Enumerating All Boolean Matches

Alexander Nadel @&
Intel Corporation, Haifa, Israel
Faculty of Data and Decision Sciences, Technion, Haifa, Israel

Yogev Shalmon &4
Intel Corporation, Haifa, Israel
Faculty of Data and Decision Sciences, Technion, Haifa, Israel

—— Abstract
Boolean matching, a fundamental problem in circuit design, determines whether two Boolean circuits
are equivalent under input/output permutations and negations. While most works focus on finding
a single match or proving its absence, the problem of enumerating all matches remains largely
unexplored, with BooM being a notable exception. Motivated by timing challenges in Intel’s library
mapping flow, we introduce EBat— an open-source tool for enumerating all matches between single-
output circuits. Built from scratch, EBat reuses BooM’s SAT encoding and introduces novel high-level
algorithms and performance-critical subroutines to efficiently identify and block multiple mismatches
and matches simultaneously. Experiments demonstrate that EBat substantially outperforms BooM’s
baseline algorithm, solving 3 to 4 times more benchmarks within a given time limit. EBat has been
productized as part of Intel’s library mapping flow, effectively addressing the timing challenges.

2012 ACM Subject Classification Mathematics of computing — Solvers
Keywords and phrases Boolean Matching, All-Boolean-Matching, Enumeration, SAT, Generalization
Digital Object Identifier 10.4230/LIPIcs.SAT.2025.22

Supplementary Material Software: https://github.com/yogevshalmon/ebat
archived at swh:1:dir:4b747bd04b637c1e3c938ceab6469b2ff0b5d2d9

Acknowledgements We are grateful to Oded Asulin, Yossi Levani, Aviad Munitz, Pavel Nisanov
and Hagay Segal for helpful discussions, which played an important role in shaping our research.
We also thank Roland Jiang for providing us with the original code for BooM. Additionally, we would

like to thank the anonymous reviewers for their valuable comments and insightful suggestions.

1 Introduction

Boolean matching is a pivotal problem of determining whether two Boolean circuits are
equivalent under the permutation and negation of inputs and outputs. From the theoretical
standpoint, Boolean matching lies between coNP and X% [3, 10], which makes it a good
candidate for examining the open question about the collapse of the polynomial hierarchy.
On the practical front, Boolean matching is widely applied, including in library mapping
(also known as library binding or technology mapping) [6, 28], synthesis [16, 43], Engineering
Change Order (ECO) [22], equivalence checking [29] and protection against hardware Tro-
jans [40]. Considerable attention has been devoted to solving Boolean matching, highlighted
by its inclusion as a CAD contest problem at ICCAD’23 [15]. Existing solving methods can
be categorized into canonical-form- [6, 29, 23], signature- [44, 1], and SAT-based [42, 26, 25].
While almost all existing works focus on finding a single match or proving its nonexistence,
this paper is dedicated to the all-Boolean-matching problem of enumerating all the matches.

1.1 Motivation

This work was driven by a critical industrial need identified by engineers at Intel.

© Alexander Nadel and Yogev Shalmon;

oY licensed under Creative Commons License CC-BY 4.0
28th International Conference on Theory and Applications of Satisfiability Testing (SAT 2025).
Editors: Jeremias Berg and Jakob Nordstréom; Article No. 22; pp. 22:1-22:21

\\v Leibniz International Proceedings in Informatics
LIPICS Schloss Dagstuhl — Leibniz-Zentrum fiir Informatik, Dagstuhl Publishing, Germany

mailto:alexander.nadel@intel.com
http://www.cs.tau.ac.il/research/alexander.nadel
https://orcid.org/0000-0003-4679-892X
mailto:yogev.shalmon@intel.com
https://yogevshalmon.github.io/
https://orcid.org/0009-0004-3720-4004
https://doi.org/10.4230/LIPIcs.SAT.2025.22
https://github.com/yogevshalmon/ebat
https://archive.softwareheritage.org/swh:1:dir:4b747bd04b637c1e3c938cea66469b2ff0b5d2d9;origin=https://github.com/yogevshalmon/ebat;visit=swh:1:snp:4e3f7d1082f1ad64e1285c85972e35104decd3ae;anchor=swh:1:rev:691d572df43ccb3a2eb75ddab954d495221bbb9b
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics
https://www.dagstuhl.de

22:2

Enumerating All Boolean Matches

The modern semiconductor design process relies heavily on the standard-cell methodology,
where designers build complex circuits using fundamental building blocks called standard cells,
organized into standard cell libraries. Library mapping [6, 28] is the process of transitioning
between libraries to re-implement the same logical functionality using a new library. Intel
engineers found that standard Boolean matching-based library mapping often failed to meet
timing requirements. Specifically, their timing tool revealed significant delay variances in
matched pairs, whereas it is crucial to identify matches with minimal delay variance.

The key issue was that for a given pair of matching cells, multiple input mappings were
possible, each resulting in a different delay, yet existing Boolean matching tools returned
an arbitrary match. To address this, engineers requested a tool capable of enumerating all
possible Boolean matches between two cells or proving their absence, so that they could run
their timing tool on the results to identify the best match. Notably, the timing tool calculates
a complex function that varies according to project specifications, making it infeasible to
express the problem using an optimization paradigm like MaxSAT.

This paper presents EBat, our novel open-source tool developed to enumerate all possible
Boolean matches or prove their absence, fulfilling the engineers’ requirement. EBat has been
productized and is actively used at Intel for library mapping.

We have strong reasons to believe that EBat will be valuable to both industrial practitioners
and researchers. First, poor timing in library mapping is a common and critical challenge in
semiconductor design. Second, a tool that efficiently enumerates all solutions to a widely
used decision problem, such as Boolean matching, can open new research directions and
practical applications.

1.2 Our Focus

Having clarified our motivation, this paper focuses on algorithmic solutions for all-Boolean-
matching. We restrict ourselves to combinational circuits with a single output. In line
with the literature (see, e.g., [26]), we distinguish between three types of equivalence:
Permutation-Equivalence (P-Equivalence), where only input permutations are allowed;
Negation-Permutation-Equivalence (NP-Equivalence), where inputs can also be negated;
and Negation-Permutation-Negation-Equivalence (NPN-Equivalence), where both inputs
and outputs can be negated. In the case of single-output circuits, NPN-equivalence can be
reduced to two NP-equivalence checks: the first runs NP-equivalence on Y and Z as-is; the
second runs it on Y and Z with Z’s output negated. Consequently, this work focuses on
P-equivalence and NP-equivalence. Fig. 1 shows an example of finding all Boolean matches
for both P- and NP-equivalence.

Y1 21
Ya o
Y2 29 o
Y3 z3
(a) Circuit Y implementing =((y1 A y2) A —y3). (b) Circuit Z implementing —((z1 A 722) A 23).

Figure 1 For P-equivalence, there are two matches between Y and Z: [z1,23,22] (that is,
Y1 > 215 Y2 > 235 Y3 — 22) and [z3, 21, 22]. For NP-equivalence, there are these two plus four more:
[21, 722, 23], [22, 21, 723], [—2e, 23, 021, and [z3, ~z2, —21).

A. Nadel and Y. Shalmon

1.3 Previous Work: BooM

To our knowledge, BooM [26, 25] is the only Boolean matching approach capable of enumerating
all matches. We refer to BooM’s all-Boolean-matching algorithm as the sifter (BooMS). At a
high level, BooMs sifts through a given bucket of mappings using a mismatch-sifter, filtering
out mismatches and collecting the remaining mappings in a new bucket containing only
matches, which are then reported to the user.

Specifically, BooMS constructs two SAT instances: misms, initialized to capture only
mismatches, and bucket, initialized to include all possible mappings. BooMS iteratively visits
each unvisited mismatch by querying misms for a solution 7. It then blocks 7 and potentially
other mismatches from both misms and bucket by adding the same blocking clause to both
instances. For NP-equivalence, before blocking, the mismatch witness (that is, the solution)
is further extended through generalization [35, 21] using backward ternary simulation (aka
justification) [37, 39] to cover additional mismatches. Once misms returns UNSAT, bucket
contains only matches as its solutions. These matches can then be enumerated by repeatedly
querying bucket to obtain and block each match.

1.4 Our Contributions: New Algorithms and EBat

Our solution, EBat, implemented from scratch, reuses BooM’s SAT encoding while introducing
novel all-Boolean-matching algorithms based on the following insights.

The feasibility of all-Boolean-matching algorithms hinges on efficiently identifying and
blocking multiple mismatches and matches simultaneously — a capability essential for scaling to
real-world instances. We observed a fundamental limitation in the original BooMS algorithm:
it enumerates, extends, and blocks only mismatches. In the following, we describe our
contributions, starting with a new algorithm that addresses the above limitation:

Our first contribution is a novel algorithm, named the picker (EBatP), which enumer-
ates not only mismatches but also matches. Its core capability, which distinguishes it from
BooMS, is explicitly visiting and strengthening matches using minimal unsatisfiable core
extraction [20, 18] to cover and block multiple matches simultaneously, while still lever-
aging witness extension for efficient mismatch handling, similarly to BooMS. We observed
EBatP breaking a performance bottleneck and solving significantly more instances, but
only for NP-equivalence. Our analysis suggested this stemmed from the lack of witness
extension for P-equivalence, as we followed BooMS, which omits this procedure since
applying generalization for P-equivalence compromises correctness (details in Sect. 5).
This led us to our second contribution.

