SAT-Based CEGAR Method for the Hamiltonian
Cycle Problem Enhanced by Cut-Set Constraints

Ryoga Ohashi & Takehide Soh =4

Kobe University, Kobe, Japan Kobe University, Kobe, Japan

Daniel Le Berre 24 Hidetomo Nabeshima &2 &

Univ. Artois, CNRS, UMR 8188 CRIL, Yamanashi University, Kofu, Japan

Lens, France

Mutsunori Banbara &G4 Katsumi Inoue S &

Nagoya University, Nagoya, Japan National Institute of Informatics, Tokyo, Japan

Naoyuki Tamura &4
Kobe University, Kobe, Japan

—— Abstract
In this paper, we propose an enhancement to the SAT-based counterexample-guided abstraction
refinement (CEGAR) approach for solving the Hamiltonian Cycle Problem (HCP). Many SAT-based
methods for HCP have been proposed, including a CEGAR-based method that repeatedly solves a
relaxed version of HCP strengthened by counterexamples. However, when the counterexample space

— represented by the full set of subcycle partitions — is large, it becomes difficult to find a solution. To
address this, we introduce cut-set constraints in the refinement step, replacing traditional subcycle
blocking constraints. Our evaluation shows that these cut-set constraints achieve equal or better
reduction in the counterexample space, making it easier to find valid solutions. We further assessed
performance using all 1001 instances from the FHCP challenge set and confirmed that the proposed
method solved 937 instances within 1800 seconds, outperforming both the existing eager and CEGAR
encodings (which solved at most 666 instances). This demonstrates the effectiveness of incorporating
cut-set constraints into SAT-based CEGAR approaches.

2012 ACM Subject Classification Computing methodologies — Discrete space search
Keywords and phrases Hamiltonian Cycle Problem, SAT Encoding, CEGAR

Digital Object Identifier 10.4230/LIPIcs.SAT.2025.24

Supplementary Material Software: https://doi.org/10.5281/zenodo.15621774

Funding This work was financially supported by JSPS KAKENHI (23K11047), and by ROIS NII
Open Collaborative Research 2024 (24FP04).

Takehide Soh: JSPS KAKENHI Grant Number 23K11047.

Mutsunori Banbara: JSPS KAKENHI Grant Number 25K03097.

Katsumi Inoue: JSPS KAKENHI Grant Number JP25K03190, JST CREST Grant Number JP-
MJCR22D3.

1 Introduction

The Hamiltonian Cycle Problem (HCP) asks whether a given graph contains a cycle that
visits each node exactly once. HCP is one of the 21 NP-complete problems identified by
Karp in 1972 [10]. Due to its close link with the Traveling Salesman Problem (TSP), efficient
methods for HCP have remained a key research focus. As a result, FHCP Challenge [7] was
recently held as a year-long challenge aimed at tackling particularly difficult HCP instances.

The Satisfiability (SAT) Problem is another NP-complete problem, deciding whether
there exists an assignment of truth values to propositional variables that makes a given
logical formula true. Despite the theoretical complexity of SAT, SAT solvers are very efficient

© Ryoga Ohashi, Takehide Soh, Daniel Le Berre, Hidetomo Nabeshima, Mutsunori Banbara,
B Katsumi Inoue, and Naoyuki Tamura;
licensed under Creative Commons License CC-BY 4.0

28th International Conference on Theory and Applications of Satisfiability Testing (SAT 2025).
Editors: Jeremias Berg and Jakob Nordstréom; Article No. 24; pp. 24:1-24:10

\\v Leibniz International Proceedings in Informatics
LIPICS Schloss Dagstuhl — Leibniz-Zentrum fir Informatik, Dagstuhl Publishing, Germany

mailto:ohashi@stu.kobe-u.ac.jp
https://orcid.org/0009-0003-7730-9401
mailto:soh@lion.kobe-u.ac.jp
https://tsoh.org/
https://orcid.org/0000-0001-5897-9192
mailto:leberre@cril-lab.fr
http://www.cril.univ-artois.fr/~leberre/
https://orcid.org/0000-0003-3221-9923
mailto:nabesima@yamanashi.ac.jp
https://researchmap.jp/nabesima?lang=en
https://orcid.org/0000-0003-3752-2518
mailto:banbara@nagoya-u.jp
https://researchmap.jp/banbara
https://orcid.org/0000-0002-5388-727X
mailto:inoue@nii.ac.jp
https://researchmap.jp/vivre?lang=en
https://orcid.org/0000-0002-2717-9122
mailto:tamura@kobe-u.ac.jp
https://tamura70.gitlab.io/
https://orcid.org/0000-0002-5466-1010
https://doi.org/10.4230/LIPIcs.SAT.2025.24
https://doi.org/10.5281/zenodo.15621774
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics
https://www.dagstuhl.de

