
Problem Partitioning via Proof Prefixes
Zachary Battleman #

Computer Science Department, Carnegie Mellon University, Pittsburgh, PA, USA

Joseph E. Reeves #

Computer Science Department, Carnegie Mellon University, Pittsburgh, PA, USA

Marijn J. H. Heule #

Computer Science Department, Carnegie Mellon University, Pittsburgh, PA, USA

Abstract
Satisfiability solvers have been instrumental in tackling hard problems, including mathematical
challenges that require years of computation. A key obstacle in efficiently solving such problems lies
in effectively partitioning them into many, frequently millions of subproblems. Existing automated
partitioning techniques, primarily based on lookahead methods, perform well on some instances but
fail to generate effective partitions for many others.

This paper introduces a powerful partitioning approach that leverages prefixes of proofs derived
from conflict-driven clause-learning solvers. This method enables non-experts to harness the power
of massively parallel SAT solving for their problems. We also propose a semantically-driven
partitioning technique tailored for problems with large cardinality constraints, which frequently arise
in optimization tasks. We evaluate our methods on diverse benchmarks, including combinatorial
problems and formulas from SAT and MaxSAT competitions. Our results demonstrate that these
techniques outperform existing partitioning strategies in many cases, offering improved scalability
and efficiency.

2012 ACM Subject Classification Theory of computation → Automated reasoning

Keywords and phrases Satisfiability solving, parallel computing, problem partitioning

Digital Object Identifier 10.4230/LIPIcs.SAT.2025.3

Supplementary Material Software: https://github.com/zaxioms0/proofix
archived at swh:1:dir:021ba6e9dc38762dc28c4ecf9df973344138898d

Funding Supported by the National Science Foundation (NSF) under grant CCF-2415773 and
funding from AFRL and DARPA under Agreement FA8750-24-9-1000.
Joseph E. Reeves: Supported in part by a fellowship award under contract FA9550-21-F-0003 through
the National Defense Science and Engineering Graduate (NDSEG) Fellowship Program, sponsored
by the Air Force Research Laboratory (AFRL), the Office of Naval Research (ONR) and the Army
Research Office (ARO).

1 Introduction

Satisfiability (SAT) solvers have proven to be invaluable tools for solving large problems
of interest to both theorists and industry practitioners. Over the last decade and a half,
substantial efforts have focused on parallelizing SAT, leading to two prominent paradigms:
clause-sharing portfolios [11] and cube-and-conquer (CnC) [14]. In a clause-sharing portfolio,
multiple solver threads are run on the same input formula, typically with slightly varied
heuristics, and critical clauses are shared among them. This approach can significantly reduce
runtime for problems where sequential SAT methods are already effective, as illustrated
by the state-of-the-art cloud solver Mallob [29]. In contrast, a CnC solver partitions the
input formula into numerous subproblems that can be solved independently in parallel. This
strategy has successfully tackled longstanding open problems in mathematics, including
the Pythagorean Triples problem [13], Schur Number Five [12], and the Empty Hexagon
problem [15].

© Zachary Battleman, Joseph E. Reeves, and Marijn J. H. Heule;
licensed under Creative Commons License CC-BY 4.0

28th International Conference on Theory and Applications of Satisfiability Testing (SAT 2025).
Editors: Jeremias Berg and Jakob Nordström; Article No. 3; pp. 3:1–3:18

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:zbattlem@andrew.cmu.edu
https://orcid.org/0009-0005-3471-329X
mailto:jereeves@andrew.cmu.edu
https://orcid.org/0000-0002-4585-0565
mailto:marijn@cmu.edu
https://orcid.org/0000-0002-5587-8801
https://doi.org/10.4230/LIPIcs.SAT.2025.3
https://github.com/zaxioms0/proofix
https://archive.softwareheritage.org/swh:1:dir:021ba6e9dc38762dc28c4ecf9df973344138898d;origin=https://github.com/zaxioms0/proofix;visit=swh:1:snp:bb34b14a65decf8af681d099b851611e0fa83428;anchor=swh:1:rev:043af6ea44ba5abbfbe4afd051697b4597d8654b
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics
https://www.dagstuhl.de

3:2 Problem Partitioning via Proof Prefixes

Cube-and-conquer comprises two main phases: cubing and solving. In the cubing phase,
a splitting variable is chosen to partition the current formula into two subformulas, one with
the variable assigned to true and the other with the variable assigned to false. Ideally, each
split produces two distinctly simpler subproblems. Historically, lookahead techniques proved
remarkably effective at selecting splitting variables, often enabling superlinear speedups even
on thousands of cores [14]. However, poorly chosen splits can result in substantial redundant
work or significant imbalances in subproblem difficulty, which in turn may lead to diminished
parallel efficiency or total running times that exceed the time required to solve the original
formula.

Although early advances with CnC relied on automated partitioning via lookaheads [14],
most of the significant successes in the last five years have depended on expert-crafted manual
partitions [6,15,32,34]. Manual approaches were favored primarily due to the prohibitive costs
or limited effectiveness of automated partitioning with lookaheads. The manual approaches
used a combination of trial-and-error and high-level insight into the problem and its encoding.
This prevents many potential users of CnC to solve their problems effectively. We propose
two novel partitioning methods to overcome these issues.

Our first cubing approach builds on the information contained in clausal proofs produced
by SAT solvers. A clausal proof is a sequence of redundant clauses (i.e., clauses whose
addition preserves satisfiability) ending with the empty clause to prove unsatisfiability.
Proofs have been used to assess and compare the usefulness of learned clauses enabling proof
summarization [27], solver heuristic tuning [31], and causal reasoning over combinations of
solver heuristics [37]. These works rely on access to complete proofs and strictly evaluate
clause usefulness within the proofs. A central insight of this paper is that prefixes of clausal
proofs can serve as effective stand-ins for complete proofs, and that the variables occurring
in these proof prefixes provide a powerful heuristic for guiding partitioning decisions.

Although splitting based on proof prefixes turns out to be effective, it can be computa-
tionally expensive. To mitigate this cost, our method relies on static partitions rather than
the dynamic partitions typically used in prior work. In a static partition, the same splitting
variable is used at every level of the partition tree. For deeper levels, we compute proof
prefixes for only a subset of nodes, then aggregate these prefixes to select the next splitting
variable.

Despite the inherent restrictions of a static partition, our results show that it performs
well across a broad range of problems, including benchmarks from the SAT Competition.
In fact, our tool efficiently generates strong partitions for many formulas on which the
state-of-the-art partitioning tool, March [14], fails to produce a result in reasonable time.

Our second cubing approach is for problems containing a set of clauses and one large
cardinality constraint. Such problems appear frequently in the constraint optimization setting
with the cardinality constraint representing some resource bound. The cubing approach
assumes that the problem is presented in a cardinality-based input format. We developed
a tool that transforms the problem into CNF by encoding the cardinality constraint with
the totalizer [3], and during encoding, produces a set of selected auxiliary variables from
the totalizer for splitting. In contrast to the first approach, this technique uses a semantic
understanding of auxiliary variables to produce a good problem partition.

Unlike many existing cubing-solvers, these techniques completely compartmentalize the
cubing and solving phases, allowing the usage of these techniques on top of any off-the-shelf
solver. This compartmentalization assists in the goal of learning information about optimal
partitions over a class of problems, rather than specific instances, and applying these findings
to solve larger instances of the problem.

