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Abstract
We study the multi-source randomness extraction and generation properties of the monolithic random
oracle (RO), whereby one is tasked with extracting or generating uniform random bits from multiple
unpredictable sources. We formalize this problem according to the query complexities of the involved
parties – sources, distinguishers, and predictors, where the latter are used to define unpredictability.

We show both positive and negative results. On the negative side, we rule out definitions where
the predictor is not at least as powerful as the source or the distinguisher. On the positive side,
we show that the RO is a multi-source extractor when the query complexity of the distinguisher
is bounded. Our main positive result in this setting is with respect to arbitrary unpredictable
sources, which we establish via a combination of a compression argument (Dodis, Guo, and Katz,
EUROCRYPT’17) and the decomposition of high min-entropy sources into flat sources.

Our work opens up a rich set of problems, ranging from statistical multi-source extraction
with respect to unbounded distinguishers to novel decomposition techniques (Unruh, CRYPTO’07;
Coretti et al., EUROCRYPT’18) and multi-source extraction for non-monolithic constructions.
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1 Introduction

1.1 Overview
Randomness Extraction. High-quality, close-to-uniform randomness is indispensable in
cryptography for many applications (encryption, authentication, zero-knowledge proofs, and
multi-party computation, to name but a few). In fact, there are a number of cryptographic
tasks that simply cannot be achieved without perfect randomness [18, 21, 28]. However,
while “nature” provides many sources that contain some amounts of entropy (e.g., those
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10:2 Multi-Source Randomness Extraction and Generation in the Random-Oracle Model

based on keystrokes, mouse movements, the timing of interrupts, or passwords), sources
that output perfectly uniform random bits are practically non-existent. A fundamental task
is therefore so-called randomness extraction, which involves obtaining uniform randomness
from high-entropy sources. One of the key principles in randomness extraction is that
no assumption is made about the sources, except that they have high min-entropy; doing
otherwise would entail the need for a very deep understanding of the sources, which may be
impossible in practice.

An important hurdle to randomness extraction is that deterministic extractors do not
exist [9], i.e., there is no function f whose output is close to uniform on all high-entropy
sources. A simple counterexample is the so-called “extractor-fixing” attack, where one
considers the sources S0 and S1 that sample an input uniformly among those on which the
output of f starts with a zero and a one, respectively. At least one of these sources, say, S0,
has close to maximal min-entropy, but the output f(S0) is certainly not uniformly random
(it always starts with 0).

One way to circumvent this issue involves seeded extractors [29], where f receives an
additional uniformly random value s – the seed – as input, and the requirement is that for
all seed-independent high-entropy sources S, (f(s,S), s) be close to uniform. Such seeded
extractors may be useful for certain applications (e.g., privacy amplification), but in the
context of randomness generation, their drawback is that they need a uniform seed in the first
place. Moreover, even if one was somehow able to produce a “once-and-for-all” random seed,
it is unrealistic to assume that sources would not depend on this (publicly known) value.

For these reasons, one often uses cryptographic hash functions (CHFs) instead of seeded
extractors in practice. However, the only CHF-based extractor constructions known in
the standard model (achieving in fact only the weaker notion of randomness condensing)
require non-standard assumptions [19]. Therefore, an approach commonly taken is to analyze
constructions in an idealized model, where the extractor or parts of it are modeled as an
idealized primitive. Instances of this approach include:
1. Modeling the entire extractor as a monolithic random oracle;
2. Merkle–Damgård-based constructions where the compression function is treated as a

random function;
3. The Davies–Meyer compression function with the block cipher modeled as an ideal cipher;
4. Sponge-based constructions with the round function treated as a random permutation.

The analysis in an idealized model can serve as heuristic justification for the use of these
constructions in practice. Another benefit of the CHF-based approach in idealized models is
that the final constructions are often very efficient.

Extraction in Idealized Models. When studying extraction in idealized models, there
are two possibilities. One is to consider only oracle-independent sources (as done, e.g.,
in [15, 7, 32, 35]). This approach provides limited realism, since the oracle abstracts a CHF,
and it is unreasonable to assume that sources are completely independent of it. For example,
the timing of an interrupt may well depend on computations related to the hash function in
use. Furthermore, if one does not allow oracle-dependent sources, results in the idealized
model do not match those in the standard model: For example, the extractor-fixing attack
can in general not be performed without oracle access, as the idealized primitive essentially
acts as a (very large) seed.

The other option is to consider oracle-dependent sources. However, here the extractor-
fixing attack reappears, and at a first glance, the only solution seems to be using a seed (as
done, e.g., in [24, 20]). Fortunately, there are other alternatives: Work by Coretti et al. [11]
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weakens the notion of oracle-dependence by requiring that the output of a source have entropy
even given the queries the source made to the idealized primitive and the corresponding
answers. This essentially amounts to modeling that “natural” sources occurring in practice
add extra entropy on top of the CHF evaluations occurring around them.

Independent Sources of Entropy. Another way of avoiding a seed is to consider split
entropy sources, i.e., sources that produce independent values satisfying certain min-entropy
conditions. The study of such “multi-source” extractors began with the work of Chor and
Goldreich [9], who introduced the problem of extracting randomness from two or more
independent weak sources. Since then, many works have improved the entropy requirements,
output length, and error parameters of extractors for both the two-source and the multi-source
settings [2, 14, 27, 8]. These developments have led to increasingly efficient constructions,
with broad applications in derandomization, cryptography, and complexity theory.

When studying the practicality of such extractors, it is pertinent to first examine whether
sources of entropy that can be assumed to be independent actually exist. The answer appears
to be affirmative when considering sources used in practice: For instance, Intel Secure Key, a
hardware-based random number generator integrated into most modern Intel processors, uses
thermal noise as entropy source [26]. Another source of entropy is sensor data measuring
different physical properties, such as temperature and light intensity. Yet other sources use
user-driven events such as keystrokes, mouse movements, and touchscreen interactions. All
these measurements are influenced by distinct physical processes and environmental factors,
and can therefore reasonably be considered independent.

In spite of the theoretical advancements mentioned above, for practically relevant con-
structions of extractors one still resorts to CHFs and, to avoid non-standard assumptions, to
idealized models. As a result, in this work we initiate the study of CHF-based multi-source
extractors by providing suitable ideal-model definitions and by analyzing, as a first step,
the security of the random oracle itself as a multi-source extractor wrt. several definitional
variants. Investigating the security of non-monolithic constructions (e.g., Merkle–Damgård
or Sponges) is left as an exciting open problem.

1.2 Our Contributions
Multi-Source Extractors in Idealized Models. A first contribution of this work is to put
forth a definitional framework that captures extraction in idealized models, allowing the
source to depend on the idealized primitive. When defining oracle-dependent extraction in
an idealized model, the following definitional choices are possible:
1. The source can either fully depend on the ideal primitive (IP) or be computationally

restricted by limiting the number of queries it makes to the IP;
2. To measure the entropy (or unpredictability) of the source, one can require unpredictability

conditioned on the entire IP or only with respect to a predictor with bounded-query
access to the IP;

3. For the distinguisher trying to tell the extractor output from a uniform string, one can
either consider an unbounded party that gets the entire oracle as input or one that is
only allowed a limited number of queries to the IP.

These choices result in 23 = 8 possible notions, captured by a simple “source-distinguisher-
predictor” (SDP ) notation, where each entity can be “bounded” (B) or “unbounded” (U)
depending on the type of access the corresponding party has to the IP (see Figure 1). We
establish a complete set of generic implications between these notions.

ITC 2025
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Figure 1 Multi-source extractor notions in the random-oracle model. Notions are labeled via
an “SDP ” string (for Source, Distinguisher, and P redictor), with S, D, P ∈ {B, U} depending on
whether the corresponding party has bounded-query (B) or unbounded (U) access to the random
oracle. An arrow from X to Y means that any construction for X is also a construction for Y .
Corners typeset in gray are shown not to be achieved by the monolithic construction via attacks
presented in Section 4, specifically Proposition 17 (UBB) and Proposition 18 (BUB). Corners typeset
in yellow are achieved in Sections 5 and 6, specifically Theorem 19 (BBB) and Theorem 23 (UBU).