Our second contribution is a new witness extension algorithm for P-equivalence,
achieved through a dedicated modification of SAT solver heuristics. With this approach,
we successfully broke the performance bottleneck for P-equivalence as well. The following
three algorithmic contributions further increase the number of solved instances:

Our third contribution is a novel high-level “sift-and-pick” algorithm, EBatC, which
combines BooMS and EBatP.

Our fourth contribution is more efficient witness extension for NP-equivalence using
a new generalization algorithm, inspired by our recent results in solution enumeration
for circuits (AIISAT-CT) [21], which outperforms BooM’s witness extension method (i.e.,
generalization via backward ternary simulation).

Our fifth contribution is a novel, dedicated mismatch-blocking algorithm for P-
equivalence.

22:3

SAT 2025

22:4

Enumerating All Boolean Matches

Finally, our sixth contribution comprises the implementation of all our algorithms and
the baseline BooM algorithm in a new open-source tool, EBat. Despite the kind assistance
of BooM’s authors, we could not get the original implementation to work, making EBat
the only publicly available all-Boolean-matching tool.

Experiments show that our algorithms solve 3 to 4 times more benchmarks than the
baseline BooMS algorithm within EBat for both P- and NP-equivalence across a diverse
benchmark set.

In what follows, Sect. 2 provides preliminaries, and Sect. 3 reviews prior work. Sect. 4
introduces the EBat algorithms, with mismatch handling for P-equivalence detailed in Sect. 5,
and correctness discussed in Sect. 6. Experimental results are presented in Sect. 7, and
conclusions in Sect. 8.

2 Preliminaries

We establish the relevant notation, assuming familiarity with Boolean logic fundamentals. Let
V be a set of Boolean variables. A literal [is either a variable v € V or its negation —v. The set
of literals corresponding to all variables in V is denoted by vV := {v |v € V}U{-v |v € V}.
For a single variable v, we overload the notation by letting v¥ denote either v or —w,
non-deterministically. Given a function F', Dom(F') denotes its domain.

We introduce the semantics used in this paper, omitting the standard Boolean semantics
for brevity. Ternary logic [34] extends Boolean logic by introducing a third value, don’t-care
(X). Formally, a ternary assignment 7 : V +— {0,1, X} assigns each variable one of the
ternary values {0,1, X'}. Hereafter, the term assignment will refer to a ternary assignment
unless otherwise specified, and every assignment is total (i.e., it is defined for all variables
in its domain). We omit variables assigned X when listing assignments. For example,
7({v1,v2}) = {v1 := 1} represents 7({v1,v2}) = {v1 := 1,v5 := X }. The cardinality || is the
number of variables in 7 assigned either 0 or 1. An assignment is Boolean if it has maximal
cardinality. To evaluate a formula under an assignment 7, standard Boolean semantics is
extended with (=X = X), (X A1=X), (XA0=0), and (X A X = X). An assignment
p(V) subsumes the assignment 7(V'), denoted by p C 7, if 7(v) = p(v) for every v such that
p(v) € {0,1}. If p(V) subsumes 7(V), then 7(V') extends p(V). For example, 71 = {v; := 1}
subsumes 15 = {v; := 1, vy := 0}, whereas 72 extends 7;. We now proceed to define a circuit.

» Definition 1 (Circuit). A combinational Boolean circuit with i inputs IY , g gates GY , and
output oY is the Boolean structure:

g9 Y
};(IY = {yi/v cee 7yzY}) = <GY = {yzYJrl < 93;1’ s 7yzY+g A gz};g}70y € V{yi+g}>

FEach input y;/ € IV is a Boolean variable. For each gate, ng is of the form:
g?c/ = (yyifl Ok Vy’z;) |]_ S kth < k

with v and vV representing the (possibly negated) inputs to the gate and Oy being a
Boolean operator (e.g., N\, V, =, @).

2
For example, Fig. 1a illustrates the circuit Y (I = {y1,92,y3}) = (G = {ys < y1 A y2,y5 <
3

ya A —ys}t,o = —wys}). Towards extending the semantics to circuits, we define ternary
simulation [37, 24]. Intuitively, ternary simulation propagates an input assignment 7 from
the circuit inputs through its gates to the output.

A. Nadel and Y. Shalmon

9
» Definition 2 (Ternary Simulation). Given a circuit Y with inputs IV = {y{,...,y} },
3

Y
Y e vWitsd | and an assignment

gates G¥ = {yX, « Q¢Y+17--~7y3;g “ g};g}, output o
7(IY) : IV + {0,1,X} to the circuit’s inputs, ternary simulation transforms T into the
assignment 75 ({yy ..., yl\ ,}), where:

1L m5(y)) :==7(yY) for each input y) € I¥.

2. For each gate y) <> gY, where g} = (Vyzll Ok yyzz):

rSy) =TS O S (0

For the example circuit Y in Fig. la, ternary propagation would propagate 7(I =
{y1, 92, 93}) = {y1 := 0} to 75({y1, .., ¥5}) = {y1 := 0,44 := 0,5 := 0}.

We are now prepared to define what it means for an input assignment to serve as a
circuit solution. Our definition relies on entailment [38] following the most general of the
three formulations of a circuit solution we presented in [21]. Intuitively, 7(I) is a solution if
extending 7(I) to any Boolean assignment and propagating by ternary simulation always
results in the circuit outputting 1.

g

» Definition 3 (Entailment, Solution). Given a circuit Y with inputs IY = {y},...,y} },
1

gates G¥Y = {y?fH > g}j_l,...,yﬁ_g > g};g}, output oY € V{yiyﬂ}, and an assignment

7(IY) : IY — {0,1, X} to the circuit’s inputs, T entails Y (denoted by 7Y), if p°(0) = 1
for any p which substitutes every X in T by any Boolean value. Furthermore, T is a solution
to Y if and only if TEY .

For example, in the circuit Y shown in Fig. 1a, 7 (I) = {y1 := 0} Y, as any extension
followed by propagation of 71 yields o = —y5 := 1. Conversely, »(I) = {y1 := 1}}£Y, since
extending 72 to {y1 := 1,y2 := 1,y3 := 0} and propagating results in o = —y5 := 0. We
proceed with mappings-related definitions.

» Definition 4 (Mapping, Permutation). Let IY = {y1,...,y;} and I? = {z,...,2} be
ordered sets of i Boolean variables each. A mapping 7 is a function w: 1Y — vl” injective
w.r.t. variables, i.e., if y, € Dom(m) is mapped to either zy or —z4, then no other element
yr € Dom(), where r # p, can be mapped to zy or —z,.

A mapping w is total if Dom(n) = IV, whereas any mapping, including total mappings,
is considered partial (i.e., the term mapping refers to a partial mapping unless specified
otherwise). A mapping m is a permutation if its range contains only non-negated variables,
i.e., w(y) € IZ for all y € Dom(r).

Given IV = {y1,y2,ys} and IZ = {2, 29, 23}, two example (total) mappings are: p; =
[—23; 22; 21] and pa = [21; 23; 22], where we represent the mapping [y — v ;... ;y, — V|
by the shortened notation [v%e,...,v%m]. Here, p; is not a permutation because its range
includes a negated variable, whereas po is. When representing partial mappings, we use the
bullet sign e for any unmapped elements. For example, ps = [y1 — —z23; y3 — 21] can be
written as [—z3; e; z1].

We next extend the semantics to mappings. A (total ternary) assignment 7 satisfies a
(partial) mapping 7 if 7 can be extended to an assignment p that assigns Boolean values
consistently with 7 to all the variables in Dom().

» Definition 5 (Satisfy a Mapping). Given the ordered sets IY = {y1,...,y;} and [% =
{z1,...,2}, a mapping 7 : [Y — VIZ, and an assignment T(I¥ U I%), we say that T satisfies
7 (denoted by Trem) if there exists p such that p O 7 and:

Yy, € Dom(m) : p(yp) € {0,1} and p(yp) = p(7(yp))-

22:5

SAT 2025

22:6

Enumerating All Boolean Matches

Consider, for example, the mapping m = [z2;e;e] from IY = {y;,y2,y3} to IZ =
{21, 22, z3}. Any assignment 7 that does not assign Boolean values to both y; and z3, in a
way inconsistent with r, satisfies w. For example, {y; := 0; 22 := 1} does not satisfy 7, but
{y1 := 0} does (since {y; := 0} can be extended to {y; := 0; z2 := 0}). We next define the
miter [11], a circuit that combines two given circuits by XORing their outputs as follows:

Yls ooy Yi et Y

ATRRRR L)

» Definition 6 (Miter). Given two circuits }?(IY) and gZ(IY), their miter MZ is the circuit
7 7

g+9'+1

Mg ({ylv-"ayivzla .- 721}) = <{yi+17 o Yidgy ikl 7ZH»g’»yi+g@zi+g’}»yi+g@zi+g’}>'
2

The miter is used to determine if a mapping 7 is a match or a mismatch: 7 is a mismatch
iff there is a witness — an assignment to the miter inputs — that entails the miter and satisfies
m; otherwise, 7 is a match. Below, we formalize the related definitions for both P- and
NP-equivalence, with the only difference being the restriction of the examined mappings to
permutations for P-equivalence.

