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Abstract
We say there is a share conversion from a secret-sharing scheme Π to another scheme Π′ implementing
the same access structure if each party can locally apply a deterministic function to their share to
transform any valid secret-sharing under Π to a valid (but not necessarily random) secret-sharing
under Π′ of the same secret. If such a conversion exists, we say that Π ≥ Π′. This notion was
introduced by Cramer et al. (TCC’05), where they particularly proved that for any access structure,
any linear secret-sharing scheme over a given field F, has a conversion from a CNF scheme, and is
convertible to a DNF scheme.

In this work, we initiate a systematic study of convertability between secret-sharing schemes, and
present a number of results with implications to the understanding of the convertibility landscape.

In the context of linear schemes, we present two key theorems providing necessary conditions for
convertibility, proved using linear-algebraic tools. It has several implications, such as the fact
that Shamir secret-sharing scheme can be neither maximal or minimal. Another implication of
it is that a scheme may be minimal if its share complexity is at least as high as that of DNF.
Our second key result is a necessary condition for convertibility to CNF from a broad class of
(not necessarily linear) schemes. This result is proved via information-theoretic techniques and
implies non-maximality for schemes with share complexity smaller than that of CNF.

We also provide a condition which is both necessary and sufficient for the existence of a share
conversion to some linear scheme. The condition is stated as a system of linear equations, such that
a conversion exists if and only if a solution to the linear system exists. We note that the impossibility
results for linear schemes may be viewed as identifying a subset of contradicting equations in the
system.

Another contribution of our paper, is in defining and studying share conversion for evolving
secret-sharing schemes. In such a schemes, recently introduced by Komargodski et al. (IEEE
ToIT’18), the number of parties is not bounded apriori, and every party receives a share as it arrives,
which never changes in the sequel. Our impossibility results have implications to the evolving setting
as well. Interestingly, unlike in the standard setting, there is no maximum or minimum in a broad
class of evolving schemes, even without any restriction on the share size.

Finally, we show that, generally, there is no conversion between additive schemes over different
fields, even from CNF to DNF! However by relaxing from perfect to statistical security, it may be
possible to convert, and exemplify this for (n, n)-threshold access structures.
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11:2 New Results in Share Conversion with Applications

1 Introduction

Secret-sharing is a fundamental notion in cryptography. A secret-sharing scheme enables
a dealer to distribute a secret among a set of parties so that any pre-specified subset of
qualified parties can recover the secret while any other subset of parties remains oblivious to
the secret. The monotone class of subsets of qualified parties constitutes the access structure
realized by the secret-sharing scheme.

Secret-sharing is a building block for realizing several complex cryptographic tasks.
Certain such tasks may require additional properties in the secret-sharing scheme – for
instance, succinctness of the shares, or homomorphism and other algebraic properties. This
suggests use cases where a protocol requires secret-sharing according to one scheme during
one stage, and according to another scheme during another. This motivated non-interactive
conversion between secret-sharing schemes, which was formalized in [9] by Cramer, Damgard,
and Ishai as share conversion.

We say there is a share conversion from a secret-sharing scheme Π to another scheme Π′

implementing the same access structure Γ if each party can locally apply a deterministic
function to their share to transform any valid secret-sharing under Π to a valid (but not
necessarily random) secret-sharing of the same secret under Π′. In full generality, share
conversion may be defined from Π to Π′ which implement different access structures Γ ⊇ Γ′,
respectively. Moreover the secret under Π′ after the transformation can be a pre-specified
function of the secret under Π before transformation. In this work, we focus on the natural
case where Γ = Γ′ and the above-mentioned function is identity.

In the sequel, we will say Π ≥ Π′ if there is a share conversion from Π to Π′. This induces a
partial ordering over secret-sharing schemes realizing any access structure Γ. Many important
insights into the partial order ≥ of convertability for linear secret-sharing schemes over a finite
field were provided in [9]. Among other results, they proved that, for any access structure Γ
and finite filed F, CNF-based secret-sharing scheme CNFΓ,F is maximal, and DNF-based
secret-sharing scheme DNFΓ,F is minimal among the set of all linear secret-sharing schemes
for Γ over F. I.e., CNFΓ,F ≥ Π ≥ DNFΓ,F for any linear secret-sharing scheme Π. Note,
however, that the existence of additional minimal and maximal schemes is not ruled out in [9].
For certain access structures, specifically (2,3)-threshold, they demonstrated that certain
linear schemes like Shamir secret-sharing scheme in not maximal, as it is not convertible to
CNF. They also show that a limited class of linear secret-sharing schemes – the so called
replicated schemes, that are similar in structure to CNF in the sense that the secret is defined
as the sum of random elements, and every party gets a subset of them as it’s share, are not
maximal for (k, n)-threshold access structures unless they have share complexity as high as
that of CNF (see Section 3.3 in [9]).

In this paper, we initiate a systematic study of convertibility between secret-sharing
schemes, and obtain new results in several directions:

We develop new and easily checkable necessary conditions for share conversion between
linear schemes implementing a given access structure. These necessary conditions are in the
form of linear algebraic constraints on the monotone span program (MSP) corresponding
to the linear schemes. Using these conditions, we are able to get a clearer view of the
partial order induced by convertibility over the linear schemes.
We develop a necessary and sufficient condition for a conversion between the linear
schemes Π, Π′ in form of a linear system decided by the MSP of Π and Π′ which has a
solution if and only if Π ≥ Π′.
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Next, we address the broader problem of share conversions involving potentially non-
linear secret-sharing schemes. To this end, we introduce the notion of non-degenerate
secret-sharing schemes and establish a necessary condition for converting shares from
general (potentially non-linear) schemes to non-degenerate ones. This condition has
implications for share conversion to CNF and Shamir secret-sharing schemes, which are
both non-degenerate.
We apply our results to develop necessary conditions for conversion to the well-studied
schemes, such as CNF, DNF, and Shamir secret-sharing schemes.
The necessary conditions we develop also bear consequences for secret-sharing schemes
for evolving setting, i.e. where the number of parties is not bounded, and the party gets
it’s share when appears. We show that, for several interesting evolving access structures,
there is no maximal or minimal scheme.
We also initiate the study of share conversion between different fields. We show that, in
a general case, there is no conversion between linear schemes over two different fields. To
circumvent this, we propose a general approach of bounding the randomness domain in a
source scheme. We build a leaky additive scheme over Zp allowing conversion into Zq.
As it’s possible to see from our example, the proposed approach could result in a privacy
leakage, which is often tolerable if small.

1.1 Overview of Our Results
In this section, we provide a brief exposition of our results, which we formally describe and
prove in the subsequent sections.

Necessary conditions for conversion between linear schemes. A linear secret-sharing
scheme Π over a field F implementing access structure Γ over n parties is characterized by
a monotone span program described as a triple (F, M, ρ), where M is a matrix over F of
dimension m× k and ρ : [m]→ [n] defines the set of M ’s rows corresponding to a certain
party [16].

To share a secret s ∈ F, the dealer samples a vector r ∈ Fk such that its first coordinate
is s, and computes v = M · r. Then, the i’th share in Π is shi = v[ρ(−1)(i)], which is the
sub-vector containing entries in the coordinates ρ−1(i). A qualified set of parties T can
recover the secret using a reconstruction function α ∈ F|ρ−1(T )| such that

(α)T · vT = (α)T ·MT · r = r[1] = s.

Here, vT = v[ρ−1(T )] and MT = M [ρ−1(T ), ·], i.e., the rows of M corresponding to the
coordinates ρ−1(T ) (under some pre-specified ordering).

One of the key tools in our paper is a necessary condition for conversion between a pair
of linear schemes. Informally, it states that conversion is impossible, if the schemes satisfy
certain linear-algebraic conditions.

▶ Theorem 1 (Necessary condition for conversion between linear schemes – Informal). There is
no share conversion from a linear secret-sharing scheme described by MSP (F, M ∈ Fm×k, ρ)
to another linear scheme (F, M ′ ∈ Fm′×k′

, ρ′) both realizing Γ, if there are sets of parties T ,
T ∗ and party h /∈ T ∪ T ∗ such that T ∪ h ∈ Γ, and no strict subsets of T ∪ h is qualified, and,
when α and α′ are reconstruction functions for T ∪ h in M and M ′, respectively,
1. (α′

h)T ·M ′
h ∈ Rowspan(M ′

T ∗).
2. (αh)T ·Mh /∈ (Rowspan(MT ) ∩ Rowspan(Mh)) + (Rowspan(MT ∗) ∩ Rowspan(Mh)) .

ITC 2025
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This theorem is formally stated as Theorem 27 in the technical section. We demonstrate
the power of this seemingly abstract necessary condition by providing a concrete application
to well studied secret-sharing schemes, and its application to share conversions for evolving
access structures.