Z. Battleman, J. E. Reeves, and M. J. H. Heule 3:3

1.1 Contributions
This work provides 3 main contributions:
1. We developed a tool that performs partitioning based on proof prefixes during partial

application of a solver.
2. We developed a tool that performs cardinality-based partitioning with the k-totalizer

encoding, selecting auxiliary variables to split on based on their semantic meanings in
the encoding.

3. We performed an experimental evaluation comparing our approaches to the widely used
partitioning tools, March. We considered SAT and MaxSAT competition formulas, as
well as several combinatorial problems and found that our approaches often performed
better than existing tools.

2 Background

2.1 Satisfiability
We consider propositional formulas in conjunctive normal form (CNF). A CNF formula φ is
a conjunction of clauses where each clause is a disjunction of literals. A literal ℓ is either a
variable x (positive literal) or a negated variable x (negative literal). An assignment α is a
mapping from variables to truth values 1 (true) and 0 (false). An assignment α satisfies a
positive (negative) literal ℓ if α maps var(ℓ) to true (false, respectively), and falsifies it if α
maps var(ℓ) to false (true, respectively).

An assignment satisfies a clause if the clause contains a literal satisfied by the assignment,
and satisfies a formula if every clause in the formula is satisfied by the assignment. A formula
is satisfiable if there exists a satisfying assignment, and unsatisfiable otherwise.

2.2 Cardinality Constraints
A cardinality constraint on Boolean variables has the form ℓ1 + ℓ2 + · · · + ℓs ≥ k and is
satisfied by a partial assignment if the sum of the satisfied literals is at least k. The size of
the cardinality constraint is the number of literals (s) it contains. Variables occurring in the
cardinality constraint are data variables, and new variables added in a clausal encoding are
auxiliary variables. For a general cardinality constraint with 1 < k < s, unit propagation
should lead to a conflict when s− k + 1 data literals in the constraint are falsified. Cardin-
ality constraints occur often in SAT problems, and commonly represent the bound in an
optimization problem, for example “at least k packages must be delivered using at most j
trucks.” There are many ways to encode a cardinality constraint as clauses [1, 3, 23,24,30].
In this work, we will use the totalizer encoding, explained further in Section 3.2.

2.3 CDCL and Clausal Proofs
To evaluate the satisfiability of a formula, a CDCL solver [22] alternates between conflict-
driven search and inprocessing. In search, the solver performs a series of variable decisions [5,
20] and unit propagations. If no conflict is reached, the formula is satisfiable. If the solver
encounters a conflict, the solver performs conflict analysis potentially learning a clause. In
case this clause is the empty clause, the formula is unsatisfiable. Otherwise, the solver revokes
some of its variable assignments (“backjumping”) and then repeats the whole procedure.
Additionally, modern solvers incorporate pre- and inprocessing techniques that change the
formula in some way, usually reducing the number of variables and clauses or shrinking

SAT 2025

3:4 Problem Partitioning via Proof Prefixes

the sizes of clauses. These techniques are intermittently interleaved with search during the
solving. Some of the most common inprocessing techniques are bounded variable elimination
(BVE) [9], vivification [19], and probing [10]

CDCL solvers produce satisfying assignments for satisfiable formulas and proofs of
unsatisfiability for unsatisfiable formulas. A clause C is redundant w.r.t. a formula φ if φ
and φ ∪ {C} are satisfiability equivalent. The clause sequence φ,C1, C2, . . . , Cm is a clausal
proof of Cm if each clause Ci (1 ≤ i ≤ m) is redundant w.r.t. φ ∪ {C1, C2, . . . , Ci−1}. The
proof is a refutation of φ if Cm is ⊥. Clausal proof systems may also allow deletion.

The strength of a clausal proof system is determined by the syntactic criterion it enforces
when checking clause redundancy. The standard SAT solving paradigm CDCL learns clauses
that are logically implied by the formula and fall under the reverse unit propagation (RUP)
proof system. A clause is RUP if unit propagation on the falsified literals of the clause results
in a conflict. The Resolution Asymmetric Tautology (RAT) proof system generalizes RUP
and all commonly used inprocessing techniques can be compactly expressed using RAT steps.
Proofs are typically transformed to a format with hints, e.g. LRAT, before being passed to a
formally-verified checker like cake-lpr [35].

When a CDCL solver logs a proof, the only distinction made between proof steps is if they
are clause additions or clause deletions. Without additional processing there is no way to
determine if a clause addition in the proof originated from conflict learning or an inprocessing
technique. In this work, we consume proofs externally without modifying the solver, so
the proof-based heuristics described in Section 3.1 will consider both learned clauses and
inprocessed clauses.

2.4 Cube and Conquer
Cube-and-Conquer (CnC) [14] is a powerful methodology for solving difficult SAT formulas.
In typical usage, a formula φ is partitioned into many sub-formulas, φ1, . . . , φn, such that φ
is satisfiable if and only if at least one φi is satisfiable. The cubes to which the name refers
are conjunctions of literals. In particular, if a disjunction of cubes ψ := ψ1 ∨ · · · ∨ ψn is a
tautology, then

φ ⇐⇒ φ ∧ ψ ⇐⇒
∨

i

φ ∧ ψi

Thus, the choice of partition from which the technique gets its name is φi := φ ∧ ψi. With
this partition, one can dispatch independent CDCL solvers in parallel, as depicted in Figure
1, and enjoy substantial speedups.

In the best case, each φ∧ ψi is of equal difficulty and substantially easier to solve than φ.
In the worst case, however, each φ ∧ ψi can be no easier, and sometimes harder, than just φ.
In this case, the wall-clock time is no better than just running φ, and the CPU time can
blow up exponentially. As a result, the choice of ψ is of great importance and the focus of
this paper. Historically, this has been done with expert insight and domain knowledge on a
problem-by-problem basis [15,32,34], or with lookahead techniques [14]. In this paper, we
will propose several new, automatic methods for finding good choices of ψ.

The state-of-the-art tool for automatically computing partitions is March, which combines
the David-Putnam-Logemann-Loveland (DPLL) algorithm [8] with lookaheads. For a general
discussion, see the Handbook of Satisfiability [16,18], while we describe here an exemplary
scheme. Given a CNF formula φ, a lookahead on literal ℓ works as follows: First, ℓ is assigned
to true, followed by unit propagation. Second, in case there was no conflict, the difference
between φ and the reduced formula φ′ is measured. The quality of look-ahead techniques

Z. Battleman, J. E. Reeves, and M. J. H. Heule 3:5

φ

CDCL

φ ∧ ψ1

CDCL

φ ∧ ψ2

CDCL

. . .

CDCL

φ ∧ ψn−1

CDCL

φ ∧ ψn

Figure 1 Cube-and-conquer heuristically splits a formula φ into n subformulas φ ∧ ψ1 to φ ∧ ψn

and solves the subformulas using CDCL.

depends heavily on the measurement used. A frequently used method weighs the clauses
in φ′ \ φ (i.e., the clauses that are reduced but not satisfied). Third, all simplifications are
reversed to return to φ. If a conflict was detected during the lookahead, then ℓ is forced to
false and is called a failed literal. The measurements are used to determine the splitting
variable in each node of the tree. In general, a variable x is chosen for which both the
lookahead on x and x result in a large reduction of the formula.

