
Amortized Locally Decodable Codes for Insertions
and Deletions
Jeremiah Blocki #

Department of Computer Science, Purdue University, West Lafayette, IN, USA

Justin Zhang #

Department of Computer Science, Purdue University, West Lafayette, IN, USA

Abstract
Locally Decodable Codes (LDCs) are error correcting codes which permit the recovery of any single
message symbol with a low number of queries to the codeword (the locality). Traditional LDC
tradeoffs between the rate, locality, and error tolerance are undesirable even in relaxed settings where
the encoder/decoder share randomness or where the channel is resource-bounded. Recent work by
Blocki and Zhang initiated the study of Hamming amortized Locally Decodable Codes (aLDCs),
which allow the local decoder to amortize their number of queries over the recovery of a small
subset of message symbols. Surprisingly, Blocki and Zhang construct asymptotically ideal (constant
rate, constant amortized locality, and constant error tolerance) Hamming aLDCs in private-key and
resource-bounded settings. While this result overcame previous barriers and impossibility results for
Hamming LDCs, it is not clear whether the techniques extend to Insdel LDCs. Constructing Insdel
LDCs which are resilient to insertion and/or deletion errors is known to be even more challenging.
For example, Gupta (STOC’24) proved that no Insdel LDC with constant rate and error tolerance
exists even in relaxed settings.

Our first contribution is to provide a Hamming-to-Insdel compiler which transforms any amortized
Hamming LDC that satisfies a particular property (consecutive interval querying) to amortized
Insdel LDC while asymptotically preserving the rate, error tolerance and amortized locality. Prior
Hamming-to-Insdel compilers of Ostrovsky and Paskin-Cherniavsky (ICITS’15) and Block et al.
(FSTTCS’20) worked for arbitrary Hamming LDCs, but incurred an undesirable polylogarithmic
blow-up in the locality. Our second contribution is a construction of an ideal amortized Hamming
LDC which satisfies our special property (consecutive interval querying) in the relaxed settings
where the sender/receiver share randomness or where the channel is resource bounded. Taken
together, we obtain ideal Insdel aLDCs in private-key and resource-bounded settings with constant
amortized locality, constant rate and constant error tolerance. This result is surprising in light of
Gupta’s (STOC’24) impossibility result which demonstrates a strong separation between locality
and amortized locality for Insdel LDCs.

2012 ACM Subject Classification Mathematics of computing → Coding theory

Keywords and phrases Amortized Locally Decodable Codes, Insertion and Deletion Errors

Digital Object Identifier 10.4230/LIPIcs.ITC.2025.1

Related Version Full Version: https://arxiv.org/abs/2507.03141

Funding Jeremiah Blocki: Supported in part by NSF CAREER Award CNS-2047272.

1 Introduction

Locally Decodable Codes (LDCs) are a variant of error correcting codes which provide
single-symbol recovery with highly efficient query complexity over a (possibly corrupted)
codeword. Specifically, a LDC over alphabet Σ is defined as a tuple of algorithms the encoding
algorithm Enc : Σk → Σn and the local decoder Decb̃y : [k]→ Σ. Here, k denotes the message
length, n denotes the codeword length and ỹ ∈ Σn is a (possibly corrupted) codeword — for
any message x ∈ Σk, its corresponding codeword is y = Enc(x) and ỹ denotes a (possibly

© Jeremiah Blocki and Justin Zhang;
licensed under Creative Commons License CC-BY 4.0

6th Conference on Information-Theoretic Cryptography (ITC 2025).
Editor: Niv Gilboa; Article No. 1; pp. 1:1–1:23

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:jblocki@purdue.edu
https://orcid.org/0000-0002-5542-4674
mailto:zhan3554@purdue.edu
https://orcid.org/0009-0006-4976-0803
https://doi.org/10.4230/LIPIcs.ITC.2025.1
https://arxiv.org/abs/2507.03141
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics
https://www.dagstuhl.de

1:2 Amortized Locally Decodable Codes for Insertions and Deletions

corrupted) copy of y. The local decoder Decỹ(i) is a randomized oracle algorithm that is
given an index i ∈ [k] := {1, 2, . . . , k} as input and has oracle access to a (possibly corrupted)
codeword ỹ. Decỹ(i) attempts to output the i’th symbol of the message x after making at
most ℓ queries to the symbols of ỹ. We require that for any index i ∈ [k] and any ỹ that is not
too far from the uncorrupted codeword y (i.e Dist(y, ỹ) ≤ δ|y| for a chosen distance metric
Dist) that Decỹ(i) outputs the correct symbol x[i] with probability at least 1− ε. Broadly,
codes which satisfy the above parameters are called (ℓ, δ, ε)-LDCs. The main parameters of
interest are the query locality ℓ, error tolerance δ and rate k/n. Ideally, we would like an LDC
with constant locality, constant error tolerance, and constant rate simultaneously.

Within the classical setting of worst-case Hamming errors, i.e when the distance metric is
chosen to be the Hamming distance metric and error patterns are introduced in a worst-case
fashion, the trade-offs between the locality, error tolerance, and rate has been extensively
studied. Even so, achievable parameters in this setting remain undesirably sub-optimal. Katz
and Trevisan show that any LDC with constant locality ℓ ≥ 2 and constant error tolerance
δ > 0 must have non-constant rate [17], immediately ruling out the existence of an ideal
LDC for worst case Hamming errors. Moreover, the best known constructions with constant
locality and error tolerance have super-polynomial rate [24, 11]. Several relaxations have
been made, such as allowing the local decoder to reject corrupted codewords [13, 2, 9, 18, 10],
the assumption that the encoder and decoder share a cryptographic key [20, 14, 15] that is
unknown to a probabilistic polynomial time channel, or the assumption that the channel is
resource-bounded in other ways [1, 6]. Yet, even under these assumptions, we do not have
an LDC with constant locality, constant error tolerance, and constant rate. The literature on
LDCs and relaxed variants is vast. We provide an expanded discussion of the work related to
LDCs in the full version of the paper [8].

Blocki and Zhang [7] introduced the notion of an amortized locally decodable code where
the total number of queries to the codeword can be amortized by the total number of message
bits recovered (see Definition 2). The local decoder for an amortized LDC takes as input a
range [L, R] (we will assume R−L+1 ≥ κ for a suitable parameter κ) instead of a single index
i and attempts to output the entire substring x[L, R] instead of the single message symbol
xi. The amortized locality is ℓ/(R − L + 1) i.e., the total number of queries ℓ divided by
the number of message symbols recovered. Surprisingly, they showed how to construct ideal
amortized locally decodable codes in relaxed settings where the channel is resource-bounded
or where the sender/receiver share a secret key. In particular, given any (sufficiently large)
interval [L, R] ⊆ [k] the local decoder can recover all of the corresponding message symbols
x[L], . . . , x[R] while making at most O(R−L) queries to the corrupted codeword. They also
observed that the Hadamard code can have amortized locality approaching 1. By contrast,
Katz and Trevisan show that codes with locality ℓ < 2 do not exist unless the message length
is a constant [17].

Given the surprising success in construction ideal amortized LDCs for Hamming channels,
even in relaxed settings, it is natural to wonder whether or not it is possible to obtain similar
results for insertions and deletions (Insdel) channels.

Is it possible to obtain constant amortized locality, constant error tolerant, and constant
rate Insdel LDCs when the channel is oblivious, resource-bounded, or when the sender/receiver
share a cryptographic key?

A construction of an ideal amortized LDC for Insdel channels would be especially surprising
since when compared to known lowerbounds of Hamming LDCs, the current state of affairs is
even worse for Insdel LDCs. Blocki et al. [5] proved the first separation result between Insdel
and Hamming LDCs by proving that linear Insdel LDCs with locality ℓ = 2 do not exist. This

J. Blocki and J. Zhang 1:3

stands in contrast to Hamming LDCs, where constructions do exist, albeit with exponential
rate (e.g. the Hadamard code). They additionally provide a exponential rate lowerbound for
any constant locality Insdel LDC. Their lower bound holds in both traditional and relaxed
(private-key and oblivious channel) settings, making progress towards a conjecture raised by
Block et al. [5] that constant locality Insdel LDCs do not exist. Recently, Gupta resolved
this conjecture by showing that constant query deletion codes do not exist by providing a
randomized, oblivious adversarial deletion strategy [12]. The results of Gupta extend even
to relaxed settings where the sender/receiver share random coins or where the channel is
resource bounded i.e., even in relaxed settings it is impossible to construct constant query
Insdel LDCs. Thus, it would be especially surprising to construct an ideal amortized LDC
for Insdel channels even in relaxed settings with shared randomness or resource bounded
channels.

On the side of constructions, Ostrovsky and Paskin-Cherniavsky provide the first InsDel
LDC via a compilation of a Hamming LDCs into an Insdel LDCs [22] with a polylogarithmic
blowup to the query complexity and only a constant blowup to the error-tolerance and rate.
Their construction was revisited by Block et al. [4] who reproved and extended their results
to construct Locally Correctable Codes (LCCs), a variant of LDCs which considers the local
decodability of any codeword symbol. At a high level, their compiler takes a Hamming LDC
encoding of the message, partitions it into blocks, and applies an Insdel code to each block.
The local decoder then simulate the underlying Hamming decoder’s queries by retrieving
and decoding the corresponding Insdel-encoded block to recover the queried Hamming code
symbol, where each answered Hamming query incurs a polylogarithmic query blowup.

Unfortunately, a black box approach of instantiating their Insdel LDC constructions with
an amortizable Hamming LDC does not preserve the amortized locality. Even if all symbols
recovered by the decoder are used, the amortized locality will still suffer a polylogarithmic
blowup from the Hamming decoder simulation. Thus, it is unclear whether the Insdel LDC
constructions of Ostrovsky and Paskin-Cherniavsky or Block et al. are amortization friendly.

1.1 Our Contributions
We provide the first framework for constructing amortized Insdel LDCs by modifying the
compiler of Block et al. [4] to be amenable to amortization. Our resulting compiler takes in an
amortized Hamming LDC, whose decoder satisfies a properties we define as consecutive interval
querying, and outputs an Insdel amortized LDC with asymptotically equivalent parameters
(amortized locality, rate, and error tolerance). More specifically, given an amortized Hamming
LDC with constant rate, constant error tolerance, and constant amortized locality, whose
decoder queries contiguous blocks of polylogarithmic size instead of individual message
symbols, our compiler will yield an amortized Insdel LDC with constant rate, constant error
tolerance, and constant amortized locality. While prior Insdel LDC compilers suffer from a
polylogarithmic blow-up in query complexity of the underlying Hamming LDC, our amortized
compiler preserves amortized locality as well as rate and error tolerance (up to constant
factors). Thus, given any ideal Hamming amortized LDC which satisfies our consecutive
interval querying property, we obtain an ideal Insdel amortized LDC achieving constant rate,
error tolerance, and amortized locality.