Our definitions are captured by two games: In the first game, the source interacts with
the IP to produce values x and z, where x is the input to the extractor and z is some leakage
about x. A predictor, also with access to the IP, is then given z and tries to predict x.
The second game is the extraction game, in which ℓ ≥ 1 sources interact with the oracle to
produce otherwise independently sampled (xi, zi), and a distinguisher attempts to tell apart
the extractor output on the xi from a uniform string, given the leakage strings zi.

Note that this definitional framework also captures as a special case the entropy notion
from [11], in which there is a single bounded source, and the predictor as well as the
distinguisher are bounded. This is done by considering canonical bounded sources, which
output the query/answer list in the leakage.

Results. We then go on to investigate whether the monolithic random oracle is a good
multi-source extractor. Specifically, we make the following findings:
1. We first establish a positive result for one of the easiest cases, BBB (see Theorem 19).

This result also implies the case BBU, as making the predictor unbounded reduces the
class of sources.

2. We then turn to the main focus of this work, involving unbounded sources. This is a
crucial setting, as it minimizes the assumptions on the source.
a. We first observe that the random oracle does not work as an extractor when the

predictor is bounded (i.e., the UBB and UUB configurations). This is due to the fact
that sources with unbounded oracle access can return a fixed point in the RO. While
such sources are unpredictable for a bounded-query predictor, a bounded distinguisher
can easily check if the given input is fixed under the RO (see Proposition 17).

b. The main result of our paper is to show that the monolithic random oracle is an
effective extractor in the UBU setting (see Theorem 23), i.e., with unbounded source
and predictor, but with a bounded distinguisher. This is an important case as, in
practice, one can reasonably assume distinguishers to be bounded.

3. Finally, we show an attack against BUB, where sources can leak some information about
their output to the distinguisher, which can use its unbounded oracle access to check if
the challenge it is given has a preimage compatible with the leakage (see Proposition 18).

Finding efficient constructions when the distinguisher is unbounded (i.e., for UUU and BUU)
is left for future work.
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Comparison to Coretti et al. [11]. Comparing our main result to the analogous one in [11],
we observe that the two statements are formally incomparable. Indeed, our notion assumes
at least two independent, unbounded sources, while their setting assumes a single, bounded
source in the BBU setting and that the source leaks its random oracle queries.

Techniques. In our main result, the source can depend arbitrarily on the random oracle.
This dependency allows the source to create arbitrary correlations in the distribution of the
oracle, conditioned on the source’s output and potential leakage. One way of dealing with
such correlations is to use the compression technique of Gennaro and Trevisan [25].

Our proof strategy follows that of Dodis et al. [16], which in turn is based on De et al. [13].
We begin by using a compression argument to establish that a random oracle, when applied
to inputs x = (x1, . . . , xℓ) produced by independent sources S1(H), . . . ,Sℓ(H), satisfies the
property of unrecoverability: It is computationally infeasible to recover x from H(x), even
given the leakage of the (unpredictable) sources. The proof then transitions to reducing
distinguishing H(x) from a random output to a next-bit guessing problem. The difficulty of
next-bit guessing is in turn established via reduction to the unrecoverability property and
via an incompressibility argument that uses a next-bit guesser to compress oracles.

Throughout these steps, it is crucial to account for the fact that the inputs xi are not
uniformly random and independent of the oracle, as is the case in [16]. Instead, they can
fully depend on the oracle and are only guaranteed to have entropy conditioned on the oracle.
To handle this obstacle, we decompose high-entropy sources into convex combinations of flat
sources [34] at the necessary steps in the proof.

1.3 Related Work
There are numerous other models in which one can study randomness extraction. Some
examples include:

Dodis et al. [22], who investigate extracting randomness from extractor-dependent sources
that are capable of making black-box queries to the seeded extractor;
The study of Santha–Vazirani (SV) sources, which consist of sequences of random bits
where an adversary has partial control over the conditional distribution of each bit given
the previous bits – extraction from such sources is known to be impossible [31], but more
recent work has shown that extraction is feasible for non-binary SV sources [3];
Aggarwal et al. [1], who consider a weaker type of sources called SHELA sources, which
do not allow for uniform extraction but for a weaker notion of “somewhere extraction”
that is sufficient for some applications.

The main difference between our work and the majority of existing results is that they
focus on providing explicit constructions in the standard model. For instance, the work of
Dodis and Oliveira [17] uses the probabilistic method to show the existence of so-called super-
strong extractors (and then provides explicit constructions thereof).1 Note the qualitative
difference between proving the existence of a not necessarily efficient extractor in the standard
model via the probabilistic method versus our treatment in the random-oracle model, where
the focus is on validating cryptographic constructions of extractors in an idealized model,
with the monolithic extractor being the first object of study. We further comment on the
differences between these results and our work in the relevant sections of the paper.

1 In our terminology, super-strong extractors are two-source extractors that work even if one of the two
inputs is made public.

ITC 2025
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1.4 Future Directions
Our work shows that compression is sufficiently powerful to establish multi-source extraction
and generation bounds for the monolithic random oracle. However, compression is not
straightforward to apply when the idealized object is not fully random, as is the case for
many non-monolithic constructions such as Merkle–Damgård or Sponge.2 This raises the
question of whether other techniques can be extended to work in the multi-source setting.

The decomposition techniques of Coretti et al. (CDGS) [10] and Unruh [33] are alternative
techniques that can lead to simpler proofs, and can therefore be potentially applied to non-
monolithic constructions in the multi-source setting. In CDGS, for a parameter P ∈ N, one
decomposes the random oracle conditioned on some RO-dependent leakage z into a convex
combination of sources, each of which is fixed on at most P points and dense otherwise
(plus some small error distribution). CDGS use such a decomposition to show that the RO
model with auxiliary information (AI-ROM) is indistinguishable from a P -bit-fixed (BF) RO
model, where some inputs to the RO are fixed to values computed during decomposition on
leakage z, and the other values are uniformly random. The statistical difference between the
two settings is O(ST/P ), where S is an upper bound on the size of the leakage z, T is the
query complexity of the distinguisher, and P is the number of fixed points. In applications,
P cannot be chosen too large, as then the probability of certain bad events (e.g., a challenge
point lying in the set of fixed points) would be too large.

Unruh decomposition is conceptually simpler in that it decomposes the original ran-
dom oracle and the set of fixed points is compatible with the given random oracle. The
distinguishing advantage, however, is now O(

√
ST/P ).

A natural question is whether decomposition techniques like CDGS or Unruh can be
used in the multi-source setting. This turns out not to be the case, at least when these
techniques are applied directly in parallel to fix points for each source separately, and
then fixing the points in the union of these sets.3 Indeed, consider sources S1 and S2 that
leak z1 :=

∑
1 ̸=x∈[N ] H(x) and z2 :=

∑
x∈[N ] H(x). Clearly, given (z1, z2), the value H(1) is

revealed. That is, an AI-ROM adversary can determine H(1) given leakage (z1, z2). On
the other hand, z1 and z2 individually leak very little information about the hash of any
particular point: H(1) is random and independent of the hashes of all other points. This
means that running the CDGS decomposition in parallel on z1 and z2 will not fix H(1).
Consequently, a BF-ROM adversary will not be able to predict H(1).4

Despite these attacks, we conjecture that parallel decomposition is possible under appro-
priate restrictions. Such parallel decomposition techniques would be helpful in studying the
multi-source extraction properties of non-monolithic constructions. We leave the development
of these techniques to future work.

1.5 Structure of the Paper
We start by recalling the preliminaries, including the compression lemmas, in Section 2.
In Section 3, we formally define multi-source extractors with respect to different source
classes, unpredictability notions, and indistinguishability metrics. In Section 4, we rule out

2 Note that such a result does not follow from the indifferentiability of these constructions, as the multi-
source extractor game, due to the unpredictability requirement on the sources, is not single-stage [30].

3 Another approach would be to combine the sources and apply decomposition to the resulting source.
Multi-source extraction, however, does not hold with respect to a single source, and accordingly it is
unclear how one would upper-bound the probability of sampled points lying in the set of fixed points.

