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Abstract
In the the last two decades, a lot of effort has been devoted to the development of satisfiability-
checking tools for a variety of SAT-related problems. However, most of these tools lack optimization
capabilities. That is, instead of finding any solution, one is sometimes interested in a solution that
is best according to some criterion.

Pseudo-Boolean solvers can be used to deal with optimization by successively solving a series of
problems that contain an additional pseudo-Boolean constraint expressing that a better solution is
required. A key point for the success of this simple approach is that lemmas that are learned for one
problem can be reused for subsequent ones.

In this paper we go one step further and show how, by using a simple symbolic conflict analysis
procedure, not only can lemmas be reused between problems but also strengthened, thus further
pruning the search space traversal. In addition, we show how this technique automatically allows
one to infer upper bounds in maximization problems, thus giving an estimation of how far the solver
is from finding an optimal solution. Experimental results with our PB solver reveal that (i) this
technique is indeed effective in practice, providing important speedups in problems where several
solutions are found and (ii) on problems with very few solutions, where the impact of our technique
is limited, its overhead is negligible.
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1 Introduction

SAT solvers are nowadays routinely used in an increasing number of applications areas.
Despite success stories initially emerged in the area of verification [4], they are now common
in security [10, 35], cryptography [34] and even mathematics [18]. In parallel to these
practical developments, theoretical works have shown that CDCL [23], the most successful
procedure for SAT, cannot solve certain type of problems (e.g. the pigeon-hole principle [17])
in polynomial time [2, 28].
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Pseudo-Boolean (PB) solving, also known as 0-1 Integer Linear Programming, has
established itself as a promising alternative to SAT. First of all, 0-1 linear constraints
are more general than clauses, and allow one to encode problems in a more compact way.
Secondly, cutting planes [7], the underlying proof system of CDCL-based PB solvers [31] is
exponentially more powerful than resolution [30], the proof system which CDCL-based SAT
solvers rely on. Thus, PB solvers are, at least from the theoretical point of view, exponentially
more powerful than SAT solvers.

Last, but not least, sometimes satisfiability checking is not enough. In several applica-
tions [16, 1, 26], one wants to find an optimal solution according to some criterion. Unlike
what happens with SAT solvers, it is very easy to turn a PB solver into a PB optimizer,
which finds a solution to a set of 0-1 linear constraints that maximizes a given objective 0-1
linear function. The solver is initially run on the set of constraints, ignoring the objective
function, in order to obtain a first solution. If the objective function value for this solution is
C, a constraint expressing that only solutions with objective function value strictly larger
than C is added and the solver is executed again. The process is repeated until the solver is
not able to find further solutions, concluding that the last solution found is optimal.

A noteworthy aspect of the previous approach, known as Linear Search, is that any
lemma learned by the solver when looking for a solution larger than C can still be used at
any future point when a solution larger than C ′ > C is sought. This well-known fact [25] is
crucial for the performance of this method.

Contributions. In this paper, we go one step further and show how constraints learned
when looking for a solution larger than C can not only be reused, but also automatically
strengthened so that a stronger version of them is available during the search for solutions
larger than C ′ > C. This is accomplished by considering C as a symbolic variable and
adapting conflict analysis to take care of this feature. As a by-product of this symbolic
way of treating constraints, one can automatically extract upper bounds from them, thus
giving an estimation of how far the solver is from reaching an optimal solution. Experimental
results show that the overhead of this symbolic procedure is negligible, and that its ability
to further prune the search space results in important runtime improvements.

Related Work. Pseudo-Boolean optimization is a well-studied problem for which three
main methods exist: Linear Search, Core-guided Search [13, 24, 9], and Implicit Hitting Set
approaches [33, 32]. They are considered to be complementary in the type of instances for
which they work best and solvers might even use combinations of them (e.g. RoundingSat
combines Linear with Core-guided Search). Linear Search, which is the topic of this paper,
has also been applied to the MaxSAT problem. Two prominent contributions in this direction
are Pacose [27] and MaxCDCL solver [21, 22], which combines a branch and bound search
with a lower-bounding procedure to prune the search space. As far as we know, no previous
work uses a symbolic treatment of the objective function and no other linear-search method
can compute upper bounds with no additional cost. Hence, we believe the community will
benefit from the introduction of this novel technique and will develop additional ways to
further exploit it.

This paper is organized as follows. After some preliminaries in Section 2, we revisit
the conflict analysis procedure of PB solvers in Section 3. Section 4 presents the main
contributions of this paper: the symbolic conflict analysis procedure and its additional ability
to compute upper bounds. Experimental evidence of their positive impact on a solver and
a careful analysis of the data collected is reported in Section 5. We conclude in Section 6,
where we also outline future research directions.
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2 Preliminaries

Pseudo-Boolean Constraints. Let X be a set of propositional variables. A literal is either a
variable (x) or the negation of one (x). We will assume that x = x. A (pseudo-Boolean or PB)
constraint is a 0-1 linear inequality

∑
i cili ≥ d where the li’s are literals and, without loss of

generality, the ci’s (coefficients) and d (degree) are positive integers. When all coefficients
are 1 we say that the constraint is a cardinality constraint and if, in addition, d is also 1 we
say that it is a clause. A formula is a set of constraints.

Satisfiability and Logical Consequence. An assignment ρ is a set of non-contradictory
literals. It is total if for any x ∈ X either x ∈ ρ or x ∈ ρ, and partial otherwise. A literal l

is true in ρ if l ∈ ρ, is false if l ∈ ρ and is undefined otherwise. Given a constraint C of the
form

∑
i cili ≥ d, an assignment ρ satisfies it if

∑
i:li∈ρ ci ≥ d, and falsifies it if no extension

of ρ can satisfy it. If we define slack(C, ρ) = (
∑

i:li ̸∈ρ ci) − d, it can be seen that ρ falsifies C

if and only if slack(C, ρ) < 0. Note the slack expression sums the coefficients of all non-false
literals, and that is the maximum value that the left hand side of the constraint can reach.
If even that does not exceed d, no extension of ρ will do. An assignment that satisfies all
constraints of a formula is called a model. A formula F is a logical consequence of G if any
model of G is also a model of F .