» Definition 7 (Mismatch, (Mismatch) Witness, Match). Given circuits)g(IY) and %(IZ)

and a mapping 7 : I¥ — R, where R = vl” for NP- and R = I? for P-equivalence, T is a
mismatch between Y and Z iff there exists an assignment o(IY U I?), called a (mismatch)
witness for w, such that:

1. oE=ME, and

2. ofem.

Furthermore, any mapping @ : IY — R that is not a mismatch between Y and Z is a
match between them.

Given the two circuits in Fig. 1, the assignment 7(IY U T%) = {y; := 1,y := 1;y3 :=
0; z3 := 0} is a mismatch witness for the identity mapping m = [21, 2o, 23]. First, propagating
7 causes the outputs of Y and Z to differ, resulting in ME outputting 1; thus, 7 entails the
miter. Second, 7 satisfies 7, as it can be extended consistently with 7 by assigning 1 to both
z1 and 2. Conversely, the mapping p = [z3, 21, 22] is a match, as no assignment satisfies p
and entails the miter.

To enable testing whether a mapping is a match using a SAT solver, we introduce the
concepts of a circuit formula and a mapping formula.

g
» Definition 8 (Circuit Formula). Given a circuit Y with inputs IV = {y{,...,y} }, gates
K3
GY ={yr. o9, .. ,y}j_g “ g}j_g}, output 0¥ € V{y}ig}7 its Boolean circuit formula fY
i+g
Y =o0"A /\ (y,}c/<—>g,§)
k=i+1

» Definition 9 (Mapping Formula). Given the ordered sets I¥ = {y1,...,y;} and I? =
{z1,...,2} and a mapping 7 : I¥ — VIZ, w’s Boolean mapping formula f7™ is:

= /\ (yp < T(Yp))-

A. Nadel and Y. Shalmon

The following lemma is central to the algorithms in this paper and the underlying
works [26, 25]. It can be easily verified.

» Lemma 10. Given two circuits Y and Zf',

if and only if fo A f™ is unsatisfiable.

a mapping w between their inputs is a match

We need to define subsumption for mappings. Intuitively, m; subsumes 79 if 7o agrees
with 71 on the entire domain of .

» Definition 11 (Subsumption for Mappings). Given the ordered sets IY and I% of the same
cardinality, let m,my : IY — 17 be two mappings. We say that m; subsumes 7y, denoted
w1 C mo, if for every y, € Dom(m), we have y, € Dom(ma) and 1 (yp) = m2(yp)-

For example, m1 = [e, —23; 23] subsumes my = [21, —23; —22]. We are now ready to define
all-Boolean-matching for both NP- and P-equivalence.

» Definition 12 (All-Boolean-Matching). Given circuits }?(IY) and gZ(IZ), and assuming

R=v" for NP- and R = I? for P-equivalence, an all-Boolean-matching algorithm reports
a set of mappings S C (IY — R) such that:

1. Every m € S is a match between Y and Z, and

2. Any p: IY — R not subsumed by a ™ € S is a mismatch between Y and Z.

Notably, we allow a total match to be subsumed by more than one of the reported matches.

In other words, the reported matches need not be disjoint.

We conclude with a brief review of relevant SAT-related concepts and generalization.

A cardinality constraint is a Boolean constraint that ensures that at-most, at-least or
exactly k literals hold in a literal set. A clause is a disjunction (set) of literals. A cube is a
conjunction (set) of literals. A formula F' is in Conjunctive Normal Form (CNF) if it is a
conjunction (set) of clauses. Given a CNF formula F, a SAT solver decides whether F' is
satisfiable. Given a satisfiable formula, a SAT solver also returns its total Boolean solution
(solution). Many SAT solvers are incremental [20, 33]: they can be invoked multiple times,
where, for every new query SAT(F, A), the SAT solver also receives a cube of assumption
literals (assumptions) A, which hold only for the current query. The solver then decides
whether F' A A is satisfiable (where F' contains all the clauses provided so far). If F'A A is
unsatisfiable, SAT(F, A) returns an Unsatisfiable Core (UC), that is, a cube A’ C A, such
that F'A A’ is still unsatisfiable [20].

Given a circuit T' and its Boolean solution o(IT) (that is, o entails T'), generalization [35,
27, 39, 21] transforms (or generalizes) o into a smaller ternary solution ¢’ such that ¢’ C o by

replacing as many Boolean values as possible with X’s, while ensuring that o’ still entails 7.

One commonly used generalization approach is the ternary-simulation-based Forward Ternary
Simulation (FTS) [37, 19], which iteratively attempts to replace each input’s Boolean value
with the don’t-care value X, using ternary simulation (Def. 2) to check whether the circuit
remains satisfied. Another common ternary-simulation-based approach is Backward Ternary
Simulation (BTS) [37, 39], also known as justification. This approach checks which internal
gates and, ultimately, inputs can be assigned X while still satisfying the circuit, proceeding
backward from outputs to inputs. In [21], we demonstrated that Minimal Unsatisfiable Core
(MUC)-based generalization [14], which leverages properties of the so-called dual circuit (i.e.,
the original circuit with its output negated), is theoretically more powerful and empirically
more efficient than both BTS and FTS. In fact, the best results in the context of enumerating
circuit solutions were achieved by combining FTS and MUC (denoted FTS&MUC in this work
and as ROC in [21]).

22:7

SAT 2025

22:8

Enumerating All Boolean Matches

3 Previous Work: BooM

In this section, we present BooM’s all-Boolean-matching flow [26, 25], including its SAT
encoding in Sect. 3.1 and the sifter (BooMS) algorithm in Sect. 3.2.

‘ 21 z9 e Zg
¥ = ¥ .- ¥ -
v | {2, ent o, et - {ef)
i g + =
y2 | {231,201} {zg, w0} - {325}
+ = + - + -
yi | {zinoat {oh ey 0 {2
(a) Indicator variables D = {x}}, 75, | 1 < p,q < i} to represent mappings between I¥ ={y1,...,y} and
I% ={z1,..., 2}, where z;}, indicates if y, +— 24, and x5, indicates if y, — —zq.

(el il (Somi oy +5)) =) A (Va e [1sil s (Shoy(afy + 7)) = 1)

(b) The map-validity constraint (comprising a conjunction of two cardinality constraints) ensures that
each y, € v maps to exactly one z4 or —z4, where no other y, € IY\r # p maps to zq or —zq.

/\ (fE;q = (Yp ¢ 2¢)) N (Tpq = (Yp € 72g))
1<p,q<i

c) Map-to-inputs constraint: x, implies y, <> z4, and z,, implies y, <> —z,.
Pq Yp q Pq Yp q

Figure 2 BooM’s SAT encoding: indicator variables and related constraints.

3.1 SAT Encoding

BooM maintains two SAT instances: bucket and misms. Both include a Boolean variable

for each input of both circuits: IY = {y1,...,y;} and IZ = {21,...,2}. To reason about
mappings between 1Y and IZ, both instances contain the indicator variables D = {:C;q, Ty

1 < p,q < i}, which represent mappings between I¥ = {y,...,y;} and IZ = {z,...,2},
where x} indicates if y, = 24, and 2, indicates if y, — —2,. See Fig. 2a for an illustration.
Additionally, we will use the notation z;, to denote either x;‘q Or Tp,.

For P-equivalence, all z,,, variables are fixed to 0. This is the only adjustment needed to
adapt the SAT encoding from the default NP-equivalence to P-equivalence.

The first SAT instance, bucket, is initialized with the map-validity constraint shown in
Fig. 2b, ensuring that it initially represents all possible mappings.

The second SAT instance, misms, is initialized with only mismatches. To achieve this, in
addition to the map-validity constraint, it is also initialized with the map-to-inputs constraint
shown in Fig. 2¢, and the miter formula f My representing the miter circuit translated
to CNF. Each solution to misms corresponds to a total mapping m due to the map-validity
constraint, but it is restricted to mismatches because every solution must assign input values
consistently with the mapping (enforced by the map-to-inputs constraint) while satisfying
the miter formula st%, ensuring a mismatch.

A. Nadel and Y. Shalmon

In the presentation below, we assume that circuits and cardinality constraints are implicitly
translated into clauses. Our implementation uses Tseitin encoding [41] for circuit translation
and nested encoding [7] for cardinality constraints.