3 Partitioning Techniques

3.1 Proof Prefix Based Splitting
In this section, we describe a partitioning technique based on proof prefixes. A proof, in
this context, is a series of clauses that are redundant with respect to the original formula.
A formula is unsatisfiable when the empty clause is derived. A proof prefix is a sequence
of addition steps starting from the beginning of a proof. The key metrics we extrapolate
from proof prefixes are variable occurrences, or the number of times a variable appears in
a clause addition step. The partitioning technique arises from two observations regarding
proof prefixes.
1. Variables which occur frequently in a non-trivial proof prefix will often continue to appear

frequently in the remainder of the proof. By non-trivial we mean a proof prefix with a
large enough number of steps such that the solver has performed reasoning over several
restarts to explore the search space.

2. In problems for which effective partitions are known, splitting variables often occur
frequently in a proof generated from the original (unpartitioned) formula.

We ground these intuitions in Figure 2, which shows the variable occurrences in the DRAT
proof over time for the µ5(13) problem. Despite the proof taking more than 107 clause
addition steps, the known best variables have risen to near the top by only 105. This
observation is what allows us to use prefixes as an adequate substitute for the entire proof.

At a high level, we compute proof prefixes, find the most occurring variables in these
prefixes, and use theses variables as splitting variables. From the solver’s brief search we infer
which variables are important in the problem. More concretely, given a formula φ, we run it
with an off-the-shelf solver until a desired number of clauses are added to the proof emitted.
This is achieved by piping the proof output of the solver, waiting for a desired number of
addition steps, and then killing the solver. No modifications to the solver are required. Once
the proof prefix is known, we count the variable occurrences in the proof, both positive and
negative, and pick the most frequently occurring variable as the next variable to split on.

SAT 2025

3:6 Problem Partitioning via Proof Prefixes

103 104 105 106 107
101

102

103

104

105

106

Proof Steps

V
ar
ia
b
le

O
cc
u
re
n
ce
s

DRAT Addition Steps vs. Variable Occurences

(3, 4, 5)

(2, 3, 4)

(6, 7, 8)

(4, 5, 6)

(5, 6, 7)

Figure 2 The variable occurrences over the course of a DRAT proof generated by solving the
µ5(13) problem. This demonstrates that when variables rise to the top, they tend to stay there, and
also that the best variables make good splitting choices. In this case, the top 5 variables by the end
are exactly the ones found to be good by Subercaseaux et al. [34] and the top 5 variables after 105

steps approximate them well enough to create a good partition.

Once a splitting variable x is obtained, we create new formulas, φ ∧ x as well as φ ∧ x,
and restart the process on both formulas. Naively, generating a complete partition in this
manner, where each cube has size d, would require generating O(2d) proof prefixes, which
would be prohibitively expensive. To get around this, we introduce the notion of a static
partition. A static partition is one where we start with a static set of d splitting variables and
then generate cubes with all 2d combinations of polarities. This can be viewed as a balanced
binary tree depicted in the left of Figure 3. In contrast, a dynamic partition, depicted in the
right of Figure 3, may have unique variables at every vertex in the tree and is not necessarily
balanced.

φ

φ ∧ x1

φ ∧ x1

φ ∧ x1 ∧ x2
· · ·
· · ·

φ ∧ x1 ∧ x2
· · ·
· · ·

φ ∧ x1 ∧ x2
· · ·
· · ·

φ ∧ x1 ∧ x2
· · ·
· · ·

x1 x2 x3

φ

φ ∧ x1

φ ∧ x1

φ ∧ x1 ∧ x2
· · ·
· · ·

φ ∧ x1 ∧ x2
· · ·
· · ·

φ ∧ x1 ∧ x3
· · ·
· · ·

φ ∧ x1 ∧ x3
· · ·
· · ·

x1

x2

x3

x4

x5

x6

x7

Figure 3 Left: A static partition on variables {x1, x2, x3, . . .}. Right: A dynamic partition on
variables {x1, . . . , x7, . . .}.

Given a static partition set of size d, to generate the d + 1th variable, we sample a
constant number of cubes from the current partition, find the best variable by summing the
occurrences across all of the proof prefixes, and use it to extend the set. In this way, we can

Z. Battleman, J. E. Reeves, and M. J. H. Heule 3:7

generate a static partition of depth d by only generating O(sd) proof prefixes, where s is
the number of samples per layer. The generation of proof prefixes can be parallelized, so if
the number of samples is fewer than the number of cores, which is often sufficient, the cube
generation time is a linear function of depth. However, we must synchronize upon solver
completion, before processing the proof prefixes. One “layer” of this process is depicted in
Figure 4. The specific number of clauses in each proof prefix that produces the best results
is formula-dependent, and future work is needed to determine this automatically. However,
in our experimental evaluation, we found 100, 000 is an effective cutoff for a wide range of
competition formulas, and for many problems this is sufficient. Moreover, the required proof
prefix size seems to scale far slower than problem size as demonstrated by the technique’s
ability to effectively partition very difficult problems with comparatively little preproccesing.
Despite the restriction to static partitions, our technique is highly effective across a variety of
benchmarks. Moreover, finding an effective static split for a problem has numerous additional
benefits, as will be discussed in Sections 4 and 5. This technique was developed into an
automated tool, Proofix.

S = {x1, x2, x3}

Sample 1
φ ∧ x1 ∧ x2 ∧ x3

Partial CDCL

Sample 2
φ ∧ x1 ∧ x2 ∧ x3

Partial CDCL

Sample 3
φ ∧ x1 ∧ x2 ∧ x3

Partial CDCL

Sample 4
φ ∧ x1 ∧ x2 ∧ x3

Partial CDCL

Proof Analysis

x4

Figure 4 Example generating x4 from static partition {x1, x2, x3} using 4 samples.

3.2 Totalizer Based Splitting
In this section, we present a partitioning technique based on auxiliary variables from the
totalizer encoding. We assume that the problem is given in the cardinality-based input
at-least-k conjunctive normal form (KNF [26]), but the cardinality constraint may be encoded
as an at-most-k constraint by negating the literals and modifying the bound. This technique
makes no assumptions about the clauses in the formula and forms a static partition solely by
selecting auxiliary variables from the totalizer encoding.

The totalizer is one of the most widely used classes of cardinality constraint encodings,
with incremental variants appearing in modern MaxSAT solvers. The totalizer is structured
as a binary tree that incrementally counts the number of true data literals at each node.
Data literals form the leaves, and each node has auxiliary variables representing the unary
count from the sum of its children counters. For example, in Figure 5 with counters indexed
by depth and node id, the counter c3,1

1 is set true if either ℓ1 or ℓ2 is true, and c3,1
2 is true if

both ℓ1 and ℓ2 are true. Further, if both counters c3,1
2 and c3,2

2 are true, then the counter
c2,1

4 is true.

SAT 2025

3:8 Problem Partitioning via Proof Prefixes

Output variables denoted by oi at the root of the tree represent the count of true data
literals across the entire cardinality constraint. The bound k for an at-most-k constraint is
enforced by adding the unit ok+1. An at-least-k cardinality constraint would enforce the
bound with the positive unit ok. The encoding can be simplified by only encoding the count
up to k + 1 at each node [23], and we adopt this simplification for our encoding.