Inference Rules. In order to determine the satisfiability of a set of constraints, one can
use the cutting planes proof system, which consists of axioms l ≥ 0 for all literals l, and the
following two inference rules:

Linear combination:
∑

i aili ≥ A
∑

i bili ≥ B∑
i(αai + βbi)li ≥ αA + βB

α, β ∈ N+

Division:
∑

i aili ≥ A∑
i⌈ai/α⌉li ≥ ⌈A/α⌉ α ∈ N+

It is well known [19] that a set of constraints is unsatisfiable if and only if 0 ≥ 1 can be
derived using these rules. We note that in the application of linear combination we implicitly
assume that any constraint is simplified by using that fact that l + l = 1. For example, the
constraint 2x + 3x + 5y ≥ 7 can be rewritten as 2(x + x) + x + 5y ≥ 7 and is hence equivalent
to x + 5y ≥ 5. Another well-known rule, which is very useful in PB solving, limits coefficients
to be at most equal to the degree:

Saturation:
∑

i aili ≥ A∑
i min(ai, A) li ≥ A

Unit Propagation. Given a constraint C =
∑

i cili ≥ d and an assignment ρ, we say that
C unit propagates li under ρ if li is undefined in ρ, but li is true in any total assignment
extending ρ that satisfies C. The latter is equivalent to checking whether slack(C, ρ) < ci,
i.e., if we do not set li to true, the constraint becomes falsified. Given a formula F and an
assignment ρ, unit propagation of F under ρ is the outcome of applying the following two
rules until a fixpoint is reached: (i) if ρ falsifies a constraint C ∈ F , a conflict is found with
conflicting constraint C and we stop, (ii) if ρ unit propagates some literal l due to constraint
C, extend ρ := ρ ∪ {l} with reason C.

SAT 2025
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Conflict-Driven Pseudo-Boolean Solving. A generalization of the well-known CDCL [23]
algorithm for SAT can be applied to the pseudo-Boolean case [31]. The algorithm starts
with an empty assignment ρ and proceeds as follows: (1) Apply unit propagation, possibly
extending ρ. (2) If a conflict is found, a conflict analysis procedure uses the aforementioned
inference rules to derive a constraint C (called lemma) that can be safely added to the
formula. If C is the constraint 0 ≥ 1, the formula is unsatisfiable, otherwise it is guaranteed
that after removing some literals from ρ in a last-in first-out way (backjumping), C allows
some literal to be unit propagated. Hence, we go to step 1. (3) If no conflict is found, and
ρ is total, it is a model of the formula. Otherwise, an undefined literal l (decision literal)
is added to ρ and we go to step 1. If we see ρ as a sequence, any literal appearing in the
sequence between the k-th decision literal (included) and before the (k+1)-th one is said to
belong to decision level k.

Pseudo-Boolean Optimization. Given a set S of PB-constraint and an objective function∑
i cili, the Pseudo-Boolean Optimization problem consists of finding, among all assignments

that satisfy S, one that maximizes the value of the objective function. A very simple approach
for this problem is to first run a PB solver to determine the satisfiability of S. If a solution is
found, for which the objective function has value C, a constraint

∑
i cili ≥ C + 1 is added to

S and the same solver is launched again. Eventually, the solver will report the unsatisfiability
of the augmented set of constraints, and the last found solution is an optimal one. This is
sometimes known as the Linear Search approach to PB optimization.

3 Conflict Analysis in CDCL-Based Pseudo-Boolean Solvers

In CDCL-based PB solvers, when unit propagation finds a conflicting constraint, a procedure
is launched whose ultimate goal is to derive a new constraint that (i) is a logical consequence
of the current formula and hence can safely be added to it, and (ii) allows the solver to
backjump to some previous decision level and propagate a literal at that point. This mimics
conflict analysis in SAT solvers, where the 1-UIP scheme [36] has established itself as the
dominant approach and, after twenty years, only small variants have been added to it
(e.g. [12]).

Conflict analysis in PB solvers is a more complex task than in SAT and one can find
different variants in state-of-the-art CDCL-based PB solvers. However, we believe that
Algorithm 1 is an adequate abstraction of most of them. For the purpose of this paper,
this simplified presentation is detailed enough so that we can introduce our procedure in
Section 4. The overall idea of Algorithm 1 is that a series of linear combination steps are
applied between the conflicting constraint and the reasons for certain literals in the trail ρ

until we obtain a constraint that propagates some literal at some previous decision level.
This is essentially what conflict analysis does in CDCL-based SAT solvers, where resolution
can be seen as a concrete case of linear combination.

There are three differences we would like to remark. The first difference can be found in
the loop in lines 4-6. In a SAT solver, this loop looks for the topmost literal l ∈ ρ whose
negation appears in confCtr. But the actual property we want about l is that the addition
of l to ρ is the one that caused confCtr to be false. In a PB constraint, the literal l with this
property need not be the topmost in ρ whose negation appears in confCtr. For example,
if ρ = (x, y, z), the conflicting constraint 2x + y + z ≥ 3 already became false when x was
added to ρ, although the topmost literal whose negation appears in the constraint is z.
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Algorithm 1 CDCL-Based PB solver Conflict Analysis.

