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—— Abstract

Integer programming games (IPGs) are a popular game-theoretic tool to model an array of games
where each player has a discrete strategy set. These games arise in important domains such as
economics, transportation, cybersecurity, etc., but solving them is non-trivial as it is known that
checking for the existence of pure Nash equilibria in an IPG is ¥8-complete. Recent works have
proposed a class of relaxed solution concepts for IPGs called locally optimal integer solutions (LOIS)
and shown it to be an efficient alternative for pure Nash equilibria. While LOIS are significantly
simpler to compute, they still do not scale when solved using traditional mathematical solvers,
especially when high-quality solutions are desired. In this paper, we apply commercially available
SAT solvers to find LOIS in IPGs. We investigate efficient encodings for a cybersecurity game
and compare solution times when using SAT solvers vs mathematical program solvers. We also
investigate the application of SAT solvers in graph games using a graph interdiction example and
compare against the obtained LOI solutions against existing heuristics-based solutions. Our results
indicate that with appropriate encodings, large-scale IPGs can be solved much more efficiently
using SAT solvers. We also show that SAT solvers can be applied to graph games in conjunction
with LOIS for obtaining high-quality solutions. Our results emphasize the potential of SAT solvers
combined with LOIS to solve significant game theory problems.
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1 Introduction

Integer programming games (IPGs) are well-known in game-theoretic literature [7, 26]. They
arise when every player is restricted to choosing discrete strategies and are useful for modeling
a plethora of scenarios from domains such as transportation, communication, cybersecurity,
etc [10, 15, 27]. While they provide substantial modeling flexibility, they are known to
be difficult to solve. It is well-known that deciding whether or not an IPG admits a pure
Nash equilibria, a popular solution concept for IPGs, is ¥5-complete [8]. This poses severe
computational challenges and makes solving for large-scale IPGs intractable.

However, recent works have introduced new class of solution concepts for IPGs called
locally optimal integer solutions (LOIS) that are more relaxed than PNEs and computationally
tractable even for large-scale IPGs [25]. In fact, [25] show that deciding whether IPGs admit
LOIS is NP-complete, which means that they can be solved by commercially available
mathematical solvers that support integer programming and scale well across large IPG
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instances. With this relaxed notion of LOIS, many large-scale IPGs that specifically arise
in many critical domains, including cybersecurity, become tractable. In particular, in an
attacker-defender scenario where there are a large number of cyber infrastructures to be
considered with a limited attack/defense budget for both attackers and defenders, the
resulting IPG is not readily solvable for large instances using PNE but can indeed be solved
using LOIS [25]. Furthermore, a bilevel IPG with a leader-follower structure can also be
solved by embedding the LOIS optimality conditions of the follower in the leader’s program
to obtain a single integer program. This allows us to solve an important class of cybersecurity
games played on graphs, i.e. graph interdiction games, where a defender and an attacker
strategically choose nodes to protect and infect while considering the propagation dynamics of
the attack on the graph [3]. Despite the scalability of LOIS, they are not without limitations.
The most important being that while LOI solutions scale well for lower orders (LOIS-1),
higher-order LOI solutions, which are qualitatively better, are time-consuming to calculate
due to increased complexity.

SAT solvers that solve the boolean satisfiability problem are known to be effective for
solving NP-complete problems from various domains including planning, formal verification,
cybersecurity, transportation, etc. [2, 20]. Decades of advances in SAT solving techniques,
coupled with rigorous optimizations in commercially available SAT solvers make them
attractive for solving any large-scale NP-complete problem. Furthermore, the extension of
SAT called MaxSAT [28] adds further modeling flexibility to the SAT language, making
it possible to perform an optimization over the number of true clauses. Despite these
powerful modeling and solving capabilities, SAT solvers are underutilized for game-theoretic
applications and have not been previously considered for solving IPGs.