We exploit the fact that the share conversion function is local and the secret is preserved
during the share conversion. We can reach a contradiction if it is possible to produce a pair of
fooling instances of sharing under the source scheme that result in shares after conversion that
do not respect the dependencies present among the shares in the target distribution. This
proof is a vast generalization of the proof of a result in [9] that showed that in (2, 3)-Shamir
is not convertible to CNF, so that it applies to conversion between any pair of linear schemes.
Specifically, it follows that any Shamir secret-sharing scheme is not convertible to CNF.

In Theorem 30 we prove a different type of necessary condition for convertibility between
linear schemes. As a corollary from Theorem 1 and Theorem 30, we prove that DNF is
not convertible to any linear scheme with lower share complexity. In particular, it is not
convertible to Shamir, which proves the non-minimality of the latter.

Both Theorem 30 and Theorem 1 are based on a key technical result – Lemma 25, which
involves a single minterm T , while the theorems refer to at least 2 minterms to establish
a conversion does not exist. We believe it is a useful conceptual simplification towards
understanding convertability.

Convertibility characterization for linear schemes. We devise a characterization of con-
vertibility between linear schemes by solvability of a certain system of linear equations LΠ,Π′

which we provide in Section 5.

▶ Theorem 2 (Theorem 35, informal). There is a conversion from a linear scheme Π to a
linear scheme Π′ realizing the same access structure over the same field if and only if the
linear system LΠ,Π′ has a solution.

A solution of the system encodes a conversion in a straightforward (although redundant)
way. The high level idea is to solve for variables Xr,i,j , where Xr,i,j represents the j’th share
of pi, when converting from a sharing based on randomness r in Π (as is sometimes useful,
here r is assumed to include s). We note that the impossibility in Theorem 1 may be viewed
as identifying a subset of contradicting equations, so that a solution does not exist.

Share conversion from non-linear schemes. In a prior work [9], CNF was proved to be
maximal among linear schemes over the same field. In this work, we prove new necessary
conditions for share conversion from general (potentially non-linear) schemes to CNF secret-
sharing.

For this, we introduce the notion of non-degenerate secret-sharing schemes. A secret-
sharing scheme Π is non-degenerate if any sub-scheme of Π is equivalent to Π. Here, a
secret-sharing scheme Π′ is a sub-scheme of Π if the secret domains of both schemes are
identical, and every valid secret-sharing under Π′ is also a valid secret-sharing under Π. A
formal definition of non-degenerate secret-sharing schemes is provided in Definition 36.

To drive down this subtle notion, we will demonstrate that a 2-out-of-3 DNF secret-sharing
scheme for secret domain {0, 1} is not non-degenerate. In 2-out-of-3 DNF secret-sharing of a
secret s ∈ {0, 1}, the shares of the 3 parties are (r1,2, s⊕r3,1), (s⊕r1,2, r2,3) and (s⊕r2,3, r3,1),
respectively, where r1,2, r2,3 and r3,1 are uniform and independent bits. Consider a modified
secret-sharing scheme in which the secret s is shared among the three parties exactly as in
2-out-of-3 DNF secret-sharing except that r1,2, r2,3 and r3,1 are uniform and only pairwise
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independent bits. It is easy to see that the latter is a 2-out-of-3 secret-sharing which is also
a sub-scheme of the former. However, they are not clearly not equivalent: the former uses
more randomness; hence, 2-out-of-3 DNF is not non-degenerate.

On the other hand, CNF secret-sharing scheme for arbitrary access structures over a
group G for secret domain G, and Shamir secret-sharing scheme are non-degenerate as
established in Lemma 38 and Lemma 39, respectively. Lemma 38 is proved by considering the
correlation of the shares induced by picking a secret s ∈ G at random and secret-sharing it
using any secret-sharing scheme Π that is a sub-scheme of the given CNF scheme. Appealing
to correctness and privacy of Π, an information theoretic argument is used to show that the
entropy of each share in this correlation is the same as that in the correlation obtained by
secret-sharing a random secret s using the CNF scheme. Since the secret domain is the same
as the group over which CNF is defined, this further implies in a straightforward way that Π
coincides with the CNF scheme, establishing its non-degeneracy.

By appealing to non-degeneracy of CNF, and using standard entropy lower bounds, we
show that share conversion to CNF scheme is possible only if the share size under the source
scheme is at least as large as that in the CNF scheme. The following result is formally stated
in Theorem 40.

▶ Theorem 3 (Extended maximality of CNF). Let Π be a secret-sharing scheme realizing an
n-party access structure Γ with secret domain G – a finite group. There is a share conversion
from Π to CNF over G realizing Γ only if, for each i ∈ [n], size of the share i in Π is at least
log |G| · |{F ∈ F s.t. i /∈ F}|, where F is the set of all maximal forbidden sets associated
with Γ.

We note that Theorem 1 also implies results of non-maximality by impossibility of
conversion to CNF for certain linear schemes Π with low share complexity. These results
are mostly subsumed by Theorem 3, both because it does not restrict Π to be linear, and in
terms of share size.

Share conversion for evolving secret-sharing. Komargodski et al. [17] defined evolving
secret-sharing schemes where the unbounded number of parties arriving one after another,
obtain their shares of secret. The previously qualified sets remain qualified, and shares of
parties are not refreshed as new parties come, but each newcomer is provided a (potentially)
progressively larger share. An evolving access structure is an infinite monotone class of
qualified subsets of N.

We initiate a study of share conversion for evolving secret-sharing, starting with formal
extension of the notion of share conversion, MSP and linearity to the evolving setting. Then,
we apply the theory we develop for proving impossibility of share conversion in the standard
setting to the evolving setting. In particular, some of our results apply to evolving linear
secret-sharing schemes, which have been previously considered in the literature, but never
explicitly defined.

We address the problem of maximal and minimal secret-sharing schemes for evolving
access structures, and show that for several broad classes of evolving schemes there is no
maximal and minimal scheme. In Theorem 46 we formally state and prove the following
result.

▶ Theorem 4 (No evolving maximal scheme – Informal). For any non-trivial evolving access
structure, there exists no maximal secret-sharing scheme for one-bit secrets.

ITC 2025
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By a non-trivial evolving access structure (See Definition 45), we mean one that does not
devolve into a finite secret-sharing scheme among the first n parties (for some n) with the
remaining parties either being not part of the qualified set or are required to simply receive
the secret.

In the other direction, we obtain a slightly weaker result, showing there is no minimal
linear scheme for certain access structures. This is formally stated and proved as Theorem 44.

▶ Theorem 5 (No evolving minimal scheme – Informal). For a certain broad class of evolving
access structures Γ, and for the finite field F2, there is no minimal linear evolving scheme for
any Γ in the class.

Conversion between different fields. The bit simultaneously shared in two different fields,
is called dBit, and is an important primitive for many applications, such as [2, 6, 8, 12, 13,
19, 20, 24]. There exist bit share conversion protocols, here we point out only few of them,
such as proposed in [6, 7, 10]. It is natural to raise the question if such a conversion can be
done locally.

Generalizing our impossibility result for linear schemes over the same field, we prove the
inconvertibility of the maximal CNF scheme over Zp to any other linear scheme over Zq for
primes p ̸= q with the same secret domain {0, 1}.

We complement this result with a relaxed form of conversion between additive schemes for
certain pairs of distinct primes for 1-bit shares. The relaxation allows for a privacy leakage
(over the scheme randomness). It may be interesting to further explore share conversions
with a small correctness errors. These may suffice for many applications, while potentially
extending the set of convertible secret sharing scheme pairs (denote Π ≥ϵ Π′).

1.2 Future work
Our work leaves several fascinating questions open. The main question is to obtain a simpler
characterization of convertibility between linear schemes. As a first step, identify pairs of
linear schemes Π, Π′ over the same field where Π is not convertible to Π′, which is not implied
by Theorem 27 or Theorem 30. It may be particularly interesting to find a different type
of conflicting requirements in the linear system in Section 5, thereby better understanding
the easier linear case, which was also studied in the original paper on share conversion [9].
Another concrete question is to characterize the minimal and maximal schemes for various
access structures (in other words, those convertible to CNF, or from DNF). As the linear
systems introduced in Section 5 work also for non-linear source schemes, it could be also
interesting to explore convertibility from such schemes to linear ones. This would require
new techniques not based on theorems as above, that both rely on linearity of Π as well.

In evolving setting, proving impossibility results is potentially easier. In our context, it
could be interesting to understand whether minimal and/or maximal schemes exist for access
structures for which we have not resolved this question.

