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Abstract
Quantitative information flow analyses (QIF) are a class of techniques for measuring the amount of
confidential information leaked by a program to its public outputs. Shannon entropy is an important
method to quantify the amount of leakage in QIF. This paper focuses on the programs modeled in
Boolean constraints and optimizes the two stages of the Shannon entropy computation to implement
a scalable precise tool PSE. In the first stage, we design a knowledge compilation language called
ADD[∧] that combines Algebraic Decision Diagrams and conjunctive decomposition. ADD[∧] avoids
enumerating possible outputs of a program and supports tractable entropy computation. In the second
stage, we optimize the model counting queries that are used to compute the probabilities of outputs.
We compare PSE with the state-of-the-art probabilistic approximately correct tool EntropyEstimation,
which was shown to significantly outperform the previous precise tools. The experimental results
demonstrate that PSE solved 56 more benchmarks compared to EntropyEstimation in a total of 459.
For 98% of the benchmarks that both PSE and EntropyEstimation solved, PSE is at least 10× as
efficient as EntropyEstimation.
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1 Introduction

Quantitative information flow (QIF) is an important approach to measuring the amount of
information leaked about a secret by observing the running of a program [11, 16]. In QIF,
we often quantify the leakage using entropy-theoretic notions, such as Shannon entropy [2, 5,
30, 33] or min-entropy [2, 29, 30, 33]. Roughly speaking, a program in QIF can be seen as a
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20:2 Scalable Precise Computation of Shannon Entropy

function from a set of secret inputs X to outputs Y observable to an attacker who may try
to infer X based on the output Y . Boolean formulas are a basic representation to model
programs [14, 15]. In this paper, we focus on precisely computing the Shannon entropy of a
program expressed in Boolean formulas.

Let φ(X,Y ) be a (Boolean) formula that models the relationship between the input
variable set X and the output variable set Y in a given program, such that for any assignment
of X, at most one assignment of Y satisfies the formula φ(X,Y ). Let p represent a probability
distribution defined over the set {false, true}Y . For each assignment σ to Y , the probability is
defined as pσ = |Sol(φ(Y 7→σ))|

|Sol(φ)↓X | , where Sol(φ(Y 7→ σ)) denotes the set of solutions of φ(Y 7→ σ)
and Sol(φ)↓X denotes the set of solutions of φ projected to X. The Shannon entropy of φ is
H(φ) =

∑
σ∈2Y −pσ log pσ. Then we can immediately obtain a measure of leaked information

with the computed entropy and the assumption that X follows a uniform distribution 1 [19].
The workflow of existing precise methods for computing entropy can often be divided into

two stages. In the first stage, we enumerate possible outputs, i.e., the satisfying assignments
over Y , while in the second stage, we compute the probability of the current output based on
the number of inputs mapped to the output [15]. The computation in the second stage often
invokes model counting (#SAT), which refers to computing the number of solutions Sol(φ)
for a given formula φ. Due to the exponential number of possible outputs, the current precise
methods are often difficult to scale to programs with a large size of Y . Therefore, researchers
have increasingly focused on approximate estimation of Shannon entropy. We remark that
Golia et al. [15] proposed the first Shannon entropy estimation tool, EntropyEstimation,
which guarantees that the estimate lies within (1± ϵ)-factor of H(φ) with confidence at least
1− δ. EntropyEstimation employs uniform sampling to avoid generating all outputs, and
indeed scales much better than the precise methods.

As previously discussed, existing methods for precisely computing Shannon entropy
struggle to scale when applied to formulas with a large set of outputs. Theoretically, this
requires performing up to 2|Y | model counting queries. The primary contribution of this
paper is to enhance the scalability of precise Shannon entropy computation by improving both
stages of the computation process. For the first stage, we design a knowledge compilation
language to guide the search and avoid exhaustive enumeration of possible outputs. This
language augments Algebraic Decision Diagrams (ADDs), an influential representation, with
conjunctive decomposition. For the second stage, instead of performing model counting queries
individually, we leverage shared component caching across successive queries. Moreover,
we exploit literal equivalence to pre-process the formula corresponding to a given program.
By integrating these techniques, we develop a Precise Shannon Entropy tool PSE. We
conducted an extensive experimental evaluation over a comprehensive set of benchmarks (459
in total) and compared PSE with the existing precise Shannon entropy computing methods
and the current state-of-the-art Shannon entropy estimation tool, EntropyEstimation. Our
experiments indicate that EntropyEstimation is able to solve 276 instances, whereas PSE
surpasses this by solving an additional 56 instances. Among the benchmarks that were solved
by both PSE and EntropyEstimation, PSE is at least 10× as efficient as EntropyEstimation
in 98% of these benchmarks.

The remainder of this paper is organized as follows. Section 2 introduces the notation and
provides essential background information. Section 3 introduces Algebraic Decision Diagrams
with conjunctive decomposition (ADD[∧]). Section 4 discusses the application of ADD[∧] to
QIF and introduces our precise entropy tool, PSE. Section 5 details the experimental setup,
results, and analysis. Section 6 reviews related work. Finally, Section 7 concludes the paper.

1 If X does not follow a uniform distribution, techniques exist for reducing the analysis to a uniform
case [1].
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2 Notations and Background

In this paper, we focus on the programs modeled by (Boolean) formulas. In the formulas
discussed, the symbols x and y denote variables, and literal l refers to either the variable x
or its negation ¬x, where var(l) represents the variable underlying the literal l. A formula
φ is constructed from the constants true, false and variables using negation operator ¬,
conjunction operator ∧, disjunction operator ∨, implication operator→, and equality operator
↔, where Vars(φ) denotes the set of variables appearing in φ. A clause C (resp. term T ) is
a set of literals representing their disjunction (resp. conjunction). A formula in conjunctive
normal form (CNF) is a set of clauses representing their conjunction. Given a formula φ,
a variable x, and a constant b, the substitution φ[x 7→ b] refers to the transformed formula
obtained by substituting the occurrence of x with b throughout φ.

