which does not require that literals are positive. If
a variable is fixed to 1 and has negative reduced cost, it means that it must be true in
solutions. While this is not generally problematic with our formulation of MaxSAT, it is
different when solving MaxSAT instances in the WCNF format. Specifically, if this happens

G. Katsirelos

for a blocking variable, we require that the clause be falsified, which means that we must

encode full reification, not just ¢ = b, as is typically done to improve performance.

Similarly, if this happens for a sum variable 0?, it is required that the sum is at least j.

» Example 6. Suppose OL3P is working on an instance with objective
min 2x1 4+ 3z + 4x3

and it has discovered the constraint x; + x5 + x3 > 2. The usual OLL reformulation
would use this constraint to increase the lower bound to 4. However, we can see that there is
no way to make two of these variables true and pay any less than 5. Indeed, the LP solver
will find a dual solution in the reduced cost of x; is -2. This means that z; must be true. If
it is false, the true variables must be zo and x3, which have joint cost 7.

Now suppose that x1, zs, x3 are blocking variables for soft clauses. If we set x; to false
but the clause is not fully reified, the SAT solver can discover a solution that satisfies the
clause of x1, nevertheless sets x1 to true, and its cost is higher than the bound computed by
the LP. It will then terminate with LB < UB, which is erroneous behavior. 1

The encoding used by many OLL-based solvers, totalizers [15, 23], is not fully reified.

Instead, we have to use a different encoding, which can be made to encode full reification, in
this case an encoding based on sorting networks [12]. A feature of the totalizer encoding
is that it is incremental. For each meta m’, only the variable o} needs to be introduced
immediately, because any meta that contains o} can be transformed into one that contains
0%, as long as both have non-zero reduced cost. Therefore, practical implementations of OLL

only encode o;- 41 when the cost of oj- becomes zero. Sorting networks do not have this feature.

This is a drawback of our approach, because it means that the SAT solver needs to solve
a more complicated formula earlier than it would if it was possible to use an incremental
encoding.

3.1 Seeding the LP

MaxHS [9], an implicit hitting set solver, which encodes the optimization part of MaxSAT
as an integer linear program (ILP), makes extensive use of seeding. Given a MaxSAT formula
F = (H,w), before it enters the main loop, MAXHS looks for clauses ¢ € H which contain
only literals of variables that appear in the objective. Then, it adds c to the ILP representation
of the problem it solves. In addition, when there is a small number of additional variables
that must be added to the ILP in order to give it some clauses, MAXHS adds those variables
and corresponding clauses. While this may make the ILP larger and hence more difficult
to solve, it can also provide useful information which improves both the bounds and the
efficiency of the ILP solver.

We can do the same with OL3P. However, where MAXHS can simply add clauses to
the ILP problem it maintains, we are restricted to having LPs in augmented form. Hence,
when we find a clause ¢ that is suitable for seeding, we add LPorr(c) to LPY. The problem
with this is that, while in MAXHS adding a clause to the ILP is just a single constraint, in
OL3P we need to add 4 times as many non-zeros and introduce 2|c| — 1 new variables. This
encoding has to be mirrored on the SAT side. However, only a relatively small number of
constraints get a non-zero dual multiplier. Even if the LP and SAT solvers can determine
that all the extra variables that appear in constraints with 0 dual multiplier are redundant,
it still increases preprocessing time.

17:9

SAT 2025

17:10

Core-Guided Linear Programming-Based Maximum Satisfiability

We can do better than that by reconsidering the proof of theorem 1. We can see that it
is not necessary for the LP to have all constraints in the form Az = b. Indeed, suppose that
an LP has both equality constraints Az = b and inequality constraints A’z > b’ and suppose
that the dual multiplier of every constraint in A’ is 0. Then we can rewrite equation (2) as
follows:

by + (re!) e =Ty + (7 — ATy — A’Ty)Ta: (6)

But since y assigns 0 to the multiplier of every constraint in A’, we have A’ Ty =0and
the proof proceeds as before.