D1

o1, o2, . . . , o8

c1,1
1 , c1,1

2 , · · · , c1,1
8 c1,2

1 , c1,2
2 , · · · , c1,2

8

D2 c2,1
1 , c2,1

2 , c2,1
3 , c2,1

4 c2,2
1 , c2,2

2 , c2,2
3 , c2,2

4 c2,3
1 , c2,3

2 , c2,3
3 , c2,3

4 c2,4
1 , c2,4

2 , c2,4
3 , c2,4

4

D3 c3,1
1 , c3,1

2 c3,2
1 , c3,2

2 c3,3
1 , c3,3

2 c3,4
1 , c3,4

2 c3,5
1 , c3,5

2 c3,6
1 , c3,6

2 c3,7
1 , c3,7

2 c3,8
1 , c3,8

2

D4 ℓ1 ℓ2 ℓ3 ℓ4 ℓ5 ℓ6 ℓ7 ℓ8 ℓ9 ℓ10 ℓ11 ℓ12 ℓ13 ℓ14 ℓ15 ℓ16

Figure 5 Visualization of a totalizer for ℓ1 + ℓ2 + · · · + ℓ16 ≤ 7, where o8, and both c8s would be
unit to enforce the bound. Each node has an independent set of auxiliary variable counters ccnt.
The nodes are numbered left to right for each depth, and a counter for a given node id at depth dep
can be distinguished as cdep,id

cnt .

To motivate our splitting heuristic, first consider the totalizer in Figure 5. Selecting c1,1
4

as a splitting variable will result in the following two cases:
If c1,1

4 is true, at least 4 of the data literals from the set ℓ1, ℓ2, . . . , ℓ8 are true. This also
means that at most 3 data literals from the set ℓ9, ℓ10, . . . , ℓ16 are true due to the bound
of at most 7.
If c1,1

4 is false, at most 3 of the data literals from the set ℓ1, ℓ2, . . . , ℓ8 are true. This
provides no information about the data literals from the set ℓ9, ℓ10, . . . , ℓ16.

Intuitively, splitting on an auxiliary variable at an internal node in the totalizer will
designate how many true data literals are among its children and potentially its sibling nodes.
Furthermore, the closer the auxiliary variable is to the root, the more data literals it will
impact. However, a bad selection can create unbalanced subproblems. For instance, if we
split on c1,1

7 , when c1,1
7 is true all of the data literals from ℓ9, ℓ10, . . . , ℓ16 are set false due to

the bound. This may create a trivial cube. On the other hand, when c1,1
7 is false, we obtain

very little information other than that at least one of ℓ1, ℓ2, . . . , ℓ8 is false, and this would
likely not benefit the solver. Therefore, we focus our splitting on auxiliary variables with a
large impact that also correlate with the cardinality constraint’s bound. To achieve this, we
use the ratio Rk = k

s for a cardinality constraint with bound k and s data literals. We select
a counter from a node (id) with n counters as SelectCounter(id) = ⌊Rk × n⌋. The selection
procedure is as follows:

Z. Battleman, J. E. Reeves, and M. J. H. Heule 3:9

1. Select a starting depth d and desired number of splitting variables v.
2. Sort the nodes at depth d by number of counters, largest to smallest.
3. For each node (id) in d, select the counter SelectCounter(id) + 1 for odd nodes and

SelectCounter(id) for even nodes.
4. If v variables are selected, break. Otherwise, proceed to depth d+ 1 and return to step 2

to select the remaining variables.

Consider the totalizer in Figure 5 with Rk = 7
16 = 0.4375. Assume that we want 6

splitting variables, starting from depth 1. Start with node 1 which contains 8 counters. The
counter from node 1 will be SelectCounter(1) + 1 = ⌊8 × 0.4375⌋ + 1 = 4, which is variable
c1,1

4 . Then move on to node 2 and select c1,2
3 . Next, move to depth 2, and since all nodes

have the same number of counters we process them in order. At node 1 with 4 counters
take SelectCounter(1) + 1 = ⌊4 × 0.4375⌋ + 1 = 2, which is variable c2,1

2 . Proceed with the
remaining nodes at depth 2 selecting c2,2

1 , c2,3
2 , and c2,4

1 . These 6 variables are then used as
the splitting variables to generate a static partition of the formula.

The reason we alternate between SelectCounter(id) and SelectCounter(id) + 1 is to ensure
that the sum of the counts of selected splitting variables across all nodes for a given depth
resembles the ratio. This reduces the number of unhelpful or trivial cubes. For example, the
selected variables at depth 2: c2,1

2 , c2,2
1 , c2,3

2 , and c2,4
1 will sum to 6 in the cube where they

are all set to true. If we only selected the c1 counters, the sum would be 4 and this is far
from the bound of 7, and if we only selected c2 counters, the sum would be 8 and this is
trivially unsatisfiable.

The starting depth is assigned based on the number of desired splitting variables such
that all nodes in a given depth are processed if possible. In our experimental configuration,
we chose 12 splitting variables and therefore started at depth 2, giving 4 variables at this
depth and 8 variables at depth 3.

This approach could be adapted to the more compressed modulus totalizer [24], which
uses a quotient and remainder at each node to reduce the number of auxiliary variables
required to count the sum, by selecting quotient variables at each node. Other hierarchical
encodings, for example, those used in pseudo-Boolean solving, would also be candidates for
this approach. However, it is not clear how splitting could be achieved with a non-hierarchical
encoding like a sequential counter. Also, we do not consider splitting on formulas with many
cardinality constraints. It is possible to select a subset of variables from each cardinality
constraint encoding, but this would require heuristics for determining the relative importance
of each cardinality constraint. Lastly, we focus on unsatisfiable problems with a tight bound,
which means that adding 1 to the bound would make the problem satisfiable. If the bound is
not tight, we may need to adjust the ratio Rk by sampling for trivial cubes.

4 Explainable Splitting

One of the most common criticisms of large computer-aided proofs is their opacity: many of
these SAT-based proofs are massive. For example, the proof of Schur Number Five is roughly
2 petabytes [12], and even CDCL-based proofs for problems that are solvable in seconds can
remain impenetrable. It may not be surprising that many basic steps are hard to grasp,
but even the high-level structure is completely unclear. However, an effective static split
can drastically improve our high-level understanding of these proofs. Because our approach
extracts a static split directly from CDCL-generated proofs, it exposes the solver’s underlying
reasoning and highlights the variables it deems most significant.

SAT 2025

3:10 Problem Partitioning via Proof Prefixes

We have observed that static splits can offer several key advantages:
Demystifying solver reasoning. While the solver’s detailed steps may remain intricate, a
static split reveals the high-level structure of the proof, making it easier to follow how
subproblems branch and simplify.
Pinpointing crucial variables. Intuitively, crucial variables are the ones which always
partition a problem into subproblems with equal difficulty. A static split can help identify
crucial variables as their introduction would observably split every vertex in half. This
contrasts with a dynamic split where it is difficult to identify the crucial variables as they
may only occur a few times at unrelated nodes.
Facilitating generalization. Once it is clear which variables matter most, users can readily
adapt or replicate that partitioning scheme for related problems.
Ease of extension. Dynamic splits often yield complex trees that are hard to modify. In
contrast, a static split is straightforward to expand by adding additional variables that
resemble those already used in the partition.