In this paper, we show that it is possible to utilize modern SAT solvers to solve for LOI
solutions for IPGs using straightforward encodings. In particular, we highlight the fact that
modern SAT solvers can scale incredibly well in comparison to traditional mathematical
optimizers in certain game-theoretic applications. We apply our methods in two cybersecurity
games of interest: a) a critical node game first introduced by [15] where attacker and
defender simultaneously choose which infrastructures to attack/defend, and b) a bilevel graph
interdiction game with constrained propagation dynamics where defender chooses central
nodes to defend followed by the attacker choosing their initial targets to spread infection.

2 Related Works

Local solutions in discrete games. IPGs themself were first investigated by [26] and
have found considerable usage since in domains with discrete strategy-space like inventory
management, facility location, cybersecurity, etc. [27, 33, 16, 11]. Prevailing methods for
solving IPGs focus on finding either pure or mixed Nash equilibrium solutions using a range of
algorithms such as branching, cut-and-play, sample generation, zero-regrets etc. [32, 34, 6, 16].
A broad survey of IPGs and related algorithms can be found in [7]. Related to IPGs are
also boolean games [4, 22], i.e., games where each player’s strategy space is composed purely
of boolean choices and the players choose assignments with the objective of satisfying their
utility (represented by a boolean formula). However, determining the existence of pure Nash
equilibria in boolean games is in 33 as well [4]. The very first work that explored the concept
of local solutions in discrete strategy games is by [17], where a k-bounded Nash equilibrium
is defined for boolean games such that no player can gain utility by unilaterally changing at
most k of their strategies. This concept has also been independently explored in a voting
game by [29], where they analogously define a #-local equilibrium such that no candidate
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can gain any utility by unilaterally deviating in at most ¢ of their announced positions. A
generalization of this boolean local equilibria concept to IPGs was provided more recently
by [25], who define a locally optimal integer solution to be one where no player can gain by
unilaterally deviating in their integer neighborhood. Their formulation allows for deriving
local optimality conditions for IPGs with shared constraints and is the focus of this work.

SAT solvers in game theory. Usage of SAT solvers in game-theoretic setting is sparse
and has generally been restricted to boolean games with boolean utilities. Notably, [12] use
answer set programming to solve for pure Nash equilibrium of boolean games. [35] apply
SAT and MaxSAT solvers in bounded model checking setting to derive Nash equilibrium in
a resource allocation problem. An interesting application of satisfiability theory in bimatrix
games is proposed in [9], which uses Horn clauses to identify special substructures of a normal

form bimatrix game, potentially speeding the process of obtaining Nash equilibrium solutions.

An application of SAT on graphical games is by [23] who use it to solve parity games, a
special type of two-player game played on graphs with the objective of achieving a desired
parity of minimum node priority in an infinite path of play. Similarly, in reachability games,
SAT solvers have been used to determine and extract winning strategies [18].

Apart from [9], the abovementioned works do not apply to games with non-boolean
objectives or constraints, which IPGs specifically allow. And even [9] is an application of
SAT to identify potential substructures in discrete games that may simplify solutions (and
is not a solution method by itself). Therefore, to our knowledge, our work is the first to
investigate the application of SAT solvers on IPGs. In particular, we investigate solutions of
both simultaneous IPGs (where players make decisions at once) and sequential (or bilevel)

IPGs where a leader makes a decision followed by the follower choosing their best response.

In summary, our contributions are as follows ':

1. We add to the literature of game theory by investigating SAT solvers as an alternative
solution method to a class of games of broad interest (i.e., IPGs), and compare their
performance against traditional mathematical solvers.

2. We investigate the application of MaxSAT solvers on bilevel graph games and compare
the quality of solutions against prevailing heuristics.

Rest of the paper is organized as follows: In section 3 we start with the overview of IPGs,
including its definition and related solution concepts. In sections 4 and 5, we introduce
the critical node game and the bilevel graph interdiction game and discuss their encoding
approaches. In section 6, we discuss timing comparison for mathematical solvers vs SAT
solvers for the critical node game and also analyze solution quality of LOIS over heuristics for

the bilevel graph game. We briefly recap our work and provide future directions in section 7.

