
CNOT-Optimal Clifford Synthesis as SAT
Irfansha Shaik #

Department of Computer Science, Aarhus University, Denmark
Kvantify Aps, Copenhagen S, Denmark

Jaco van de Pol #

Department of Computer Science, Aarhus University, Denmark

Abstract

Clifford circuit optimization is an important step in the quantum compilation pipeline. Major
compilers employ heuristic approaches. While they are fast, their results are often suboptimal.
Minimization of noisy gates, like 2-qubit CNOT gates, is crucial for practical computing. Exact
approaches have been proposed to fill the gap left by heuristic approaches. Among these are SAT
based approaches that optimize gate count or depth, but they suffer from scalability issues. Further,
they do not guarantee optimality on more important metrics like CNOT count or CNOT depth.
A recent work proposed an exhaustive search only on Clifford circuits in a certain normal form to
guarantee CNOT count optimality. But an exhaustive approach cannot scale beyond 6 qubits.

In this paper, we incorporate search restricted to Clifford normal forms in a SAT encoding to
guarantee CNOT count optimality. By allowing parallel plans, we propose a second SAT encoding
that optimizes CNOT depth. By taking advantage of flexibility in SAT based approaches, we also
handle connectivity restrictions in hardware platforms, and allow for qubit relabeling. We have
implemented the above encodings and variations in our open source tool Q-Synth.

In experiments, our encodings significantly outperform existing SAT approaches on random
Clifford circuits. We consider practical VQE and Feynman benchmarks to compare with TKET
and Qiskit compilers. In all-to-all connectivity, we observe reductions up to 32.1% in CNOT count
and 48.1% in CNOT depth. Overall, we observe better results than TKET in the CNOT count and
depth. We also experiment with connectivity restrictions of major quantum platforms. Compared
to Qiskit, we observe up to 30.3% CNOT count and 35.9% CNOT depth further reduction.

2012 ACM Subject Classification Hardware → Quantum computation; Computing methodologies
→ Planning for deterministic actions

Keywords and phrases Circuit Synthesis, Circuit Optimization, Quantum Circuits, Propositional
Satisfiability, Parallel Plans, Clifford Circuits, Encodings

Digital Object Identifier 10.4230/LIPIcs.SAT.2025.28

Related Version Extended Version: https://arxiv.org/abs/2504.00634 [26]

Supplementary Material Software (Github): https://github.com/irfansha/Q-Synth
archived at swh:1:dir:f934bdca528231c8f64a232248ae97bed6d26102

Software (Zenodo Link): https://doi.org/10.5281/zenodo.15575214

Funding This research was partially funded by the Innovation Fund Denmark project “Automated
Planning for Quantum Circuit Optimization”. This research was also partially funded by the
European Innovation Council through Accelerator grant no. 190124924.

Acknowledgements We thank L. Burgholzer for his generous help with settings of the QMAP software
for Clifford Synthesis. The experiments were carried out on the Grendel cluster at the Centre
for Scientific Computing, Aarhus (http://www.cscaa.dk/grendel/). We thank the anonymous
reviewers of SAT 2025 for their useful suggestions.

© Irfansha Shaik and Jaco van de Pol;
licensed under Creative Commons License CC-BY 4.0

28th International Conference on Theory and Applications of Satisfiability Testing (SAT 2025).
Editors: Jeremias Berg and Jakob Nordström; Article No. 28; pp. 28:1–28:21

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:irfansha.shaik@cs.au.dk
https://orcid.org/0000-0002-7404-348X
mailto:jaco@cs.au.dk
https://orcid.org/0000-0003-4305-0625
https://doi.org/10.4230/LIPIcs.SAT.2025.28
https://arxiv.org/abs/2504.00634
https://github.com/irfansha/Q-Synth
https://archive.softwareheritage.org/swh:1:dir:f934bdca528231c8f64a232248ae97bed6d26102;origin=https://github.com/irfansha/Q-Synth;visit=swh:1:snp:881173b39fb1d3df01462441b434623946884179;anchor=swh:1:rev:f9292da781e06a3b3e57ca470d0e74157a0541ed
https://doi.org/10.5281/zenodo.15575214
http://www.cscaa.dk/grendel/
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics
https://www.dagstuhl.de

28:2 CNOT-Optimal Clifford Synthesis as SAT

1 Introduction

Quantum Computing promises an alternative solution to some challenging computational
problems that are out-of-reach for classical computers. While several competing quantum
platforms exist in the current Noisy Intermediate Scale Quantum (NISQ) era, they all
come with different strengths and weaknesses. Quantum programs must be compiled to
low level quantum circuits satisfying target hardware requirements before execution. While
most quantum platforms accept 1-qubit and 2-qubit gates, their native gate-sets can vary.
Currently, no quantum platform has the best qubit count, fidelity, and latency all together.
Circuit optimization can play a crucial role for practical quantum computing in both current
NISQ or future fault-tolerant processors. For example, [10] observed that IonQ’s Aria
quantum platform had a limit of 950 single qubit gates. Only by using circuit optimization
techniques they were able to run the required circuits. For satisfying hardware requirements,
Layout Synthesis and Circuit Synthesis are two main steps. In Layout Synthesis, circuits are
synthesized to handle hardware layout restrictions. Often, not all qubits are connected in a
quantum platform thus 2-qubit quantum gates can only be scheduled on neighboring qubits.
Circuit Synthesis involves either synthesizing to required gate-set or optimizing some circuit
metric for practical quantum computing.

We consider circuit optimization in this paper. Optimal synthesis of an arbitrary n-qubit
circuit requires considering 2n × 2n unitary matrices of complex numbers. While optimal
circuit synthesis is ideal, it is a challenging computational problem [16]. Instead, peephole
optimization is often used where easier sub-circuits are optimized [24]. In this paper, we focus
on an interesting subclass of circuits called Clifford circuits. Any circuit composed of 1-qubit
Hamard (H) and Phase (S) gates, and 2-qubit Conditional-Not (CNOT) gates is a Clifford
circuit. While polynomially simulatable, Clifford circuits capture important phenomena like
entanglement and superposition, and have applications in teleportation and dense quantum
encoding [1]. Clifford circuits are also key in quantum error correction, required for the future
fault-tolerant hardware. Synthesis of Clifford circuits only requires (2n) × (2n + 1) Boolean
matrices, using the stabilizer formalism [1], instead of full unitary matrices. Using peephole
optimization, one can replace Clifford sub-circuits with their optimized counterparts.

There is no single optimization metric that can predict actual hardware performance
perfectly. Quantitative metrics, like qubit fidelity, provide good predictions, but lead to
numerical optimization problems. Simple metrics like gate count, circuit depth are preferred
for optimization [15, 23, 28, 29]. In NISQ processors, 2-qubit CNOT gates are up to 10
times more error-prone than 1-qubit gates. Industrial compilers, like Qiskit [21] by IBM and
TKET [28] by Quantinuum, apply Clifford optimization reducing CNOT gate-count (cx-count)
and CNOT depth (cx-depth). Given a circuit with unary gates and CNOT gates, cx-depth
is the maximum number of CNOT gates that are executed in series. In a recent survey
paper [17], the authors extensively compared major compilers on cx-count/cx-depth reduction.
While several approaches exist for Clifford optimization, industrial compilers mainly focus
on heuristic approaches. Exact optimization approaches unfortunately suffer from scalability
problems. Optimization of Clifford circuits is NP-hard [13]. Even approximation of optimal
synthesis is NP-hard [12], thus there is no efficient algorithm unless P = NP. This undesirable
gap between heuristic and exact approaches is well established in the literature [30, 20].

Thus, there is a need to improve the scalability of exact approaches. In recent years,
several SAT based approaches were proposed for problems like Layout Synthesis [30, 25] and
CNOT synthesis [24]. In [22], authors proposed a SAT encoding for cx-count optimization
in Clifford circuits based on bounded reachability. Unfortunately, their encoding does not

I. Shaik and J. van de Pol 28:3

guarantee optimality due to the use of asymptotic cx-count upper bound for termination
criteria. Despite being a near-optimal encoding, their approach still suffers from scalability
issues (even for n > 3 qubits). In [20], the authors proposed an improved SAT encoding
instead optimizing circuit depth that can handle up to 5-qubit circuits. While this improved
scalability, their synthesis is focused on circuit depth, rather than cx-count and cx-depth.
Our experiments (Section 5) show that synthesized circuits with minimal circuit depth can
have worse cx-count/cx-depth, even compared to heuristic tools.

Using some special properties of Clifford circuits, one can guarantee cx-count optimality.
In [5], authors proposed circuit synthesis restricted to certain normal forms. They observed
that by ignoring so-called phase updates one can guarantee cx-count optimality. Using
brute force search, they successfully generated a 2.1TB database for all cx-count optimal
6-qubit circuits using up to 100 days of computation. While useful, generating such a
database for beyond 6-qubits is not practical [5]. Further, such an approach is not flexible
i.e., a new database needs to be generated for each optimization metric/criteria. For
example, layout aware optimal Clifford circuits can vary depending on the platform layout
restrictions. Alternatively, flexibility of SAT like approaches can be used for efficient on-
demand computation.