An assignment σ over variable set V is a mapping from V to {false, true}. The set of all
assignments over V is denoted by 2V . Given a subset V ′ ⊆ V , σ↓V ′ = {x 7→ b ∈ σ | x ∈ V ′}.
Given a formula φ, an assignment over Vars(φ) satisfies φ (σ |= φ) if the substitution φ[σ] is
equivalent to true. Given an assignment σ, if all variables are assigned a value in {false, true},
then σ is referred to as a complete assignment. Otherwise it is a partial assignment. A
satisfying complete assignment is also called solution or model. We use Sol(φ) to the set of
solutions of φ, and model counting is the problem of computing |Sol(φ)|. Given two formulas
φ and ψ over V , φ |= ψ iff Sol(φ ∧ ¬ψ) = ∅.

2.1 Circuit formula and its Shannon entropy
Given a formula φ(X,Y ) to represent the relationship between input variables X and output
variables Y , if σ↓X = σ′

↓X implies σ = σ′ for each σ, σ′ ∈ Sol(φ), then φ is referred to as
a circuit formula. It is standard in the security community to employ circuit formulas to
model programs in QIF [15].

▶ Example 1. The following formula is a circuit formula with input variables X =
{x1, . . . , x2n} and output variables Y = {y1, . . . , y2n}: φsep

n =
∧n
i=1(xi ∧ xn+i → yi ∧

yn+i) ∧ (¬xi ∨ ¬xn+i → ¬yi ∧ ¬yn+i).

In the computation of Shannon entropy, we focus on the probability distribution of
outputs. Let p denote a probability distribution defined over the set {false, true}Y . For
each assignment σ to Y , i.e., σ : Y 7→ {false, true}, its weight and probability is defined as
ωσ = |Sol(φ(Y 7→ σ))| and pσ = |Sol(φ(Y 7→σ))|

|Sol(φ)↓X | , respectively, where Sol(φ(Y 7→ σ)) denotes
the set of solutions of φ(Y 7→ σ) and Sol(φ)↓X denotes the set of solutions of φ projected to
X. Since φ is a circuit formula, it is easy to prove that |Sol(φ)↓X | = |Sol(φ)|. Then, the
entropy of φ is H(φ) =

∑
σ∈2Y −pσ log pσ. Following the convention in QIF [33], we use base

2 for log, though the base can be chosen freely.

2.2 Knowledge compilation
Knowledge compilation is the approach of compiling CNF formulas into a form to sup-
port tractable reasoning tasks such as satisfiability check, equivalence check, and model
counting [10]. Ordered binary decision diagram (OBDD) [4] is one of the most influential
knowledge compilation forms, which supports many tractable reasoning tasks. Each OBDD
is a rooted directed acyclic graph (DAG) defined over a linear ordering of variables ≺. Each
internal node v is called decision node and has two outgoing edges, referred to as the low
child lo(u) and the high child hi(u), which are typically represented by dashed and solid lines,
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respectively. Every node u is labeled with a symbol sym(u). If u is a terminal node, then
sym(u) = ⊥ or ⊤, representing the Boolean constants false and true, respectively. Otherwise,
sym(u) denotes a variable and u represents (¬sym(u) ∧ ψ) ∨ (sym(u) ∧ ψ′), where ψ and
ψ′ are the formulas represented by lo(u) and hi(u), respectively. Each decision node v and
its parent u have sym(u) ≺ sym(v). OBDD[∧] [24] is an extended form of OBDD with
better space efficiency. It augments OBDD with conjunctive decomposition nodes. Each
conjunctive decomposition node u has a set of children Ch(u) representing formulas without
shared variables, and u represents a conjunction of the formulas represented by its children.
OBDD[∧] also supports a set of tractable reasoning tasks, including model counting and
equivalence check.

Both OBDD and OBDD[∧] can only represent Boolean functions. An Algebraic Decision
Diagram (ADD) [3] is an extension of OBDD to represent algebraic functions. ADD is a
compact representation of a real-valued function as a directed acyclic graph. While OBDD
has two terminal nodes representing false and true, ADD includes multiple terminal nodes,
each assigned a real value. The order in which decision node labels appear in all paths from
the root to the terminal nodes of the ADD also align with a given ordering of variables ≺.
Given an assignment σ with each variable in ≺, we can obtain a path in a top-down way as
follows: for a decision node with x, we pick low child if σ(x) = false, and high child otherwise.
ADD maps σ to the value on the terminate node of the path. The original design motivation
for ADD was to solve matrix multiplication, shortest path algorithms, and direct methods for
numerical linear algebra [3]. In subsequent research, ADD has also been used for stochastic
model checking [21], stochastic programming [17], and weighted model counting [12, 26].

3 ADD[∧]: A New Tractable Representation

In order to compute the Shannon entropy of a circuit formula φ(X,Y ), we need to use
the probability distribution over the outputs. Algebraic Decision Diagrams (ADDs) are
an influential compact probability representation that can be exponentially smaller than
the explicit representation. Macii and Poncino [28] showed that ADD supports efficient
exact computation of entropy. However, we observed in the experiments that the sizes of
ADDs often exponentially explode with large circuit formulas. We draw inspiration from a
Boolean representation known as the Ordered Binary Decision Diagram with conjunctive
decomposition (OBDD[∧]) [24], which reduces its size through recursive component decom-
position and divide-and-conquer strategies. This approach enables the representation to
be exponentially smaller than the original OBDD. Accordingly, we propose a probabilistic
representation called Algebraic Decision Diagrams with conjunctive decomposition (ADD[∧])
and demonstrate it supports tractable entropy computation. ADD[∧] is a general form of
ADD and is defined as follows:

▶ Definition 2. An ADD[∧] is a rooted DAG, where each node u is labeled with a symbol
sym(u). If u is a terminal node, sym(u) is a non-negative real weight, also denoted by ω(u);
otherwise, sym(u) is a variable (called decision node) or operator ∧ (called decomposition
node). The children of a decision node u are referred to as the low child lo(u) and the high
child hi(u), and connected by dashed lines and solid lines, respectively, corresponding to the
cases where var(u) is assigned the value of false and true. For a decomposition node, its
sub-graphs do not share any variables. An ADD[∧] is imposed with a linear ordering ≺ of
variables such that given a node u and its non-terminal child v, var(u) ≺ var(v).