5 Experimental Evaluation

All experiments were performed at the Pittsburgh Supercomputing Center on nodes with
128 cores and 256 GB RAM [7]. We ran 32 solver executions in parallel per node with 10,000
second timeouts. Therefore, each solver process held approximately 8GB of memory.

We compared our splitting techniques with March, the state-of-the-art partitioning
tool which uses lookaheads and is not constrained to static partitions. Our experimental
comparison focuses exclusively on CnC solvers, primarily due to the fairness of comparison,
but also because many of the explainability and usability benefits of our techniques only
make sense in the context of CnC partitions, so we felt it warranted to restrict our focus to
CnC.

5.1 Stability Under Search Parameters
One of the properties that makes the proof prefix technique powerful is the fact that the
preprocessing time required scales far slower than problem difficulty. Indeed, looking at
several difficult problems, if Proofix is able to find known good splitting variables, it can do
so without needing to search deep into the proof.

The µn(k) problem asks to find the minimum number of convex n-gons induced by
placing k points in the plane with no three points in a line. Recently, Subercaseaux et al. [34]
conjectured that µ5(n) =

(⌊n/2⌋
5

)
+

(⌈n/2⌉
5

)
. The µ5(15) benchmark asks whether it is possible

to construct only 76 convex pentagons in the plane with 15 points, one less than the known
minimum of 77. It should be noted that µ5(15) is substantially easier for state-of-the-art
MaxSAT solvers with an out-of-the-box wcnf formula than for CaDiCaL using the totalizer
encoding. This problem takes at least 48 CPU hours.

The χρ(Z2) problem is a heavily optimized formula which was shown to be logically
equivalent to asking whether there exists a packing chromatic number of the subset of
the plane, {(x, y) ∈ Z2 | |x| + |y| ≤ 15}, using 14 colors and center color 6. The “good”
variables are precisely the ones corresponding to the “plus” tiling of the graph as described
by Subercaseaux et al. [33]. With a manual partition of over 5, 000, 000 cubes, this problem
was solved in 4, 851 CPU hours.

The 7gon-6hole problem asks whether every set of 24 points with no 3 three points in a
line contains either a convex 7-gon, or a 6-hole (a convex 6-gon with no points inside of it).
This problem is estimated to have a single-core runtime of 1, 000 CPU hours and a manual
partition was found reducing it to 200 CPU hours (on a single core) [15].

Z. Battleman, J. E. Reeves, and M. J. H. Heule 3:11

Table 1 Stability of quality of variables under increasing prefix lengths. Each formula was
statically partitioned into cubes of depth 15. The number of “good”, as determined by their manual
partitions in previous works, is shown as well as how many of the variables in the final partition
are “good.” If there are fewer “good” variables than 15, the score is at most the number of “good”
variables.

Formula # “Good” # Variables Prefix Length
103 104 105 5 × 105 106

χρ(Z2) 63 7, 669 0/15 0/15 12/15 12/15 11/15

µ5(15) 13 58, 826 7/15 5/15 4/15 3/13 4/15

7gon-6hole 20 28, 878 2/15 8/15 13/15 12/15 12/15

Table 1 depicts the tool looking for variables that are known to be good on 3 very difficult
problems. Using just 32 samples per variable, on two of them Proofix is able to pick out
many known good variables after only searching for a tiny fraction of the time that the
problem itself would take. While it is possible that Proofix was able to come up with an
alternative set of “good” variables for the µ5(15) problem, it more likely provides evidence
that for certain proofs the prefix is not an adequate substitute. Understanding why this is
the case is the subject of future work.

One caveat to note is that while finding good splitting variables can now be done
automatically for many problems, for large problems such as these, it is not necessarily the
case that the cubes found will always achieve comparable performance to the ones found
manually due to factors such as variable ordering or the specific subset of “good” variables
used in the static partition. The partition used to solve the χρ(Z2) problem, for example,
used a dynamic partition with an unbalanced binary tree that Proofix cannot capture directly.
Future work is required on how to use proof prefixes to efficiently capture dynamic partitions.

5.2 Maximum Satisfiability Problems

In this section, we evaluate the totalizer-based splitting and proof-based splitting on problems
containing one large cardinality constraint. These types of problems occur naturally as
unweighted maximum satisfiability (MaxSAT) problems. Each MaxSAT problem consists of
a set of hard clauses and soft units. The objective is to find the optimum (minimum) number
of soft units that must be falsified while satisfying all hard clauses. MaxSAT problems can be
converted to SAT by combining the hard clauses with one, often large, cardinality constraint
stating at most k soft units are falsified. We can generate an unsatisfiable SAT problem by
making the cardinality constraint’s bound the optimum minus one, and a satisfiable SAT
problem by making the bound the optimum.

In our evaluation, we consider MaxSAT benchmarks from the 2023 competition unweighted
track [17]. We generate unsatisfiable SAT problems from formulas with known bounds. The
SAT problem is transformed into CNF by encoding the cardinality constraint as a totalizer.
The cardinality constraint is transformed from at-least-k to at-most-k if this makes the
encoding size smaller. Before encoding the cardinality constraint, we sort data literals using
the best literal sorting found in recent work [25]. This step improves the default solver
performance, creating a better baseline for partitioning.

We filter out problems with a CaDiCaL solving time of less than 500 seconds, leaving five
benchmark families: judgment aggregation (judge) [17], model-based diagnosis (mbd) [21], ap-
proximately propagation complete CNF for an all-different encoding of pigeon hole (optic) [2],

SAT 2025

3:12 Problem Partitioning via Proof Prefixes

Table 2 Comparison of partitioning methods on combinatorial problems and MaxSAT competition
benchmarks. Evaluation is in CPU time.

formula baseline March Proofix Totalizer Splitting
1 core 1 core 32 core Pre. 1 core 32 core Pre. 1 core 32 core

judge 3, 654 4, 893 3, 162 219 3, 437 2, 447 19 7,851 4,289
mbd 2, 170 2, 914 313 287 2, 512 409 37 3,784 290
optic 1, 236 908 195 23 708 22 45 1,150 135
uaq 2, 520 1, 408 453 4 970 62 43 1,960 129
mindset 2, 162 18, 018 1, 372 357 16, 375 2, 252 42 19,002 1,164

max10 6, 282 1, 939 920 0 7, 645 238 29 2,498 269
cross13 > 80, 000 ? > 10, 000 43 64, 610 2, 206 71 77,664 3,125
µ5(13) 2, 317 2, 526 181 8 1, 367 84 80 2,355 543

user query authorization (uaq) [2], and minimum rule set for labeling data (mindset) [2]. For
each family, we selected the hardest problem for CaDiCaL to solve, and present the results at
the top of Table 2.

Proofix outperforms the other techniques in both single and 32 core performance on the
majority of the problems. Totalizer split performs adequately, which is notable due to its lack
of preprocessing time other than time (less than a second) required to encode the cardinality
constraint into CNF. Of all the selected problems, only mindset is not successfully partitioned
by any technique, with totalizer split producing the best 32 core speedup of only 2×.

The preprocessing time of Proofix is consistent across problems because there is only
minor variation in the time it takes for the solver instances to produce 100,000 proof steps.
On the other hand, March has a large range of preprocessing times. For example, in mbd
March spends as much time in preprocessing as totalizer split spends solving the problem on
32 cores.