Our Contribution

In this paper, we incorporate the ideas proposed in [5] to obtain efficient SAT encodings that
guarantee optimal Clifford circuits. We provide the first cx-count optimal SAT encoding
based on bounded reachability. Restricting the search to circuits in normal form reduces
the search space (and consequently the makespan of the encoding) significantly. Further, we
propose the first cx-depth optimal approach to Clifford circuit synthesis, by adapting the SAT
encoding. We have extended our open source tool Q-Synth1 with version 5 implementing
the above encodings. For an experimental comparison, we propose three experiments. In
Experiment 1, we compare existing SAT encodings with ours on random Clifford circuits
of 3 to 7 qubits. For both cx-count/cx-depth optimization, we significantly outperform
previous approach while solving optimally. We show that our approach can optimally solve 4
out of 5 7-qubit circuits for the first time for cx-depth optimization. In Experiment 2, we
demonstrate our effectiveness on practical VQE and Feynman [2] benchmarks via peephole
optimization. We generate 12 VQE benchmarks of 8 and 16 qubits, and 28 T-gate optimized
Feynman benchmarks of 5 to 24 qubits. Given a 10-minute time limit, we consistently
outperform TKET, and we observe the best results when TKET+Q-Synth are used together.
In Experiment 3, we focus on layout aware re-synthesis of practical VQE and Feynman
benchmarks. We first use Qiskit [21] to map VQE and Feynman benchmarks onto 54-qubit
Sycamore [3], 80-qubit Rigetti [7], and 127-qubit Eagle [6] platforms. We then re-synthesize
each benchmark with Q-Synth giving a 10-minute time limit. Overall, we observe significant
reduction on all platforms in both cx-count and cx-depth optimizations. In VQE benchmarks,
we observe a reduction of up to 19.3% cx-count and 27.4% cx-depth. In Feynman benchmarks,
we observe a reduction of up to 30.3% cx-count and 35.9% cx-depth. Our experiments indicate
that there is a place for SAT like approaches in the quantum compilation pipeline.

1 Q-Synth v5 tool with source code, benchmarks, and scripts: https://github.com/irfansha/Q-Synth

SAT 2025

https://github.com/irfansha/Q-Synth

28:4 CNOT-Optimal Clifford Synthesis as SAT

2 Preliminaries

2.1 Clifford Circuits
For a textbook description of quantum states, gates and circuits we refer to [18]. We also
provide a short summary of quantum notation in Section A.

In classical computing, the fundamental unit of information, a classical bit, has only two
states 0 and 1. In Quantum computing, a quantum bit instead is a superposition of 0 and 1.
One can represent a qubit state as a vector α|0⟩ + β|1⟩ where α, β ∈ C and |α|2 + |β|2 = 1.
States over n-qubits live in the tensor product space on all vectors on n qubits. Quantum
gates change the state by acting on one or more qubits. Due to practical difficulties of
implementing muti-qubit quantum gates, quantum platforms typically only apply 1-qubit
and 2-qubit gates. High level quantum programs are decomposed to low level circuits with
1- and 2-qubit gates before execution. In this paper, we focus on Clifford circuits made of
{CNOT, H, S} gates (cf. Section A). Figure 1b shows how the Clifford gates change the state
of qubits. A binary CNOT gate (Conditional NOT, also abbreviated as CX) negates the
target qubit (b) when the control qubit (a) is on. This entangling gate can also be expressed
as an exclusive OR. The H gate brings a qubit in a superposition, and the S gate applies a
phase change to a qubit. Pauli gates {X, Y, Z} are composed of Clifford gates, where X =
HSSH, Z = SS and Y = iXZ. We will use Pauli gates later in the paper for so-called relative
phase recovery. Figure 1a shows an example Clifford circuit with {CNOT, S, X} gates.

q0 • •

q1 S X
(a) A 2-qubit Clifford circuit.

|a⟩ • |a⟩ α|0⟩ + β|1⟩ H (α + β)|0⟩ + (α − β)|1⟩

|b⟩ |b ⊕ a⟩ α|0⟩ + β|1⟩ S α|0⟩ + iβ|1⟩
(b) State updates by CNOT, H, and S gates.

Figure 1 Example Clifford circuit, and an illustration of state updates by Clifford gates.

Interestingly, Clifford gates are not universal and can be simulated in polynomial time
and space. In [1], Aaronson and Gottesman proposed stabilizer formalism to efficiently
represent Clifford circuits. For an n-qubit Clifford circuit, we only need a (2n) × (2n + 1)
Boolean matrix, called tableau. Two Clifford circuits are equivalent (up to global phase) if
their corresponding tableaux are equal [5]. The following matrix shows the structure of a
n-qubit tableau:

q0 . . . qn−1 q0 . . . qn−1 x00 . . . x0(n−1) z00 . . . z0(n−1) r0
...

. . .
...

...
. . .

...
...

x(2n−1)0 . . . x(2n−1)(n−1) z(2n−1)0 . . . z(2n−1)(n−1) r2n−1

An n-qubit tableau is made of x2n×n, z2n×n, and r2n×1 Boolean matrices. A tableau
essentially represents so-called stabilizer and destabilizer generators. We refer to [1] for
a detailed explanation on stabilizer generators, Clifford circuits, and relevant proofs. For
the scope of this paper, it is sufficient to understand how a tableau can be computed
given a Clifford circuit. The initial tableau, representing an empty circuit, is defined as
xii = z(n+i)i = 1 (for 0 ≤ i < n) and every other cell is 0.

I. Shaik and J. van de Pol 28:5

Table 1 Tableau update rules for every row i, when applying Clifford gates to qubits a and b.

Base Gates Pauli gates

CNOTa,b Ha Sa Xa Ya Za

xia xia zia xia xia xia xia

zia zia ⊕ zib xia xia ⊕ zia zia zia zia

xib xia ⊕ xib - - - - -
zib zib - - - - -
ri ri ⊕ xiazib(xib ⊕ zia ⊕ 1) ri ⊕ xiazia ri ⊕ xiazia ri ⊕ zia ri ⊕ xia ⊕ xib ri ⊕ xia

For each gate in a given circuit, we update every row of the tableau according to the
rules in Table 1; this corresponds to column additions modulo 2. For our example Clifford
circuit from Figure 1a, the following sequence of matrices represent tableau updates: 1 0 0 0 0

0 1 0 0 0
0 0 1 0 0
0 0 0 1 0

 CX−−−→
q0,q1

 1 1 0 0 0
0 1 0 0 0
0 0 1 0 0
0 0 1 1 0

 S−→
q1

 1 1 0 1 0
0 1 0 1 0
0 0 1 0 0
0 0 1 1 0

 CX−−−→
q0,q1

 1 0 1 1 0
0 1 1 1 0
0 0 1 0 0
0 0 0 1 0

 X−→
q1

 1 0 1 1 1
0 1 1 1 1
0 0 1 0 0
0 0 0 1 1


The leftmost matrix corresponds to the initial tableau and the rightmost matrix is our target
tableau. Optimal synthesis of Clifford circuits can now be transformed to a graph search
problem. Each node of the graph is labelled with a tableau, and edges labeled with Clifford
gates correspond to the update rules. Synthesizing the optimal number of gates boils down
to finding the shortest path in this graph. On the other hand, optimizing the number of
CNOT gates is not so straightforward. We will revisit this in Section 3.

2.2 Layout Restrictions and Qubit Relabeling
In high-level quantum circuits, binary CNOT gates can be applied to any pair of qubits.
However, in many physical realizations (in particular on superconducting quantum computers),
binary gates can only be applied to physical neighbour qubits. We assume that this is specified
in some coupling graph (Q, E), where Q are the qubits and q E q′ if a CNOT is possible
between qubits q and q′. This graph is usually quite sparse and mostly planar.

Most existing Clifford synthesis approaches [5, 28, 21, 20] assume all-to-all qubit connectiv-
ity. Under this assumption, local rewrite rules can be used effectively. While useful, such
structure breaks down in case of restricted qubit connectivity. Thus, compilers like Qiskit
and TKET apply Clifford synthesis before the layout synthesis phase, leading to suboptimal
results overall. Some heuristic approaches [9] exist that handle connectivity restrictions in
related problems like CNOT synthesis. In [24], we showed that connectivity restrictions can
be encoded elegantly using SAT in CNOT synthesis. Given a platform connectivity graph,
we will only allow 2-qubit gates on neighboring qubits. Thus, our approach can be used post
layout synthesis, allowing further reduction.

In tableau representation, notice that the columns are labelled with qubits. Allowing
permutation of columns essentially corresponds to relabeling qubits. In a relaxed notion
of equivalence, two Clifford circuits are equivalent if their tableau are equivalent up to a
column permutation. Allowing any column permutation of initial tableau can result in better
circuits. Major compilers like TKET also allow qubit relabeling in the context of all-to-all
connectivity. In [24], we showed that permutation of a similar matrix can be elegantly encode
using Exactly-One constraints. We adapt the same idea for Clifford synthesis, we encode
permutation of columns in initial tableau using cardinality constraints.

SAT 2025

28:6 CNOT-Optimal Clifford Synthesis as SAT

3 Revisiting Clifford Normal Forms for Optimal CNOT Synthesis

In earlier sections, we briefly discussed that a simple bounded reachability encoding is
sufficient for gate count optimality. For cx-count optimization, existing SAT approach in [22]
proposed a MAXSAT like formulation to optimize cx-count for the given gate count. While
they can synthesize circuits with better cx-count, they do not ensure cx-count optimality.
Consider our example circuit 1a with 4 gates and 2 CNOTs. If we run QMAP tool which
implements SAT encoding in [22] on our circuit, it fails to produce a circuit with better
cx-count. This makes sense as there does not exist a 4 gate circuit with better cx-count.
However, if we consider circuits with higher gate count, there does exist a circuit with a
single CNOT gate as shown in Figure 3a. So the given number of Clifford gates in the
input circuit is not a valid upperbound. Also, the upperbound of Θ(n2 /log(n)) gates for an
n-qubit Clifford circuit [19, 1] is only asymptotically sharp, so it doesn’t provide a reliable
upper bound for concrete n.