1 Function Conflict-Analysis(Assignment ρ, Constraint confCtr):
2 while true do
3 int slck := slack(confCtr , ρ) // slck < 0 because confCtr is a conflict.
4 while slck < 0 do
5 Literal l := ρ.pop() // ρ is a stack
6 if l ∈ confCtr then slck := slck + coef (l, confCtr)
7 Constraint reasonCtr := reason(l, ρ) // l ∈ reasonCtr and l ∈ confCtr
8 weakenConstraints(l, confCtr , reasonCtr)
9 α := coef (l, confCtr)

10 β := coef (l, reasonCtr)
11 confCtr := linearComb(β, confCtr , α, reasonCtr) // confCtr is false in ρ

12 if confCtr propagates at previous decision level then return confCtr

The second, and probably the most important difference, is that we want the application
of a linear combination to preserve the fact that the resulting constraint is false in ρ. This
property, which trivially holds in SAT solvers, is not true when using linear combinations in
general.

▶ Example 1. Let us consider the two constraints 5v+2x+3y+3z ≥ 6 and 5v+5x+3y+4z ≥ 6.
Assume that we decide on x and later on y. The second constraint propagates z and v and
hence we have the assignment ρ = (x, y, z, v). But now the first constraint is conflicting.
After the loop in lines 4-6, l is v and, if line 8 were not present, α = β = 5 and hence
the linear combination1 would be 15x + 30y + 35z ≥ 25 (note that the right hand side is
30 + 30 − 25 − 10, where the negative numbers come from canceling 25 units of variable v

and 10 units of variable x). One can now check that the derived constraint is no longer false
in the new assignment (x, y, z).

To avoid this problem, which is well-known in the PB [6, 11, 3] and the ILP communit-
ies [20, 29], function weakenConstraints replaces the constraints by weaker versions, that is,
logical consequences. Probably the easiest solution is to replace the reason of a literal by the
clause that expresses the implication. In the previous example we could convert the reason
for v, which was 5v + 5x + 3y + 4z ≥ 6, to v + x + y ≥ 1, expressing that if both x and y are
false, then v needs to be true. Now α = 5 and β = 1 and the linear combination that consists
of adding 5 times the new reason clause with the conflicting constraint is 3x + 8y + 3z ≥ 4,
which is now false in the assignment (x, y, z). Other possibilities for weakening the reason
constraint exist [6, 11, 3] but they are out of the scope of this paper.

The last difference in the procedure refers to the termination of the procedure. In SAT
solving, conflict analysis terminates when the 1-UIP is found, which guarantees that the
current confCtr propagates at some previous decision level. In PB solving, that constraint
might be propagating even before the 1-UIP is found and hence it makes sense to check,
after every linear combination step, whether confCtr propagates at some previous level. In
order to alleviate the computational effort of this check, we use the fact that if confCtr

and reasonCtr do not have any contradictory literal other than l, then if confCtr does not
propagate at some previous decision level, neither does the constraint resulting of the linear
combination between confCtr and reasonCtr computed in line 11 of Algorithm 1. We prove
this in the following.

1 Note that in Algorithm 1 one can use the least common multiple to compute smaller α, β but we omit
this detail in the presentation.

SAT 2025
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▶ Lemma 2. Let C := al + C ≥ kc and D := bl + D ≥ kd be two PB constraints such that
their parts C and D have no contradictory literal and let R be the linear combination bC +aD.
For any assignment ρ that assigns some value to l, if R is false in ρ then either C or D are
also false in ρ.

Proof. Given a constraint X ≥ d, we denote by SNF (X, ρ) the (S)um of the coefficients of
all literals in X that are (N)on-(F)alse in ρ. It holds that SNF (X, ρ) = slack(X ≥ d, ρ) + d.

Let us assume that neither C nor D are false in ρ and reach a contradiction. Since
R is false in ρ, we have that slack(R, ρ) < 0. Since we know that R is of the form
bC + aD ≥ bkc + akd − ab, with no contradictory literals between C and D, we have that
slack(R, ρ) = SNF (bC+aD, ρ)−bkc−akd+ab = bSNF (C, ρ)+aSNF (D, ρ)−bkc−akd+ab.
Note that the last equality holds because C and D have no contradictory literals, otherwise
cancellation between those literals could make it invalid. All in all, we can conclude that
bSNF (C, ρ) + aSNF (D, ρ) < bkc + akd − ab.

Now, since C is not false, we have that slack(C, ρ) ≥ 0 and hence SNF (al + C, ρ) − kc ≥ 0
and also aSNF (l, ρ) + SNF (C, ρ) − kc ≥ 0 and abSNF (l, ρ) + bSNF (C, ρ) − bkc ≥ 0.
Similarly abSNF (l, ρ) + aSNF (D, ρ) − akd ≥ 0. If we add these last two inequalities,
and considering that SNF (l, ρ) + SNF (l, ρ) = 1 because l is assigned in ρ, we have that
ab + bSNF (C, ρ) + aSNF (D, ρ) − bkc − akd ≥ 0, which contradicts the last inequality of the
previous paragraph. ◀

▶ Corollary 3. Let C := al + C ≥ kc and D := bl + D ≥ kd be two PB constraints such
that their parts C and D have no contradictory literal and let R be the linear combination
bC + aD. For any assignment ρ that assigns some value to l, if unit propagation of R under
ρ propagates a literal lp, then either C or D also propagate lp under ρ.

Proof. Apply Lemma 2 with assignment ρ ∪ {lp} and use the fact that a constraint C is false
in ρ ∪ {lp} if and only if C propagates a literal lp under ρ. ◀

We conclude this section with an example showing the execution of a CDCL-based PB
solver that uses a conflict analysis method based on Algorithm 1. This allow us to show how
our procedure of Section 4 is able to improve it. For simplicity, we have chosen an example
for which the application of weakenConstraints is never necessary.