4 We note that this is an attack on directly applying decomposition as a proof technique. Moreover, z1
and z2 can be made unpredictable by simply appending random bits.
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the notions where the predictor is not as powerful as either the source or the distinguisher.
Section 5 contains our security result for distinguishes and sources with a bounded number
of queries. In Section 6, we present our main contribution on the multi-source randomness
extraction with respect to arbitrary unpredictable sources. This leaves two notions, where
both the distinguisher and predictor are unbounded, open for future work.

2 Preliminaries

Basic Notation. We denote by N and R the sets of natural and of real numbers, and
for n ∈ N we define [n] := {1, . . . , n}. The cardinality of a set S is denoted |S|, and we let S∗

be the set of finite-length tuples over S. As usual, the empty tuple is denoted ε. If X is a
random variable, then sampling from X is denoted x←← X ; when X is uniformly distributed
over a finite set X, we write x ←← X instead. The support of a random variable X is
denoted Supp(X ). For ℓ, M, N ∈ N, we write Fun(N ℓ, M) for the set of functions from [N ]ℓ
to [M ]. We use boldface notation for vectors, as in x = (x1, . . . , xℓ), and we write |x| for the
length of the vector x. If not stated otherwise, indexes in vectors and strings start from 1.
All logarithms are to base 2.

ROM [23, 5]. Let ℓ, M, N ∈ N. We define the random-oracle model RO[ℓ, N, M ] as the
uniform distribution on Fun(N ℓ, M). When operating in this model, all algorithms (both
honest and adversarial) can query a function H ∈ Fun(N ℓ, M) as an oracle. In security
games, one first samples H uniformly from Fun(N ℓ, M). Afterwards, the game is run with
all parties having oracle access to H. For the remainder of this paper, we will always work
in this setting.

Fundamental Lemma of Game Playing [6]. We use the code-based game-playing framework
of Bellare and Rogaway. Let G1 and G2 be two games whose code is identical except for the
consequent inside one if-branch, and let Bad be the event that the if-statement is triggered.
Then |Pr[G1]− Pr[G2]| ≤ Pr[Bad].

Monolithic Construction. Let ℓ, M, N ∈ N. The monolithic construction is the algo-
rithm Mono := Mono[ℓ, N, M ] which takes a vector x ∈ [N ]ℓ as input, has oracle access
to H ∈ Fun(N ℓ, M), and returns y := H(x) ∈ [M ].

Source Codes. Let S be a set. A (deterministic) code for S is a pair (Enc, Dec), where
Enc : S → {0, 1}l and Dec : {0, 1}l → S are functions, and l ∈ N. A randomized encoding
for S is a pair (Enc, Dec), where Enc : S×R→ {0, 1}l and Dec : {0, 1}l×R→ S are functions,
R is a set, and l ∈ N.

▶ Lemma 1 (Deterministic compression [13, 16]). Let S be a set, and let (Enc, Dec) be a code
for S such that, for every m ∈ S, Dec(Enc(m)) = m. Then

E
m←←S

[|Enc(m)|] ≥ log |S| .

▶ Lemma 2 (Randomized compression [13, 16]). Let S be a set, δ ∈ R>0, and let (Enc, Dec)
be a randomized encoding for S with recovery probability δ, meaning that for every m ∈ S,

Pr
r←←R

[Dec(Enc(m, r), r) = m] ≥ δ .

Then l ≥ log |S| − log 1/δ.

ITC 2025
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Flat Sources. Let X be a random variable over a finite set S and k ∈ R>0.
1. We call X a k-source if, for every x ∈ S, Pr[X = x] ≤ 2−k.
2. We say that X is flat if it is uniformly distributed over a subset T ⊆ S.
3. Assume that 2k ∈ N. We call X a flat k-source if it is uniformly distributed over a

subset T ⊆ S with |T | = 2k.

▶ Lemma 3 (Flat decomposition of sources [34]). Let k ∈ R>0 with 2k ∈ N. Then every k-
source X is a convex combination of flat k-sources, i.e., X =

∑
piXi with 0 ≤ pi ≤ 1 for

all i,
∑

pi = 1, and all the Xi are flat k-sources.

Numeric Inequalities. We conclude by recalling three inequalities for real numbers and
their powers that we will use in this work.

▶ Lemma 4 (Numeric inequalities). Let e ∈ R denote Euler’s number. Then:
1. For all x ∈ R with x ≥ 1, it holds that (1− 1/x)x ≤ e−1.
2. For all x ∈ R with x ≥ −1, and all r ∈ N, it holds that (1 + x)r ≥ 1 + rx.
3. For all k, n ∈ N with 0 < k ≤ n, it holds that (n/k)k ≤

(
n
k

)
≤ (en/k)k.

3 Multi-Source Extractors

In this section, we formally introduce multi-source extractors (MSEs) in the random-oracle
model. We first formalize unpredictability (Pred) of sources, the property that forms the
underlying assumption in all results that we prove. We then go on to defining unrecover-
ability (UR) and MSE for Mono. Our notions are parameterized by the query complexity of
the various parties in the Pred, UR, and MSE games, and by the advantages they achieve in
these games. We present our definitions for the monolithic construction Mono, but general-
izations to other constructions and idealized models are straightforward. Finally, we prove
implications between these notions and between different parameter sets for the same notion.

▶ Definition 5 (Sources, Adversaries, Distinguishers, and Predictors). Let ℓ, M, N ∈ N.
1. A source is an algorithm S that takes no input and returns a pair (x, z) ∈ [N ]× {0, 1}∗.
2. An adversary is an algorithm A which, on input y ∈ [M ] and a vector z ∈ ({0, 1}∗)ℓ of

strings, returns x′ ∈ [N ]ℓ.
3. A distinguisher is an algorithm D which, on input y ∈ [M ] and a vector z ∈ ({0, 1}∗)ℓ,

returns a bit.
4. A predictor is an algorithm P which, on input z ∈ {0, 1}∗, returns x′ ∈ [N ].
All these algorithms are probabilistic and unbounded, and additionally receive oracle access to
a function H ∈ Fun(N ℓ, M).

▶ Definition 6 (Unpredictability). Let ℓ, M, N ∈ N, S be a source, and P a predictor. We
define the advantage of P in the prediction game for S as Advpred

S,P := Pr[PredPS ], where the
game PredPS is given in Figure 2. For q ∈ N and δ ∈ R≥0, we say that S is (q, δ)-unpredictable
if for every predictor P making at most q oracle calls, we have Advpred

S,P ≤ δ.

▶ Remark 7. The notion of unpredictability that we consider represents the first main point
of difference with several prior works. For example, the class of sources that we consider
is larger than the one in the work of Dodis and Oliveira [17], who essentially require high
min-entropy for every oracle. We on the other hand require unpredictability to hold only
on average over the choice of the RO. This approach has been used in other prior works,
e.g., [11, 4]. In particular, the class of sources that we consider contains the one of Coretti et
al. [11] as a subclass, by setting the leakage z to be the query-answer pairs of the source.



S. Coretti, P. Farshim, P. Harasser, and K. Southern 10:9

Game PredP
S :

H ←← Fun(N ℓ, M)
(x, z)←← SH

x′ ←← PH(z)
return (x = x′)

Game URS,A:
H ←← Fun(N ℓ, M)
for i = 1 to ℓ do (xi, zi)←← SH

i

y ← H(x); x′ ←← AH(y, z)
return (x = x′)

Game MSES,D:
H ←← Fun(N ℓ, M); b←← {0, 1}
for i = 1 to ℓ do (xi, zi)←← SH

i

y0 ←← [M ]; y1 ← H(x)
b′ ←← DH(yb, z); return (b = b′)

Figure 2 The prediction game for a source S, and the unrecoverability and multi-source-extractor
games for the monolithic construction Mono.

▶ Remark 8. The class of sources that we consider can leak information to the distinguisher
or predictor via z. One benefit of this definitional choice is that it allows modeling of
auxiliary input via preprocessing. Indeed, we can assume without loss of generality that such
auxiliary information is computed deterministically, and thus every source can recompute it
and include it as part of its leakage. Unpredictability is preserved under this transformation
as long as predictors are unbounded and can also recompute the auxiliary information.