3.2 BooMS Algorithm

We present the BooMS algorithm in Alg. 2 (please recall Sect. 1.3 for its high-level flow).
Differently from the original presentation [26, 25], we isolated the SIFTMIs subroutine in
Alg. 1 to enable STFTMIS’s integration into our novel EBatC algorithm (Sect. 4.2). As shown
in Alg. 2, BooMS begins by invoking SIFTMIS.

SIFTMIs, shown in Alg. 1, takes circuits Y and Z and returns the SAT instance bucket
containing all total matches between them as its solutions. As explained in Sect. 3.1, bucket
is initialized with all possible mappings (line 1), while SIFTMIs also maintains another SAT
instance misms, initialized to capture only mismatches (line 2).

SIFTMIS proceeds with a while loop at line 3, iterating over all mismatches by querying
misms until no more are found (i.e., when misms returns UNSAT). In each iteration, the
algorithm queries misms for a new mismatch, extends the witness to cover additional
mismatches, and blocks them in both misms and bucket, as detailed in Sect. 3.2.1. Once no
more mismatches remain, the algorithm returns bucket.

Going back to BooMS (Alg. 2), after initializing matches with the matches by invoking
S1FTMIS, BooMS iteratively reports and blocks the matches.

3.2.1 Mismatch Handling in BooMS

We begin by showing the clause added by BooMS to block mismatches (when BLKMIS is
applied at lines 5 and 6 of SIFTMIS in Alg. 1), distinguishing between NP- and P-equivalence.
For NP-equivalence, the following clause C¥ is added to both bucket and misms:

ch =

g

{.Z';_q if o(yp) # 0(2¢) and o(y,),0(z,) € {0,1},
1<pg<i (Tpg i o(yp) = 0(zy) and o(yp), 0(24) € {0,1}.

Adding CY ensures that every mismatch 7 satisfied by o is blocked: for each such ,
CN forces at least one Boolean-assigned Yp to map to —m(y,). Furthermore, no mappings
unsatisfied by o are blocked. Indeed, for any such 7, there must exist a y, such that
a(yp) # o(m(yp)) (otherwise, ™ would have been satisfied by o), ensuring that C¥ is satisfied
by either 2}, or z,,

For P-equivalence, the blocking clause is as follows:

assuming 7(y,) = 2.

ct .= \/:E;fq for all p, ¢ such that o(y, € IV) =0 and o(z, € I?) =1

This enforces one of the Y inputs to be mapped to a Z input currently assigned a different
value, thereby blocking all satisfied mismatches — and only them, since, by construction, C¥
includes a satisfied indicator for any mapping unsatisfied by o, similar to NP-equivalence.

We introduce another notation: Given an assignment o to IY U IZ, we call an indicator
z,, €D (recall that s € {—, +}) an X-indicator if either y,, z,, or both are assigned X in o.

Only for NP-equivalence, before blocking, BooMS extends the witness through generaliza-
tion (via BTS): it replaces Boolean values assigned to inputs in o with X’s, while still satisfying
the miter. Notably, any X-indicators are then dropped from the blocking clause, thereby
blocking more mismatches at once. This is valid because extending the generalized witness
to any Boolean assignment (by replacing all X’s with Boolean values) results in a Boolean

22:9

SAT 2025

22:10

Enumerating All Boolean Matches

mismatch witness, with our clause blocking all mismatches satisfied by these witnesses at
once (as if a blocking clause were added for each such Boolean mismatch). In contrast, for
P-equivalence, generalizing and dropping X-indicators from the blocking clause is incorrect
(see Sect. 5) likely explaining why BooM does not extend witnesses for P-equivalence.

Algorithm 1 SiFTMiIs.

’

g g
Input: Circuits Y and 7

K3 1
Output: The SAT instance bucket with only the matches remaining

1: Initialize the bucket SAT instance with all mappings > by map-validity (Fig. 2b)

2: Initialize the misms SAT instance > by map-validity, map-to-inputs, fo

3: while o := SAT (misms) is satisfiable do

4: o' == EXTWIT(MZ,0) > Extend the witness o to satisfy more mismatches
5: BLkMis(misms, o) > Block the satisfied mismatches in misms
6: BLkMis(bucket, o’) > Block the satisfied mismatches in bucket

7: return bucket

Algorithm 2 BooMS.

9 g
Input: Circuits Y and Z
Output: All the matches between Y and Z

: matches := SIFTMIs(Y, Z)

: while 7 := SAT (matches) is satisfiable do

Report 7 to the user

Block 7 in matches, with a clause containing —x;,, for every satisfied x;, € D

4 All-Boolean-Matching Algorithms in EBat

We introduce our high-level algorithms EBatP (Sect. 4.1) and EBatC (Sect. 4.2).

4.1 The Picker EBatP

EBatP implements a straightforward picker classification algorithm: given a bucket of total
mappings, the picker iteratively removes a mapping 7, reporting it if it is a match. The key to
EBatP’s efficiency lies in classifying and removing multiple total mappings simultaneously for
both mismatches and matches — unlike the previous state-of-the-art algorithm BooMS (Sect. 3.2),
which did so only for mismatches. Moreover, EBatP handles mismatches significantly more
efficiently, especially for P-equivalence (more on this later).

EBatP is presented in Alg. 3. In addition to the input circuits, EBatP can optionally
accept a pre-initialized SAT instance, bucket, from the user. For the remainder of Sect 4.1,
assume that bucket is not provided.

EBatP maintains two SAT instances: bucket and classifier. bucket, initialized at
line 2 with map-validity constraint in Fig. 2b, maintains unclassified total mappings as its
solutions (similarly to bucket in BooMS). classifier, initialized at line 3 with the miter
formula f MY and the map-to-inputs constraint shown in Fig. 2c, is used to classify a mapping
as either a match or a mismatch.

A. Nadel and Y. Shalmon

Algorithm 3 EBatP.

g g

Input: Circuits Y and Z, and, optionally, the SAT instance bucket
1 (]

Output: All the matches between Y and Z

1: if bucket is not provided by the user then
2: Initialize the bucket SAT instance > by map-validity (Fig. 2b)
3: Initialize the classifier SAT instance > by fM‘g and map-to-inputs (Fig. 2c)
4: while 7 := SAT (bucket) is satisfiable do
5: o = SAT(classifier,Q7) > Is 7 a match?
6: if UNSAT then > 7 is a match
7 7' ;= STRENMATCH(classifier,) > Strengthen 7 by minimizing the UC
8: Report the match 7’ to the user > Report the strengthened match =
9: BLKMATCH(bucket, 7’) > Block 7/ by adding =Q™ to bucket
10: else > 7 is a mismatch
11: o' := EXTWIT(M{, 0) > Extend the witness o to satisfy more mismatches
12: BLkMis(bucket, ') > Block the satisfied mismatches

Q" = /\ {x;q if m(yp) = 24
p:ypE€Dom() 'TZ:Q if ﬂ—(yp) = %

(a) m-cube Q™: assuming Q™ triggers w (i.e, f™), given the map-to-inputs constraint.

zq, if xf, € Q
T (yp) =} oz, if T, €Q
unmapped (i.e., y, ¢ Dom(7?)), if xf, ¢ Qand z,, ¢ Q

(b) Extracting the mapping 7% from a m-cube Q.

Figure 3 Building the cube Q™ to represent a mapping 7 and extracting a mapping from a cube.

4.1.1 The Main Loop

After initializing both SAT instances, the algorithm enters the while loop at line 4, iterating
over all mappings until no further mappings are found (i.e., when bucket returns UNSAT),
at which point it terminates.

Each iteration of the algorithm queries bucket for an unclassified total mapping ,
classifies as either a match or a mismatch via classifier, transforms 7 into a set I' where
every p € I' is a match iff 7 is, and blocks I" in bucket, reporting matches.

Going back to Alg. 3, assume bucket returns a non-classified total mapping 7 at line 4. By
Lemma 10, 7 is a match iff the conjunction of the miter formula f+ (held by classifier)
and the mapping formula f™ = /\;Zl(yp < m(yp)) is unsatisfiable. The algorithm tests
whether 7 is a match in classifier at line 5 by invoking classifier under the assumption
cube Q™ in Fig. 3a that enforces f™ for the current classifier query.

22:11

SAT 2025

22:12

Enumerating All Boolean Matches

4.1.2 The Match Case

If classifier returns UNSAT, 7 is classified as a match. The algorithm invokes the function
STRENMATCH to strengthen 7 to a smaller partial match 7’ such that 7’ C 7, based on
the unsatisfiable core U C)™, obtained from classifier. The UC U induces the partial
mapping 7 (see Fig. 3b), which must be a match (otherwise, U would not have been a UC
because classifier A U would have been satisfiable by a mismatch witness for 7). Since
U C Q7, it follows that 7V C 7. Instead of simply returning 7Y, STRENMATCH, shown
below, attempts to derive an even smaller match by iteratively minimizing U [18]:

Function STRENMATCH(classifier, 7):

U := latest unsatisfiable core from classifier >V Cr
forall @ € U: if SAT(classifier,U \ {a}) is UNSAT then U := U \ {a}
return 7V > Recall Fig. 3b

Finally, Alg. 3 invokes the function BLKMATCH, shown below, to block the match 7',
returned by STRENMATCH, by adding the clause Q™ to bucket:
Function BLKMATCH(bucket, 7'):
AddClause(bucket, Q™)

4.1.3 The Mismatch Case

If classifier returns SAT with a witness o, then 7 is a mismatch, satisfied by o. The
algorithm invokes EXTWIT, which extends o to ¢’, aiming to satisfy additional mismatches
while still satisfying 7, then calls BLKMIs to block all mismatches satisfied by o”.