▶ Example 4.

Max x +2y +3z +4u +5v +6w

a +x +y ≥ 2 (C1)
b +z +u ≥ 2 (C2)

c +v +w ≥ 2 (C3)

First solution. Since no constraint is propagating, the solver decides on a literal, say a,
which propagates x and y due to C1. Next decision is b, which propagates z and u due to
C2. Next decision is c, which propagates v and w due to C3. All constraints are satisfied
and we have found a solution for which the objective function has value 0.

Second solution. Since we have to look for a better solution, constraint C4 := x + 2y + 3z +
4u + 5v + 6w ≥ 1 is added. The solver makes the same decisions and propagations as before,
but the assignment ρ = (ad, x1, y1, bd, z2, u2, cd, v3, w3), where a superscript d indicates a
decision and a subscript i represents that constraint Ci is the reason for that propagation,
now falsifies constraint C4. Conflict analysis is started, popping literal w from ρ, making slck
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be 5 and the loop in lines 4 − 6 terminate. Since C3 is the reason for w, and α = 6, β = 1,
the linear combination is 1 · C4 + 6 · C3, which is C5 := 6c + x + 2y + 3z + 4u + v ≥ 2.
This constraint propagates c at decision level 2, and hence the solver backjumps to produce
assignment ρ = (ad, x1, y1, bd, z2, u2, c5). No other constraint propagates and the solver now
decides on v, which propagates w due to C3 and ρ is a solution with value 5.

Third solution. Since a better solution is needed we replace C4 by x + 2y + 3z + 4u + 5v +
6w ≥ 6. The solver restarts and makes the same decisions and propagations to produce
ρ = (ad, x1, y1, bd, z2, u2). However, now C4 propagates w and, after that, C3 propagates v

and c, which produces a solution with value 6.

Fourth solution. C4 now becomes x + 2y + 3z + 4u + 5v + 6w ≥ 7. The solver restarts
and proceeds as before to reach ρ = (ad, x1, y1, bd, z2, u2). Now C4 propagates v and w and
the resulting assignment ρ = (ad, x1, y1, bd, z2, u2, v4, w4) falsifies constraint C3 The loop at
lines 4 − 6 pops w from ρ, making slck to be 0. Since the coefficient of w in the reason
of w is β = 6 and the coefficient of w in C3 is α = 1 the linear combination computed is
6 · C3 + 1 · C4, which is Ctmp := 6c + x + 2y + 3z + 4u + v ≥ 8. Since this constraint does not
propagate at any previous decision level, one more iteration of conflict analysis is required.
The loop at lines 4-6 pops literals v and u, after which the slck is 3 and the loop terminates.
The procedure will now try to eliminate u from Ctmp by performing an appropriate linear
combination with the reason for u, which is C2. This linear combination is 1 · Ctmp + 4 · C2,
which results in C6 := 4b + 6c + x + 2y + z + v ≥ 9. This constraint is learned since it allows
the solver to backjump to decision level 1 and propagate c and b. The assignment is now
ρ = (ad, x1, y1, c6, b6). No other constraint propagates and the solver decides on v, which
propagates w due to C3. Next decision is on u, which propagates z due to C2. The current
assignment ρ is a solution with value 9.

Next step. C4 now becomes x + 2y + 3z + 4u + 5v + 6w ≥ 10. Let us now remark that the
solver, apart from the original constraints, only has the lemmas:

x + 2y + 3z + 4u + 5v + 6w ≥ 10 (C4)
6c + x + 2y + 3z + 4u + v ≥ 2 (C5)
4b + 6c + x + 2y + z + v ≥ 9 (C6)

The solver restarts and, since no constraint propagates at decision level zero, it will decide
on a. However, as we will show in the next section, this can be done much better.

4 Symbolic Conflict Analysis in CDCL-Based Pseudo-Boolean Solvers

This section starts with the presentation of our procedure. Then, in Section 4.2 we explain
how to obtain upper bounds and how to use it inside a binary-search solving procedure. Next,
we explain in Section 4.3 how the procedure interacts with other inference rules commonly
used in PB solvers.

4.1 The Symbolic Conflict Analysis Procedure
Let us consider again the maximization problem in Example 4. After every solution found,
constraint C4, which states that only better solutions are accepted, is strengthened. However,
we know that lemma C5 was obtained via the linear combination 1 · C4 + 6 · C3, and lemma

SAT 2025
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C6 was 1 · C4 + 6 · C3 + 4 · C2. What we show in this section is how, after every solution
is found, not only can we strengthen C4 but also strengthen every lemma that was derived
by using C4. Moreover, we can do it in a simple and efficient way that only requires minor
modifications to the solver. Let us introduce our symbolic conflict analysis procedure with
the following example.

▶ Example 5. Let us consider the same maximization problem as in Example 4.

First solution. We proceed as before in order to find the first solution, with value 0.

Second solution. Now, instead of adding constraint C4 := x + 2y + 3z + 4u + 5v + 6w ≥ 1,
we modify its degree so that it contains a symbolic representation of it. We consider a
symbolic variable δ and instead add constraint C4 := x + 2y + 3z + 4u + 5v + 6w ≥ 1 J1 + δK.
The symbolic part J1 + δK intuitively expresses that the objective function has to be at least 1
unit larger than the value of the best solution found so far, which is symbolically represented
by a variable δ. In terms of propagation, this symbolic expression will be ignored in all
constraints.