Hereafter, we denote the set of variables that appear in the graph rooted at u as Vars(u)
and the set of child nodes of u as Ch(u). We now turn to show how an ADD[∧] defines a
probability distribution:
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▶ Definition 3. Let u be an ADD[∧] node over a set of variables Y and let σ be an assignment
over Y . The weight of σ is defined as follows:

ω(σ, u) =


ω(u) terminal∏
v∈Ch(u) ω(σ, v) decomposition

ω(σ, lo(u)) decision and σ |= ¬var(u)
ω(σ, hi(u)) decision and σ |= var(u)

The weight of an non-terminal ADD[∧] rooted at u is denoted by ω(u) and defined as∑
σ∈2Vars(u) ω(σ, u). For nodes with a non-zero weight, the probability of σ over u is defined

as p(σ, u) = ω(σ,u)
ω(u) .

Figure 1 depicts an ADD[∧] representing the probability distribution of φsepn in Example
1 over its outputs with respect to y1 ≺ y2 ≺ · · · ≺ y2n. The reader can verify that each
equivalent ADD with respect to ≺ has an exponential number of nodes. In the field of
knowledge compilation [10, 13], the concept of succinctness is often used to describe the
space efficiency of a representation. Based on the following observations, we can conclude
that ADD[∧] is strictly more succinct than ADD. First, OBDD and OBDD[∧] are subsets of
ADD and ADD[∧], respectively. Second, OBDD[∧] is strictly more succinct than OBDD [24].
Finally, each OBDD[∧] cannot be transformed into a non-OBDD ADD.

∧

y1

yn+1

3 0

yn+1

0 1

yn

y2n

3 0

y2n

0 1

n︷ ︸︸ ︷
(− 3

4 · log 3
4 − 1

4 · log 1
4 ) + · · · + (− 3

4 · log 3
4 − 1

4 · log 1
4 )

4n

· · ·

− 3
4 · log 3

4 − 1
4 · log 1

4

4

03

0 0

01

0 0

− 3
4 · log 3

4 − 1
4 · log 1

4

4

03

0 0

01

0 0

Figure 1 An ADD[∧] representing the probability distribution of φsep
n in Example 1 over its

outputs. According to Proposition 4, the computed weight for each node is marked in blue font.
According to Proposition 5, the computed entropy for each node is marked in red font.

3.1 Tractable Computation of Weight and Entropy
The computation of Shannon entropy for an ADD[∧] relies on its weight. We first demonstrate
that, for an ADD[∧] node u, its weight ω(u) can be computed in polynomial time.
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▶ Proposition 4. Given a non-terminal node u in ADD[∧], its weight ω(u) can be recursively
computed as follows in polynomial time:

ω(u) =
{∏

v∈Ch(u) ω(v) decomposition
2n0 · ω(lo(u)) + 2n1 · ω(hi(u)) decision

where n0 = |Vars(u)| − |Vars(lo(u))| − 1 and n1 = |Vars(u)| − |Vars(hi(u))| − 1.

Proof. The time complexity is immediate by using dynamic programming. We prove the
equation can compute the weight correctly by induction on the number of variables of the
ADD[∧] rooted at u. It is obvious that the weight of a terminal node is the real value labeled.
For the case of the ∧ node, since the variables of the child nodes are all disjoint, it can be easily
seen from Definition 3. Next, we will prove the case of the decision node. Assume that when
|Vars(u)| ≤ n, this proposition holds. For the case where |Vars(u)| = n+ 1, we use Y0 and Y1
to denote Vars(lo(u)) and Vars(hi(u)), and we have |Y0| ≤ n and |Y1| ≤ n. Thus, ω(lo(u)) and
ω(hi(u)) can be computed correctly. According to Definition 3, w(u) =

∑
σ∈2Vars(u) ω(σ, u).

The assignments over Vars(u) can be divided into two categories:
The assignment σ |= ¬var(u): It is obvious that ω(σ, u) = ω(σ↓Y0 , lo(u)). Each assignment
over Y0 can be extended to exactly 2n0 different assignments over Vars(u) in this category.
Thus, we have the following equation:∑

σ∈2Vars(u)∧σ|=¬var(u)

ω(σ, u) = 2n0 · ω(lo(u)).

The assignment σ |= var(u): This case is similar to the above case.
To sum up, we can obtain that ω(u) = 2n0 · ω(lo(u)) + 2n1 · ω(hi(u)). ◀

We now present how ADD[∧] computes Shannon entropy in polynomial time.

▶ Proposition 5. Given an ADD[∧] rooted at u, if ω(u) = 0, we define its entropy H (u) as
0, and otherwise its entropy can be recursively computed in polynomial time as follows:

H (u) =


0 terminal∑
v∈Ch(u) H (v) decomposition

p0 · (H(lo(u)) + n0 − log p0) + p1 · (H(hi(u)) + n1 − log p1) decision

where n0 = |Vars(u)|− |Vars(lo(u))|−1, n1 = |Vars(u)|− |Vars(hi(u))|−1, p0 = 2n0 ·ω(lo(u))
ω(u) ,

and p1 = 2n1 ·ω(hi(u))
ω(u) .

Proof. According to Proposition 4, ω(u) can be computed in polynomial time, and therefore
the time complexity in this proposition is obvious. Next we prove the correctness of
the computation method. The case of terminal nodes is obviously correct. The case of
decomposition follows directly from the additivity property of entropy. Next, we show the
correctness of the case of decision.