For NP-equivalence, our mismatch handling is similar to BooMS (Sect. 3.2.1), with
the notable exception of the generalization algorithm for extending mismatches. (Recall
our brief review of generalization algorithms from the last paragraph of Sect. 2.) While
BooMS applied BTS, and our previous work on enumeration in circuit SAT found that the
FTS&MUC combination works best in that context [21], we show that the BTS&MUC combination
outperforms both BTS and FTS&MUC for all-Boolean-matching (Sect. 7).

Our mismatch handling algorithm for P-equivalence is presented in Sect. 5.

4.2 The Combined EBatC

Alg. 4 introduces our combined sift-and-pick EBatC algorithm. Our design of EBatP and
BooMS laid the foundation for expressing EBatC concisely.

Algorithm 4 EBatC.

’

Input: Circuits 1?' and %
Output: All the matches between Y and Z

1: matches := SIFTMIs(Y, Z) > See Alg. 1
2: return EBatP(Y, Z, matches) > See Alg. 3

EBatC first generates the SAT instance matches with all total matches using STFTMIS
(as in BooMS). It then enumerates matches via EBatP with matches as input. Since matches
contains only matches, classifier queries in EBatP always return UNSAT. However, these
queries remain essential, as strengthening relies on the UC returned by classifier.

A. Nadel and Y. Shalmon

The key difference between EBatC and our picker algorithm EBatP is that EBatC processes
mismatches first, then matches, while EBatP iterates over all mappings. We expected EBatC
to perform better since incremental SAT solvers typically handle similar consecutive queries
more efficiently. Indeed, Sect. 7 empirically confirms that querying mismatches first (EBatC)
is more effective than mixing match and mismatch queries without prior knowledge (EBatP).

4.2.1 The Trade-off between EBatP and EBatC

While EBatC outperforms EBatP in our experiments (Sect. 7), EBatP has an inherent advant-
age: it is an anytime algorithm. Unlike EBatC, which must process all mismatches before
enumerating any matches, EBatP begins generating solutions immediately. This property
is valuable for difficult instances, where EBatC may stall in its initial phase and yield no
matches. In such cases, EBatP can be used to return as many matches as possible to the user.

5 Mismatch Handling for P-Equivalence in EBat

Contrary to NP-equivalence, for P-equivalence, applying generalization to extend the mis-
match witness, and dropping X-indicators from the blocking clause (recall Sect. 3.2.1), is
illegal — it might block valid matches, as demonstrated by the following example.

Recall Fig. 1. Please keep in mind that, in both valid matches, y3 maps to zo. Consider the
mapping 7 = [z, 23, 21]. 7 is a mismatch with the witness o = {y1 := 1,y2 :==1,y5:= 0,21 :=
0,29 := 1,23 := 1} (as o satisfies 7 and propagating o in Y and Z results in the outputs of
the two circuits being assigned different values, thus satisfying the miter). The corresponding
blocking clause in BooMS is C' = (xd,Vad;) (recall Sect. 3.2.1). Generalization could extend o
by substituting zs’s value with X to ¢’ = {y; := 1,y2:=1,y3:= 0,21 := 0, 29 := X, 23 := 1},
where o’ is still a mismatch witness. If we allowed dropping X-indicators from CF, the
resulting clause would be C’f, = (xég) However, that would force y3 to always be mapped to
z3, erroneously blocking both valid matches where y3 maps to zo.

The root cause of this limitation is that, for P-equivalence, extending the generalized
witness to a Boolean assignment does not necessarily result in a mismatch witness as it might
violate the following 0-1 balance property, unique to P-equivalence: to serve as a mismatch
witness, a Boolean assignment ¢ must assign an equal number of b’s to inputs in IY and I%
for both b € {0,1}. This is because, otherwise, o cannot satisfy any mapping, since, under
P-equivalence, every input y, € Y assigned b € {0, 1} must be mapped to some input z, € Z
that is also assigned the very same b.

Intuitively, dropping X-indicators from CF effectively introduces a blocking clause Cf
for a non-witness assignment p that violates 0-1 balance. However, adding such clauses — i.e.,
BooM’s blocking clauses based on non-witnesses — is incorrect.

5.1 Witness-Extension for P-Equivalence

Our novel witness-extension procedure for P-equivalence relies on Boolean logic rather than
ternary logic and generalization. It aims to maximize the merit of the witness:

Let o be a Boolean mismatch witness. Let f, € {0,1} be the more frequent value assigned
by o to IY (or, equivalently, I? because of 0-1 balance), and I, # f, be the less frequent
value, assuming f, = 0 in case of a tie. The merit M, of ¢ is the count of variables in IV
assigned f,. Observe that the higher the merit, the more total mismatches o satisfies.

Indeed, for P-equivalence, a Boolean witness o satisfies s(o) = M,! x (i — M,)! total
mismatches. The maximum occurs when M, = i (i.e., all inputs are assigned the same
value, satisfying all 4! permutations), while the minimum is reached when M, is minimized

22:13

SAT 2025

22:14

Enumerating All Boolean Matches

at (%1 As M, increases, s(o) — and consequently the number of satisfied total mismatches —
also increases, confirming that a higher merit leads to more satisfied total mismatches, as
intended.

For clarification of the latest notions, consider a high-level example with two circuits, each
having three inputs. The assignment p = {y; := 1,92 :=0,y3 := 0,21 := 0,29 := 1,25 := 0}
can serve as a mismatch witness if it satisfies the miter, where f, =0 and M, = 2.

Our witness-extension approach for P-equivalence is not applied as part of the EXTWIT
function following the bucket SAT query in EBatP (Alg. 3, line 5) or the misms SAT query
in SIFTMIS (Alg. 1, line 3). Instead, we heuristically bias the SAT solver before the above
queries to favor high-merit witnesses. Specifically, we leverage the SAT solver’s capability
to bias variables in a given set V' toward given target polarities for a particular SAT query.
This involves boosting the variable decision heuristic scores for each v € V' before the query,
followed by forcing the variables in V to their target polarities (i.e., whenever v € V is
selected by the decision heuristic, it is assigned its target polarity) [2, 30, 31].

We employ alternation: before each SAT query, we bias all inputs in IY UIZ to a polarity
a, initially set to 1 and flipped to —a after each query. We also tested fixing the target polarity
to 0 or 1, but alternation performed better. Its superiority likely stems from its adaptability
both to instances where 1 maximizes the merit and those where 0 is advantageous. Despite
its simplicity, our approach achieves remarkable efficiency, enabling the solution of over three
times as many instances (Sect. 7).

5.2 Blocking for P-Equivalence

We introduce a new blocking algorithm for P-equivalence, shown in Alg. 5. It can be
configured to either enf (based on [26]) or dyn (novel).

Algorithm 5 BLOCKMISP (bucket, o).

1: Input: alg € {enf,dyn}

2: if alg = enf or M, < — 3 then

3: Add the following clause to bucket: C' :=\/ x;q|p tyYp € Il): and g : z4 € IfZU

4: else >alg =dynand M, >¢—3
5: for every total permutation 7 from I, l’: to 1, i do

6: Clause C := {} > blocking clause per ™
7 for every p: y, € Il’: do

8: Let ¢ be the index of z, = m(y,)

9: C:=CU{~z}, >o(yp) =0(zg) =ls
10: Add C to bucket

enf follows BooM’s mismatch-blocking approach to P-equivalence, reviewed in Sect. 3.2.1.
It creates a single blocking clause C' shown in line 3. Specifically, it adds x;'q to C for every
combination of I := {y, € IV |o(y,) =I5} and IfZU = {2y € I?|0(2,) = f} (using I, and
fo instead of 0 and 1 in BooMS, respectively, because it yielded slightly better results in
preliminary experiments).

We observed that, for high-merit witnesses, enf is less efficient than our dyn algorithm
(lines 5-10). dyn adds (i — M,)! clauses for every one of the (i — M,)! total permutations =
from [, l); to [, f , where every such clause blocks M, ! total mismatches. Every clause blocks a
(partial) mismatch satisfied by the current witness, with all the clauses together blocking all
currently satisfied mismatches, including the original 7. Since the number of clauses grows
super-exponentially as M, decreases, Alg. 5 reverts to enf whenever M, < i — 3.