Finally, it is interesting to find new non-trivial examples of conversions which are possible.
As an extension, it is interesting to study the direction of converting from a modified subset
of a scheme Π where part of the randomness is removed, as we do for a modified version of
additive over Zp to Zq, and the incurred privacy losses. The motivation here is that some
properties of the original Π may be preserved by such a transformation, which may suffice
for certain applications.
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2 Prior Work

Share conversion. Cramer et al. [9] first defined share conversion for secret-sharing schemes
as a way for converting shares of a secret in one scheme into shares of the same secret in
a different scheme using only local computation and no communication between parties.
Referring to a conversion between schemes realizing the same access structure and defined over
the same field, they showed that CNF can be converted to any linear scheme, and any linear
scheme can be converted to DNF. Furthermore, they put forward an application of share
conversion to improving efficiency of multiparty computation (MPC). Beimel et al. [5] use
generalized share conversion including non-identity relation between secrets from (2, 3) CNF
to (3, 3) additive secret-sharing over different groups to 3-party private information retrieval
(PIR). In fact, they observe that certain share conversions are implicit in state-of-the-art
3-party PIR constructions from the literature, and devise another conversions along these
lines that induces an improved PIR construction. They also put forward certain impossibility
results for certain PIR induced conversions. The following papers [21, 22] show additional
positive results for potential conversions for 3-party schemes from the PIR-induced family.

Evolving secret-sharing. Komargodski et al. [17] defined evolving secret-sharing schemes
for a case that the number of parties is unbounded, parties are only added as they arrive one
after the other, and previously qualified sets remain qualified. They constructed the following
evolving linear secret-sharing schemes: (1) a scheme for every evolving access structure, such
that, the share size of the tth party is 2t−1; (2) a k-threshold schemes in which the size of
the share of party pt is O(k log t); (3) an undirected st-connectivity schemes in which the
share of each party is a bit.

A natural generalization of an evolving threshold access structure is to allow the threshold
to depend on the index of the arriving party. Komargodski and Paskin-Cherniavsky [18]
showed that any dynamic-threshold access can be realized with an evolving linear secret-
sharing scheme in which the size of the share of party pt is O(t4 · log t). Infinite decision
trees were used in [17, 18] to construct evolving secret-sharing schemes. Alon et al. [1] define
formally this model. They showed how to construct evolving secret-sharing schemes for
generalized infinite decision trees. We use this construction in our work.

Peter in [23] defined evolving conditional disclosure of secrets (CDS), where the number of
parties is unbounded, and parties arrive sequentially. Each party holds a private input, and
when arrives, it sends a random message to a referee. In turn, at any stage of the protocol,
the referee should be able to reconstruct a secret string, held by all the parties, from the
messages it gets, if and only if the inputs of the parties that arrived satisfy some condition.

3 Preliminaries

In this section, we present the necessary notation and formal definitions of secret-sharing
schemes and evolving secret-sharing schemes.

Notation. For n ∈ N by [n] we denote the set {1, 2, . . . , n}. We denote by log the logarithmic
function with base 2. Vectors are denoted by bold letters (e.g., r). For matrices M , M ′ with
the same number of columns we denote by [M ; M ′] the concatenation of matrix M ′ below
M . For matrices M , M ′ with the same number of rows, [M |M ′] is the concatenation of M ′

to the right for M . By Rowspan(M) we denote the set of all vectors spanned by rows of M .
For a set of parties P = {p1, . . . , pn}, when it is clear from the context, we often abuse

notation replacing parties by their indexes from [n]. When we refer to a subset of parties
{pi1 , pi2 , . . . , pit}, we assume that i1 < i2 < · · · < it.

ITC 2025



11:8 New Results in Share Conversion with Applications

We will need the following well known fact in linear algebra.

▶ Fact 6. Let F be a field, and A ∈ Fn×k, v ∈ F1×k such that v /∈ Rowspan(A). Then there
exists a solution r to the linear system [v|A]r = (1, 0, . . . , 0).

Finally, we sometimes abuse notation, and use a linear subspace L = Fk as a matrix consisting
of some basis of L as its rows, without explicitly stating so.

3.1 Secret-Sharing
We start by defining (perfect) secret-sharing schemes for a finite set of parties.

▶ Definition 7 (Access Structures). Let P = {p1, . . . , pn} be a set of parties. A collection
Γ ⊆ 2{p1,...,pn} is monotone if B ∈ Γ and B ⊆ C imply that C ∈ Γ. An access structure
Γ ⊆ 2{p1,...,pn} is a monotone collection of non-empty sets. Sets in Γ are called authorized,
and sets not in Γ are called unauthorized. We will represent an n-party access structure by a
function f : {0, 1}n → {0, 1}, where an input (i.e., a string) σ = (σ1, σ2, . . . , σn) ∈ {0, 1}n

represents the set Aσ = {pi : i ∈ [n], σi = 1}, and f(σ) = 1 if and only if A ∈ Γ. We will
also call f an access structure.

In a monotone access structure, the set A ∈ Γ is called a minterm if there is no B ⊂ A

such that B ∈ Γ. The set A /∈ Γ is called a maxterm if for all pi /∈ A it holds that A∪{pi} ∈ Γ.

The most basic and well-known access structure is the threshold access structure:

▶ Definition 8 (Threshold Access Structures). Let 1 ≤ k ≤ n. A k-out-of-n threshold access
structure Γ over a set of parties P = {p1, . . . , pn} is the access structure containing all
subsets of size at least k, that is, Γ = {A ⊆ P : |A| ≥ k}.

A secret-sharing scheme defines a way to distribute shares to parties. Such a scheme is
said to realize an access structure Γ if the shares held by any authorized set of parties (i.e., a
set in the access structure) can be used to reconstruct the secret, and the shares held by any
unauthorized set of parties reveal nothing about the secret. The formal definition follows.

▶ Definition 9 (Secret-Sharing Schemes). A secret-sharing scheme Π over a set of parties
P = {p1, . . . , pn} with domain of secrets S and domain of random strings R is a mapping
from S ×R to a set of n-tuples S1 × S2 × · · · × Sn (the set Sj is called the domain of shares
of pj). A dealer distributes a secret s ∈ S according to Π by first sampling a random string
r ∈ R with uniform distribution, computing a vector of shares Π(s; r) = (sh1, . . . , shn), and
privately communicating each share shj to party pj. For a set A ⊆ {p1, . . . , pn}, we denote
ΠA(s; r) as the restriction of Π(s; r) to its A-entries (i.e., the shares of the parties in A).

A secret-sharing scheme Π with domain of secrets S realizes an access structure Γ if the
following two requirements hold:
Correctness. The secret s can be reconstructed by any authorized set of parties. That is,

for any authorized set B = {pi1 , . . . , pi|B|} ∈ Γ, there exists a reconstruction function
ReconB : Si1 × · · · × Si|B| → S such that for every secret s ∈ S and every random string
r ∈ R, it holds that ReconB (ΠB(s; r)) = s.

Security. Every unauthorized set cannot learn anything about the secret from its shares.
Formally, for any set T /∈ Γ, every two secrets s1, s2 ∈ S, and every possible vector
of shares ⟨shj⟩pj∈T , Pr

[
ΠT (s1; r) = ⟨shj⟩pj∈T

]
= Pr

[
ΠT (s2; r) = ⟨shj⟩pj∈T

]
, where the

probability is over the choice of r from R with uniform distribution.
The size of the share of party pj is defined as log |Sj | and the size of the shares of Π as
max1≤j≤n log |Sj |. The total share size of Π is defined as

∑n
j=1 log |Sj |.
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Next we give some widely known secret-sharing schemes.

▶ Definition 10 (Additive Secret-Sharing Scheme [15]). In the additive secret-sharing scheme
ADDF,n over F, shares sh1, ..., shn are sampled uniformly at random from F on the condition
that s =

∑n
i=1 shi, and Γ = {P}.

▶ Definition 11 (Shamir Secret-Sharing Scheme [25]). In the (n, k)-Shamir secret-sharing
scheme over F realizing k-out-of-n threshold access structure Γ, the dealer sets a polynomial
p(x) = s + r1x + · · ·+ rk−1xk−1 by uniformly random sampling of rj ← F for j ∈ [k − 1].
The share of pi for i ∈ [n] is set as shi = p(i).

The properties of Shamir’s scheme over F2m for an appropriate m ∈ N are summarized in
the next theorem.

▶ Theorem 12 (Shamir [25]). For every n ∈ N, and k ∈ [n], there is a secret-sharing scheme
for secrets of size ℓ (i.e., the domain of secrets is S = {0, 1}ℓ) realizing the k-out-of-n
threshold access structure, in which the share size is max{ℓ, ⌈log(n + 1)⌉}. Moreover, the
shares of the scheme are elements of the field F2ℓ+log n .

Next two schemes realize any monotone access structure. A replicated secret-sharing
scheme [14] is also known as a CNF secret-sharing scheme [15].

▶ Definition 13 (Replicated Secret-Sharing Schemes [14]). Let Γ ⊆ 2[n] be a (monotone)
access structure, and let T is the set of all maxterms of Γ. The CNF secret-sharing schemes
for Γ over F, denoted CNFΓ,F, proceeds as follows. A secret s ∈ S is shared in ADDF,|T |,
where each share rT is labelled by a different set T ∈ T . Then, the dealer distributes to each
party pj all shares rT such that j /∈ T , that is, shj = (rT )j /∈T . For correctness, since Γ is
monotone, a qualified set Q ∈ Γ cannot be contained in any unqualified set, hence, members
of Q jointly view all shares rT and can thus reconstruct the secret s. For privacy, the parties
of every maxterm T ∈ T jointly miss exactly one additive share rT , hence parties of any
unqualified set miss at least one share.

