Bridging Language Models and Symbolic Solvers
via the Model Context Protocol

Stefan Szeider =&
Algorithms and Complexity Group, TU Wien, Austria

—— Abstract

This paper presents the MCP Solver, a system that bridges large language models with symbolic
solvers through the Model Context Protocol (MCP). The system includes a server and a client

component. The server provides an interface to constraint programming (via MiniZinc Python),
propositional satisfiability and maximum satisfiability (both via PySAT), and SAT modulo Theories
(via Python Z3). The client contains an agent that connects to the server via MCP and uses a
language model to autonomously translate problem statements (given in English) into encodings
through an incremental editing process and runs the solver. Our experiments demonstrate that
this neurosymbolic integration effectively combines the natural language understanding of language
models with robust solving capabilities across multiple solving paradigms.

2012 ACM Subject Classification Theory of computation — Constraint and logic programming;
Computing methodologies — Knowledge representation and reasoning; Computing methodologies
— Natural language processing; Theory of computation — Logic and verification; Software and its
engineering — Software notations and tools; Computing methodologies — Artificial intelligence

Keywords and phrases Large Language Models, Agents, Constraint Programming, Satisfiability
Solvers, Maximum Satisfiability, SAT Modulo Theories, Model Context Protocol

Digital Object Identifier 10.4230/LIPIcs.SAT.2025.30
Supplementary Material Software: https://github.com/szeider/mcp-solver

Funding This work was supported by Austrian Science Fund (FWF) grants 10.55776,/P36420 and
10.55776/COE12.

1 Introduction

Large Language Models (LLMs) have demonstrated remarkable capabilities across diverse
natural language tasks yet exhibit fundamental limitations in formal logical reasoning [6, 11,
12, 15, 18, 19, 22, 24]. In this work, we leverage the robust logical deduction capabilities of
symbolic solvers to overcome these limitations. This enables language models to perform
complex reasoning tasks with greater reliability. We present the MCP Solver, which uses the
recently introduced Model Context Protocol (MCP) [2] for bridging language models with
four complementary solving paradigms.

1. MiniZinc (14, 17]: a high-level constraint modeling language that supports global con-
straints, optimization, and diverse problem domains.

2. PySAT [8]: a Python interface to SAT solvers that enables propositional constraint
modeling using CNF (Conjunctive Normal Form). The system supports various SAT
solvers (including Glucose, Cadical, and Lingeling), with helpers for cardinality constraints.

3. MazSAT: the same Python interface as for SAT enables to model and solve optimization
optimization problems via various Maximum Satisfiability (MaxSAT) solvers (including
R2) with helpers for cardinality constraints.

4. Z3 [4, 5]: a SAT Modulo Theories (SMT) solver with Python bindings that supports
rich type systems including booleans, integers, reals, bitvectors, and arrays, along with
quantifiers for more expressive constraints.

© Stefan Szeider;
37 licensed under Creative Commons License CC-BY 4.0

28th International Conference on Theory and Applications of Satisfiability Testing (SAT 2025).
Editors: Jeremias Berg and Jakob Nordstréom; Article No. 30; pp. 30:1-30:12

\\v Leibniz International Proceedings in Informatics
LIPICS Schloss Dagstuhl — Leibniz-Zentrum fiir Informatik, Dagstuhl Publishing, Germany

mailto:stefan@ac.tuwien.ac.at
https://www.ac.tuwien.ac.at/people/szeider/
https://orcid.org/0000-0001-8994-1656
https://doi.org/10.4230/LIPIcs.SAT.2025.30
https://github.com/szeider/mcp-solver
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics
https://www.dagstuhl.de

30:2

Bridging Language Models and Symbolic Solvers

The MCP Solver has several use cases. One use caseis its integration into an Al chatbot
interface (like the Claude Desktop or the Cursor application). During a chat session, the
user can state a problem (e.g., a scheduling, combinatorics, or verification problem) in plain
English, and the language model will connect to the MCP solver via the provided tools and
build an encoding, possibly with interactions from the user, solve the encoding with the
backend solver, and report back and interpret the solution. The user can then modify the
problem statement. Through this approach, the MCP solver offers an enhanced and highly
dynamic user interface for the backend solver where encodings can be developed in a dialog
with the language model based on immediate feedback from the solver. Once an encoding
has been established, the encoding can be extracted and used in other contexts. This setup
also provides educational benefits, as a user can observe how informally stated constraints
are formalized for the backend solver, make adjustments, and receive explanations from the
language model.

Another use case for the MCP Solver is to provide formal solving capabilities to an
autonomous multi-agent system. To achieve this, one can connect the MCP Solver via the
MCP interface to a Reason and Act (ReAct) agent [26], which itself is part of a multi-agent
system. To exemplify this use case, we added a test client to the software package. The test
client implements a basic two-agent system that automatically encodes problem descriptions
provided in plain English. It consists of a ReAct agent that communicates with the server and
a reviewer agent that checks the result. Our experiments show that this setup is sufficient for
the autonomous encoding of problems with small or medium complexity. For more complex
problems, we envisage a multi-agent system with a more refined division of work among
agents, for instance, with an orchestrator-workers workflow [1].