A. Nadel and Y. Shalmon 22:15

For example, let o be a witness with merit ¢ — 1, where f, =1 and o(y;) = o(21) :=0
(with the other variables assigned 1, as expected when f, is 1 and M, is i — 1). enf would
block with 2], V23 V...V z];, whereas dyn would block with the unit clause —z7;. Because
of the constraint Zf]:l qu =1 (recall Fig. 2, with s fixed to 0 for P-equivalence), both
clauses achieve the same effect as expected, but dyn adds a substantially smaller clause.

6 Correctness Proof Outline

This section outlines the correctness proofs of our new algorithms.

Consider a straightforward picker classification algorithm. Given a bucket with total
mappings, the picker iteratively removes a total mapping 7 from the bucket and reports
it only if it is a match. Soundness (as per Def. 12) and termination are guaranteed by
construction.

Although our picker implementation (EBatP in Alg. 3) classifies and removes multiple
total mappings at once, correctness is still guaranteed as long as the invariants in Fig. 4 hold
for each iteration (note that Alg. 3 reports the matches, and only them, by construction).

1. Termination: Every examined total mapping 7 is removed.
2. Soundness: Any removed total mapping is a match iff 7 is a match.

Figure 4 Loop invariants for EBatP correctness.

Furthermore, one can easily verify that meeting the match-handling invariants in Fig. 5 and
the mismatch-handling invariants in Fig. 6 ensures the EBatP loop invariants of termination
and soundness in Fig. 4.

Moreover, our match-handling algorithm, presented in Sect. 4.1 as part of EBatP, satisfies
the invariants in Fig. 5 by construction. The invariants in Fig. 6 are also satisfied by
construction by the mismatch-handling procedures, including the witness-extension by
generalization and blocking introduced already in BooMS (recall Sect. 3), as well as our novel
blocking procedure for P-equivalence (Sect. 5.2). Our novel witness-extension procedure for
P-equivalence (Sect. 5.1) clearly satisfies them, as it only adjusts the heuristics.

1. Given a match 7, STRENMATCH returns a match «’ such that 7’ C .
2. Given a match 7/, BLKMATCH removes 7’ and only 7’ from bucket.

Figure 5 Match-handling invariants.

1. Given a witness o for 7, EXTWIT returns a witness ¢’ C o for .
2. Given a witness ¢/, BLKMIs blocks all the mismatches witnessed by ¢’ in the
given SAT instance, and no additional mappings.

Figure 6 Mismatch-handling invariants.

Similarly, one can easily formulate loop invariants to prove SIFTMIS correct, assuming
the mismatch-handling invariants in Fig. 6. The correctness of BooMS and EBatC follows
directly from that of SIFTMIs and EBatP.

SAT 2025

22:16

Enumerating All Boolean Matches

7 Experimental Results

We implemented our new algorithms and the baseline BooMS algorithm within a new open-
source all-Boolean-matching tool, EBat'. Based on preliminary experiments, we used the
IntelSAT SAT solver [32] for all queries, except for UNSAT core extraction on the dual
circuit, where CaDiCal [8] proved more effective.

As the original BooMS in BooM [26, 25] does not function correctly, we use our re-
implementation of BooMS as the baseline for comparison.

We adapted benchmarks from the following relevant works: [21], [26], and [15]. All
circuits were converted to the AIGER format [9], with multi-output circuits transformed into
single-output ones as described below. To manage the complexity of all-Boolean-matching,
and because circuits with more than 50 inputs are rarely encountered in our industrial
practice, we restricted our selection to circuits with up to 50 inputs. Below, we provide a
detailed description of our benchmark selection process, resulting in a total of 388 instances,
ranging from 1 to 32,153 gates:

From BooM [26]: We reused the ITC’99 suite [17], also used in BooM experiments [26].
Each benchmark consists of a combinatorial circuit and its optimized counterpart. To focus
on a single output, we used aigsplit [9] to split the outputs and compared each instance to
its optimized version. In total, we considered 9 circuits, resulting in 268 benchmarks.

From ICCAD’23 Boolean matching contest [15]: We selected 3 out of 5 circuits with up
to 50 inputs (the other 2 are currently infeasible for all-Boolean matching) and transformed
them into single-output circuits by creating a benchmark for every combination of output
versus output, resulting in 48 benchmarks.

From [21]: We selected benchmarks originating from the EPFL [4] and ISCAS’85 [13],
already transformed by [21] to be single-output by either applying or, xor or last (output)
operator. We created six all-Boolean-matching instances from each circuit by comparing: or
Vs. or, or vs. Xor, or vs. last, xor vs. xor, xor vs. last, and last vs. last. In total, we
used 12 circuits from [21] (6 from EPFL and 6 from ISCAS’85), resulting in 72 benchmarks.

We conducted experiments on Intel®Xeon® machines (32GB memory, 3GHz CPU) with a
1-minute timeout, reflecting our industrial requirements. We measured the number of solved
instances (all matches found or absence proven within timeout) and the PAR-2 score (solved
benchmarks contribute runtime; unsolved ones contribute twice the timeout).

We studied the impact of:

1. High-level algorithms: the baseline BooMS vs. our novel EBatP and EBatC.
2. Blocking schemes for P-equivalence: the baseline enf vs. the new dyn.
3. Witness-extension:
a. NP-equivalence: BTS as in BooMS vs. FTS&MUC [21] vs. our novel BTS&MUC.
b. P-equivalence: none in the baseline BooMS vs. our novel Alternation algorithm and
its two simpler versions, Fixed to 1 and Fixed to 0.
4. Strengthening: none as in the baseline BooMS vs. our novel strengthening approach.

7.1 The Results

Table 1 summarizes our experimental results. To complement the data in the table, for
NP-equivalence, at least one configuration solved 328 benchmarks, with 65 not matching and
2 having only one match. For P-equivalence, the corresponding numbers are 333 solved, with
75 not matching and 6 with one match.

! EBat and all the benchmarks are available at https://github.com/yogevshalmon/ebat.

https://github.com/yogevshalmon/ebat

A. Nadel and Y. Shalmon

Table 1 Summary of results for NP-equivalence (top) and P-equivalence (bottom) for a 1-minute
timeout. Each non-header row corresponds to a configuration of our EBat tool. The default
configuration in EBat is highlighted in light gray, while the baseline configuration from BooM is
highlighted in dark gray. Other configurations correspond to the EBat default with one (and only
one) algorithmic feature changed, and with unchanged features appearing faded. The first four
columns represent the algorithmic features of each configuration, as indicated by the column titles.
The last two columns display the results: the number of solved instances and the PAR-2 score.

‘ NP-Equivalence
‘ Algorithm ‘ Blocking | Witness-Extension ‘ Strengthening H Solved | PAR-2

EBatC default BTS&MUC v’ 327 686
FTS&MUC 325 939

EBatP 322 1252
BTS 308 2932

— 99 27826

‘ P-Equivalence
‘ Algorithm ‘ Blocking ‘ Witness-Extension ‘ Strengthening H Solved ‘ PAR-2

EBatC dyn Alternation v’ 329 871
enf 326 1324

EBatP 308 3467
Fixed to 0 303 4325

Fixed to 1 301 4465

- 115 26232

— 106 27460

Overall, the default configuration of our new all-Boolean-matching tool, EBat, significantly
outperforms the baseline BooMS algorithm for both NP- and P-equivalence, solving 3 to 4
times more benchmarks within our 1-minute timeout. Furthermore, on instances completed
by both BooMS and our default configuration of EBat, BooMS issues, on average, 13,000 times
more SAT queries for NP-equivalence and 1,500 times more SAT queries for P-equivalence.

In an additional experiment, we confirmed that this advantage persists with a longer
10-minute timeout: for P-equivalence, BooMS solves 95 instances, while EBat solves 339; for
NP-equivalence, BooMS solves 87, compared to 335 by EBat.

Table 1 shows that, for NP-equivalence, strengthening is the key factor in improving
performance. Also, our default generalization approach, BTS&MUC, outperforms both BTS,
applied by BooM, and FTS&MUC from [21]. Finally, comparing the high-level algorithms, EBatC
outperforms EBatP, while switching to BooMS in the default configuration is impossible, as
BooMS cannot apply strengthening by construction.

For P-equivalence, our novel witness-extension procedure contributes the most, closely
followed by strengthening; together, they enable solving 329 instances, compared to only
106-115 without either. Additionally, in witness-extension, alternation outperforms fixing to

0 or 1. Also, EBatC surpasses EBatP, and our dyn blocking scheme outperforms BooM’s enf.

Additionally, even though EBatC outperforms EBatP on the same default configuration of
EBat, for P-Equivalence, one instance is solved uniquely by EBatP (for NP-Equivalence, all
instances solved by EBatP are also solved by EBatC).

22:17

SAT 2025

22:18

Enumerating All Boolean Matches

8

Conclusion

Motivated by the industrial need for automated, timing-aware library mapping, we presented
the first dedicated study on enumerating all matches between two Boolean circuits (all-
Boolean-matching). We introduced novel algorithms and implemented them from scratch in
EBat, the only open-source tool for this problem. EBat solves 3 to 4 times more benchmarks
than the state-of-the-art algorithm BooMS, within both the application-driven 1-minute
timeout and a 10-minute timeout for NP- and P-equivalence.