To ensure cx-count optimality, we need to reformulate the search problem. Let q, q′ be two
qubits, we define the set of entangling sequences E = {ΨCNOTq,q′ | Ψ ∈ {Hq, Hq′ , Sq, Sq′}∗}.
Each entangling sequence, by definition, adds a single CNOT gate to the circuit. A d-CNOT
optimal circuit implies that there does not exist a Clifford circuit with < d entangling
sequences. This modification results in a graph search problem where nodes are still labelled
with tableaux. Edges on the other hand are labelled with entangling sequences instead of
individual gates. Finding an optimal CNOT circuit corresponds to finding the shortest path
in the new graph. While this new formulation guarantees CNOT optimality, the problem
of arbitrary single gate sequences still remains. Taking advantage of equivalences between
Clifford circuits, [5] proposed a normal form that considers only 9 unique entangling sequences.
In the following section, we will revisit observations made in [5] and adapt in the context of
a SAT encoding.

3.1 Clifford Normal Forms
Remember that a tableau is made of x, z, r matrices. [5] observed that two tableau with
same x and z matrices have same optimal cx-count. From Table 1, we can see that Pauli
gates only update r column. Indeed, one can synthesize any circuit with differing r column
by appending Pauli gates at the front. The authors in [5] consider all circuits with differing
r column as an equivalence class. We will revisit r column updates in detail later in this
Section. We ignore the r column updates aka relative phase updates for now. This makes
the tableau update rules simpler, resulting in fewer unique 1-qubit gate sequences. Turns out
there are not many sequences of H and S gates that result in unique tableau state. Clearly,
HH and SS cancel out which is equivalent to an Identity gate I. Thus only alternating H and
S sequences of gates are interesting. So the interesting sequences are {I, H, S, HS, SH, HSH,
SHS, HSHS, SHSH, ...}. Further, HSH and SHS result in the same tableau state. Using the
equivalence of HSH and SHS, we can simplify any non-trivial 1-q gate sequence to a sequence
of length less than 4. For example, consider HSHS gate sequence and replace HSH with SHS
resulting in SHSS. Since SS cancel out, we are left with SH sequence. Any such sequence
can be replaced with one of the 6 {I, H, S, HS, SH, HSH} sequences, defined as 1-q unique
sequences. Considering these 6 sequences on each qubit followed by a CNOT results in 36
sequences. [5] showed that only the following 9 sequences are unique entangling sequences.

• • • SH • HS • SH • SH • HS • HS •

SH HS SH HS SH HS

I. Shaik and J. van de Pol 28:7

They showed that each of the 36 entangling sequences can be rewritten as one of the above 9
sequences followed by one of the 1-q unique sequences on each qubit. Note that, a CNOT
gate CNOTj,i can be rewritten as HiHjCNOTi,jHiHj . Thus, we can rewrite all CNOT gates
in a given circuit such that the control qubit is less than its target qubit. Now, let us suppose,
we have an entangling sequence in the form AiBjCNOTi,j where A, B are elements of 1-q
unique sequences. Such a sequence can be rewritten to the form A’iB’jCNOTi,jCiDj where
A’, B’ are in {I, HS, SH} and C, D are 1-q unique sequences. Using these rewrite rules, from
start to end of the circuit, one can push 1-q sequences that are not {I, HS, SH} to the last
layer. The final rewritten circuit will only have the above 9 unique entangling sequences
followed by 1-q sequences on every qubit.

Consider our example circuit without X gate as in 2a. First CNOT is part of unique
entangling sequence, however, S gate followed by second CNOT is not. One can replace
Sq1CNOTq0,q1 by HSq1CNOTq0,q1HSHq1 . The resulting circuit as shown in 2b has both
CNOTs within unique sequences followed by 1-q unique sequences. Figure 2c shows an
equivalent circuit with only 1 CNOT. We illustrate entangling sequences in Figure 2 with
dotted lines. Authors in [5] consider all circuit with same entangling sequences as part of an
equivalence class. However, for a SAT formulation we need to encode the final layer of 1-q
sequences explicitly.

Using the above observations, synthesizing d-CNOT circuit corresponds to finding d

entangling sequences followed by 1-q unique sequences. For synthesizing d-CNOT optimality,
we need to show there does not exist a normal form circuit with < d entangling sequences.
We can easily adapt these observations to handle CNOT-depth optimal synthesis. Allowing
parallel entangling sequences on independent qubits at each step allows CNOT-depth optim-
ization. This notion is exactly same as ∀-step parallel plans [14] in the context of SAT based
planning. In other words, sequential encoding corresponds to cx-count optimization whereas
parallel encoding corresponds to cx-depth optimization. In Section 4, we present encodings
for both cx-count and cx-depth optimization.

Phase Recovery for Peephole Setting

Earlier in this Section, we ignored phase updates when synthesizing Clifford gates. Thus, the
optimized Clifford circuit (either by cx-count or cx-depth) will have a different r-column in the
tableau matrix. While relative phase can be ignored for pure Clifford circuit optimization, for
general quantum circuits (i.e., in particular for peephole-optimization), we need to reconstruct
the relative phase (r-column). This can be achieved separately for each qubit, by appending
single Pauli gates to the optimized circuit. Appending Pauli gates at the beginning of the
circuit is same as so-called Pauli left multiplication. In plain words, adding either X or Z
Pauli gates at the beginning of the circuit flips the target tableau r-column. Remember that
Pauli gates do not change x, z matrices but only act on the r-column. Phase recovery is then
figuring out which Pauli gates to be applied to recover our target r-column. We observe that
applying a Zi gate flips ri whereas Xi gate flips rn +i in the target tableau.

q0 • •

q1 S

(a) Without X gate.

• •

HS HSH

(b) 2 CNOT Normal form circuit.

• S

SH H

(c) 1 CNOT Normal form circuit.

Figure 2 Equivalent Clifford circuits of Figure 1a, ignoring relative phase.

SAT 2025

28:8 CNOT-Optimal Clifford Synthesis as SAT

Let r, r′ be r-columns of optimized and target tableau of an n-qubit circuit. Here, we
present a simple algorithm that computes the sequence of X and Z gates that recovers the
relative phase. Algorithm 1 clearly runs in linear time in the number of qubits. Consider
the CNOT optimal example circuit in Figure 2c: the tableau deviates in the r-column.
Appending X and Z gates as shown in Figure 3a recovers the r-column. This transformation
is shown in Figure 3b. In our tool, we apply the recovery algorithm after synthesizing the
optimal circuit. After every synthesis run, we compare the tableau of input and output
circuits for correctness.

Algorithm 1 Relative Phase Recovery.

1: SEQ is empty
2: for all i ∈ [0 . . . n −1] do
3: if ri ⊕ r′

i = 1 then
4: APPEND Zi to SEQ
5: if rn +i ⊕ r′

n +i = 1 then
6: APPEND Xi to SEQ

4 CNOT Optimal SAT Encodings

We now present bounded reachability SAT encodings for cx-count and cx-depth optimization
based on the ideas discussed above. For cx-count optimization, we need to reach the target
tableau in d entangling steps from the initial tableau. Encoding tableau updates for the
entangling sequences across two time steps is quite complex. Instead, we define a layer
that acts across three time steps. To encode layer k constraints, we encode 1-qubit gate
updates from time step 2k to 2k + 1 and CNOT updates from time step 2k + 1 to 2(k + 1).
In each layer, we choose a control and target qubit on which the entangling sequence is
applied. At the end, we need to apply a last layer of all 6 1-q sequences. In total, we
need 2d + 2 time steps i.e., from t = 0 to t = 2d + 1 for a d-CNOT circuit encoding.
Algorithm 2 presents the overall outline of the SAT encoding for a d-CNOT, n-qubit circuit.
For cx-depth optimization, instead of exactly one control and target, we will allow any subset
of independent (i.e., parallel) qubit pairs. Essentially, optimizing for the number of layers
corresponds to optimizing for the chosen cx-count or cx-depth metric.

4.1 Gate optimal encoding
We define the variables as shown in Table 2. The variables in top half represent chosen control
and target qubits, and applied gates. Variables in bottom half represent states of matrix
elements. In addition, we define auxiliary variables to encode XOR constraints elegantly.
For time steps t = 0 to t = 2k, we set pxt

i,a true iff xt
i,a and xt+1

i,a are equal. Similarly, we

q0 Z • S
q1 ZX SH H

(a) Optimal circuit.

1 0 1 1 0
0 1 1 1 0
0 0 1 0 0
0 0 0 1 0

 Z−→
q0

1 0 1 1 1
0 1 1 1 0
0 0 1 0 0
0 0 0 1 0

 Z−→
q1

1 0 1 1 1
0 1 1 1 1
0 0 1 0 0
0 0 0 1 0

 X−→
q1

1 0 1 1 1
0 1 1 1 1
0 0 1 0 0
0 0 0 1 1


(b) Tableau transforms to correct phase.

Figure 3 Phase recovery applied to the Clifford circuit of Figure 2c.

I. Shaik and J. van de Pol 28:9

Algorithm 2 SAT Encoding Outline for d-CNOT Circuit.

1: InitialStateConstraints ▷Encode initial tableau at t = 0 as in 4.1.4
2: GoalStateConstraints ▷Encode target tableau at t = 2d + 1 as in 4.1.4
3: for all k ∈ [0 . . . d − 1] do
4: Encode1qConstraints(k) ▷Encode I,HS,SH constraints in kth layer as in 4.1.1
5: EncodeCNOTConstraints(k) ▷Encode CNOT constraints in kth layer as in 4.1.2
6: Last1qConstraints ▷Encode last 1q constraints at t = 2d as in 4.1.3

Table 2 Encoding variables and descriptions.