Hence, we have the same constraints as in the previous example and the solver constructs
ρ = (ad, x1, y1, bd, z2, u2, cd, v3, w3). Our symbolic conflict analysis is started, proceeding as
usual except when performing linear combinations, where the symbolic part will be taken
into account. As before, we have to compute 1 · C4 + 6 · C3. Note that input constraints
like C3 also have a symbolic representation of the degree. However, in those cases it will be
equal to the degree. That is, the linear combination is:

1 · C4 : x +2y +3z +4u +5v +6w ≥ 1 J1 + δK
6 · C3 : 6c +6v +6w ≥ 12 J12K

C5 : 6c +x +2y +3z +4u +(v + 5) +6 ≥ 13 J13 + δK

A simple arithmetic manipulation, also on the symbolic part, results in the final learned
lemma C5 : 6c + x + 2y + 3z + 4u + v ≥ 2 J2 + δK. Since the symbolic representation is
ignored when propagating, the solver proceeds as in the previous example to obtain solution
ρ = (ad, x1, y1, bd, z2, u2, c5, vd, w3) with cost 5.

Third solution. This is where our procedure makes the solver behave differently. Since
we are looking for a solution of cost larger than 5, we strengthen C4 to become x + 2y +
3z + 4u + 5v + 6w ≥ 6 J1 + δK but we can also automatically strengthen C5 to become
6c+x+2y +3z +4u+v ≥ 7 J2+δK. More explicitly, the new degree of a constraint is equal to
symbolic part where variable δ is replaced by the value of the best solution found so far. We
can observe that C5 allows for more propagations than its initial non-strengthened version.
However none of these propagations apply here and the solver finds the same solution as
before, with value 6.

Fourth solution. Constraints C4 and C5 are strengthened again to become now C4 :
x+2y +3z +4u+5v +6w ≥ 7 J1+δK and C5 : 6c+x+2y +3z +4u+v ≥ 8 J2+δK. By making
the same decisions, the solver finds again the same conflict and the first linear combination to
be computed is again 6 · C3 + 1 · C4, which gives Ctmp : 6c + x + 2y + 3z + 4u + v ≥ 8 J2 + δK.

This constraint does not propagate at any previous decision level and one additional
iteration is needed. The following linear combination is 1 · Ctmp + 4 · C2, which results in
C6 : 4b + 6c + x + 2y + z + v ≥ 9 J3 + δK. It propagates c and b at decision level 1 and the
solver proceeds identically to obtain a solution of value 9.
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Fifth solution. Constraints C4, C5 and C6 are strengthened again and become

C4 : x + 2y + 3z + 4u + 5v + 6w ≥ 10 J1 + δK
C5 : 6c + x + 2y + 3z + 4u + v ≥ 11 J2 + δK
C6 : 4b + 6c + x + 2y + z + v ≥ 12 J3 + δK

These constraints are now much stronger than in the previous example due to symbolic
conflict analysis. This clearly pays off now: C6 propagates b and c at decision level zero,
something that was not possible in Example 4, where our symbolic conflict analysis procedure
was not used. The solver now decides on a, which propagates x and y due to C1. Since we
now have the strengthened version of C5, we can propagate u. Unit propagation ends up
finding a solution ρ = (b6, c6, ad, x1, y1, u5, z2, w4, v3) with value 10.

Sixth solution. Constraints C4, C5 and C6 are strengthened again and become now:

C4 : x + 2y + 3z + 4u + 5v + 6w ≥ 11 J1 + δK
C5 : 6c + x + 2y + 3z + 4u + v ≥ 12 J2 + δK
C6 : 4b + 6c + x + 2y + z + v ≥ 13 J3 + δK

After the propagation of b, c at decision level zero, the solver decides on a and unit
propagation produces the assignment ρ = (b6, c6, ad, x1, y1, u5, z5) with value 10. This
now falsifies C2 and conflict analysis is triggered. So z is popped from ρ, and the linear
combination 3 · C2 + 1 · C5 is performed, giving Ctmp : 3b + 6c + x + 2y + u + v ≥ 12 J2 + δK.
Since it does not propagate at decision level zero, conflict analysis continues. Then u

and y are popped and the linear combination 1 · Ctmp + 2 · C1 is performed, resulting in
C7 : 2a + 3b + 6c + x + u + v ≥ 13 J3 + δK, which propagates a at decision level zero. The
solver backjumps to ρ = (b6, c6, a7). Since nothing else propagates, the solver decides on v

and unit propagation results in solution ρ = (b6, c6, a7, vd, w3, y6, x1, u4, z2) with value 11.

Seventh solution. Constraints C4, C5, C6 and C7 are strengthened again and become now:

C4 : x + 2y + 3z + 4u + 5v + 6w ≥ 12 J1 + δK
C5 : 6c + x + 2y + 3z + 4u + v ≥ 13 J2 + δK
C6 : 4b + 6c + x + 2y + z + v ≥ 14 J3 + δK
C7 : 2a + 3b + 6c + x + u + v ≥ 14 J3 + δK

These strengthenings allow the solver to compute the optimal solution only by unit
propagation ρ = (b6, c6, a7, x7, u7, v7, z2, y4, w4), which has value 12.

Summing up, there are only three differences with respect to the underlying algorithm of
a CDCL-based PB solver. First of all, PB constraints now have a symbolic representation
of their degree. Note that this representation will always be of the form Jp · δ + qK, where
p, q ∈ Q. We cannot guarantee that they are natural numbers because of the use of the
division rule that we will explain later. This symbolic representation is updated accordingly
when the linear combination rule is applied. The second difference is that, when the first
solution is found (with value V ) a new constraint with symbolic part Jδ + 1K and degree
V + 1 is added. The third difference is that when a new solution is found with value V , the
degree of all constraints is updated. More concretely, if a constraint has as symbolic part
Jp · δ + qK its degree will become p · V + q. The following theorem guarantees the correctness
of our procedure.
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▶ Theorem 6. Let us consider S a set of PB constraints and
∑

i oil
′
i a PB objective function

to maximize. If the symbolic constraint
∑

i cili ≥ Jp · δ + qK can be derived by a series of
symbolic linear combination steps from S and the symbolic constraint

∑
i oil

′
i ≥ Jδ + 1K,

then
∑

i cili ≥ p · V + q can be derived by a series of linear combination steps from S and∑
i oil

′
i ≥ V + 1.