24:2

SAT-Based CEGAR for HCP by Cut-Set Constraints

in practice [2, 6] on a wide range of combinatorial problems reduced to SAT, including
HCP [11, 14, 13, 15, 8, 16]. SAT-based methods for solving HCP usually depend on degree
constraints and connectivity constraints. Various SAT encodings for these constraints have
been studied. Recently, binary adder encoding [15] showed good performance for selected 7
instances of the FHCP Challenge. Combined with degree constraints, it assigns a total order
to each node connected in a solution graph, and a binary adder manages the order. Subsequent
work [8] utilizes the Chinese remainder theorem (CRT) to further shrink the number of
clauses generated by binary adder encoding. Another approach is vertex elimination [16],
which avoids no-sub-cycle constraints unlike other methods. However, these methods suffer
from scalability issues or excessive clause generation on challenging FHCP instances, making
a more efficient SAT-based method a key challenge.

To overcome the limitations of existing SAT-based methods, in this paper, we revisit
the SAT-based CEGAR method [13]. This approach uses a SAT solver to solve a relaxed
version of the HCP that consists solely of degree constraints. If the obtained solution contains
subcycles (counterexamples), the method iteratively adds subcycle blocking constraints to
eliminate them; otherwise, it returns the obtained solution as a Hamiltonian cycle. This
approach has the advantage of not needing to encode upfront the connectivity constraint,
which tends to result in a large number of clauses. However, for difficult instances, the issue
is that the number of counterexamples found is huge, preventing the SAT solver from finding
a Hamiltonian cycle. The main idea of the proposed method is to use cut-sets, which are
sets of edges that connect subcycles to other subcycles, and add constraints to include these
edges in the solution rather than relying on traditional methods that only add constraints
to eliminate the detected subcycles. This improvement allows for the elimination of more
subcycles compared to previous methods, leading to better performance. To evaluate the
effectiveness of our proposed method, we conducted experiments using all 1001 benchmark
instances from the FHCP Challenge. We also compared our approach with recently proposed
SAT-based methods [13, 8, 16] to further assess its performance.

2 Preliminaries

Hamiltonian cycle problem (HCP). Let G = (V,E) be a graph where V is a set of n
nodes and F is a set of edges. Let C' be a simple cycle in G. We also denote a cycle by a
sequence of nodes (v;,, vy, ..., v;,), where v, € V are all distinct and {v;;,v;, ,} € E for
all 1 <j <k, with {v;,,v;, } € E. We also sometimes treat a cycle C' as a set of edges. We
use |C] as the size of the cycle C and use V(C) as the set of nodes in a cycle C, i.e., the
set of nodes consisting of the cycle C. We also denote by G¢ the subgraph of GG induced by
V(C), ie., G = GIV(C)]. The Hamiltonian cycle problem (HCP) is the problem of finding
acycle Cst. V(C)=V.

Constraints of HCP. Let G’ = (V, E’) be a subgraph (or a solution graph) of G where
E' C E. Let x;; (i # j) be a Boolean variable for each edge {i,j} € E, which is equal to
1 when {i,j} € E’ is true. Then, constraints of HCP can be written as follows: Uppg :=

ANy Ygrer®ij =2andVYoon =N\ scv >, icgwij < |S|—1. The degree constraints
- 2<|S[<n—2 "

VU ppe force that, for each node, its degree is exactly two in G’. Consequently, it forces each
node to belong to a subcycle in G’. The connectivity constraint Wcon prohibits subcycles,
i.e., cycles on proper subsets of V. As mentioned above, compared to degree constraints
(which can be encoded with a linear number of clauses to the number of nodes), connectivity
constraints are more expensive in SAT encoding; in the worst case of a naive encoding, an
exponential number of clauses is necessary.