Variable Description

idk
a / hsk

a / shk
a apply I/HS/SH gate on ath qubit in the layer k

cnotk
a,b apply CNOT gate on a, b qubits (a < b) in the layer k

ctrlka / trgk
a choose a as a control/target qubit in the layer k

idL
a / hL

a / sL
a / hsL

a / shL
a / hshL

a apply I/H/S/HS/SH/HSH gates on ath qubit in the last layer

xt
i,a / zt

i,a state of xia/zia matrix element at time step t

pxt
i,a / pzt

i,a propagate xia/zia matrix element from time step t to t + 1

set pzt
i,a true iff zt

i,a and zt+1
i,a are equal. We essentially represent propagation of x, z matrix

states from t to t + 1 time steps. In the following Subsections, we present constraints for
each macro in Algorithm 2.

4.1.1 Encoding 1-q I, HS, SH constraints
For a given layer number k, we define t := 2k. Encode1qConstraints(k) is then defined by
the following constraints. Exactly one of the 3 single qubit gates is chosen on each qubit.
We apply sequential counter ExactlyOne constraints from PySAT [11], referred as EO from
here on. If a qubit is neither a control nor target, then we apply identity gate. Instead, if HS
or SH gate is applied, the qubit must be either a control or target.

n −1∧
a=0

EO(idk
a, hsk

a, shk
a)∧

n −1∧
a=0

(¬ ctrlka ∧¬ trgk
a) =⇒ idk

a ∧
n −1∧
a=0

(hsk
a ∨ shk

a) =⇒ (ctrlka ∨ trgk
a) (1)

For each of the three gates I, HS, SH, we encode following constraints:

n −1∧
a=0

2n−1∧
i=0

(
(2)

idk
a =⇒ (pxt

i,a ∧ pzt
i,a) ▷I: xia := xia; zia := zia

hsk
a =⇒

(
(zt

i,a ⇐⇒ xt+1
i,a) ∧ (xt

i,a ⇐⇒ ¬ pzt
i,a)

)
▷HS: xia := zia; zia := xia ⊕ zia

shk
a =⇒

(
(xt

i,a ⇐⇒ zt+1
i,a) ∧ (zt

i,a ⇐⇒ ¬ pxt
i,a)

))
▷SH: zia := xia; xia := zia ⊕ xia

SAT 2025

28:10 CNOT-Optimal Clifford Synthesis as SAT

4.1.2 Encoding CNOT constraints
Let k be the layer number, then we define t := 2k + 1. EncodeCNOTConstraints(k) defines
the CNOT constraints as follows. For cx-count optimization, we schedule exactly one CNOT
gate in every layer and the chosen CNOT gate defines the control and target qubits.

EO({cnotk
a,b | 0 ≤ a < n; a < b < n}) ∧

n −1∧
a=0

n −1∧
b=a+1

cnotk
a,b ⇐⇒ (ctrlka ∧ trgk

b) (3)

Similar to 1q constraints, we define the tableau updates rules as below.
n −1∧
a=0

n −1∧
b=a+1

2n−1∧
i=0

cnotk
a,b =⇒

(
(xt

i,a ⇐⇒ ¬ pxt
i,b) ∧ (zt

i,b ⇐⇒ ¬ pzt
i,a)

)
(4)

▷ xib := xia ⊕ xib; zia := zib ⊕ zia

n −1∧
a=0

2n−1∧
i=0

(¬ trgk
a =⇒ pxt

i,a) ∧
n −1∧
b=0

2n−1∧
i=0

(¬ ctrlkb =⇒ pzt
i,b) ▷ xia := xia; zib := zib (5)

Given a coupling, for every non-neighbor (a, b) qubit pair we add ¬ cnott
a,b.

4.1.3 Final Layer 1q Constraints
Let t = 2d, Last1qConstraints is defined by the following constraints. We apply exactly one
of the 6 1-q unique gate sequences for each qubit a as

∧n −1
a=0 EO(idL

a , hL
a , sL

a , hsL
a , shL

a , hshL
a).

The constraints for gate sequences {I, HS, SH} are exactly same as transition constraints
presented earlier as in 4.1.1. We now give constraints for rest of the three gate sequences.

n −1∧
i=0

2n−1∧
r=0

(
(6)

hL
i =⇒

(
(zt

i,a ⇐⇒ xt+1
i,a) ∧ (xt

i,a ⇐⇒ zt+1
i,a)

)
▷H: xia := zia; zia := xia

sL
i =⇒

(
pxt

i,a ∧ (xt
i,a ⇐⇒ ¬ pzt

i,a)
)

▷S: xia := xia; zia := xia ⊕ zia

hshL
i =⇒

(
pzt

i,a ∧ (zt
i,a ⇐⇒ ¬ pxt

i,a)
))

▷HSH: zia := zia; xia := zia ⊕ xia

4.1.4 Initial and Goal Constraints
Recall our discussion on tableau structure and initial tableau in Section 2.1. Let us divide the
tableau without r-column into 4 equal quadrants. The left quadrants corresponds to the x
matrix and the right quadrants correspond to the z matrix, where columns are labelled with
qubits. Initially, the top-left and bottom-right quadrants correspond to the Identity matrix,
whereas the other quadrants are zero matrices. Permuting columns of x and z matrices
corresponds to qubit relabeling. Exactly-One constraints on rows and column of top-left
quadrant represents column permutation.

n −1∧
i=0

(n −1∧
a=0

(
(x0

i,a ⇐⇒ z0
n +i,a) ∧ ¬ x0

n +i,a ∧¬ z0
i,a

)
∧

EO({x0
i,a | 0 ≤ a < n}) ∧ EO({x0

a,i | 0 ≤ a < n})
)

(7)

We can disable column permutation (qubit relabeling) by forcing top-left quadrant as the
Identity matrix i.e., adding clauses

∧n −1
i=0 x0

i,i.

I. Shaik and J. van de Pol 28:11

For goal constraints, we first define the target tableau T where T[xia]/T[zia] returns the
value of x/z matrix element in row i and column a. For a d-CNOT circuit, the following
clauses encode the goal constraints.

2 n−1∧
i=0

n−1∧
a=0

{
x2d+1

i,a if T[xia] = 1
¬ x2d+1

i,a if T[xia] = 0
∧

{
z2d+1

i,a if T[zia] = 1
¬ z2d+1

i,a if T[zia] = 0
(8)

4.1.5 Improvements due to Search Space Reduction
We observe that the order between two parallel entangling sequences does not matter. Let
cnotk−1

a,b and cnotk
a′,b′ be two parallel gates, i.e., they do not share control or target qubits.

We order them based on the control qubits, i.e., if a > a′, then we add ¬ cnotk−1
a,b ∨¬ cnotk

a′,b′ .
Note that gate ordering constraints increases the number of clauses from O(dn3) to O(dn4).
Yet, these extra binary clauses reduce the search space and help the SAT solver.

In an optimal makespan, a valid solution can never repeat the state in any layer i.e., we need
to consider simple paths only. Given layers k, k′, we use indicator variables drk,k′

a , dxk,k′

a , dzk,k′

a

representing which row and x-column or z-column is different, respectively. The following
constraints encode that if the ith row and the ath column is chosen, then the corresponding
matrix variable is different. We need to find exactly one such matrix variable which is
different.

n −1∧
a=0

2n−1∧
i=0

((drk,k′

i ∧ dxk,k′

a) =⇒ (x2k+2
i,a ̸= x2k′+2

i,a))∧((drk,k′

i ∧ dzk,k′

a) =⇒ (z2k+2
i,a ̸= z2k′+2

i,a))

∧ EO({drk,k′

i | 0 ≤ i < 2n}) ∧ EO({dxk,k′

i | 0 ≤ i < n} ∪ {dzk,k′

i | 0 ≤ i < n})

To break any m-cycle, we instantiate the above constraints for every layer pair k, k′ that
differs in at most m. By default, we break all 3-cycles, since it doesn’t increase the asymptotic
variable and clause count.

4.1.6 Redundant Clauses and Auxiliary Variables for Propagation
Finally, we optionally allow some redundant clauses and auxiliary variables to help our backend
SAT solver. In SAT encodings, there is often a trade-off between search and propagation.
In [25], we observed that adding redundant clauses sometimes improve performance of SAT
solving. Giving explicit constraints that trigger unit clause propagation can avoid some
unnecessary search. For example, Equation 4 explicitly encodes that exactly-one CNOT
variable can be true at time step t. It also implicitly encodes that exactly-one control or
target variable can be true in the same time step. If a SAT solver sets a CNOT variable to
true, then all control, target, and rest of the CNOT variables are propagated. However, if a
SAT solver instead sets a control variable to true it does not learn any more information.
By giving (redundant) exactly-one constraints on control and target variables can avoid this
unnecessary search.

Similarly, using auxiliary variables can impact performance of SAT solving. In Equation
1, recall that propagation variable pxt

i,a is true then xt
i,a is propagated else xt

i,a is flipped. We
experimented with using additional auxiliary variable fxt

i,a to indicate the flipping instead of
¬ pxt

i,a. We add an option to use the new flipping variables for both x, z state variables as
part of XOR constraints in our encoding. We provide these variations as an option, we turn
them on default as they seem to help our backend SAT solver Cadical [4].