3 Definitions
Throughout the rest of this paper, we follow the conventions and definitions used by [25].

» Definition 1 (IPG). IPGs with n players is defined as a simultaneous, complete-information,
and non-cooperative game in the form of a n-tuple (Py, Ps,...P,), where each P; is a math-
ematical program of the form:

! The repository for this paper can be found at https://github.com/PraveshKoirala/SATLois
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Py :=min f'(z';27")
1
st. g'(z") >0, (1)

where x* € Z™ is the strateqy of player i, f' : ZN +— R is their objective function with
N =>,n;, and g' 1 Z™ — R™ are the constraint functions. With x € ZN as the joint
strategy space, we use x~" to denote all other decision variables sans x'.

With definition 1 in place, the pure Nash equilibrium (PNE) of an IPG is defined as:

» Definition 2 (PNE for IPGs). A joint strategy * € Z~ is a pure Nash equilibrium for an
IPG if and only if Vi, g*(z*) > 0 and for all players i the following holds:

[i(@’) < fi@ @) Va e fal € 29 ) 2 0}

Since PNE is computationally prohibitive due to them being in 35, [25] introduce the
notion of m-order integer neighborhood and subsequently locally optimal integer solution as
follows:

» Definition 3 (m-order integer neighborhood). For a point x € 2", we define its m-order
integer neighborhood as Z,,(x) = {z' € Z" | ||x — 2'||s < m} where the operator ||-||1 denotes
the L1-norm.

» Definition 4 (Locally optimal integer solution of m-th order). For a parameterized integer
mathematical program P := mingezn f(x;a) s.t. © € C where the payoff function f is
parameterized in a € Z™ and C is some feasible set, £ € C is said to be a locally optimal
integer solution of m-th order (LOIS-m) if and only if f(2™;a) < f(2';a) V2’ € Z,(2™)NC.

By using definition 4, optimality conditions for LOIS can be obtained for a single program
as follows:

» Definition 5 (Optimality conditions for LOIS-m). For a program parameterized in a € ZP,
where f : Z"? — R and Vj € 1..J, g; : Z" — R, the optimality conditions for & to be a
LOIS-m can be outlined as the following inequality and implication constraints:

J
/\ g]j = (2)

j=1

J
V(EZ+06€Z,2)) |fl@a)> f(@+6a) = V (& +9) < 0) (3)

Finally, using definition 5, the joint optimality condition for a LOIS-m solution for an
IPG is defined as:

» Definition 6 (LOIS-m solution for IPGs). We recall IPGs to be the joint mathematical
program (P, ...P,) where each program P; is parameterized in x—*. For each player i, let O%,

be the set of points satisfying their LOIS-m optimality conditions as introduced in definition
5. Then, we define T as the LOIS-m solution for the IPG iff:

ie0, (4)
i=1
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In simpler terms, a LOIS-m solution for an IPG is defined such that no single player, by
unilaterally deviating in their m-order integer neighborhood, can obtain better payoffs (or
lower costs) while remaining feasible. In this way, LOIS-m basically offers a direct adaptation
of the concept of local equilibria in continuous-strategy games to IPGs. Similarly, when the
discrete strategy-set of each player is binary (and the payoff is a logical formula defined
over the joint strategy), it is easy to see that LOIS-m for unconstrained IPG in such cases
translates to the notion of local equilibria for boolean games. In this regard, LOIS-m is
actually a generalization of existing local solution concepts from boolean games.