R. Ohashi, T. Soh, D. Le Berre, H. Nabeshima, M. Banbara, K. Inoue, and N. Tamura

Algorithm 1 SAT-based CEGAR for HCP.
Input: Graph G = (V, E)
Output: Hamiltonian cycle (if exists), or “No

R

1: U := DegreeConstraint(G)

2: while WV is satisfiable do

3 P := Decode the model of ¥ found > P is a subcycle partition of G
4 if |P| ==1 then

5: return P > Hamiltonian cycle found
6 end if

7 U := WA RefinementConstraints(P)

8: end while

9: return “No”

Subcycle Partition. Consider a set of cycles P = {C1,Co,...,Ck}. We say P is a subcycle
partition of a given graph G = (V, E) iff V/(C1)UV (Cy)U- - -UV(Cy) = V and V(C;)NV (C;) =
@ for all 1 <i < j < k. In other words, each node of G belongs to exactly one cycle in the
set P, and together, these cycles cover every node in the graph without overlap. Clearly,
a subcycle partition P contains a Hamiltonian cycle iff |P| = 1. Let II be a function
that maps a graph G to the set of all its subcycle partitions. Define II>! as another
function that maps a graph G to all its subcycle partitions excluding Hamiltonian cycles,
ie., II"YG) = {Pell(GQ) | |P| > 1}.

Cut-set. A cut (S5,T) is a partition of the node set V of a graph G = (V, E) into two
disjoint subsets S and T. The cut-set of a cut (S, T) is defined as {(u,v) € E |u € S, v e T},
which is the set of edges having one endpoint in .S and the other endpoint in 7.

3 Existing SAT-based CEGAR for HCP [13]

Unlike typical SAT-based methods, SAT-based Counterexample-Guided Abstraction Refine-
ment (CEGAR) relaxes constraints and incrementally uses a SAT solver on a partial HCP
encoding, instead of fully encoding connectivity into CNF at once.

The algorithm of SAT-based CEGAR for HCP is presented in Algorithm 1. In Line 1,
the formula W is initialized with the degree constraints ¥ ppg. Line 2 checks satisfiability
repeatedly. If satisfiable, Line 3 decodes a subcycle partition P from the obtained model. If

Line 4 detects that P is a single cycle, Line 5 immediately returns it as a Hamiltonian cycle.

Otherwise, Line 7 adds the refinement constraints derived from P to refine ¥, and Line 8
resumes the checking. Finally, when no further solution can be found, Line 9 concludes that
no Hamiltonian cycle exists.

If we initialize the abstraction using only degree constraints, the counterexamples are
always a subcycle partition P = {C4,Cs,...,C,,} of G. Then, in the existing SAT-based
CEGAR [13], RefinementConstraints(P) is implemented by SubCycleBlocking(P) as
follows:

SubCycleBlocking(P) := /\ \/ Ly (1)
CeP {uw}eC

An illustration of a possible counterexample is shown in Figure 1. In this example, the
subcycle partition consists of Cy = (1,2,3,10,11,12) and Cy = (4,5,6,7,8,9). For this

24:3

SAT 2025

24:4

SAT-Based CEGAR for HCP by Cut-Set Constraints

Cut-set for ¢y Cut-set for Cy

P
e@@ ©

Figure 1 A counterexample consists of the subcycle partition P = {Ci,C2} where C1 =
(1,2,3,10,11,12) and C2 = (4,5,6,7,8,9). The dashed line represent the cut-sets between the set of
nodes V(C;) (i.e., S) and the rest of the graph V' \ V(C;) (i.e., T'), as explained in Section 4.1. The
x marks indicate the deleted edges {3,1} and {12,10}, while the o marks indicate the added edges
{3,10} and {1,12} according to the MergeCycles operation explained in Section 4.3.

counterexample, the existing SAT-based CEGAR refines constraints ¥ by two blocking
clauses. In the case of the given example, the following two clauses are generated.

X120 Vo3V 0310 V %1011 V %11,12 V %121

a5V T56 V TTe7 V OT78 V g9 V T 4 (2)
Note that, even in the worst case, we do not always need to block all subcycle partitions
since each subcycle is forbidden independently. For instance, if we refine the constraints for
the subcycle partition {C7,C2}, then we do not need to care {C1, (4,8,9), (5,6,7)} since Cy
cannot appear after the first refinement. And it is not necessary to block all subcycles, e.g.
(2,3,11,12) since the remaining nodes cannot construct any subcycle partition.