4.2 Additional Benefits of Symbolic Conflict Analysis
In the previous section we showed the main benefit of symbolic conflict analysis: the
strengthened constraints have stronger unit propagation capabilities and hence allow for a
more efficient traversal of the search space. We now report on additional benefits that we
obtain by using our symbolic conflict analysis procedure.

Computation of Upper Bounds. Somewhat surprisingly, a by-product of the symbolic
procedure we have introduced is that we can easily compute upper bounds on the value of
the objective function we want to maximize.

Again, the idea is best illustrated by revisiting Example 5. Let us consider constraint C5
in its original form 6c + x + 2y + 3z + 4u + v ≥ 2 J2 + δK. Assume that a solution with value V

is found. Our procedure would automatically update the degree of C5 and it would become,
removing its symbolic part for the sake of this reasoning, 6c + x + 2y + 3z + 4u + v ≥ 2 + V .
The left-hand side of this inequality can at most be 17 (the sum of its coefficients). This
means that if 2+V ≥ 18 (i.e. V ≥ 16) this constraint cannot be satisfied and hence the solver
would conclude that there is no solution strictly larger than V . Hence the best objective can
at most be 16. Thus, after second solution (with value 5) is found in Example 5, we can
guarantee that the optimal solution is in the interval [5, 16].

▶ Theorem 7. Let us consider P a PB maximization problem consisting of a set S of PB
constraints and an objective function

∑
i oil

′
i. If we can derive by a series of symbolic linear

combination steps a symbolic constraint
∑

i cili ≥ Jp · δ + qK from S and
∑

i oil
′
i ≥ Jδ + 1K,

then the value of the optimal solution to P is at most
⌊

(
∑

i
ci)−q

p + 1
⌋

.

Proof. Let O be the value of the optimal solution to P . Let us consider the set of constraints
S′ = S ∪ {

∑
i oil

′
i ≥ O}, which we know is satisfiable. Theorem 6 and the premises of

this theorem guarantee that a series of linear combination steps exists that allow us to
derive from S′ the constraint

∑
i cili ≥ p · (O − 1) + q. Since linear combination produces

logical consequences, the latter constraint must be satisfiable. Hence O must be such that∑
i ci ≥ p · (O − 1) + q, which is the same as O ≤

(
∑

i
ci)−q

p + 1. Since O must be an integer
value, we can take the floor of the right-hand side to obtain the desired bound. ◀

In Example 5, the previous theorem allows the symbolic conflict analysis procedure to
produce an upper bound of 13 due constraint C6, and a better upper bound of 12 due to C7.

An interesting question is whether the derivation of upper bounds can trigger an early
termination of the procedure because the best solution found matches the computed upper
bound. We now prove that, in this situation, the constraint from which the upper bound is
computed becomes trivially unsatisfiable after the corresponding strengthening step.

▶ Theorem 8. Let us consider the constraint C :=
∑

i cili ≥ Jp · δ + qK from which the upper
bound θ is derived. If a solution with value θ is obtained, the corresponding strenghtened
version of C is unsatisfiable.
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Proof. Due to theorem 7, we know that θ =
⌊

(
∑

i
ci)−q

p + 1
⌋

. If we find a solution with

value θ we can strengthen C to obtain
∑

i cili ≥ p ·
⌊

(
∑

i
ci)−q

p + 1
⌋

+ q. We can manipulate

the degree of the constraint as follows:

p

⌊
(
∑

i ci) − q

p
+ 1

⌋
+q =p

⌊
(
∑

i ci) − q

p

⌋
+p+q =p

(
(
∑

i ci) − q

p
− ε

)
+p+q =

∑
i

ci+p(1−ε)

for some 0 ≤ ε < 1. Hence, the strengthened constraint is
∑

i cili ≥
∑

i ci + p(1 − ε) which
is clearly unsatisfiable. ◀

Use in a Binary-Search Approach. The standard CDCL-based PB procedure we revisited
in Example 4 strengthens the degree of the objective function every time a solution is found
in order to find a better one. As mentioned before, this is sometimes known as Linear Search.
However, we can use the well-known binary-search approach in which we always have an
interval [LB, UB] that includes the value of the optimal solution. If LB = UB the optimal
has been found. Otherwise we pick M = (LB + UB)/2 and recursively solve two problems,
the first one in which a solution is sought in [LB, M ], and a second problem in which a
solution is sought in [M + 1, UB].

One of the main drawbacks of this approach is that constraints learned when solving the
[M + 1, UB] problem cannot be reused for the [LB, M ] problem, because they might have
been derived by using the constraint obj ≥ M + 1 that expresses that a solution of value at
least M + 1 is needed, which is a not a valid constraint in the [LB, M ] problem.

However, this problem can easily be overcome in our symbolic conflict analysis procedure.
First of all, we can easily identify the constraints that depend on obj ≥ M + 1: the ones with
a non-zero coefficient on δ in the symbolic part. But, even more importantly, we can even
reuse those ones for solving the [LB, M ] problem by substituting δ by LB in the symbolic
part and changing the degree of the constraint to that value.