▶ Definition 9 (Unrecoverability). Let ℓ, M, N ∈ N, S = (S1, . . . ,Sℓ) be a tuple of sources,
and A an adversary. We define the advantage of (S,A) in the unrecoverability game for Mono
as Advur

S,A := Pr[URS,A], where the game URS,A is given in Figure 2. For qS , qA, qP ∈ N
and δ, ϵ ∈ R≥0, we say that Mono is (qP , δ, qS , qA, ϵ)-unrecoverable if for every (S,A) as
above such that, for every i ∈ [ℓ], Si is (qP , δ)-unpredictable and makes at most qS oracle
calls, and such that A makes at most qA oracle calls, we have Advur

S,A ≤ ϵ.

▶ Definition 10 (Multi-Source Extraction). Let ℓ, M, N ∈ N, S = (S1, . . . ,Sℓ) be a tuple
of sources, and D a distinguisher. We define the advantage of (S,D) in the multi-source-
extraction game for Mono as Advmse

S,D := 2 ·Pr[MSES,D]−1, where the game MSES,D is given
in Figure 2. For qS , qD, qP ∈ N and δ, ϵ ∈ R≥0, we say that Mono is a (qP , δ, qS , qD, ϵ)-multi-
source-extractor (MSE for short) if for every (S,D) as above such that, for every i ∈ [ℓ], Si

is (qP , δ)-unpredictable and makes at most qS oracle calls, and such that D makes at most qD
oracle calls, we have Advmse

S,D ≤ ϵ.

▶ Remark 11. Notice that different restrictions on the query complexity q of the parties
above allow to formulate qualitatively different results. When q is “small,” one can use
well-known techniques (e.g., lazy sampling) to prove security of a given construction. Usually,
bounds obtained in this way become meaningless in the regime where q is “large,” e.g., large
enough to query H on all possible inputs (which is equivalent to giving H in full as input),
so different techniques (e.g., along the lines of [16]) are necessary in this setting.
▶ Remark 12. In this work, we opt for a concrete treatment of security, but an asymptotic
formulation is also possible. In that setting, all idealized models, parties, and security notions
depend on a security parameter λ. For security to hold, advantages must be negligible in λ.
Parties are probabilistic and can be either polynomial-time in λ or unbounded, and in the
latter case either have polynomially bounded oracle access to Hλ, or get Hλ in full as input.
▶ Remark 13. Let ℓ, M, N ∈ N, S = (S1, . . . ,Sℓ) a tuple of sources, and A an adversary in
the UR game for Mono. Without loss of generality, we can assume A to be deterministic.
Indeed, if R denotes the random variable representing the randomness of (the possibly
randomized adversary) A, we have

Advur
S,A = Pr[URS,A] =

∑
r

Pr[URS,A |R = r] Pr[R = r]

=
∑

r

Pr[URS,A[r]] Pr[R = r] =
∑

r

Advur
S,A[r] Pr[R = r] ,
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where A[r] is the deterministic adversary A with hard-coded randomness r. This means that
there must exist r such that Advur

S,A ≤ Advur
S,A[r], showing that for every (possibly randomized)

adversary A, there exists a deterministic adversary B such that Advur
S,A ≤ Advur

S,B. It is
therefore sufficient to upper-bound the advantage of (S,A) in the UR game for Mono when A
is deterministic. A similar remark holds for distinguishers D in the MSE game for Mono.

Generic Implications. We begin by studying the relative strength of the security no-
tions SEC ∈ {UR, MSE}. Clearly, if Mono is SEC-secure for a given set of parameters,
it remains secure if the sources and the adversary (resp., the distinguisher) are allowed a
smaller number of queries, and the predictor can make more queries. Moreover, if Mono
is MSE-secure for a given set of parameters, it is also UR-secure in certain parameter ranges.
In the following, fix ℓ, M, N ∈ N.

▶ Proposition 14. Let qS , q′S , qA, q′A, qD, q′D, qP , q′P ∈ N and δ, δ′, ϵ, ϵ′ ∈ R≥0, such that
q′S ≤ qS , q′A ≤ qA, q′D ≤ qD, q′P ≥ qP , δ′ ≤ δ, and ϵ′ ≥ ϵ. (1) If Mono is (qP , δ, qS , qA, ϵ)-
unrecoverable, then it is also (q′P , δ′, q′S , q′A, ϵ′)-unrecoverable. (2) If Mono is a (qP , δ, qS , qD, ϵ)-
MSE, then it is also a (q′P , δ′, q′S , q′D, ϵ′)-MSE.

Proof. We only prove (1), as the proof of (2) is identical (except that A is replaced with D
in the following). Let S = (S1, . . . ,Sℓ) be any tuple of sources such that, for every i ∈ [ℓ],
Si is (q′P , δ′)-unpredictable and makes at most q′S oracle calls, and let A be any adversary
making at most q′A oracle calls. Then clearly, for each i ∈ [ℓ], Si is also (qP , δ)-unpredictable
and makes at most qS oracle calls, and A makes at most qA oracle calls. By assumption,
this means that Advur

S,A ≤ ϵ ≤ ϵ′. Since this inequality holds for every pair (S,A) as above,
by definition Mono is (q′P , δ′, q′S , q′A, ϵ′)-unrecoverable. ◀

▶ Proposition 15. Let qS , qD, qP ∈ N with qD ≥ 1, and δ, ϵ ∈ R≥0. If Mono is a (qP , δ, qS ,

qD, ϵ)-MSE, then it is (qP , δ, qS , qD − 1, ϵ + N ℓ/M)-unrecoverable.

Proof. Let S = (S1, . . . ,Sℓ) be a tuple of sources such that, for every i ∈ [ℓ], Si is (qP , δ)-
unpredictable and makes at most qS oracle calls. Let A be an adversary making at most qD−1
oracle calls, and consider the distinguisher D which runs A on its input (y, z) to get x′, and
then returns the bit (H(x′) = y). Then clearly D makes at most qD oracle calls. Furthermore
notice that, when b = 1 in MSES,D, distinguisher D will return 1 if A succeeds in finding a
preimage, so that Pr[MSES,D | b = 1] ≥ Advur

S,A. On the other hand, when b = 0, we have:

Pr[MSES,D | b = 0] ≥ Pr[MSES,D | (b = 0) ∧ (y /∈ Rng(H))] Pr[y /∈ Rng(H)]
= Pr[y /∈ Rng(H)] ,

where the last equality holds because when y /∈ Rng(H), D will always return 0. Now notice
that Pr[y /∈ Rng(H)] = (1− 1/M)Nℓ ≥ 1−N ℓ/M , which means

ϵ ≥ Advmse
S,A ≥ Advur

S,A + 1− N ℓ

M
− 1 = Advur

S,A −
N ℓ

M
. ◀

▶ Remark 16. If bounds on the support sizes |Supp(Si)| are known, we can give a tighter
lower bound of Pr[y /∈ Rng(H)] ≥ 1 − |Supp(S1)| · · · |Supp(Sℓ)|/M , showing that Mono
is (qP , δ, qS , qD − 1, ϵ + |Supp(S1)| · · · |Supp(Sℓ)|/M)-unrecoverable. Also, notice that this
result holds for any construction, not just for the monolithic random oracle Mono.
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Src. SH
i :

EH ← {x ∈ [M ] ⊆ [N ] |H(x, x) = x}
if (EH ̸= ∅) then x← min EH

else x←← [M ]
z ← ε; return (x, z)

Dist. DH(y, z):
return (H(y, y) = y)

Game G1:
H ←← E

x′ ←← PH(ε)
return (H(x′, x′) = x′)

Figure 3 Definition of sources Si, i ∈ [2], of the distinguisher D, and of the game G1 from the
proof of Proposition 17.

4 Attacks

In this section, we present attacks against the configurations UBB (Proposition 17) and BUB
(Proposition 18) in Figure 1. The former result also rules out UUB, which implies UBB.