The MCP Solver with MiniZinc mode was first released on GitHub in December 2024;
PySAT and Z3 modes and the build-in client were added in March, the MaxSAT mode was
added in June 2025.

2 Related Work

Several prototype systems for connecting language models with formal solvers have been
proposed in recent years. PRoC3S [3] employs a two-stage architecture for robotics planning,
generating parameterized skill sequences that undergo continuous constraint satisfaction. In
a different direction, a counterexample-guided framework [9] merges an LLM synthesizer with
an SMT verifier to enhance correctness guarantees for program synthesis. Several systems
focus on translating natural language into solver-friendly formats. SATLM [27] converts
natural language into logical formulas suitable for SAT solving, while LOGIC-LM [18§]
implements a comprehensive pipeline from LLM through symbolic solvers to interpreters. For
program synthesis specifically, Lemur [25] offers a task-agnostic language model framework.

The integration between language models and verification tools appears in multiple
configurations. The LLM-Modulo framework [10] pairs language models with external
verifiers, while GenCP [20] incorporates language models into the domain generation of
constraint solvers for text tasks. More specialized approaches include StreamLLM [23],
which concentrates on language model-based generation of streamlining constraints to
accelerate constraint solving and an LLM-based evolutionary search for SAT preprocessing
algorithms [21]. Finally, LLMS4CP [13] shows how pre-trained language models can transform
textual problem descriptions into executable constraint programming specifications through
retrieval-augmented in-context learning.

S. Szeider

While these approaches demonstrate the benefits of combining language models with
formal solvers, they typically implement fixed pipelines or tight integration for specific use
cases. In contrast, our MCP Solver provides a protocol-based architecture that supports
iterative interaction within a range of use cases.

3 Tool Calling and the Model Context Protocol

At the heart of state-of-the-art language model integration is the concept of tool calling, where
a language model, instead of generating only text, can produce structured data (typically
JSON) that corresponds to a request to execute a specific function or tool. This allows
the language model to interact with external systems, access live data, or delegate complex
computations. The ReAct (Reason and Act) framework [26] is an agentic architecture that
leverages tool calling in an iterative loop. In each iteration, the agent (which wraps a
language model) generates a“thought” (its reasoning), an “action” (a tool call), and then
receives an “observation” (the result from the tool). This loop continues until the task is
complete. This incremental approach is particularly significant for generating a complex
encoding because doing that in one attempt is error-prone and unlikely to succeed. Tool
calling, however, enables the agent to build the encoding step-by-step, receiving immediate
validation feedback after each addition.

The Model Context Protocol (MCP) is designed to provide (among other things) a
standardized interface for tool calling. MCP operates between a client, hosting a language
model, and a server, hosting various tools and resources. This interface is particularly
valuable because it eliminates the need for each tool developer to create custom integrations
with every model provider, and vice versa. The MCP creates a single integration point: tools
implement the MCP server interface once, and any MCP-compatible client can immediately
use them. At its core, MCP defines a stateful server-client communication that enables
language models to maintain context across multiple interactions and invoke external tools
through a standardized interface. This statefulness means the server remembers previous
interactions within a session.

Since its introduction in late November 2024 [2, 16], the MCP has quickly become
a foundational open standard for integrating language models with external tools and
data sources. Officially released by Anthropic, it offered SDKs, reference implementations,
and integration into the Claude Desktop app—alongside ready-to-use servers for systems
like Google Drive, GitHub, Slack, Postgres, and Puppeteer. Open-source and enterprise
ecosystems embraced MCP early: platforms such as Zed, Replit, Codeium/Cursor, and
Sourcegraph implemented MCP support, reflecting widespread developer engagement. By
early 2025, MCP had gained institutional recognition: OpenAl integrated support into its
Agents SDK and Responses API, and confirmed upcoming MCP functionality in ChatGPT
desktop and enterprise endpoints. Microsoft added MCP to Copilot Studio and Azure
OpenAl workflows, providing a first-party C# SDK for tool-connected agents. All these data
points underscore MCP’s widespread production adoption across leading Al platforms.

4 System Architecture

The MCP Solver offers a server component and a client component. The server connects to
any MCP compatible client application; our built-in client (described in Section 5) is just one
possibility. The server supports four complementary solver backends: MiniZinc for constraint

30:3

SAT 2025

30:4

Bridging Language Models and Symbolic Solvers

programming, PySAT for propositional satisfiability, PySAT-MaxSAT for optimization, and
Python Z3 for satisfiability modulo theories. Figure 1 gives a high-level architectural diagram
of the system.

review prompts

Minizine o [
PySAT MCP MCP review agent
server client
MaxSAT I/0 170 ReAct agent
73 N

instruction prompts

Python
sandbox

Figure 1 Overview of the MCP Solver architecture showing the main components and their
relationships. The system supports four complementary solver backends accessible through a unified
MCP interface.