▶ Theorem (Informal, see Corollary 13). If there exists ideal (constant rate, constant error
tolerance, and constant amortized locality) Hamming amortized LDCs whose decoder only
queries consecutive blocks of size Ω(polylog n), then there exists ideal Insdel amortized LDCs
(with asymptotically equivalent parameters).

ITC 2025

1:4 Amortized Locally Decodable Codes for Insertions and Deletions

Furthermore, in the private-key setting, we construct the first consecutive interval querying
Hamming LDC with constant rate, error tolerance, and constant amortized locality. We leave
it as an open question whether one can construct a consecutive inverval querying Hamming
LDC with constant amortized locality in the information theoretic setting. However, using our
updated Hamming-to-Insdel compiler we obtain an ideal amortized Insdel LDC construction
(constant rate, constant error tolerance and constant amortized locality) in the private-key
setting. Specifically, the local decoder DecỸ (a, b) makes at most O(b − a + polylog(n))
queries to the corrupted codeword1 Ỹ and (whp) outputs all of the correct symbols x[a], x[a+
1], . . . , x[b] in the interval [a, b]. As long as b− a ≥ polylog(n) the amortized locality is O(1)
per symbol recovered.

▶ Theorem (Informal, see Theorem 16 and Corollary 19). For any t, n ∈ N such that t | n, there
exists ideal private-key Hamming amortized LDCs with codeword length n whose decoder only
queries consecutive blocks of size t and has constant amortized locality whenever decoding any
consecutive interval of size at least ω(t log n). This implies that there exists ideal private-key
Insdel amortized LDCs.

We show further that our private-key construction implies an ideal amortized Insdel LDC in
resource-bounded settings i.e. when the channel has a bounded amount of some resource
(e.g. space, circuit-depth, cumulative memory, etc.).

▶ Theorem (Informal, see Corollary 24). If there exists ideal private-key Insdel amortized LDCs,
there exists ideal resource-bounded Insdel amortized LDCs (with asymptotically equivalent
parameters).

Our results demonstrate definitively strong separations between locality and amortized
locality for Insdel LDCs. In particular, Gupta [12] rules out the existence of any Insdel LDC
with constant locality and error tolerance, even in relaxed settings and even with exponential
rate.

1.2 Technical Overview
Recalling the BBGKZ Compiler

Block et al. give a construction of a compiler taking any Hamming LDC and compiling it into
an Insdel LDC[4]. We refer to their construction as the BBGKZ compiler. In the compiled
encoding procedure, the message x is first encoded under the Hamming LDC as codeword y,

where y is then partitioned into size τ Hamming blocks y = w1 ◦ . . . wB. Each Hamming
block wj along with its index j is encoded using a constant rate Insdel code with the special
property stating that the relative Hamming weight of every logarithmic-sized interval is at
most 2/5 (The Schulman-Zuckerman-code [23] satisfies this property). Lastly, each block is
pre/postpended with a zero buffer 0ϕτ of length ϕτ , where ϕ ∈ (0, 1), resulting in the Insdel
block w′

j and the Insdel codeword Y = w′
1 ◦ · · · ◦w′

B . Intuitively, the zero buffers 0ϕτ help
to identify the beginning/end of each block after insertions/deletions.

Then, the compiled Insdel local decoding procedure, when given oracle access to the
(possibly corrupted) Insdel codeword Ỹ , attempts to simulate the Hamming decoder with
access to a corrupted codeword ỹ that is close to the Hamming Codeword y in Hamming
Distance. Specifically, when the Hamming decoder queries symbol i of its expected oracle

1 Ỹ is the corrupted codeword output by the PPT-bounded channel who does not have the secret key
under the constraint that the edit distance fraction between Y and Ỹ is at most 2δ.

J. Blocki and J. Zhang 1:5

access to (possibly corrupted) codeword ỹ, the Insdel decoding procedure will identify the
block wj which contains y[i], (attempt to) locate the corresponding padded Insdel block w′

j ,
undo the padding, run the Insdel decoder to recover the pre-compiled block wj , and return
the corresponding symbol ỹ[i]. This query simulation process is facilitated by a subroutine
we refer to as the RecoverBlock procedure which (attempts to) locate a particular Insdel
block w′

j in the presence of corruptions using a noisy binary search procedure.

Challenge 1: RecoverBlock is not Amortizable

Our first challenge in constructing amortizable Insdel LDCs is the observation that
RecoverBlock performs asymptotically strictly more queries than the symbols it recov-
ers. Since the codeword Y may contain insertions and deletions, in order for RecoverBlock
to locate the Hamming decoder’s queries, it performs a noisy binary search procedure and
makes O(τ + τpolylog(n)) queries to recover the block corresponding to each query made by
the Hamming decoder. The Hamming decoder only uses one of these symbols, but even if
the decoder utilized all τ symbols from the recovered symbols, the amortized locality is still
at least O(polylog(n)) per symbol recovered. Thus, we cannot achieve constant amortized
locality by using the BBGKZ compiler as a black box.

Our insight to address this challenge is that RecoverBlock can be modified to recover a
consecutive interval of blocks rather than just a single block. We refer to this modified pro-
cedure as RecoverBlocks, where on input block interval [a, b] := {a, . . . , b}, RecoverBlocks
will recover pre-compiled blocks wa, . . . , wb and make at most O((b− a + 1)τ + τpolylog(n))
queries. Hence, as long as b− a + 1 ≥ polylog(n), the ratio of recovered symbols to queried
symbols will be constant.

Challenge 2: Proving Correctness of RecoverBlocks

We show that the modified procedure RecoverBlocks preserves correctness. That is, a major-
ity of the (corrupted) Insdel blocks w̃′

j satisfy the property running the search RecoverBlocks
with any interval [a, b] that contains j ∈ [a, b] will yield the original Hamming block wj

except with negligible probability. Block et al. [4] proved that the procedure RecoverBlock
will correctly find any local-good block and that most blocks will be local-good as long as the
number of corruptions is bounded. The main technical challenge results from an inherent
mismatch for RecoverBlocks because an interval [a, b] may contain a mixture of blocks that
are (resp. are not) locally-good. We show that RecoverBlocks successfully recovers any
local-good blocks in its interval except with negligible probability.

We prove that correctness in a similar manner to the analysis of Block et al. [4]. We
also utilize the notion of local-good blocks, where if block w′

j is (θ, γ)-local-good, it will have
at most γτ corruption with the additional desirable property that any block interval [a, b]
surrounding the block, i.e. j ∈ [a, b], has at least (1− θ)× |b− a + 1| blocks that also have
at most γτ corruption. Utilizing analysis from [4] we can pick our parameters to ensure
that at least (1− δh) fraction of our blocks are (θ, γ)-local good. What we prove is that if
block w′

j is (θ, γ)-local good and if j ∈ [a, b] then calling RecoverBlocks for the interval
[a, b] will recover the original (uncorrupted) wj with high probability along with any other
(θ, γ)-good block in the interval [a, b]. Thus, for any partition [a1, b1], . . . , [az, bz] of [B] calling
RecoverBlocks with each interval [ai, bi] would recover the corrupt (uncorrupted) wj for at
least (1− δh)B blocks. We will use this observation to reason about the correctness of our
decoding procedure. Intuitively, we can view the compiled Insdel decoder as simulating the
Hamming decoder with a corrupted codeword whose fractional hamming distance is at most
δh from the original codeword.

ITC 2025

1:6 Amortized Locally Decodable Codes for Insertions and Deletions

Challenge 3: Consecutive Hamming Queries Needed For Amortized Decoding

The next challenge is utilizing the RecoverBlocks procedure to obtain amortized locality in
the Insdel local decoding procedure. Similar to the BBGKZ compiler, our Insdel decoder with
oracle access to (possibly corrupted) codeword Ỹ simulates the compiled Hamming decoder’s
oracle access to (possibly corrupted) codeword ỹ. Our hope is that if the underlying Hamming
LDC is amortizable then the compiled Insdel LDC will also be amortizable. In particular, we
hope to group the Hamming decoder’s queries q1, . . . , qℓ together into corresponding (disjoint)
index intervals [a1, b1], . . . , [ap, bp] such that (1)

∑
i |bi + 1− ai| = Θ(ℓ), (2) {q1, . . . , qℓ} ⊆⋃

i[ai, bi], and (3) the average size 1
p

∑
i |bi + 1− ai| of each interval is large enough we can

amortize over the calls to RecoverBlocks e.g., we need to ensure that the average interval
size is at least 1

p

∑
i |bi + 1− ai| = Ω(polylogn). Unfortunately, in general, we cannot place

any such structural guarantees on the queries made by an (amortizable) Hamming LDC.
We address this problem by introducing the notion of a t-consecutive interval querying

Hamming LDCdecoder which is amortization-friendly under our Insdel compiler. Intuitively,
the local decoder for a t-consecutive interval querying Hamming LDC accesses the (possibly
corrupted) codeword ỹ by querying for t-sized intervals instead of individual message symbols
i.e., the decoder may submit the query [i, i + t− 1] and the output will be ỹ[i, i + t− 1]. In
more detail the Hamming decoder takes as input an interval [L, R] of message symbols we
would like to recover, makes queries for t-sized intervals of the (possibly corrupted) codeword
ỹ and then attempts to output x[L, R]. Note that if the Hamming decoder makes ℓ/t interval
queries to ỹ this still corresponds to locality ℓ as the total number of codeword symbols
accessed is t× (ℓ/t) = ℓ.

Correspondingly, when the Hamming decoder is t-consecutive interval querying, our Insdel
decoder will make at most 2⌈ℓ/t⌉ calls to RecoverBlocks on intervals of size t. The resulting
query complexity is roughly ℓ×

(
τ log3 n

t + O(1)
)

, and so, in other words, the query complexity

blow-up is by a factor of O
(

τ log3 n
t

)
. This implies that if there exists a t-consecutive interval

querying Hamming decoder for t = Ω(τ log3 n) with constant amortized locality, our compiled
Insdel construction will have constant amortized locality. Thus, the primary question is
whether or not it is possible to construct t-consecutive interval querying Hamming LDCs
with constant amortized locality. We leave this as an open question for worst-case errors, but
show that it is possible in settings where the channel is computationally/resource restricted.

Challenge 4: A t-consecutive interval querying aLDC in Private-Key Settings

We present a t-consecutive interval querying private-key amortized Hamming LDC (paLDC)
construction with constant rate, constant amortized locality, and constant error tolerance
i.e. ideal parameters. As a starting point we use the one-time private-key Hamming LDC
constructed by Ostrovsky et al. [21]. Blocki and Zhang show that their construction is
amortizable and that their construction may be extended to multi-round secret-key reuse with
cryptographic building blocks [7]. For simplicity, we focus on the single round construction,
which is information-theoretically secure as long as the channel is computationally bounded.