▶ Definition 14 (DNF Secret-Sharing Scheme [15]). In DNF secret-sharing schemes, denoted
DNFΓ,F, the secret s is additively shared between the parties of each minterm, where each
additive sharing uses independent randomness.

More secret-sharing schemes can be defined using the notion of a monotone span pro-
gram (MSP). We bring the definition of MSP below.

▶ Definition 15 (Monotone Span Program [16]). A monotone span program is a triple
M = (F, M, ρ), where F is a field, M is an m×k matrix over F, and a mapping ρ : [m]→ [n]
labels each row of M by a party’s index. The size of M is the number of rows of M (i.e., m).

Next we give some notation which simplifies addressing to sets and operations of MSP.
Let M ∈ Fm×k be a matrix, and A ⊆ [m]. We denote by M [A, ·] the |A| × k dimensional
submatrix that restricts M to the rows labeled by i ∈ A. Hence, for an MSP (F, M ∈ Fm×k, ρ)
describing an n-party linear secret-sharing scheme, and h ∈ [n], M [ρ−1(h), ·] denotes the
submatrix induced by rows of M corresponding to shares of party h. For any S ⊆ [n], for
brevity, we will refer to M [ρ−1(S), ·] by MS , and when S = {h} for some h ∈ [n], we will
further simplify the notation by referring to M{h} as Mh. Similarly, for a column vector
α ∈ Fm, and set A ⊆ [m], we denote by α[A] the sub-vector of α labeled by i ∈ A, and for
the subset of parties S ⊆ [n] we let αS = α[ρ−1(S)], and α{h} = αh.
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▶ Definition 16 (Access structure accepted by MSP [16]). We say that MSP M accepts
B ⊆ [n] if the rows of MB span the vector e1 = (1, 0, . . . , 0), called a target vector.1 We say
that M accepts an access structure Γ if M accepts a set B if and only if B ∈ Γ.

A monotone span program implies a so called linear secret-sharing scheme for an access
structure containing all the sets accepted by the program. Essentially, a dealer gives each
party the rows of matrix M assigned to it, multiplied by the randomness vector.

▷ Claim 17 ([4]). Let M = (F, M, ρ) be a MSP accepting an access structure Γ, where F is
a finite field and for every j ∈ [n] there are aj rows of M labeled by pj . Then, there is a
linear secret-sharing scheme realizing Γ for S = F such that the share of party pj is a vector
in Faj with the information equal to max1≤j≤n aj .

3.2 Evolving Secret-Sharing Schemes
In an evolving secret-sharing scheme, defined by [17], the number of parties is unbounded.
Parties arrive one after the other; when a party pt arrives the dealer gives it a share. The
dealer cannot update the share later and does not know how many parties will arrive after
party pt. Thus, we measure the share size of pt as a function of t. We start by defining an
evolving access structure, which specifies the authorized sets. The number of parties in an
evolving access structure is infinite, however every authorized set is finite.

▶ Definition 18 (Evolving Access Structures). Let P = {pi}i∈N be an infinite set of parties.
A collection of finite sets Γ ⊆ 2P is an evolving access structure if for every t ∈ N the
collections Γt ≜ Γ ∩ 2{p1,...,pt} is an access structure as defined in Definition 7. We will
represent an access structure by a function f : {0, 1}∗ → {0, 1}, where an input (i.e., a string)
σ = (σ1, σ2, . . . , σn) ∈ {0, 1}n represents the set Aσ = {pi : i ∈ [n], σi = 1},2 and f(σ) = 1 if
and only if Aσ ∈ Γ. We will also call f an evolving access structure.

▶ Definition 19 (Evolving Secret-Sharing Schemes). Let S be a domain of secrets, where
|S| ≥ 2, and {Rt}t∈N , {St}t∈N be two sequences of finite sets. An evolving secret-sharing
scheme with domain of secrets S is a sequence of mappings Π = {Πt}t∈N, where for every
t ∈ N, Πt is a mapping Πt : S ×R1 × · · · ×Rt → St (which returns the share sht of pt).

An evolving secret-sharing scheme Π = {Πt}t∈N realizes an evolving access structure Γ if
for every t ∈ N the secret-sharing scheme Πt (s; r1, . . . , rt) ≜

〈
Π1 (s; r1) , . . . , Πt (s; r1, . . . , rt)

〉
(i.e., the shares of the first t parties) is a secret-sharing scheme realizing Γt according to Def. 9.

By default, the domain of secrets of an evolving scheme is {0, 1}. Known results show
that every evolving access structure can be realized by an evolving secret-sharing scheme.

▶ Definition 20 (Evolving Threshold Access Structures). Let k ∈ N. The evolving k-threshold
access structure is the evolving access structure Γ, where Γt is the k-out-of-t threshold access
structure.

Komargodski et al. [17] showed that any evolving threshold access structure can be
realized by an efficient evolving secret-sharing scheme.

1 In [16] it is proven that one could define MPS’s with any target vector ϵ ̸= 0, rather than e1, resulting
in the same matrix size and labeling.

2 In particular, the same set has infinitely many representations by inputs of various lengths, using
sufficiently many trailing zeros.
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▶ Theorem 21 ([17]). For every k ∈ N, there is a secret-sharing scheme realizing the evolving
k-threshold access structure such that the share size of party pt is (k−1)·log t+poly(k)·o(log t).

More evolving asses structures are defined by such structures as undirected st-connectivity
graphs (st-connectivity), infinite decision trees (IDT), and generalized infinite decision trees
(GIDT) [1]. Komargodski et al. [17] showed that every undirected st-connectivity access
structure can be realized by an evolving secret-sharing scheme in which the share of each
party is a bit. Infinite decision trees were used in [17, 18] to construct evolving secret-sharing
schemes. Alon et al. [1] showed how to construct secret-sharing schemes for IDT and GIDT.
For definitions and constructions we refer to the full version [11].

3.3 Share Conversion
Cramer et al. [9] defined the notion of a share conversion as a local mapping from the shares
a secret over one scheme into shares over another scheme, maintaining the secret value. We
next include a formal definition of share conversion.3

▶ Definition 22 (Share Conversion). Let Π, Π′ be two secret-sharing schemes over the
same secret-domain S for n parties realizing the same access structure. We say that Π
is locally convertible to Π′ if there exist functions g1, . . . , gn such that the following holds.
If (sh1, . . . , shn) are valid shares of a secret s in Π (i.e., Pr[Π(s; r) = (sh1, . . . , shn)] > 0),
then (g1(sh1), . . . , gn(shn)) are valid shares of the same secret s in Π′. We denote by g the
concatenation of all gi, namely g(sh1, . . . , shn) = (g1(sh1), . . . , gn(shn)), and refer to g as a
conversion function.

We next extend the definition of share conversion to the evolving setting.

▶ Definition 23 (Evolving Share Conversion). Let Π, Π′ be two evolving secret-sharing schemes
over the same secret-domain S realizing an access structure Γ. We say that Π is locally
convertible to Π′ if there exists a sequence of functions g1, g2, g3, . . . such that the following
holds. For every t ≥ 1, if (sh1, . . . , sht) are valid shares of a secret s in Π (i.e., ∃r ∈
R1× . . .×Rt such that Π(s; r) = (sh1, . . . , sht)), then (g1(sh1), . . . , gt(sht)) are valid shares of
the same secret s in Π′. We denote by g the concatenation of all gi, namely g(sh1, sh2, . . .) =
(g1(sh1), g2(sh2), . . .), and refer to g as a conversion function.

If the secret-sharing scheme Π is convertible to Π′, we say that Π ≥ Π′. This defines a partial
ordering over secret-sharing schemes. Next, we show that changing a target vector preserves
much of the MSP structure, while being convertible to the original scheme.

▷ Claim 24. Let Π = (F, M ∈ Fm×k, ρ) is a linear scheme for an access structure Γ with the
target vector ϵ ∈ Fm \ 0. Then for any target vector ϵ′ ∈ Fm \ 0, there exists a linear scheme
Π′ = (F, M ′ ∈ Fm×k, ρ) for Γ, convertible to Π.

The proof is simply by observing the identity conversion works. See [11] for a full proof.
In linear (MSP-based) schemes, it is convenient to consider a secret s as part of the

randomness vector r, being its first coordinate. Sometimes, s is defined by r in a different
manner, which results in a different than e1 target vector in MSP. For example, in CNF with
1 target, as used in [9], the secret is the sum of all elements in r. Thus, we will sometimes
consider conversions to a scheme Π′ with a certain target vector, and implicitly rely on the
implied conversion to Π′ with a different target vector.