Let H0(u) be −
∑
σ|=¬sym(u) p(u, σ) log p(u, σ) and H1(u) be

−
∑
σ|=sym(u) p(u, σ) log p(u, σ). Similar to proposition 4, we can obtain H(u) =

2n0 ·H0(u) + 2n1 ·H1(u). The assignments over Vars(u) can be divided into two categories:
The assignment σ |= ¬var(u): According to definition 3, the probability p(σ, ω) satisfies
p(σ, ω) = ω(σ,lo(u))

ω(u) . Given p0 = 2n0 ·ω(lo(u))
ω(u) , it follows that ω(lo(u))

ω(u) = p0
2n0 . Substi-

tuting this into the expression for p(σ, u), we derive p(σ, u) = ω(σ,lo(u))
ω(lo(u) · p0 · 2−n0 =

p(σ, lo(u)) · p0 · 2−n0 . H0(u) then expands as H0(u) = −
∑
σ|=¬sym(u) p(σ, u) log p(σ, u) =
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−
∑
σ|=¬sym(u) p(σ, lo(u)) · p0 · 2−n0 · (log p(σ, lo(u)) + log p0 − n0) = p0 · 2−n0 ·

[− log p0 ·
∑
σ|=¬sym(u) p(σ, lo(u))+n0 ·

∑
σ|=¬sym(u) p(σ, lo(u))−

∑
σ|=¬sym(u) p(σ, lo(u)) ·

log p(σ, lo(u))]. Noting that
∑
σ|=¬sym(u) p(σ, lo(u)) = 1,−

∑
σ|=¬sym(u) p(σ, lo(u)) ·

log p(σ, lo(u)) = H(lo(u)), we simplify H0(u) = p0 · 2−n0 · (− log p0 + n0 +H(lo(u))).
The assignment σ |= var(u): This case is similar to the above case. It is easy to obtain
H1(u) = p1 · 2−n1 · (− log p1 + n1 +H(hi(u))).

To sum up, we can obtain that H(u) = p0 · (H(lo(u)) + n0 − log p0) + p1 · (H(hi(u)) + n1 −
log p1) ◀

We conclude this section by explaining why ordering is used in the design of ADD[∧].
In fact, Propositions 4–5 remain valid even when we use only the more general read-once
property, where each variable appears at most once along any path from the root of an
ADD[∧] to a terminal node. First, our experimental results indicate that the linear ordering
determined by the minfill algorithm in our tool PSE outperforms the dynamic orderings
employed in the state-of-the-art model counters, where the former imposes the orderedness
and the latter imposes the read-once property. Second, ADD[∧] can provide tractable
equivalence checking between probability distributions beyond this study.

4 PSE: Scalable Precise Entropy Computation

In this section, we introduce our tool PSE, designed to compute the Shannon entropy of
a given circuit CNF formula with respect to its output variables. PSE, as presented in
Algorithm 1, takes as input a CNF formula φ, an input set X, and an output set Y , and
returns the Shannon entropy H (φ) of the formula. Like other tools for computing Shannon
entropy, PSE follows a two-stage process: the Y -stage (corresponding to outputs) and the
X-stage (corresponding to inputs). In the X-stage (lines 3–4), we perform multiple optimized
model counting operations on sub-formulas over variables in X, where the leaves of ADD[∧]
are implicitly generated. The optimization technique is discussed in Section 4.1. In the
Y -stage (the remaining lines), we conduct a search within the ADD[∧] framework to precisely
compute the Shannon entropy, where the internal nodes of ADD[∧] are implicitly generated.
The following observation states the input of each recursive call is still a circuit formula and
the two input formulas of a call corresponding to a decision node in ADD[∧] have the same
output variables.

▶ Observation 6. Given a circuit formula φ(X,Y ) and a partial assignment σ without any
input variables, we have the following properties:

φ[σ](X,Y \Vars(σ)) is a circuit formula;
Each ψi(X,Y ∩ Vars(ψi)) is a circuit formula if φ =

∧m
i=1 ψi and for 1 ≤ i ̸= j ≤ m,

Vars(ψi) ∩Vars(ψj) = ∅;
If φ[σ] ≡ true, σ contains each output variable.

Proof. The first two properties obviously hold when φ is unsatisfiable. Thereby, we assume φ
is satisfiable. For the first property, let φ′ be φ[σ](X,Y \Vars(σ)). For each σ′, σ′′ ∈ Sol(φ),
σ′

↓X = σ′′
↓X implies σ′ = σ′′. Sol(φ′) can be seen as a subset of Sol(φ). Consequently, for

each σ′, σ′′ ∈ Sol(φ′), σ′
↓X = σ′′

↓X still implies σ′ = σ′′, concluding that φ′ is also a circuit
formula.

For the second property, each solution of ψi can be obtain from a solution of φ. Let
σ′, σ′′ be two solutions of φ. We only need to prove that σ′

↓X∩Vars(ψi) = σ′′
↓X∩Vars(ψi)

implies σ′
↓(X∪Y )∩Vars(ψi) = σ′′

↓(X∪Y )∩Vars(ψi). We construct another solution of φ, σ′′′ =
σ′′

↓(X∪Y )∩Vars(ψi) ∪ σ
′
↓(X∪Y )\Vars(ψi). Then σ′ = σ′′′, which implies σ′

↓(X∪Y )∩Vars(ψi) =
σ′′′

↓(X∪Y )∩Vars(ψi) = σ′′
↓(X∪Y )∩Vars(ψi).

SAT 2025
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We prove the last property by contradiction. Suppose that φ[σ] ≡ true, and σ is a partial
assignment with only one free variable y ∈ Y . Then the value of y can take either false or
true. That is, σ ∪ {y = false} and σ ∪ {y = true} are solutions of φ, which contradicts the
definition of circuit formula. ◀

Algorithm 1 PSE(φ,X,Y ).