4 Critical Node Game (CNG)

CNG is a cybersecurity game first introduced by [15]. The following description of CNG is
derived from the same and we refer readers to the original text for any missing details. The
CNG is played over a set of V critical nodes representing sensitive digital infrastructures
with the decision variables z; € {0,1},a; € {0,1} Vi € V indicating respectively the defender
and attacker’s choice with x; = 1 for defender defending the node i (and zero otherwise), and
a; = 1 for the attacker attacking the target (and zero otherwise). Both players have limited
budget and there are strategic interactions between their choices. The complete 2-player CNG
is specified as a simultaneous, non-cooperative, and complete-information game comprised of
the programs (P4, Pp) such that the attacker solves:

Py = Yoy
4 ael{%i}]f‘v' f(es @)

st.ala< A

and the defender solves:

Pp = a 4(g;
D me?{%f}f‘w [z )

st.d¥z <D

The functions f : Z2IVI — R, f¢: 72Vl — R are the payoffs of the attacker and the
defender respectively. Each attack or defend choice has a cost represented by the vectors
a € Zlfl, de Zlfl. The total budget for attacker / defender, respectively, is A € Z,,D € Z
and p¢ € Z,, p¢ € Z denote the criticality of node i for respectively, the defender and the
attacker. This formulation varies slightly from the original, as it restricts the costs, criticality,
and budget to be integers instead of reals. But as we show later, our encoding scheme can
be suitably modified to account for real costs, criticality, and budget as well. The variables

0 < §,m,€6,v <1 are then chosen as real-valued scalar parameters of a CNG with § < n <e.

The full payoff functions for attacker and defender are described in detail in appendix A

4.1 LOIS for CNG

We outline the LOIS-1 optimality conditions for CNG. Optimality conditions for LOIS-m

(m > 1) are analogously defined. (&, %) are LOIS-1 solutions for CNG iff the following hold.
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For the attacker,
aTa < A
0<& <1, VieV
Aff>0— (& >0)V(aTa+aiq; > A), VieV
Aff<0— (a; < 1)V (aTa —aia; > A), VieV
where, Afi = pf(1+v+2i(y —n)) (5)
For the defender,
d's <D
0<3; <1, VieV
AfE>0— (# >0)V(dTd+diz; > D), VieV
Af <0 = (& <)V (dT2 —diz; > D), VieV
where, Af? =plle -1+ a@i(n+1—e—14)) (6)

Conditions 5 and 6 when jointly solved, give the LOIS-1 solution (&, ).

4.2 SAT encodings for CNG

The variables for player choices (&, #), attack and defense budgets (A, D), and priority values
for each node for attacker and defender (p?,p?) in equations 5 and 6 are integers. For SAT
solvers to be able to solve formulas with integer variables, they have to be converted into
equivalent fixed-width binary representation, i.e., bit-vectors with the process colloquially
known as bit-blasting. Once equivalent bit-vector representations are obtained, regular
arithmetic operations like addition, subtraction, multiplication, and division can be performed
using binary circuits. For the parameters €, 7, d,~v that are reals, we encode each of them
as ratios a/b where each a,b is a bit-vector of sufficient size. It can be seen that the choice
of size needs to be balanced as a larger bit-vector size will result in increased memory and
computation, whereas a smaller bit-vector size may result in poor results. Similarly, while
we have considered the criticality values, costs, and budgets to be integers, we can substitute
them with analogous bit-vector ratios to add support for reals. Once all the variables have
been properly encoded, since the operations on them are a combination of simple logical and
arithmetic operators (inequality, disjunction, implication, etc.), natively supported by most
commercial SAT solvers, these do not require further specialized encoding.

5 Bilevel graph interdiction

We now describe the bilevel graph interdiction game with two players attacker and the
defender, with the defender as the leader. The following description of the game is a
simplified version of the trilevel game introduced in [31] but with a constrained propagation
dynamics. The game is played over an undirected graph G = (V, E) where each node v € V
is a critical digital infrastructure and each edge (v1,v2) € F represents a network connection
between vy, va. The objective of the defender (which moves first) is to choose np € Z, nodes
to protect, followed by the attacker that chooses ng € Z nodes to infect with malware.
We assume a constrained propagation model where an attacked node can propagate the
malware to undefended nodes at a distance of at most r before being detected, making them
unsafe, with the distance between a node a and b being defined as the number of edges in
the shortest path between a and b. Figure 1 further explains the setup. The full formulation
of the problem and its equivalent reduction to a maxSAT form is provided in Appendix B.
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AA/B\C/®A/3

(a) Undefended T=0. (b) Undefended T=c0. (c) Defended T=0/cc.