This allows us to make a simple but important optimization in seeding: when we initially
seed the LP, we can leave all clauses as inequality constraints. This reduces the total number
of variables in the LP and removes the need to add the corresponding sum constraints on the
SAT side. When we actually solve an LP and find an inequality with non-zero dual multiplier,
we can convert it to an equality, add all the necessary slack variables and corresponding sum
constraint on the SAT side, then reuse the same dual solution to continue execution. But
the number of constraints with non-zero dual multiplier is typically much smaller than the
entire set of constraints. For instances where we can seed many or even all the initial clauses
of the problem, this technique can represent significant savings.

3.2 Combining with implicit hitting set

Algorithm 2 is presented as extracting reduced cost-based metas at each iteration. As our
argument in section 3.1 showed, however, the correctness of the algorithm does not depend in
any way on the specific type of constraints. To this end, recall that when viewed as an ILP,
LPor1, encodes a hitting set problem over a set of cores derived from the metas discovered
so far [17]. Hence, if we solve this minimum hitting set problem, we get a new source of
cores. These cores are easier to discover than the metas discovered by the main OL3P loop.

Unfortunately, in early experiments, CPLEX proved to be very poor at solving ILPoy 1,
the integer version of LPprr,. Even in cases where the optimum of the LP matches the
optimum of the ILP, CPLEX struggles to find the optimum solution. Exploring this direction
further remains future work.

3.3 Reduced cost fixing

As mentioned earlier, reduced cost fixing is a technique that is widely used in ILP solving, as
well as in constraint programming [13] and in MaxHS [4]. In the literature of core-guided
solvers, the closest analogue is hardening [15]. In particular, if we use exactly the potentially
suboptimal dual solutions described previously [17] that simulate OLL, reduced cost fixing
is exactly equivalent to hardening. Here, we use an optimal solution, which means we can
potentially fix more variables. Note, however, that finding optimal reduced costs is itself a
non-trivial problem [8].

There are two considerations for using reduced cost fixing with OL3P. First, note that a
practical implementation of OL3P must implement techniques like stratification and weight-
aware core extraction (covered in later sections). These split the execution of the solver into
distinct phases of core (meta) extraction, each of which finishes with a satisfiable instance,
generating a solution, hence an upper bound. This enables reduced cost fixing in the first
place. However, it is now no longer necessary that the execution of the solver finishes with a
SAT instance.

G. Katsirelos

» Example 7. Suppose that a variable x always appears positively in every optimal solution
of an instance F'. Suppose further that we have already found an optimal solution of F' and
that the reduced cost of x is equal to its actual marginal cost. Then, x will be set to false by
reduced cost fixing. There are three possible outcomes from this: either the LP reports a
lower bound that exceeds the upper bound, the LP is infeasible, or the SAT solver reports
an empty conflict. While seemingly erroneous, these results are correct. We are looking for
a solution that improves on the optimum and we have pruned a literal that appears in all
optimum solutions. The system is unsatisfiable, so any inference is correct. J

A second consideration is that, knowing the specific relationship among the variables
0b, ..., 0}'&, we can compute better reduced costs. Consider o} for some i. When that is
true, it implies also 0%, therefore we incur the cost of the reduced cost of both o4 and 05. In
other words, the true marginal cost of o} is mc(04) > rc¥(ob) + rc¥(0%). This generalizes to
all indices of a sum. In preliminary experiments, we found that this technique can be very
effective in fixing a large number of sum variables, but ends up hindering the performance of
the SAT solver. We therefore do not use this technique in section 4.

3.4 Stratification

Stratification [15, 2] is a technique for improving solving of instances with diverse sets of
costs. It splits variables of the objective into buckets, such that the higher the bucket index,
the smaller the cost of the variable. It then solves the instance ignoring all but the first
bucket of variables, i.e., treating all the other variables as if they have reduced cost 0. When
that finishes, it adds variables from the next bucket and so on.