Input: A circuit CNF formula φ with input variables X and output variables Y
Output: the entropy of φ

1 if CacheH (φ) ̸= nil then return CacheH (φ)
2 if Y = ∅ then
3 Cache#(φ)← CountModels(φ)
4 return CacheH (φ)← 0
5 Ψ = Decompose(φ)
6 if |Ψ| > 1 then
7 CacheH (φ)←

∑
ψ∈Ψ PSE(ψ,X, Y ∩Vars(ψi))

8 Cache#(φ)←
∏
ψ∈Ψ Cache#(ψ)

9 return CacheH (φ)
10 y ← PickGoodVar(Y )
11 φ0 ← φ[y 7→ false]; φ1 ← φ[y 7→ true]
12 H0 ← PSE(φ0, X, Y \{y})
13 H1 ← PSE(φ1, X, Y \{y})
14 Cache#(φ)← Cache#(φ0) + Cache#(φ1)
15 p0 = Cache#(φ0)

Cache#(φ) ; p1 = Cache#(φ1)
Cache#(φ)

16 H ← p0 · (H0 − log p0) + p1 · (H1 − log p1)
17 return CacheH (φ)← H

In line 1, if the formula φ is cached, its corresponding entropy is returned. If the current
set Y is empty (in line 2), this indicates that a satisfiable assignment has been found under
the restriction of the output set Y . We do not explicitly handle the case where φ evaluates to
true, as this naturally implies that Y is empty, as indicated by Observation 6. Consequently,
the scenario in which the set Y is empty inherently encompasses the case where φ evaluates
to true. Lines 3–4 perform model counting on the residual formula and compute its entropy
H , corresponding to the terminal case of Proposition 5. We invoke the Decompose function in
line 5 to determine whether the formula φ can be decomposed into multiple components. In
lines 6–9, if φ can be decomposed into multiple sub-components, we compute the model count
and entropy of each component ψ, and subsequently derive the entropy of the formula φ. In
this case, computing the model count and computing the entropy correspond respectively to
the ∧ cases in Propositions 4 and 5. When there is only one component, we select a variable
from Y in line 10. The PickGoodVar function operates as a heuristic algorithm designed to
select a variable from set Y , with the selection criteria determined by the specific heuristic
employed. Moving forward, line 11 generates the residual formulas φ0 and φ1, corresponding
to assigning the variable y to false and true, respectively. Subsequently, lines 12 and 13
recursively compute the entropy H for each derived formula. Since φ is a circuit formula, all
residual formulas generated in the recursive process after making decisions on variables in Y
remain circuit formulas. It follows from Observation 6 that when computing the Shannon
entropy of the circuit formula, n0 = n1 = 0. The model count of φ is cached in line 14,
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corresponding to the decision node case in Proposition 4. Finally, in lines 15–16, we compute
the entropy of φ (corresponding to the third case in Proposition 5), store it in the cache,
and return it as the result in line 17.

▶ Example 7. Consider the following circuit CNF formula with input variables X =
{x1, x2, x3, x4, x5} and output variables Y = {y1, y2, y3, y4, y5}:

φ(X,Y ) =(x2 ∨ x3 ∨ y3) ∧ (¬y3 ∨ ¬y4) ∧ (x2 ∨ y3) ∧ (¬x2 ∨ y4) ∧ (¬x1 ∨ ¬y1) ∧ (x1 ∨ y1)∧
(¬x4 ∨ x5 ∨ y2) ∧ (x4 ∨ ¬x5 ∨ y2) ∧ (¬x4 ∨ ¬x5 ∨ ¬y2) ∧ (x4 ∨ x5 ∨ y2)∧
(¬y1 ∨ ¬y5) ∧ (y1 ∨ y5) ∧ (y1 ∨ x4 ∨ x5) ∧ (y1 ∨ y3 ∨ y4)

Figure 2 illustrates the execution trace of PSE taking in φ with the variable ordering
y1 ≺ y2 ≺ y3 ≺ y4 ≺ y5, which is an implicit ADD[∧]. If we do not perform decomposition
in line 5, the search trace is depicted in Figure 3, an ADD structure. It is evident that
ADD[∧] and ADD yield consistent results, both in terms of Shannon entropy computation
and model counting. After merging identical terminal nodes, the ADD[∧] contains 14 nodes,
which is fewer than the 24 nodes in the ADD. A comparison between Figure 2 and Figure 3
demonstrates the succinctness of the ADD[∧] structure.
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Figure 2 The execution example of PSE on Example 7 follows the variable order of y1 ≺ y2 ≺
y3 ≺ y4 ≺ y5, where the corresponding computational trajectory is represented as an ADD[∧]. The
entropy computation process performed by PSE is explicitly annotated in red font. The calculation
process of weight (number of models) is presented in blue font.

From the aforementioned example, we observe that the search space of PSE corresponds
to an ADD[∧] that represents the weights of assignments for the output variables. Thus,
Propositions 4–5 and Observation 6 ensure that the entropy of the original formula is obtained
from the root call of PSE.
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Figure 3 An ADD structure, constructed in Example 7, follows the variable order of y1 ≺
y2 ≺ y3 ≺ y4 ≺ y5. According to Proposition 4, weight is marked in blue font, and according to
Proposition 5, entropy is marked in red font.

4.1 Implementation
We now discuss the implementation details that are crucial for the runtime efficiency of PSE.
Specifically, leveraging the tight interplay between entropy computation and model counting,
our methodology integrates a variety of state-of-the-art techniques in model counting.

In the X-stage of algorithm 1, we have the option to employ various methodologies for the
model counting query denoted by CountModels in line 3. The first method involves individu-
ally employing state-of-the-art model counters, such as SharpSAT-TD [20], Ganak [32], and
ExactMC [25]. The second method, known as ConditionedCounting, requires the preliminary
construction of a representation for the original formula φ to support linear model counting.
The knowledge compilation languages that can be used for this method include d-DNNF [8],
OBDD[∧] [24], and SDD [7]. Upon reaching line 3, the algorithm executes conditioned model
counting, utilizing the compiled representation of the formula and incorporating the partial
assignment derived from the ancestor calls. The last method, SharedCounting, also relies on
exact model counters but, unlike the first method, it shares the component cache across all
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model counting queries using a strategy called XCache. To distinguish it from the caching
approach used in the X-stage, the caching method in the Y -stage is referred to as YCache.
Our experimental observations indicate that the SharedCounting method is the most effective
within the PSE framework.