Figure 1 For a propagation radius r = 2. In (a) A is first attacked (orange) and the attack
propagates to B and C as shown in (b). D remains safe. In (c), A is first infected but the presence
of a defended node B (blue) deters further propagation making B, C, D safe. If there were an edge
(A,C) in (c), both C and D would have been eventually infected and B would be the only safe node.

6 Experiments

6.1 CNG

Average time vs CNG instance size

- 73
400 |- | - Gurobi

200

Average time (s)

|
50 70 90 100 120 150
Instance Size

Figure 2 Performance of SAT solver (Z3) and mathematical solver (Gurobi) on CNG instances.

In this experiment, we compare the time taken to obtain higher-order LOIS-2 solutions for
increasing CNG instances by popular mathematical program solvers versus a SAT solver. In
particular, we choose three mathematical solvers, i.e., HIGHS [24], SCIP [1], and Gurobi [21],

to compare the SAT solver of our choice, i.e,. Z3 [13]. We conduct this experiment in two steps.

In the preliminary step, we compare the average solution time of HIGHS, SCIP, and Gurobi
on 10 random instances of CNG of size 50 generated according to the procedure outlined
n [15]. We found the average time for each solver to be HIGHS (991.4s), SCIP(133.2s), and

Gurobi(6.05s). As we can see, Gurobi clearly outperforms all other solvers by a large margin.

Therefore, in the next step, we exclusively compare Gurobi against Z3 for LOIS-2. We used
a bit-vector width of 16 for integer encodings. The results for this step are presented in
figure 2. As we can see, Z3 clearly outperforms Gurobi on all instance sizes. Primarily, as
the instance size passes a certain threshold, the performance gap becomes starkly visible
with Z3 taking an average time of 13.99s for an instance of size 120, whereas Gurobi takes
765.2s for the same.
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6.2 Bilevel graph interdiction

For this experiment, we compare the quality of results obtained using LOIS-1 solutions
against those obtained using prevailing heuristics. In particular, for graphs, metrics like
centrality measure how important a node is for propagation [14]. Therefore, a heuristic-
based method for the bilevel graph interdiction problem is for the defender to defend the
most central nodes with the highest centrality values, followed by the attacker choosing
its best response. We compare the LOIS-1 solution against popular centrality measures in
graphs, including degree centrality, eigenvalue centrality, closeness centrality, and betweenness
centrality [14]. We also compare with an additional game-theoretic centrality metric known as
the shapley centrality [30] that is specifically developed for identifying nodes most important
for propagation. We consider a modestly sized graph with 30 nodes. We set the defender’s
budget np = 4, attacker’s budget na = 2, propagation radius » = 4, and evaluate our
methods on four kinds of randomly generated graphs i.e. MST, Line, Edge30, and Ring,
where MST instances are random minimum spanning tree defined over the nodes, Fdge30
instances contain exactly 30 random edges, Line is a path graph [5], and Ring is a cycle
graph [19]. All solutions are obtained by using the maxSAT solver from Z3 within the time
limit of 5 minutes.

Table 1 Number of safe nodes in bilevel graph interdiction game. LOIS-1-based method
outperforms all heuristics in every graph variant. Results are averaged over 20 runs for each graph

type.

Methods Line MST Ring Exact30
Betweenness 12 13.8 12 14.75
Closeness 12 13.9 12 13.8
Degree 12 17.35 12 16.75
Eigenvalue 12 13.3 12 13.65
Shapley 12 13.85 12 15.25
LOIS-1 16.55 19.5 13.7 17.65

As we can see from the results, when central nodes are obtained using the maxSAT
solution of the defender with embedded LOIS-1 optimality constraints of the attacker, it
outperforms all popular centrality heuristics. This difference is particularly stark when there
are symmetries present in the graph, i.e. line, ring. We hypothesize that for symmetric
graphs, since all nodes have the same centrality, heuristic-based methods fail to identify key
nodes to protect.