From another perspective, this CEGAR approach can be regarded as a method for turning
the following eager encoding into a lazy encoding.

Vsop = /\ /\ \/ Ty (3)

Pell>1(G) CEP {u,v}eC

Instead of the connectivity constraints Wy presented in Section 2, the conjunction ¥ ppag A
W sop ensures connectivity, forcing any solution graph to form a Hamiltonian cycle.

4 Proposed SAT-based CEGAR Enhanced by Cut-Set Constraints

This paper proposes an improvement to the existing SAT-based CEGAR method. While the
basic algorithm remains the same, we modify how refinement constraints are added.

4.1 Cut-Set Constraints

In the following, we will denote the cut-set of (S,T') simply as A(S). Our idea is to replace
the base constraint ¥gcp shown in the equation (3) by the following constraint!:

\I/CSF = /\ /\ \/ HETRY (4)

Pell>1(G) CEP {u,v}eA(V(C))

Then, the following proposition holds.

1 Cut-set based constraints have been studied in the context of the TSP solving (e.g., [4]). We adapt
these ideas to the setting of SAT-based CEGAR for HCP.

R. Ohashi, T. Soh, D. Le Berre, H. Nabeshima, M. Banbara, K. Inoue, and N. Tamura

» Proposition 1. Any model of Vprpa A Yegp forms a Hamiltonian cycle of G.

Proof. The constraint ¥pgg ensures that any solution graph can be decomposed into a
subcycle partition of G. Meanwhile, the constraint ¥ogp ensures that for each subcycle
in the subcycle partition, there is at least one edge connecting it to its complement. This
forbids any subcycle partition in II>*(G) that is not a single cycle. Consequently, any model
of ¥pre A Vegsr necessarily constructs a Hamiltonian cycle. <

We then propose to implement the function RefinementConstraints(P) of Algorithm 1
by CutSetForcing(P) as follows (see also Figure 1 for an example):

CutSetForcing(P) := /\ \/ T (5)
CeP {u,v}eA(V(C))

For the same counterexample P = {C,Cs} shown in Figure 1, the following clause is
generated by CutSetForcing(P).

T34V X910 V Tg,11 (6)

Note that there is a single clause since this example has the partition |P| = 2, and there is
only one cut-set constraint for two subcycles. However, in general, we need the |P| clauses
as same as SubCycleBlocking(P).

4.2 Properties of Cut-Set Constraints

The advantage of using the proposed cut-set constraints instead of the existing subcycle
blocking constraints is its ability to better prune the counterexample space II7(G). In
general, the following proposition holds.

» Proposition 2. Given a graph G = (V, E) and a subcycle partition P, the number of
subcycle partitions that CutSetForcing(P) prunes from II71(G) is equal to or greater than
the number that SubCycleBlocking(P) prunes.

Proof. Both clauses commonly forbid individual subcycles contained in P. Thus, all subcycle
partitions that contain those subcycles are pruned from IT>!, which can be represented
by ©; = {P' € II"Y(G) | {C} C P'AC € P}. Clearly, SubCycleBlocking(P) cannot
prune subcycle partitions other than ©;. On the other hand, CutSetForcing(P) additionally
prunes O, = {P' € II"'(G) | P” € P'AP" € Ueep II(Ge) \ {C})} where G is a subgraph
of G induced by C. |

To illustrate the example, we assign the following symbols C1, ..., Ci2 to the subcycles
in Figure 1: C; = (1,2,3,10,11,12), Cy = (4,5,6,7,8,9), Cs = (1,2,3), C; = (10,11,12),
Cs = (1,2,12), Cs = (3,10,11), C7 = (4,8,9), Cs = (5,6,7), Cy = (1,2,12,10,11,3),
Cho = (1,2,12,11,10,3), Cy; = (1,2,3,11,10,12), C15 = (4,9,5,6,7,8).