Figure 2 shows the sequence diagram of the MCP Solver when used with an Al chat
application as the client, illustrating the dynamic interaction flow between components.

User Client (LLM) MCP Solver

chat loop

tool call

tool result

I
=== =--
A

User Client (LLM) MCP Solver

Figure 2 Sequence diagram of MCP Solver’s interaction within an Al chat application.

For a unified terminology across all solver backends, we refer to PySAT code, Z3 Python
code, or a MiniZinc model as “model”, and to a small code entity, like a variable declaration,
a MiniZinc constraint, or a Python function definition, as ” item .

4.1 Tools

The MCP Solver provides the following tools, whose item-based operations are demonstrated
in Figure 3:

clear_model: reset the solver model;

add_item: add a new item at a specific index;

replace_item: replace an item at a specific index;

delete_item: delete an item at a specific index;

get_model: view the current model with numbered items;

solve_model: solve the model with a specified timeout and receive the solution.

S. Szeider

The first version of the MCP solver offered several more tools, but it turned out that
fewer tools perform better, as they put a smaller cognitive load on the language model.

In principle, one could run all four solving backends in parallel, with the client selecting
on demand the appropriate backend for each problem. However, this burdens the language

model with considerable complexity, as it needs to be instructed for all four solving backends.

This increases the context size and token use and makes the entire operation potentially
confusing for the language model. The current setup assumes that for each session, only one
of the four solver backends is used. A command line flag chooses whether the MCP Solver is
run in MiniZinc, PySAT, MaxSAT, or Z3 mode.

4.2 Prompt Structure and Design

For each backend (MiniZinc, PySAT, MaxSAT, Z3), a detailed instruction prompt is provided
to the main ReAct agent via MCP. This prompt acts as its system guide, explaining the
available tools and the incremental model-building paradigm. The prompt provides syntax
examples and best practices tailored to the specific backend (e.g., MiniZinc syntax vs. Python
with PySAT). This focused instruction ensures the agent generates valid code for the chosen
solver.

The instruction prompts vary considerably in size across the four modes: MiniZinc
requires less than 1000 words, while the other modes use between 3000 and 4000 words. The
MiniZinc prompt’s brevity stems from the language’s declarative nature and standardized
features. For instance, solution export is handled automatically by the MiniZinc runtime,
whereas the Python-based backends require explicit instructions for formatting and exporting
solutions.

The prompts in their current form have emerged via a meta-prompting process. We
started with a basic, manually written prompt. Then we carried out an iterative refinement
process: observing the performance of the agent, which mistakes or errors are made, followed
by adjusting and extending the prompt accordingly.

4.3 Workflow

Next, we describe the full workflow from a problem statement in English to a solution

computed by a solver.

1. Problem Statement. The process starts with a problem statement in natural language,
which can be as brief as “Find a solution to the 10-Queens Problem,” and can be entered
as a prompt within an AI chatbot or provided as a text file for a command-line client
application.

2. Encoding. The ReAct agent, guided by its backend-specific instructions prompt, receives
the query. It begins to build an encoding by calling add_item and other tools.

3. Incremental Validation. After each add_item call, the MCP Solver’s backend validates
the new code fragment. It uses MiniZinc methods to evaluate the code (or Python’s AST
module to parse the code for Python-based backends). If the agent makes a mistake,
the server returns a precise error, which the agent observes and corrects in the next
step, often by using replace_item; if the item is correct, the server returns the encoding
generated so far, with items labeled with indices to ensure consistent indexing between
client and server. See Figure 3 for an example of this item-based editing approach.

4. Solving. Once the problem is fully encoded, the agent calls solve_model with a certain
timeout. The server executes the backend solver in a secure, isolated process.

30:5

SAT 2025

30:6

Bridging Language Models and Symbolic Solvers

LLM MCP Solver

add_item(@,”int: n=5;")

empty

>

add_item(1,”vr 1xy,")

< 0|int:

> validation

n=5;

error: unexpected integer

add_item(1,”var 1..n: x;”)

< Q|int:

:+ validation

n=5;

&
<

add_item(1,”constraint x>0;")

0|int:
1|var 1..n: Xx;

:+ validation

n=5;

A

replace_item(@,”int: n=7;")

0|int:
1|var 1.
2|constraint x>0;

T oX;

n

:+ validation
=5

Q|int:
< 1l|var 1l..n: Xx;
2|constraint x>0;

:+ validation

n=7;

5. Review. Once the solver has terminated or the timeout has been reached, the instructions
tell the agent to critically review the result: in case of “satisfable,” whether the solution
provided by the solver satisfies all constraints of the problem statement, or, in the case of
“unsatisfiable,” whether all constraints in the encoding are justified by constraints in the
problem statement. In a multi-agent setup, modeling and reviewing are split between

two different agents (

6. Output. The result is then delivered to the user. In an interactive setup within an Al
chatbot, the user can now adjust the problem, add or remove constraints, so that the
workflow is repeated from Step 1. This way, the user and the language model can engage

see Section 5).