SAT 2025

28:12 CNOT-Optimal Clifford Synthesis as SAT

4.2 Depth optimal encoding
With minimal changes, we can encode optimal depth instead of optimal gate count. Instead
of allowing a single CNOT gate, we allow multiple independent gates in each layer. In
other words, we allow at most one CNOT gate at any control or target qubit. We use
sequential counter AtMostOne (AMO) and AtLeastOne (ALO) constraints from Pysat [11].
We essentially replace Equation 4 with following Equation 9.

n −1∧
q=0

AMO({cnotk
a,b | a = q or b = q and 0 ≤ a, b < n}) ∧ ALO({cnotk

a,b | 0 ≤ a, b < n})∧

n −1∧
q=0

(
(ctrlkq =⇒

n −1∨
b=0

cnotk
q,b) ∧ (trgk

q =⇒
n −1∨
a=0

cnotk
a,q)

)
(9)

Gate ordering restrictions are simpler for Depth optimal encoding. We eagerly schedule
entangling gates without losing optimality. If a CNOT is applied on qubits i, j, we restrict
that some entangling gate is applied on i or j qubits in the previous layer. Note that we
only require O(dn3) clauses even with the additional gate ordering constraints.

n −1∧
i=0

n −1∧
j=i+1

cnotk
i,j =⇒

(
ctrlk−1

i ∨ ctrlk−1
j ∨ trgk−1

i ∨ trgk−1
j

)

5 Experiments and Results

We implemented above encodings and their variations in version 5 of our open source tool
Q-Synth2 [27]. Given a quantum circuit in OPENQASM 2.0 [8] format, we return the
optimized circuit in the same format. For pure Clifford circuits, we return CNOT-optimal
circuits for a given metric. Given a mapped circuit and a coupling graph of a quantum
platform, we optimize respecting the coupling restrictions. Similarly, we generate circuits
with a possible qubit relabeling when enabled. On the other hand, we employ peephole
synthesis for arbitrary circuits. From start to end of the circuit, we first group non-Clifford
and Clifford gates greedily. Then we replace each obtained Clifford slice by its optimized
counterpart. Note that for general circuits this does not guarantee global optimality either
in cx-count or cx-depth optimization.

Search Strategies

For each Clifford optimization call, we provide two search strategies i.e., forward and backward.
In forward search, we search for circuits with k CNOT gates, increasing from k = 0 until
we find the optimal circuit. Forward search either produces an optimal circuit or a timeout.
In backward search, we search for circuits with ≤ k CNOT gates, decreasing from the
number of CNOT gates in the initial circuit until we reach UNSAT. Within the given time
limit, we either synthesize an optimal circuit or report the best circuit found so far. In our
initial experiments, we observed that search space reduction techniques help forward search.
Thus, only in forward experiments, we add gate ordering constraints both for cx-count and
cx-depth optimization. For forward cx-depth optimization, we additionally include simple
path constraints as well. In Tables, we denote forward search with additional constraints as
qsynth. Similarly, backward search is denoted as qsynth-b.

2 Full code, data and logs are available at https://doi.org/10.5281/zenodo.15575215

https://doi.org/10.5281/zenodo.15575215

I. Shaik and J. van de Pol 28:13

Research Questions

We are interested in investigating the effectiveness and relevance of our SAT based approach.
In particular, we are interested in answering the following three research questions:

R1: Does restricting search to Clifford normal forms help with scalability?
R2: What is the effectiveness of SAT encodings on unmapped practical benchmarks?
R3: What is the effectiveness of SAT encodings on layout mapped practical benchmarks?

We propose the following 3 experiments to answer the above research questions.

5.1 Experiment 1: Optimal synthesis
The main difference from existing SAT based approaches is our use of normal forms. In
this experiment, we investigate if normal form restricted search helps with scalability. For
comparison, we consider QMAP [29] tool that implements previous exact sat-based synthesis
of Clifford circuits. QMAP provides near-optimal synthesis for cx-count [22] and optimal
synthesis for circuit depth [20]. In [22, 20], QMAP presented results mainly on synthesis
of random Clifford circuits from given stabilizers. Random Clifford circuits are one of
the standard benchmarks for comparing various approaches. Unfortunately, the random
stabilizers used by QMAP in [22, 20] are not accessible. Thus, we generated new random
benchmarks of 3 to 7 qubits, with 5 random instances for each qubit. For benchmark
generation, we used the standard Qiskit random Clifford stabilizer function. For each such
stabilizer, we further optimized with TKET [28] both with and without permutation. Our
input benchmarks are essentially the best circuits synthesized by Qiskit and TKET. Any
improvement on such benchmarks essentially shows the strength of exact approaches. All
generated benchmarks and their scripts are available online (for reproducibility).

For cx-count optimization, we compared with near-optimal cx-count optimization by
QMAP [22]. For cx-depth optimization, we compare with optimal circuit depth optimization
by QMAP [20] and report cx-depth instead of circuit depth. We chose the best (default)
options i.e., binary search, in QMAP v2.8 for a fair comparison. We present results for Q-
Synth with forward and backward search, with- and without-permutations. For each instance,
we give 3h time limit and 8GB memory limit. For Q-Synth, we use state-of-the-art SAT
solver Cadical (v2.1) [4] as a backend. We use Pysat [11] for sequential counter cardinality
constraints.

Results and Discussion

Table 3 presents the results of Experiment 1 with cx-count and cx-depth optimization. For cx-
count optimization, we can see that the near-optimal cx-count synthesis by QMAP does not
scale well and only solves 3-qubit instances. Q-Synth, on the other hand, with forward search
can solve all instances up to 5-qubits and 3 out of 5 6-qubit instances. With backward search,
Q-Synth even improves cx-count of 7-qubit instances but uses full 3 hour time limit to do so.
In the presence of output permutation, the results are similar to without output permutation
while solving fewer 6-qubit instances. For cx-depth optimization, QMAP (without output
permutation) can now solve up to 5-qubit instances with optimal depth. Note that QMAP
often reports suboptimal cx-depth when optimizing depth. For the hard 6-qubit instances
QMAP produces intermediate results, but they are far from optimal. Q-Synth on the other
hand, solves all but one 7-qubit instance with forward search. Interestingly with backward
search we can improve the unsolved 7-qubit instance but not solve optimally. With output
permutation, Q-Synth can optimally solve up to 6-qubit instances but not 7-qubit instances.
With backward search, Q-Synth can improve 1 extra 7-qubit instance. We provide the full
data in Tables 6 and 7 in Section B.

SAT 2025

28:14 CNOT-Optimal Clifford Synthesis as SAT

Table 3 Experiment 1: Optimizing of random Clifford circuits, n: qubits, m: optimization metric
(average cx-count/cx-depth of 5 instances), t: average time if all 5 instances are completely solved;
else the number of instances solved within the time limit.

without-permutation with-permutation

tket qmap qsynth qsynth-b tket qsynth qsynth-b
n m m t m t m t m m t m t

(CNOT-count optimization, m = cx-count)

3 3.6 3.6 1002.8 3.6 0.1 3.6 0.1 2.8 2.8 0.1 2.8 0.1
4 6.8 – 0/5 6.0 0.3 6.0 0.2 6.0 4.8 0.3 4.8 0.4
5 13.2 – 0/5 8.2 7.1 8.2 21.9 10.2 7.2 19.5 7.2 70.3
6 17.0 – 0/5 12.6 3/5 11.6 2/5 14.4 13.6 1/5 11.0 0/5
7 22.8 – 0/5 – 0/5 21.0 0/5 20.4 – 0/5 18.4 0/5

(CNOT-depth optimization, m = cx-depth)

3 3.6 3.6 0.4 3.6 0.1 3.6 0.1 2.8 2.8 0.1 2.8 0.1
4 5.6 4.8 5.1 3.6 0.1 3.6 0.2 4.8 3.0 0.1 3.0 0.2
5 11.2 7.2 434.3 4.8 1.2 4.8 16.2 8.2 4.0 2.5 4.0 5.8
6 13.6 13.2 0/5 5.0 10.5 5.0 839.4 11.2 5.0 82.3 5.0 583.0
7 18.0 – 0/5 8.6 4/5 17.8 0/5 15.4 – 0/5 15.0 0/5

From the results, it is clear that restricting search to normal form indeed helps with
scalability. We outperform previous SAT approaches by several orders of magnitude in both
optimization metrics. Notice that restricting to normal forms achieves two goals. First, the
makespan in our encodings correspond to cx-count or cx-depth. On the other hand, the
makespan in previous encodings correspond to gate count and circuit depth. Note that gate
count or circuit depth can be several times higher than their counterparts. Second, we avoid
search through many equivalent circuits thus reducing search space. We conjecture that good
performance is due to lower makespan and reduced search space.

Coming to weaknesses of our approach, we could not solve all 6-qubit instances for
cx-count optimization. Existing exhaustive based approach [5] could generate a database of
all 6-qubit instances. Essentially, an exhaustive approach allows more freedom in avoiding
search of equivalent (or symmetric) circuits. It is unclear to us how to include such symmetry
breaking in a SAT encoding. On the other hand, our cx-depth optimization can go beyond
6-qubits which is not feasible in exhaustive approach.

5.2 Experiment 2: Effect on All-to-All Practical Benchmarks

In practical benchmarks, the Clifford sub-circuits are often shallow. We are interested in
investigating the effect of our SAT based optimization on such benchmarks. Here we optimize
benchmarks assuming all-to-all qubit connectivity. For practical benchmarks, we consider
standard variational quantum eigensolver (VQE) benchmarks as the first benchmark set.
Similar to [25], we generated 12 random VQE benchmarks of 8 and 16 qubits with up to
536 cx-depth and 860 cx-count. For the second benchmark set, we used 28 instances from
the standard benchmark collection of Feynman tool [2] with up to 24 qubits, 2149 cx-count,
and 1878 cx-depth. We consider best cx-count reduction compiler TKET [28, 17] for a
comparison. We also experiment with combined optimization of TKET and Q-Synth, we

I. Shaik and J. van de Pol 28:15

denote it by TK+QS. In the TK+QS configuration, we first optimize each instance with
TKET and then optimize with Q-Synth. In the experiment with qubit permutation, we also
enable permutation in TKET. Waiting 3 hours for a single benchmark is not practical. In
Experiments 2 and 3, we run Q-Synth only with forward search, with a 600s time limit.