In future work, we plan to extend EBat to handle multiple outputs and sequential circuits,

and implement circuit preprocessing techniques [12, 36, 5] to further improve its performance.

—— References

1

10

Afshin Abdollahi. Signature based boolean matching in the presence of don’t cares. In Limor
Fix, editor, Proceedings of the 45th Design Automation Conference, DAC 2008, Anaheim, CA,
USA, June 8-13, 2008, pages 642—-647. ACM, 2008. doi:10.1145/1391469.1391635.

Sabih Agbaria, Dan Carmi, Orly Cohen, Dmitry Korchemny, Michael Lifshits, and Alexander
Nadel. Sat-based semiformal verification of hardware. In Roderick Bloem and Natasha
Sharygina, editors, Proceedings of 10th International Conference on Formal Methods in
Computer-Aided Design, FMCAD 2010, Lugano, Switzerland, October 20-23, pages 25-32.
IEEE, 2010. URL: https://ieeexplore.ieee.org/document/5770929/.

Manindra Agrawal and Thomas Thierauf. The boolean isomorphism problem. In 37th Annual
Symposium on Foundations of Computer Science, FOCS 96, Burlington, Vermont, USA, 14-16
October, 1996, pages 422—-430. IEEE Computer Society, 1996. doi:10.1109/SFCS.1996.548501.
Luca Amart, Pierre-Emmanuel Gaillardon, and Giovanni De Micheli. The EPFL combinational
benchmark suite. In Proceedings of the 24th International Workshop on Logic € Synthesis
(IWLS), 2015.

Daniil Averkov, Tatiana Belova, Gregory Emdin, Mikhail Goncharov, Viktoriia Krivogornitsyna,
Alexander S. Kulikov, Fedor Kurmazov, Daniil Levtsov, Georgie Levtsov, Vsevolod Vaskin, and
Aleksey Vorobiev. Cirbo: A new tool for boolean circuit analysis and synthesis. Proceedings
of the AAAI Conference on Artificial Intelligence, 39(11):11105-11112, April 2025. doi:
10.1609/aaai.v39i11.33207.

Luca Benini and Giovanni De Micheli. A survey of boolean matching techniques for library
binding. ACM Transactions on Design Automation of Electronic Systems, 2(3), 1997. doi:
10.1145/264995.264996.

Armin Biere, Daniel Le Berre, Emmanuel Lonca, and Norbert Manthey. Detecting cardinality
constraints in CNF. In Carsten Sinz and Uwe Egly, editors, Theory and Applications of Satisfiab-
ility Testing - SAT 201/ - 17th International Conference, Held as Part of the Vienna Summer of
Logic, VSL 2014, Vienna, Austria, July 14-17, 2014. Proceedings, volume 8561 of Lecture Notes
in Computer Science, pages 285-301. Springer, 2014. doi:10.1007/978-3-319-09284-3_22.
Armin Biere, Tobias Faller, Katalin Fazekas, Mathias Fleury, Nils Froleyks, and Florian Pollitt.
CaDiCaL 2.0. In Arie Gurfinkel and Vijay Ganesh, editors, Computer Aided Verification - 36th
International Conference, CAV 2024, Montreal, QC, Canada, July 24-27, 2024, Proceedings,
Part I, volume 14681 of Lecture Notes in Computer Science, pages 133—152. Springer, 2024.
doi:10.1007/978-3-031-65627-9_7.

Armin Biere, Keijo Heljanko, and Siert Wieringa. AIGER 1.9 and beyond. Technical Report
11/2, Institute for Formal Models and Verification, Johannes Kepler University, Altenbergerstr.
69, 4040 Linz, Austria, 2011.

Bernd Borchert, Desh Ranjan, and Frank Stephan. On the computational complexity of some
classical equivalence relations on boolean functions. Theory Comput. Syst., 31(6):679-693,
1998. doi:10.1007/S002240000109.

https://doi.org/10.1145/1391469.1391635
https://ieeexplore.ieee.org/document/5770929/
https://doi.org/10.1109/SFCS.1996.548501
https://doi.org/10.1609/aaai.v39i11.33207
https://doi.org/10.1609/aaai.v39i11.33207
https://doi.org/10.1145/264995.264996
https://doi.org/10.1145/264995.264996
https://doi.org/10.1007/978-3-319-09284-3_22
https://doi.org/10.1007/978-3-031-65627-9_7
https://doi.org/10.1007/S002240000109

A. Nadel and Y. Shalmon

11

12

13

14

15

16

17

18

19

20

21

22

23

24

Daniel Brand. Verification of large synthesized designs. In Michael R. Lightner and Jochen
A. G. Jess, editors, Proceedings of the 1993 IEEE/ACM International Conference on Computer-
Aided Design, 1993, Santa Clara, California, USA, November 7-11, 1993, pages 534-537.
IEEE Computer Society / ACM, 1993. doi:10.1109/ICCAD.1993.580110.

Robert K. Brayton and Alan Mishchenko. ABC: an academic industrial-strength verification
tool. In Tayssir Touili, Byron Cook, and Paul B. Jackson, editors, Computer Aided Verification,
22nd International Conference, CAV 2010, Edinburgh, UK, July 15-19, 2010. Proceedings,
volume 6174 of Lecture Notes in Computer Science, pages 24-40. Springer, 2010. doi:
10.1007/978-3-642-14295-6_5.

Franc Brglez and Hideo Fujiwara. A neutral netlist of 10 combinational benchmark circuits
and a target translator. In Fortran. ISCAS’85, 1985.

Hana Chockler, Alexander Ivrii, Arie Matsliah, Shiri Moran, and Ziv Nevo. Incremental formal
verification of hardware. In Per Bjesse and Anna Slobodova, editors, International Conference
on Formal Methods in Computer-Aided Design, FMCAD ’11, Austin, TX, USA, October 30 -
November 02, 2011, pages 135-143. FMCAD Inc., 2011. URL: http://dl.acm.org/citation.
cfm?id=2157676.

Chung-Han Chou, Chih-Jen Jacky Hsu, Chi-An Rocky Wu, Kuan-Hua Tu, and Kei-Yong Khoo.
Invited paper: 2023 iccad cad contest problem a: Multi-bit large-scale boolean matching. In
2023 IEEE/ACM International Conference on Computer Aided Design (ICCAD), pages 1-4,
2023. doi:10.1109/ICCAD57390.2023.10323797.

Jason Cong and Yean-Yow Hwang. Boolean matching for lut-based logic blocks with applica-
tions toarchitecture evaluation and technology mapping. IEEE Trans. Comput. Aided Des.
Integr. Clircuits Syst., 20(9):1077-1090, 2001. doi:10.1109/43.945303.

F. Corno, M.S. Reorda, and G. Squillero. Rt-level itc’99 benchmarks and first atpg results.
IEEEFE Design & Test of Computers, 17(3):44-53, 2000. doi:10.1109/54.867894.

Nachum Dershowitz, Ziyad Hanna, and Alexander Nadel. A scalable algorithm for minimal
unsatisfiable core extraction. In Armin Biere and Carla P. Gomes, editors, Theory and
Applications of Satisfiability Testing - SAT 2006, 9th International Conference, Seattle, WA,
USA, August 12-15, 2006, Proceedings, volume 4121 of Lecture Notes in Computer Science,
pages 36—41. Springer, 2006. doi:10.1007/11814948_5.

Niklas Eén, Alan Mishchenko, and Robert Brayton. Efficient implementation of property
directed reachability. In 2011 Formal Methods in Computer-Aided Design (FMCAD), pages
125-134, 2011. URL: http://dl.acm.org/citation.cfm?id=2157675.

Niklas Eén and Niklas Sorensson. An extensible SAT-solver. In Theory and Applications of
Satisfiability Testing, 6th International Conference, SAT, Proceedings, 2003. doi:10.1007/
978-3-540-24605-3_37.

Dror Fried, Alexander Nadel, Roberto Sebastiani, and Yogev Shalmon. Entailing generalization
boosts enumeration. In Supratik Chakraborty and Jie-Hong Roland Jiang, editors, 27th
International Conference on Theory and Applications of Satisfiability Testing, SAT 2024,
August 21-24, 2024, Pune, India, volume 305 of LIPIcs, pages 13:1-13:14. Schloss Dagstuhl —
Leibniz-Zentrum fiir Informatik, 2024. doi:10.4230/LIPICS.SAT.2024.13.

Shao-Lun Huang, Wei-Hsun Lin, Po-Kai Huang, and Chung-Yang Huang. Match and replace:
A functional ECO engine for multierror circuit rectification. IEEE Trans. Comput. Aided Des.
Integr. Clircuits Syst., 32(3):467-478, 2013. doi:10.1109/TCAD.2012.2226456.