LLM MCP Solver

Figure 3 Example for MCP Solver’s item-based model editing with validation. Each modification
is validated before being applied, maintaining model consistency. Numbers indicate item indices.

in a dynamic dialogue with real-time feedback from the solver.

4.4 Incremental Validation

Each backend performs multi-stage validation before solving, catching errors early, and
providing precise diagnostics. In MiniZinc mode, the system reconstructs the complete model
after each edit—automatically injecting necessary global definitions—and submits it to the
MiniZinc analyzer. This single operation combines parsing, type checking, and model-level
consistency checking. The system intercepts syntax, typing, or semantic errors and reports

them with exact line and column details.

S. Szeider

The Python-based SAT and MaxSAT modes execute user scripts in sandboxed subpro-
cesses, isolating validation from the main application. The isolated environment parses
code to detect syntax errors, then applies a restrictive import policy to block unauthorized
modules. An Abstract Syntax Tree (AST) analysis pass identifies common logical errors,
such as reassigning collections to scalars. Before executing the solving logic, the system
verifies that scripts contain the required solver invocation and solution export calls, providing
immediate warnings for missing calls.

73 mode validation balances safety with responsiveness. A pre-execution pass blocks
disallowed operations—including arbitrary file I/O and dynamic code execution—while
catching syntax errors through parsing. Unlike SAT backends, Z3 does not enforce solver-
invocation patterns at parse time. A runtime wrapper monitors for missing model export or
satisfiability check calls, implementing default extraction mechanisms when necessary.

4.5 Execution and Solution Processing

After validation, each backend executes the solving phase with isolation and timeout controls
while maintaining a uniform synchronous interface. MiniZinc mode passes solve requests to
the MiniZinc library within an asynchronous worker thread bounded by a hard timeout. The
library manages solver processes with inherited isolation and cleanly cancels jobs on timeout
to prevent resource leakage.

Python-based SAT and MaxSAT backends execute user scripts in dedicated subprocesses.
The system captures standard output and errors for reporting, with CPU-time alarms
enforcing configured time limits. After completion, subprocesses package satisfiability status,
variable assignments, and objective values, returning them to the main process through
secure channels.

73 mode runs in the main process within a restricted namespace, exposing only approved
operations and the Z3 API. Run-time alarms prevent overruns, and the runtime wrapper that
handles missing export calls captures valid models even when users omit explicit solution-
export steps. All backends normalize errors from validation, sandbox enforcement, or solving
into structured codes and messages, providing consistent feedback to MCP clients.

Currently, the solving is performed synchronously; when the solve_model tool is called,
the entire system waits for the solver to return a solution or for the given timeout to be
reached. The timeout is provided as a parameter for the tool call. For our tests, a maximum
timeout of 30 seconds was sufficient and worked well in conjunction with the internal timeouts
of the AI chatbot application. For problems with longer solving times, we consider adding
an asynchronous solving tool that starts the solving in the background and another tool that
queries the solving status.

4.6 Modularity

The MCP Solver is architected for modularity, enabling extension with new solver backends.
The core design is built on abstract solver interfaces and a shared validation/security
scaffolding. The system defines a solver manager interface, which mandates a set of methods
that any backend solver must implement (the tools). A base class provides a default
implementation that backends can inherit. To add a new solver, one needs to create a new
module and implement a class that adheres to this interface. For Python-based solvers, the
system provides the security and validation infrastructure described above, including the
execution environment and AST-based analysis. This modularity extends to the client, which
we will discuss next. Adapting the client to a new solver backend requires only providing a
new review prompt.

30:7

SAT 2025

30:8

Bridging Language Models and Symbolic Solvers

5 MCP Client

Our package includes an MCP client that provides a command-line interface to the MCP
Solver. The client implements a ReAct agent, which utilizes a language model; our model-
agnostic interface allows the use of frontier models from all major providers. Although the
client does not include a dynamic dialog, as is the case with an AI chatbot, the looping
between the client and the server is unlimited. The instruction prompt for the ReAct client
includes the request to verify the solution. This is an effective way of self-control, and we
have observed that often, the agent identifies a wrong solution and modifies the encoding.

To enhance reliability, the client includes a dedicated review agent that independently
reviews each solution, following the “LLM-as-a-judge” technique [7]. The reviewer’s task
is to independently scrutinize the solution: If the result is “satisfiable,” does the provided
solution correctly satisfy the model? If the result is “unsatisfiable,” does the generated
model accurately encode all constraints from the original problem statement, and no further
spurious constraints?

We do not provide the review agent with the entire message history on purpose, only the
problem description, the model, and the solution. This way, the review agent can focus only
on this task and is not distracted. By default, the review and the ReAct agent use the same
language model, but, in principle, they could use different ones.

Figure 4 shows a sequence diagram of the entire workflow. If the reviewer found an error,
one could loop back to the ReAct agent to try again, equipped with feedback.

| Problem| | ReAct (LLM) | | MCP Solver | | Reviewer | | Result |
I)
ReAct loop
Lol el -
: tool call 1
1]
! | tool result | ,
L] 1
iy Bl |' - problem
—| model [—»
solution
| I
| Problem| | ReAct (LLM) | | MCP Solver | | Reviewer | | Result |

Figure 4 Sequence diagram of client-server interaction of the MCP solver.