In addition, we examined the splitting variables selected by Proofix to find out if it used
any auxiliary variables from the totalizer encoding. Proofix used some auxiliary variables
for optic and mbd, a single auxiliary variable for judge, and no auxiliary variables in the
other problems. This suggests that Proofix can discover auxiliary variables when they are
more useful, as is the case for mbd based on the superior performance of totalizer split.
Furthermore, Proofix achieves this without any additional insight into the problem or variable
semantics. Many of the other problems can be effectively partitioned by either auxiliary
variables or data variables, as seen by the similar performance of Proofix and totalizer split.

Next we discuss three additional hard combinatorial problems to test the limits of these
splitting techniques. We describe the problems and their encodings at a high level below.

The Max Squares problem [36] asks whether you can set m cells to true in an n× n grid
such that no set of four true cells form the corners of a square. Problem variables denote
whether a cell is in the solution. The problem is encoded with clauses containing 4 literals
blocking the 4 corners of each possible square on the grid and one cardinality constraint over
all of the problem variables. For a 10 × 10 grid the optimal value is 61, so a bound of 62 on
the cardinality constraint makes the formula unsatisfiable.

The crossing number cr(G) of a graph G is the lowest number of edge crossings of a plane
drawing of the graph G. In 1960, Guy conjectured that the crossing number of the complete
graph is cr(Kn) = 1

4 · ⌊ n
2 ⌋ · ⌊ n−1

2 ⌋ · ⌊ n−2
2 ⌋ · ⌊ n−3

2 ⌋ [28]. It is known that cr(K13) = 225. The
benchmark cross13 asks whether there is a K13 drawing with 224 crossings.

Z. Battleman, J. E. Reeves, and M. J. H. Heule 3:13

On the max10 problem, March exhibits good single-core performance but cannot match
the improved 32 core times from both of our techniques. Likewise, March fails to solve the
cross13 problem with a 10,000 second cube timeout. For each of these problems Proofix
produces a partition with the best 32 core performance, and it does so without using the
auxiliary variables from the totalizer encoding. The totalizer split can approximate the
performance of Proofix with slightly worse performance on each of the problems. Notably, the
preprocessing time for Proofix on the much harder cross13 is lower than for µ5(13), displaying
the potential of a static splitting technique to scale and achieve a good partitioning with
relatively low preprocessing overhead.

5.3 SAT Competition Formulas

To measure the generalizability of Proofix, we compared it to both CaDiCaL [4] and March on
SAT competition formulas from the years 2022, 2023, and 2024. We considered problems
which were both UNSAT and took CaDiCaL more than 1, 000 seconds.

Proofix was used with settings where it learned the first 105 clauses of the proof and
generated a static partition of depth 10, resulting in 210 subprobems. Comparing Proofix to
CaDiCaL directly, as shown in Figure 6, we see that 63% of competition formulas perform
better when first split and run on 32 cores than when run with CaDiCaL alone, including the
preprocessing time for splitting. If we disregard preprocessing time, this number increases to
75%. Including preprocessing, there are 26 problems where Proofix performed more than
10× better than CaDiCaL, and even one which performed 100× better.

Unfortunately, March timed out or crashed while generating the cubes on multiple
instances. We suspect that this is due to March learning a lot of “local” clauses and exceeding
the available memory on formulas with many small clauses. To ensure a fair comparison,
and to eliminate many additional cases where March failed to generate a partition before
timing out, it was limited to a split of depth at most 10.

As can be seen in Figure 7, Proofix performs favorably compared to March on many
problems. Considering only problems where March did not segfault, Proofix performed better
than March on 53% of problems, and considering problems where March failed for any reason,
that number increases to 61%. While there are a couple of cases where March beats Proofix
by a large margin, there are far more where the opposite is true, and even two cases where
Proofix produces a partition which is over 1, 000× better than March.

Although Proofix always succeeds in generating the cubes, there are 10 cases where at
least one cube takes more than 10, 000 seconds. This is in contrast to March, where a cube
times out in 5 cases, March itself times out in generating cubes in 8 cases, and it segfaults
while generating cubes in 35 cases. The segfaults persisted across multiple compiled March
binaries and multiple computers. In addition, it is worth noting that segfaults seem to be
roughly correlated with partitioning difficulty, as 6 of the 10 instances for which Proofix times
out on a cube also cause segfaults in March.

It can also be seen that while both tools can fail to find a good split in some cases, the
amount that Proofix can fail by is far less than March. In the worst case, March’s 32 core
time is 55, 000 seconds slower than CaDiCaL, whereas Proofix’s 32 core time is at most 21, 800
seconds worse. Moreover, there are 9 problems where March produces a partition that has
a time on 32 cores worse than CaDiCaL, compared to Proofix for which there are only 4
(conditioned on March generating a partition at all).

SAT 2025

3:14 Problem Partitioning via Proof Prefixes

103 104

102

103

104

105

×10

×2

×1

×0.5

×0.1
×0.01

Cube Timeout

CaDiCaL Runtime (s)

P
ro
ofi

x
R
u
n
ti
m
e
(I
n
cl
u
d
in
g
P
re
p
ro
c)

(s
)

CaDiCaL vs. Proofix With 32 Cores (SAT Competition 2022/2023/2024)

Figure 6 CaDiCaL runtimes vs. Proofix cube generation and runtimes on 32 cores. Lower is
better.

6 Applications and Results

We believe that the proof prefix cubing technique is of interest to people solving formulas
of all sizes. For competition-sized problems, one way to make use of an n-core machine
is to dedicate n − 1 cores to cubing and solving in parallel, reserving the last core to run
an out-of-the-box solver. The last core is used in this manner to account for the case that
either the overhead of partitioning outweighs the difficulty of the formula itself or an effective
partition cannot be found. If one were to take this approach for the SAT competition
problems in 2022, 2023, and 2024, they would see improvements on nearly 65% of the
problems from those years. Similar improvements can be seen for MaxSAT, although the
formulas tended to be easier overall. However, this is due to the kinds of formulas in the
MaxSAT competition, rather than the applicability of Proofix itself. We believe that the
main application is toward resolving large combinatorial problems. We repeatedly observe
that the partial-proof technique is able to recreate the results of manual effort [15,32,34], and
inform optimal partitions automatically. Thus, we believe that Proofix’s primary use-case
will be returning near-optimal, easily interpretable, static partitions, which can help users
quickly identify semantic patterns in cubes in order to solve large problems.

Z. Battleman, J. E. Reeves, and M. J. H. Heule 3:15

×10

×0.1 ×0.01 ×0.001

Cube Timeout

C
u
b
e
T
im

eo
u
t

M
ar
ch

T
im

eo
u
t

M
ar
ch

S
eg
fa
u
lt

101 102 103 104 105

101

102

103

104

105

CaDiCaL Runtime on March Partition (s)

C
aD

iC
aL

R
u
n
ti
m
e
on

P
ro
ofi

x
P
ar
ti
ti
on

(s
)

March vs. Proofix on 32 Cores (SAT Competition 2022/2023/2024)

0k

2k

4k

6k

8k

10k

12k

14k

Figure 7 A comparison of March vs. Proofix on SAT competition problems using 32 cores. The
color of a point indicates how long the original problem takes CaDiCaL to solve with no partitioning.
The diagonal lines compare orders of magnitude of performance between March and Proofix for
solving the partition. Several lines are added on the right to denote cases where March failed for one
of a few of reasons. Being lower on the graph is better.