Conjunctive Decomposition. We employed dynamic component decomposition (well-known
in model counting and knowledge compilation) to divide a formula into components, thereby
enabling the dynamic programming calculation of their corresponding entropy, as stated in
Proposition 5.

Variable Decision Heuristic. We implemented the current state-of-the-art model counting
heuristics for picking variables from Y in the computation of Shannon entropy, including
VSADS [31], minfill [9], the SharpSAT-TD heuristic [20], and DLCP [25]. Our experiments
consistently demonstrate that the minfill heuristic exhibits the best performance. Therefore,
we adopt the minfill heuristic as the default option for our subsequent experiments.

Pre-processing. We have enhanced our entropy tool, PSE, by incorporating an advanced
pre-processing technique that capitalizes on literal equivalence in model counting. This idea
is inspired by the work of Lai et al. [25] on capturing literal equivalence in model counting.
Initially, we extract equivalent literals to simplify the formula. Subsequently, we restore the
literals associated with the variables in set Y to prevent the entropy of the formula from
becoming non-equivalent after substitution. This targeted restoration is sufficient to ensure
the equivalence of entropy calculations. The new pre-processing method is called Pre in the
following. This pre-processing approach is motivated by two primary considerations. Firstly,
preprocessing based on literal equivalence can simplify the formula and enhance the efficiency
of subsequent model counting. Secondly, and more crucially, it can reduce the treewidth of
tree decomposition, which is highly beneficial for the variable heuristic method based on tree
decomposition and contributes to improving the solving efficiency.

5 Experiments

We implemented a prototype of PSE in C++ and performed evaluations in order to understand
its performance. We experimented on benchmarks from the same domains as the state-of-the-
art Shannon entropy tool EntropyEstimation [15], that is, QIF benchmarks, plan recognition,
bit-blasted versions of SMTLIB benchmarks, QBFEval competitions, program synthesis, and
combinatorial circuits [27] 2. EntropyEstimation reported results only for 96 successfully
solved benchmarks (denoted Suite1), which we found insufficient for scalability testing. To
ensure a rigorous evaluation, we extended Suite1 as follows:

Suite2 (399 benchmarks): Suite1 is from the benchmarks that were used to test a well-
known model counter called Ganak 3; thereby, we added each circuit formula in the
aforementioned domain but not in Suite1 from the Ganak benchmarks.
Suite3 (459 benchmarks): Incorporated 60 additional combinatorial circuits 4 from [27]
on the basis of Suite2.

2 The paper of EntropyEstimation [15] does not mention the domains of program synthesis and combinat-
orial circuits but actually presents benchmarks in these two domains.

3 The benchmarks are available at https://github.com/meelgroup/ganak
4 The additional benchmarks are available at https://github.com/nianzelee/PhD-Dissertation
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All experiments were run on a computer with Intel(R) Core(TM) i9-10920X CPU @ 3.50GHz
and 32GB RAM. Each instance was run on a single core with a timeout of 3000 seconds and
4GB memory, the same setup adopted in the evaluation of EntropyEstimation.

Through our experiments, we sought to answer the following research questions:
RQ1: How does the runtime performance of PSE compare to the state-of-the-art Shannon

entropy tools with (probabilistic) accuracy guarantee?
RQ2: How do the utilized methods impact the runtime performance of PSE?

5.1 RQ1: Performance of PSE
Golia et al. [15] have already demonstrated that their probably approximately correct tool
EntropyEstimation is significantly more efficient than the state-of-the-art precise Shannon
entropy tools. The comparative experiments between PSE and the state-of-the-art precise
tools are presented in the appendix. We remark that PSE significantly outperforms the
precise baseline (the baseline was able to solve only 18 benchmarks, whereas PSE solved 332
benchmarks). This marked improvement is attributed to the linear entropy computation
capability of ADD[∧] and the effectiveness of various strategies employed in PSE.

Table 1 presents the performance comparison between PSE and EntropyEstimation across
the three benchmark suites. For Suite1, EntropyEstimation solved two more instances than
PSE, indicating a slight advantage. However, among the 94 instances that both solved,
PSE demonstrated higher efficiency. Moreover, PSE achieved a lower PAR-2 5 score than
EntropyEstimation, suggesting that PSE holds an overall performance advantage. We remark
that in the computation of the PAR-2 scores, we did not perform additional penalization for
each successful run of EntropyEstimation as its output was very close to the true entropy. For
Suite2, PSE solved 44 more instances than EntropyEstimation and achieved a significantly
lower PAR-2 score, further demonstrating its superior performance. For Suite3, PSE solved
56 more instances than EntropyEstimation. Additionally, in terms of overall performance,
PSE achieved a significantly lower PAR-2 score than EntropyEstimation, reinforcing its
advantage.

Table 1 Detailed performance comparison of PSE and EntropyEstimation. Unique represents
the number of instances that can only be solved by a specific tool. Fastest represents the number of
instances that a tool solves with the shortest time.

Suite Tool
Solved Instances

PAR-2 score
Unique Fastest Total

Suite1
EntropyEstimation 2 0 96 149.63

PSE (ours) 0 94 94 126.04

Suite2
EntropyEstimation 2 0 268 2132.52

PSE (ours) 46 266 312 1314.59

Suite3
EntropyEstimation 2 0 276 2536.53

PSE (ours) 58 274 332 1666.11

5 The PAR-2 scoring scheme gives a penalized average runtime, assigning a runtime of two times the time
limit for each benchmark that the tool fails to solve
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Figure 4 demonstrates the detailed performance comparison between PSE and Entropy-
Estimation on Suite3. More intuitively, among all the benchmarks that both PSE and
EntropyEstimation are capable of solving, in 98% of those benchmarks, the efficiency of
PSE surpasses that of EntropyEstimation by a margin of at least ten times. For all the
benchmarks where PSE and EntropyEstimation did not timeout and took more than 0.1
seconds, the mean speedup is 506.62, which indicates an improvement of more than two
orders of magnitude.