Table 4 Experiment 2: Optimizing practical benchmarks; org: original optimization metric, ch%:
change% of optimization metric (lower is better), t: time.

without-permutation with-permutation

tket qsynth TK+QS tket qsynth TK+QS
org ch% ch% t ch% t ch% ch% t ch% t

V
Q

E
cx

-c
ou

nt avg 575.8 -3.5 -3.3 321.9 -3.9 318.4 -5.8 -4.4 371.4 -6.1 364.0
min 298 -7.7 -8.2 8.3 -8.5 8.2 -8.5 -8.9 16.4 -9.8 16.2
max 860 -0.6 -0.6 604 -0.6 604.4 -0.7 -0.7 603.2 -0.7 603.3

V
Q

E
cx

-d
ep

th avg 367.6 -2.9 -9.1 20.1 -9.6 19.2 -4 -10.8 72.2 -11.2 58.8
min 233 -8.2 -16 3.1 -16.7 3.4 -8.6 -16.7 4.9 -17.1 4.8
max 536 0 -3 60.5 -3.8 51.9 0 -3.8 363.5 -4.7 230.6

Fe
yn

m
an

cx
-c

ou
nt avg 222 -8.7 -8.4 207.2 -11.2 208.7 -9.8 -8.8 233.3 -12.4 218.4

min 18 -28.6 -32.1 0.2 -32.1 0.2 -28.6 -32.1 0.2 -32.6 0.2
max 2149 0 0 612.3 0 613.5 0 0 610.3 0 609.5

Fe
yn

m
an

cx
-d

ep
th avg 161 -7.8 -12.3 89.7 -14.4 89.5 -8.3 -12.6 104.5 -14.7 104.2

min 16 -29.6 -48.1 0.2 -48.1 0.2 -29.6 -48.1 0.2 -48.1 0.2
max 1878 0 1.9 604.3 0 604.2 0 4.9 603.8 1.9 603.7

Results and Discussion

Table 4 presents the results of Experiment 2. We present average, minimum, and maximum
change in optimization metric and time taken. For cx-count optimization, Q-Synth produces
similar reductions compared to TKET in both benchmark sets. We observed up to 8.9%
and 32.1% reduction in VQE and Feynman benchmarks respectively by Q-Synth. There
does exist some hard slices where Q-Synth timeouts resulting in better results by TKET.
For cx-depth reduction, Q-Synth overall outperforms TKET for both benchmarks sets. We
observed up to 16.7% and 48.1% reduction in VQE and Feynman benchmarks respectively
by Q-Synth. We usually observe the best results with TKET+Q-Synth combination. Full
tables are available in [26, Appendix B] for all variations.

From the results, we can see that SAT based approaches perform well also on practical
benchmarks. Remember that our benchmarks can have up to 24 qubits, 2149 cx-count, and
1878 cx-depth. Q-Synth produces better cx-depth results up to 48.1% compared to 29.1%
by TKET. Such reductions are feasible since TKET focuses on cx-count. Indeed, TKET
on an average produces better cx-count reduction than Q-Synth on large instances. Since
cx-count and cx-depth are both important metrics, optimizing both is helpful in practice.
We see the best results by combining the strengths of TKET and Q-Synth in TK+QS
combination. Our SAT based cx-depth optimization appears to nicely complement heuristic
cx-count optimization. We conclude that using the combination TK+QS for reduction in
both cx-count and cx-depth is feasible in a practical compilation setting.

SAT 2025

28:16 CNOT-Optimal Clifford Synthesis as SAT

5.3 Experiment 3: Effect on Mapped Practical Benchmarks

Layout synthesis routines in industrial compilers are fast but sub-optimal. Many Clifford
optimization techniques do not support layout-aware synthesis, for example TKET. Intuitively,
connectivity restrictions break assumptions made in all-to-all connectivity. SAT based
approaches can elegantly encode connectivity constraints. In this experiment, we investigate
if our approach can further reduce mapped practical circuits by industrial compilers. Our
goal is to investigate the reduction in best synthesized benchmarks from industrial compilers.
We consider TKET optimized benchmarks with qubit permutations from Experiment 2. We
then mapped the benchmarks onto 54-qubit Sycamore [3], 80-qubit Rigetti [7] and 127-qubit
Eagle [6] platforms using Qiskit. During Qiskit transpiling, we used the highest optimization
“-O3” level. For each benchmark, we optimize with Q-Synth for both cx-count and cx-depth.

Table 5 Experiment 3: Optimizing mapped practical benchmarks; org: original optimization
metric, ch%: change% of optimization metric (lower the better), t: time.

sycamore-54 rigetti-80 eagle-127
org ch% t org ch% t org ch% t

V
Q

E
cx

-c
ou

nt avg 1253.7 -7.7 604.1 1550.2 -8.8 603.8 1842.9 -9.4 568
min 515 -15.9 602.2 644 -19.3 602.7 731 -18.3 158.1
max 2179 -2 607.4 2698 -2.3 605.1 3172 -2.5 607.2

V
Q

E
cx

-d
ep

th avg 818.1 -15.8 277.9 981.3 -17.2 354.2 1150.4 -18.9 344.5
min 419 -27.4 24 514 -25.9 28.5 597 -24.8 33
max 1377 -9.1 607.8 1579 -9.3 607.7 1886 -12.3 611.9

Fe
yn

m
an

cx
-c

ou
nt avg 433.4 -16.2 264.5 497.4 -18.5 224.3 559.3 -21 219

min 33 -24.8 0.7 38 -27.3 0.5 39 -30.3 0.6
max 3564 -7.9 632 4173 -5.9 611.9 4809 -9 622.6

Fe
yn

m
an

cx
-d

ep
th avg 308.5 -22.1 97.1 349.7 -22.7 119.4 386.2 -23 134.7

min 30 -32.6 0.7 37 -32.6 0.5 37 -35.9 0.6
max 2849 -10.7 610.8 3322 -7.9 610.7 3790 -6.6 620.9

Results and Discussion

Table 5 presents the results for all three platforms. On all platforms, Q-Synth reports
good reduction for both cx-count and cx-depth metrics. For VQE benchmarks, we observed
reduction of up to 19.3% cx-count and 27.4% cx-depth. For Feynman benchmarks, we
observed reduction of up to 30.3% cx-count and 35.9% cx-depth. Full tables are available
in [26, Appendix B] for all variations.

The separation of layout and circuit synthesis in current compilers results in suboptimal
circuits. We see that SAT based approaches are effective in post layout optimization. From
the full tables, we also observe that mapping and optimizing to Google’s Sycamore produces
the best results. We conjecture that the denser array structure of the coupling graph is the
main factor. The coupling graphs of Rigetti with octagons and Eagle with heavy-hex require
many extra CNOT gates to route qubits, at least on our benchmarks. Despite our good
reductions, the final cx-count/cx-depth on these platforms are higher than on Sycamore.
Overall, the results indicate that SAT based optimization is useful in the compilation pipeline.

I. Shaik and J. van de Pol 28:17

6 Conclusion

In this paper, we proposed two SAT encodings that synthesize Clifford circuits with optimal
CNOT count or depth. We also handle connectivity restrictions and allow qubit permutations.
We implemented all encoding variations in the open source tool Q-Synth. The experiments
demonstrate scalability compared to existing SAT encodings. For the first time, we are able
to synthesize cx-depth optimal 7-qubit random Clifford circuits. On practical VQE and
Feynman benchmarks, we overall perform better than TKET in all-to-all connectivity. We
also investigated layout-aware optimization on major quantum platforms. We first optimize
benchmarks with TKET, then map them using Qiskit and finally optimize the results using
Q-Synth. This achieves reductions of up to 30.3% in cx-count and 35.9% in cx-depth. These
results show that our SAT based approach nicely complements existing heuristic approaches.

References
1 Scott Aaronson and Daniel Gottesman. Improved simulation of stabilizer circuits. Physical

Review A, 70(5), November 2004. doi:10.1103/physreva.70.052328.
2 Matthew Amy. Quantum circuit analysis toolkit, 2016. URL: https://github.com/meamy/

feynman.
3 Frank Arute et al. Quantum supremacy using a programmable superconducting processor.

Nature, 574(7779):505–510, 2019. doi:10.1038/s41586-019-1666-5.
4 Armin Biere, Katalin Fazekas, Mathias Fleury, and Maximilian Heisinger. CaDiCaL, Kissat,

Paracooba, Plingeling and Treengeling entering the SAT Competition 2020. In Proc. of
SAT Competition 2020 – Solver and Benchmark Descriptions, volume B-2020-1, pages 51–53.
University of Helsinki, 2020. URL: https://api.semanticscholar.org/CorpusID:220727106.

5 Sergey Bravyi, Joseph A. Latone, and Dmitri Maslov. 6-qubit optimal clifford circuits. npj
Quantum Information, 8(1), July 2022. doi:10.1038/s41534-022-00583-7.