3 In [9], they in fact give a slightly more general definition.
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4 Impossibility results for linear Share Conversion

Our impossibility results for linear schemes presented in this section follow from the lemma
stated below.

▶ Lemma 25. Let Π, Π′ denote linear secret-sharing schemes realizing Γ and specified
by MSPs (F, M ∈ Fm×k, ρ), (F, M ′ ∈ Fm′×k′

, ρ′). Let T ∪ {h} denote a minterm in Γ for
T ⊆ [n], h ∈ [n], and let αT ∪h, α′

T ∪h be its reconstruction functions for Π and Π′, respectively.
Let L = Rowspan(MT ) ∩ Rowspan(Mh), and B denote a basis for L. Suppose g is some
share conversion from Π to Π′. Then (α′

h)T
gh(Mhr) = (αh)T

Mhr + c(Br) for some function
c, where r is a randomness vector for Π. 4

▶ Remark 26. The lemma gives us a high level clue as to why CNF is high up in the
convertibility (partial) order for linear schemes of a given access structure, while DNF is
so low. In DNF, for every party h, and every minterm T ∪ {h}, it is easy to see that the
resulting L = {0}. This way, there is “little freedom” in converting determining the converted
(sub)share for h (this is formally proved in Theorem 31). On the other hand, in CNF, for a
given h and minterm T ∪{h}, dim(L) is typically large – equal to the number of maxterms H

where H ∩ (T ∪ {h}) ⊂ T . This allows for more freedom at choosing the conversion function.

Proof of Lemma 25. First observe that since T ∪ {h} is a minterm, (αh)T
Mh /∈

Rowspan(MT ), and hence(αh)T
Mh /∈ L. Also, by definition, B ⊆ Rowspan(Mh). Note

that {(αh)T
Mh} ∪ B may not constitute a basis of the rows of Mh, it which case, it is

complemented by adding a set of appropriate linear combinations of an appropriate set X of
rows in Mh. Let M−

T denote a subset of MT ’s rows constituting a basis of Rowspan(MT ). By
choice of B, for any scalar a and vector v (of the right dimension) there exists randomness r
(one or more) such that M−

T r = v, (αh)T
Mhr = a. Note that Br is determined by v (and is

otherwise independent of r). In the sequel, for (an implicit or explicit) randomness vector
r, we let v, a denote the share portions as above induced by it. As α′ is a reconstruction
function, and by locality of g and linearity of Π′, ∀r it holds that

(α′
T ∪h)T

gT ∪h(MT ∪hr) = (α′
h)T

gh(Mhr) + (α′
T )T

gT (v) = s (1)

By Equation (1), and the definition of α we have that

(α′
h)T

gh(Mhr) = s− (α′
T )T

gT (MT r) = (αh)T
Mhr + (αT )T

MT r− (α′
T )T

gT (MT r), (2)

where the first term equals to a by definition, and the rest is some function of only v. We
denote (αT )T

MT r− (α′
T )T

gT (MT r) by f(v). From locality of g, f(v) in fact depends only
on Br. To see this, denote span(M−

T ) = span(B)⊕span(B−
T ) (direct sum of linear subspaces)

for an independent set of vectors B−
T ⊆ Rowspan(MT ) complementing B into a basis. Using

the fact that B is a basis of Rowspan(Mh)∩Rowspan(MT ), it is easy to show that B−
T with

span(B−
T ) ∩ Rowspan(Mh) = {0} indeed exists.

The observation follows by locality, since gh has no information on span(B−
T )r (given Br

that it knows). Also, (α′
h)T

gh(Mhr) may not depend on Xr, as span(X)∩Rowspan(MT ) =
{0}, as then it would not be a (deterministic) function of v.5 Thus, we have

(α′
h)T

gh(Mhr) = a + c(Br) (3)

for some function c, as required. ◀

4 Note that even if L = {0}, we are free to pick the constant c(0), which depends only on α in this case.
5 Note that the above does not imply that gh(Mhr) does not depend on Xr, but rather that it is of the

form g′
h(Br, a)+g′′

h(Xr), where g′′
h(Xr) = (g′′

h,1(Xr), . . . , g′′
h,ℓ(Xr)) is a vector of functions in the formal

variables X[1]r, . . . , X[ℓ]r, such that
(
α′

h

)T
g′′

h(Xr) = 0. Similarly, it implicitly follows that the vector
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Next we state two corollaries defining necessary conditions for convertability between
linear schemes Π, Π′ (as sufficient conditions for non-convertability).

The following theorem is in a sense a generalization of the Claim in Section 3.3 in [9] of
non-convertability from Shamir to CNF for (2, 3)-threshold access structures.

▶ Theorem 27. Let Γ be an access structure on n parties. Let Π and Π′ be linear secret-
sharing schemes realizing Γ and specified by MSP (F, M ∈ Fm×k, ρ) and (F, M ′ ∈ Fm′×k′

, ρ′),
respectively. Then, Π has no share conversion to Π′ if there exist h ∈ [n], ∅ ≠ T ⊆ [n] \ {h}
such that T ∪ {h} is a minterm of Γ with the reconstruction functions α and α′ in Π and Π′

resp., and ∅ ≠ T ∗ ⊆ [n] \ {h} that satisfy the following conditions:
1. (α′

h)T ·M ′
h ∈ Rowspan(M ′

T ∗).
2. (αh)T ·Mh /∈ (Rowspan(MT ) ∩ Rowspan(Mh)) + (Rowspan(MT ∗) ∩ Rowspan(Mh)) .6

Proof. Let us assume for contradiction a conversion g exists, and denote L = Rowspan(MT )∩
Rowspan(Mh) and L∗ = Rowspan(MT ∗) ∩ Rowspan(Mh). We first show that there exist
randomness vectors r1, r2 such that:
1. (L + Rowspan(MT ∗))r1 = (L + Rowspan(MT ∗))r2 = 0.
2. (αh)T

Mhr1 ̸= (αh)T
Mhr2.

Fix r1 = 0. Then, (L+Rowspan(MT ∗))r1 = 0 and (αh)T
Mhr1 = 0. Next, let us show that r2

as required exists. We claim Rowspan(Mh)∩(L+L∗) = Rowspan(Mh)∩(L+Rowspan(MT ∗)).
Clearly, former is contained in the latter. For the other direction, consider x ∈

Rowspan(Mh) ∩ (L + Rowspan(MT ∗)). Since L is a subspace of Mh, it suffices to show that
if x ∈ L + y such that y ∈ Rowspan(MT ∗), then y ∈ Rowspan(MT ∗) ∩ Rowspan(Mh) = L∗.
Indeed, if y ∈ Rowspan(MT ∗) \ Rowspan(Mh), then y + z /∈ Rowspan(Mh) for all z ∈ L,
which contradicts the fact x ∈ Rowspan(Mh); the claim follows.

By this claim and condition 2 of the Theorem, (αh)T
Mh /∈ L + Rowspan(MT ∗) since

(αh)T
Mh ∈ Rowspan(Mh). Therefore, there exists r2 such that (L + Rowspan(MT ∗))r2 = 0

and (αh)T
Mhr2 = 1(̸= 0), by Fact 6.

By Lemma 25 applied to h, T , when B is the basis for L, we have

(α′
h)T

gh(Mhr1) ̸= (α′
h)T

gh(Mhr2), (4)

since Br1 = Br2(= 0) and (αh)T
Mhr1 ≠ (αh)T

Mhr2. On the other hand, by locality,
gT ∗(MT ∗r1) = gT ∗(MT ∗r2) = gT ∗(0), and thus

gT ∗(MT ∗r1) = gT ∗(MT ∗r2). (5)

By condition 1 of the theorem, there exists u such that (α′
h)T

M ′
h = (u)T

M ′
T ∗ . Further, by

definition of g, there exists randomness vectors r′
1, r′

2 for Π′ such that g(Mri) = M ′r′
i for

i = 1, 2. Hence,

(α′
h)T

gh(Mhr1) = (α′
h)T

M ′
hr′

1 = (u)T
M ′

T ∗r′
1 = (u)T

gT ∗(MT ∗r1)

= (u)T
gT ∗(MT ∗r2) = (u)T

M ′
T ∗r′

2 = (α′
h)T

M ′
hr′

2 = (α′
h)T

gh(Mhr2).

The first equality in the second line uses Equation (5). We conclude our proof since the
above sequence of equations contradicts Equation (4). ◀

gT (MT r) = gT (Br, B−
T r), of functions is such that

(
α′

T

)T
g′′

T (B−
T r) is a formal function of Br only.

That is in Fourier basis in the variables y1 = B[1]r, . . . , y|B| = B[|B|]r, . . . , yi = B−
T [i − |B|]r, . . . , yk, it

does not contain minterms of the form
∏

j∈A
yj where A \ [|B|] is not empty. This also poses a certain

restriction of gT which can possibly exploited by future work.
6 Recall that U + V = {u + v|u ∈ U, v ∈ V }.