The client has proven useful for developing and debugging the solver integration as it
has all components (server, client, problems, prompts) at the same location, and hence can
adjust the seamless communication between these components. However, the client lacks the
interactive aspect provided by an AI chatbot and works as a one-shot encoder.

6 Experiments

We tested the MCP Solver on benchmark problems stated in natural language. All results
refer to version 3.3.0 of the MCP Solver. It uses the Python packages mcp (1.5.0), minizinc
(0.10.0), z3-solver (4.14.1.0), and python-sat (1.8.dev16). For the client, we use langgraph
(0.3.21). As the language model, we use Claude Sonnet 4 version 20250514. Our client can

S. Szeider

easily be adapted to other language models because of our model-agnostic architecture. In
non-rigorous tests with other language models (GPT-4.1, O3, O4-mini, and Gemini-2.5-pro-
preview) only GPT-4.1 performed comparably with Claude Sonnet 4.

We considered twenty problem descriptions, five for each of the four solver backends. The
problems can be found as markdown files on the MCP Solver’s GitHub repository. These
problems were chosen to represent a wide range of problem types from various domains,
including scheduling, optimization, verification, combinatorics, and logical puzzles. The
selection demonstrates the diversity of possible applications and the individual strengths of
the solver backends. For each solver backend, one of the five selected problems is unsatisfiable.

We ran all twenty problem descriptions five times. Table 1 shows the results, including
statistics on the number of tool calls and token usage.

Table 1 The table shows average token usage in thousands (k) for ReAct (ReAct Agent Total) and
Rev (Reviewer Total), followed by the average number of tool calls: C (clear_model), A (add_item),
R (replace_item), D (delete_item), G (get_model), and S (solve_model). (5 runs per problem).

Mode Problem C A R D G S ReAct Rev
MiniZinc tsp 24 162 0.0 0.2 32 24 1435k 2.8k
carpet_cutting 1.0 98 00 00 1.0 1.0 58.6k 3.6k
zebra 1.0 126 0.0 00 1.0 1.0 86.7k 3.0k
university_scheduling 1.0 142 00 00 1.0 1.0 106.5k 3.2k
university_scheduling_unsat 2.2 24.2 14 00 4.6 4.2 426.7k 2.9k
PySAT furniture_arrangement 1.0 78 0.0 00 10 1.0 1274k 4.1k
sudoku_16x16 1.0 86 00 00 12 1.2 186.3k 8.8k
equitable_coloring_hajos 1.0 64 02 00 1.2 1.2 120.0k 4.6k
no_three_in_line_5x5 26 114 56 02 74 74 8255k 5.2k
petersen_12_coloring_unsat 1.6 82 04 02 24 22 2694k 4.0k
MaxSAT task_assignment 1.0 50 0.0 00 1.0 1.0 85.8k 3.4k
equipment_purchase 1.0 56 0.0 0.0 12 1.0 98.5k 3.5k
package_selection 1.0 56 0.6 0.0 14 1.2 114.5k 3.5k
network_monitoring 1.2 6.0 06 00 20 1.8 152.6k 4.1k
workshop_scheduling_unsat 1.8 90 3.0 00 5.2 48 3969k 3.0k
7Z3 cryptarithmetic 1.0 6.8 00 00 1.0 1.0 100.9k 2.6k
sos_induction 1.0 80 02 00 14 14 155.6k 4.7k
array_property_verifier 1.0 78 00 0.0 10 1.0 1102k 2.0k
processor_verification 1.8 11.8 04 0.0 20 20 284.4k 3.8k
bounded_sum_unsat 1.2 106 00 0.0 22 22 1735k 3.2k

All hundred runs produced solutions and were confirmed by the reviewer. By manual
inspection, we could verify that indeed all results were correct.

Tool usage patterns show the difficulty a problem poses to the agent. Most problems
required single solve attempts, with solve_model calls averaging 1.0-1.2 per problem. The
add_item tool usage ranges from 5.0 calls for simple MaxSAT problems to 24.0 calls for
the MiniZinc zebra puzzle. Increased use of delete_item, replace_item, and clear_model
indicates that the agent requires several attempts (one call to clear_model is obligatory at
start). The difficulty of a problem can also be seen from the token usage, which varies by
more than a factor of 10 between the easiest and the hardest problem.