Stratification is that much more important for OL3P. The dual solution is not guaranteed
to yield integer reduced costs and in fact there typically exist many variables with very small
reduced cost. Without stratification, OL3P will be left to find metas with very small cost
and make slow progress towards the optimum.

In addition, we implement rank-based stratification. We define the rank of an original
variable of the instance to be rank(z) = 0. For all sum or equality variables corresponding to
meta m’, let r be the maximum rank among all # € m;. Then we set rank(o}) = rank(e}) =
r+1 for j € [2,k"]. For each cost-based bucket, we first extract all metas involving variables
of rank 0, then 1, and so on. Note that metas of rank 0 are cores of the original formula.

The reasoning for this heuristic is that the higher the rank of the variables in a core, the
harder it is for the SAT solver to discover, hence we want to extract the easier cores first.

4 Experimental evaluation

In this section, we describe the implementation details of a practical implementation of
OL3P and evaluate its performance.

4.1 Experimental Setup

We implemented OL?P as an alternative algorithm on top of MaxHS 3. We evaluate two
variants. The first, OL3P, implements the base algorithm OL3P shown in Algorithm 2,
with rank-based stratification, reduced cost fixing, weight aware cost extraction, and seeding

as described in section 3.1. The second, OL3P-S is the same but performs no seeding.

This variant is the closest to base OLL, as the only major difference is that it uses LP for

3 https://github.com/gkatsi/0LLLP

17:11

SAT 2025

https://github.com/gkatsi/OLLLP

17:12

Core-Guided Linear Programming-Based Maximum Satisfiability

reformulation. Both variants use IBM CPLEX version 22.1.1.0 to solve the LP and CaDiCalL
version “sc-2021” as a SAT solver. The ILP solver of CPLEX is not used. Additionally, both
variants use the MaxPRE preprocessor [18].

We compare against CashWMaxSAT version “DisjCom-S6” [23], the winner of the 2024
MaxSAT evaluation in the weighted track. By default, CashWMaxSAT uses a portfolio
strategy whereby, before launching OLL, it gives an instance to the SCIP ILP solver [7]
and lets it run for some time. Only if SCIP does not solve the instance, does it execute the
OLL algorithm. On the other hand, it does not use MaxPRE by default. We tested four
configurations of CashWMaxSAT, varying the use of this feature and the use of MaxPRE:
1. As run in the 2024 evaluation, where the SCIP timeout is 600 seconds
2. As above, but with the SCIP timeout set to 300 seconds to match the lower timeout we

used (see below)

3. With SCIP disabled, but using MaxPRE
4. Without either SCIP or MaxPRE

The latter two are more directly comparable to OL3P-S, as they are not portfolios. They
all use CaDiCalL version 2.0.0 as a SAT solver.

Finally, we compared against MaxHS, in its configuration from the 2022 MaxSAT
evaluation, which is the last time it participated, using IBM CPLEX version 22.1.1.0 to
solve the ILP and CaDiCal version “sc-2021” as a SAT solver. MaxHS is also a portfolio
solver. When the number of soft clauses is relatively small, it launches LSU instead. When
the problem is small or the number of variables that do not appear in soft clauses is small, it
delegates to CPLEX.

We compare the solvers on the instances from the weighted track of the 2024 MaxSAT
evaluation. We ran all solvers for 1800 seconds of CPU time on a cluster of 14-core Intel
Xeon E5-2695 v3 CPUs running at 2.30GHz.

4.2 Results

Surprisingly, the four different configurations of CashWMaxSAT varied little in their per-
formance, solving 405, 409, 410, and 406 instances, respectively. It is possible that the
shorter timeout compared to the evaluation made the portfolio ineffective. We retained
configurations 2 and 3, as those exhibiting the best performance.