ITC 2025



11:14 New Results in Share Conversion with Applications

The following corollary from Theorem 27 provides necessary conditions for ΠΓ ≤ CNFΓ
that are easy to check. These conditions involve only Γ, and the share size of a single party.

▶ Corollary 28. Let Γ denote an access structure on n parties, such that there exists a party
h and two minterms T1, T2 of size ≥ 2 each, such that h ∈ T1, h ∈ T2, (T1 ∪ T2) \ {h} is
qualified. Let Π = (F, M ∈ Fm×k, ρ) be a linear scheme for Γ, and Mh consists of a single
row. Then Π is not convertible to Π′ = CNFΓ,F.

In the proof we apply Theorem 27 to Π, Π′, with T = T1 \ {h}, T ∗ = T2 \ {h}. See [11]
for details.
▶ Remark 29. From Corollary 28 it follows directly that Shamir secret-sharing scheme is
not convertible to CNF, and hence is not maximal. Indeed, any party can be viewed as
h, as it obtains a single field element as its share. The condition on the access structure
automatically holds for threshold structures.

The following theorem exploits a different property implied by convertability than the
previous theorem.

▶ Theorem 30. Let Γ be an access structure on n parties. Let Π, Π′ be linear secret-sharing
schemes specified for Γ by MSP (F, M ∈ Fm×k, ρ) and (F, M ′ ∈ Fm′×k′

, ρ′), respectively. Let
h ∈ [n] denote a party, and let T h = {T1, . . . , Tvh

} denote minterms each of which is of
size ≥ 2, and contains h. Let {αTi}i∈[vh] denote a set of reconstruction functions for sets
T1, . . . , Tvh

in Π respectively. Similarly, {α′Ti}i∈[vh] denotes a set of reconstruction functions
for T1, . . . , Tvh

in Π′. Assume the following conditions hold:
1. A = {αTi

h }i∈[vh] constitutes a set of vh linearly independent vectors.
2. A′ = {α′Ti

h }i∈[vh] constitutes a (multi)set of vectors with rank(span(A′)) < vh.
3. span({α⊺Mh|α ∈ A}) ∩

∑
i∈[vh](Rowspan(MTi\h) ∩ Rowspan(Mh)) = {0}.

Then Π has no share conversion to Π′.

Proof. Assume for contradiction that a conversion g exists. Fix some party h ∈ [n] as guar-

anteed to exist by the theorem. Consider the matrix Rech = [
(

αT1
h

)T
Mh; . . . ;

(
α

Tvh

h

)T
Mh].

For each i ∈ [vh], let Li = Rowspan(MTi\h) ∩ Rowspan(Mh). By condition 1, it is of rank
vh. Therefore, there exists a set Rh = {r1, . . . , r|F|vh } of randomness values such that
1. {Rechrj}j∈[|F|vh ] goes over all distinct vectors in Fvh .
2. For every j ∈ |F|vh , i ∈ [vh], Lirj = 0.

Such a set Rh exists, by combining conditions 1 and 3 in the Theorem. Now, let us consider
the matrix Rec′h = [

(
α′T1

h

)T
Mh; . . . ;

(
α′Tvh

h

)T
Mh], and let R′h = {r′1, . . . , r′|F|vh } denote

the set of effective randomness vectors induced by the conversion g (that is M ′r′j = g(Mrj)).
By condition 2 in the Theorem, rank(Rec′h) < vh. Therefore, span({Rec′hr′j}j∈|F|vh ) is
of dimension at most vh − 1, and thus contains at most |F|vh−1 distinct values. However,
by Lemma 25, for every i ∈ [vh], j ∈ [|F|vh ] we have

Rec′h[i]r′j = Rech[i]rj + ci(0)

That is, cj(0) is some constant, independent of rj . Therefore,

R′hr′j = Rh[j]rj + c

where c is a constant vector. Going over all values of j, on the RHS we obtain a permutation
of the set Fvh , but on the LHS, we only get a subset of at most |F|vh−1 (constituting a linear
subspace) – a contradiction. ◀
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The above theorem implies that DNF can only be converted to linear schemes of size at
least that of the DNF. More precisely:

▶ Theorem 31. Let Γ be an access structure over n > 1 parties, and F be a finite field. For
simplicity, assume Γ has no redundant parties. Let Π′ be a linear secret-sharing scheme
specified by MSP M′ = (F, M ′ ∈ Fm′×k′

, ρ′) for Γ. If M = DNFΓ,F = (F, M ∈ Fm×k, ρ) is
convertible to Π′, then 7

m′ ≥
∑

T :T is a minterm of Γ
|T |.

Proof. Consider some h ∈ [n] that belongs to some minterm T of size at least 2. Let
T h = {Ti is a minterm||Ti| ≥ 2, h ∈ Ti}, and denote vh = |T h|. The (unique, in case of
DNF) reconstruction function projection set A = {αTi

h } are all linearly independent by

construction of DNF. Namely, each selects a single row in Mh, and
(

αTi

h

)T
Mh is either of

the form ri,h or of the form s −
∑

k∈Ti\h ri,k, where ri,j is a random element used by the
DNF in the additive sub-scheme for minterm Ti and party j.

For a fixed k ∈ [vh], by structure of DNF, we have Rowspan(MTk\h)∩Rowspan(Mh) = 0.
Therefore,

∑
k∈[vh]

(
Rowspan(MTk\h) ∩ Rowspan(Mh)

)
= {0}. Thus, A satisfies conditions 1

and 3 of Theorem 30 relative to T h.
It follows from Theorem 30 that A′ is of dimension ≥ vh. Thus, the matrix A′M ′

h (where
A′ is treated as a matrix constructed from the vectors of A′ as rows) also has dimension at
least vh. This implies M ′

h itself is of rank at least vh, which in turn lower bounds its number
of rows.

Parties that constitute a singleton minterm, contribute at least 1 to rank(M ′
h), as the

party contained in the minterm is not redundant. Going over all parties h, the result follows
by changing the order of summation, obtaining.

m′ ≥
∑

h

∑
T :T is a minterm,h∈T

1 =
∑

T :T is a minterm
|T | (6)

◀

▶ Remark 32. Theorem 31, in fact, states that DNF is not convertible to any linear scheme
with lower share complexity, in particular, in the Shamir secret sharing scheme. The
non-minimality of Shamir follows.
▶ Remark 33. In fact, the above theorem can be fairly easily generalized to Π where
span({α⊺Mh|α ∈ A}) ∩

∑
i∈[vh](Rowspan(MTi\h) ∩ Rowspan(Mh)) = U for some h has

a “relatively small” dimension u. Then, we can prove dim(span(A)) − u lower bounds
rank(M ′

h) if Π ≤ Π′. That is, the smaller u relatively to dim(span(A)) is, the higher the
share complexity of party h in Π′ must be.

5 A characterization of convertability between linear schemes

Let Γ be an access structure on n parties. Let Π, Π′ be linear secret-sharing schemes specified
by MSPs (F, M ∈ Fm×k, ρ) and (F, M ′ ∈ Fm′×k′

, ρ′), respectively, realizing Γ. We devise a
characterization of convertibility from Π to Π′ by solvability of a certain system of linear
equations. Essentially, every solution of the system represents a conversion function g.
Namely, for every randomness vector from Π, it defines converted shares for Π′.

7 In fact, the number of rows assigned to each party is at least as large as in DNF.
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The linear system LΠ,Π′ . For each randomness vector r ∈ Fm we define a variable
X(r) ∈ Fm′ , that assumes a value for the purported sharing under M ′ induced by the share
conversion of M · r. The constraints we define are as follows.

Locality. For every i ∈ [n] and r, r′ ∈ Fm such that Mi · r = Mi · r′, add the constraint:

X
(r)
i = X

(r′)
i .

Consistency. Let A ⊆ [m′] be a subset of rows of M ′ which form a basis of Rowspan(M ′).
Since M ′[A, ·] is a basis of Rowspan(M ′), there exists a (unique) matrix H ∈ Fm′,|A| such
that H ·M ′[A, ·] = M ′. For every r ∈ Fm, we add the constraint

H ·X(r)[A] = X(r).

Correctness. For each minterm T ⊂ [n] of Γ do the following: let α′T ∈ F|(ρ′)−1(T )| be
a smallest reconstruction vector for T under some arbitrary ordering of F|(ρ′)−1(T )|). For
every s ∈ F, and every r such that r[1] = s, add the constraint(

α′T
)T
·X(r)

T = s.

▶ Remark 34. The characterization may be easily extended to non-linear Π with S = F,
keeping the system linear.

▶ Theorem 35. Let Γ be an access structure on n parties. Let Π, Π′ be linear secret-
sharing schemes specified by MSPs (F, M ∈ Fm×k, ρ) and (F, M ′ ∈ Fm′×k′

, ρ′), respectively,
realizing Γ. Then, Π is convertible to Π′ if and only if the linear system LΠ,Π′ is solvable.