▶ Proposition 17. Let M, N, qP ∈ N with M ≤ N , and set ℓ := 2. Then there exist a pair of
sources S = (S1,S2), each of which is (qP , 2(qP + 2)/M)-unpredictable and makes qS = M

oracle calls, and a distinguisher D making qD = 1 oracle calls, such that

Advmse
S,D ≥ 1− 1

e
− 1

M
. (1)

Proof. For every i ∈ [2], let Si be the source defined in Figure 3, which returns the
smallest x ∈ [M ] ⊆ [N ] such that H(x, x) = x if such an x exists, and a random value x ∈ [M ]
otherwise. Notice that this definition of Si requires it to be allowed up to M oracle queries.
Furthermore, let D be the distinguisher defined in Figure 3, which checks if its input y ∈ [M ]
satisfies H(y, y) = y.

To show that Si is (qP , 2(qP + 2)/M)-unpredictable, let P be any predictor in the
prediction game for Si making at most qP oracle calls, and let

E := {H ∈ Fun(N2, M) | (∃x ∈ [M ] ⊆ [N ])(H(x, x) = x)}

be the set of functions having a collision as in the definition of Si. A direct counting argument
gives |E∁| = (M −1)M ·MN2−M , from which we infer that |E| = MN2− (M −1)M ·MN2−M .
The law of total probability now gives

Pr[PredPSi
] ≤ Pr[PredPSi

|H ∈ E] + Pr[PredPSi
|H /∈ E]

= Pr[PredPSi
|H ∈ E] + 1

M
≤ Pr[G1] + 1

M
,

where G1 is the game defined in Figure 3. Here, the last inequality holds because the
uniform distribution on Fun(N2, M), conditioned on the outcome being in E, is the uniform
distribution on E, and because the winning condition in G1 is less restrictive than the one
in PredPSi

, given that H ∈ E. Indeed, in PredPSi
, predictor P must guess the exact output x

of Si, which satisfies H(x, x) = x, whereas in G1 it wins if it returns any such value x′ ∈ [N ].
To bound Pr[G1], we transition to yet another game G2 that proceeds as G1, but we let P

win if any of its oracle queries of the form (z, z) ∈ [M ]2 (there are at most qP of them), or its
final output x′, satisfy the winning condition of G1. Then again Pr[G1] ≤ Pr[G2], because P
will always win G2 if it wins G1. Now notice that, by definition, predictor P will lose game G2
if for all queries of the form (z, z) ∈ [M ]2 it makes, it holds H(z, z) ̸= z, and the same is
true for its output x′. The probability of this happening is at least

(M − 1)qP +1 ·MN2−(qP +1) − |E∁|
|E|

= (1− 1/M)qP +1 − (1− 1/M)M

1− (1− 1/M)M
,
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Src. SH
i :

x←← [N ]; z ← H(x, x)
return (x, z)

Dist. DH(y, z):
for i = 1 to 2 do

Xi ← {x ∈ [N ] |H(x, x) = zi}
return (∃x1 ∈ X1)(∃x2 ∈ X2)

(H(x1, x2) = y)

Game G1:
T ← ∅; z ←← [M ]; x′ ←← PH(z); x←← [N ]
if ((x, x) ∈ Dom(T )) then return 1
T [(x, x)]← z; return (x = x′)

Game G2:
T ← ∅; z ←← [M ]; x′ ←← PH(z); x←← [N ]
return (x = x′)

Proc. H(u, v):
if ((u, v) /∈ Dom(T )) then T [(u, v)]←← [M ]
return T [(u, v)]

Figure 4 Definition of sources Si, i ∈ [2], of the distinguisher D, and of the games G1 and G2

from the proof of Proposition 18.

which means

Pr[G2] ≤ 1− (1− 1/M)qP +1 − (1− 1/M)M

1− (1− 1/M)M
≤ qP + 1

M
· e

e− 1 ≤
2(qP + 1)

M
.

Here, the second step uses Inequality 2 from Lemma 4. Collecting all terms above, we obtain
the claimed unpredictability bound for sources Si.

We are now left with bounding the MSE-advantage of (S,D). To that end, observe that
the probability of (S,D) winning the MSE game when b = 0 is 1 − 1/M , because for any
value y ∈ [M ] ⊆ [N ], H returns y on any input with probability 1/M . On the other hand,

Pr[MSES,D | b = 1] ≥ Pr[MSES,D | (H ∈ E) ∧ (b = 1)] Pr[H ∈ E | b = 1]

= Pr[H ∈ E] = MN2 − (M − 1)M ·MN2−M

MN2 = 1−
(

1− 1
M

)M

≥ 1− 1
e

,

where the last inequality follows from Inequality 1 from Lemma 4. Collecting the two terms
above, we obtain (1). ◀

▶ Proposition 18. Let M, N, qP ∈ N, and set ℓ := 2. Then there exist a pair of sources
S = (S1,S2), each of which is (qP , (qP + 1)/N)-unpredictable and makes qS = 1 oracle calls,
and a distinguisher D making qD = N2 oracle calls, such that

Advmse
S,D ≥ 1− M̄2

M
−M ·

(
eN

MM̄

)M̄

, (2)

where M̄ := ⌈ 4
√

M⌉.

Proof. For every i ∈ [2], let Si be the source defined in Figure 4, which returns a random x ∈
[N ] and z = H(x, x) as leakage. Furthermore, let D be the distinguisher defined in Figure 4,
which finds, for each i ∈ [2], all inputs of the form (xi, xi) satisfying H(xi, xi) = zi. Notice
that this definition of D requires it to be allowed up to N2 oracle queries.

To show that Si is (qP , (qP+1)/N)-unpredictable, let P be any predictor in the prediction
game for Si. Then we have

Pr[PredPSi
] ≤ Pr[G1] ≤ Pr[G2] + qP

N
= 1

N
+ qP

N
= qP + 1

N
,
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where games G1 and G2 are defined in Figure 4. Here, the first inequality holds because P
will always succeed in G1 if it wins the prediction game for Si, and the second inequality
follows from the fundamental lemma of game playing. Indeed, if we let Bad be the event in
game G1 that (x, x) ∈ Dom(T ), then G1 and G2 are identical until Bad, and Pr[Bad] ≤ qP/N

because x is random in [N ] and Dom(T ) contains at most qP entries. Finally, the first
equality in the chain above holds because x is uniformly random in [N ], and will thus be
equal to x′ with probability 1/N .

We are now left with bounding the MSE-advantage of (S,D). To that end, observe that
the probability of (S,D) winning the MSE game for Mono when b = 1 is 1, because when y

is the real hash value, then a preimage of y in X1 ×X2 exists by construction. On the other
hand, for the case b = 0, define

E :=
{

H ∈ Fun(N2, M)

∣∣∣∣∣ (∀k ∈ N)
(
(∃x1, . . . xk ∈ [N ])

(xi ̸= xj ∧H(xi, xi) = H(xj , xj)) =⇒ (k < M̄)
)} ,

where M̄ := ⌈ 4
√

M⌉. In other words, E is the set of all functions H ∈ Fun(N2, M) such that
there are less than M̄ pairwise distinct elements (xi, xi) ∈ [N ]× [N ], all mapping to the same
value under H. Denote by G the game MSES,D with bit b = 0 fixed and inverted winning
condition. Then Pr[MSES,D | b = 0] = 1− Pr[G], and by the law of total probability,

Pr[G] ≤ Pr[G |H ∈ E] + Pr[H /∈ E] ≤ M̄2

M
+
(

N

M̄

)
·M1−2M̄ .

Here, the bound on the first term follows from the fact that, since H ∈ E, both X1 and X2
contain at most M̄−1 elements, and therefore |H(X1×X2)| < M̄2. Since y ∈ [M ] is random,
it will hit an element in this set with probability at most M̄2/M . For the second term,
observe that if H /∈ E, then there exist at least M̄ elements xi ∈ [N ] such that H(xi, xi)
collide, an event happening with probability(

N
M̄

)
·M ·MN2−M̄

MN2 =
(

N

M̄

)
·M1−M̄ ≤

(
eN

M̄

)M̄

·M1−M̄ = M ·
(

eN

MM̄

)M̄

.

Here, the inequality follows from Inequality 3 in Lemma 4. Collecting the terms above, we
obtain (2). ◀

5 The Bounded Case

Having covered attacks against the MSE-notion in the previous section, we now turn to
positive results. In this section, we prove that the monolithic construction Mono is a multi-
source extractor in the setting where all parties have bounded-query access to the random
oracle (i.e., the BBB corner in Figure 1). Observe that this result also implies security in
the BBU setting by Proposition 14. Our main result, where sources and predictors can query
the entire oracle, is presented in Section 6.