Again, suppose that P = {C4,C5} is obtained as a counterexample. Then, two refining
clauses in formulae (2) and (6) commonly forbid the following subcycle partitions, which
include an element of P = {C}, C2}. The pruned partitions ©; become as follows:

{{C1,C2},{C1,Cr,Cs},{C1, Ci2},{C2, C3,Ca},{C2,Cs5, Cs}, {C2, Co }, {C2, Cr0}, {C2, C11 }}

In addition, the proposed constraint in formula (6) prohibits the following subcycle partitions,
which include an element of {{03, 04}, {05, 06}7 {09}, {010}7 {011}} = H(Gcl) \ {Cl} or
{{C7,Cs},{C12}} = I(Ge,) \ {C2} — subcycle partitions of G induced by Cy or Cs.
O, ={{C3,C4,C7,Cs},{C5,Cs,C7,Cs},{Cy, C7,Cs}, {Ch0,C7,Cs},{C11,C7,Cs},
{037 C47 012}7 {053 Cﬁa Cl?}a {097 012}7 {0107 012}7 {0117 012}}

24:5

SAT 2025

24:6

SAT-Based CEGAR for HCP by Cut-Set Constraints

Algorithm 2 Procedure of Merging Subcycles.
Input: Subcycle Partition P = {C1,Cs,...,Cp}
Output: Smaller Subcycle Partition P = {C1,C5,...,C/,}
1: while there exists a pair (C;, C;) € P such that MergeCycles(C;, C;) # () do
2 Cmerged := MergeCycles(C;, C))
3: P :=(P\{C;,C;}) U{Crerged}
4
5

: end while
: return P

When subcycles in a counterexample contain multiple subcycle partitions, ©s becomes
exponentially large. The reason is that existing methods prune only subcycle partitions
containing the counterexample subcycle. In contrast, the proposed method enforces a cut-set,
which prunes all subcycle partitions enclosed by the subgraph induced by that subcycle.
In the above case, the difference arises because the subgraph induced by C; has multiple
subcycle partitions — Cy, Cy, Cyg, C11, C3,Cy, and C5, Cg — similarly for Cs.

In other words, if the subgraph induced by the counterexample subcycle does not have
multiple subcycle partitions, then ©3 = &, and there is no difference between the existing
approach and the proposed approach. In order to use the pruning capability of the proposed
method — i.e., to increase the cardinality of ©, — we perform subcycle merging, as described
in the next section.

4.3 Merging Subcycles for Improving Runtime

The previous section suggests that, when the induced subgraph of a discovered subcycle
has other subcycle partitions, it prunes a larger number of subcycle partitions. We thus
introduce a post-processing method that merges subcycles to utilize the advantage of the
proposed refinement constraints. The post-processing procedure is shown in Algorithm 2. Its
input is a subcycle partition, and it returns a smaller partition if possible. This algorithm
searches for a pair of cycles that can be merged using a function MergeCycles. If such a
pair is found, the algorithm replaces them with the merged cycle. This process is repeated
until no mergeable pair remains. Let C; = (v1,v2,...,vx) and C; = (u1,ug,...,u;) be two
subcycles to merge. Like the 2-opt method in TSP [3], MergeCycles are realized as follows.

MergeCycles(C;, C;) :=
Swap(C;,Cj, {s,t},{s + 1,6+ 1}), if Is,¢ such that vy € V(C;), u, € V(Cj),
{'I)S,Ut} S E7 {vs+17ut+1} S Ea

Swap(C’i,Cj, {s,t+1},{s+ 1,t}), if 3s,¢ such that vs € V(C;), w, € V(Cy),
{Us,ut+1} S E, {vs+1,ut} S E,

0, otherwise.

Here, Swap forms a single cycle combining C; and C; by replacing the edges {vs,vst+1}
and {u¢, us41} with two given edges. For example, suppose that the subcycles (1,2,3) and
(10,11,12) are found in the instance graph shown in Figure 1. Then we can merge the two
subcycles by replacing the edges {3,1} and {12,10} with {3,10} and {1, 12} that will create
the larger subcycle (1,2,3,10,11,12).

R. Ohashi, T. Soh, D. Le Berre, H. Nabeshima, M. Banbara, K. Inoue, and N. Tamura

4.4 Incorporating Existing Techniques for Efficiency

Conversion to Directed Graph. For simplicity, we have explained the method using
undirected graphs so far. However, the method can be naturally extended to handle directed
graphs. In fact, as shown in previous work [13], experiments suggest that applying the
method to directed graphs yields better performance. Therefore, in the subsequent sections,
we use the directed-graph version of the method. When an undirected graph G = (V, E) is
given, we introduce a set of auxiliary arcs A = {(4,7), (4,4) | {i,7} € E}. And, the degree
constraint becomes ¥ppe = AL, DiyeaTij = 1A /\?:1 > (i.jyea Tij = 1. The refinement
constraint becomes as follows. Here, A™ and A°“ are incoming and outgoing arcs in the
cut-set, respectively.