6 Jerry Chow, Oliver Dial, and Jay Gambetta. Ibm quantum breaks the 100-qubit pro-
cessor barrier. IBM Research Blog, 2, 2021. URL: https://www.ibm.com/quantum/blog/
127-qubit-quantum-processor-eagle.

7 Rigetti Computing. Rigetti computing. URL: https://www.rigetti.com.
8 Andrew W. Cross, Lev S. Bishop, John A. Smolin, and Jay M. Gambetta. Open quantum

assembly language, 2017. arXiv:1707.03429.
9 Arianne Meijer-van de Griend and Sarah Meng Li. Dynamic qubit routing with CNOT circuit

synthesis for quantum compilation. In Proceedings 19th International Conference on Quantum
Physics and Logic, QPL 2022, Wolfson College, Oxford, UK, 27 June - 1 July 2022, volume
394 of EPTCS, pages 363–399, 2022. doi:10.4204/EPTCS.394.18.

10 Patrick Ettenhuber, Mads Bøttger Hansen, Pier Paolo Poier, Irfansha Shaik, Stig Elk-
jaer Rasmussen, Niels Kristian Madsen, Marco Majland, Frank Jensen, Lars Olsen, and
Nikolaj Thomas Zinner. Calculating the energy profile of an enzymatic reaction on a quantum
computer. Journal of Chemical Theory and Computation, 21(7):3493–3503, 2025. PMID:
40162965. doi:10.1021/acs.jctc.5c00022.

11 Alexey Gnatiev, Antonio Morgado, and Joao Marques-Silva. PySAT: A Python toolkit for proto-
typing with SAT oracles. In SAT, pages 428–437, 2018. doi:10.1007/978-3-319-94144-8_26.

12 Kazuo Iwama, Yahiko Kambayashi, and Shigeru Yamashita. Transformation rules for designing
cnot-based quantum circuits. In Proceedings of the 39th Design Automation Conference,
DAC 2002, New Orleans, LA, USA, June 10-14, 2002, pages 419–424. ACM, 2002. doi:
10.1145/513918.514026.

13 Jiaqing Jiang, Xiaoming Sun, Shang-Hua Teng, Bujiao Wu, Kewen Wu, and Jialin Zhang.
Optimal space-depth trade-off of CNOT circuits in quantum logic synthesis. In Proceedings of
the 2020 ACM-SIAM Symposium on Discrete Algorithms, SODA 2020, Salt Lake City, UT,
USA, January 5-8, 2020, pages 213–229. SIAM, 2020. doi:10.1137/1.9781611975994.13.

SAT 2025

https://doi.org/10.1103/physreva.70.052328
https://github.com/meamy/feynman
https://github.com/meamy/feynman
https://doi.org/10.1038/s41586-019-1666-5
https://api.semanticscholar.org/CorpusID:220727106
https://doi.org/10.1038/s41534-022-00583-7
https://www.ibm.com/quantum/blog/127-qubit-quantum-processor-eagle
https://www.ibm.com/quantum/blog/127-qubit-quantum-processor-eagle
https://www.rigetti.com
https://arxiv.org/abs/1707.03429
https://doi.org/10.4204/EPTCS.394.18
https://doi.org/10.1021/acs.jctc.5c00022
https://doi.org/10.1007/978-3-319-94144-8_26
https://doi.org/10.1145/513918.514026
https://doi.org/10.1145/513918.514026
https://doi.org/10.1137/1.9781611975994.13

28:18 CNOT-Optimal Clifford Synthesis as SAT

14 Henry A. Kautz, David A. McAllester, and Bart Selman. Encoding plans in propositional
logic. In Proceedings of KR-96, pages 374–384, November 1996. URL: https://henrykautz.
com/papers/plankr96.pdf.

15 Wan-Hsuan Lin, Jason Kimko, Bochen Tan, Nikolaj Bjørner, and Jason Cong. Scalable optimal
layout synthesis for NISQ quantum processors. In DAC, 2023. doi:10.1109/DAC56929.2023.
10247760.

16 Harsha Nagarajan, Owen Lockwood, and Carleton Coffrin. QuantumCircuitOpt: An open-
source framework for provably optimal quantum circuit design. 2021 IEEE/ACM Second
International Workshop on Quantum Computing Software (QCS), pages 55–63, 2021. doi:
10.1109/QCS54837.2021.00010.

17 Paul D. Nation, Abdullah Ash Saki, Sebastian Brandhofer, Luciano Bello, Shelly Garion,
Matthew Treinish, and Ali Javadi-Abhari. Benchmarking the performance of quantum
computing software. CoRR, abs/2409.08844, 2025. arXiv:2409.08844.

18 Michael A. Nielsen and Isaac L. Chuang. Quantum circuits, pages 171–215. Cambridge
University Press, 2010. doi:10.1017/CBO9780511976667.008.

19 K. N. Patel, I. L. Markov, and J. P. Hayes. Efficient synthesis of linear reversible circuits,
2003. arXiv:quant-ph/0302002.

20 Tom Peham, Nina Brandl, Richard Kueng, Robert Wille, and Lukas Burgholzer. Depth-
optimal synthesis of Clifford circuits with SAT solvers. 2023 IEEE International Conference
on Quantum Computing and Engineering (QCE), 01:802–813, 2023. doi:10.1109/QCE57702.
2023.00095.

21 Qiskit contributors. Qiskit: An open-source framework for quantum computing, 2023. doi:
10.5281/zenodo.2573505.

22 Sarah Schneider, Lukas Burgholzer, and Robert Wille. A SAT encoding for optimal Clifford
circuit synthesis. 2023 28th Asia and South Pacific Design Automation Conference (ASP-DAC),
pages 190–195, 2022. doi:10.1145/3566097.3567929.

23 Irfansha Shaik and Jaco van de Pol. Optimal layout synthesis for quantum circuits as
classical planning. In IEEE/ACM International Conference on Computer Aided Design,
ICCAD 2023, San Francisco, CA, USA, October 28 - Nov. 2, 2023, pages 1–9. IEEE, 2023.
doi:10.1109/ICCAD57390.2023.10323924.

24 Irfansha Shaik and Jaco van de Pol. Optimal layout-aware CNOT circuit synthesis with qubit
permutation. In ECAI 2024, volume 392 of Frontiers in Artificial Intelligence and Applications,
pages 4207–4215. IOS Press, 2024. doi:10.3233/FAIA240993.

25 Irfansha Shaik and Jaco van de Pol. Optimal layout synthesis for deep quantum circuits
on NISQ processors with 100+ qubits. In 27th International Conference on Theory and
Applications of Satisfiability Testing SAT, volume 305 of LIPIcs. Schloss Dagstuhl – Leibniz-
Zentrum für Informatik, 2024. doi:10.4230/LIPIcs.SAT.2024.26.

26 Irfansha Shaik and Jaco van de Pol. CNOT-Optimal Clifford Synthesis as SAT (full version).
CoRR, abs/2504.00634, 2025. arXiv:2504.00634.

27 Irfansha Shaik and Jaco van de Pol. Code, benchmarks, scripts and data for “CNOT-optimal
Clifford synthesis as SAT” paper at SAT25, June 2025. doi:10.5281/zenodo.15575215.

28 Seyon Sivarajah, Silas Dilkes, Alexander Cowtan, Will Simmons, Alec Edgington, and Ross
Duncan. t|ket〉: a retargetable compiler for NISQ devices. Quantum Science and Technology,
6(1):014003, November 2020. doi:10.1088/2058-9565/ab8e92.

29 Robert Wille and Lukas Burgholzer. MQT QMAP. In Proceedings of ISPD-23. ACM, March
2023. doi:10.1145/3569052.3578928.

30 Robert Wille, Lukas Burgholzer, and Alwin Zulehner. Mapping quantum circuits to IBM QX
architectures using the minimal number of SWAP and H operations. In DAC-19, page 142.
ACM, 2019. doi:10.1145/3316781.3317859.

https://henrykautz.com/papers/plankr96.pdf
https://henrykautz.com/papers/plankr96.pdf
https://doi.org/10.1109/DAC56929.2023.10247760
https://doi.org/10.1109/DAC56929.2023.10247760
https://doi.org/10.1109/QCS54837.2021.00010
https://doi.org/10.1109/QCS54837.2021.00010
https://arxiv.org/abs/2409.08844
https://doi.org/10.1017/CBO9780511976667.008
https://arxiv.org/abs/quant-ph/0302002
https://doi.org/10.1109/QCE57702.2023.00095
https://doi.org/10.1109/QCE57702.2023.00095
https://doi.org/10.5281/zenodo.2573505
https://doi.org/10.5281/zenodo.2573505
https://doi.org/10.1145/3566097.3567929
https://doi.org/10.1109/ICCAD57390.2023.10323924
https://doi.org/10.3233/FAIA240993
https://doi.org/10.4230/LIPIcs.SAT.2024.26
https://arxiv.org/abs/2504.00634
https://doi.org/10.5281/zenodo.15575215
https://doi.org/10.1088/2058-9565/ab8e92
https://doi.org/10.1145/3569052.3578928
https://doi.org/10.1145/3316781.3317859

I. Shaik and J. van de Pol 28:19

A Quantum Computing Notation and Clifford Circuits

We provide a short introduction to the notations used in quantum computing. For a full
textbook explanation we refer to [18]. We also shortly summarize the stabilizer formalism
for Clifford circuits introduced in [1].

A qubit can be viewed as a 2-dimensional complex vector in the basis |0⟩ =
(1

0
)

and
|1⟩ =

(0
1
)
. That is, an arbitrary single qubit is a pair

(
α
β

)
= α|0⟩ + β|1⟩, for some α, β ∈ C

such that |α|2 + |β|2 = 1. The equal superposition |+⟩ is defined as 1√
2 |0⟩ + 1√

2 |1⟩. A system
of n qubits forms a 2n-dimensional space. For instance, the base vector |010⟩ is the tensor
product |0⟩ ⊗ |1⟩ ⊗ |0⟩ of dimension 8.