7 Conclusion and Future Work

In this paper, we presented two novel techniques for automatically partitioning SAT formulas,
one based on proof prefixes and the other based on the totalizer encoding. We demonstrated
that the limitation to static partitions is not a major setback, and also provides numerous
qualitative benefits towards explainability. Finally, we developed tools for both splitting
techniques and demonstrated that these techniques outperform the state-of-the-art tool on
numerous problems. There are several questions left open for future work:

What makes some proofs more amenable than others for splitting, and is this property
identifiable in a prefix? In other words, can we detect when a prefix is unlikely to yield a
good partition?
Given that we can find good variables for a partition, is there a way to automatically
turn them into a dynamic partition, or generalize them from their semantic meaning?
How do the splitting techniques in this paper compare to clause-sharing solvers, both on
competition and difficult combinatorial problems?

SAT 2025

3:16 Problem Partitioning via Proof Prefixes

References

1 Roberto Asín, Robert Nieuwenhuis, Albert Oliveras, and Enric Rodríguez-Carbonell. Cardinal-
ity networks and their applications. In Oliver Kullmann, editor, Theory and Applications of Sat-
isfiability Testing (SAT), pages 167–180. Springer, 2009. doi:10.1007/978-3-642-02777-2_
18.

2 Fahiem Bacchus, Matti Järvisalo, and Ruben Martins. MaxSAT Evaluation 2018 Benchmarks.
https://helda.helsinki.fi/items/7c51d9bd-20e8-428f-8926-b2bbf151dc4c, 2018. Ac-
cessed: 2025-04-02.

3 Olivier Bailleux and Yacine Boufkhad. Efficient cnf encoding of boolean cardinality constraints.
In Francesca Rossi, editor, Principles and Practice of Constraint Programming (CP), pages 108–
122, Berlin, Heidelberg, 2003. Springer Berlin Heidelberg. doi:10.1007/978-3-540-45193-8_
8.

4 Armin Biere. Cadical, lingeling, plingeling, treengeling and yalsat entering the sat competition
2018. Proceedings of SAT Competition, 14:316–336, 2017.

5 Armin Biere and Andreas Fröhlich. Evaluating CDCL variable scoring schemes. In Theory
and Applications of Satisfiability Testing (SAT), volume 9340 of LNCS, pages 405–422, 2015.
doi:10.1007/978-3-319-24318-4_29.

6 Joshua Brakensiek, Marijn J. H. Heule, John Mackey, and David Narváez. The resol-
ution of keller’s conjecture. In Nicolas Peltier and Viorica Sofronie-Stokkermans, edit-
ors, Automated Reasoning, pages 48–65, Cham, 2020. Springer International Publishing.
doi:10.1007/978-3-030-51074-9_4.

7 Shawn T. Brown, Paola Buitrago, Edward Hanna, Sergiu Sanielevici, Robin Scibek, and
Nicholas A. Nystrom. Bridges-2: A Platform for Rapidly-Evolving and Data Intensive Research,
pages 1–4. Association for Computing Machinery, New York, NY, USA, 2021. doi:10.1145/
3437359.3465593.

8 Martin Davis, George Logemann, and Donald Loveland. A machine program for theorem-
proving. Commun. ACM, 5(7):394–397, 1962. doi:10.1145/368273.368557.

9 Niklas Eén and Armin Biere. Effective preprocessing in SAT through variable and clause
elimination. In Theory and Applications of Satisfiability Testing (SAT), volume 3569 of LNCS,
pages 61–75. Springer, 2005. doi:10.1007/11499107_5.

10 Jon William Freeman. Improvements to Propositional Satisfiability Search Algorithms. PhD
thesis, University of Pennsylvania, USA, 1995.

11 Youssef Hamadi, Said Jabbour, and Lakhdar Sais. Manysat: a parallel sat solver. Journal
on Satisfiability, Boolean Modelling and Computation, 6(4):245–262, 2010. doi:10.3233/
SAT190070.

12 Marijn J. H. Heule. Schur number five. In AAAI Conference on Artificial Intelligence, 2018.
13 Marijn J. H. Heule, Oliver Kullmann, and Victor W. Marek. Solving and verifying the

Boolean Pythagorean triples problem via cube-and-conquer. In Theory and Applications
of Satisfiability Testing (SAT), volume 9710 of LNCS, pages 228–245. Springer, 2016. doi:
10.1007/978-3-319-40970-2_15.

14 Marijn J. H. Heule, Oliver Kullmann, Siert Wieringa, and Armin Biere. Cube and conquer:
Guiding cdcl sat solvers by lookaheads. In Kerstin Eder, João Lourenço, and Onn Shehory,
editors, Hardware and Software: Verification and Testing, pages 50–65, Berlin, Heidelberg,
2012. Springer Berlin Heidelberg.

15 Marijn J. H. Heule and Manfred Scheucher. Happy ending: An empty hexagon in every set
of 30 points. In Bernd Finkbeiner and Laura Kovács, editors, Tools and Algorithms for the
Construction and Analysis of Systems, pages 61–80, Cham, 2024. Springer Nature Switzerland.
doi:10.1007/978-3-031-57246-3_5.

16 Marijn J. H. Heule and Hans van Maaren. Look-Ahead Based SAT Solvers, volume 185 of FAIA,
chapter 5, pages 155–184. IOS Press, February 2009. doi:10.3233/978-1-58603-929-5-155.

https://doi.org/10.1007/978-3-642-02777-2_18
https://doi.org/10.1007/978-3-642-02777-2_18
https://helda.helsinki.fi/items/7c51d9bd-20e8-428f-8926-b2bbf151dc4c
https://doi.org/10.1007/978-3-540-45193-8_8
https://doi.org/10.1007/978-3-540-45193-8_8
https://doi.org/10.1007/978-3-319-24318-4_29
https://doi.org/10.1007/978-3-030-51074-9_4
https://doi.org/10.1145/3437359.3465593
https://doi.org/10.1145/3437359.3465593
https://doi.org/10.1145/368273.368557
https://doi.org/10.1007/11499107_5
https://doi.org/10.3233/SAT190070
https://doi.org/10.3233/SAT190070
https://doi.org/10.1007/978-3-319-40970-2_15
https://doi.org/10.1007/978-3-319-40970-2_15
https://doi.org/10.1007/978-3-031-57246-3_5
https://doi.org/10.3233/978-1-58603-929-5-155

Z. Battleman, J. E. Reeves, and M. J. H. Heule 3:17

17 Matti Järvisalo, Jeremias Berg, Ruben Martins, and Andreas Niskanen. MaxSAT Evaluation
2023 Benchmarks. https://maxsat-evaluations.github.io/2023/benchmarks.html, 2023.
Accessed: 2024-08-13.

18 Oliver Kullmann. Fundaments of Branching Heuristics, volume 185 of FAIA, chapter 7, pages
205–244. IOS Press, February 2009. doi:10.3233/978-1-58603-929-5-205.