CutSetForcing(P) := /\ \/ ZTop N \/ Tu,w (7)
CieP \ (u,v)EA"(C;) (u,v)eA°ut(C;)

Hint Constraints. Because a large number of cycles of two nodes occur when the undirected
graph is converted to a directed graph, an additional constraint is introduced to prevent
them [13]. We refer to it as “2loop.” Furthermore, symmetry is broken by directing the edges
to uniquely determine the orientations of the cycles [8]. We refer to it as “asym.”

5 Experiments

5.1 Set Up

Computer. Core i5 12400 (2.5GHz) CPU with 6 cores, 64GB of RAM. A single thread is
used for each run in the experiments. Timelimit is 1800 seconds per instance.

Benchmarks. Recent studies [15, 8] used 7 instances selected from the FHCP Challenge
Set? [7]. In contrast, we used all 1001 instances provided in the benchmark set to conduct
comprehensive experiments.

Compared Methods. We compared the proposed method with an existing CEGAR ap-
proach [13] (Existing-CEGAR), as well as three recently proposed SAT encodings (Adder [15],
CRT-420 [8], Hybrid (VEE-DIST) [16], respectively) for the Hamiltonian cycle problem. For
Adder and CRT-420, we used an implementation available on GitHub?. For VEE-DIST,
we use the recent version of Picat? (v3.8 with Kissat). Note that Existing-CEGAR is
implemented using Rustsat [9] as well as the proposed CEGAR. In addition to those tools,
we also tried to compare another implementation of the existing CEGAR®, but could not
run it reliably (418 instances were aborted by OS signals). Therefore, we do not include its
performance.

https://sites.flinders.edu.au/flinders-hamiltonian-cycle-project/fhcp-challenge-set/
https://github.com/marijnheule/ChineseRemainderEncoding

https://picat-lang.org/

https://github.com/kfazekas/incremental-examples

(SN V)

24:7

SAT 2025

https://sites.flinders.edu.au/flinders-hamiltonian-cycle-project/fhcp-challenge-set/
https://github.com/marijnheule/ChineseRemainderEncoding
https://picat-lang.org/
https://github.com/kfazekas/incremental-examples

24:8

SAT-Based CEGAR for HCP by Cut-Set Constraints

1800
—— Hybrid (VEE-DIST)
1600 Exiting-CEGAR (
— er ‘ .
1400| — carazo J } Hybrid [16] 428
—— Proposed-CEGAR (nohint |
01200 — Progosed—CEGAR E+2Ioo;) ‘ | E. CEGAR [13} 539
g’looo — \Pllg)sposed—CEGAR (-asym) | J Adder [15} 640
£ “J | CRT-420 [8] 666
J |
5 5% / | P. CEGAR (nohint) 817
o 600 / | P. CEGAR (+2loop) 884
400 // / P. CEGAR (-asym) 937
/
200 /
L VBS 949
% 100 200 300 400 500 600 700 800 900 1001

Instances Solved

Figure 2 Cactus Plot of Proposed Method and SAT-based Prior Work.

Implementation. To encode the degree constraints in CNF, we have used sequential counter
encoding [12]. We have implemented the proposed method on Rustsat. The implementation
is available 5. We use CaDiCaL [1] for all methods except Picat.

5.2 Result

Ablation study of the proposed approaches. We first evaluate the three acceleration
options “2loop,” “asym,” “merge” described in Section 4.3 and Section 4.4. The number of
solved instances is shown in the table below where the symbol + denotes “nohint” plus one
additional option, and the symbol - denotes “all” minus some individual option. The Virtual
Best Solver (VBS) is a hypothetical solver which represents the best possible performance

among all evaluated options.

‘# Ins. ‘ nohint +2loop +asym +merge -merge -asym -2loop all ‘ VBS
Total | 1001 | 817 884 822 858 895 937 863 936 | 948

The results show that “2loop” and “merge” are essential, and “-asym” performs best.