The single round construction first generates the secret key as a randomly drawn per-
mutation π and a random string r. To encode the message x, it is partitioned into blocks
x = e1 ◦ . . . eB and each block ej is encoded as e′

j = Enc(e) by a constant rate, constant
error tolerance Hamming code Enc. Lastly, the bits of the encoded blocks are permuted by π

and the random string r is xor’d i.e. the resulting codeword is y = π(e′
1 ◦ · · · ◦ e′

B)⊕ r. The
local decoder can recover any block ej by finding the indices of its corresponding encoded

J. Blocki and J. Zhang 1:7

x = e1 ◦ · · · ◦ eB

↓Enc ↓Enc ↓Enc

e′
1 ◦ · · · ◦ e′

B

q q q

(ϵ1 ◦ · · · ◦ ϵβ) ◦ · · · ◦ (ϵ(B−1)β+1 ◦ · · · ◦ ϵBβ)

↓π(·)⊕r ↓π(·)⊕r ↓π(·)⊕r

y = (ϵπ(1) ◦ · · · ◦ ϵπ(β) ◦ · · · ◦ ϵπ((B−1)β+1) ◦ · · · ◦ ϵπ(Bβ)) ⊕ r

Figure 1 An overview of our private-key Hamming aLDC decoder, satisfying correct decoding (of
any ej Hamming block) and consecutive interval querying (of any ϵπ(r) sub-block) simultaneously.

block e′
j , reversing the permutation and random masking, and running the Hamming code

decoder Dec to recover ej . Unfortunately, the local decoder is not t-consecutive interval
querying since its queries are not in a contiguous interval. The main issue is that the
application of the permutation π removes any pre-existing block structure in the codeword
y i.e., if the local decoder wants to query for consecutive (pre-permutation) code symbols
(e′

1 ◦ · · · ◦ e′
B)[s + 1, s + ℓ], it would have to query y[π(s + 1)], . . . , y[π(s + ℓ)], which are no

longer consecutive with high probability.
A first attempt to remedy this issue is to permute at the block level instead of the bit level

i.e. we draw permutation π over [B] and set the codeword instead as y = (e′
π(1)◦· · ·◦e

′
π(B))⊕r.

While this admits contiguous access when recovering any block ej it defeats the original
purpose of the permutation. The permutation π (and the one-time pad r) ensure that (whp)
an adversarial channel cannot produce too many corruptions in any individual block. If
we permute at the block level then it is trivial for an attacker to corrupt entire blocks. In
particular, the adversary could focus their entire error budget to corrupt symbols at the start
of the codeword. This simple strategy will always corrupt a constant fraction of blocks e′

j .

Thus, the proposed code will not satisfy correct decoding.
Our primary insight is that we can apply the permutation at an intermediate “sub-block”

granularity to ensure correctness and simultaneously support consecutive interval queries.
In particular, each encoded block e′

j , for j ∈ [B], is further partitioned into β sub-blocks
e′

j = (ϵ(j−1)β+1 ◦ · · · ◦ ϵjβ) and the permutation is applied over sub-blocks ϵr, for r ∈ [Bβ],
rather than the Hamming blocks e′

j themselves i.e. the codeword is

y =
(
ϵπ(1) ◦ · · · ◦ ϵπ(β) ◦ · · · · · · ◦ ϵπ(Bβ)

)
⊕ r.

Intuitively, while a constant fraction of the sub-blocks ϵr can still be corrupted with non-
negligible probability, as long as the parameter β is suitably large (e.g., β = O(polylogn)),
we can ensure that, except with negligible probability, the overall error in each encoded block
e′

j will still be at most a δ-fraction. Thus, except with negligible probability we can recover
ej (the uncorrupted content in block j) by making β consecutive interval queries to obtain
ϵr for each r ∈ [(j − 1)β + 1, jβ]. This is exactly what we needed to achieve amortization
with our Ideal Insdel compiler.

The above construction assumes that the sender and receiver share a secret key and only
allows the sender to transmit one encoded message. However, if the channel is probabilistic
polynomial time (PPT) then the construction can be extended allow for the sender to transmit

ITC 2025

1:8 Amortized Locally Decodable Codes for Insertions and Deletions

multiple messages using standard cryptographic tools e.g., pseudo-random functions[21, 7].
Furthermore, if we assume stronger resource bounds on the channel (space, sequential depth
etc...) then one can use cryptographic puzzles to completely eliminate the requirement for a
secret key using ideas from prior works e.g., [1, 6, 3].

Putting it All Together: Ideal Insdel aLDCs in Relaxed Settings

With the building blocks established prior, the aLDC Hamming-to-Insdel compiler and the
consecutive interval querying, ideal Hamming paLDC, we construct the first ideal Insdel aLDC
within relaxed settings (private-key and resource-bounded). Naturally, we first construct a
private-key, ideal Insdel aLDC by directly using our compiler on the t-consecutive interval
querying, ideal Hamming paLDC. For compiler block size τ , our construction achieves
constant amortized locality by setting t = Ω(τ log3 n) as discussed previously.

The remaining challenge lies in showing that the compiler’s correctness is preserved in
private-key settings. Intuitively, we argue via a reduction to the security of the underlying
Hamming paLDC. Suppose there exists a probabilistic polynomial time adversary A who
introduces an Insdel corruption pattern into compiled codeword Y of their chosen message
x that causes a decoding error with non-negligible probability. Then, we can construct a
probabilistic polynomial time adversary B who introduces a Hamming error pattern into
(pre-compiled) codeword y by (1) using our compiler procedure to transform Hamming
codeword y into the compiled Insdel codeword Y , (2) Giving compiled Insdel codeword Y

to adversary A and receiving corrupted Insdel codeword Ỹ , and finally, (3) constructing the
pre-compiled codeword ỹ by the same simulation process done by the compiled decoder via
the RecoverBlocks procedure. To streamline the reduction argument, we draw inspiration
from Block and Blocki [3] and repackage our compiler into a convenient form for our reduction.
All together, we have an Ideal Insdel paLDC.

Next, we generalize the paLDC construction to construct an aLDC for resource-bounded
settings (raLDC). Similarly, our first step is constructing a t-consecutive interval querying
Hamming raLDC. To do this, we make use of the Hamming private-key-to-resource-bounded
LDC compiler by Ameri et al. [1], which was observed by Blocki and Zhang to be amortizable
with only a constant blow-up to the amortized locality [7]. At a high level, their compiler
makes use of a cryptographic primitive known as a cryptographic puzzle to embed the secret
key within the codeword.

More specifically, cryptographic puzzles consists of two algorithms PuzzGen and PuzzSolve.

On input seed c, PuzzGen outputs a puzzle Z with solution is c i.e. PuzzSolve(Z) = c. The
security requirement states that adversary A in a defined algorithm class R, cannot solve
the puzzle Z and cannot even distinguish between tuples (Z0, c0, c1) and (Z1, c0, c1) for
random ci and Zi = PuzzGen(ci).

Then, the Hamming raLDC compiler takes a paLDC (Genp, Encp, Decp), and on on message
x will (1) generate the secret key sk← Genp(1λ; c) with some random coins c (2) Compute
the paLDC encoding of the message yp ← Encp,sk(x) (3) Compute an encoding y∗ of the
puzzle Z using a code with low locality that recovers the entire message (known as an LDC∗)
and (4) output y = yp ◦ y∗. Intuitively, a resource-bounded adversary will not be able to
solve the puzzle, while the raLDC decoder Dec will have sufficient resources to solve the
puzzle, recover the secret key sk, and run the amortized local decoder Decp,sk.

We make an additional observation that if the compiler is instantiated with a t-consecutive
interval querying paLDC, then the resulting raLDC will also be t-consecutive interval querying.
Thus, when applied to our amortized Hamming-to-Insdel compiler with t = Ω(τ log3 n), we
acheive constant amortized locality. Lastly, the same reduction argument as in the ideal

J. Blocki and J. Zhang 1:9

Insdel paLDC construction may be used, with an additional subtle detail of allowing sufficient
resources for the reduction. That is, for the class of resource-bounded channels/adversaries R
that our Insdel aLDC is secure against, the underlying Hamming aLDC must be secure against
a wider class of adversaries R, where R include adversaries A ∈ R whom can additionally
compute the simulation process in the private-key reduction.

1.3 Preliminaries
Notation

Let x← y represent a variable assignment of x as y and x
$← X denote a uniform random

assignment of x from space X. Let ◦ denote the concatenation function. For l ≤ r,

[l, r] := {l, l + 1, . . . , r} denotes an interval from l to r inclusive of its ends points. Similarly,
[l, r) := {l, l + 1, . . . , r − 1} denotes an interval from l to r exclusive of the right endpoint.
Over an alphabet Σ, bolded notations x denote vectors/words while non-bolded x ∈ Σ
denote single symbols. For a word x, x[i] denotes the symbol of x at index i, while
x[l, r] := (x[l], x[l + 1], . . . , x[r]) denotes the subword of x projected to indices in interval
[l, r]. It will also be useful to define a short-hand for retrieving symbols from “blocks" of a
word x: x⟨i⟩b := x[(i− 1)b + 1, ib] for any block size b and index i.

For any words x, y ∈ Σn, Ham(x, y) denotes the hamming distance between x and y

i.e. |{i ∈ [n] : xi ̸= yi}|. Further, for z ∈ Σ∗, ED(x, z) denotes the edit distance between x

and z i.e. the number of symbol insertions and deletions to transform x into z. We say x

and y (resp. x and z) are δ-hamming-close (resp. δ-edit-close) when Ham(x, y) ≤ δ|x| (resp.
ED(x, z) ≤ 2δ|x|).

We recall the formal definitions of an LDC and an amortized LDC.

▶ Definition 1 (LDC). A (n, k)-code C = (Enc, Dec) (over Σ) is a (ℓ, δ, ε)-locally decodable
code (LDC) for hamming errors (resp. insDel errors) if for every x ∈ Σk, ỹ ∈ Σ∗ such
that ỹ is δ-hamming-close (resp. δ-edit-close) to Enc(x), and every index i ∈ [k], we have
Pr[Decỹ(i) = x[i]] ≥ 1− ε, and Decỹ makes at most ℓ queries to ỹ.

▶ Definition 2 (aLDC [7]). A (n, k)-code C = (Enc, Dec) (over Σ) is a (α, κ, δ, ϵ)-amortizeable
LDC (aLDC) for hamming errors (resp. insDel errors) if for every x ∈ Σk, ỹ ∈ Σ∗ such that
ỹ is δ-hamming-close (resp. δ-edit-close) to Enc(x), and every interval [L, R] ⊆ [k] or size
R− L + 1 ≥ κ we have Pr[Decỹ(L, R) = (xi : i ∈ [L, R])] ≥ 1− ε, and Decỹ makes at most
α× (R− L + 1) queries to ỹ.