Proof. Both directions essentially follow from the fact that the solution set to LΠ,Π′ exactly
corresponds to the set of conversions from Π to Π′. See [11] for a formal proof. ◀

Theorems 27 and 30 may be viewed as a result of an inconsistency in the characterization
equations. In Theorem 27, the inconsistent subset of equations supported only on X(r1), X(r2)

for a pair r1, r2 as chosen in the proof, and the inconsistency involves a potentially large set
of rj ’s, already. Lemma 25 relies on equations of all three types to derive its conclusion.

Future work. We believe that there exist additional types of “inconsistencies” in the linear
equations in the characterization that may result in proving non-existence of a conversion
from between pairs of linear schemes Π to Π′, and it is an interesting open question to list
all possible types of inconsistencies, and thereby make the above characterization easier to
apply. Most importantly, we wish to understand when conversions between linear schemes
do exist. Another interesting open question on convertability between pairs of linear schemes
is understanding whether it is helpful to have non-linear conversion functions g.

6 Impossibility of conversion to CNF for general schemes

In this section, we introduce the class of non-degenerate secret-sharing schemes, which
includes CNF and Shamir schemes, and, using properties of non-degenerate schemes, we
prove a necessary condition of convertibility to CNF from any (not necessarily linear) scheme.

▶ Definition 36. Let Π be a secret-sharing scheme with secret domain S and randomness
domain R realizing an access structure Γ. Π is non-degenerate if the following holds: If Π′

is a secret-sharing scheme with secret domain S and randomness domain R′ realizing Γ such
that, for all s ∈ S, r′ ∈ R′, there exists r ∈ R such that Π′(s; r′) = Π(s; r), then

(Π′(s; r′)|r′ ← R′) ≡ (Π(s; r)|r ← R) ,∀s ∈ S. (7)
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Suppose Π is a non-degenerate secret-sharing scheme. If a secret-sharing scheme Π′ is locally
convertible to Π, then the secret-sharing scheme induced by the applying the share conversion
function to Π′ coincides with Π.

▶ Proposition 37. Let Π be a non-degenerate secret-sharing scheme with secret domain S

and randomness domain R realizing access structure Γ over n parties. Suppose Π′ be a secret-
sharing scheme with the same secret domain and access structure and randomness domain R′

that admits share conversion to Π using a share conversion function g = (g1, . . . , gn). Then,
for all s ∈ S,

(g(Π′(s; r′))|r′ ← R′) ≡ (Π(s; r)|r ← R) . (8)

Proof. Consider the secret-sharing scheme in which s ∈ S is secret shared as (sh1, . . . , shn) =
g(Π′(s, r′)) where r′ ← R′. Since g is a share conversion function that converts Π′ to Π, this
induces secret-sharing scheme with secret domain S realizing the access structure Γ. Further,
for each s ∈ S and r′ ∈ R′, g(Π′(s; r′)) = Π(s; r) for some r ∈ R. The proposition now follows
from the fact that Π is a non-degenerate secret-sharing scheme (See Definition 36). ◀

We establish that CNF and Shamir secret sharing schemes are non-degenerate. The proofs
of these claims follow the outline sketched in Section 1.1; their formal proofs are deferred to
the full version.

▶ Lemma 38. For any finite group G, and access structure Γ over n parties, the CNF
secret-sharing scheme for secrets in G realizing Γ is non-degenerate.

▶ Lemma 39. For any finite field F such that |F| > n, and 1 ≤ t ≤ n, a t-private n-party
Shamir secret-sharing scheme over F is non-degenerate.

We exploit the non-degeneracy of CNF secret sharing to establish lower bound on share size
in any (potentially non-linear) secret sharing schemes that admit share conversion to CNF
secret sharing.

▶ Theorem 40. Let Π be a secret-sharing scheme with secret domain G and randomness
domain R realizing an n-party access structure Γ. There is a share conversion from Π to
CNF secret-sharing over G realizing Γ only if, for each i ∈ [n], size of the share i in Π is at
least log |G| · |{F ∈ F s.t. i /∈ F}|, where F is the set of all maximal forbidden sets associated
with Γ.

Proof. By Lemma 38, the CNF secret-sharing scheme is non-degenerate. Let g = (g1, . . . , gn)
be the share conversion function that induces the share conversion from Π to the CNF secret-
sharing scheme. By Proposition 37, for any s ∈ G, when r ← R, g(Π(s; r)) is identically
distributed as CNF secret-sharing of s. Hence, gi(Π(s; r)) corresponds to the share of party
i in CNF secret-sharing: {γF : F ∈ F , i /∈ F} where γF is uniformly chosen from G for each
F ∈ F subject to

∑
F γF = s. Theorem follows immediately from this observation. ◀

7 Results for Evolving Linear Secret-Sharing Schemes

In this section, we extend the notion of Monotone Span Programs and the induced notion
of a linear secret-sharing scheme to the evolving setting. We then apply our impossibility
results obtained is Sections 4 and 6 for the finite case to study the convertibility hierarchy in
this setting.
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Monotone span programs [16] were used to construct linear secret-sharing schemes in [4].
In this section, we extend Definition 15 to define infinite monotone span programs and cast
a few constructions from the literature as instances of this notion. We define the product of
an infinite matrix K ∈ F[n]×N+ by a finite vector r ∈ F[m] as K ′r, where K ′ is obtained by
keeping the first m columns of K. We will typically use such products for matrices where all
but the first m columns are 0. Generalizing this notion to the evolving setting, we dub IMSP,
requires some care. Roughly, in an IMSP M(F, M, ρ) |ρ−1(i)| is finite for all i, every row,
as well as the target vector (typically e1 = (1, 0, . . . , 0)) have finitely many non-0 elements.
See [11] for a formal definition. 8

In the following theorem, we generalize the MSP-based linear secret-sharing schemes to
the evolving setting, essentially giving each party the linear combinations of a randomness
vector (that also defines the secret s), as specified by the IMSP. As in the finite case, every
finite subset A ⊆ N+ either reconstructs the secret, or learns nothing about it.

▶ Theorem 41. Let M = (F, M, ρ) be an IMSP accepting an access structure Γ. Then,
Construction 42 instantiated with M implements Γ.

▶ Construction 42. Consider an IMSP M(F, M, ρ).
INPUT: a secret s ∈ F.
We determine r0 = s and define r = (s, r1, r2 . . .).
SHARE: To generate shi the dealer does the following:

1. Gets as input (s, sh1, . . . , shi−1), that is, a secret s and the shares of parties p1, . . . , pi−1.
For convenience, we assume it in fact receives the set of r1, . . . , rj’s sampled so far,
for j = max(C[i−1]). It samples random independent elements rj+1, . . . , rj+d ∈ F for
j + d = max(C[i]).

2. Set shi = Mir, where r is the prefix of r sampled so far.
RECON: Let α denote the (finite) reconstruction vector such that αT MB = e1. Return
< α, Π(B) >.

The proof of this theorem is deferred to the main version [11] and re-interprets the construction
of [1] as an IMSP based scheme. We define evolving linear secret-sharing schemes as the set
of schemes so specified by an IMSP.

For constructions for the evolving threshold, and for the evolving undirected st-connectivity
access structures families as instances of IMSP, we refer the reader to the full version [11].

▶ Theorem 43. Let Γ denote an evolving access structure. Then GIDT [1, Construction 3.9]
for S = F2 and Γ instantiated so that edge predicates are implemented by linear schemes
over F2 is (evolving) linear.

The proof immediately follows from observing the GIDT [1] given as Construction 3.9.
The following theorem states that for a large class of evolving access structures there is no

minimal linear evolving secret-sharing scheme. This proof follows from Theorem 27 applied
to any specific evolving scheme and a tailor crafted GIDT scheme [1, Construction 3.9], and
is deferred to the full version [11].

8 We use a “working definition” of linear evolving secret-sharing schemes specified by an IMSP, which is a
natural extension of the finite case. An arguably more intuitive definition requires that all shares are
linear combinations of the ri’s and s (over a field F) without the restriction on reconstruction. Beimel
has demonstrated in [3] that linear schemes imply MSPs of similar share complexity, so the definitions
are equivalent. We do not demonstrate such a result in this paper, but it would be useful to demonstrate
in future work on the theory of linear evolving schemes.
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▶ Theorem 44. Consider an evolving access structure Γ such that there exists h̃ ∈ [n], and
an infinite collection of minterms A = {Ti}i∈N where h̃ ∈ Ti for all i ∈ N. Then, for any
linear scheme Π̃ specified by M over F2, there exists an evolving linear scheme Π̃′ specified
by M ′ over F2 for Γ, such that Π̃′ is not convertible to Π̃.