We show in Figure 1 a plot of the relative performance of the four solvers. Comparing
only the core-guided solvers, we see that even though the solvers end at similar numbers of
solved instances, both variants of OL3P-S are better than CashWMaxSAT. We give a more
detailed breakdown of the number of instances solved by family in Table 1. We see that
most of the gains of OL3P come from the JUDGEMENT-AGGREGATION family. There, the
seeded LP computes a near optimum bound, then it takes just a few iterations to find the
optimum solution and prove optimality. In OL3P-S and CashWMaxSAT, this information is
not available and they make slow progress, ending with a significant optimality gap. In the
rest of the families, OL3P sometimes exhibits a small advantage, but not consistently.

We also give in Table 2 the average time needed to solve instances (ignoring instances
that timed out), as well as the PAR2 score of each solver (the sum of the runtimes over all
instances, with instances that timed out or ran out of memory counting as twice the timeout,
hence 3600 here). We see that both OL3P-S and OL3P have significantly reduced average
solving time and lower PAR2 compared to CashWMaxSAT. This means that, not only does
OL3P solve more instances, it does so more quickly on average. The CashWMaxSAT +SCIP
configuration does particularly poorly in these metrics because of the sequential portfolio it
uses: for every instance that SCIP is unable to solve, it pays a penalty of 300 seconds. These

G. Katsirelos

440
430
420
410
400
100 4
—¥— OLLLP-S 390 —¥— OLLLP-S
~#- OLLLP —#— OLLLP
—&— cash+maxpre —&— cash+maxpre
—— MaxHS —4— MaxHs
0 380
0 250 500 750 1000 1250 1500 1750 0 250 500 750 1000 1250 1500 1750

Figure 1 Results on exact weighted track of 2024 MaxSAT evaluation. On the right, zoomed in

on the y axis so that the differences are highlighted.

Time to Optimality: OLLLP vs OLLLP-S

Time to Optimality: OLLLP vs cash+maxpre

o y=x . e yx
v e ° e 00 0 000 » fow wes 0 0 © 00 @ o0 oo °
1750 7 1750
% .
// ° L s ’
» H
1500 # 1500 #
e o]
/ . /
/ . /
e ° L] s °
1250 7 ° 1250
g :
/ @ o /
@ e 2 . °
2 ° ° £
oo ° 5 %
E 1000 ./// g 1000 i °) 7
9 / 2 ’
Y . g % b °]
3 P + - .
° g
° 8 L/
750 S 750 . ° 7 °
°
.,) .
) / 8
e . 7 °
s
°
° °
°
° °
. .
° . °
. 2 . !
500 750 1000 1250 1500 1750 500 750 1000 1250 1500 1750
OLLLP Time (s) OLLLP Time (s)
Time to Optimality: OLLLP vs cash+SCIP Time to Optimality: OLLLP vs MaxHS
- //
o oo e . oo o o o e om o0 o ® ° ° -
1750 7
. %
® e
° ;
+ 1500 + .
% . %
// L] ~ ©
° s ; 1
12504° ° 7
L © ° ° L
€ . i o ° e]
E . 4 £ 1000 7
o ’) . o
s : :
/ P . !
/ ’ . B .
e . L] °
9 ° 9 . s
% . §
° g H
°
° © [
. . N °
° L
° °
o © ° . o .
o ° ; N
o d []
500 750 1000 1250 1500 1750 500 750 1000 1250 1500 1750

Figure 2 Scatter plots comparing OL®P against the other three solvers. Dots over the y = x line

OLLLP Time (s)

indicate that OL3P was faster.

OLLLP Time (s)

17:13

SAT 2025

17:14

Core-Guided Linear Programming-Based Maximum Satisfiability

Table 1 Number of instances solved by each solver per family.