4.3 Interaction with Other Inference Rules

As we have mentioned, our presentation in Algorithm 1 of the conflict analysis procedure used
by CDCL-based PB solvers omitted some details in order to (i) ease its understanding and
(ii) do not bias it towards any concrete solver. One of the ingredients that our presentation
abstracts away is the use of other rules apart from linear combination. In particular, as
explained in [15], the use of division and saturation allows solvers to process some problems
exponentially faster. Apart from this important effect, they also allow the solver to deal
with smaller coefficients in the constraints, which may become very large after a few linear
combinations are applied. The recurrent use of infinite-precision arithmetic in a solver might
have remarkable negative effects on performance.

The Division Rule. This rule can be smoothly adapted to be used in our symbolic conflict
analysis procedure. Whenever a constraint

∑
i aili ≥ A is divided by a positive natural

number α to obtain
∑

i⌈ai/α⌉li ≥ ⌈A/α⌉ its symbolic part Jp · δ + qK is also divided by the
same constant to become J p

α · δ + q
αK. This is the reason why coefficients in the symbolic part

might be rational numbers. When a new solution with value V is found and the constraint
needs to be strengthened, its degree will become the ceiling

⌈
p
α · V + q

α

⌉
.
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The Saturation Rule. Another common rule in PB solvers is saturation, which forces all
coefficients of a constraint to be at most equal to its degree. In general, the use of this
rule is incompatible with our symbolic procedure. This is easy to see if we consider again
Example 5. The first lemma that is learned is C5 : 6c + x + 2y + 3z + 4u + v ≥ 2 J2 + δK. At
this point, we could apply saturation to obtain C5 : 2c + x + 2y + 2z + 2u + v ≥ 2 J2 + δK.
However, after the fourth solution (with value 9) is found, the procedure would update the
degree of this constraint to be 2 + 9 = 11, which would make the constraint unsatisfiable.
Hence, the solver would wrongly conclude that the value of the optimal solution is 9.

We want to remark that saturation is still applicable to all constraints where δ has zero
coefficient on the symbolic part, i.e., the ones that do not depend on the objective function.
Regarding the rest of the constraints, there are a few possibilities: (i) apply saturation but
remove the symbolic part or (ii) do not apply saturation, or (iii) apply saturation but store
the original coefficients of the constraints in order to be used later when a strengthening step
is performed.

5 Experimental Evaluation

In order to empirically evaluate the impact of our symbolic conflict analysis procedure, we
have run experiments on the set of benchmarks that were used in the OPT-LIN (optimization
problems with linear constraints) track of the 2024 Pseudo-Boolean Competition2. Since
our solver does not accept big integers on the constraints, we limit our analysis to the 385
benchmarks that only use 32-bit integers. All experiments3 were done on 3.3Ghz 16GB
Intel Xeon E-2124 machines, setting a time limit of one hour per benchmark. We report our
findings in what follows.

Potential and Overhead of Symbolic Conflict Analysis. After every new solution is found,
except for the first one, our symbolic conflict analysis procedure performs a strengthening
step: it changes the degree of all symbolic constraints. Hence, having a systematic low
number of strengthening steps on all benchmarks would indicate that our procedure is rarely
applicable. In order to confirm that this pessimistic scenario is not common we computed,
for all 385 benchmarks, how many such steps are done within one hour. This information is
summarized in the leftmost cumulative plot of Figure 1.

A point (x, y) in the plot means that there exist y% of the benchmarks for which at least
x strengthening steps are applied. For example, around 50% of the benchmarks have at least
8 steps, one third of them has at least 15 steps, and 20% of the benchmarks have at least 24
steps. Hence, the important message one has to infer from the plot is that it is very common
that a non-negligible number of strengthening steps are used. There are some instances, left
out of the plot for readability, with an unusually large number of steps: 4 benchmarks with
between 100 and 150 steps, 2 benchmarks between 151 and 200, and 2 benchmarks with
more than 201, being 255 the maximum one. There are also extreme cases on the opposite
direction: for about 18% of the benchmarks no strengthening step was applied. This is not a
huge number but we believe it is large enough so that it is not negligible: doing expensive
computations to later realize that our technique is not applicable at all would definitely slow
down the solver on around 20% of the instances.

2 https://www.cril.univ-artois.fr/PB24/
3 Additional material can be found in https://github.com/dearzhaorui/symbolic-conflict-analysis.

https://www.cril.univ-artois.fr/PB24/
https://github.com/dearzhaorui/symbolic-conflict-analysis
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Figure 1 Left plot displays the percentage of benchmarks with at least a certain number of
strengthening steps. The plot on the right shows the negligible overhead of the symbolic conflict
analysis procedure.

Fortunately, the rightmost scatter plot of Figure 1 reveals how surprisingly small the
overhead of symbolic conflict analysis is. For precisely assessing this overhead, we implemented
our symbolic procedure on top of our solver: all constraints have a symbolic part; linear
combination, saturation and division are applied taking into account this symbolic part but,
after a new solution is found, the strengthened degree of all symbolic constraints is computed
but not updated. That is, we pay all the overhead of our procedure but, since the constraints
are unchanged, the solver has the same search behavior as its baseline version. The scatter
plot compares the runtime in seconds of this modified system and our original solver. It is
entirely obvious that the overhead caused by the symbolic procedure is negligible. We want
to remark that this is the case independently of the package we use for infinite-precision
rational numbers on the symbolic part: we tried GMP [14], Boost [5] and a custom package
developed in our research group and no differences were observed.

Runtime Improvement. Let us now show that implementing symbolic conflict analysis
on top of our solver produces important performance gains. The CDF plot on the left of
Figure 2 shows how the addition of the symbolic conflict analysis procedure makes the solver
able to solve more problems within any given time limit. For a time limit of 1 hour the
solver is able to solve 6 more benchmarks up to optimality. The scatter plot on the right
contains two parallel green lines delimiting speedups of 2x. We can see that despite there
are concrete instances for which the symbolic solver is slower, they are mostly easy instances
solved within 30 seconds, and the slowdown is never larger than 2x. On the other hand,
there are several benchmarks for which the symbolic solver outperforms the baseline by very
large speedup factors.