▶ Theorem 19. Let ℓ, M, N, qS , qD, qP ∈ N with ℓ ≥ 2 and qP ≥ (ℓ−1)qS+qD, and k ∈ R≥0.
Then Mono is a (qP , 2−k, qS , qD, ϵ)-MSE, where ϵ is given in the right-hand side of (3). More
precisely, for every tuple S = (S1, . . . ,Sℓ) of sources, each of which is (qP , 2−k)-unpredictable
and makes at most qS oracle calls, and every distinguisher D making at most qD oracle calls,
we have

Advmse
S,D ≤

ℓqS + qD
2k

. (3)
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Game G1:
H ←← Fun(N ℓ, M); Q← ∅
for i = 1 to ℓ do (xi, zi)←← SO

i

y ← H(x); return DO(y, z)

Proc. O(q):
Q← Q ∪ {q}; return H(q)

Game G2:
H ←← Fun(N ℓ, M); Q← ∅
for i = 1 to ℓ do

(xi, zi)←← SO
i

y ← H(x); b′ ←← DO(y, z)
if (x ∈ Q) then return 1
return b′

Game G3:
H ←← Fun(N ℓ, M); Q← ∅
for i = 1 to ℓ do

(xi, zi)←← SO
i

y ←← [M ]; b′ ←← DO(y, z)
if (x ∈ Q) then return 1
return b′

Pred. PH
j (zȷ̄):

Q← ∅; zȷ̄ ← zȷ̄; (xj , zj)←← SO
j

for i ∈ [ℓ] \ {j, ȷ̄} do (xi, zi)←← SH
i

y ←← [M ]; b′ ←← DH(y, z)
q ←← Q; return qȷ̄

Pred. QH(z1):
Q← ∅; z1 ← z1

for i = 2 to ℓ do (xi, zi)←← SH
i

y ←← [M ]; b′ ←← DO(y, z)
q ←← Q; return q1

Figure 5 Code of the intermediate games, and definition of the predictors Pj and Q, from the
proof of Theorem 19. Oracle O is the same throughout the figure.

Proof. Consider a tuple of sources S = (S1, . . . ,Sℓ) such that, for every i ∈ [ℓ], Si is (qP , 2−k)-
unpredictable and makes at most qS oracle calls, and a distinguisher D making at most qD
oracle calls. We prove bound (3) via a sequence of games, whose formal description can be
found in Figure 5:
G0 is the MSE-game for Mono played by (S,D), with bit b = 1 fixed.
G1 proceeds as G0, but we use a set Q to track all the queries made by the sources Si and

the distinguisher D. Clearly, G0 and G1 are indistinguishable, since the only difference is
that G1 records the queries made by the parties, and otherwise all distributions are the
identical. Therefore, Pr[G1] = Pr[G0].

G2 proceeds as G1, but we return 1 if any source Si or distinguisher D query vector x (which
is used when computing y = H(x)) to the random oracle H. Notice that G2 returns 1
whenever G1 does, so that Pr[G2] ≥ Pr[G1].

G3 proceeds as G2, but we no longer compute y as H(x), and instead sample it at random.
We claim that G2 and G3 are indistinguishable. Indeed, if x ∈ Q, both games return 1
by definition. If x /∈ Q, then H(x) is a random value that is unknown to all parties, so
computing y as y = H(x) is equivalent to sampling it at random. Thus, Pr[G3] = Pr[G2].

G4 proceeds as G3, but we remove the if-statement added in G2. Since we no longer need to
track the oracle queries of Si and D, we replace O with H, and do not initialize Q. The
resulting game coincides with the MSE-game for Mono played by (S,D) with bit b = 0
fixed and inverted winning condition.
To study the difference in success probability between G3 and G4, let Bad0 be the event
that D queries x while playing G3, and Badi the event that Si queries x in the same
game, for i ∈ [ℓ]. Then notice that G3 and G4 are identical until Bad :=

∨ℓ
i=0 Badi, and

by the fundamental lemma of game playing we therefore have

∣∣Pr[G4]− Pr[G3]
∣∣ = Pr[Bad] ≤ Pr[Bad0] +

ℓ∑
i=1

Pr[Badi] .

We study these probabilities separately. For j ∈ [ℓ], let ȷ̄ := (j mod ℓ) + 1, and consider
the predictor Pj playing the predictability game for Sȷ̄ defined in Figure 5. Notice that Pj

makes at most (ℓ− 1)qS + qD oracle calls, which means that

2−k ≥ Pr
[
PredPj

Sȷ̄

]
≥ Pr

[
PredPj

Sȷ̄

∣∣ Badj

]
Pr[Badj ] ≥ 1

qS
Pr[Badj ] .
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From here we get Pr[Badj ] ≤ qS · 2−k for every j ∈ [ℓ]. Similarly, let Q be the predictor
playing the predictability game for S1 defined in Figure 5. As before, Q queries H at
most (ℓ− 1)qS + qD many times, and therefore Pr[Bad0] ≤ qD · 2−k.

Combining the estimates above we obtain

Advmse
S,D = Pr[G0]− Pr[G4] ≤

∣∣Pr[G4]− Pr[G3]
∣∣ ≤ ϵ . ◀

▶ Remark 20. Observe that Theorem 19 is false when ℓ = 1. Indeed, we bound the
probability of Sj querying x by constructing a predictor against another source in S (e.g.,
Sj+1). When ℓ = 1, there is no “other” source to do that, and this step in the proof breaks
down. Also notice that it is actually impossible to prevent S1 from querying x in this case,
because x = x1 is known to S1.

More importantly, we can present an attack which relies on this fact: Consider the
source S1 which samples x ←← [N ], sets z ← (H(x) ≤ M/2) and returns (x, z), and the
distinguisher D who returns the bit ((y ≤M/2) = z). Then it is easy to see that S1 is (qP , δ)-
unpredictable for any qP and δ = 1/⌊M/2⌋ ≈ 2/M , and yet Advmse

S,D ≤ 1− ⌈M/2⌉/M ≈ 1/2
for S = (S1). The issue is that when ℓ = 1, S1 knows the entire input of H and can therefore
leak information about the output H(x), which then helps D.

6 The Unbounded Case

In this section, we prove our main positive result, showing that the monolithic construc-
tion Mono is a multi-source extractor in the setting where the distinguisher is the only party
with bounded-query access to the random oracle (i.e., the UBU corner in Figure 1). In
particular, each source can fully depend on the random oracle.

Following Dodis et al. [16], our approach is as follows: To show that the output of H

on the values xi returned by the ℓ sources is pseudorandom, we first use Yao’s equivalence
between distinguishing and next-bit prediction to turn any distinguisher with advantage ϵ

into a next-bit guesser P with advantage ϵ/ log M for some bit in H(x), say, the lth bit. Two
cases are now possible:
1. P queries x with “good” probability ϵ/(2 log M). We can then turn P into an adversary Q

in the UR game with advantage ϵ/(2 log M), by letting Q inspect the queries of P and
returning the one mapping to H(x). The advantage of Q can be bounded by a compression
argument similar to the one in [16]. However, special care needs to be taken because
unlike in [16], the challenge x is not chosen uniformly and independently of H, but is the
output of sources that have full oracle access. We deal with this issue by decomposing
the high-entropy sources into convex combinations of flat sources on large sets, and then
proceed similarly to the uniform case.

2. P queries x with probability less than ϵ/(2 log M), while still having advantage ϵ/ log M in
guessing the lth bit of H(x). We can then turn P into a guesser Q that never queries H

on x but still has advantage ϵ/(2 log M) in guessing the lth bit of H(x), by simply
running P and giving up whenever P wants to query x. Predictor Q can then be used
in an incompressibility argument to ultimately bound ϵ. For this part we follow De et
al. [13, Lemma 8.4], bearing in mind that the xi are non-uniform and oracle-dependent.