Family # Cash Cash +SCIP MaxHS OL3P-S OL®P
abstraction-refinement 11 11 10 11 11 11
af-synthesis 15 8 4 12 3 4
auctions 15 14 15 15 14 14
BTBNSL 15 3 2 7 3 3
causal-discovery 15 14 14 12 14 14
correlation-clustering 15 9 9 9 9 9
CSG 10 10 10 10 10 10
css-refactoring 11 11 11 8 11 11
dalculus 15 15 13 15 15 15
decision-tree 15 0 0 0 0 0
drmx-cryptogen 15 15 11 15 15 13
frb 15 14 11 14 15 15
haplotyping-pedigrees 15 15 15 15 15 15
IMLIB 16 16 16 16 16 16
judgment-aggregation 15 1 12 14 0 10
lisbon-wedding 15 3 3 1 3 4
max-realizability 15 14 14 13 13 12
MaxSATQueriesinInterpretableClassifiers | 15 14 14 13 13 13
metro 15 15 15 15 15 15
MinimumWeightDominatingSetProblem 10 0 0 2 0 0
mpe 15 13 13 13 14 12
mpimcs 15 15 15 15 15 15
ParametricRBACMaintenance_mse20 15 0 0 0 3 3
planning 33 33 33 33 33 33
preference_ planning 12 12 12 12 12 12
protein__ins 12 12 12 12 12 12
pseudoBoolean 15 14 14 14 14 14
qcp 15 15 15 15 15 15
quantum-circuit 15 15 15 14 15 15
railway-transport 5 2 2 1 2 1
ramsey 4 2 2 1 2

relational-inference 8 4 5 6))
rna-alignment 15 10 10 15 15 15
setcover 6 0 3 3 0 0
spoth 15 13 10 11 11 11
switchingactivitymaximization 9 0 0 1 1 1
synplicate 40 15 15 16 15 15
tcp 15 13 13 13 13 14
timetabling 13 10 10 7 11 9
upgradeability 15 15 15 15 15 15
warehouses 8 3 8 8 5 8

observations are confirmed in the scatter plots in Figure 2. However, these plots additionally
show that no solver dominates another, as there exist several instances that are solved by
only one solver in each pair.

In comparison to MaxHS, all core-guided solvers perform worse overall. However, in some
families, like JUDGEMENT-AGGREGATION and WAREHOUSES, OL3P reduces the performance
gap. Additionally, the average solving time of both OL3P-S and OL3P is signficantly lower
in solved instances where it does prove optimality, although this is not sufficient to cover the
gap in PAR2 score caused by the difference in number of instances solved.

G. Katsirelos

Table 2 PAR2 scores.

Solver PAR2 score | avg time
MaxHS 576598 | 160.462 s
CashWMaxSAT 640293 | 148.031 s
CashWMaxSAT +SCIP 670618 | 213.735 s
OL3P-S 614729 | 94.2319 s
OL3P 586971 | 94.9198 s

4.3 LP overhead

A natural question for both OL3P-S and OL>P is on the overhead of LP solving, since we
replace the very cheap reformulation procedure of OLL by solving an LP. For OL?P-S, this
overhead is negligible. The solver spent just 16s solving the LP over the entire set of solved
instances. The maximum amount of time spent in the LP solver in any one instances was
just 1.15 s. In only 3 instances was the LP solver time more than 1 second, and they all were
instances where the total time to solve them was more than 300 seconds. For OL3P, the
overhead is much greater. Cumulatively, OL3P spent 8163.91 seconds in the LP solver (25
seconds per solved instance on average). The maximum amount of time in the LP solver
in any one instance was 1343 seconds. The JUDGEMENT-AGGREGATION instances consume
most of that time, with 4 of them spending more than 1000 seconds in the LP solver, each.
Part of the reason for this overhead is that the current implementation is not particularly
careful to be efficient with its use of the LP solver. These results suggest that more attention
should be given to this, especially if other sources of constraints are used to populate the LP.
Techniques like column and row generation can also speed up LP solving.

5 Conclusion

We have presented OL3P-S, a core-guided algorithm for MaxSAT that uses a linear program
to compute reformulations. This has advantages with respect to the behavior of the algorithm
itself, as it computes stronger lower bounds from the same information. Moreover, since
it can use constraints generated in any way, it opens many algorithmic possibilities. We
explored here two: one that worked fairly well, seeding the LP with constraints of the
MaxSAT formula; and one that did not, which was to try to solve the hitting set problem
described by the LP as an integer program. Regardless, it is likely that more possible ways
of enriching and using the linear program will emerge.