Throughout the paper, it will be assumed codes are over the binary alphabet i.e. Σ = {0, 1}
unless specified otherwise. The primary metrics of interest for Hamming/Insdel aLDCs are
the rate k/n, amortized locality α, and the error/edit tolerance δ.

1.4 Organization
We start with reintroducing and modifying the encoding and decoding procedures of the
BBGKZ compiler in Section 2. The modification will take various steps organized into
the following subsections: in Subsection 2.1, the notion of good blocks and intervals are
introduced to analyze our new RecoverBlocks procedure in Subsection 2.2. We then present
the overall construction of our Hamming-to-Insdel aLDC compiler in Subsection 2.3.

In Section 3, we present our construction of an ideal Insdel aLDCs in settings where
the encoder/decoder share a secret-key (paLDC). More specifically, this construction first
relies on a modified Hamming paLDC construction in Subsection 3.1, where the local decoder

ITC 2025

1:10 Amortized Locally Decodable Codes for Insertions and Deletions

performs consecutive interval queries. The ideal Hamming paLDC is then compiled into our
ideal Insdel paLDC in Subsection 3.2. Lastly, in Section 4, we present our construction of
an ideal Insdel aLDCs in settings where the channel is resource-bounded (raLDC). Section
4 follows a symmetric structure to the previous section: we present a consecutive interval
querying Hamming raLDC construction in Subsection 4.1, which is then compiled into an
ideal Insdel raLDC construction in Subsection 4.2.

2 The Hamming aLDC to Insdel aLDC Compiler

Our results crucially rely on a modified BBGKZ compiler suited for amortized local decoding.
We start with the encoding procedure. Interestingly, we will not need to make any changes
to the encoding procedure of the BBGKZ compiler, which takes as parameters the block size
τ ∈ N and padding rate ϕ ∈ (0, 1): the message x will first be encoded into a codeword y

using a Hamming LDC. Next, the codeword y is broken up into blocks of equal size τ as
y = w1◦. . . wB , where each block and its index (i◦wi) is 1) encoded with a specifically chosen
Insdel code 2) pre-and-post-pended with ϕτ many 0s. The result is the overall codeword Y .

Formally, we describe the encoder Enc as first computing the Hamming codeword y, then
applying a Hamming-to-Insdel compiler EncCompile to transform it into an Insdel codeword
Y . The encoder Enc and compiler EncCompile are formally described below.

Let Ch = (Ench, Dech) be a Hamming LDC. Let Cinsdel = (Encinsdel, Decinsdel) be an Insdel
binary code.

EncCompileϕ(y)

Input: Hamming codeword y ∈ {0, 1}m, padding rate ϕ ∈ (0, 1).
Output: Insdel codeword Y ∈ {0, 1}n.

1. Parse y = w1 ◦ · · · ◦w|y|/τ where wj ∈ {0, 1}τ for all j ∈ [|y|/τ].
2. Compute w′

j ← 0ϕτ ◦ Encinsdel(j ◦wj) ◦ 0ϕτ for all j ∈ [|y|/τ].
3. Output Y = w′

1 ◦ · · · ◦w′
|y|/τ .

Enc(x)
Parameters: Block size τ ∈ N, Padding rate ϕ ∈ (0, 1).
Input: message x ∈ {0, 1}k.

Output: Insdel codeword Y ∈ {0, 1}n.

1. Compute y ← Ench(x).
2. Output Y ← EncCompile(y).

Our main modifications to the BBGKZ compiler will be in the construction of the decoder
Dec. Recall that the original BBGKZ decoder simulated oracle access to the Hamming LDC
decoder Dech by recovering the Hamming blocks corresponding to the requested queries of
Dech. Since insertions and deletions in the corrupted codeword Ỹ modify the structure of
the blocks, this simulation is underpinned by a noisy binary search procedure we denote as
the RecoverBlock procedure. More specifically, the RecoverBlock procedure on input block
index j will iteratively cut an initial search radius [1, ñ] by a fractional amount, until the
search radius is a constant size larger than the block size τ. To decide how to cut the search
radius on each iteration, the procedure samples N = θ(log2 n) blocks indices by decoding N

noisy w′
j1

, . . . w′
jb

blocks within the middle of the search radius to (jb ◦wjb
). On the block

indices j1, . . . , jb, their median jmed is compared to the desired block index j : depending if
j < jmed, RecoverBlock will cut off a fraction of the front or the back of the search radius.

J. Blocki and J. Zhang 1:11

Since the search radius decreases by a constant fraction each iteration, there are O(log n)
iterations, where on each iteration, θ(log2n) blocks are read of O(τ) size. Thus, the query
complexity to answer a single query of Dech is O(τ log3 n).

Unfortunately, amortization is not feasible with the current Hamming decoder simulation
method. Intuitively, since the RecoverBlock procedure must query a multiplicative polylog n

factor to recovers τ symbols, the amortized locality will be at least Ω(polylog n).
Our solution will recover multiple blocks at once using the observation that the

RecoverBlocks procedure can be extended from recovering a single block to an interval of
contiguous blocks. That is, we will modify the noisy binary search procedure to take in a
block interval a ≤ b ∈ [B], and we change the stopping condition to be linear to the interval
size b− a + 1. Further, the consideration on how to shrink the search radius will take into
account the respective endpoints a and b of the interval rather than a single block j.

While this change is relatively straight forward on paper, the analysis for the noisy binary
search procedure BBGKZ compiler does not immediately follow for our modified procedure
RecoverBlocks. Thus, to prove correctness for the modified RecoverBlocks procedure, we
reintroduce the good block analysis from Block et al. [4], and modify their proof structure
to take into account the recovery of an interval of blocks instead of a single block.

2.1 Good Blocks and Intervals
In this subsection, we introduce good block notation to analyze the modifications we will
make to the BBGKZ decoder and its sub-routine RecoverBlock.

Additional Notation

First, we fix notation consistent with the encoder definition above for the rest of the paper.
We will refer to the Hamming encoding y in step 1 as the Hamming encoding and the final
codeword Y as the Insdel encoding or simply as the encoding. Let x ∈ {0, 1}k be the message
of size k and let y = Ench(x) ∈ {0, 1}m be the Hamming encoding with size m. Let B = m/τ

be the number of blocks. Define β such that the rate of the overall encoding is 1/β. Similarly,
define βinsdel such that the rate of the Insdel code Cinsdel is 1/βinsdel. Then, the rate of the
Hamming encoding is (βinsdel log B + 2ϕ)/β. Let δh and δinsdel be the error tolerances of the
Hamming encoding and the Insdel code respectively. Let each wj = y⟨j⟩τ ∈ {0, 1}τ denote
Hamming block j. Similarly, each w′

j ∈ {0, 1}βτ denotes the Insdel block/ block j. Then, the
overall codeword is Y ∈ {0, 1}n has length n = βm. We consider any corrupted codeword
Ỹ ∈ {0, 1}ñ such that ED(Y , Ỹ) ≤ 2δn.

We define the block decomposition as a mapping from codeword symbols to their blocks
post corruption.

▶ Definition 3. A block decomposition of Ỹ is a non-decreasing mapping ϕ : [ñ]→ [B].

By definition, the pre-image of each block decomposition defines a partition of [ñ] into B

intervals {ϕ−1(j) : j ∈ [B]}. Each of these intervals define the block structure, where the j’th
interval defines the j’th block in the corrupted codeword. In other words, for each j ∈ [B],
ϕ−1(j) are all the indices corresponding to block j.

As in the BBGKZ compiler, our modified decoder will rely on a noisy recovery process,
where the decoder will need to locate blocks without knowing the block boundaries that
have been modified by insdel errors. For any search interval [l, r) ⊆ [ñ], it will be helpful to
consider its corresponding block interval i.e. the smallest interval [L, R− 1] ⊆ [B] such that
[l, r) ⊆ [τL, τ(R− 1)]. Block intervals are defined formally below.

ITC 2025

1:12 Amortized Locally Decodable Codes for Insertions and Deletions

▶ Definition 4 (Block Interval). The block interval of an interval I = [l, r) ⊆ [ñ] is defined
as

⋃r−1
i=l ϕ−1(ϕ(i)) ⊆ [ñ]. An interval I is a block interval if the block interval of I is itself.

Equivalently, every block interval has the form BI[a, b] :=
⋃b

i=a ϕ−1(j) for some a, b ∈ [B].

We say a block is good if it does not have too many edit corruptions. Intuitively, good
blocks will correspond to Insdel blocks that are correctly decodable, except with negligible
probability.

▶ Definition 5 (γ-Good Block). For γ ∈ (0, 1) and j ∈ [B], a block j is γ-good (with respect
to Ỹ) if ED(Ỹ [ϕ−1(j)], w′

j) ≤ γτ. Otherwise, block j is γ-bad.

Good blocks may be naturally extended to good intervals, where the summed edit corruptions
of each block within the interval is not too much. Additionally, we constrain the number of
bad blocks in any good interval.

▶ Definition 6 ((θ, γ)-Good Interval). A block interval BI[a, b] is (θ, γ)-good (with respect to
Ỹ) if the following hold:
1.

∑b
j=a ED

(
Ỹ [ϕ−1(j)], w′

j

)
≤ γτ(b− a + 1).

2. The number of γ-bad blocks in the block interval BI[a, b] is at most θ × (b− a + 1).
Otherwise, the interval is (θ, γ)-bad.

Lastly, we define the notion of a locally good block, which captures the idea that any interval
including such a block must also be good.

▶ Definition 7 ((θ, γ)-Local Good Block). For θ, γ ∈ (0, 1), block j ∈ [B] is (θ, γ)-local
good (with respect to Ỹ) if for every a, b ∈ [B] such that a ≤ j ≤ b, the interval BI[a, b] is
(θ, γ)-good. Otherwise, block j is (θ, γ)-locally bad.

2.2 Extending RecoverBlock to RecoverBlocks

We start with recalling specific details of the RecoverBlock procedure. The RecoverBlock
procedure for recovering a single block takes as input the desired block index j ∈ [B] and the
initial search radius [1, ñ]. The procedure will iteratively split the search radius into three
contiguous, linear-sized segments, a beginning, a middle, and an end segment, where it will
choose to either cut the beginning or the end segment. To decide which, it randomly samples
N = θ(log2 n) indices i1, . . . , iN within the middle segment and recover their respective
block indices j1, . . . , jN . More specifically, for each index ib, a subroutine Block-Decode is
called which queries a O(τ) interval around ib to decode the noisy block containing (j ◦wj).
The median jmed of these retrieved indices is then calculated, and, depending if j < jmed
or j ≥ jmed, cuts either the end or beginning segment from the search interval respectively.
The binary search continues until the search radius is linear in the size of the block for a
sufficiently small constant.