Zheng Huang, Lingli Wang, Yakov Nasikovskiy, and Alan Mishchenko. Fast boolean match-
ing based on NPN classification. In 2013 International Conference on Field-Programmable
Technology, FPT 2013, Kyoto, Japan, December 9-11, 2013, pages 310-313. IEEE, 2013.
d0i:10.1109/FPT.2013.6718374.

James S. Jephson, Robert P. McQuarrie, and Robert E. Vogelsberg. A three-value computer
design verification system. IBM Systems Journal, 8(3):178-188, 1969. doi:10.1147/SJ.83.
0178.

22:19

SAT 2025

https://doi.org/10.1109/ICCAD.1993.580110
https://doi.org/10.1007/978-3-642-14295-6_5
https://doi.org/10.1007/978-3-642-14295-6_5
http://dl.acm.org/citation.cfm?id=2157676
http://dl.acm.org/citation.cfm?id=2157676
https://doi.org/10.1109/ICCAD57390.2023.10323797
https://doi.org/10.1109/43.945303
https://doi.org/10.1109/54.867894
https://doi.org/10.1007/11814948_5
http://dl.acm.org/citation.cfm?id=2157675
https://doi.org/10.1007/978-3-540-24605-3_37
https://doi.org/10.1007/978-3-540-24605-3_37
https://doi.org/10.4230/LIPICS.SAT.2024.13
https://doi.org/10.1109/TCAD.2012.2226456
https://doi.org/10.1109/FPT.2013.6718374
https://doi.org/10.1147/SJ.83.0178
https://doi.org/10.1147/SJ.83.0178

22:20

Enumerating All Boolean Matches

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

Chih Fan Lai, Jie Hong R. Jiang, and Kuo Hua Wang. Boolean matching of function vectors
with strengthened learning. In IEEE/ACM International Conference on Computer-Aided
Design, Digest of Technical Papers, ICCAD, 2010. doi:10.1109/ICCAD.2010.5654215.
Chih Fan Lai, Jie Hong R. Jiang, and Kuo Hua Wang. BooM: A decision procedure for
Boolean matching with abstraction and dynamic learning. In Proceedings - Design Automation
Conference, 2010. doi:10.1145/1837274.1837398.

E. J. McCluskey. Minimization of boolean functions. The Bell System Technical Journal,
35(6):1417-1444, 1956. doi:10.1002/j.1538-7305.1956.tb03835.x.

Alan Mishchenko, Supratik Chatterjee, Robert Brayton, Xiangjian Wang, and Tony Kam.
Technology mapping with boolean matching, supergates and choices. Technical report, EECS
Department, University of California, Berkeley, March 2005.

Janett Mohnke, Paul Molitor, and Sharad Malik. Application of bdds in boolean matching
techniques for formal logic combinational verification. Int. J. Softw. Tools Technol. Transf.,
3(2):207-216, 2001. doi:10.1007/S100090100039.

Alexander Nadel. Anytime weighted MaxSAT with improved polarity selection and bit-vector
optimization. In Formal Methods in Computer Aided Design, FMCAD, Proceedings, pages
193-202, 2019. doi:10.23919/FMCAD.2019.8894273.

Alexander Nadel. Polarity and variable selection heuristics for sat-based anytime maxsat. J.
Satisf. Boolean Model. Comput., 12(1):17-22, 2020. doi:10.3233/SAT-200126.

Alexander Nadel. Introducing intel(r) SAT solver. In Kuldeep S. Meel and Ofer Strichman,
editors, 25th International Conference on Theory and Applications of Satisfiability Testing,
SAT 2022, August 2-5, 2022, Haifa, Israel, volume 236 of LIPIcs, pages 8:1-8:23. Schloss
Dagstuhl — Leibniz-Zentrum fiir Informatik, 2022. doi:10.4230/LIPIcs.SAT.2022.8.
Alexander Nadel and Vadim Ryvchin. Efficient SAT solving under assumptions. In The-
ory and Applications of Satisfiability Testing - SAT, Proceedings, 2012. doi:10.1007/
978-3-642-31612-8_19.

Emil L. Post. Introduction to a general theory of elementary propositions. American Journal
of Mathematics, 43, 1921.

W. V. Quine. The problem of simplifying truth functions. The American Mathematical
Monthly, 59(8):521-531, 1952. doi:10.1080/00029890.1952.11988183.

Franz-Xaver Reichl, Friedrich Slivovsky, and Stefan Szeider. eslim: Circuit minimization with
SAT based local improvement. In Supratik Chakraborty and Jie-Hong Roland Jiang, editors,
27th International Conference on Theory and Applications of Satisfiability Testing, SAT 2024,
August 21-24, 2024, Pune, India, volume 305 of LIPIcs, pages 23:1-23:14. Schloss Dagstuhl —
Leibniz-Zentrum fiir Informatik, 2024. doi:10.4230/LIPICS.SAT.2024.23.

J. Paul Roth, Willard G. Bouricius, and Peter R. Schneider. Programmed algorithms to
compute tests to detect and distinguish between failures in logic circuits. IEEE Trans. Electron.
Comput., 16(5):567*580, 1967. doi:10.1109/PGEC.1967.264743.

Roberto Sebastiani. Are you satisfied by this partial assignment? CoRR, abs/2003.04225,
2020. arXiv:2003.04225.

Tobias Seufert, Felix Winterer, Christoph Scholl, Karsten Scheibler, Tobias Paxian, and Bernd
Becker. Everything you always wanted to know about generalization of proof obligations
in PDR. IEEE Trans. Comput. Aided Des. Integr. Circuits Syst., 42(4):1351-1364, 2023.
doi:10.1109/TCAD.2022.3198260.

Pawel Swierczynski, Marc Fyrbiak, Christof Paar, Christophe Huriaux, and Russell Tessier. Pro-
tecting against cryptographic trojans in fpgas. In 28rd IEEE Annual International Symposium
on Field-Programmable Custom Computing Machines, FCCM 2015, Vancouver, BC, Canada,
May 2-6, 2015, pages 151-154. IEEE Computer Society, 2015. doi:10.1109/FCCM.2015.55.
Grigori S Tseitin. On the complexity of derivation in propositional calculus. Automation of
reasoning: 2: Classical papers on computational logic 19671970, pages 466-483, 1983.
Kuo-Hua Wang, Chung-Ming Chan, and Jung-Chang Liu. Simulation and sat-based boolean
matching for large boolean networks. In Proceedings of the 46th Design Automation Conference,

https://doi.org/10.1109/ICCAD.2010.5654215
https://doi.org/10.1145/1837274.1837398
https://doi.org/10.1002/j.1538-7305.1956.tb03835.x
https://doi.org/10.1007/S100090100039
https://doi.org/10.23919/FMCAD.2019.8894273
https://doi.org/10.3233/SAT-200126
https://doi.org/10.4230/LIPIcs.SAT.2022.8
https://doi.org/10.1007/978-3-642-31612-8_19
https://doi.org/10.1007/978-3-642-31612-8_19
https://doi.org/10.1080/00029890.1952.11988183
https://doi.org/10.4230/LIPICS.SAT.2024.23
https://doi.org/10.1109/PGEC.1967.264743
https://arxiv.org/abs/2003.04225
https://doi.org/10.1109/TCAD.2022.3198260
https://doi.org/10.1109/FCCM.2015.55

A. Nadel and Y. Shalmon 22:21

DAC 2009, San Francisco, CA, USA, July 26-31, 2009, pages 396—401. ACM, 2009. doi:
10.1145/1629911.1630016.

43 Chaofan Yu, Lingli Wang, Chun Zhang, Yu Hu, and Lei He. Fast filter-based boolean matchers.
IEEE Embed. Syst. Lett., 5(4):65—68, 2013. doi:10.1109/LES.2013.2280582.

44 Juling Zhang, Guowu Yang, William N. N. Hung, and Jinzhao Wu. A canonical-based NPN
boolean matching algorithm utilizing boolean difference and cofactor signature. IEEE Access,
5:27777-27785, 2017. doi:10.1109/ACCESS.2017.2778338.

SAT 2025

https://doi.org/10.1145/1629911.1630016
https://doi.org/10.1145/1629911.1630016
https://doi.org/10.1109/LES.2013.2280582
https://doi.org/10.1109/ACCESS.2017.2778338

	1 Introduction
	1.1 Motivation
	1.2 Our Focus
	1.3 Previous Work: BooM
	1.4 Our Contributions: New Algorithms and EBat

	2 Preliminaries
	3 Previous Work: BooM
	3.1 SAT Encoding
	3.2 BooMS Algorithm
	3.2.1 Mismatch Handling in BooMS

	4 All-Boolean-Matching Algorithms in EBat
	4.1 The Picker EBatP
	4.1.1 The Main Loop
	4.1.2 The Match Case
	4.1.3 The Mismatch Case

	4.2 The Combined EBatC
	4.2.1 The Trade-off between EBatP and EBatC

	5 Mismatch Handling for P-Equivalence in EBat
	5.1 Witness-Extension for P-Equivalence
	5.2 Blocking for P-Equivalence

	6 Correctness Proof Outline
	7 Experimental Results
	7.1 The Results

	8 Conclusion