—— References

1 Benjamin Andres, Benjamin Kaufmann, Oliver Matheis, and Torsten Schaub. Unsatisfiability-
based optimization in clasp. In Technical Communications of the 28th International Conference
on Logic Programming (ICLP’12)(2012), pages 212-221. Schloss Dagstuhl — Leibniz-Zentrum
fir Informatik, 2012. doi:10.4230/LIPIcs.ICLP.2012.211.

2 Carlos Ansétegui, Maria Luisa Bonet, Joel Gabas, and Jordi Levy. Improving sat-based
weighted maxsat solvers. In Michela Milano, editor, Principles and Practice of Constraint
Programming — 18th International Conference, CP 2012, Québec City, QC, Canada, October
8-12, 2012. Proceedings, volume 7514 of Lecture Notes in Computer Science, pages 86-101.
Springer, 2012. doi:10.1007/978-3-642-33558-7_9.

3 Carlos Ansétegui, Maria Luisa Bonet, and Jordi Levy. Solving (weighted) partial maxsat
through satisfiability testing. In International conference on theory and applications of
satisfiability testing, pages 427-440. Springer, 2009. doi:10.1007/978-3-642-02777-2_39.

17:15

SAT 2025

https://doi.org/10.4230/LIPIcs.ICLP.2012.211
https://doi.org/10.1007/978-3-642-33558-7_9
https://doi.org/10.1007/978-3-642-02777-2_39

17:16

Core-Guided Linear Programming-Based Maximum Satisfiability

10

11

12

13

14

Fahiem Bacchus, Antti Hyttinen, Matti Jarvisalo, and Paul Saikko. Reduced cost fixing in
maxsat. In J. Christopher Beck, editor, Principles and Practice of Constraint Programming —
23rd International Conference, CP 2017, Melbourne, VIC, Australia, August 28 — September
1, 2017, Proceedings, volume 10416 of Lecture Notes in Computer Science, pages 641-651.
Springer, 2017. doi:10.1007/978-3-319-66158-2_41.

Jeremias Berg, Fahiem Bacchus, and Alex Poole. Abstract cores in implicit hitting set
maxsat solving. In Luca Pulina and Martina Seidl, editors, Theory and Applications of
Satisfiability Testing — SAT 2020 — 23rd International Conference, Alghero, Italy, July 3-
10, 2020, Proceedings, volume 12178 of Lecture Notes in Computer Science, pages 277-294.
Springer, 2020. doi:10.1007/978-3-030-51825-7_20.

Jeremias Berg, Bart Bogaerts, Jakob Nordstrém, Andy Oertel, and Dieter Vandesande.
Certified core-guided MaxSAT solving. In Proceedings of the 29th International Conference on
Automated Deduction (CADE-29), volume 14132 of Lecture Notes in Computer Science, pages
1-22, 2023. doi:10.1007/978-3-031-38499-8_1.

Suresh Bolusani, Mathieu Besangon, Ksenia Bestuzheva, Antonia Chmiela, Jodo Dionisio, Tim
Donkiewicz, Jasper van Doornmalen, Leon Eifler, Mohammed Ghannam, Ambros Gleixner,
Christoph Graczyk, Katrin Halbig, Ivo Hedtke, Alexander Hoen, Christopher Hojny, Rolf
van der Hulst, Dominik Kamp, Thorsten Koch, Kevin Kofler, Jurgen Lentz, Julian Manns, Gioni
Mexi, Erik Mithmer, Marc E. Pfetsch, Franziska Schlosser, Felipe Serrano, Yuji Shinano, Mark
Turner, Stefan Vigerske, Dieter Weninger, and Lixing Xu. The SCIP Optimization Suite 9.0.
Technical report, Optimization Online, February 2024. URL: https://optimization-online.
org/2024/02/the-scip-optimization-suite-9-0/.

Guillaume Claus, Hadrien Cambazard, and Vincent Jost. Arc-consistency and linear program-
ming duality: an analysis of reduced cost based filtering, 2022. doi:10.48550/arxiv.2207.
10325.