Lastly, an interval decoding procedure is then run over the symbols in the final search
interval, where it is guaranteed to recover any local-good block located within the interval.
The subroutines used, Block-Decode and the final interval decoding, are based on local and
global variations of the SZ-code decoding algorithm, finding the pre/post-pended 0′s on the
Insdel blocks to locate the blocks in between.

Intuitively, we may modify RecoverBlock to recover an interval [a, b] ⊆ [B] of contiguous
Hamming blocks instead of a single block by stopping the search once its search radius
is linear to the size of the interval versus the size of a single block. Lastly, we run a
procedure we call Sim-RecoverBlock to recover each block j ∈ [a, b] within the final search

J. Blocki and J. Zhang 1:13

radius [l, r]. If we naively call RecoverBlockỸ (l, r, q) repeatedly for every block q ∈ [a, b]
then each call to RecoverBlock will execute its own noisy binary search procedure in the
interval [l, r] resulting in redundant queries which would blow up our amortized locality
i.e., the total number of queries would be too large i.e. Ω((l − r)polylog(l − r)). Instead,
we simply make l − r + 1 queries to Ỹ to recover the entire substring Ỹ [l, r] and then run
Sim-RecoverBlock(Ỹ [l, r], l, r, q) for each q ∈ [a, b] where Sim-RecoverBlock(Ỹ [l, r], l, r, q)
uses the hardcoded string Ỹ [l, r] to simulate the execution of RecoverBlockỸ (l, r, q). We
call this overall extended procedure RecoverBlocks, and present the construction below
(modifications to the RecoverBlock procedure are in blue).

RecoverBlocksỸ (l, r, a, b)
Parameters: Block size τ ∈ N, γ ∈ (0, 1)
Input: Search range l < r ∈ [ñ + 1], block range a ≤ b ∈ [B]
Output: pre-compiled blocks s ∈ {0, 1}(b−a+1)τ

Let c = 36(β − γ).
Let ρ = min

{
1
4 ×

β−γ
β+γ , 1− 3

4 ×
β+γ
β−γ

}
.

1. While r − l > c(b− a + 1)τ :
a. Let m1 ← (1− ρ)l + ρr, and m2 ← ρl + (1− ρ)r.

b. For p = 1, . . . , N = θ(log2 n),
i. randomly sample ip

$← [m1, m2)
ii. set S ← Block-DecodeỸ (ip)
iii. If S = ⊥, ignore and continue
iv. Else, parse (jp, wjp

)← S

c. Let jmed ← median(j1, . . . , jN) (ignore ⊥)
d. If a > jmed, set l = m1. Otherwise, set r = m2.

2. Make (l − r + 1) queries to recover Ỹ [l, r].
3. Output

[
Sim-RecoverBlock(Ỹ [l, r], l, r, q) : q ∈ [a, b]

]
.

The first step is to prove that RecoverBlocks on input (1, ñ + 1, a, b) for any block
interval [a, b] ⊆ [B] will return all Hamming blocks wj within that interval, given that the
blocks are good. We will then argue that by a careful setting of parameters, the number of
correctly recovered blocks is sufficient for an overall correct decoding process. We refer to
the full version [8] for the proof of the following theorem and lemma on the correctness and
query complexity of the RecoverBlocks procedure.

▶ Theorem 8. Let P = {[ai, bi] : 1 ≤ ai ≤ bi < ai+1 ≤ B} be any partition of [B]. Then, let
s

[ai,bi]
j be the random variable defined as the output of RecoverBlocksỸ (1, ñ + 1, ai, bi)⟨j −

ai + 1⟩τ . If δ = δhϕγ
8β(1+1/θ) , then

Pr

 ∑
[ai,bi]∈P

bi−ai+1∑
j=1

1
(

s
[ai,bi]
j ̸= wj

)
≥ δhB

 ≤ negl(n),

where the probability is taken over the joint distribution{
s

[ai,bi]
j : [ai, bi] ∈ P, j ∈ [bi − ai + 1]

}
.

▶ Lemma 9. For any word Ỹ ∈ {0, 1}ñ, interval [a, b] ⊆ [B], and constants β, γ > 0, on
input (1, ñ + 1, a, b), RecoverBlocks has query complexity O((b− a)τ + τ log3 n).

ITC 2025

1:14 Amortized Locally Decodable Codes for Insertions and Deletions

2.3 The Amortized Insdel Decoder

We construct an amortized Insdel local decoder Dec utilizing RecoverBlocks to simulate
oracle access for the underlying Hamming decoder Dech. Our Insdel decoder Dec follows
a similar procedure to the BBGKZ compiler decoder. Dec calls the underlying Hamming
decoder Dech, and on its queries i1, . . . , iq ∈ [m] to the (possibly corrupted) Hamming
codeword ỹ, will respond by calling RecoverBlocks to recover the corresponding Hamming
blocks and queried symbols. Correctness of our procedure will follow from Theorem 8, which
roughly states that the symbols returned by RecoverBlocks are equivalent to what Dech
expects from true oracle access to the (possibly corrupted) Hamming codeword ỹ.

Our next step is to ensure that the queries made by our Insdel decoder amortize over the
RecoverBlocks calls by restricting our Hamming decoder to only make contiguous queries,
where each contiguous interval is of a fixed size. Suppose the Hamming decoder Dech is
guaranteed to make queries in contiguous intervals of size t, say [u1 +1, u1 +t], . . . , [up +1, up +
t] ⊆ [m] for some t. Intuitively, when the Insdel decoder Dec is simulating the Hamming
decoder’s queries with RecoverBlocks, it can then make O(p) calls to RecoverBlocks to
recover codeword intervals of size O(t). For large enough t, the number of RecoverBlocks
calls O(p) decreases and the Insdel decoder’s queries will amortize.

We formally describe a Hamming decoder with this desirable property t-consecutive
interval querying Hamming decoder.

▶ Definition 10 (Consecutive Interval Querying). Consider any (m, k)-code C = (Enc, Dec)
that is a (α, κ, δ, ε)-aLDC. For any word ỹ, interval [L, R] ⊆ [k] with R − L + 1 ≥ κ,
and random coins r, let Query(ỹ, [L, R], r) := {i1, . . . , iq} ⊆ [ñ] denote the codeword indices
queries when Decỹ(L, R) is ran with randomness r. Code C and decoder Dec are t-consecutive
interval querying if the set Query(ỹ, [L, R], r) can be partitioned into q/t disjoint intervals
[u1, v1], . . . , [uq/t, vq/t] of size t i.e.,

1. vj − uj + 1 = t for all j ≤ q/t,

2. Query(y, [L, R], r) =
⋃

j≤q/b[uj , vj], and

3. [uj1 , vj1] ∩ [uj2 , vj2] = ∅ for all j1 ̸= j2.
We now show how to construct the amortized local decoder Dec using RecoverBlocks and a
t-consecutive interval querying Hamming aLDC decoder Dech for a value of t to be specified
in the analysis. We choose the SZ-code as the Insdel code Cinsdel, which has constant rate
1/βinsdel = Ω(1) and constant error-tolerance δinsdel = θ(1).

▶ Construction 11. Let Ch = (Ench, Dech) be a t-consecutive interval querying Hamming
LDC such that τ divides t. Let Cinsdel = (Encinsdel, Decinsdel) be an Insdel binary code.

EncCompileϕ(y)

Input: Hamming codeword y ∈ {0, 1}m, padding rate ϕ ∈ (0, 1).
Output: Insdel codeword Y ∈ {0, 1}n.

1. Parse y = w1 ◦ · · · ◦w|y|/τ where wj ∈ {0, 1}τ for all j ∈ [|y|/τ].
2. Compute w′

j ← 0ϕτ ◦ Encinsdel(j ◦wj) ◦ 0ϕτ for all j ∈ [|y|/τ].
3. Output Y = w′

1 ◦ · · · ◦w′
|y|/τ .

J. Blocki and J. Zhang 1:15

Enc(x)
Parameters: Block size τ ∈ N, Padding rate ϕ ∈ (0, 1).
Input: message x ∈ {0, 1}k.

Output: Insdel codeword Y ∈ {0, 1}n.

1. Compute y ← Ench(x).
2. Output Y ← EncCompile(y).

DecỸ (L, R)
Parameters: Block size τ ∈ N, Padding rate ϕ ∈ (0, 1).
Input: 1 ≤ L ≤ R ≤ ñ

Output: word s̃ ∈ {0, 1}(R−L+1)τ

1. Suppose Dech(L, R) queries disjoint intervals [u1, v1], . . . , [up, vp] ⊆ [m] of size
t.

2. For each r ∈ [p],
a. Compute j ∈ [⌊n/t⌋] such that [ur, vr] ⊂ [(j − 1)t + 1, (j + 1)t].
b. Let t′ = ⌈t/τ⌉ and compute

s(j−1) ← RecoverBlocksỸ (1, ñ + 1, (j − 1)t′ + 1, jt′)

s(j) ← RecoverBlocksỸ (1, ñ + 1, jt′ + 1, (j + 1)t′).

3. From
{

s(j)}, send Dech the bits corresponding to intervals [u1, v1], . . . , [up, vp].
4. Output the output of Dech.

Our Insdel decoder Dec processes the t-sized intervals [u1, v1], . . . , [up, vp] ⊆ [m] queried by
the Hamming decoder Dech into a corresponding t′ = ⌈t/τ⌉-sized block interval inputs for
RecoverBlocks (step 2.a). Note that for ease of presentation, the decoder always computes
RecoverBlocks on two t′ sized block intervals (step 2.b). The amortized locality can be
optimized by a constant factor by calling RecoverBlocks on the exact block intervals queried
by the Hamming decoder Dech. However, it will be convenient to assume the Insdel decoder
Dec calls RecoverBlocks in a predictable manner for all inputs when proving correctness i.e.
the input interval to RecoverBlocks is always ((j−1)t′+1, jt′) for some j, and asymptotically,
there is no change to the amortized locality.

▶ Theorem 12. Let (m, k)-code Ch = (Ench, Dech) be a t-consecutive interval querying
Hamming (αh, κh, δh, εh)-aLDC. Then, for any block size τ ∈ Ω(log n) such that τ | n, C =
(Enc, Dec) in Construction 11 is a (α, κ, δ, ε)-aLDC for α = O

(
αhτ log3 n

t

)
, κ = κh, δ = Ω(δh),

and ε = εh + negl(n).