Next, using results obtained in Section 6, we prove the absence of a maximal evolving scheme
in a wide class of evolving secret-sharing schemes, even not necessarily linear.

▶ Definition 45 (Trivial Evolving Access Structures). An evolving access structure Γ is said to
be trivial if there exists N ∈ N such that, for all n > N , {n} ∈ Γ or for all finite set A, A ∈ Γ
only if A \ {n} ∈ Γ.

▶ Theorem 46. Any non-trivial evolving access structure Γ and finite field F has no maximal
evolving secret-sharing scheme over F.

Proof. We will need the following technical claim on evolving access structures (see [11] for
a proof).

▷ Claim 47. If Γ is nontrivial, then for any k ∈ N, there exists n ∈ N such that |{F ∈ Fn :
1 /∈ F}| ≥ k, where Fn is the set of max-terms of Γn.

Now, let Π be a purported maximal secret-sharing scheme for one bit secrets realizing
the access structure Γ. Let |sh1| be the share size of the share assigned to party 1 by
Π. By the above claim, there exists n such that, when Fn is the set of max-terms of Γn,
|{F ∈ Fn : 1 /∈ F}| > |sh1|. Consider the GIDT-based construction Π′ for Γ of [1] with the
first generation consisting of n parties, and a CNF implementation of Γn, in the edge going
from the root to a leaf. By Theorem 40, Π does not have a share conversion to Π′ since the
size of share i is less than |{F ∈ Fn : 1 /∈ F}| > |sh1|. ◀

8 Extensions and applications

Above, we considered secret-share conversion for schemes defined over the same field. It
this section, we discover the possibility to perform share conversion between schemes over
different fields. We show that the most of our impossibility results is applicable to the case
when the source and target schemes are defined over the fields of the same characteristic, and
when characteristics are different, the conversion is not possible for many access structures.

8.1 Extending impossibility results to schemes over different fields of
the same characteristics

In this section, we extend our impossibility results following from Theorem 27 to secret
sharing schemes defined over distinct fields of the same characteristic. For this, we slightly
restate Lemma 25 and Theorem 27 such that Π and Π′ are two secret sharing schemes defined
over F and F′, respectively, which are the extension fields of Fp.

▶ Observation 48. Lemma 25 holds for secret-sharing schemes Π defined by MSP (F, M ∈
Fm×k, ρ) and Π′ defined by MSP (F′, M ′ ∈ F′m′×k′

, ρ′) with the secret domain Fp, where F
and F′ are extension fields of Fp for prime p.

Proof. The proof is the same as the proof of Lemma 25, with the difference that (1) holds over
F′, Equation (2) is over F∗ which is the extension field for both F and F′, and Equation (3)
is over F′ (where function c is over F∗ with the output in F′). ◀
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▶ Observation 49. Theorem 27 holds for secret-sharing schemes Π defined by MSP (F, M ∈
Fm×k, ρ) and Π′ defined by MSP (F′, M ′ ∈ F′m′×k′

, ρ′) with the secret domain Fp, where F
and F′ are extension fields of Fp for prime p.

Proof. The proof of this observation is the same as the proof of Theorem 27, where all
the equations before (4) are over F. To obtain Equation (4), we apply Theorem 27 under
Observation 48 which facilitates the transition to the field F′. Equations (4), (5), and all the
following proof are constructed over F′. ◀

We rely on the above observation to extend our impossibility result in Corollary 28 for
conversion from certain linear schemes to CNF. In the observation below, both source and
target schemes work for sharing secrets in the larger domains F, F′, but are used only to share
secrets in the base field Fp. Any such scheme may be viewed as a scheme over the smaller
field S, where each party, including h receives several field elements, which correspond to
operations over Fp. Shamir over a large extension field of Fp is one example of such a scheme.

▶ Observation 50. Corollary 28 holds for secret-sharing schemes Π defined by MSP (F, M ∈
Fm×k, ρ) and Π′ = CNFΓ,F′ with the secret domain Fp, where F and F′ are extension fields
of Fp for prime p.

Proof. The proof of this observation is the same as the proof of Corollary 28, where
Theorem 27 is applied under Observation 48. ◀

The above result is not subsumed by Theorem 40, as it allows F to be much larger than F′.

8.2 Negative result for the inter-field conversion
It is often useful in applications to perform share conversion between schemes over different
fields of different characteristic. A natural choice of a secret domain for such a conversion is
{0, 1}, as these values belong to all finite fields. Furthermore, these values can be viewed as
bits, which is the most useful setting for most MPC protocols. In this section, we show that
a local conversion, in general, is not possible (even from CNF) for many access structures.
However, below we show a specially tailored leaky secret-sharing scheme over field Zp which
allows local conversion to a different field Zq for q < n/2 for (n, n)-threshold.

Next, we observe that for all pairs p ̸= q, and many access structures Γ, one can not
convert from CNFΓ,Fp

to ΠΓ,Fq
, where ΠΓ,Fq

is any linear scheme over q for that share. More
precisely, we have

▶ Theorem 51. Let Γ denote an access structure for n > 1 parties, such that for all maxterms
B1, B2, B1 ∪ B2 = [n].9 Let p ̸= q be primes, and CNFΓ,Fp

and ΠΓ,Fq
linear schemes for

Γ over Fp,Fq respectively. Then CNFΓ,Fp
is not convertible to ΠΓ,Fq

for secret domain
S = {0, 1} (that is, we do not care how other secrets are converted).

The theorem follows almost immediately from a variant of Lemma 25 for different fields
p, q which we provide below (see full version [11] for a proof).

▷ Claim 52. Let Π = (Fp, M ∈ Fm×ℓ
p , ρ), Π′ = (Fq, M ′ ∈ Fm′×ℓ′

q , ρ′) for a pair of primes p ̸= q,
and let T ∪{h} denote a minterm of Γ. Let αT ∪h, α′

T ∪h be reconstruction functions for T ∪{h}
in Π and Π′ respectively. Assume L = Rowspan(MT )∩Rowspan(Mh) = {0}. Then for every

9 For instance, the (⌈n/2⌉ + 1, n)-threshold access structure.



T. Ben David, V. Narayanan, O. Nissenbaum, and A. Paskin-Cherniavsky 11:21

conversion scheme g from Π to Π′ there exists a sequence r1, . . . , ri, . . . ∈ Zℓ and constant
c ∈ Z such that (1) (α′

h)T
gh(Mhri mod p) ≡ i + c (mod q); (2) (αh)T

Mhri ≡ i (mod p) for
all i ∈ N+, and (3) ⟨ri, e1⟩ mod p ∈ {0, 1}. We conclude that such a g does not exist if p ̸= q.

Proof of Theorem 51. Finally, the theorem follows from Claim 52 by observing that for
n > 2, in CNFΓ,Fp

each party pi gets a subset of independent random vectors over Fp,
namely rT of each maxterm T such that i /∈ T . The sets of rH ’s that h holds, vs those
T holds. Assume the contrary – that h /∈ H and T ∩ H = ∅. In that case i /∈ T ∪ H,
contradicting the assumptions that T ∪H = [n] (as T, H are maxterms). This implies that
for CNFΓ,Fp

, L = {0}, so the conditions of Claim 52 are indeed satisfied by Π = CNFΓ,Fp

and Π′ = ΠΓ,Fq
. ◀

8.3 The specially tailored additive secret-sharing scheme allowing
inter-field conversion

Next, we build the secret-sharing scheme over the field Zp, and define the conversion function
to the field Zq. The scheme implies some restrictions on the randomness of the dealer, and
also is not perfectly secure. However it’s existence raises a question if there are statistical
secure secret-sharing schemes allowing an inter-field conversion, and how small the leakage
could be. The other question is about the possibility to convert the original additive scheme
over Fp to a perfectly private scheme over Fq, by using the entire randomness domain of the
former. This way, privacy of the converted scheme automatically holds by locality of the
conversion scheme. Correctness is the only measure that suffers, with some small probability.
This way, we are talking about a conversion scheme between the same pair of perfect schemes
Π, Π′, while the conversion scheme itself is statistically correct.

The n-party additive convertible scheme ADDp→q.
Parameters: p ̸= q are primes such that q < n/2.
Sharing algorithm:

(1) the dealer for each i ∈ [n] samples ri ← Zp.
(2) If

∑n
i=1 ri = kpq + s, where s ∈ {0, 1} for some k then output shi := ri and terminate.

Otherwise go to Step 1.
Conversion function: Each pi computes sh′

i = shi mod q.

This scheme is correct by construction, with polynomial computational complexity,
and statistical leakage less or equal to pleak = 1

p + o
(

1
p2n

)
(see the full version [11]).

The convertible additive scheme is the basic case for creating the convertible CNF
and DNF schemes. However, even directly it could have several applications, similar to
applications of dBits. For more details, we refer to the full version [11]. We leave the
existence of practical inter-field convertible secret-sharing schemes with the statistical, or
even computational security, as the open question for the future research.
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