Jessica Davies and Fahiem Bacchus. Solving MAXSAT by solving a sequence of simpler SAT
instances. In Jimmy Ho-Man Lee, editor, Principles and Practice of Constraint Programming —
CP 2011 - 17th International Conference, CP 2011, Perugia, Italy, September 12-16, 2011.
Proceedings, volume 6876 of Lecture Notes in Computer Science, pages 225—239. Springer,
2011. doi:10.1007/978-3-642-23786-7_19.

Jessica Davies and Fahiem Bacchus. Exploiting the power of mip solvers in maxsat. In
Matti Jarvisalo and Allen Van Gelder, editors, Theory and Applications of Satisfiability
Testing — SAT 2013 — 16th International Conference, Helsinki, Finland, July 8-12, 2013.
Proceedings, volume 7962 of Lecture Notes in Computer Science, pages 166—181. Springer,
2013. doi:10.1007/978-3-642-39071-5_13.

Jessica Davies and Fahiem Bacchus. Postponing optimization to speed up MAXSAT solving.
In Christian Schulte, editor, Principles and Practice of Constraint Programming — 19th
International Conference, CP 2013, Uppsala, Sweden, September 16-20, 2013. Proceedings,
volume 8124 of Lecture Notes in Computer Science, pages 247-262. Springer, 2013. doi:
10.1007/978-3-642-40627-0_21.

Niklas Eén and Niklas Sérensson. Translating pseudo-boolean constraints into SAT. J. Satisf.
Boolean Model. Comput., 2(1-4):1-26, 2006. doi:10.3233/sat190014.

Filippo Focacci, Andrea Lodi, and Michela Milano. Cost-based domain filtering. In
Joxan Jaffar, editor, Principles and Practice of Constraint Programming — CP’99, 5th
International Conference, Alexandria, Virginia, USA, October 11-14, 1999, Proceedings,
volume 1713 of Lecture Notes in Computer Science, pages 189-203. Springer, 1999. doi:
10.1007/978-3-540-48085-3_14.

Zhaohui Fu and Sharad Malik. On solving the partial MAX-SAT problem. In Armin Biere and
Carla P. Gomes, editors, Theory and Applications of Satisfiability Testing — SAT 2006, 9th
International Conference, Seattle, WA, USA, August 12-15, 2006, Proceedings, volume 4121 of
Lecture Notes in Computer Science, pages 252—265. Springer, 2006. doi:10.1007/11814948_25.

https://doi.org/10.1007/978-3-319-66158-2_41
https://doi.org/10.1007/978-3-030-51825-7_20
https://doi.org/10.1007/978-3-031-38499-8_1
https://optimization-online.org/2024/02/the-scip-optimization-suite-9-0/
https://optimization-online.org/2024/02/the-scip-optimization-suite-9-0/
https://doi.org/10.48550/arxiv.2207.10325
https://doi.org/10.48550/arxiv.2207.10325
https://doi.org/10.1007/978-3-642-23786-7_19
https://doi.org/10.1007/978-3-642-39071-5_13
https://doi.org/10.1007/978-3-642-40627-0_21
https://doi.org/10.1007/978-3-642-40627-0_21
https://doi.org/10.3233/sat190014
https://doi.org/10.1007/978-3-540-48085-3_14
https://doi.org/10.1007/978-3-540-48085-3_14
https://doi.org/10.1007/11814948_25

G. Katsirelos

15

16

17

18

19

20

21

22

23

Alexey Ignatiev, Anténio Morgado, and Jodo Marques-Silva. RC2: an efficient maxsat solver.
J. Satisf. Boolean Model. Comput., 11(1):53-64, 2019. doi:10.3233/SAT190116.

Hannes Thalainen, Jeremias Berg, and Matti Jarvisalo. Unifying SAT-based approaches
to maximum satisfiability solving. Journal of Artificial Intelligence Research, 2024. doi:
10.1613/jair.1.15986.