Proof. Suppose Decỹ
h(L, R) queries disjoint intervals [u1, v1], . . . , [up, vp] ⊂ [m]. For each r ∈

[p], we compute RecoverBlocks on block intervals [(j − 1)t′ + 1, jt′] and [jt′ + 1, (j + 1)t′]
such that [ur, vr] ⊂ [(j− 1)t + 1, (j + 1)t]. Let P = {[1, t′], [t′ + 1, 2t′], . . . , [B − t′ + 1, B]} be
a partition of [B] in equal t′-sized intervals. Let s(j) be the random variable defined as the
output of RecoverBlocksỸ (1, ñ + 1, (j − 1)× t′ + 1, j × t′). Define ỹ as the random string
defined by ỹ⟨j⟩t′ = s(j) for each j ∈ [⌊n/t′⌋]. Then, since Ham(ỹu, y) ≤ δhm is implied

ITC 2025

1:16 Amortized Locally Decodable Codes for Insertions and Deletions

by the event
∑

[(j−1)t′+1,jt′]∈P
∑t

r=1 1
(

s
(j)
r ̸= wj

)
≤ δhB, by Theorem 8, Pr[Ham(ỹ, y) ≤

δhm] ≥ 1− negl(n). Thus, from the view of Dech, it is interacting with ỹ over partition P,
and so by definition, for any R− L + 1 ≥ κh,

Pr
[
Decỹ

h(L, R) = (xi : i ∈ [L, R])
∣∣∣ Ham(ỹ, y) ≤ δhm

]
≥ 1− εu.

By construction of Dec, for any R− L + 1 ≥ κh,

Pr
[
DecỸ (L, R) = (xi : i ∈ [L, R]

]
≥ Pr[Ham(ỹu, y) ≤ δhm] Pr

[
Decỹu

h (L, R) = (xi : i ∈ [L, R])
∣∣∣ Ham(ỹu, y) ≤ δhm

]
≥ (1− negl(n))× (1− εh) ≥ 1− εh − negl(n).

Since Ch is t-consecutive interval querying which makes at most αh(R − L + 1) queries,
the decoder Dec calls RecoverBlocks at most 2αh(R−L+1)

t times on block intervals of size
t′ = ⌈t/τ⌉. By Lemma 9, the query complexity of Dec is

α(R−L+1) = 2αh(R− L + 1)
t

×O
(
(⌈t/τ⌉ × τ) + τ log3 n

)
and so α = O

(
αhτ log3 n

t

)
.◀

If a t-consecutive interval querying, ideal Hamming aLDC does exists, we obtain the following
corollary.

▶ Corollary 13. If there exists a t-consecutive interval querying, ideal Hamming aLDC for
t = Ω(τ log3 n), then there exists an ideal Insdel aLDC.

We construct t-consecutive interval querying, ideal Hamming aLDCs in private-key and
resource-bounded settings and leave a construction for worst-case Hamming errors as an
open question.

3 Ideal Insdel aLDCs in Private-key Settings

Given the compiler and resulting Theorem 12 in the previous section converting an ideal
Hamming aLDC Ch to ideal Insdel aLDC C whenever Ch is Ω(τ log3 n)-consecutive interval
querying, we show that such an aLDC exist with private-key assumptions. We start by
recalling the definition of a private-key aLDC (paLDC).

▶ Definition 14 (paLDC [7]). Let λ be the security parameter. A triple of probabilistic
polynomial time algorithms (Gen, Enc, Dec) over Σ is a private (α, κ, δ, ϵ, q)-amortizeable
LDC (paLDC) for Hamming errors (resp. Insdel errors) if

for all keys sk ∈ Range(Gen(1λ)) the pair (Encsk, Decsk) is a (n, k) code C over Σ, and
for all ỹ ∈ Σn and all L, R ∈ [k] with R − L + 1 ≥ κ the local decoding algorithm
Decỹ(h)

sk (L, R) makes at most (R− L + 1)α queries to ỹ

for all probabilistic polynomial time algorithms A there is a negligible function µ such
that Pr[paLDC-Sec-Game(A, λ, α, κ, δ, α, q) = 1] ≤ µ(λ), where the probability is taken
over the randomness of A, Gen, and paLDC-Sec-Game. The experiment paLDC-Sec-Game
is defined as follows:

J. Blocki and J. Zhang 1:17

paLDC-Sec-Game(A, λ, α, κ, δ, q)

The challenger generates secret key sk← Gen(1λ). For q rounds, on iteration
h, the challenger and adversary A interact as follows:
1. The adversary A chooses a message x(h) ∈ Σk and sends it to the challenger.
2. The challenger sends y(h) ← Encsk(x(h)) to the adversary.
3. The adversary outputs ỹ(h) ∈ Σ∗ that is δ-Hamming-close (resp. δ-edit-

close) distance to y(h).
4. If there exists L(h), R(h) ∈ [k] such that R(h) − L(h) + 1 ≥ κ and

Pr
[
Decỹ(h)

sk (L(h), R(h)) ̸= x[L(h), R(h)]
]

> ε(λ), then this experiment im-
mediately terminates and outputs 1.

If the experiment did not output 1 on any iteration h, then output 0.

Note that for paLDCs, we assume that the local decoder takes in a consecutive interval [L, R]
rather than an arbitrary subset Q as input. Blocki and Zhang show that explicit, ideal
Hamming paLDC constructions exist for such decoders, and the existence of ideal paLDCs
whose local decoders take in arbitrary subsets Q is left as an open problem.

3.1 A consecutive interval querying, Ideal Hamming paLDC
We construct a t-consecutive interval querying, ideal Hamming paLDC by modifying of the
private-key LDC construction by Ostrovsky et al. [21]. Recall that the encoding procedure
on input message x first partitions it into equal-sized blocks x = e1 ◦ . . . eB , for all j ∈ [B].
Each block is then individually encoded as e′

j = Enc(ej) for each j ∈ [B] by a constant rate,
constant error tolerant, and constant alphabet size Hamming code encoding Enc (e.g. the
Justesen code) to form the encoded message x′ = e′

1◦· · ·◦e′
B . Lastly, an additional secret-key

permutation π and random mask r are applied i.e. the codeword is y = π(x′)⊕ r, which
effectively makes the codeword look random from the view of a probabilistic polynomial time
channel.

Blocki and Zhang [7] observe that the encoding procedure by Ostrovsky et al. is amenable
to amortization when the recovered symbols are in a consecutive interval [L, R]. Their
amortized local decoder, with access to the secret key, undoes the permutation π and random
mask r, recovers the contiguous blocks e′

s+1, . . . , e′
s+ℓ corresponding to requested [L, R],

decodes each block, and returns the corresponding queried symbols. Unfortunately, since we
applied a permutation π in the encoding procedure, the amortized local decoder does not
make consecutive interval queries to the (corrupted) codeword ỹ.

To add t-consecutive interval querying to the current decoder, we modify the encoding
scheme permutation step to permute t-sized sub-blocks of the blocks e′

j in encoded message
x′ = e′

1 ◦ · · · ◦ e′
B, rather than permuting individual bits. We highlight in blue significant

changes made from the original paLDC presented by Blocki and Zhang.

▶ Construction 15. Suppose that C = (EncC , DecC) is a Hamming (A, a)-code over an
alphabet Σ with rate R. Let c = log |Σ|. Define Cp = (Genp, Encp, Decp) with message length
k, codeword length m = k

R , block size cA, and sub-block size t (dividing cA) as follows:

Gen(1λ)

1. Generate r
$← {0, 1}m and uniformly random permutation π : [m/t]→ [m/t].

2. Output sk← (r, π).

ITC 2025

1:18 Amortized Locally Decodable Codes for Insertions and Deletions

Encsk(x)

Input: Message x ∈ {0, 1}k

Output: Codeword y ∈ {0, 1}m

1. Parse (r, π)← sk.
2. Let x← e1 ◦ e2 ◦ · · · ◦ eB where each es ∈ Σa (and B = k/ca).
3. For each s ∈ [B]:

a. set e′
s ← EncC(es), and

b. let e′
s = ϵ(s−1)β+1 ◦ · · · ◦ ϵsβ where each ϵs′ ∈ {0, 1}t (and β = cA/t).

4. Output y =
(
ϵπ(1) ◦ · · · ◦ ϵπ(Bβ)

)
⊕ r.

Decỹ
sk(L, R)

Input: Interval [L, R] ⊆ [k]
Output: word x̃[L, R] ∈ {0, 1}R−L+1.

1. Parse (r, π)← sk and interpret ỹ = ϵ̃π(1) ◦ · · · ◦ ϵ̃π(Bβ) where each ϵ̃j ∈ {0, 1}t.
2. Let the bits of x[L, R] lie in blocks es+1, . . . , es+ℓ. For each j = s+1, . . . , s+ℓ :

a. Compute s′
1, . . . , s′

β such that π(s′
r) = (s + j − 1)β + r for all r ∈ [β].

b. Query ỹ to compute ẽ′
j ← ϵ̃π(s′

1) ◦ · · · ◦ ϵ̃π(s′
β

).
c. Compute ẽj ← DecC(ẽ′

j).
From ẽs+1, . . . , ẽs+ℓ output bits corresponding to interval [L, R].

Any queries made by the decoder Dec are to the t-sized (corrupted) sub-blocks ϵ̃π(r), so
Construction 15 is t-consecutive interval querying. The main challenge is choosing the overall
block size cA such that decoding error remains negligible. We show that by increasing the
original setting of block size τ in the work of Blocki and Zhang [7] by a multiplicative t-factor,
negligible decoding error follows.

▶ Theorem 16. Let λ ∈ N. In Construction 15, suppose the (A, a)-code C has (constant)
rate R, (constant) error tolerance δp, and (constant) alphabet Σ with c = log |Σ|. Then,
for any t ∈ N such that t | cA and k ∈ poly(λ), Cp = (Genp, Encp, Decp) is a t-consecutive
interval querying (2/R, O(a), θ(δp), negl(λ), 1)-paLDC when a = ω(t log λ).

Proof. We show that the probability of an incorrect decoding
Pr[paLDC-Sec-Game(A, λ, α, κ, δ, 1) = 1] is negligible for δ = θ(δp) and any probabil-
istic polynomial time adversary A. Define the event Bad =

⋃
j∈[k/ca] Badj , where Badj is the

event that e′
j has more than a δp fraction of errors. We show that the probability Pr[Bad] is

negligible.
Since the t-sized sub-blocks of the codeword are permuted and a random mask is applied,

any errors added by a probabilistic polynomial time adversary A to the corrupted codeword
ỹ are added uniformly at random over t-bit intervals. This follows from generalizing the
argument given by Lipton [19], where we interpret each sub-block as a t-bit symbol and the
observation that the probability that event Bad occurs given that A does not apply errors
in a t-bit interval is at most the probability that event Bad occurs given that A does apply
errors in a t-bit interval.