Finally, we want to compare our system with the state of the art. For this purpose we
chose the latest version of RoundingSat [11, 9, 8]. Note that, in the optimization linear
constraints category of the 2024 Pseudo-Boolean Competition, 8 of the 10 best performing
solvers used RoundingSat, either as an oracle or combined with additional techniques. We
ran RoundingSat in linear-search mode. Despite its full version, which combines linear and
core-guided search is more powerful, the purpose of this comparison is limited to linear search.
The CDF plot on Figure 3 shows how our original solver is slower than RoundingSat.
This might be due to maturity of the implementation, different search strategies and, more
importantly, concrete details in conflict analysis related to different weakening procedures,
different uses of saturation and division, and termination criteria of the main loop as we
explained in Section 3. However, the addition of symbolic conflict analysis bridges this gap
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Figure 2 CDF and scatter plots comparing runtimes of our original solver with a version of it
implementing symbolic conflict analysis.

Figure 3 CDF plot comparing RoundingSat, our original solver and our implementation of
symbolic conflict analysis on top of it.

and makes them behave more similarly. As we will mention, it is part of our future work to
examine how symbolic conflict analysis can improve the linear-search component of other
solvers, and RoundingSat is definitely a candidate.

In the optimization linear constraints category, 8 of the 10 best performing solvers did
use RoundingSAT. That is, it was either used as an oracle or combined with additional
techniques. Hence, it is at the core of almost every solver, except for SCIP.

Percentage of Symbolic Lemmas and Impact of Saturation. The next question we want
to address is to determine how many lemmas have a non-constant symbolic part, that is,
Jp · δ + qK with p ̸= 0. The left histogram in Figure 4 summarizes this information. For
each of the 312 out of the overall 385 benchmarks that apply some strengthening step,
whenever this step is performed we compute the percentage of PB constraints that have
a non-constant symbolic part. Note that in our solver clauses have a particular treatment
and they are not considered as PB constraints in this computation. When the execution
finishes, we compute the average over all strengthening steps of these percentages. The
histogram essentially represents this average. More concretely, the first bar indicates that
for 34 benchmarks this average is zero. The second bar shows that for 65 benchmarks this
average is in the interval (0, 5]; the third bar over the 10 label means that the average is in
(5,10] for 13 benchmarks, and so on. As expected from the previous results on performance,
the percentage of constraints with non-constant symbolic part is remarkable, making the
strengthening step a powerful one.
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Figure 4 The left histogram shows the number of instances with a certain percentage of constraints
with non-constant symbolic part. The right histogram show the percentage of lemmas that are
non-symbolic due to an application of saturation.

Another question we wanted to answer is to discover the reasons why certain lemmas are
non-symbolic (i.e. p = 0 in Jp · δ + qK). One obvious reason is that it might happen that the
constraint bounding the objective function has not been used in the derivation of this lemma.
Another possibility is the interaction between saturation and our symbolic procedure, as we
explained in Section 4.3. In our implementation, whenever saturation is to be applied on a
constraint with non-constant symbolic part, we apply it and remove its symbolic information.
If this happens too often, it could hinder the power of our symbolic reasoning. The right
histogram in Figure 4 answers this question in a positive way: this situation is not common at
all. For example, the bar with height 15 over the 20 label means that there are 15 instances
for which, if we only consider non-symbolic constraints, the percentage of them that are
non-symbolic due to an application of saturation is in the interval (15, 20]. As we can see,
the main reason for a constraint not being symbolic is not the application of saturation.

Upper Bounding. An interesting feature of our procedure is the computation of upper
bounds. The number of times that our procedure improves the upper bound is significant for
several benchmarks. In the left plot of Figure 5 we can see, for three concrete instances, the
evolution of the upper and the lower bound. Since these instances are minimization problems,
finding a new solution improves the upper bound, whereas our new bounding techniques
improve the lower bound. We can see that both bounds are improved several times during
the execution of the system. However, we want to note that there are of course instances for
which the production of new bounds is not as frequent. This is observed in the right plot of
Figure 5. We have considered all 87 benchmarks for which our solver timed out in one hour
and such that after the last solution found, our bounding technique is able to reduce the size
of the interval [LB, UB]. The plot displays the number of instances for which the size of the
last interval produced by the solver, divided by the size of the interval after the last solution
was found is equal to a certain number. A small number implies that our bounding technique
is able to produce a significant reduction on the interval size since the last found solution.
As we can see, although for half of the benchmarks only small reductions are achieved, for
the other half it does have a beneficial effect, with different magnitudes depending on the
benchmark. This shows that, even when the solver is not able to find further solutions, the
bounding technique still makes progress in the estimation of the optimum.

Binary Search. It is well known that in PB optimization, binary search is generally
outperformed by linear search. Unfortunately, according to our experiments, this is still the
case even if one is able to reuse all lemmas from all problems, as we can do thanks to our
symbolic procedure.
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Figure 5 The left plot shows the evolution of the lower and upper bounds for three different
instances. On the right, we can see the percentage of reduction of the interval [LB, UB] after the
last found solution.

6 Conclusions and Future Work

We have introduced a novel symbolic conflict analysis procedure for PB optimization. Despite
being easy to implement and having no overhead, experimental results have shown that it is
able to significantly improve the performance of our linear-search based solver. In addition,
it has several benefits such as the computation of upper bounds and its use in binary search.

As future work, we plan to evaluate the impact of our technique on other PB solvers.
Finding ways to improve our bound computation is also on our agenda, as well as developing
proof-logging techniques to verify the correctness of the results given by this technique.
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