Comparisons with Existing SAT-based Methods. Figure 2 presents a cactus plot, where
each approach is represented by a curve. On the x-axis, we have the number of instances
solved within a specified time limit, and on the y-axis, the required timelimit for solving those
instances is shown. Among individual approaches, the proposed CEGAR variants solved
more instances (937) within the timeout. Meanwhile, the existing CEGAR method solved
significantly fewer instances than the proposed approaches. Because the existing CEGAR
method includes “2loop,” the difference compared to “42loop” can be viewed as the impact
of the proposed cut-set constraints. Note that CRT-420 is also a type of abstraction method
and can occasionally return counterexamples. For this figure, we plotted only the problems
for which a correct solution was returned, totaling 666. Even if we consider counterexamples
of CRT-420 as valid solutions, the number of instances solved would be 733, whereas the

proposed method successfully solved more instances.

5 https://doi.org/10.5281/zenodo. 16621774

https://doi.org/10.5281/zenodo.15621774

R. Ohashi, T. Soh, D. Le Berre, H. Nabeshima, M. Banbara, K. Inoue, and N. Tamura

6 Conclusion

In this paper, we propose an enhancement to the existing SAT-based counterexample-guided
abstraction refinement (CEGAR) approach to solving the Hamiltonian cycle problem (HCP).
Our key contribution is to replace the conventional constraints for subcycle blocking with
cut-set constraints. By doing so, we can prune a larger portion of the counterexample space,
especially in cases where subcycles contain nested subpartitions. In addition, we introduced
an acceleration technique, merging subcycles, which further speeds up the proposed method.
In our experiments, we confirmed that the proposed method exhibited improved performance
compared to existing CEGAR and eager encoding methods. While the existing approach
solved 666 out of 1001 FHCP challenge set instances, the proposed method solved 937
instances within 1800 seconds. Future work includes a more efficient implementation using
IPASIR-UP [5] and using parallelization to achieve further speed-ups.

—— References

1 Armin Biere, Katalin Fazekas, Mathias Fleury, and Maximillian Heisinger. CaDiCal., Kissat,
Paracooba, Plingeling and Treengeling entering the SAT Competition 2020. In Tomas Balyo,
Nils Froleyks, Marijn Heule, Markus Iser, Matti Jarvisalo, and Martin Suda, editors, Proc. of
SAT Competition 2020 — Solver and Benchmark Descriptions, volume B-2020-1 of Department
of Computer Science Report Series B, pages 51-53. University of Helsinki, 2020.

2 Armin Biere, Marijn Heule, Hans van Maaren, and Toby Walsh, editors. Handbook of
Satisfiability - Second Edition, volume 336 of Frontiers in Artificial Intelligence and Applications.
I0S Press, 2021. doi:10.3233/FAIA336.

3 Georges A Croes. A method for solving traveling-salesman problems. Operations Research,
6(6):791-812, 1958.

4 George B. Dantzig, Delbert R. Fulkerson, and Selmer M. Johnson. Solution of a large-
scale traveling-salesman problem. Journal of the Operations Research Society of America,
2(4):393-410, 1954. doi:10.1287/0PRE.2.4.393.

5 Katalin Fazekas, Aina Niemetz, Mathias Preiner, Markus Kirchweger, Stefan Szeider, and
Armin Biere. Satisfiability modulo user propagators. J. Artif. Intell. Res., 81:989-1017, 2024.
doi:10.1613/JAIR.1.16163.

6 Nils Froleyks, Marijn Heule, Markus Iser, Matti Jarvisalo, and Martin Suda. SAT competition
2020. Artif. Intell., 301:103572, 2021. doi:10.1016/J.ARTINT.2021.103572.

7 Michael Haythorpe. FHCP Challenge Set: The first set of structurally difficult instances of
the Hamiltonian cycle problem, 2019. arXiv:1902.10352.

8 Marijn J. H. Heule. Chinese remainder encoding for Hamiltonian cycles. In Chu-Min Li
and Felip Manya, editors, Proc of 2/th International Conference on Theory and Applications
of Satisfiability Testing (SAT 2021), volume 12831 of LNCS, pages 216—224. Springer, 2021.
doi:10.1007/978-3-030-80223-3_15.