Then, the number of errors in any given block e′
j follow a

Hypergeometric(m/t, δm/t, cA/t), which by the CDF bound of [15, 16], we have
Pr[BADj] < exp

(
−2(((δp−δ)(cA/t))2−1)

(cA/t)+1

)
. Thus, for δp > δ and a/t ∈ ω(log n), this probability

is negligible. By a union bound, Pr[Bad] is also negligible, so ε ≤ Pr[Bad] < negl(λ).

J. Blocki and J. Zhang 1:19

The proof of the query parameters α = 2/R and κ = a, is the same as in Theorem 16 in
the work of Zhang and Blocki [7] (see full version [8]). ◀

We note that the poly-round paLDC construction of Blocki and Zhang [4] can also be made
t-consecutive interval querying by the same technique of applying a higher-order permutation.
We omit the construction and proof from this work since it will follow an almost-identical
modification.

3.2 The Ideal Insdel paLDC Construction
We compile the t-consecutive interval querying, ideal Hamming paLDC in the prior subsection
into an ideal Insdel paLDC using the Hamming-to-Insdel compiler EncCompile in Section 2.

▶ Construction 17. Suppose (m, k)-code Cp = (Genp, Encp, Decp) is a t-consecutive interval
querying Hamming (αp, κp, δp, εp, q)-paLDC. Then define C = (Gen, Enc, Dec) as Gen(1λ) :=
Genp(1λ), Encsk(x) := EncCompile(Encp,sk(x)), and DecỸ

sk (L, R) := DecỸ
p,sk(L, R).

We will need to show that the Hamming-to-Insdel compiler EncCompile, when used within
the private-key setting, retains correctness. See the full version [8] for the reduction argument
proving the following theorem.

▶ Theorem 18. Let Cp = (Genp, Encp, Decp) be a (m, k)-code that is a t-consecutive interval
querying Hamming (αp, κp, δp, εp)-paLDC. Then, C = (Gen, Enc, Dec) in Construction 17 with
is a (n, k)-code that is an Insdel (α, κ, δ, ε)-paLDCwith α = O

(
αpτ log3 n

t

)
, κ = κp, δ = Ω(δp),

and ε = εp + negl(n).

By instantiating our private-key Insdel compiler with our t-querying Hamming paLDC, we
construct an ideal Insdel paLDC.

▶ Corollary 19. If Cp of Construction 15 instantiated with a constant rate, constant error
tolerant, and constant size alphabet code (e.g. a Justesen code), t = θ(τ log3 n) and τ =
θ(log n), then code C in Construction 17 is an (Ideal) Insdel (O(1), O(log5 n), O(1), negl(n))-
paLDC with constant rate.

4 Ideal Insdel aLDCs for Resource-bounded Channels

In this section, we present an ideal insdel aLDC in settings where the channel is bounded
for some resource, such as parallel time or circuit depth. As in the construction of an ideal
Insdel paLDC, our construction for resource-bounded channels will rely on a construction of
a consecutive interval querying Hamming aLDC that will allow the compiler to amortize over
its queries. Then, we formally prove the Compiler we constructed in Section 2 is secure in
resource-bounded settings, which results in our ideal Insdel construction for resource-bounded
channels.

We start by recalling the definition of an aLDC for resource-bounded channels (raLDC).

▶ Definition 20 (raLDC [1]). A (n, k) code C = (Enc, Dec) is a (α, κ, δ, ϵ,R)-resource-bounded
amortizeable LDC (raLDC) for hamming errors (resp. insDel errors) if for all L, R ∈ [k] with
R− L + 1 ≥ κ the local decoding algorithm Decỹ(h)

sk (.) makes at most (R− L + 1)α queries
to ỹ Decỹ and for any ỹ ∈ Σ∗ and for any resource bounded algorithm A ∈ R, there is a
negligible function µ such that Pr[raLDC-Game(A, λ, δ, κ) = 1] ≤ µ(λ), where the probability
is taken over the randomness of A, Gen, and paLDC-Sec-Game. The experiment raLDC-Game
is defined as follows:

ITC 2025

1:20 Amortized Locally Decodable Codes for Insertions and Deletions

raLDC-Game(A, λ, δ, κ)

1. The adversary A chooses a message x ∈ {0, 1}k and sends it to the encoder.
2. The encoder sends y ← Encsk(x) to the adversary.
3. The adversary outputs ỹ ∈ {0, 1}∗ that is δ-hamming-close (resp. δ-edit-close)

distance to y.
4. If there exists L, R ∈ [k] such that Pr

[
Decỹ(L, R) ̸= x[L, R]

]
> ε(λ) and

R− L + 1 ≥ κ, then this experiment outputs 1. Otherwise, output 0.

4.1 A consecutive interval querying, Ideal raLDC
To construct a t-consecutive interval querying, ideal raLDC, we employ the Hamming paLDC
to raLDC compiler of Blocki and Zhang [7], which was a modification of the original compiler
by Ameri et al. [1]. The construction makes use of two other building blocks: the first
is cryptographic puzzles, consisting of two algorithms PuzzGen and PuzzSolve. On input
seed c, PuzzGen outputs a puzzle Z with solution is c i.e. PuzzSolve(Z) = c. The security
requirement states that adversary A in a defined algorithm class R, cannot solve the puzzle
Z and cannot even distinguish between tuples (Z0, c0, c1) and (Z1, c0, c1) for random ci and
Zi = PuzzGen(ci). Ameri et al. are able to construct memory-hard puzzles, i.e. cryptographic
puzzles unsolvable by algorithm class Rcmc of algorithms with bounded cumulative memory
complexity, under standard cryptographic assumptions. We generalize their definition for
any class of algorithms R, where if a cryptographic puzzle is unsolvable by any algorithm in
R, we say the puzzle is R-hard.

The second building block is a variant of a locally decodable code, referred to as LDC∗,
which recovers the entire (short) encoded message s with locality only scaling linearly with
the message length. The original LDC∗ construction given by Blocki et al. [6] is a repetition
code of a constant rate, constant error tolerance code (e.g. the Justesen code), where Dec∗

queries a constant number of repeated codewords and performs a majority vote decoding.
On message length k, their LDC∗decoder makes θ(k) queries, where the codeword length
n≫ k can be arbitrarily large.

Given a paLDC code Cp = (Genp, Encp, Decp) and a LDC∗ code C∗ = (Enc∗, Dec∗), the
constructed Hamming raLDC encoder Enc, on message x will (1) generate the secret key
sk← Genp(1λ; c) with some random coins c (2) Compute the paLDC encoding of the message
yp ← Encp,sk(x) (3) Compute the LDC∗ encoding of the puzzle y∗ ← Enc∗(Z), where the
LDC∗ encoding has codeword length θ(|yp|) (4) and finally, output y = yp ◦y∗. Intuitively, a
resource-bounded channel will not be able to solve the puzzle to retrieve the secret key from
y∗. Hence, the message encoding yp looks random to the channel, reducing the resource-
bounded channel’s view of the codeword to the view a computationally-bound channel in the
private-key setting. On the other hand, the raLDC decoder Dec will have sufficient resources
to solve the puzzle and locally decode the codeword on input interval [L, R] i.e. Dec computes
c̃← PuzzSolve(Dec∗(ỹ∗)), s̃k← Genp(1λ; c̃), and outputs Decỹp

ps̃k(L, R). By choosing an ideal
paLDC code Cp and an appropriate LDC∗ code C∗, the resulting compiled code (Enc, Dec) is
an ideal raLDC.

We observe that the compiled raLDC decoder Dec satisfies t-consecutive interval query
when instantiated with a t-consecutive interval querying paLDC and the original LDC∗

construction by Blocki et al. [6]. First, observe that the decoder Dec queries the message
encoding yp and the secret-key randomness encoding y∗ disjointly using Decp and Dec∗
respectively. Second, Dec∗ is also t-consecutive interval querying as long as the encoding
used in the repetition encoding has codeword length t. Thus, the overall raLDC decoder Decis
t-consecutive interval querying. We summarize this result formally below.

J. Blocki and J. Zhang 1:21

▶ Theorem 21. Let λ ∈ N. Let Cp = (Genp, Encp, Decp) be a (np, kp)-code that is a t-
consecutive interval querying Hamming (αp, κp, δp, εp)-paLDC. For any algorithm class R
such that there exists R-hard cryptographic puzzles, there exists a (nr, kr)-code Cr = (Encr, Decr)
that is a t-consecutive interval querying Hamming (αr, κr, δr, εr,R)-raLDC for nr = θ(np), kr =
kp = poly(λ), αr = θ(αp), κr = κp, δr = θ(δp), and εr = εp + negl(n).

4.2 The Ideal Insdel raLDC Construction
We present our final construction of an ideal Insdel raLDC. We will proceed similarly to
our construction of an ideal Insdel paLDC in Section 3, where we use our Hamming-to-
Insdel compiler EncCompile with the ideal, t-consecutive interval querying Hamming raLDC
constructed in the prior subsection.

▶ Construction 22. Suppose (m, k)-code Cr = (Encr, Decr) is a t-consecutive interval
querying Hamming (αr, κr, δr, εr,R)-raLDC. Then define C = (Enc, Dec) as Enc(x) :=
EncCompile(Encr(x)) and DecỸ (L, R) := DecỸ

r (L, R).

Just as before, we will need to show that security holds when we use the Hamming-to-Insdel
compiler in a resource-bounded setting by giving a reduction argument. One additional
nuance we will need to handle is to allow any adversary for the Hamming code sufficient
resources to perform the reduction. Let T (n) (resp. S(n)) be the running time (resp. space
usage) of the computation of EncCompile(y) and ỹsim . Let B = reducen(A) be a reduction
from algorithm A to B in in time T (n) time with space usage S(n). Then, for any class
of algorithms R(n), denote its closure class R(n) with respect to reducen defined as the
minimum class of algorithms such that reducen(A) ∈ R(n) for all A ∈ R(n). See the full
version [8] for the detailed proof.

▶ Theorem 23. Let Cr = (Encr, Decr) be a (m, k)-code that is a t-consecutive interval querying
Hamming (αr, κr, δr, εr,R(n))-raLDC. Then, C = (Enc, Dec) in Construction 22 is a (n, k)-
code that is an Insdel (α, κ, δ, ε,R(n))-raLDC with α = O

(
αrτ log3 n

t

)
, κ = κr, δ = Ω(δr), and

ε = εr + negl(n).

▶ Corollary 24. Let t = θ(τ log3 n), τ = θ(log n), and define any algorithm class R such
that there exists R-hard cryptographic puzzles. Then by Theorem 21, code C in Construction
22 is an Insdel (O(1), O(log5 n), O(1), negl(n),R)-raLDC with constant rate.