30:9

SAT 2025

30:10

Bridging Language Models and Symbolic Solvers

7 Conclusion

The MCP Solver provides language models access to formal solving and reasoning capabilities
via the standardized MCP interface. By supporting multiple solving paradigms, the MCP
Solver addresses a broad range of problems while maintaining a consistent interface. The
flexible architecture enables various use cases, from dynamic problem refinement through
natural language interaction when integrated into an AI chatbot to the integration into
a multi-agent system for autonomous modeling and solving. The MCP Solver, although
stable and application-ready, is still under development. Presently planned additions are
Minimal Unsatisfiable Subset support for PySAT, Answer Set Programming, and Model
Counting modules, as well as an asynchronous solving interface for longer timeouts. The
support of encodings that process instance data (such as graph or tabular data or MiniZinc
data files) would also be an interesting addition that enhances the system’s versatility. The
MCP solver can be integrated into a multi-agent system that uses an orchestrator-workers
workflow to autonomously develop more complex encodings, where the encoding task is split
into independent components. Such a system could include several solver backends with a
routing agent deciding which one to use. Such an approach can optimize solving time by
autonomously generating and testing alternative encodings for components.

—— References

1 Anthropic. Building effective agents, 2024. URL: https://www.anthropic.com/engineering/
building-effective-agents.

2 Anthropic. Model context protocol: A standard for AI system integration, October 2024.
URL: https://modelcontextprotocol.io.

3 Aidan Curtis, Nishanth Kumar, Jing Cao, Tomés Lozano-Pérez, and Leslie Pack Kaelbling.
Trust the PRoC3S: Solving long-horizon robotics problems with 1lms and constraint satisfaction.
In Pulkit Agrawal, Oliver Kroemer, and Wolfram Burgard, editors, Conference on Robot
Learning, 6-9 November 2024, Munich, Germany, volume 270 of Proceedings of Machine
Learning Research, pages 1362-1383. PMLR, 2024. URL: https://proceedings.mlr.press/
v270/curtis25a.html.

4 Leonardo de Moura and Nikolaj Bjgrner. Z3 API in Python. https://ericpony.github.io/
z3py-tutorial/guide-examples.htm. Accessed: 2025-03-20.

5 Leonardo Mendonga de Moura and Nikolaj S. Bjgrner. Z3: an efficient SMT solver. In C. R.
Ramakrishnan and Jakob Rehof, editors, Tools and Algorithms for the Construction and
Analysis of Systems, 14th International Conference, TACAS 2008, Held as Part of the Joint
European Conferences on Theory and Practice of Software, ETAPS 2008, Budapest, Hungary,
March 29-April 6, 2008. Proceedings, volume 4963 of Lecture Notes in Computer Science,
pages 337-340. Springer, 2008. doi:10.1007/978-3-540-78800-3_24.

6 Luyu Gao, Aman Madaan, Shuyan Zhou, Uri Alon, Pengfei Liu, Yiming Yang, Jamie Callan,
and Graham Neubig. PAL: program-aided language models. In Andreas Krause, Emma
Brunskill, Kyunghyun Cho, Barbara Engelhardt, Sivan Sabato, and Jonathan Scarlett, editors,
International Conference on Machine Learning, ICML 2023, 23-29 July 2023, Honolulu,
Hawaii, USA, volume 202 of Proceedings of Machine Learning Research, pages 10764-10799.
PMLR, 2023. URL: https://proceedings.mlr.press/v202/gao23f.html.

7 Jiawei Gu, Xuhui Jiang, Zhichao Shi, Hexiang Tan, Xuehao Zhai, Chengjin Xu, Wei Li,
Yinghan Shen, Shengjie Ma, Honghao Liu, Yuanzhuo Wang, and Jian Guo. A survey on
LLM-as-a-Judge. CoRR, abs/2411.15594, 2024. doi:10.48550/arXiv.2411.15594.

8 Alexey Ignatiev, Zi Li Tan, and Christos Karamanos. Towards universally accessible SAT
technology. In Supratik Chakraborty and Jie-Hong Roland Jiang, editors, 27th International
Conference on Theory and Applications of Satisfiability Testing, SAT 2024, August 21-24, 2024,
Pune, India, volume 305 of LIPIcs, pages 16:1-16:11. Schloss Dagstuhl — Leibniz-Zentrum fiir
Informatik, 2024. doi:10.4230/LIPICS.SAT.2024.16.

https://www.anthropic.com/engineering/building-effective-agents
https://www.anthropic.com/engineering/building-effective-agents
https://modelcontextprotocol.io
https://proceedings.mlr.press/v270/curtis25a.html
https://proceedings.mlr.press/v270/curtis25a.html
https://ericpony.github.io/z3py-tutorial/guide-examples.htm
https://ericpony.github.io/z3py-tutorial/guide-examples.htm
https://doi.org/10.1007/978-3-540-78800-3_24
https://proceedings.mlr.press/v202/gao23f.html
https://doi.org/10.48550/arXiv.2411.15594
https://doi.org/10.4230/LIPICS.SAT.2024.16

S. Szeider

10

11

12

13

14

15

16

17

18

19

20

Sumit Kumar Jha, Susmit Jha, Patrick Lincoln, Nathaniel D. Bastian, Alvaro Velasquez,
Rickard Ewetz, and Sandeep Neema. Counterexample guided inductive synthesis using large
language models and satisfiability solving. In IEEE Military Communications Conference,
MILCOM 2023, Boston, MA, USA, October 30 - Nov. 3, 2023, pages 944-949. IEEE, 2023.
doi:10.1109/MILCOM58377.2023.10356332.