George Katsirelos. An Analysis of Core-Guided Maximum Satisfiability Solvers Using Linear
Programming. In Meena Mahajan and Friedrich Slivovsky, editors, 26th International Confer-
ence on Theory and Applications of Satisfiability Testing (SAT 2023), volume 271 of Leibniz
International Proceedings in Informatics (LIPIcs), pages 12:1-12:19, Dagstuhl, Germany, 2023.
Schloss Dagstuhl — Leibniz-Zentrum fiir Informatik. doi:10.4230/LIPIcs.SAT.2023.12.
Tuukka Korhonen, Jeremias Berg, Paul Saikko, and Matti Jarvisalo. Clause redundancy
and preprocessing in maximum satisfiability. In Serge Gaspers and Toby Walsh, editors,
Proceedings of the 20th International Conference on Theory and Applications of Satisfiability
Testing, (SAT ’17), volume 10491 of Lecture Notes in Computer Science, pages 449-456.
Springer, 2017. doi:10.1007/978-3-031-10769-6_6.

Anténio Morgado, Carmine Dodaro, and Joao Marques-Silva. Core-guided maxsat with soft
cardinality constraints. In Barry O’Sullivan, editor, Principles and Practice of Constraint
Programming — 20th International Conference, CP 2014, Lyon, France, September 8-12, 2014.
Proceedings, volume 8656 of Lecture Notes in Computer Science, pages 564-573. Springer,
2014. doi:10.1007/978-3-319-10428-7_41.

Anténio Morgado, Alexey Ignatiev, and Jodo Marques-Silva. MSCG: robust core-guided maxsat
solving. J. Satisf. Boolean Model. Comput., 9(1):129-134, 2014. doi:10.3233/sat190105.
Nina Narodytska and Fahiem Bacchus. Maximum satisfiability using core-guided maxsat
resolution. In Proceedings of the Twenty-FEighth AAAI Conference on Artificial Intelligence,

July 27 -81, 2014, Québec City, Québec, Canada., pages 2717-2723, 2014. doi:10.1609/aaai.

v28i1.9124.

Nina Narodytska and Nikolaj S. Bjgrner. Analysis of core-guided maxsat using cores and
correction sets. In Kuldeep S. Meel and Ofer Strichman, editors, 25th International Conference
on Theory and Applications of Satisfiability Testing, SAT 2022, August 2-5, 2022, Haifa, Israel,
volume 236 of LIPIcs, pages 26:1-26:20. Schloss Dagstuhl — Leibniz-Zentrum fiir Informatik,
2022. doi:10.4230/LIPIcs.SAT.2022.26.

Shiwei Pan, Yiyuan Wang, Shaowei Cai, Jiangman Li, Wenbo Zhu, and Minghao Yin.
CASHWMaxSAT-DisjCad: Solver description. Technical report, Department of Computer
Science, University of Helsinki, Helsinki, 2024. URL: http://hdl.handle.net/10138/584878.

17:17

SAT 2025

https://doi.org/10.3233/SAT190116
https://doi.org/10.1613/jair.1.15986
https://doi.org/10.1613/jair.1.15986
https://doi.org/10.4230/LIPIcs.SAT.2023.12
https://doi.org/10.1007/978-3-031-10769-6_6
https://doi.org/10.1007/978-3-319-10428-7_41
https://doi.org/10.3233/sat190105
https://doi.org/10.1609/aaai.v28i1.9124
https://doi.org/10.1609/aaai.v28i1.9124
https://doi.org/10.4230/LIPIcs.SAT.2022.26
http://hdl.handle.net/10138/584878

	1 Introduction
	2 Background
	2.1 OLL
	2.2 Linear programming

	3 OL^3P
	3.1 Seeding the LP
	3.2 Combining with implicit hitting set
	3.3 Reduced cost fixing
	3.4 Stratification

	4 Experimental evaluation
	4.1 Experimental Setup
	4.2 Results
	4.3 LP overhead

	5 Conclusion