References
1 Mohammad Hassan Ameri, Alexander R. Block, and Jeremiah Blocki. Memory-hard puzzles

in the standard model with applications to memory-hard functions and resource-bounded
locally decodable codes. In Clemente Galdi and Stanislaw Jarecki, editors, SCN 22: 13th
International Conference on Security in Communication Networks, volume 13409 of Lecture
Notes in Computer Science, pages 45–68, Amalfi, Italy, september 12–14 2022. Springer, Cham,
Switzerland. doi:10.1007/978-3-031-14791-3_3.

2 Eli Ben-Sasson, Oded Goldreich, Prahladh Harsha, Madhu Sudan, and Salil P. Vadhan. Robust
PCPs of proximity, shorter PCPs and applications to coding. In László Babai, editor, 36th
Annual ACM Symposium on Theory of Computing, pages 1–10, Chicago, IL, USA, june 13–16
2004. ACM Press. doi:10.1145/1007352.1007361.

3 Alexander R. Block and Jeremiah Blocki. Private and resource-bounded locally decodable
codes for insertions and deletions. In 2021 IEEE International Symposium on Information
Theory (ISIT), pages 1841–1846, 2021. doi:10.1109/ISIT45174.2021.9518249.

ITC 2025

https://doi.org/10.1007/978-3-031-14791-3_3
https://doi.org/10.1145/1007352.1007361
https://doi.org/10.1109/ISIT45174.2021.9518249

1:22 Amortized Locally Decodable Codes for Insertions and Deletions

4 Alexander R Block, Jeremiah Blocki, Elena Grigorescu, Shubhang Kulkarni, and Minshen
Zhu. Locally decodable/correctable codes for insertions and deletions. arXiv preprint
arXiv:2010.11989, 2020. arXiv:2010.11989.

5 Jeremiah Blocki, Kuan Cheng, Elena Grigorescu, Xin Li, Yu Zheng, and Minshen Zhu.
Exponential lower bounds for locally decodable and correctable codes for insertions and
deletions. In 62nd Annual Symposium on Foundations of Computer Science, pages 739–
750, Denver, CO, USA, february 7–10 2022. IEEE Computer Society Press. doi:10.1109/
FOCS52979.2021.00077.

6 Jeremiah Blocki, Shubhang Kulkarni, and Samson Zhou. On locally decodable codes in
resource bounded channels. In Yael Tauman Kalai, Adam D. Smith, and Daniel Wichs,
editors, ITC 2020: 1st Conference on Information-Theoretic Cryptography, volume 163 of
Leibniz International Proceedings in Informatics (LIPIcs), pages 16:1–16:23, Boston, MA,
USA, june 17–19 2020. Schloss Dagstuhl – Leibniz-Zentrum für Informatik. doi:10.4230/
LIPIcs.ITC.2020.16.

7 Jeremiah Blocki and Justin Zhang. Amortized locally decodable codes, 2025. doi:10.48550/
arXiv.2502.10538.

8 Jeremiah Blocki and Justin Zhang. Amortized locally decodable codes for insertions and
deletions. arXiv preprint, 2025. doi:10.48550/arXiv.2507.03141.

9 Alessandro Chiesa, Tom Gur, and Igor Shinkar. Relaxed locally correctable codes with nearly-
linear block length and constant query complexity. In Shuchi Chawla, editor, 31st Annual
ACM-SIAM Symposium on Discrete Algorithms, pages 1395–1411, Salt Lake City, UT, USA,
january 5–8 2020. ACM-SIAM. doi:10.1137/1.9781611975994.84.

10 Gil Cohen and Tal Yankovitz. Asymptotically-good rlccs with (log n)ˆ(2+ o(1)) queries. In
39th Computational Complexity Conference (CCC 2024), pages 8:1–8:16. Schloss Dagstuhl –
Leibniz-Zentrum für Informatik, 2024. doi:10.4230/LIPIcs.CCC.2024.8.

11 Klim Efremenko. 3-query locally decodable codes of subexponential length. In Michael
Mitzenmacher, editor, 41st Annual ACM Symposium on Theory of Computing, pages 39–44,
Bethesda, MD, USA, May 31 – june 2 2009. ACM Press. doi:10.1145/1536414.1536422.

12 Meghal Gupta. Constant query local decoding against deletions is impossible. In Bojan
Mohar, Igor Shinkar, and Ryan O’Donnell, editors, 56th Annual ACM Symposium on Theory
of Computing, pages 752–763, Vancouver, BC, Canada, june 24–28 2024. ACM Press. doi:
10.1145/3618260.3649655.

13 Tom Gur, Govind Ramnarayan, and Ron D. Rothblum. Relaxed locally correctable codes.
In Anna R. Karlin, editor, ITCS 2018: 9th Innovations in Theoretical Computer Science
Conference, volume 94, pages 27:1–27:11, Cambridge, MA, USA, january 11–14 2018. Leibniz
International Proceedings in Informatics (LIPIcs). doi:10.4230/LIPIcs.ITCS.2018.27.

14 Brett Hemenway and Rafail Ostrovsky. Public-key locally-decodable codes. In David Wagner,
editor, Advances in Cryptology – CRYPTO 2008, volume 5157 of Lecture Notes in Com-
puter Science, pages 126–143, Santa Barbara, CA, USA, august 17–21 2008. Springer Berlin
Heidelberg, Germany. doi:10.1007/978-3-540-85174-5_8.

15 Brett Hemenway, Rafail Ostrovsky, Martin J Strauss, and Mary Wootters. Public key
locally decodable codes with short keys. In International Workshop on Approximation Al-
gorithms for Combinatorial Optimization, pages 605–615. Springer, 2011. doi:10.1007/
978-3-642-22935-0_51.

16 Don Hush and Clint Scovel. Concentration of the hypergeometric distribution. Statistics &
Probability Letters, 75(2):127–132, November 2005. doi:10.1016/j.spl.2005.05.019.

17 Jonathan Katz and Luca Trevisan. On the efficiency of local decoding procedures for error-
correcting codes. In 32nd Annual ACM Symposium on Theory of Computing, pages 80–86,
Portland, OR, USA, May 21–23 2000. ACM Press. doi:10.1145/335305.335315.

18 Vinayak M. Kumar and Geoffrey Mon. Relaxed local correctability from local testing. In
Bojan Mohar, Igor Shinkar, and Ryan O’Donnell, editors, 56th Annual ACM Symposium on
Theory of Computing, pages 1585–1593, Vancouver, BC, Canada, june 24–28 2024. ACM Press.
doi:10.1145/3618260.3649611.

https://arxiv.org/abs/2010.11989
https://doi.org/10.1109/FOCS52979.2021.00077
https://doi.org/10.1109/FOCS52979.2021.00077
https://doi.org/10.4230/LIPIcs.ITC.2020.16
https://doi.org/10.4230/LIPIcs.ITC.2020.16
https://doi.org/10.48550/arXiv.2502.10538
https://doi.org/10.48550/arXiv.2502.10538
https://doi.org/10.48550/arXiv.2507.03141
https://doi.org/10.1137/1.9781611975994.84
https://doi.org/10.4230/LIPIcs.CCC.2024.8
https://doi.org/10.1145/1536414.1536422
https://doi.org/10.1145/3618260.3649655
https://doi.org/10.1145/3618260.3649655
https://doi.org/10.4230/LIPIcs.ITCS.2018.27
https://doi.org/10.1007/978-3-540-85174-5_8
https://doi.org/10.1007/978-3-642-22935-0_51
https://doi.org/10.1007/978-3-642-22935-0_51
https://doi.org/10.1016/j.spl.2005.05.019
https://doi.org/10.1145/335305.335315
https://doi.org/10.1145/3618260.3649611

J. Blocki and J. Zhang 1:23

19 Richard J. Lipton. A new approach to information theory. In Proceedings of the 11th Annual
Symposium on Theoretical Aspects of Computer Science, STACS ’94, pages 699–708, Berlin,
Heidelberg, 1994. Springer-Verlag. doi:10.1007/3-540-57785-8_183.

20 Rafail Ostrovsky, Omkant Pandey, and Amit Sahai. Private locally decodable codes. Cryptology
ePrint Archive, Report 2007/025, 2007. URL: https://eprint.iacr.org/2007/025.

21 Rafail Ostrovsky, Omkant Pandey, and Amit Sahai. Private locally decodable codes. In Lars
Arge, Christian Cachin, Tomasz Jurdzinski, and Andrzej Tarlecki, editors, ICALP 2007: 34th
International Colloquium on Automata, Languages and Programming, volume 4596 of Lecture
Notes in Computer Science, pages 387–398, Wroclaw, Poland, july 9–13 2007. Springer Berlin
Heidelberg, Germany. doi:10.1007/978-3-540-73420-8_35.

22 Rafail Ostrovsky and Anat Paskin-Cherniavsky. Locally decodable codes for edit distance.
In Anja Lehmann and Stefan Wolf, editors, ICITS 15: 8th International Conference on
Information Theoretic Security, volume 9063 of Lecture Notes in Computer Science, pages
236–249, Lugano, Switzerland, May 2–5 2015. Springer, Cham, Switzerland. doi:10.1007/
978-3-319-17470-9_14.

23 L.J. Schulman and D. Zuckerman. Asymptotically good codes correcting insertions, deletions,
and transpositions. IEEE Transactions on Information Theory, 45(7):2552–2557, 1999. doi:
10.1109/18.796406.

24 Sergey Yekhanin et al. Locally decodable codes. Foundations and Trends® in Theoretical
Computer Science, 6(3):139–255, 2012. doi:10.1561/0400000030.

ITC 2025

https://doi.org/10.1007/3-540-57785-8_183
https://eprint.iacr.org/2007/025
https://doi.org/10.1007/978-3-540-73420-8_35
https://doi.org/10.1007/978-3-319-17470-9_14
https://doi.org/10.1007/978-3-319-17470-9_14
https://doi.org/10.1109/18.796406
https://doi.org/10.1109/18.796406
https://doi.org/10.1561/0400000030

	1 Introduction
	1.1 Our Contributions
	1.2 Technical Overview
	1.3 Preliminaries
	1.4 Organization

	2 The Hamming aLDC to Insdel aLDC Compiler
	2.1 Good Blocks and Intervals
	2.2 Extending RecoverBlock to RecoverBlocks
	2.3 The Amortized Insdel Decoder

	3 Ideal Insdel aLDCs in Private-key Settings
	3.1 A consecutive interval querying, Ideal Hamming paLDC
	3.2 The Ideal Insdel paLDC Construction

	4 Ideal Insdel aLDCs for Resource-bounded Channels
	4.1 A consecutive interval querying, Ideal raLDC
	4.2 The Ideal Insdel raLDC Construction