7 Conclusion

In this study, we showed that by using local solution concepts like the LOIS, it is possible to
solve for IPGs using SAT solvers in both simultaneous and sequential discrete-strategy games.
In particular, we note that the encodings required for solving these games are straightforward
and are supported out-of-the-box by most commercially available SAT solvers. We also
showed that these SAT solvers may be more efficient in terms of solution time when compared
against state-of-the-art mathematical solvers like Gurobi, and the game theory community
should definitely consider these solvers for large-scale discrete games as an alternative to
mathematical program solvers. Finally, we also showed that in graph games, maxSAT
solvers in conjunction with LOI solutions can provide better quality solutions with respect
to heuristic-based solutions, even for tricky problem instances.
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We note the following limitations of our study. First and foremost, only local solution

concepts like LOIS remain solvable by SAT solvers. Similarly, games with non-linear objectives

or constraints that are not encodable by binary circuits may not be possible to solve. In

the bilevel graph interdiction example, although we were able to solve for moderate graph

instances, we found scaling it to large graph sizes challenging. Future work seeking to expand
this line of research should focus on global solution concepts (or higher-order LOI solutions)
for IPGs using SAT and finding novel ways to scale graph games when solved using MaxSAT.
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Payoff description of CNG

The full payoffs for four distinct scenarios are taken as:

1.

B

Normal operation (z; = 0,a; = 0): Defender gets full payoff p¢, while attacker
incurs opportunity cost yp.

. Successful attack (x; = 0, a; = 1): Attacker obtains full payoff p?. Defender obtains

reduced dp¢.
Successful defense (z; = 1, a; = 0: Defender obtains reduced ep?. Attacker obtains 0.

Attack and defense (z; = 1, a; = 1): Attacker receives (1 — n)p?. Defender receives
d
np; -

The full attacker payoff is then obtained as:

Fase) = (=pf (1= 2) (1 — i) + pi (1 — zi)ai + (1 = p)pfaias)
i€V

Similarly, the full defender payoff is:
Fasa) = (1 =) (1 = o) + 0pH(1 = i) ai + epllai(1 — o) + mpfaias)

i€V

Formulation of bilevel interdiction game

For each node v € V, we use the binary variables a, € {0,1}!V! d, € {0,1}/V], s, € {0,1}!VI
to represent if the node is attacked, defended, or safe. The bilevel program to be solved for
by the leader (defender) can then be outlined as follows?.

2 For ease of understanding, we use boolean operations in constraints. These can be equivalently translated
to integer constraints for an IPG.
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d,a
eV
sty dy <np (7b)
eV
a € min Z Sy (7c)
¢ iev

st Y Gy <na (7d)

i€V
d; = -a; YVieV (76)
§9=-a; VieV (75)
sttt =d; v (Vi' € Ng(i), sb) Vvt e {0..r — 1} (7g)
s; = s} (7h)

The program on the top level (defender), maximizes the total number of safe nodes by
choosing at-most np nodes (7b) to defend subject to the fact that the attacker’s program
chooses at-most n4 nodes to attack (7d). Attacker can not attack a defended node (7e).
Initially, only attacked nodes are unsafe (7f) but depending upon the propagation radius
r, the final safety status of all nodes are calculated (7g, 7h). The set Ng(v) in equation
7g denotes all the immediate neighbors of node v in the graph. It’s easy to see that the
attacker’s program is an IPG parameterized in d. Let A(d) be the set of attacker strategies
that satisfy the LOIS-1 optimality of the parameterized program, then the bilevel program
can be reformulated as:

max Z Su (8a)

i€V
s.t Z dv < np (8b)
eV
a € A(d) (8¢)

The resulting single-level IPG consists of boolean and integer variables with pseudo-
boolean constraints. The objective can also be encoded as a weighted MaxSAT [28] constraint.
Therefore, the entire program can be easily solved for using a commercially available MaxSAT
solver.
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