Following the roadmap outlined above, we begin by stating our unrecoverability result
and a preparatory lemma for our main theorem. In the interest of space, we present the
proofs of these statements in the full version of the paper [12].
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▶ Theorem 21 (Unrecoverability). Let ℓ, M, N, qA ∈ N and k ∈ R>0. Then Mono is (N ℓ, 2−k,

N ℓ, qA, ϵ)-unrecoverable, where ϵ is given in the right-hand side of (4). More precisely, for
every tuple S = (S1, . . . ,Sℓ) of sources, each of which is (N ℓ, 2−k)-unpredictable and has
unbounded oracle access, and every adversary A making at most qA oracle calls, we have

Advur
S,A = O

(
ℓ ℓ+1

√
qA
2kℓ

(σ + ℓN)
)

. (4)

Here, σ ≥
∑ℓ

i=1 σi, where σi ∈ N is a bound on the length of the leakage zi returned by Si.

▶ Lemma 22. Let N, ℓ, qA, σ, S ∈ N and ϵ ∈ R>0, so that Sℓ ≥ 40 and qA ≤ Sℓ/ log Sℓ.
Let A be a deterministic algorithm that makes at most qA queries to its oracle, takes an advice
string z of length at most σ, and is not allowed to query its input. Let O ⊆ Fun(N ℓ, {0, 1})
be a set such that, for each O ∈ O, there exist z ∈ {0, 1}σ and sets Si ⊆ [N ] with |Si| = S

for all i ∈ [ℓ] such that

Pr
xi←←Si

[AO(x, z) = O(x)] ≥ 1
2 + ϵ .

Then either qA > ϵSℓ, or there exists a randomized encoding scheme (Enc, Dec) for O such
that, for every O ∈ O,

Pr[Dec(Enc(O, r), r) = O] = Ω
(

ϵ

qA

)
,

and the length of each codeword is at most

σ + 2ℓS log
(

eN

S

)
+ N ℓ − Ω

(
ϵ2Sℓ

qA

)
+O(1) .

Finally, we come to the main theorem of this section, establishing that the random oracle
is a good multi-source extractor.

▶ Theorem 23 (MSE). Let ℓ, M, N, qD ∈ N and k ∈ R>0. Then Mono is (N ℓ, 2−k, N ℓ, qD, ϵ)-
MSE, where ϵ is given in the right-hand side of (5). More precisely, for every tuple of
sources S = (S1, . . . ,Sℓ), each of which is (N ℓ, 2−k)-unpredictable and has unbounded access
to its oracle, and every distinguisher D making at most qD oracle calls, we have

Advmse
S,D = O

(
ℓ log M ℓ+1

√
qD
2kℓ

(σ + ℓN)
)

. (5)

Here, σ ≥
∑ℓ

i=1 σi, where σi ∈ N is a bound on the length of the leakage zi returned by Si.

Proof. Let ϵ := Advmse
S,D. By Yao’s equivalence principle [36], any qD-query distinguisher can

be converted into a predictor P with the same query complexity, which can predict the lth
output bit of the oracle for some l ∈ [log M ], that is,

Pr[nbPredPS,l] ≥
1
2 + ϵ′ ,

where ϵ′ := ϵ/ log M and nbPredPS,l is the game defined in Figure 6 (left).

If P queries x with probability at least ϵ/(2 log M), then Theorem 21 gives

ϵ = O
(

ℓ log M ℓ+1

√
qD
2kℓ

(σ + ℓN)
)

, (6)
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Game nbPredP
S,j :

H ←← Fun(N ℓ, M)
for i = 1 to ℓ do (xi, zi)←← SH

i

y ← H(x); y′
j ←← PH(y1, . . . , yj−1, z)

return (yj = y′
j)

Game outPredQ
S,j :

H ←← Fun(N ℓ, M)
for i = 1 to ℓ do (xi, zi)←← SH

i

y ← Hj(x); z ←← QH
0 ; y′ ←← QHj

1 (x, z, z)
return (y = y′)

Figure 6 Definition of the jth next-bit prediction game, and of the output prediction game, both
for a tuple of sources S. In the latter game, Q1 is not allowed to query its input x to its oracle,
and Hj is the projection on the jth bit of H.

that is, our bound (5) is already satisfied in this case. So assume for the remainder of the
proof that this is not the case. We then construct a (single-bit) predictor Q = (Q0,Q1) that
tries to predict Hl(x) (the lth output bit of H(x)) without querying its input. Algorithm Q0
returns a table containing, in lexicographical order of the inputs, all but the lth bit of
the corresponding oracle outputs. This table is of size N ℓ(log M − 1). Algorithm Q1 is
a (qQ = qP)-query predictor that runs P on (H(x)1, . . . , H(x)l−1, z), and combines the
output of P with the generated table z, such that

Pr[outPredQS,l] ≥
1
2 + ϵ′ ,

where outPredQS,l is the output prediction game defined in Figure 6 (right).

Call a pair (O, z) ∈ Fun(N ℓ, M)× Supp(SO
1,2)× · · · × Supp(SO

ℓ,2) (α, β)-good if:
1. Pr[outPredQS,l |H = O ∧ z = z] ≥ 1/2 + αϵ′, and
2. For every i ∈ [ℓ] and predictor P with unbounded access to its oracle, it holds that

Pr[PredPSi
|H = O ∧ z = zi] ≤ β · 2−k.

In other words, a pair (O, z) as above is (α, β)-bad if either of the following conditions apply:
1. Pair (O, z) is low-win: (S,Q) succeeds with probability at most 1/2 + αϵ′ when (H, z) is

fixed to (O, z), i.e., Pr[outPredQS,l |H = O ∧ z = z] < 1/2 + αϵ′.
2. Pair (O, z) is low-entropy: There exist i ∈ [ℓ] and a predictor PO,z with unbounded oracle

access such that Pr[PredPO,z
Si
|H = O ∧ z = zi] > β · 2−k.

Denote by Wα the set of low-win pairs, Eβ,i set of pairs that are low-entropy for the ith
source, and Eβ :=

⋃ℓ
i=1 Eβ,i. Let BPα,β := Wα ∪ Eβ and GPα,β be the sets of (α, β)-bad

and (α, β)-good pairs, respectively. We start by bounding pbp := Pr[(H, z) ∈ BPα,β ]. By
the union bound we have

pbp ≤ Pr[(H, z) ∈Wα] +
ℓ∑

i=1
Pr[(H, z) ∈ Eβ,i] .

To bound plw := Pr[(H, z) ∈Wα], notice that

1
2 + ϵ′ ≤ Pr[outPredQS,l | (H, z) ∈Wα] Pr[(H, z) ∈Wα]

+ Pr[outPredQS,l | (H, z) /∈ Wα] Pr[(H, z) /∈ Wα] <

(
1
2 + αϵ′

)
· 1 + 1 · (1− plw) ,

from which we obtain plw < 1− (1− α)ϵ′. To bound ple,i := Pr[(H, z) ∈ Eβ,i], let P be the
predictor that queries its oracle H in full and then runs PH,ẑ, where ẑ := (0, . . . , z, . . . , 0),
if (H, ẑ) ∈ Eβ,i, and returns the constant 1 otherwise. For this choice of P we have

2−k ≥ Pr[PredPSi
] ≥ Pr[PredPSi

| (H, ẑ) ∈ Eβ,i] Pr[(H, ẑ) ∈ Eβ,i]

= Pr[PredPH,ẑ

Si
| (H, ẑ) ∈ Eβ,i] · ple,i ≥ β · 2−k · ple,i ,
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from which we get ple,i < 1/β for every i ∈ [ℓ]. Collecting all terms, we obtain a bound
pbp < 1− (1− α)ϵ′ + ℓ/β, and thus pgp = 1− pbp > (1− α)ϵ′ − ℓ/β.

To ensure that GPα,β ̸= ∅, we must pick α and β so that (1−α)ϵ′−ℓ/β > 0. In particular,
we can choose 0 < α < 1 to be a constant, and β > ℓ/((1 − α)ϵ′), i.e., β = bℓ/((1 − α)ϵ′)
for some constant b > 1. By at most doubling β if necessary, we can choose β so that
additionally 2k−log β ∈ N (as required by Lemma 3).