19 Chu-Min Li, Fan Xiao, Mao Luo, Felip Manyà, Zhipeng Lü, and Yu Li. Clause vivification
by unit propagation in CDCL SAT solvers. Artificial Intelligence, 279(C), February 2020.
doi:10.1016/J.ARTINT.2019.103197.

20 Jia Liang, Vijay Ganesh, Pascal Poupart, and Krzysztof Czarnecki. Learning rate based
branching heuristic for SAT solvers. In Theory and Applications of Satisfiability Testing (SAT),
volume 9710 of LNCS, pages 123–140, 2016. doi:10.1007/978-3-319-40970-2_9.

21 Joao Marques-Silva, Mikoláš Janota, Alexey Ignatiev, and Antonio Morgado. Efficient model
based diagnosis with maximum satisfiability. In International Joint Conference on Artificial
Intelligence (IJCAI), IJCAI’15, pages 1966–1972. AAAI Press, 2015. URL: http://ijcai.
org/Abstract/15/279.

22 João Marques-Silva, Ines Lynce, and Sharad Malik. Conflict-driven clause learning SAT
solvers. In Handbook of Satisfiability, pages 131–153. IOS Press, 2009. doi:10.3233/
978-1-58603-929-5-131.

23 Antonio Morgado, Alexey Ignatiev, and Joao Marques-Silva. Mscg: Robust core-guided maxsat
solving: System description. Journal on Satisfiability, Boolean Modeling and Computation,
9:129–134, December 2015.

24 Toru Ogawa, Yangyang Liu, Ryuzo Hasegawa, Miyuki Koshimura, and Hiroshi Fujita. Modulo
based cnf encoding of cardinality constraints and its application to maxsat solvers. In Tools
with Artificial Intelligence (ICTAI), pages 9–17, 2013. doi:10.1109/ICTAI.2013.13.

25 Joseph E Reeves, Joao Filipe, Min-Chien Hsu, Ruben Martins, and Marijn JH Heule. The
impact of literal sorting on cardinality constraint encodings. In Conference on Artificial
Intelligence (AAAI). AAAI Press, 2025.

26 Joseph E. Reeves, Marijn J. H. Heule, and Randal E. Bryant. From Clauses to Klauses. In
Arie Gurfinkel and Vijay Ganesh, editors, Computer Aided Verification (CAV), volume 14681
of Lecture Notes in Computer Science, pages 110–132. Springer, 2024.

27 Joseph E Reeves, Benjamin Kiesl-Reiter, and Marijn JH Heule. Propositional proof skeletons.
In Tools and Algorithms for the Construction and Analysis of Systems (TACAS), pages 329–347.
Springer, 2023.

28 R.K.Guy. A combinatorial problem. Nabla (Bulletin of the Malaysian Mathematical Society),
7, 1960.

29 Dominik Schreiber and Peter Sanders. Scalable sat solving in the cloud. In Chu-Min Li and Felip
Manyà, editors, Theory and Applications of Satisfiability Testing – SAT 2021, pages 518–534,
Cham, 2021. Springer International Publishing. doi:10.1007/978-3-030-80223-3_35.

30 Carsten Sinz. Towards an optimal CNF encoding of Boolean cardinality constraints. In
Principles and Practice of Constraint Programming (CP), volume 3709 of LNCS, pages
827–831, 2005. doi:10.1007/11564751_73.

31 Mate Soos, Raghav Kulkarni, and Kuldeep S Meel. : gazing in the black box of sat solving.
In Theory and Applications of Satisfiability Testing (SAT), pages 371–387. Springer, 2019.

32 Bernardo Subercaseaux and Marijn Heule. Toward optimal radio colorings of hypercubes via
sat-solving. In Ruzica Piskac and Andrei Voronkov, editors, Proceedings of 24th International
Conference on Logic for Programming, Artificial Intelligence and Reasoning, volume 94 of
EPiC Series in Computing, pages 386–404. EasyChair, 2023. doi:10.29007/QRMP.

33 Bernardo Subercaseaux and Marijn J. H. Heule. The packing chromatic number of the infinite
square grid is 15. In Sriram Sankaranarayanan and Natasha Sharygina, editors, Tools and
Algorithms for the Construction and Analysis of Systems, pages 389–406, Cham, 2023. Springer
Nature Switzerland. doi:10.1007/978-3-031-30823-9_20.

SAT 2025

https://maxsat-evaluations.github.io/2023/benchmarks.html
https://doi.org/10.3233/978-1-58603-929-5-205
https://doi.org/10.1016/J.ARTINT.2019.103197
https://doi.org/10.1007/978-3-319-40970-2_9
http://ijcai.org/Abstract/15/279
http://ijcai.org/Abstract/15/279
https://doi.org/10.3233/978-1-58603-929-5-131
https://doi.org/10.3233/978-1-58603-929-5-131
https://doi.org/10.1109/ICTAI.2013.13
https://doi.org/10.1007/978-3-030-80223-3_35
https://doi.org/10.1007/11564751_73
https://doi.org/10.29007/QRMP
https://doi.org/10.1007/978-3-031-30823-9_20

3:18 Problem Partitioning via Proof Prefixes

34 Bernardo Subercaseaux, John Mackey, Marijn J. H. Heule, and Ruben Martins. Automated
mathematical discovery and verification: Minimizing pentagons in the plane. In Andrea
Kohlhase and Laura Kovács, editors, Intelligent Computer Mathematics, pages 21–41, Cham,
2024. Springer Nature Switzerland. doi:10.1007/978-3-031-66997-2_2.

35 Yong Kiam Tan, Marijn J. H. Heule, and Magnus O. Myreen. Verified propagation redundancy
and compositional UNSAT checking in CakeML. International Journal on Software Tools for
Technology Transfer, 25(2):167–184, 2023. doi:10.1007/S10009-022-00690-Y.

36 Ed Wynn. A comparison of encodings for cardinality constraints in a SAT solver. ArXiv,
abs/1810.12975, 2018. arXiv:1810.12975.

37 Jiong Yang, Arijit Shaw, Teodora Baluta, Mate Soos, and Kuldeep S. Meel. Explaining
SAT Solving Using Causal Reasoning. In Meena Mahajan and Friedrich Slivovsky, editors,
Theory and Applications of Satisfiability Testing (SAT), volume 271 of Leibniz International
Proceedings in Informatics (LIPIcs), pages 28:1–28:19, Dagstuhl, Germany, 2023. Schloss
Dagstuhl – Leibniz-Zentrum für Informatik. doi:10.4230/LIPICS.SAT.2023.28.

https://doi.org/10.1007/978-3-031-66997-2_2
https://doi.org/10.1007/S10009-022-00690-Y
https://arxiv.org/abs/1810.12975
https://doi.org/10.4230/LIPICS.SAT.2023.28

	1 Introduction
	1.1 Contributions

	2 Background
	2.1 Satisfiability
	2.2 Cardinality Constraints
	2.3 CDCL and Clausal Proofs
	2.4 Cube and Conquer

	3 Partitioning Techniques
	3.1 Proof Prefix Based Splitting
	3.2 Totalizer Based Splitting

	4 Explainable Splitting
	5 Experimental Evaluation
	5.1 Stability Under Search Parameters
	5.2 Maximum Satisfiability Problems
	5.3 SAT Competition Formulas

	6 Applications and Results
	7 Conclusion and Future Work