9 Christoph Jabs. RustSAT: A library for SAT solving in Rust. In Proc of 28th International
Conference on Theory and Applications of Satisfiability Testing (SAT 2025), volume 341 of
LIPIcs, pages 15:1-15:13. Schloss Dagstuhl — Leibniz-Zentrum fiir Informatik, 2025. doi:
10.4230/LIPIcs.SAT.2025.15.

10 Richard M. Karp. Reducibility among Combinatorial Problem, pages 85—103. Springer, Boston,
MA, 1972. doi:10.1007/978-1-4684-2001-2_9.

11 Steven D. Prestwich. SAT problems with chains of dependent variables. Discret. Appl. Math.,
130(2):329-350, 2003. doi:10.1016/S0166-218X(02)00410-9.

12 Carsten Sinz. Towards an optimal CNF encoding of Boolean cardinality constraints. In
Peter van Beek, editor, Proc. of 10th International Conference on Principles and Practice
of Constraint Programming (CP 2005), pages 827-831, Berlin, Heidelberg, 2005. Springer.
d0i:10.1007/11564751_73.

24:9

SAT 2025

https://doi.org/10.3233/FAIA336
https://doi.org/10.1287/OPRE.2.4.393
https://doi.org/10.1613/JAIR.1.16163
https://doi.org/10.1016/J.ARTINT.2021.103572
https://arxiv.org/abs/1902.10352
https://doi.org/10.1007/978-3-030-80223-3_15
https://doi.org/10.4230/LIPIcs.SAT.2025.15
https://doi.org/10.4230/LIPIcs.SAT.2025.15
https://doi.org/10.1007/978-1-4684-2001-2_9
https://doi.org/10.1016/S0166-218X(02)00410-9
https://doi.org/10.1007/11564751_73

24:10

SAT-Based CEGAR for HCP by Cut-Set Constraints

13

14

15

16

Takehide Soh, Daniel Le Berre, Stéphanie Roussel, Mutsunori Banbara, and Naoyuki
Tamura. Incremental SAT-based method with native Boolean cardinality handling for
the Hamiltonian cycle problem. In Eduardo Fermé and Jodo Leite, editors, Proc. of 14th
European Conference on Logics in Artificial Intelligence, pages 684-693. Springer, 2014.
doi:10.1007/978-3-319-11558-0_52.

Miroslav N. Velev and Ping Gao. Efficient SAT techniques for absolute encoding of permutation
problems: Application to Hamiltonian cycles. In Vadim Bulitko and J. Christopher Beck,
editors, Proc. of 8th Symposium on Abstraction, Reformulation, and Approzimation (SARA
2009). AAAI, 2009. URL: http://www.aaai.org/ocs/index.php/SARA/SARA09/paper/view/
837.

Neng-Fa Zhou. In pursuit of an efficient SAT encoding for the Hamiltonian cycle problem. In
Helmut Simonis, editor, Proc. of 26th International Conference on Principles and Practice
of Constraint Programming (CP 2020), volume 12333 of Lecture Notes in Computer Science,
pages 585-602. Springer, 2020. doi:10.1007/978-3-030-58475-7_34.

Neng-Fa Zhou. Encoding the Hamiltonian cycle problem into SAT based on vertex elimination
(short paper). In Paul Shaw, editor, Proc. of 30th International Conference on Principles
and Practice of Constraint Programming (CP 2024), volume 307 of LIPIcs, pages 40:1-40:8.
Schloss Dagstuhl — Leibniz-Zentrum fiir Informatik, 2024. doi:10.4230/LIPICS.CP.2024.40.

https://doi.org/10.1007/978-3-319-11558-0_52
http://www.aaai.org/ocs/index.php/SARA/SARA09/paper/view/837
http://www.aaai.org/ocs/index.php/SARA/SARA09/paper/view/837
https://doi.org/10.1007/978-3-030-58475-7_34
https://doi.org/10.4230/LIPICS.CP.2024.40

	1 Introduction
	2 Preliminaries
	3 Existing SAT-based CEGAR for HCP [13]
	4 Proposed SAT-based CEGAR Enhanced by Cut-Set Constraints
	4.1 Cut-Set Constraints
	4.2 Properties of Cut-Set Constraints
	4.3 Merging Subcycles for Improving Runtime
	4.4 Incorporating Existing Techniques for Efficiency

	5 Experiments
	5.1 Set Up
	5.2 Result

	6 Conclusion