Now let Gα,β be the set of (α, β)-good oracles, defined as the O ∈ Fun(N ℓ, M) such
that (O, z) ∈ GPα,β for some leakage vector z. For every O ∈ Gα,β , fix any leakage vector zO
such that (O, zO) ∈ GPα,β . Then

pgo := Pr[H ∈ Gα,β ] ≥ Pr[(H, z) ∈ GPα,β ] = pgp ,

meaning that

|Gα,β | = pgo · |Fun(N ℓ, M)| ≥
(

(1− α)ϵ′ − ℓ

β

)
·MNℓ

> 0 .

For each (α, β)-good O and every i ∈ [ℓ], let XO,i be the conditional distribution of SO
i

on [N ] given that z = zO,i. We can then use Lemma 3 to decompose each XO,i into a convex
combination of flat sources XO,i,j , each having support size exactly S := 2k−log β . By an
averaging argument, there exists a flat source X ∗O,i within each convex combination such that

Pr[outPredQX∗
O,i

,l |H = O ∧ z = zO] ≥ 1
2 + αϵ′ .

Before coming to the actual compression argument, we distinguish four cases: If S < 40,
then 2k/β < 40, and substituting for β and therein for ϵ′ we obtain

ϵ < log M · 40bℓ

(1− α)2k
= O

(
ℓ log M

2k

)
.

Similarly, if qD > Sℓ/ log Sℓ, then qD > 2kℓ/(βℓℓ(k − log β)) > 2kℓ/(βℓℓk), so that after the
appropriate substitutions we get

ϵ < ℓ

√
(log M)ℓqDbℓℓℓ+1k

2kℓ(1− α)ℓ
= O

(
ℓ log M

ℓ

√
qDℓk

2kℓ

)
= O

(
ℓ log M

ℓ

√
qDℓN

2kℓ

)
.

Finally, if qD > ϵ′Sℓ, then again

ϵ < ℓ+1

√
(log M)ℓ+1qDbℓℓℓ

(1− α)ℓ2kℓ
= O

(
ℓ log M ℓ+1

√
qD
2kℓ

)
.

This shows that in all cases above, ϵ already satisfies our bound (5), so for the remainder of
the analysis assume that S ≥ 40, that qD ≤ Sℓ/ log Sℓ, and that qD ≤ ϵ′Sℓ. Note that this
clears all the “trivial” cases from Lemma 22.

We now define our randomized encoding of Gα,β as follows:
Encoding: Given O ∈ Gα,β , we encode it as follows:

Generate a table containing, in lexicographical order of x, all but the lth bit of the
oracle outputs O(x), taking N ℓ(log M − 1) bits;
Apply the encoding algorithm from Lemma 22 to obtain a randomized encoding of Oj ,
which has an encoding length of at most σ + 2ℓS log(eN/S) + N ℓ − Ω

(
(αϵ/ log M)2 ·

Sℓ/qA
)

+O(1) many bits.
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Decoding: Given a codeword as above, we decode it as follows:
Initialize an empty table for O;
Extract the table of all but the lth bit of outputs from the codeword and use this to
fill the oracle table;
Follow the decoding algorithm in Lemma 22 to extract the lth bit of each oracle output.

From Lemma 22 we also know that the recovery probability of this encoding scheme is at
least δ = Ω(αϵ/qD log M).

Adding up the lengths of the different parts in the encoding, and applying Lemma 2
with δ as above gives

N ℓ(log M − 1) + σ + 2ℓS log
(

eN

S

)
+ N ℓ − Ω

((
αϵ

log M

)2
· Sℓ

qD

)
+O(1)

≥ log
((

(1− α)ϵ′ − ℓ

β

)
·MNℓ

)
+ log

(
αϵ

qD log M

)
= N ℓ log M + log

(
(1− α)ϵ′ − ℓ

β

)
+ log

(
αϵ

qD log M

)
.

We now distinguish two more cases: If ϵ ≤ qD log M/(αN ℓ) then again we are done, since we
obtain a bound that verifies (5). Indeed,

ϵ ≤ qD log M

αN ℓ
≤ qD log M

αSℓ
= qD(log M)ℓ+1bℓℓℓ

α2kℓ(1− α)ℓϵℓ
,

giving

ϵ = O
(

ℓ log M ℓ+1

√
qD
2kℓ

)
.

If the above is not the case then, rearranging, we have

Ω
((

αϵ

log M

)2
· Sℓ

qD

)
≤ σ + 2ℓS log

(
eN

S

)
+ log

(
qD log M

αϵ

)
− log

(
(1− α)ϵ′ − ℓ

β

)
+O(1)

≤ σ + 2ℓN log e +O(ℓ log N)− log
(

(1− α)ϵ′ − ℓ

β

)
= σ +O(ℓN)− log

(
(1− α)ϵ′ − ℓ

β

)
= O(σ + ℓN)− log

(
(1− α)ϵ′ − ℓ

β

)
,

where the inequality uses the fact that x 7→ x log(eN/x) has a maximum at x = N , where it
takes the value N log e. Now recall that S = 2k/β and β = bℓ/(1− α)ϵ′, giving

Ω
(

ϵ2

(log M)2

)
= O

(qD
Sℓ

(σ + ℓN)
)
− qD

Sℓ
log
(

(1− α)ϵ′ − ℓ

β

)
= O

(
qDβℓ

2kℓ
(σ + ℓN)

)
− qDβℓ

2kℓ
log
(

(1− α)ϵ′ − ℓ

β

)
≤ O

(
qD(bℓ)ℓ

2kℓ((1− α)ϵ′)ℓ
(σ + ℓN)

)
− qD(bℓ)ℓ

2kℓ((1− α)ϵ′)ℓ
log
(

(1− α)ϵ′ − (1− α)ϵ′

b

)
≤ O

(
qD(bℓ)ℓ

2kℓ((1− α)ϵ′)ℓ
(σ + ℓN)

)
− qD(bℓ)ℓ

2kℓ((1− α)ϵ′)ℓ
log
(

(1− α)ϵ′(b− 1)
b

)
.
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Hence,

Ω
(

ϵℓ+2

(log M)ℓ+2

)
≤ O

(
qD(bℓ)ℓ

2kℓ(1− α)ℓ
(σ + ℓN)

)
+O

(
qD(bℓ)ℓ

2kℓ(1− α)ℓ
log
(

log M

ϵ

))
.

We now once more distinguish two cases: If log M/ϵ > N ℓ, then ϵ < log M/N ℓ, and again
our bound (5) holds. Otherwise, we obtain

Ω
(

ϵℓ+2

(log M)ℓ+2

)
≤ O

(
qD(bℓ)ℓ

2kℓ(1− α)ℓ
(σ + ℓN)

)
+O

(
qD(bℓ)ℓ

2kℓ(1− α)ℓ
log
(
N ℓ
))

≤ O
(

qD(bℓ)ℓ

2kℓ(1− α)ℓ
(σ + ℓN)

)
,

which gives

ϵℓ+2 ≤ O
(

qD(log M)ℓ+2(bℓ)ℓ+2

2kℓ(1− α)ℓ+2 (σ + ℓN)
)

,

and thus

ϵ ≤ O

(
ℓ+2

√
qD(log M)ℓ+2(bℓ)ℓ+2

2kℓ(1− α)ℓ+2 (σ + ℓN)
)
≤ O

(
bℓ log M

1− α
ℓ+2

√
qD
2kℓ

(σ + ℓN)
)

≤ O
(

ℓ log M ℓ+2

√
qD
2kℓ

(σ + ℓN)
)

.

This concludes the proof. ◀

▶ Remark 24. Compared to the work of Dodis and Oliveira [17], note that our MSE theorem
allows extracting many more bits (akin to a PRG security result), which cannot hold in the
statistical setting of [17]. This allows directly generating random bits from multiple entropy
sources, without further processing, using a standard hash function, as opposed to ad-hoc
constructions.

As a contribution of independent interest, we show in the full version of our paper [12]
that Mono is one-way in the UBU setting with respect to split sources that fully depend on
the random oracle. Note that the split structure is necessary for one-wayness, as otherwise
the source can output a fixed point of the hash function. And indeed, the bound that we
achieve is meaningful only for ℓ ≥ 2.
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