Subbarao Kambhampati, Karthik Valmeekam, Lin Guan, Mudit Verma, Kaya Stechly, Siddhant
Bhambri, Lucas Saldyt, and Anil Murthy. Position: Llms can’t plan, but can help planning in
LLM-modulo frameworks. In Forty-first International Conference on Machine Learning, ICML
2024, Vienna, Austria, July 21-27, 2024. OpenReview.net, 2024. URL: https://openreview.
net/forum?id=Th8JPEmH4z.

Bill Yuchen Lin, Ronan Le Bras, Kyle Richardson, Ashish Sabharwal, Radha Poovendran,
Peter Clark, and Yejin Choi. Zebralogic: On the scaling limits of llms for logical reasoning.
CoRR, abs/2502.01100, 2025. doi:10.48550/arXiv.2502.01100.

Zhan Ling, Yunhao Fang, Xuanlin Li, Zhiao Huang, Mingu Lee, Roland Memisevic,
and Hao Su. Deductive verification of chain-of-thought reasoning. In Alice Oh, Tris-
tan Naumann, Amir Globerson, Kate Saenko, Moritz Hardt, and Sergey Levine, editors,
Advances in Neural Information Processing Systems 36: Annual Conference on Neural
Information Processing Systems 2028, NeurIPS 2023, New Orleans, LA, USA, Decem-
ber 10 - 16, 2023, 2023. URL: http://papers.nips.cc/paper_files/paper/2023/hash/
72393bd47a35f5b3bee4c609e7bba733-Abstract-Conference.html.

Kostis Michailidis, Dimos Tsouros, and Tias Guns. Constraint modelling with llms using
in-context learning. In Paul Shaw, editor, 30th International Conference on Principles and
Practice of Constraint Programming, CP 2024, September 2-6, 2024, Girona, Spain, volume
307 of LIPIcs, pages 20:1-20:27. Schloss Dagstuhl — Leibniz-Zentrum fiir Informatik, 2024.
d0i:10.4230/LIPICS.CP.2024.20.

MiniZinc Development Team. MiniZinc Python: Native Python Interface for the MiniZinc
Toolchain, 2025. Accessed: 2025-03-20. URL: https://python.minizinc.dev/.

Seyed-Iman Mirzadeh, Keivan Alizadeh, Hooman Shahrokhi, Oncel Tuzel, Samy Bengio, and
Mehrdad Farajtabar. GSM-Symbolic: understanding the limitations of mathematical reasoning
in large language models. CoRR, abs/2410.05229, 2024. doi:10.48550/arXiv.2410.05229.
Model Context Protocol Development Team. Model context protocol: Seamless integration
between llm applications and external data sources, 2025. Accessed: 2025-03-20. URL:
https://github.com/modelcontextprotocol.

Nicholas Nethercote, Peter J. Stuckey, Ralph Becket, Sebastian Brand, Gregory J. Duck, and
Guido Tack. Minizinc: Towards a standard CP modelling language. In Christian Bessiere,
editor, Principles and Practice of Constraint Programming - CP 2007, 13th International
Conference, CP 2007, Providence, RI, USA, September 23-27, 2007, Proceedings, volume
4741 of Lecture Notes in Computer Science, pages 529-543. Springer, 2007. doi:10.1007/
978-3-540-74970-7_38.

Liangming Pan, Alon Albalak, Xinyi Wang, and William Yang Wang. Logic-LM: empow-
ering large language models with symbolic solvers for faithful logical reasoning. In Houda
Bouamor, Juan Pino, and Kalika Bali, editors, Findings of the Association for Computational
Linguistics: EMNLP 2023, Singapore, December 6-10, 2023, pages 3806—3824. Association for
Computational Linguistics, 2023. doi:10.18653/V1/2023.FINDINGS-EMNLP.248.

Chengwen Qi, Ren Ma, Bowen Li, He Du, Binyuan Hui, Jinwang Wu, Yuanjun Laili, and
Conghui He. Large language models meet symbolic provers for logical reasoning evaluation.
CoRR, abs/2502.06563, 2025. doi:10.48550/arXiv.2502.06563.

Florian Régin, Elisabetta De Maria, and Alexandre Bonlarron. Combining constraint pro-
gramming reasoning with large language model predictions. In Paul Shaw, editor, 30th
International Conference on Principles and Practice of Constraint Programming, CP 2024,
September 2-6, 2024, Girona, Spain, volume 307 of LIPIcs, pages 25:1-25:18. Schloss Dagstuhl
— Leibniz-Zentrum fiir Informatik, 2024. doi:10.4230/LIPICS.CP.2024.25.