A quantum operation on n qubits is a unitary transformation (i.e., linear and reversible)
and can be represented by a 2n ×2n matrix U such that UU† = I. Quantum circuits are used
as a concise notation for quantum operations. A quantum circuit is a sequence of quantum
gates, where each operation is carried out on a few qubits only.

An important class of 1-qubit operations are the Pauli matrices, which are defined as:

I =
(

1 0
0 1

)
X =

(
0 1
1 0

)
Y =

(
0 −i

i 0

)
Z =

(
1 0
0 −1

)
One can check that X|0⟩ = 1 and X|1⟩ = 0, so X negates the basis vectors. The Pauli
matrices, together with their ±1, ±i multiples, form the Pauli group P1 that satisfies many
nice equations, e.g. XX = I, XZ = −ZX and XZ = −iY (this can be easily checked by
matrix multiplication). It can also be checked that Z|0⟩ = |0⟩, i.e., Z stabilizes |0⟩. Similarly,
−Z|1⟩ = |1⟩ and X|+⟩ = |+⟩. The Pauli group Pn on n qubits simply consists of Pauli
strings, i.e., a tensor product of n Pauli matrices multiplied by a constant: icP1 ⊗ · · · ⊗ P1
(for c ∈ {0, 1, 2, 3}). For instance −X ⊗ Z ⊗ X ∈ P3 stabilizes the 3-qubit state |+1+⟩.

The Pauli group forms a small but useful fragment of quantum computing, since it
represents the stabilizers of some interesting quantum states. A larger fragment can be
generated by the Clifford gates, which consist of the Hadamard gate (H), the Phase gate (S)
and the binary (entangling) gate CNOT or CX (conditional NOT).

H = 1√
2

(
1 1
1 −1

)
S =

(
1 0
0 i

)
CNOT =


1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0


On basis states a and b, CNOT (a, b) returns (a, a ⊕ b), i.e., it negates b if a = |1⟩. The
Hadamard gate can be used to create a superposition, i.e. H|0⟩ = |+⟩, and HH = I. One
can check that Z = SS, X = HZH and Y = iXZ, so the Pauli gates can be expressed in
terms of the Clifford gates. As a matter of fact the Clifford gates correspond exactly to the
normalizers of Pn, that is, those unitary transformations U such that UPnU† = Pn. For
instance, SXS† = Y and HXH† = Z.

The core of the stabilizer formalism [1] is that quantum circuits consisting of Clifford gates
can be simulated in polynomial time by tracking the effect of the gates on the states efficiently.
Instead of representing a state as a 2n-dimensional complex vector, it is represented by
n Pauli strings that together generate all stabilizers of that state. And the effect of each
Clifford gate can be defined directly on those stabilizers. This information can be concisely
stored in a tableau, using 2 bits for each Pauli matrix, 00 = I, 10 = X, 01 = Z and 11 = Y .
A row of 2n + 1 bits represents a single Pauli string, where the one extra bit is used to encode
the sign ±1. For technical reasons, we also keep track of n so-called destabilizers, explaining
the 2n × (2n + 1) Boolean matrices that are used in the SAT encoding.

SAT 2025

28:20 CNOT-Optimal Clifford Synthesis as SAT

B Experiment 1: Full Tables

Table 6 Experiment 1: Random Clifford cnot-count optimization, m: cx-count t: time, TO:
timeout.

without-permutation with-permutation

Tool: tket qmap qsynth-f qsynth-b tket qsynth-f qsynth-b

instance m m t m t m t m m t m t

3q05306 4 4 1452.5 4 0.13 4 0.06 2 2 0.1 2 0.09
3q33936 3 3 29.3 3 0.07 3 0.05 3 3 0.07 3 0.06
3q50494 4 4 1804.7 4 0.08 4 0.05 3 3 0.06 3 0.05
3q55125 3 3 77.2 3 0.06 3 0.04 3 3 0.06 3 0.05
3q99346 4 4 1650.2 4 0.08 4 0.05 3 3 0.06 3 0.05
4q05306 6 – TO 6 0.2 6 0.12 6 5 0.44 5 0.5
4q33936 8 – TO 6 0.38 6 0.31 8 5 0.35 5 0.71
4q50494 7 – TO 7 0.49 7 0.38 4 4 0.1 4 0.07
4q55125 6 – TO 6 0.18 6 0.11 6 5 0.43 5 0.33
4q99346 7 – TO 5 0.19 5 0.25 6 5 0.43 5 0.35
5q05306 12 – TO 8 4.74 8 14.1 11 8 34.93 8 151.2
5q33936 13 – TO 9 11.7 9 33.44 10 8 34.35 8 126.5
5q50494 17 – TO 8 4.03 8 36.89 11 7 22.35 7 56.6
5q55125 13 – TO 9 13.89 9 22.23 9 7 4.49 7 9.25
5q99346 11 – TO 7 1.05 7 2.86 10 6 1.52 6 7.88
6q05306 15 – TO – TO 12 TO 15 15 TO 11 TO
6q33936 20 – TO 11 2017.7 12 TO 14 14 TO 11 TO
6q50494 17 – TO 11 964.3 11 4525.9 14 14 TO 12 TO
6q55125 18 – TO 11 1060.2 11 5059.7 14 10 6452.9 10 TO
6q99346 15 – TO – TO 12 TO 15 – TO 11 TO
7q05306 25 – TO – TO – TO 24 – TO 19 TO
7q33936 24 – TO – TO – TO 20 – TO 17 TO
7q50494 22 – TO – TO 18 TO 20 – TO – TO
7q55125 22 – TO – TO 17 TO 18 – TO 17 TO
7q99346 21 – TO – TO – TO 20 – TO 19 TO

I. Shaik and J. van de Pol 28:21

Table 7 Experiment 1: Random Clifford cnot-depth optimization, m: cx-depth, t: time, TO:
timeout.

without-permutation with-permutation

Tool: tket qmap qsynth-f qsynth-b tket qsynth-f qsynth-b

instance m m t m t m t m m t m t

3q05306 4 4 0.4 4 0.13 4 0.06 2 2 0.1 2 0.09
3q33936 3 3 0.39 3 0.07 3 0.05 3 3 0.07 3 0.05
3q50494 4 4 0.25 4 0.08 4 0.05 3 3 0.06 3 0.04
3q55125 3 3 0.42 3 0.06 3 0.04 3 3 0.06 3 0.05
3q99346 4 4 0.34 4 0.08 4 0.05 3 3 0.06 3 0.05
4q05306 4 5 4.0 4 0.11 4 0.07 4 3 0.12 3 0.1
4q33936 7 5 4.27 4 0.16 4 0.34 7 3 0.14 3 0.57
4q50494 6 6 6.85 4 0.17 4 0.17 3 3 0.07 3 0.05
4q55125 4 4 2.53 3 0.1 3 0.09 4 3 0.12 3 0.1
4q99346 7 4 8.08 3 0.11 3 0.44 6 3 0.21 3 0.36
5q05306 10 8 437.1 5 1.64 5 9.68 8 4 2.57 4 4.56
5q33936 10 7 533.8 5 0.91 5 6.3 8 4 2.81 4 7.0
5q50494 15 7 626.2 5 2.25 5 40.49 9 4 5.71 4 6.98
5q55125 12 8 347.7 5 0.91 5 21.45 8 4 1.27 4 4.98
5q99346 9 6 226.7 4 0.39 4 3.25 8 4 0.37 4 5.41
6q05306 11 – TO 5 23.59 5 299.27 11 5 168.09 5 607.01
6q33936 16 11 TO 5 6.39 5 994.98 10 5 60.75 5 379.15
6q50494 14 14 TO 5 1.86 5 741.38 11 5 64.86 5 357.08
6q55125 15 17 TO 5 3.03 5 638.7 12 5 35.44 5 587.76
6q99346 12 11 TO 5 17.66 5 1522.43 12 5 82.35 5 984.03
7q05306 19 – TO – TO 18 TO 18 – TO – TO
7q33936 19 – TO 6 4151.7 – TO 16 – TO – TO
7q50494 18 – TO 6 7347.0 – TO 15 – TO – TO
7q55125 19 – TO 6 1485.5 – TO 14 – TO 12 TO
7q99346 15 – TO 6 241.0 – TO 14 – TO – TO

SAT 2025

	1 Introduction
	2 Preliminaries
	2.1 Clifford Circuits
	2.2 Layout Restrictions and Qubit Relabeling

	3 Revisiting Clifford Normal Forms for Optimal CNOT Synthesis
	3.1 Clifford Normal Forms

	4 CNOT Optimal SAT Encodings
	4.1 Gate optimal encoding
	4.1.1 Encoding 1-q I, HS, SH constraints
	4.1.2 Encoding CNOT constraints
	4.1.3 Final Layer 1q Constraints
	4.1.4 Initial and Goal Constraints
	4.1.5 Improvements due to Search Space Reduction
	4.1.6 Redundant Clauses and Auxiliary Variables for Propagation

	4.2 Depth optimal encoding

	5 Experiments and Results
	5.1 Experiment 1: Optimal synthesis
	5.2 Experiment 2: Effect on All-to-All Practical Benchmarks
	5.3 Experiment 3: Effect on Mapped Practical Benchmarks

	6 Conclusion
	A Quantum Computing Notation and Clifford Circuits
	B Experiment 1: Full Tables