The aforementioned results clearly indicate that PSE outperforms EntropyEstimation
in the majority of instances. This validates a positive answer to RQ1: PSE outperforms
the state-of-the-art Shannon entropy tools with (probabilistic) accuracy guarantee. We
remark that EntropyEstimation is an estimation tool for Shannon entropy with probabilistic
approximately correct results [15]. PSE consistently performs better than a state-of-the-art
entropy estimator across most instances, highlighting that our methods significantly enhance
the scalability of precise Shannon entropy computation.
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Figure 4 Scatter Plot of the running time Comparison between PSE and EntropyEstimation.

5.2 RQ2: Impact of algorithmic configurations
To better verify the effectiveness of the PSE methods and answer RQ2, we conducted a
comparative study on all the utilized methods, including methods for the Y -stage: Conjunctive
Decomposition, YCache, Pre, variable decision heuristics (minfill, DLCP, SharpSAT-TD heuristic,
VSADS), and methods for the X-stage: XCache and ConditionedCounting. In accordance
with the principle of control variables, we conducted ablation experiments to evaluate the
effectiveness of each method, ensuring that each experiment differed from the PSE tool by
only one method. The cactus plot for the different methods is shown in Figure 5, where PSE
represents our tool. PSE-wo-Decomposition indicates that the ConjunctiveDecomposition
method is disabled in PSE, which means that its corresponding trace is ADD. PSE-wo-Pre
means that Pre is turned off in PSE. PSE-ConditionedCounting indicates that PSE employed
the ConditionedCounting method rather than SharedCounting in the X-stage. PSE-wo-XCache
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indicates that the caching method is turned off in PSE in the X-stage. PSE-wo-YCache
indicates that the caching method is turned off in PSE in the Y -stage. PSE-dynamic-
SharpSAT-TD means that PSE replaces the minfill static variable order with the dynamic
variable order: the variable decision-making heuristic method of SharpSAT-TD (all other
configurations remain identical to PSE, with only the variable heuristic differing). Similarly,
PSE-dynamic-DLCP and PSE-dynamic-VSADS respectively indicate the selection of dynamic
heuristic DLCP and VSADS.
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Figure 5 Cactus plot comparing different methods.

The experimental results highlight the significant effects of conjunctive decomposition.
Caching also demonstrates significant benefits, consistent with findings from previous studies
on knowledge compilation. It can also be clearly observed that Pre improves the efficiency of
PSE. Among the heuristic strategies, it is evident that minfill performs the best. In the tech-
nique of the X-stage, the ConditionedCounting method performs better than SharedCounting
without XCache, but not as well as the SharedCounting method. This comparative experiment
indicates that the shared component caching is quite effective. The ConditionedCounting
method’s major advantage is its linear time complexity [24]. However, a notable drawback is
the requirement to construct an OBDD[∧] (or other knowledge compilation languages such
as d-DNNF, SDD, etc.) based on a static variable order, which can introduce considerable
time overhead for more complex problems. Although the ConditionedCounting method is not
the most effective, we believe it is still a promising and scalable method. In cases where an
ADD[∧] can be efficiently constructed based on a static variable order, the ConditionedCount-
ing method may be more effective than the SharedCounting method, especially when modeling
counting in the X-stage is particularly challenging. Finally, PSE utilizes the SharedCounting
strategy in the X-stage, and incorporates ConjunctiveDecomposition, YCache, Pre, and the
minfill heuristic method in the Y -stage.

Finally, we analyze the effectiveness of algorithmic configurations across benchmarks. In
terms of the number of solved instances, PSE either solves the most instances or ties with
other configurations across all domains. Regarding the PAR-2 score, on QBF benchmarks,
PSE-dynamic-VSADS has the lowest score, while in other domains, PSE has the lowest
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scores. Among all the instances, there are a total of two instances 6 which PSE failed to solve
within the specified time limit, but were solved by PSE-wo-Pre. In PSE, we use the minfill
heuristic to construct a tree decomposition for a given circuit formula. We also observed
that the resulting treewidth strongly correlates with compilation size – smaller treewidth in
a benchmark typically leads to more efficient PSE execution.

6 Related work

Our work is based on the close relationship between QIF, model counting, and knowledge
compilation. We introduce relevant work from three perspectives: (1) quantitative information
flow analysis, (2) model counting, and (3) knowledge compilation.

Quantified information flow analysis. At present, the QIF method based on model counting
encounters two significant challenges. The first challenge involves constructing the logical
postcondition Πproc for a program proc [34]. Although symbolic execution can achieve this,
existing symbolic execution tools have limitations and are often challenging to extend to
more complex programs, such as those involving symbolic pointers. The second challenge
concerns model counting, a key focus of our research. For programs modeled by Boolean
clause constraints, Shannon entropy can be computed via model counting queries, enabling
the quantification of information leakage. Golia et al. [15] have made notable contributions
to this field. They proposed the first efficient Shannon entropy estimation method with PAC
guarantees, utilizing sampling and model counting. Their approach focuses on reducing the
number of model counting queries by employing sampling techniques. Nevertheless, this
method yields only an approximate estimation of entropy. Our research is motivated by the
work of Golia et al., but diverges in its approach and optimization strategy. We enhance the
existing model counting framework for precise Shannon entropy by reducing the number of
model counting queries and concurrently improving the efficiency of model counting solutions.
Inspired by Golia et al.’s work, our research differs in approach and optimization strategy.
We improve the existing model counting framework for precise Shannon entropy by reducing
the number of model counting queries and enhancing solution efficiency.

Model counting. Since the computation of entropy relies on model counting, we reviewed
advanced techniques in this domain. The most effective methods for exact model counting
include component decomposition, caching, variable decision heuristics, pre-processing, and
so on. In our research, these methods can all be optimized and improved for application in
Shannon entropy computation. The fundamental principle of disjoint component analysis
involves partitioning the constraint graph into separate components that do not share
variables. The core of ADD[∧] lies in leveraging component decomposition to enhance the
efficiency of construction. We also utilized caching techniques in the process of computing
entropy, and our experiments once again demonstrated the power of caching techniques.
Extensive research has been conducted on variable decision heuristics for model counting,
which are generally classified into static and dynamic heuristics. In static heuristics, the
minfill [9] heuristic is notably effective, while in dynamic heuristics, VSADS [31], DLCP [25],
and SharpSAT-TD heuristic [20] have emerged as the most significant in recent years. Lagniez
et al. [22] offer a comprehensive review of preprocessing techniques in model counting.