30:11

SAT 2025

https://doi.org/10.1109/MILCOM58377.2023.10356332
https://openreview.net/forum?id=Th8JPEmH4z
https://openreview.net/forum?id=Th8JPEmH4z
https://doi.org/10.48550/arXiv.2502.01100
http://papers.nips.cc/paper_files/paper/2023/hash/72393bd47a35f5b3bee4c609e7bba733-Abstract-Conference.html
http://papers.nips.cc/paper_files/paper/2023/hash/72393bd47a35f5b3bee4c609e7bba733-Abstract-Conference.html
https://doi.org/10.4230/LIPICS.CP.2024.20
https://python.minizinc.dev/
https://doi.org/10.48550/arXiv.2410.05229
https://github.com/modelcontextprotocol
https://doi.org/10.1007/978-3-540-74970-7_38
https://doi.org/10.1007/978-3-540-74970-7_38
https://doi.org/10.18653/V1/2023.FINDINGS-EMNLP.248
https://doi.org/10.48550/arXiv.2502.06563
https://doi.org/10.4230/LIPICS.CP.2024.25

30:12

Bridging Language Models and Symbolic Solvers

21

22

23

24

25

26

27

André Schidler and Stefan Szeider. Extracting problem structure with LLMs for optimized
SAT local search. In The 18th International Symposium on Combinatorial Search (SoCS 2025),
2025. To Appear.

Parshin Shojaee, Iman Mirzadeh, Keivan Alizadeh, Maxwell Horton, Samy Bengio, and
Mehrdad Farajtabar. The illusion of thinking: Understanding the strengths and limitations of
reasoning models via the lens of problem complexity, 2025. arXiv:2506.06941.

Florentina Voboril, Vaidyanathan Peruvemba Ramaswamy, and Stefan Szeider. Stream-
LLM: Enhancing constraint programming with large language model-generated stream-
liners. In 2025 IEEE/ACM 1st International Workshop on Neuro-Symbolic Software
Engineering (NSE), pages 17-22, Los Alamitos, CA, USA, 5 2025. IEEE Computer
Soc. URL: https://doi.ieeecomputersociety.org/10.1109/NSE66660.2025.00010, doi:
10.1109/NSE66660.2025.00010.

Yuxuan Wan, Wenxuan Wang, Yiliu Yang, Youliang Yuan, Jen-tse Huang, Pinjia He, Wenxiang
Jiao, and Michael R. Lyu. Logicasker: Evaluating and improving the logical reasoning ability
of large language models. In Yaser Al-Onaizan, Mohit Bansal, and Yun-Nung Chen, editors,
Proceedings of the 2024 Conference on Empirical Methods in Natural Language Processing,
EMNLP 2024, Miami, FL, USA, November 12-16, 202/, pages 2124—-2155. Association for
Computational Linguistics, 2024. doi:10.18653/V1/2024 .EMNLP-MAIN. 128.

Haoze Wu, Clark W. Barrett, and Nina Narodytska. Lemur: Integrating large language models
in automated program verification. In The Twelfth International Conference on Learning
Representations, ICLR 2024, Vienna, Austria, May 7-11, 2024. OpenReview.net, 2024. URL:
https://openreview.net/forum?id=Q3YaCghZNt.

Shunyu Yao, Jeffrey Zhao, Dian Yu, Nan Du, Izhak Shafran, Karthik R. Narasimhan, and
Yuan Cao. ReAct: synergizing reasoning and acting in language models. In The Eleventh
International Conference on Learning Representations, ICLR 2023, Kigali, Rwanda, May 1-5,
2023. OpenReview.net, 2023. URL: https://openreview.net/forum?id=wE_vluYUL-X.

Xi Ye, Qiaochu Chen, Isil Dillig, and Greg Durrett. Satlm: Satisfiability-aided lan-
guage models using declarative prompting. In Alice Oh, Tristan Naumann, Amir
Globerson, Kate Saenko, Moritz Hardt, and Sergey Levine, editors, Advances in
Neural Information Processing Systems 36: Annual Conference on Neural Informa-
tion Processing Systems 2023, NeurIPS 2023, New Orleans, LA, USA, December
10 - 16, 2023, 2023. URL: http://papers.nips.cc/paper_files/paper/2023/hash/
8e9c7d4a48bdac81ab58£983a64aaf42b-Abstract-Conference.html.

https://arxiv.org/abs/2506.06941
https://doi.ieeecomputersociety.org/10.1109/NSE66660.2025.00010
https://doi.org/10.1109/NSE66660.2025.00010
https://doi.org/10.1109/NSE66660.2025.00010
https://doi.org/10.18653/V1/2024.EMNLP-MAIN.128
https://openreview.net/forum?id=Q3YaCghZNt
https://openreview.net/forum?id=WE_vluYUL-X
http://papers.nips.cc/paper_files/paper/2023/hash/8e9c7d4a48bdac81a58f983a64aaf42b-Abstract-Conference.html
http://papers.nips.cc/paper_files/paper/2023/hash/8e9c7d4a48bdac81a58f983a64aaf42b-Abstract-Conference.html

	1 Introduction
	2 Related Work
	3 Tool Calling and the Model Context Protocol
	4 System Architecture
	4.1 Tools
	4.2 Prompt Structure and Design
	4.3 Workflow
	4.4 Incremental Validation
	4.5 Execution and Solution Processing
	4.6 Modularity

	5 MCP Client
	6 Experiments
	7 Conclusion