6 The two instances are in bit-blasted versions of SMTLIB benchmarks with names blasted_case_0_ptb_1
and blasted_TR_b12_1_linear.
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Knowledge compilation. The motivation for knowledge compilation lies in transforming
the original representation into a target language to enable efficient solving of inference tasks.
Darwiche et al. first proposed a compiler called c2d [8] to convert the given CNF formula
into Decision-DNNF. Lai et al. proposed two extended forms of OBDD: Ordered Binary
Decision Diagram with Implied Literals (OBDD-L [23]), which is developed by extracting
implied literals recursively; OBDD[∧] [24], which is proposed by integrating conjunctive
decomposition. Both forms aim to reduce the size of OBDD. Exploiting literal equivalence,
Lai et al. [25] proposed a generalization of Decision-DNNF, called CCDD, to capture literal
equivalence. They demonstrate that CCDD supports model counting in linear time and design
a model counter called ExactMC based on CCDD. In order to compute the Shannon entropy,
the focus of this paper is to design a compiled language that supports the representation of
probability distributions. Numerous target representations have been used to concisely model
probability distributions. For example, d-DNNF can be used to compile relational Bayesian
networks for exact inference [6]; Probabilistic Decision Graph (PDG) is a representation
language for probability distributions based on BDD [18]. Macii and Poncino [28] utilized
knowledge compilation to calculate entropy, demonstrating that ADD enables efficient and
precise computation of entropy. However, the size of ADD often grows exponentially for
large scale circuit formulas. To simplify ADD size, we propose an extended form, ADD[∧].
It uses conjunctive decomposition to streamline the graph structure and facilitate cache hits
during construction.

7 Conclusion

In this paper, we propose a new compilation language, ADD[∧], which combines ADD and
conjunctive decomposition to optimize the search process in the first stage of precise Shannon
entropy computation. In the second stage of precise Shannon entropy computation, we
optimize model counting queries by utilizing the shared component cache. We integrated
preprocessing, heuristics, and other methods into the precise Shannon computation tool PSE,
with its trace corresponding to ADD[∧]. Experimental results demonstrate that PSE signific-
antly enhances the scalability of precise Shannon entropy computation, even outperforming
the state-of-the-art entropy estimator EntropyEstimation in overall performance. We believe
that PSE has opened up new research directions for entropy computing in Boolean formula
modeling.
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baseline with state-of-the-art model counting techniques. In the baseline, we enumerate each
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the set of solutions of φ(Y 7→ σ) and Sol(φ)↓X denotes the set of solutions of φ projected to
X. As can be seen from the previous proposition, |Sol(φ)↓X | can be replaced by |Sol(φ)|.
Finally, entropy is computed as H(φ) =

∑
σ∈2Y −pσ log pσ. For a formula with an output

set size of m, 2m model counting queries are required. For model counting queries, we
have adopted two different methods. One is to directly invoke the currently state-of-the-art
model counters, and our experiment, SharpSAT-TD, Ganak, and ExactMC are employed.
The other method involves utilizing knowledge compilation. Firstly, we construct an offline
knowledge compilation language that supports linear model counting, and then perform online
conditioning based on each assignment over the Y variables. The knowledge compilation
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language in our experiment is (OBDD[∧] via KCBox), and this method corresponds to
the baseline-Panini in Table 2. Panini is an efficient compilation tool that supports the
compilation of CNF formulas into the form of OBDD[∧] to enable efficient model counting.

Table 2 Entropy computation performance of baselines and PSE. “–” represents that the entropy
cannot be computed within the specified time limit.

instance |X| |Y | baseline-SharpSAT-TD baseline-ExactMC baseline-Ganak baseline-Panini PSE
Entropy Time(s) Entropy Time(s) Entropy Time(s) Entropy Time(s) Entropy Time(s)

blasted_case102.cnf 11 23 8 81.29 8 0.39 8 35.42 8 1.82 8 0.16
s27_15_7.cnf 7 25 3.3 142.77 3.3 0.15 3.3 0.25 3.3 0.31 3.3 0.14

small-bug1-fixpoint-5.cnf 66 21 12.81 79.51 12.81 2.99 12.81 104.17 12.81 8.79 12.81 0.18
small-bug1-fixpoint-6.cnf 79 25 15.31 1406.47 15.31 51.9 15.31 1846.36 15.31 127.70 15.31 0.21

blasted_case144.cnf 138 627 – – – – – – – – 77.62 35.42
s1423a_15_7.cnf 91 773 – – – – – – – – 88.17 232.65
s382_15_7.cnf 24 326 – – – – – – – – 23.58 0.22

CVE-2007-2875.cnf 752 32 – – – – – – – – 32 0.72
10.sk_1_46.cnf 47 1447 – – – – – – – – 13.58 0.18

Our experimental results indicate that all four representative state-of-the-art exact
Shannon entropy baselines can only solve 18 benchmarks within the time limit of 3000
seconds, whereas PSE can solve 332 benchmarks. Table 2 shows the comparison between
baselines and PSE on some instances. Notably, although some instances have similar sizes
of X and Y sets, their computation times vary significantly (e.g., blasted_case144.cnf vs.
s1423a_15_7.cnf). To clarify, computation times depend on multiple parameters, such as an
exponential relationship with treewidth in addition to problem size. We employ the minfill
heuristic to compute tree decompositions, guiding the entropy calculation. Our experimental
results show that blasted_case144.cnf has a minfill treewidth of 22, whereas s1423a_15_7.cnf
has a minfill treewidth of 27. The results show a significant improvement in the efficiency of
PSE for computing the precise Shannon entropy. We remark that the poorer performance of
these baselines is due to the exponential size of 2Y .
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